46 CFR 45.107 - Strength of hull.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Strength of hull. 45.107 Section 45.107 Shipping COAST... Assignment § 45.107 Strength of hull. The general structural strength of the hull must be sufficient for the... Commandant as possessing adequate strength. ...
46 CFR 45.107 - Strength of hull.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Strength of hull. 45.107 Section 45.107 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.107 Strength of hull. The general structural strength of the hull must be sufficient for the...
46 CFR 42.13-5 - Strength of vessel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Strength of vessel. 42.13-5 Section 42.13-5 Shipping... General Rules for Determining Load Lines § 42.13-5 Strength of vessel. (a) The assigning and issuing authority shall satisfy itself that the general structural strength of the vessel is sufficient for the...
Sufficiency and Necessity Assumptions in Causal Structure Induction
ERIC Educational Resources Information Center
Mayrhofer, Ralf; Waldmann, Michael R.
2016-01-01
Research on human causal induction has shown that people have general prior assumptions about causal strength and about how causes interact with the background. We propose that these prior assumptions about the parameters of causal systems do not only manifest themselves in estimations of causal strength or the selection of causes but also when…
29 CFR 1926.105 - Safety nets.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be hung with sufficient clearance to prevent user's contact with the surfaces or structures below... shall provide a minimum breaking strength of 5,000 pounds. (e) Forged steel safety hooks or shackles...
29 CFR 1926.105 - Safety nets.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be hung with sufficient clearance to prevent user's contact with the surfaces or structures below... shall provide a minimum breaking strength of 5,000 pounds. (e) Forged steel safety hooks or shackles...
29 CFR 1926.105 - Safety nets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be hung with sufficient clearance to prevent user's contact with the surfaces or structures below... shall provide a minimum breaking strength of 5,000 pounds. (e) Forged steel safety hooks or shackles...
29 CFR 1926.105 - Safety nets.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be hung with sufficient clearance to prevent user's contact with the surfaces or structures below... shall provide a minimum breaking strength of 5,000 pounds. (e) Forged steel safety hooks or shackles...
Local structure of percolating gels at very low volume fractions
NASA Astrophysics Data System (ADS)
Griffiths, Samuel; Turci, Francesco; Royall, C. Patrick
2017-01-01
The formation of colloidal gels is strongly dependent on the volume fraction of the system and the strength of the interactions between the colloids. Here we explore very dilute solutions by the means of numerical simulations and show that, in the absence of hydrodynamic interactions and for sufficiently strong interactions, percolating colloidal gels can be realised at very low values of the volume fraction. Characterising the structure of the network of the arrested material we find that, when reducing the volume fraction, the gels are dominated by low-energy local structures, analogous to the isolated clusters of the interaction potential. Changing the strength of the interaction allows us to tune the compactness of the gel as characterised by the fractal dimension, with low interaction strength favouring more chain-like structures.
High-pressure structure made of rings with peripheral weldments of reduced thickness
Leventry, Samuel C.
1988-01-01
A high-pressure structure having a circular cylindrical metal shell made of metal rings joined together by weldments and which have peripheral areas of reduced shell thickness at the weldments which permit a reduction in the amount of weld metal deposited while still maintaining sufficient circumferential or hoop stress strength.
Bažant, Zdeněk P.; Le, Jia-Liang; Bazant, Martin Z.
2009-01-01
The failure probability of engineering structures such as aircraft, bridges, dams, nuclear structures, and ships, as well as microelectronic components and medical implants, must be kept extremely low, typically <10−6. The safety factors needed to ensure it have so far been assessed empirically. For perfectly ductile and perfectly brittle structures, the empirical approach is sufficient because the cumulative distribution function (cdf) of random material strength is known and fixed. However, such an approach is insufficient for structures consisting of quasibrittle materials, which are brittle materials with inhomogeneities that are not negligible compared with the structure size. The reason is that the strength cdf of quasibrittle structure varies from Gaussian to Weibullian as the structure size increases. In this article, a recently proposed theory for the strength cdf of quasibrittle structure is refined by deriving it from fracture mechanics of nanocracks propagating by small, activation-energy-controlled, random jumps through the atomic lattice. This refinement also provides a plausible physical justification of the power law for subcritical creep crack growth, hitherto considered empirical. The theory is further extended to predict the cdf of structural lifetime at constant load, which is shown to be size- and geometry-dependent. The size effects on structure strength and lifetime are shown to be related and the latter to be much stronger. The theory fits previously unexplained deviations of experimental strength and lifetime histograms from the Weibull distribution. Finally, a boundary layer method for numerical calculation of the cdf of structural strength and lifetime is outlined. PMID:19561294
Material and structural studies of metal and polymer matrix composites
NASA Technical Reports Server (NTRS)
Signorelli, R. A.; Serafini, T. T.; Johns, R. H.
1972-01-01
The application of fiber composites to aeronautical and space vehicle systems indicates the following: It appears quite probable that resin/fiber composites can be developed for service at 315 C for several thousand hours and at 370 C for a few hundred hours. The retention of resin/fiber strength at these high temperatures can be achieved by modifying the polymer molecular structure or by developing new processing techniques, or both. Carbon monofilament with attractive strength values has been produced and fabrication studies to reinforce aluminum with such monofilaments have been initiated. Refractory wire-superalloy composites have demonstrated sufficiently high strength and impact values to suggest that they have potential for application to turbine blades at temperatures to 1200 C and above.
Effective use of fly ash slurry as fill material.
Horiuchi, S; Kawaguchi, M; Yasuhara, K
2000-09-15
A lot of effort has been put into increasing coal ash utilization; however, 50% of total amount is disposed of on land and in the sea. Several attempts have been reported recently concerning slurried coal fly ash use for civil engineering materials, such as for structural fill and backfill. The authors have studied this issue for more than 15 years and reported its potential for (1) underwater fills, (2) light weight backfills, and (3) light weight structural fills, through both laboratory tests and construction works. This paper is an overview of the results obtained for slurry, focusing on the following. (1) Coal fly ash reclaimed by slurry placement shows lower compressibility, higher ground density, and higher strength than by the other methods. This higher strength increases stability against liquefaction during earthquake. (2) Higher stability of the fly ash ground formed by slurry placement is caused by higher density and its self-hardening property. (3) Stability of fly ash reclaimed ground can be increased by increasing density and also by strength enhancement by cement addition. (4) Technical data obtained through a man-made island construction project shows the advantages of fly ash slurry in terms of mechanical properties such as higher stability against sliding failure, sufficient ground strength, and also in terms of cost saving. (5) Concentration in leachates from the placed slurry is lower than the Japanese environmental law. (6) In order to enlarge the fly ash slurry application toward a lightweight fill, mixtures of air foam, cement and fly ash were examined. Test results shows sufficient durability of this material against creep failure. This material was then used as lightweight structural fill around a high-rise building, and showed sufficient quality. From the above data, it can be concluded that coal fly ash slurry can be effectively utilized in civil engineering projects.
Development of nanostructured SUS316L-2%TiC with superior tensile properties
NASA Astrophysics Data System (ADS)
Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.
2015-11-01
Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.
2003-01-01
Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.
Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase
NASA Astrophysics Data System (ADS)
Saito, Shohei; Nobusue, Shunpei; Tsuzaka, Eri; Yuan, Chunxue; Mori, Chigusa; Hara, Mitsuo; Seki, Takahiro; Camacho, Cristopher; Irle, Stephan; Yamaguchi, Shigehiro
2016-07-01
Liquid crystal (LC) provides a suitable platform to exploit structural motions of molecules in a condensed phase. Amplification of the structural changes enables a variety of technologies not only in LC displays but also in other applications. Until very recently, however, a practical use of LCs for removable adhesives has not been explored, although a spontaneous disorganization of LC materials can be easily triggered by light-induced isomerization of photoactive components. The difficulty of such application derives from the requirements for simultaneous implementation of sufficient bonding strength and its rapid disappearance by photoirradiation. Here we report a dynamic molecular LC material that meets these requirements. Columnar-stacked V-shaped carbon frameworks display sufficient bonding strength even during heating conditions, while its bonding ability is immediately lost by a light-induced self-melting function. The light-melt adhesive is reusable and its fluorescence colour reversibly changes during the cycle, visualizing the bonding/nonbonding phases of the adhesive.
Conformal Load-Bearing Antenna Structure for Australian Defence Force Aircraft
2007-03-01
electrical wiring, thermal management, power storage, armour and weapons. While this approach reduces complexity it does increase weight and limit...the constituents of ballistic armour would have sufficient mechanical stiffness and strength to act as load-bearing structure. Thus, multifunctional...and located where they could detect that degradation. The sensors would then be easily interrogated by the operator at the appropriate time to reveal
NASA Astrophysics Data System (ADS)
Hampton, Francis Patrick
Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3--6 were achieved for all concrete elements tested. To study the long-term behavior of DHFRP, the creep-rupture strength of 5-mm bars was tested. This was conducted first on individual bar specimens and is important in the life-cycle design and performance of DHFRP reinforced concrete.
33 CFR 118.160 - Vertical clearance gauges.
Code of Federal Regulations, 2013 CFR
2013-07-01
... distance between “low steel” of the bridge channel span (in the closed to navigation position for... approaching vessels and extend to a reasonable height above high water so as to be meaningful to the viewer... protection structure and made of a durable material of sufficient strength to provide resistance to weather...
33 CFR 118.160 - Vertical clearance gauges.
Code of Federal Regulations, 2014 CFR
2014-07-01
... distance between “low steel” of the bridge channel span (in the closed to navigation position for... approaching vessels and extend to a reasonable height above high water so as to be meaningful to the viewer... protection structure and made of a durable material of sufficient strength to provide resistance to weather...
Automated sizing of large structures by mixed optimization methods
NASA Technical Reports Server (NTRS)
Sobieszczanski, J.; Loendorf, D.
1973-01-01
A procedure for automating the sizing of wing-fuselage airframes was developed and implemented in the form of an operational program. The program combines fully stressed design to determine an overall material distribution with mass-strength and mathematical programming methods to design structural details accounting for realistic design constraints. The practicality and efficiency of the procedure is demonstrated for transport aircraft configurations. The methodology is sufficiently general to be applicable to other large and complex structures.
Flexural strength of proof-tested and neutron-irradiated silicon carbide
NASA Astrophysics Data System (ADS)
Price, R. J.; Hopkins, G. R.
1982-08-01
Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.
Launching of Jets and the Vertical Structure of Accretion Disks
NASA Astrophysics Data System (ADS)
Ogilvie, Gordon I.; Livio, Mario
2001-05-01
The launching of magnetohydrodynamic outflows from accretion disks is considered. We formulate a model for the local vertical structure of a thin disk threaded by a poloidal magnetic field of dipolar symmetry. The model consists of an optically thick disk matched to an isothermal atmosphere. The disk is supposed to be turbulent and possesses an effective viscosity and an effective magnetic diffusivity. In the atmosphere, if the magnetic field lines are inclined sufficiently to the vertical, a magnetocentrifugal outflow is driven and passes through a slow magnetosonic point close to the surface. We determine how the rate of mass loss varies with the strength and inclination of the magnetic field. In particular, we find that for disks in which the mean poloidal field is sufficiently strong to stabilize the disk against the magnetorotational instability, the mass-loss rate decreases extremely rapidly with increasing field strength and is maximal at an inclination angle of 40°-50°. For turbulent disks with weaker mean fields, the mass-loss rate increases monotonically with increasing strength and inclination of the field, but the solution branch terminates before achieving excessive mass-loss rates. Our results suggest that efficient jet launching occurs for a limited range of field strengths and a limited range of inclination angles in excess of 30°. In addition, we determine the direction and rate of radial migration of the poloidal magnetic flux and discuss whether configurations suitable for jet launching can be maintained against dissipation.
Assessing the role of spatial correlations during collective cell spreading
Treloar, Katrina K.; Simpson, Matthew J.; Binder, Benjamin J.; McElwain, D. L. Sean; Baker, Ruth E.
2014-01-01
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher's equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations. PMID:25026987
Weak reversible cross links may decrease the strength of aligned fiber bundles.
Nabavi, S Soran; Hartmann, Markus A
2016-02-21
Reversible cross-linking is an effective strategy to specifically tailor the mechanical properties of polymeric materials that can be found in a variety of biological as well as man-made materials. Using a simple model in this paper the influence of weak, reversible cross-links on the mechanical properties of aligned fiber bundles is investigated. Special emphasis in this analysis is put on the strength of the investigated structures. Using Monte Carlo methods two topologies of cross-links exceeding the strength of the covalent backbone are studied. Most surprisingly only two cross-links are sufficient to break the backbone of a multi chain system, resulting in a reduced strength of the material. The found effect crucially depends on the ratio of inter- to intra-chain cross-links and, thus, on the grafting density that determines this ratio.
Moore, Diane E.; Lockner, D.A.
2004-01-01
We compare the frictional strengths of 17 sheet structure mineral powders, measured under dry and water-saturated conditions, to identify the factors that cause many of them to be relatively weak. The dry coefficient of friction ?? ranges upward from 0.2 for graphite, leveling off at 0.8 for margarite, clintonite, gibbsite, kaolinite, and lizardite. The values of ?? (dry) correlate directly with calculated (001) interlayer bond strengths of the minerals. This correlation occurs because shear becomes localized along boundary and Riedel shears and the platy minerals in them rotate into alignment with the shear planes. For those gouges with ?? (dry) < 0.8, shear occurs by breaking the interlayer bonds to form new cleavage surfaces. Where ?? (dry) = 0.8, consistent with Byerlee's law, the interlayer bonds are sufficiently strong that other frictional processes dominate. The transition in dry friction mechanisms corresponds to calculated surface energies of 2-3 J/m2. Adding water causes ?? to decrease for every mineral tested except graphite. If the minerals are separated into groups with similar crystal structures, ?? (wet) increases with increasing interlayer bond strength within each group. This relationship also holds for the swelling clay montmorillonite, whose water-saturated strength is consistent with the strengths of nonswelling clays of similar crystal structure. Water in the saturated gouges forms thin, structured films between the plate surfaces. The polar water molecules are bonded to the plate surfaces in proportion to the mineral's surface energy, and ?? (wet) reflects the stresses required to shear through the water films. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Bell, Kenneth; Wilson, Nigel
2001-05-01
Electron temperatures and densities are difficult to determine in many astrophysical plasmas. However, it is well known that diagnostics on forbidden line intensity ratios for ions in the phosphorous isoelectronic sequence are of great importance in astrophysics, particularly for nebulae. A key element in the analysis is highly accurate atomic data. In this work we extend the earlier calculations of Butler, Zeippen and Le Bourlot (Astron. Astrophys. 203 189 (1988)) on electron scattering by K v. We have obtained effective collision strengths for a wide range of electron temperatures using the R-matrix method. Twenty-two LS target eigenstates are included in the expansion of the total wavefunction, consisting of the seven n=3 states with configuration 3s^23p^3 and 3s3p^4, twelve n=3 states with configuration 3s^23p^23d, and three n=4 states with configuration 3s^23p^24s. The fine-structure collision strengths have been obtained by transforming to a jj-coupling scheme using the JAJOM program of Saraph (Comp. Phys. Commun. 15 247 (1978)) and have been determined at a sufficiently fine energy mesh to delineate properly the resonance structure. Results for both collision strengths and for effective collision strengths will be presented at the conference and comparison will be made with the earlier work.
Dijkhuizen, Annemarie; Douma, Rob K; Krijnen, Wim P; van der Schans, Cees P; Waninge, Aly
2018-05-30
A feasible and reliable instrument to measure strength in persons with severe intellectual and visual disabilities (SIVD) is lacking. The aim of our study was to determine feasibility, learning period and reliability of three strength tests. Twenty-nine participants with SIVD performed the Minimum Sit-to-Stand Height test (MSST), the Leg Extension test (LE) and the 30 seconds Chair-Stand test (30sCS), once per week for 5 weeks. Feasibility was determined by the percentage of successful measurements; learning effect by using paired t test between two consecutive measurements; test-retest reliability by intraclass correlation coefficient and Limits of Agreement and, correlations by Pearson correlations. A sufficient feasibility and learning period of the tests was shown. The methods had sufficient test-retest reliability and moderate-to-sufficient correlations. The MSST, the LE, and the 30sCS are feasible tests for measuring muscle strength in persons with SIVD, having sufficient test re-test reliability. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein
2017-10-01
Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.
Mold with improved core for metal casting operation
Gritzner, Verne B.; Hackett, Donald W.
1977-01-01
The present invention is directed to a mold containing an improved core for use in casting hollow, metallic articles. The core is formed of, or covered with, a layer of cellular material which possesses sufficient strength to maintain its structural integrity during casting, but will crush to alleviate the internal stresses that build up if the normal contraction during solidification and cooling is restricted.
46 CFR 32.63-25 - Cargo tanks and supports-B/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... have sufficient additional strength so as to limit the maximum combined tank stress, including saddle horn and bending stresses, to 1.5 times the maximum allowable hoop stress in still water, and to the... shall have sufficient additional strength to limit the maximum combined tank stress, including saddle...
46 CFR 32.63-25 - Cargo tanks and supports-B/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... have sufficient additional strength so as to limit the maximum combined tank stress, including saddle horn and bending stresses, to 1.5 times the maximum allowable hoop stress in still water, and to the... shall have sufficient additional strength to limit the maximum combined tank stress, including saddle...
46 CFR 32.63-25 - Cargo tanks and supports-B/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... have sufficient additional strength so as to limit the maximum combined tank stress, including saddle horn and bending stresses, to 1.5 times the maximum allowable hoop stress in still water, and to the... shall have sufficient additional strength to limit the maximum combined tank stress, including saddle...
46 CFR 32.63-25 - Cargo tanks and supports-B/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... have sufficient additional strength so as to limit the maximum combined tank stress, including saddle horn and bending stresses, to 1.5 times the maximum allowable hoop stress in still water, and to the... shall have sufficient additional strength to limit the maximum combined tank stress, including saddle...
Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors
NASA Astrophysics Data System (ADS)
Abdel-Jaber, Hiba; Glisic, Branko
2015-04-01
Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.
A case study on the structural assessment of fire damaged building
NASA Astrophysics Data System (ADS)
Osman, M. H.; Sarbini, N. N.; Ibrahim, I. S.; Ma, C. K.; Ismail, M.; Mohd, M. F.
2017-11-01
This paper presents a case study on the structural assessment of building damaged by fire and discussed on the site investigations and test results prior to determine the existing condition of the building. The building was on fire for about one hour before it was extinguished. In order to ascertain the integrity of the building, a visual inspection was conducted for all elements (truss, beam, column and wall), followed by non-destructive, load and material tests. The load test was conducted to determine the ability of truss to resist service load, while the material test to determine the residual strength of the material. At the end of the investigation, a structural analysis was carried out to determine the new factor of safety by considering the residual strength. The highlighted was on the truss element due to steel behaviour that is hardly been predicted. Meanwhile, reinforced concrete elements (beam, column and wall) were found externally affected and caused its strength to be considered as sufficient for further used of building. The new factor of safety is equal to 2, considered as the minimum calculated value for the truss member. Therefore, this fire damaged building was found safe and can be used for further application.
Cryogenic insulation strength and bond tester
NASA Technical Reports Server (NTRS)
Schuerer, P. H.; Ehl, J. H.; Prasthofer, W. P. (Inventor)
1985-01-01
A method and apparatus for testing the tensile strength and bonding strength of sprayed-on foam insulation attached to metal cryogenic fuel tanks is described. A circular cutter is used to cut the insulation down to the surface of the metal tank to form plugs of the insulation for testing in situ on the tank. The apparatus comprises an electromechanical pulling device powered by a belt battery pack. The pulling device comprises a motor driving a mechanical pulling structure comprising a horizontal shaft connected to two bell cracks which are connected to a central member. When the lower end of member is attached to a fitting, which in turn is bonded to a plug, a pulling force is exerted on the plug sufficient to rupture it. The force necessary to rupture the plug or pull it loose is displayed as a digital read-out.
Environmentally Friendly Bio-Based Vinyl Ester Resins for Military Composite Structures
2008-12-01
composites, fatty acid , vinyl ester 9. Distribution $tatement (requr’iedl lsmanuscript subjectto export control? E ruo I yes Circfe appropriate l tter and...resins is to replace some or all of the styrene with fatty acid -based monomers. These fatty acid vinyl ester resins allow for the formulation of high...validation studies have been performed, showing that the fatty acid -based resins have sufficient, modulus, strength, glass transition temperature, and
Rectifying antenna and method of manufacture
NASA Technical Reports Server (NTRS)
Bhansali, Shekhar (Inventor); Buckle, Kenneth (Inventor); Goswami, D. Yogi (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor)
2006-01-01
In accordance with the present invention, an aperture rectenna is provided where the substrate is transparent and of sufficient mechanical strength to support the fabricated structure above it. An aperture antenna is deposited on the transparent substrate and a metal-insulator-metal (MIM) diode is constructed on top of the aperture antenna. There is an insulating layer between the aperture antenna metal and the metal ground plane optimized to maximize the collection of incident radiation. The top of the structure is capped with a metal ground plane layer, which also serves as the DC connection points for each rectenna element.
Effects of the Bar Strength of Gaseous Features in Barred Galaxies
NASA Astrophysics Data System (ADS)
Kim, Woong-Tae; Seo, W.; Kim, Y.
2013-01-01
Barred galaxies commonly possess gaseous structures such as a pair of dust lanes, a nuclear ring, and nuclear spirals at their centers. We use hydrodynamic simulations to study the physical properties of the gaseous structures in barred galaxies and their relationships with the bar strength. We vary the bar mass fbar relative to the spheroidal component as well as its aspect ratio. We derive expressions for the bar strength Qb and the radius where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have fbar = 0.25-0.5. Dust lanes approximately follow one of x1-orbits and tend to be more straight under a stronger and more elongated bar. A nuclear ring of a conventional x2 type forms only when the bar is not so massive or elongated. The radius of an x2-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Qb, evidencing that the ring position is not determined by the resonance but by the bar strength. Nuclear spirals exist only when the ring is of the x2-type and sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out as being tightly-wound and weak, and then due to the nonlinear effect unwind and become stronger until turning into shocks, with an unwinding rate higher for larger Qb. These results suggest that the bar strength is the primary factor that determine the properties of gaseous structures in barred galaxies.
Creep Strength of Nb-1Zr for SP-100 Applications
NASA Astrophysics Data System (ADS)
Horak, James A.; Egner, Larry K.
1994-07-01
Power systems that are used to provide electrical power in space are designed to optimize conversion of thermal energy to electrical energy and to minimize the mass and volume that must be launched. Only refractory metals and their alloys have sufficient long-term strength for several years of uninterrupted operation at the required temperatures of 1200 K and above. The high power densities and temperatures at which these reactors must operate require the use of liquid-metal coolants. The alloy Nb-1 wt % Zr (Nb-lZr), which exhibits excellent corrosion resistance to alkali liquid-metals at high temperatures, is being considered for the fuel cladding, reactor structural, and heat-transport systems for the SP-100 reactor system. Useful lifetime of this system is limited by creep deformation in the reactor core. Nb-lZr sheet procured to American Society for Testing and Materials (ASTM) specifications for reactor grade and commercial grade has been processed by several different cold work and annealing treatments to attempt to produce the grain structure (size, shape, and distribution of sizes) that provides the maximum creep strength of this alloy at temperatures from 1250 to 1450 K. The effects of grain size, differences in oxygen concentrations, tungsten concentrations, and electron beam and gas tungsten arc weldments on creep strength were studied. Grain size has a large effect on creep strength at 1450 K but only material with a very large grain size (150 μm) exhibits significantly higher creep strength at 1350 K. Differences in oxygen or tungsten concentrations did not affect creep strength, and the creep strengths of weldments were equal to, or greater than, those for base metal.
Optoelectronic Devices Based on Novel Semiconductor Structures
2006-06-14
superlattices 4. TEM study and band -filling effects in quantum-well dots 5. Improvements on tuning ranges and output powers for widely-tunable THz sources...the pump power increases the relative strength for the QW emission in the QWD sample also increases. Eventually at the sufficiently- high pump power ...Ahopelto, Appl. Phys. Lett. 66, 2364 (1995). 5. A monochromatic and high - power THz source tunable in the ranges of 2.7-38.4 ptm and 58.2-3540 ptm for
Rizzo, Antonio; Vahtras, Olav
2011-06-28
A computational approach to the calculation of excited state electronic circular dichroism (ESECD) spectra of chiral molecules is discussed. Frequency dependent quadratic response theory is employed to compute the rotatory strength for transitions between excited electronic states, by employing both a magnetic gauge dependent and a (velocity-based) magnetic gauge independent approach. Application is made to the lowest excited states of two prototypical chiral molecules, propylene oxide, also known as 1,2-epoxypropane or methyl oxirane, and R-(+)-1,1'-bi(2-naphthol), or BINOL. The dependence of the rotatory strength for transitions between the lowest three excited states of methyl oxirane upon the quality and extension of the basis set is analyzed, by employing a hierarchy of correlation consistent basis sets. Once established that basis sets of at least triple zeta quality, and at least doubly augmented, are sufficient to ensure sufficiently converged results, at least at the Hartree-Fock self-consistent field (HF-SCF) level, the rotatory strengths for all transitions between the lowest excited electronic states of methyl oxirane are computed and analyzed, employing HF-SCF, and density functional theory (DFT) electronic structure models. For DFT, both the popular B3LYP and its recently highly successful CAM-B3LYP extension are exploited. The strong dependence of the spectra upon electron correlation is highlighted. A HF-SCF and DFT study is carried out also for BINOL, a system where excited states show the typical pairing structure arising from the interaction of the two monomeric moieties, and whose conformational changes following photoexcitation were studied recently with via time-resolved CD.
Lessons from hot spot analysis for fragment-based drug discovery
Hall, David R.; Vajda, Sandor
2015-01-01
Analysis of binding energy hot spots at protein surfaces can provide crucial insights into the prospects for successful application of fragment-based drug discovery (FBDD), and whether a fragment hit can be advanced into a high affinity, druglike ligand. The key factor is the strength of the top ranking hot spot, and how well a given fragment complements it. We show that published data are sufficient to provide a sophisticated and quantitative understanding of how hot spots derive from protein three-dimensional structure, and how their strength, number and spatial arrangement govern the potential for a surface site to bind to fragment-sized and larger ligands. This improved understanding provides important guidance for the effective application of FBDD in drug discovery. PMID:26538314
46 CFR 45.111 - Strength of bulkheads at ends of superstructures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Strength of bulkheads at ends of superstructures. 45.111... LOAD LINES Conditions of Assignment § 45.111 Strength of bulkheads at ends of superstructures. Bulkheads at ends of enclosed superstructures must have sufficient strength to withstand impact of boarding...
46 CFR 45.111 - Strength of bulkheads at ends of superstructures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Strength of bulkheads at ends of superstructures. 45.111... LOAD LINES Conditions of Assignment § 45.111 Strength of bulkheads at ends of superstructures. Bulkheads at ends of enclosed superstructures must have sufficient strength to withstand impact of boarding...
NASA Astrophysics Data System (ADS)
Shrivastava, Sachin; Mohite, P. M.
2015-01-01
A redesign of canard control-surface of an advanced all-metallic fighter aircraft was carried out by using carbon fibre composite (CFC) for ribs and panels. In this study ply-orientations of CFC structure are optimized using a Genetic-Algorithm (GA) with an objective function to have minimum failure index (FI) according to Tsai-Wu failure criterion. The redesigned CFC structure was sufficiently strong to withstand aerodynamic loads from stress and deflection points of view. Now, in the present work CFC canard structure has been studied for its buckling strength in comparison to existing metallic design. In this study, the existing metallic design was found to be weak in buckling. Upon a detailed investigation, it was revealed that there are reported failures in the vicinity of zones where initial buckling modes are excited as predicted by the finite element based buckling analysis. In view of buckling failures, the redesigned CFC structure is sufficiently reinforced with stringers at specific locations. After providing reinforcements against buckling, the twist and the camber variations of the airfoil are checked and compared with existing structure data. Finally, the modal analysis has been carried out to compare the variation in excitation frequency due to material change. The CFC structure thus redesigned is safe from buckling and aerodynamic aspects as well.
Thermal and Structural Analysis of Helicopter Transmission Housings Using NASTRAN
NASA Technical Reports Server (NTRS)
Howells, R. W.; Sciarra, J. J.; Ng, G. S.
1976-01-01
The application of NASTRAN to improve the design of helicopter transmission housings is described. A finite element model of the complete forward rotor transmission housing for the Boeing Vertol CH-47C helicopter was used to study thermal distortion and stress, stress and deflection due to static and dynamic loads, load paths, and design optimization by the control of structural energy distribution. The analytical results are correlated with test data and used to reduce weight and to improve strength, service life, failsafety, and reliability. The techniques presented, although applied herein to helicopter transmissions, are sufficiently general to be applicable to any power transmission system.
NASA Technical Reports Server (NTRS)
Klein, Daniel J. (Inventor)
2011-01-01
A three dimensional structure fabricated from a self-healing polymeric material, comprising poly(ester amides) obtained from ethylene glycol, azelaic acid and 1,1-aminoundecanoic acid, wherein polymeric material has a melt index above 2.5 g/10 min. as determined by ASTM D1238 at 190.degree. C. and 2.16kg, impact resistance and ductility sufficient to resist cracking and brittle fracture upon impact by a 9 mm bullet fired at a temperature of about 29.degree. C. at subsonic speed in a range from about 800 feet/sec to about 1000 feet/sec. It has been determined that the important factors necessary for self-healing behavior of polymers include sufficient impact strength, control of the degree of crystallinity, low melting point and the ability to instantly melt at impacted area.
Sun, Changquan Calvin
2006-12-01
True density results for a batch of commercial aspartame are highly variable when helium pycnometry is used. Alternatively, the true density of the problematic aspartame lot was obtained by fitting tablet density versus pressure data. The fitted true density was in excellent agreement with that predicted from single crystal structure. Tablet porosity was calculated from the true density and tablet apparent density. After making the necessary measurements for calculating tablet apparent density, the breaking force of each intact tablet was measured and tensile strength was calculated. With the knowledge of compaction pressure, tablet porosity and tensile strength, powder compaction properties were characterized using tabletability (tensile strength versus pressure), compactibility (tensile strength versus porosity), compressibility (porosity versus pressure) and Heckel analysis. Thus, a wealth of additional information on the compaction properties of the powder was obtained through little added work. A total of approximately 4 g of powder was used in this study. Depending on the size of tablet tooling, tablet thickness and true density, 2-10 g of powder would be sufficient for characterizing most pharmaceutical powders.
Assembly of one-dimensional supramolecular objects: From monomers to networks
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Stupp, Samuel I.
2005-07-01
One-dimensional supramolecular aggregates can form networks at exceedingly low concentrations. Recent experiments in several laboratories, including our own, have demonstrated the formation of gels by these systems at concentrations well under 1% by weight. The systems of interest in our laboratory form either cylindrical nanofibers or ribbons as a result of strong noncovalent interactions among monomers. The stiffness and interaction energies among these thread-like objects can vary significantly depending on the chemical structure of the monomers used. We have used Monte Carlo simulations to study the structure of the threads and their ability to form networks through bundle formation. The persistence length of the threads was found to be strongly affected not only by stiffness, but also by the strength of attractive two-body interactions among thread segments. The relative values of stiffness and attractive two-body interaction strength determine if threads collapse or create bundles. Only in the presence of sufficiently long threads and bundle formation can these systems assemble into networks of high connectivity.
Evolution of cooperation in multilevel public goods games with community structures
NASA Astrophysics Data System (ADS)
Wang, Jing; Wu, Bin; Ho, Daniel W. C.; Wang, Long
2011-03-01
In a community-structured population, public goods games (PGG) occur both within and between communities. Such type of PGG is referred as multilevel public goods games (MPGG). We propose a minimalist evolutionary model of the MPGG and analytically study the evolution of cooperation. We demonstrate that in the case of sufficiently large community size and community number, if the imitation strength within community is weak, i.e., an individual imitates another one in the same community almost randomly, cooperation as well as punishment are more abundant than defection in the long run; if the imitation strength between communities is strong, i.e., the more successful strategy in two individuals from distinct communities is always imitated, cooperation and punishment are also more abundant. However, when both of the two imitation intensities are strong, defection becomes the most abundant strategy in the population. Our model provides insight into the investigation of the large-scale cooperation in public social dilemma among contemporary communities.
Grote, Simon; Kleinebudde, Peter
2018-05-29
The influence of particle morphology and size of alpha-lactose monohydrate on dry granules and tablets was studied. Four different morphologies were investigated: Two grades of primary crystals, which differed in their particle size and structure (compact crystals vs. agglomerates). The materials were roll compacted at different specific compaction forces and changes in the particle size distribution and the specific surface area were measured. Afterwards, two fractions of granules were pressed to tablets and the tensile strength was compared to that from tablets compressed from the raw materials. The specific surface area was increased induced by roll compaction/dry granulation for all materials. At increased specific compaction forces, the materials showed sufficient size enlargement. The morphology of lactose determined the strength of direct compressed tablets. In contrast, the strength of granule tablets was leveled by the previous compression step during roll compaction/dry granulation. Thus, the tensile strength of tablets compressed directly from the powder mixtures determined whether materials exhibited a loss in tabletability after roll compaction/dry granulation or not. The granule size had only a slight influence on the strength of produced tablets. In some cases, the fraction of smaller granules showed a higher tensile strength compared to the larger fraction.
Sim, Jongsung; Park, Cheolwoo
2011-11-01
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.
Utilization of fly ash and ultrafine GGBS for higher strength foam concrete
NASA Astrophysics Data System (ADS)
Gowri, R.; Anand, K. B.
2018-02-01
Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tailby, Jonathan, E-mail: jmtailby@hotmail.co; MacKenzie, Kenneth J.D.
2010-05-15
The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C{sub 3}S, beta-C{sub 2}S, C{sub 3}A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, {sup 29}Si and {sup 27}Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poormore » strength development is suggested to be due to the retarded development of C-S-H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC-geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC-geopolymer composite stronger than hydrated OPC paste alone.« less
Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery.
Hall, David R; Kozakov, Dima; Whitty, Adrian; Vajda, Sandor
2015-11-01
Analysis of binding energy hot spots at protein surfaces can provide crucial insights into the prospects for successful application of fragment-based drug discovery (FBDD), and whether a fragment hit can be advanced into a high-affinity, drug-like ligand. The key factor is the strength of the top ranking hot spot, and how well a given fragment complements it. We show that published data are sufficient to provide a sophisticated and quantitative understanding of how hot spots derive from a protein 3D structure, and how their strength, number, and spatial arrangement govern the potential for a surface site to bind to fragment-sized and larger ligands. This improved understanding provides important guidance for the effective application of FBDD in drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mredha, Md Tariful Islam; Guo, Yun Zhou; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping
2018-03-01
Natural structural materials (such as tendons and ligaments) are comprised of multiscale hierarchical architectures, with dimensions ranging from nano- to macroscale, which are difficult to mimic synthetically. Here a bioinspired, facile method to fabricate anisotropic hydrogels with perfectly aligned multiscale hierarchical fibrous structures similar to those of tendons and ligaments is reported. The method includes drying a diluted physical hydrogel in air by confining its length direction. During this process, sufficiently high tensile stress is built along the length direction to align the polymer chains and multiscale fibrous structures (from nano- to submicro- to microscale) are spontaneously formed in the bulk material, which are well-retained in the reswollen gel. The method is useful for relatively rigid polymers (such as alginate and cellulose), which are susceptible to mechanical signal. By controlling the drying with or without prestretching, the degree of alignment, size of superstructures, and the strength of supramolecular interactions can be tuned, which sensitively influence the strength and toughness of the hydrogels. The mechanical properties are comparable with those of natural ligaments. This study provides a general strategy for designing hydrogels with highly ordered hierarchical structures, which opens routes for the development of many functional biomimetic materials for biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Raju, B. B.; Camarda, C. J.; Cooper, P. A.
1979-01-01
Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).
Pulsed Magneto-motive Ultrasound Imaging Using Ultrasmall Magnetic Nanoprobes
Mehrmohammadi, Mohammad; Oh, Junghwan; Mallidi, Srivalleesha; Emelianov, Stanislav Y.
2011-01-01
Nano-sized particles are widely regarded as a tool to study biologic events at the cellular and molecular levels. However, only some imaging modalities can visualize interaction between nanoparticles and living cells. We present a new technique, pulsed magneto-motive ultrasound imaging, which is capable of in vivo imaging of magnetic nanoparticles in real time and at sufficient depth. In pulsed magneto-motive ultrasound imaging, an external high-strength pulsed magnetic field is applied to induce the motion within the magnetically labeled tissue and ultrasound is used to detect the induced internal tissue motion. Our experiments demonstrated a sufficient contrast between normal and iron-laden cells labeled with ultrasmall magnetic nanoparticles. Therefore, pulsed magneto-motive ultrasound imaging could become an imaging tool capable of detecting magnetic nanoparticles and characterizing the cellular and molecular composition of deep-lying structures. PMID:21439255
49 CFR 214.105 - Fall protection systems standards and practices.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (8) Connectors shall be drop forged, pressed or formed steel, or made of equivalent-strength... bridge worker shall have a minimum breaking strength of 5,000 pounds. (2) Self-retracting lifelines and... travels to 3.5 feet. (9) The personal fall arrest system shall have sufficient strength to withstand twice...
49 CFR 214.105 - Fall protection systems standards and practices.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (8) Connectors shall be drop forged, pressed or formed steel, or made of equivalent-strength... bridge worker shall have a minimum breaking strength of 5,000 pounds. (2) Self-retracting lifelines and... travels to 3.5 feet. (9) The personal fall arrest system shall have sufficient strength to withstand twice...
49 CFR 214.105 - Fall protection systems standards and practices.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (8) Connectors shall be drop forged, pressed or formed steel, or made of equivalent-strength... bridge worker shall have a minimum breaking strength of 5,000 pounds. (2) Self-retracting lifelines and... travels to 3.5 feet. (9) The personal fall arrest system shall have sufficient strength to withstand twice...
49 CFR 214.105 - Fall protection systems standards and practices.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (8) Connectors shall be drop forged, pressed or formed steel, or made of equivalent-strength... bridge worker shall have a minimum breaking strength of 5,000 pounds. (2) Self-retracting lifelines and... travels to 3.5 feet. (9) The personal fall arrest system shall have sufficient strength to withstand twice...
49 CFR 214.105 - Fall protection systems standards and practices.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (8) Connectors shall be drop forged, pressed or formed steel, or made of equivalent-strength... bridge worker shall have a minimum breaking strength of 5,000 pounds. (2) Self-retracting lifelines and... travels to 3.5 feet. (9) The personal fall arrest system shall have sufficient strength to withstand twice...
NASA Astrophysics Data System (ADS)
Kera, Satoshi; Hosokai, Takuya; Duhm, Steffen
2018-06-01
Understanding the mechanisms of energy-level alignment and charge transfer at the interface is one of the key issues in realizing organic electronics. However, the relation between the interface structure and the electronic structure is still not resolved in sufficient detail. An important character of materials used in organic electronics is the electronic localization of organic molecules at interfaces. To elucidate the impact of the molecular orbital distribution on the electronic structure, detailed structural information is required, particularly the vertical bonding distance at the interface, which is a signature of the interaction strength. We describe the recent progress in experimental studies on the impact of the molecule-metal interaction on the electronic structure of organic-metal interfaces by using various photoelectron spectroscopies, and review the results, focusing on the X-ray standing wave technique, to demonstrate the evaluation of the vertical bonding distance.
Kang, Heesuk; Hollister, Scott J; La Marca, Frank; Park, Paul; Lin, Chia-Ying
2013-10-01
Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Dongpyo, E-mail: dpchi@snu.ac.kr; Ha, Seung-Yeal, E-mail: syha@snu.ac.kr; Choi, Sun-Ho, E-mail: lpgilin@gmail.com
We study sufficient conditions for the asymptotic emergence of synchronous behaviors in a holonomic particle system on a sphere, which was recently introduced by Lohe [“Non-Abelian Kuramoto model and synchronization,” J. Phys. A: Math. Theor. 42, 395101–395126 (2009)]. These conditions depend only on the coupling strength and initial position diameter. For identical particles, we show that the position diameter approaches zero asymptotically under these sufficient conditions, i.e., all particles approach to the same position. For non-identical particles, the particle positions do not shrink to one point, but can be squeezed into some small region whose diameter is inversely proportional tomore » the coupling strength, when the coupling strength is large. We also provide several numerical results to confirm our analytical findings.« less
A training programme to improve hip strength in persons with lower limb amputation.
Nolan, Lee
2012-03-01
To investigate the effect of a 10-week training programme on persons with a lower limb amputation and to determine if this training is sufficient to enable running. Seven transtibial, 8 transfemoral and 1 bilateral amputee (all resulting from trauma, tumour or congenital) were randomly assigned to a training (n =8) or control group (n = 8). Isokinetic hip flexor and extensor strength at 60 and 120º/s and oxygen consumption while walking at 1.0 m/s were tested pre- and post- a 10-week period. The training group followed a twice weekly hip strengthening programme, while the control group continued with their usual activities. Running ability was determined pre-testing, and attempted after post-testing for the training group only. The training group increased hip strength and decreased oxygen consumption. Six amputees who were previously unable to run were able to after training. The control group decreased intact limb hip extensor strength. The training programme is sufficient to improve hip strength and enable running in persons with a lower limb amputation. As hip strength was reduced in those not following the training programme, it is recommended that strength training be undertaken regularly in order to avoid losing limb strength following amputation.
Development of high strength and high ductility nanostructured TWIP steel
NASA Astrophysics Data System (ADS)
Kou, Hong Ning
Strength and ductility are two exclusive mechanical properties of structural materials. One challenge for material research is to develop bulk nanostructured metals with simultaneous high strength and good ductility. To meet this objective, steels with twinning induced plasticity (TWIP) effect are selected for surface mechanical attrition treatment (SMAT) in this study. Tensile tests reveal extremely high yield strength and simultaneously sufficient ductility in these SMATed TWIP steel samples. With the duration increase of SMAT, both yield strength and tensile strength firstly monotonically increase to a maximum value of 2.25GPa with 18% total elongation. However, further increase of SMAT duration results in decreases of both strength and elongation. The excellent ductility of coarse-grained TWIP steels is attributed to the instantaneous generation of deformation twins in tension. Based on this, an interesting hierarchically tertiary twinning system is revealed by TEM/HRTEM in SMATed samples, composed of multi-scale twins respectively produced by annealing treatment, SMAT and tensile deformation. On one hand, boundaries of hierarchical twins with different orientations form three-dimensional networks that restrict each other and act as strong barriers to dislocation motion, leading to ultrahigh strength. On the other hand, stress concentration is relieved due to deformation transfer caused by twinning from grain to grain, resulting in large plasticity. Therefore, the hierarchical twinning structure is regarded as the most effective element that induces both extraordinary ultrahigh strength and good elongation in SMATed TWIP. The stable austenite also contributes to the preservation of good ductility. Martensite is only observed in SMATed TWIP by longest SMAT duration. Another route of fabricating nanostructured TWIP is performed by combining SMAT and thermomechanical treatment. The interval heat treatment between double SMAT benefits the total elongation to over 50%, with 980 MPa yield strength. Nanograins are observed at 60mum depth, different from their usual emergence on top surface. Martensitic phase transformation is discovered. Most nanostructured SMATed TWIP samples demonstrate typical ductile fractures with large quantities of dimples in different sizes, following the same trend of gradient grains. Long SMAT duration produces slight brittle crack with tearing ribs. Microvoids coalescence with manganese carbides leads to final rupture.
Running Out of Time: Why Elephants Don't Gallop
NASA Astrophysics Data System (ADS)
Noble, Julian V.
2001-11-01
The physics of high speed running implies that galloping becomes impossible for sufficiently large animals. Some authors have suggested that because the strength/weight ratio decreases with size and eventually renders large animals excessively liable to injury when they attempt to gallop. This paper suggests that large animals cannot move their limbs sufficiently rapidly to take advantage of leaving the ground, hence are restricted to walking gaits. >From this point of view the relatively low strength/weight ratio of elephants follows from their inability to gallop, rather than causing it.
Optimum Particle Size for Gold-Catalyzed CO Oxidation
2018-01-01
The structure sensitivity of gold-catalyzed CO oxidation is presented by analyzing in detail the dependence of CO oxidation rate on particle size. Clusters with less than 14 gold atoms adopt a planar structure, whereas larger ones adopt a three-dimensional structure. The CO and O2 adsorption properties depend strongly on particle structure and size. All of the reaction barriers relevant to CO oxidation display linear scaling relationships with CO and O2 binding strengths as main reactivity descriptors. Planar and three-dimensional gold clusters exhibit different linear scaling relationship due to different surface topologies and different coordination numbers of the surface atoms. On the basis of these linear scaling relationships, first-principles microkinetics simulations were conducted to determine CO oxidation rates and possible rate-determining step of Au particles. Planar Au9 and three-dimensional Au79 clusters present the highest CO oxidation rates for planar and three-dimensional clusters, respectively. The planar Au9 cluster is much more active than the optimum Au79 cluster. A common feature of optimum CO oxidation performance is the intermediate binding strengths of CO and O2, resulting in intermediate coverages of CO, O2, and O. Both these optimum particles present lower performance than maximum Sabatier performance, indicating that there is sufficient room for improvement of gold catalysts for CO oxidation. PMID:29707098
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.
2007-01-01
A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.
Matsumori, Hiroaki; Ueda, Yurito; Koizumi, Munehisa; Miyazaki, Kiyoshi; Shigematsu, Hideki; Satoh, Nobuhisa; Oshima, Takuya; Tanaka, Masato; Tanaka, Yasuhito; Takakura, Yoshinori
2010-02-01
Wires and cables have been used extensively for spinal sublaminar wiring, but damages to the spinal cord due to compression by metal wires have been reported. We have used more flexible ultra-high-molecular-weight polyethylene cable (Tekmilon tape) instead of metal wires since 1999 and have obtained good clinical outcomes. Although the initial strength of Tekmilon tape is equivalent to metal wires, the temporal changes in the strength of Tekmilon tape in the body should be investigated to show that sufficient strength is maintained over time until bone union is complete. Tekmilon tape was embedded into the paravertebral muscle of 10-week-old male Japanese white rabbits. Samples were embedded for 0, 1, 3, 6 or 12 months. At the end of each period, sequential straight tensile strength and sequential knot-pull tensile strength were measured. The initial strength of Tekmilon tape in muscle tissue was maintained over time, with 92% straight tensile strength and 104% knot-pull tensile strength at 6months, and values of 77% and 100% at 12 months, respectively. Since single knot is clinically relevant, it is very important that the knot-pull tensile strength did not decrease over a 12-month period. This suggests that temporal changes in the tensile strength of Tekmilon tape are negligible at 1 year. Tekmilon tape maintains sufficient strength in vivo until bone union has occurred. It is useful for sublaminar wiring instead of metal materials due to its flexibility and strength and may reduce the risk of neurological damage. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar L.; Klute, Glenn K.
1993-01-01
Astronauts have the task of retrieving and deploying satellites and handling massive objects in a around the payload bay. Concerns were raised that manual handling of such massive objects might induce loads to the shuttle suits exceeding the design-certified loads. The Crew and Thermal Division of NASA JSC simulated the satellite handling tasks (Satellite Manload Tests 1 and 3) and determined the maximum possible load that a suited member could impart onto the suit. In addition, the tests revealed that the load to the suit by an astronaut could be calculated from the astronaut's maximum hand grasp breakaway strength. Thus, this study was conducted to document that hand grasp breakaway strengths of the astronauts who were scheduled to perform EVA during the upcoming missions. In addition, this study verified whether the SML 3 test results were sufficient for documenting the maximum possible load. An attempt was made to predict grasp strength from grip strength and hand anthropometry. Based on the results from this study, the SML 3 test results were deemed sufficient to document the maximum possible load on the suit. Finally, prediction of grasp strength from grip strength was not as accurate as expected. Hence, it was recommended that grasp strength be collected from the astronauts in order to obtain accurate load estimation.
Bioinspired engineering study of Plantae vascules for self-healing composite structures.
Trask, R S; Bond, I P
2010-06-06
This paper presents the first conceptual study into creating a Plantae-inspired vascular network within a fibre-reinforced polymer composite laminate, which provides an ongoing self-healing functionality without incurring a mass penalty. Through the application of a 'lost-wax' technique, orthogonal hollow vascules, inspired by the 'ray cell' structures found in ring porous hardwoods, were successfully introduced within a carbon fibre-reinforced epoxy polymer composite laminate. The influence on fibre architecture and mechanical behaviour of single vascules (located on the laminate centreline) when aligned parallel and transverse to the local host ply was characterized experimentally using a compression-after-impact test methodology. Ultrasonic C-scanning and high-resolution micro-CT X-ray was undertaken to identify the influence of and interaction between the internal vasculature and impact damage. The results clearly show that damage morphology is influenced by vascule orientation and that a 10 J low-velocity impact damage event is sufficient to breach the vasculature; a prerequisite for any subsequent self-healing function. The residual compressive strength after a 10 J impact was found to be dependent upon vascule orientation. In general, residual compressive strength decreased to 70 per cent of undamaged strength when vasculature was aligned parallel to the local host ply and a value of 63 per cent when aligned transverse. This bioinspired engineering study has illustrated the potential that a vasculature concept has to offer in terms of providing a self-healing function with minimum mass penalty, without initiating premature failure within a composite structure.
Design and application of low compaction energy concrete for use in slip-form concrete paving.
DOT National Transportation Integrated Search
2009-01-01
Slipform self-consolidating concrete (SFSCC) requires sufficient flowability in order to consolidate without the use of internal vibration. However, this concrete must also gain sufficient green strength in order to keep its shape immediately after s...
Scaffold-free trachea regeneration by tissue engineering with bio-3D printing.
Taniguchi, Daisuke; Matsumoto, Keitaro; Tsuchiya, Tomoshi; Machino, Ryusuke; Takeoka, Yosuke; Elgalad, Abdelmotagaly; Gunge, Kiyofumi; Takagi, Katsunori; Taura, Yasuaki; Hatachi, Go; Matsuo, Naoto; Yamasaki, Naoya; Nakayama, Koichi; Nagayasu, Takeshi
2018-05-01
Currently, most of the artificial airway organs still require scaffolds; however, such scaffolds exhibit several limitations. Alternatively, the use of an autologous artificial trachea without foreign materials and immunosuppressants may solve these issues and constitute a preferred tool. The rationale of this study was to develop a new scaffold-free approach for an artificial trachea using bio-3D printing technology. Here, we assessed the circumferential tracheal replacement using scaffold-free trachea-like grafts generated from isolated cells in an inbred animal model. Chondrocytes and mesenchymal stem cells were isolated from F344 rats. Rat lung microvessel endothelial cells were purchased. Our bio-3D printer generates spheroids consisting of several types of cells to create 3D structures. The bio-3D-printed artificial trachea from spheroids was matured in a bioreactor and transplanted into F344 rats as a tracheal graft under general anaesthesia. The mechanical strength of the artificial trachea was measured, and histological and immunohistochemical examinations were performed. Tracheal transplantation was performed in 9 rats, which were followed up postoperatively for 23 days. The average tensile strength of artificial tracheas before transplantation was 526.3 ± 125.7 mN. The bio-3D-printed scaffold-free artificial trachea had sufficient strength to transplant into the trachea with silicone stents that were used to prevent collapse of the artificial trachea and to support the graft until sufficient blood supply was obtained. Chondrogenesis and vasculogenesis were observed histologically. The scaffold-free isogenic artificial tracheas produced by a bio-3D printer could be utilized as tracheal grafts in rats.
Interim Report on Fatigue Characteristics of a Typical Metal Wing
NASA Technical Reports Server (NTRS)
Kepert, J L; Payne, A O
1956-01-01
Constant amplitude fatigue tests of seventy-two P-51D "Mustang" wings are reported. The tests were performed by a vibrational loading system and by an hydraulic loading device for conditions with and without varying amounts of pre-load. The results indicate that: (a) the frequency of occurrence of fatigue at any one location is related to the range of the loads applied, (b) the rate of propagation of visible cracks is more or less constant for a large portion of the life of the specimen, (c) the fatigue strength of the structure is similar to that of notched material having a theoretical stress concentration factor of more than 3.0, (d) the frequency distribution of fatigue life is approximately logarithmic normal, (e) the relative increase in fatigue life for a given pre-load depends on the maximum load of the loading cycle only, while the optimum pre-load value is approximately 85 percent of the ultimate failing load, and (f) that normal design procedure will not permit the determination of local stress levels with sufficient accuracy to determine the fatigue strength of an element of a redundant structure.
Variability of the pullout strength of cancellous bone screws with cement augmentation.
Procter, P; Bennani, P; Brown, C J; Arnoldi, J; Pioletti, D P; Larsson, S
2015-06-01
Orthopaedic surgeons often face clinical situations where improved screw holding power in cancellous bone is needed. Injectable calcium phosphate cements are one option to enhance fixation. Paired screw pullout tests were undertaken in which human cadaver bone was augmented with calcium phosphate cement. A finite element model was used to investigate sensitivity to screw positional placement. Statistical analysis of the data concluded that the pullout strength was generally increased by cement augmentation in the in vitro human cadaver tests. However, when comparing the individual paired samples there were surprising results with lower strength than anticipated after augmentation, in apparent contradiction to the generally expected conclusion. Investigation using the finite element model showed that these strength reductions could be accounted for by small screw positional changes. A change of 0.5mm might result in predicted pullout force changes of up to 28%. Small changes in screw position might lead to significant changes in pullout strength sufficient to explain the lower than expected individual pullout values in augmented cancellous bone. Consequently whilst the addition of cement at a position of low strength would increase the pullout strength at that point, it might not reach the pullout strength of the un-augmented paired test site. However, the overall effect of cement augmentation produces a significant improvement at whatever point in the bone the screw is placed. The use of polymeric bone-substitute materials for tests may not reveal the natural variation encountered in tests using real bone structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., sufficient to describe the actual construction of the equipment; (iii) Engineering analysis sufficient to..., engineering analysis, and risk mitigation measures described in this paragraph, demonstrating that the use of... the Federal Docket Management System and posted on its web site at http://www.regulations.gov. (h...
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., sufficient to describe the actual construction of the equipment; (iii) Engineering analysis sufficient to..., engineering analysis, and risk mitigation measures described in this paragraph, demonstrating that the use of... the Federal Docket Management System and posted on its web site at http://www.regulations.gov. (h...
ZERODUR: deterministic approach for strength design
NASA Astrophysics Data System (ADS)
Hartmann, Peter
2012-12-01
There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two-parameter Weibull distribution approach and no longer subject to statistical uncertainty.
Residual strength of thin panels with cracks
NASA Technical Reports Server (NTRS)
Madenci, Erdogan
1994-01-01
The previous design philosophies involving safe life, fail-safe and damage tolerance concepts become inadequate for assuring the safety of aging aircraft structures. For example, the failure mechanism for the Aloha Airline accident involved the coalescence of undetected small cracks at the rivet holes causing a section of the fuselage to peel open during flight. Therefore, the fuselage structure should be designed to have sufficient residual strength under worst case crack configurations and in-flight load conditions. Residual strength is interpreted as the maximum load carrying capacity prior to unstable crack growth. Internal pressure and bending moment constitute the two major components of the external loads on the fuselage section during flight. Although the stiffeners in the form of stringers, frames and tear straps sustain part of the external loads, the significant portion of the load is taken up by the skin. In the presence of a large crack in the skin, the crack lips bulge out with considerable yielding; thus, the geometric and material nonlinearities must be included in the analysis for predicting residual strength. Also, these nonlinearities do not permit the decoupling of in-plane and out-of-plane bending deformations. The failure criterion combining the concepts of absorbed specific energy and strain energy density addresses the aforementioned concerns. The critical absorbed specific energy (local toughness) for the material is determined from the global specimen response and deformation geometry based on the uniaxial tensile test data and detailed finite element modeling of the specimen response. The use of the local toughness and stress-strain response at the continuum level eliminates the size effect. With this critical parameter and stress-strain response, the finite element analysis of the component by using STAGS along with the application of this failure criterion provides the stable crack growth calculations for residual strength predictions.
3D printing process of oxidized nanocellulose and gelatin scaffold.
Xu, Xiaodong; Zhou, Jiping; Jiang, Yani; Zhang, Qi; Shi, Hongcan; Liu, Dongfang
2018-08-01
For tissue engineering applications tissue scaffolds need to have a porous structure to meet the needs of cell proliferation/differentiation, vascularisation and sufficient mechanical strength for the specific tissue. Here we report the results of a study of the 3D printing process for composite materials based on oxidized nanocellulose and gelatin, that was optimised through measuring rheological properties of different batches of materials after different crosslinking times, simulation of the pneumatic extrusion process and 3D scaffolds fabrication with Solidworks Flow Simulation, observation of its porous structure by SEM, measurement of pressure-pull performance, and experiments aimed at finding out the vitro cytotoxicity and cell morphology. The materials printed are highly porous scaffolds with good mechanical properties.
7 CFR 4284.620 - Applicant eligibility.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (b) Applicants must have sufficient financial strength and expertise in activities proposed in the application to ensure accomplishment of the described activities and objectives. (1) Financial strength will be analyzed by the Agency based on financial data provided in the application. The analysis will...
HEAVY MANUAL WORK THROUGHOUT THE WORKING LIFETIME AND MUSCLE STRENGTH AMONG MEN AT RETIREMENT AGE
Walker-Bone, K; D’Angelo, S; Syddall, HE; Palmer, KT; Cooper, C; Coggon, D; Sayer, AA
2016-01-01
Introduction Reductions in heavy manual work as a consequence of mechanisation might impact adversely on muscle strength at older ages. We investigated the association between grip strength at retirement age and lifetime occupational exposure to physically demanding activities. Grip strength is an important predictor of long-term health and physical function in older people. Methods Grip strength (maximum of three readings in each hand) was measured in men from the Hertfordshire Cohort Study at a single examination when their mean age was 65.8 (SD 2.9) years. Associations with lifetime occupational exposure (ascertained by questionnaire) to three activities (standing/walking ≥4 hours/day; lifting ≥25 kg; and energetic work sufficient to induce sweating) were assessed by multivariable linear regression with adjustment for various potential confounders. Results Complete data were available from 1,418 men who had worked for at least 20 years. After adjustment for age, height and weight, those with longer exposures to walking/standing and heavy lifting had lower grip strength, but the relationship disappeared after further adjustment for confounders. Working at physical intensity sufficient to induce sweating was not significantly associated with grip strength. Conclusions We found no evidence that physically demanding occupational activities increase hand grip strength at normal retirement age. Any advantages of regular physical occupational activity may have been obscured by unmeasured socio-economic confounders. PMID:26896253
Overview of SBIR Phase II Work on Hollow Graphite Fibers
NASA Technical Reports Server (NTRS)
Stallcup, Michael; Brantley, Lott W. (Technical Monitor)
2001-01-01
Ultra-Lightweight materials are enabling for producing space based optical components and support structures. Heretofore, innovative designs using existing materials has been the approach to produce lighter-weight optical systems. Graphite fiber reinforced composites, because of their light weight, have been a material of frequent choice to produce space based optical components. Hollow graphite fibers would be lighter than standard solid graphite fibers and, thus, would save weight in optical components. The Phase I SBIR program demonstrated it is possible to produce hollow carbon fibers that have strengths up to 4.2 GPa which are equivalent to commercial fibers, and composites made from the hollow fibers had substantially equivalent composite strengths as commercial fiber composites at a 46% weight savings. The Phase II SBIR program will optimize processing and properties of the hollow carbon fiber and scale-up processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA. Information presented here includes an overview of the strength of some preliminary hollow fibers, photographs of those fibers, and a short discussion of future plans.
Peroxidase-mediated polymerization of 1-naphthol: impact of solution pH and ionic strength.
Bhandari, Alok; Xu, Fangxiang; Koch, David E; Hunter, Robert P
2009-01-01
Peroxidase-mediated oxidation has been proposed as a treatment method for naphthol-contaminated water. However, the impact of solution chemistry on naphthol polymerization and removal has not been documented. This research investigated the impact of pH and ionic strength on peroxidase-mediated removal of 1-naphthol in completely mixed batch reactors. The impact of hydrogen peroxide to 1-naphthol ratio and activity of horseradish peroxidase was also studied. Size exclusion chromatography was used to estimate the molecular weight distribution of oligomeric products, and liquid chromatography/mass spectrometry was used to estimate product structure. Naphthol transformation decreased with ionic strength, and substrate removal was lowest at neutral pHs. Solution pH influenced the size and the composition of the oligomeric products. An equimolar ratio of H(2)O(2):naphthol was sufficient for optimal naphthol removal. Polymerization products included naphthoquinones and oligomers derived from two, three, and four naphthol molecules. Our results illustrate the importance of water chemistry when considering a peroxidase-based approach for treatment of naphthol-contaminated waters.
Physical-chemical processes of diamond grinding
NASA Astrophysics Data System (ADS)
Lobanov, D. V.; Arhipov, P. V.; Yanyushkin, A. S.; Skeeba, V. Yu
2017-10-01
The article focuses on the relevance of the research into the problem of diamond abrasive metal-bonded tool performance loss with a view to enhancing the effectiveness of high-strength materials finishing processing. The article presents the results of theoretical and empirical studies of loading layer formation on the surface of diamond wheels during processing high-strength materials. The theoretical part deals with the physical and chemical processes at the contact area of the diamond wheel and work surface with the viewpoint of the electrochemical potentials equilibrium state. We defined dependencies for calculating the loading layer dimensions. The practical part of work centers on various electron-microscopic, spectral and X-ray diffraction studies of the metal-bonded wheel samples during diamond grinding. The analysis of the research results revealed the composition and structure of the loading layer. The validity of the theoretical data is confirmed by sufficient convergence of the calculated values with the results of empirical research. In order to reduce the intensity of loading and improve the cutting properties of metal-bonded diamond abrasive tools, it is recommended to use combined methods for more efficient processing of high-strength materials.
Outside-the-(Cavity-prep)-Box Thinking
Thompson, V.P.; Watson, T.F.; Marshall, G.W.; Blackman, B.R.K.; Stansbury, J.W.; Schadler, L.S.; Pearson, R.A.; Libanori, R.
2013-01-01
Direct placement restorative materials must interface with tooth structures that are often compromised by caries or trauma. The material must seal the interface while providing sufficient strength and wear resistance to assure function of the tooth for, ideally, the lifetime of the patient. Needed are direct restorative materials that are less technique-sensitive than current resin-based composite systems while having improved properties. The ideal material could be successfully used in areas of the world with limited infrastructure. Advances in our understanding of the interface between the restoration adhesive system and the stages of carious dentin can be used to promote remineralization. Application of fracture mechanics to adhesion at the tooth-restoration interface can provide insights for improvement. Research in polymer systems suggests alternatives to current composite resin matrix systems to overcome technique sensitivity, while advances in nano- and mesoparticle reinforcement and alignment in composite systems can increase material strength, toughness, and wear resistance, foreshadowing dental application. PMID:24129814
Mucopolysaccharides in aqueous solutions: effect of ionic strength on titration curves.
Rueda, C; Arias, C; Galera, P; López-Cabarcos, E; Yagüe, A
2001-01-01
We study the changes taking place in hyaluronic acid, chondroitin 4-sulfate (C4-S) and condroitin 6-sulfate (C6-S), at ionic strengths of 0.10, 0.15, and 0.20 in NaCl, in a neutralization process in aqueous solution. We apply the equation of Henderson Hasselbalch modified for polyelectrolytes and evaluate the changes in the electrostatic free energy starting from the pK curves as a function of the dissociation degree. For a dissociation degree next to 0.4 corresponding to the -COOH group of the hyaluronic acid, we observed a change in the conformation of the three glycosaminoglycans studied. This conformational change takes place as a consequence of the break of intramolecular links and the beginning of the ionization process. The macromolecules in solution show a structure of random coil sufficiently expanded so that the interaction among the close ionizable groups is negligible.
Ion streaming instabilities with application to collisionless shock wave structure
NASA Technical Reports Server (NTRS)
Golden, K. I.; Linson, L. M.; Mani, S. A.
1973-01-01
The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.
2012-01-01
Background Supplemental vitamin D modulates inflammatory cytokines and skeletal muscle function, but results are inconsistent. It is unknown if these inconsistencies are dependent on the supplemental dose of vitamin D. Therefore, the purpose of this study was to identify the influence of different doses of supplemental vitamin D on inflammatory cytokines and muscular strength in young adults. Methods Men (n = 15) and women (n = 15) received a daily placebo or vitamin D supplement (200 or 4000 IU) for 28-d during the winter. Serum 25-hydroxyvitamin D (25(OH)D), cytokine concentrations and muscular (leg) strength measurements were performed prior to and during supplementation. Statistical significance of data were assessed with a two-way (time, treatment) analysis of variance (ANOVA) with repeated measures, followed by a Tukey's Honestly Significant Difference to test multiple pairwise comparisons. Results Upon enrollment, 63% of the subjects were vitamin D sufficient (serum 25(OH)D ≥ 30 ng/ml). Serum 25(OH)D and interleukin (IL)-5 decreased (P < 0.05) across time in the placebo group. Supplemental vitamin D at 200 IU maintained serum 25(OH)D concentrations and increased IL-5 (P < 0.05). Supplemental vitamin D at 4000 IU increased (P < 0.05) serum 25(OH)D without altering IL-5 concentrations. Although serum 25(OH)D concentrations correlated (P < 0.05) with muscle strength, muscle strength was not changed by supplemental vitamin D. Conclusion In young adults who were vitamin D sufficient prior to supplementation, we conclude that a low-daily dose of supplemental vitamin D prevents serum 25(OH)D and IL-5 concentration decreases, and that muscular strength does not parallel the 25(OH)D increase induced by a high-daily dose of supplemental vitamin D. Considering that IL-5 protects against viruses and bacterial infections, these findings could have a broad physiological importance regarding the ability of vitamin D sufficiency to mediate the immune systems protection against infection. PMID:22405472
Decay pattern of the Pygmy Dipole Resonance in 130Te
NASA Astrophysics Data System (ADS)
Isaak, J.; Beller, J.; Fiori, E.; Krtička, M.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Silva, J.; Sonnabend, K.; Tonchev, A.; Tornow, W.; Weller, H.; Zweidinger, M.
2014-03-01
The electric dipole strength distribution in 130Te has been investigated using the method of Nuclear Resonance Fluorescence. The experiments were performed at the Darmstadt High Intensity Photon Setup using bremsstrahlung as photon source and at the High Intensity overrightarrow γ -Ray Source, where quasi-monochromatic and polarized photon beams are provided. Average decay properties of 130Te below the neutron separation energy are determined. Comparing the experimental data to the predictions of the statistical model indicate, that nuclear structure effects play an important role even at sufficiently high excitation energies. Preliminary results will be presented.
Plasma motions in planetary magnetospheres
NASA Technical Reports Server (NTRS)
Hill, T. W.; Dessler, A. J.
1991-01-01
Interplanetary space is pervaded by a supersonic 'solar wind' plasma; five planets, in addition to the earth, have magnetic fields of sufficient strength to form the cometlike cavities called 'magnetospheres'. Comparative studies of these structures have indicated the specific environmental factor that can result in dramatic differences in the behavior of any pair of magnetospheres. Although planetary magnetospheres are large enough to serve as laboratories for in situ study of cosmic plasma and magnetic field behavior effects on particle acceleration and EM emission, much work remains to be done toward relating magnetospheric physics results to the study of remote astrophysical plasmas.
Effects of porosity on shock-induced melting of honeycomb-shaped Cu nanofoams
NASA Astrophysics Data System (ADS)
Zhao, Fengpeng
Metallic foams are of fundamental and applied interests in various areas, including structure engineering (e.g., lightweight structural members and energy absorbers), and shock physics (e.g., as laser ablators involving shock-induced melting and vaporization).Honeycomb-shaped metallic foams consist of regular array of hexagonal cells in two dimensions and have extensive applications and represent a unique, simple yet useful model structure for exploring mechanisms and making quantitative assessment. We investigate shock-induced melting in honeycomb-shaped Cu nanofoams with extensive molecular dynamics simulations. A total of ten porosities (phi) are explored, ranging from 0 to 0.9 at an increment of 0.1. Upon shock compression, void collapse induces local melting followed by supercooling for sufficiently high porosity at low shock strengths. While superheating of solid remnants occurs for sufficiently strong shocks at phi<0.1. Both supercooling of melts and superheating of solid remnants are transient, and the equilibrated shock states eventually fall on the equilibrium melting curve for partial melting. However, phase equilibrium has not been achieved on the time scale of simulations in supercooled Cu liquid (from completely melted nanofoams). The temperatures for incipient and complete melting are related to porosity via a power law and approach the melting temperature at zero pressure as phi tends to 1.
Self-repairing composites for airplane components
NASA Astrophysics Data System (ADS)
Dry, Carolyn
2008-03-01
Durability and damage tolerance criteria drives the design of most composite structures. Those criteria could be altered by developing structure that repairs itself from impact damage. This is a technology for increasing damage tolerance for impact damage. Repaired damage would enable continued function and prevent further degradation to catastrophic failure in the case of an aircraft application. Further, repaired damage would enable applications to be utilized without reduction in performance due to impacts. Self repairing structures are designed to incorporate hollow fibers, which will release a repairing agent when the structure is impacted, so that the repairing agent will fill delaminations, voids and cracks in les than one minute, thus healing matrix voids. The intent is to modify the durability and damage tolerance criteria by incorporation of self-healing technologies to reduce overall weight: The structure will actually remain lighter than current conventional design procedures allow. Research objective(s) were: Prove that damage can be repaired to within 80-90% of original flexural strength in less than one minute, in laminates that are processed at 300-350F typical for aircraft composites. These were successfully met. The main focus was on testing of elements in compression after impact and a larger component in shear at Natural Process Design, Inc. Based on these results the advantages purposes are assessed. The results show potential; with self repairing composites, compressive strength is maintained sufficiently so that less material can be used as per durability and damage tolerance, yielding a lighter structure.
Pinese, Coline; Gagnieu, Christian; Nottelet, Benjamin; Rondot-Couzin, Capucine; Hunger, Sylvie; Coudane, Jean; Garric, Xavier
2017-10-01
Biomaterials for soft tissues regeneration should exhibit sufficient mechanical strength, demonstrating a mechanical behavior similar to natural tissues and should also promote tissues ingrowth. This study was aimed at developing new hybrid patches for ligament tissue regeneration by synergistic incorporation of a knitted structure of degradable polymer fibers to provide mechanical strength and of a biomimetic matrix to help injured tissues regeneration. PLA- Pluronic ® (PLA-P) and PLA-Tetronic ® (PLA-T) new copolymers were shaped as knitted patches and were associated with collagen I (Coll) and collagen I/chondroitine-sulfate (Coll CS) 3-dimensional matrices. In vitro study using ligamentocytes showed the beneficial effects of CS on ligamentocytes proliferation. Hybrid patches were then subcutaneously implanted in rats for 4 and 12 weeks. Despite degradation, patches retained strength to answer the mechanical physiological needs. Tissue integration capacity was assessed with histological studies. We showed that copolymers, associated with collagen and chondroitin sulfate sponge, exhibited very good tissue integration and allowed neotissue synthesis after 12 weeks in vivo. To conclude, PLA-P/CollCS and PLA-T/CollCS hybrid patches in terms of structure and composition give good hopes for tendon and ligament regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1778-1788, 2017. © 2016 Wiley Periodicals, Inc.
Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure.
Zhang, Lei; Le Coz-Botrel, Ronan; Beddoes, Charlotte; Sjöström, Terje; Su, Bo
2017-01-17
Titanium is a material commonly used for dental and orthopaedic implants. However, due to large differences in properties between the titanium metal and the natural bone, stress shielding has been observed in the surrounding area, resulting in bone atrophy, and thus has raised concerns of the use of this material. Ideally implant materials should possess similar properties to the surrounding tissues in order to distribute the load as the joint would naturally, while also possessing a similar porous structure to the bone to enable interaction with the surrounding material. In this paper we report the formation of aligned porous titanium alloy scaffolds with the use of unidirectional freeze casting with a temperature gradient. The resulting scaffolds had a dense bottom part with sufficient strength for loading, while the top part remaining porous in order to allow bone growth in the scaffold and fully integrating with the surrounding tissue. The anisotropic nature of the pores within the titanium alloy samples were observed via micro computed tomography, where a gradient structure similar to bone was observed. The compressive strength of the fabricated scaffolds was found to be up to 427 MPa when measured with the pores aligned with the applied load, depending on the pore density. This is within the range of cortical bone.
NASA Astrophysics Data System (ADS)
Hopp, B.; Geretovszky, Zs.; Bertóti, I.; Boyd, I. W.
2002-01-01
Poly(tetrafluoroethylene) (PTFE) is notable for its non-adhesive and non-reactive properties. A number of technologies can potentially benefit from the application of PTFE, but these characteristics restrict the ability to structuring its surface. In this paper, we present results on two ultraviolet photon assisted treatments of PTFE. The originally poor adhesion was significantly improved by both 172 nm excimer lamp and 193 nm excimer laser assisted surface treatments. While Xe2∗ lamp irradiation, applied in a modest vacuum environment, was sufficient by itself to improve adhesion, the ArF laser process was only effective when the irradiated interface was in contact with 1,2-diaminoethane photoreagent. It was found that the tensile strength of an epoxy resin glued interface created on treated surfaces depended strongly on the applied number of laser pulses and lamp irradiation time. Laser treatment caused fast tensile strength increase during the first 50-500 pulses, while after this it saturates slowly at about 5.5 MPa in the 500-2500 pulse domain. The excimer lamp irradiation resulted in a maximum tensile strength of approximately 10 MPa after 2 min irradiation time which reduced to about 65% of the peak value at longer times.
Fracture strength testing of crowns made of CAD/CAM composite resins.
Okada, Ryota; Asakura, Masaki; Ando, Akihiro; Kumano, Hirokazu; Ban, Seiji; Kawai, Tatsushi; Takebe, Jun
2018-03-28
The purpose of this study was to ascertain whether computer aided design/computer aided manufacturing (CAD/CAM) composite resin crowns have sufficient strength to withstand the bite force of the molar teeth. The null hypothesis was that the fracture strength of CAD/CAM composite resin crowns is lower than the average maximum bite force of the molar tooth. The crowns, which shape is the right maxillary first molar, were fabricated using four CAD/CAM blanks made of composite resins (Block HC: HC, KZR-CAD HR: HR, KZR-CAD HR2: HR2, Avencia Block: AVE) and one CAD/CAM blank made of lithium disilicate glass-ceramic (IPS e.max CAD: IPS), which was used as a control. Fracture strength of fabricated crowns bonded to metal abutment and biaxial flexural strength of the materials were evaluated. The results of fracture strength test and biaxial flexural strength test showed different tendencies. The fracture strength of CAD/CAM composite resin crowns except HC ranged from 3.3kN to 3.9kN, and was similar to that of IPS (3.3kN). In contrast, biaxial flexural strength of CAD/CAM composite resins ranged from 175MPa to 247MPa, and was significantly lower than that of IPS (360MPa). All CAD/CAM composite resin crowns studied presented about 3-4 times higher fracture strength than the average maximum bite force of the molar tooth (700-900N), which result leads to the conclusion that CAD/CAM composite resin crowns would have sufficient strength to withstand the bite force of the molar teeth. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Bioinspired engineering study of Plantae vascules for self-healing composite structures
Trask, R. S.; Bond, I. P.
2010-01-01
This paper presents the first conceptual study into creating a Plantae-inspired vascular network within a fibre-reinforced polymer composite laminate, which provides an ongoing self-healing functionality without incurring a mass penalty. Through the application of a ‘lost-wax’ technique, orthogonal hollow vascules, inspired by the ‘ray cell’ structures found in ring porous hardwoods, were successfully introduced within a carbon fibre-reinforced epoxy polymer composite laminate. The influence on fibre architecture and mechanical behaviour of single vascules (located on the laminate centreline) when aligned parallel and transverse to the local host ply was characterized experimentally using a compression-after-impact test methodology. Ultrasonic C-scanning and high-resolution micro-CT X-ray was undertaken to identify the influence of and interaction between the internal vasculature and impact damage. The results clearly show that damage morphology is influenced by vascule orientation and that a 10 J low-velocity impact damage event is sufficient to breach the vasculature; a prerequisite for any subsequent self-healing function. The residual compressive strength after a 10 J impact was found to be dependent upon vascule orientation. In general, residual compressive strength decreased to 70 per cent of undamaged strength when vasculature was aligned parallel to the local host ply and a value of 63 per cent when aligned transverse. This bioinspired engineering study has illustrated the potential that a vasculature concept has to offer in terms of providing a self-healing function with minimum mass penalty, without initiating premature failure within a composite structure. PMID:19955122
Zirconia-hydroxyapatite composite material with micro porous structure.
Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi
2011-11-01
Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
NASA Astrophysics Data System (ADS)
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.
2014-07-01
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is significantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.
NASA Technical Reports Server (NTRS)
Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.
1986-01-01
Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.
Death and rebirth of neural activity in sparse inhibitory networks
NASA Astrophysics Data System (ADS)
Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro
2017-05-01
Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.
Global enhancement and structure formation of the magnetic field in spiral galaxies
NASA Astrophysics Data System (ADS)
Khoperskov, Sergey A.; Khrapov, Sergey S.
2018-01-01
In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also support the presence of sufficient conditions for the development of magnetorotational instability at distances >11 kpc after >300 Myr of evolution.
Benthic impacts of intertidal oyster culture, with consideration of taxonomic sufficiency.
Forrest, Barrie M; Creese, Robert G
2006-01-01
An investigation of the impacts from elevated intertidal Pacific oyster culture in a New Zealand estuary showed enhanced sedimentation beneath culture racks compared with other sites. Seabed elevation beneath racks was generally lower than between them, suggesting that topographic patterns more likely result from a local effect of rack structures on hydrodynamic processes than from enhanced deposition. Compared with control sites, seabed sediments within the farm had a greater silt/clay and organic content, and a lower redox potential and shear strength. While a marked trend in macrofaunal species richness was not evident, species composition and dominance patterns were consistent with a disturbance gradient, with farm effects not evident 35 m from the perimeter of the racks. Of the environmental variables measured, sediment shear strength was most closely associated with the distribution and density of macrofauna, suggesting that human-induced disturbance from farming operations may have contributed to the biological patterns. To evaluate the taxonomic sufficiency needed to document impacts, aggregation to the family level based on Linnean classification was compared with an aggregation scheme based on ;general groups' identifiable with limited taxonomic expertise. Compared with species-level analyses, spatial patterns of impact were equally discernible at both aggregation levels used, provided density rather than presence/absence data were used. Once baseline conditions are established and the efficacy of taxonomic aggregation demonstrated, a ;general group' scheme provides an appropriate and increasingly relevant tool for routine monitoring.
NASA Technical Reports Server (NTRS)
Hinton, David A.; Tatnall, Chris R.
1997-01-01
A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.
Koustas, Erica; Sutton, Patrice; Johnson, Paula I.; Atchley, Dylan S.; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.
2014-01-01
Background: The Navigation Guide is a novel systematic review method to synthesize scientific evidence and reach strength of evidence conclusions for environmental health decision making. Objective: Our aim was to integrate scientific findings from human and nonhuman studies to determine the overall strength of evidence for the question “Does developmental exposure to perfluorooctanoic acid (PFOA) affect fetal growth in humans?” Methods: We developed and applied prespecified criteria to systematically and transparently a) rate the quality of the scientific evidence as “high,” “moderate,” or “low”; b) rate the strength of the human and nonhuman evidence separately as “sufficient,” “limited,” “moderate,” or “evidence of lack of toxicity”; and c) integrate the strength of the human and nonhuman evidence ratings into a strength of the evidence conclusion. Results: We identified 18 epidemiology studies and 21 animal toxicology studies relevant to our study question. We rated both the human and nonhuman mammalian evidence as “moderate” quality and “sufficient” strength. Integration of these evidence ratings produced a final strength of evidence rating in which review authors concluded that PFOA is “known to be toxic” to human reproduction and development based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. Conclusion: We concluded that developmental exposure to PFOA adversely affects human health based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. The results of this case study demonstrate the application of a systematic and transparent methodology, via the Navigation Guide, for reaching strength of evidence conclusions in environmental health. Citation: Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1040–1051; http://dx.doi.org/10.1289/ehp.1307923 PMID:24968389
Thermally stabilized heliostat
Anderson, Alfred J.
1983-01-01
An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.
Electrokinetic Strength Enhancement of Concrete
NASA Technical Reports Server (NTRS)
Cardenas, Henry E. (Inventor)
2016-01-01
A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.
Coherent Pattern Prediction in Swarms of Delay-Coupled Agents
NASA Astrophysics Data System (ADS)
Mier-Y-Teran-Romero, Luis; Forgoston, Eric; Scwartz, Ira
2013-03-01
We consider a general swarm model of self-propelling particles interacting through a pairwise potential in the presence of a fixed communication time delay. Previous work has shown that swarms with communication time delays and noise may display pattern transitions that depend on the size of the coupling amplitude. We extend these results by completely unfolding the bifurcation structure of the mean field approximation. Our analysis reveals a direct correspondence between the different dynamical behaviors found in different regions of the coupling-time delay plane with the different classes of simulated coherent swarm patterns. We derive the spatio-temporal scales of the swarm structures, and also demonstrate how the complicated interplay of coupling strength, time delay, noise intensity, and choice of initial conditions can affect the swarm. In addition, when adding noise to the system, we find that for sufficiently large values of the coupling strength and/or the time delay, there is a noise intensity threshold that forces a transition of the swarm from a misaligned state into an aligned state. We show that this alignment transition exhibits hysteresis when the noise intensity is taken to be time dependent. Office of Naval Research, NIH (LMR and IBS) and NRL (EF)
A Single 30-s Stretch Is Sufficient to Inhibit Maximal Voluntary Strength
ERIC Educational Resources Information Center
Winchester, Jason B.; Nelson, Arnold G.; Kokkonen, Joke
2009-01-01
While it has been well established that an acute stretching program can inhibit maximal muscle performance, the amount of stretching needed to produce the deleterious response is unknown. Therefore this study examined the dose-response relationship between acute stretching and strength inhibition. Eighteen college students performed a one…
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2011 CFR
2011-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2013 CFR
2013-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2012 CFR
2012-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2010 CFR
2010-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2014 CFR
2014-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
Strength training for athletes: does it really help sports performance?
McGuigan, Michael R; Wright, Glenn A; Fleck, Steven J
2012-03-01
The use of strength training designed to increase underlying strength and power qualities in elite athletes in an attempt to improve athletic performance is commonplace. Although the extent to which strength and power are important to sports performance may vary depending on the activity, the associations between these qualities and performance have been well documented in the literature. The purpose of this review is to provide a brief overview of strength training research to determine if it really helps improve athletic performance. While there is a need for more research with elite athletes to investigate the relationship between strength training and athletic performance, there is sufficient evidence for strength training programs to continue to be an integral part of athletic preparation in team sports.
New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
Carpenter, R Dana; Beaupré, Gary S; Lang, Thomas F; Orwoll, Eric S; Carter, Dennis R
2005-09-01
The influence of fall orientation on femur strength has important implications for understanding hip fracture risk. A new image analysis technique showed that the strength of the femoral neck in 37 males varied significantly along the neck axis and that bending strength varied by a factor of up to 2.8 for different loading directions. Osteoporosis is associated with decreased BMD and increased hip fracture risk, but it is unclear whether specific osteoporotic changes in the proximal femur lead to a more vulnerable overall structure. Nonhomogeneous beam theory, which is used to determine the mechanical response of composite structures to applied loads, can be used along with QCT to estimate the resistance of the femoral neck to axial forces and bending moments. The bending moment [My(theta)] sufficient to induce yielding within femoral neck sections was estimated for a range of bending orientations (theta) using in vivo QCT images of 37 male (mean age, 73 years; range, 65-87 years) femora. Volumetric BMD, axial stiffness, average moment at yield (M(y,avg)), maximum and minimum moment at yield (M(y,max) and M(y,min)), bone strength index (BSI), stress-strain index (SSI), and density-weighted moments of resistance (Rx and Ry) were also computed. Differences among the proximal, mid-, and distal neck regions were detected using ANOVA. My(theta) was found to vary by as much as a factor of 2.8 for different bending directions. Axial stiffness, M(y,avg), M(y,max), M(y,min), BSI, and Rx differed significantly between all femoral neck regions, with an overall trend of increasing axial stiffness and bending strength when moving from the proximal neck to the distal neck. Mean axial stiffness increased 62% between the proximal and distal neck, and mean M(y,avg) increased 53% between the proximal and distal neck. The results of this study show that femoral neck strength strongly depends on both fall orientation and location along the neck axis. Compressive yielding in the superior portion of the femoral neck is expected to initiate fracture in a fall to the side.
Impact of Cosmological Satellites on Stellar Discs: Dissecting One Satellite at a Time
NASA Astrophysics Data System (ADS)
Hu, Shaoran; Sijacki, Debora
2018-05-01
Within the standard hierarchical structure formation scenario, Milky Way-mass dark matter haloes have hundreds of dark matter subhaloes with mass ≳ 108 M⊙. Over the lifetime of a galactic disc a fraction of these may pass close to the central region and interact with the disc. We extract the properties of subhaloes, such as their mass and trajectories, from a realistic cosmological simulation to study their potential effect on stellar discs. We find that massive subhalo impacts can generate disc heating, rings, bars, warps, lopsidedness as wells as spiral structures in the disc. Specifically, strong counter-rotating single-armed spiral structures form each time a massive subhalo passes through the disc. Such single-armed spirals wind up relatively quickly (over 1 - 2 Gyrs) and are generally followed by co-rotating two-armed spiral structures that both develop and wind up more slowly. In our simulations self-gravity in the disc is not very strong and these spiral structures are found to be kinematic density waves. We demonstrate that there is a clear link between each spiral mode in the disc and a given subhalo that caused it, and by changing the mass of the subhalo we can modulate the strength of the spirals. Furthermore, we find that the majority of subhaloes interact with the disc impulsively, such that the strength of spirals generated by subhaloes is proportional to the total torque they exert. We conclude that only a handful of encounters with massive subhaloes is sufficient for re-generating and sustaining spiral structures in discs over their entire lifetime.
Method for preparing configured silicon carbide whisker-reinforced alumina ceramic articles
Tiegs, Terry N.
1987-01-01
A ceramic article of alumina reinforced with silicon carbide whiskers suitable for the fabrication into articles of complex geometry are provided by pressureless sintering and hot isostatic pressing steps. In accordance with the method of the invention a mixture of 5 to 10 vol. % silicon carbide whiskers 0.5 to 5 wt. % of a sintering aid such as yttria and the balance alumina powders is ball-milled and pressureless sintered in the desired configuration in the desired configuration an inert atmosphere at a temperature of about 1800.degree. C. to provide a self-supporting configured composite of a density of at least about 94% theoretical density. The composite is then hot isostatically pressed at a temperature and pressure adequate to provide configured articles of at least about 98% of theoretical density which is sufficient to provide the article with sufficient strength and fracture toughness for use in most structural applications such as gas turbine blades, cylinders, and other components of advanced heat engines.
Lateral instability of high temperature pipelines, the 20-in. Sleipner Vest pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saevik, S.; Levold, E.; Johnsen, O.K.
1996-12-01
The present paper addresses methods to control snaking behavior of high temperature pipelines resting on a flat sea bed. A case study is presented based on the detail engineering of the 12.5 km long 20 inch gas pipeline connecting the Sleipner Vest wellhead platform to the Sleipner T processing platform in the North Sea. The study includes screening and evaluation of alternative expansion control methods, ending up with a recommended method. The methodology and philosophy, used as basis to ensure sufficient structural strength throughout the lifetime of the pipeline, are thereafter presented. The results show that in order to findmore » the optimum technical solution to control snaking behavior, many aspects need to be considered such as process requirements, allowable strain, hydrodynamic stability, vertical profile, pipelay installation and trawlboard loading. It is concluded that by proper consideration of all the above aspects, the high temperature pipeline can be designed to obtain sufficient safety level.« less
Mesch, Martin; Weiss, Thomas; Schäferling, Martin; Hentschel, Mario; Hegde, Ravi S; Giessen, Harald
2018-05-25
We analyze and optimize the performance of coupled plasmonic nanoantennas for refractive index sensing. The investigated structure supports a sub- and super-radiant mode that originates from the weak coupling of a dipolar and quadrupolar mode, resulting in a Fano-type spectral line shape. In our study, we vary the near-field coupling of the two modes and particularly examine the influence of the spectral detuning between them on the sensing performance. Surprisingly, the case of matched resonance frequencies does not provide the best sensor. Instead, we find that the right amount of coupling strength and spectral detuning allows for achieving the ideal combination of narrow line width and sufficient excitation strength of the subradiant mode, and therefore results in optimized sensor performance. Our findings are confirmed by experimental results and first-order perturbation theory. The latter is based on the resonant state expansion and provides direct access to resonance frequency shifts and line width changes as well as the excitation strength of the modes. Based on these parameters, we define a figure of merit that can be easily calculated for different sensing geometries and agrees well with the numerical and experimental results.
Lightweight Thermoformed Structural Components and Optics
NASA Technical Reports Server (NTRS)
Zeiders, Glenn W.; Bradford, Larry J.
2004-01-01
A technique that involves the use of thermoformed plastics has been developed to enable the design and fabrication of ultra-lightweight structural components and mirrors for use in outer space. The technique could also be used to produce items for special terrestrial uses in which minimization of weight is a primary design consideration. Although the inherent strengths of thermoplastics are clearly inferior to those of metals and composite materials, thermoplastics offer a distinct advantage in that they can be shaped, at elevated temperatures, to replicate surfaces (e.g., prescribed mirror surfaces) precisely. Furthermore, multiple elements can be bonded into structures of homogeneous design that display minimal thermal deformation aside from simple expansion. The design aspect of the present technique is based on the principle that the deflection of a plate that has internal structure depends far more on the overall thickness than on the internal details; thus, a very stiff, light structure can be made from thin plastic that is heatformed to produce a sufficiently high moment of inertia. General examples of such structures include I beams and eggcrates.
Anaerobic co-digestion of high-strength organic wastes pretreated by thermal hydrolysis.
Choi, Gyucheol; Kim, Jaai; Lee, Seungyong; Lee, Changsoo
2018-06-01
Thermal hydrolysis (TH) pretreatment was investigated for the anaerobic digestion (AD) of a mixture of high-strength organic wastes (i.e., dewatered human feces, dewatered sewage sludge, and food wastewater) at laboratory scale to simulate a full-scale plant and evaluate its feasibility. The reactors maintained efficient and stable performance at a hydraulic retention time of 20 days, which may be not sufficient for the mesophilic AD of high-suspended-solid wastes, despite the temporal variations in organic load. The addition of FeCl 3 was effective in controlling H 2 S and resulted in significant changes in the microbial community structure, particularly the methanogens. The temporary interruption in feeding or temperature control led to immediate performance deterioration, but it recovered rapidly when normal operations were resumed. The overall results suggest that the AD process coupled with TH pretreatment can provide an efficient, robust, and resilient system to manage high-suspended-solid wastes, supporting the feasibility of its full-scale implementation. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.
2018-03-01
The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; ...
2014-07-25
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface.more » The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.« less
Isometric strength testing as a means of controlling medical incidents on strenuous jobs.
Keyserling, W M; Herrin, G D; Chaffin, D B
1980-05-01
This investigation was performed to determine if isometric strength tests can be used to select workers for strenuous jobs and to reduce occupational injuries which are caused by a mismatch between worker strength and job strength requirements. Twenty jobs in a tire and rubber plant were studied biomechanically to identify critical strength-demanding tasks. Four strength tests were designed to simulate these tasks, and performance criteria were established for passing the tests. New applicants were administered the tests during their preplacement examinations to determine if they possessed sufficient strength to qualify for the jobs. The medical incidence rate of employees who were selected using the strength tests was approximately one-third that of employees selected using traditional medical criteria. It was concluded that isometric strength tests can be used to reduce occupational injuries and should be considered for implementation in industries with strenuous jobs.
NASA Astrophysics Data System (ADS)
Kim, Yong-Deog
The intermetallic compound, B2 NiAl, is a promising material for high temperature structural applications such as in aviation jet engines or gas turbines, provided that its high temperature mechanical properties can be improved. Although extensive efforts over the last several decades have been devoted toward enhancing ductility through alloying design and reducing impurities, as well as improving high temperature creep strength through precipitation and dispersion strengthening, these efforts have relied on traditional approaches, a combination of large grain size to limit diffusional creep and precipitation/dispersion (50 ˜ 100 nm size) strengthening to limit dislocation creep, for high temperature strengthening. While traditional approaches have shown a good improvement from a relatively high temperature strengthening point of view, the size and number density of dispersoids were not able to provide sufficient strength in the high temperature creep regime. Furthermore, details of the interaction mechanism between dislocations and dispersoids are not yet well understood. This study focuses on designing and developing advanced oxide dispersion strengthened (ODS) NiAl intermetallics with improved high temperature creep strength by incorporating a high number density (˜1024 m-3) of very thermally stable Y-Ti-O nano-clusters, akin to those recently observed to improve creep strength and radiation resistance in nano-structured ferritic alloys. Advanced ODS NiAl alloys have been produced by mechanical alloying of pre-alloyed Ni-50at%Al with Y2O3 and Ti elemental powders. The milled powders were subsequently consolidated by spark plasma sintering, with the objective of producing very high number densities of nano-sized Y-Ti-O precipitates, along with fine grain size. Advanced experimental characterization techniques, combined with microhardness strength measurement, were used to investigate the material microstructure and strength following processing and to evaluate the thermal stability during an extensive matrix of long-term thermal annealing. In particular, the size, number density and composition of nano-clusters were assessed. While improvements in strength were obtained in the advanced NiAl ODS alloys, and the higher strength persisted through thermal annealing for 100 hrs at 1723K, characterization revealed the presence of Al in the oxide precipitate phases. The Al incorporation is believed detrimental to the formation of a high density of thermally stable Y-Ti-O nanoscale precipitates.
The structural stability of lunar lava tubes
NASA Astrophysics Data System (ADS)
Blair, David M.; Chappaz, Loic; Sood, Rohan; Milbury, Colleen; Bobet, Antonio; Melosh, H. Jay; Howell, Kathleen C.; Freed, Andrew M.
2017-01-01
Mounting evidence from the SELENE, LRO, and GRAIL spacecraft suggests the presence of vacant lava tubes under the surface of the Moon. GRAIL evidence, in particular, suggests that some may be more than a kilometer in width. Such large sublunarean structures would be of great benefit to future human exploration of the Moon, providing shelter from the harsh environment at the surface-but could empty lava tubes of this size be stable under lunar conditions? And what is the largest size at which they could remain structurally sound? We address these questions by creating elasto-plastic finite element models of lava tubes using the Abaqus modeling software and examining where there is local material failure in the tube's roof. We assess the strength of the rock body using the Geological Strength Index method with values appropriate to the Moon, assign it a basaltic density derived from a modern re-analysis of lunar samples, and assume a 3:1 width-to-height ratio for the lava tube. Our results show that the stability of a lava tube depends on its width, its roof thickness, and whether the rock comprising the structure begins in a lithostatic or Poisson stress state. With a roof 2 m thick, lava tubes a kilometer or more in width can remain stable, supporting inferences from GRAIL observations. The theoretical maximum size of a lunar lava tube depends on a variety of factors, but given sufficient burial depth (500 m) and an initial lithostatic stress state, our results show that lava tubes up to 5 km wide may be able to remain structurally stable.
Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures
NASA Technical Reports Server (NTRS)
Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.
2011-01-01
Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on C/C were shown to perform well at temperatures exceeding 3,500 F (.1,925 C). The melt-infiltrated CMC-lined C/C composites offered a lower density than Cf/SiC. The melt-infiltrated composites offer greater use temperature than Cf/SiC because of the more refractory ceramic matrices and the C/C substructure provides greater high-temperature strength. The progress made in this work will allow multiple high-temperature components used in oxidizing environments to take advantage of the low density and high strength of C/C combined with the high-temperature oxidation resistance of melt-infiltrated CMCs.
Hutsuliak, A I
2016-08-01
In the experiment on 50 rabbits cholecysto-entero and entero-entero anastomoses were formed on intestinal Roux loop. In 35 animals (the main group) a single layer evert- ing anastomoses by using high frequence (HF) electric welding method were formed, in 15 (the comparison group) single row suture anastomoses has been done. The anas- tomosis sufficiency were performed by using hydropressure, pneumopressure meth- ods and breakload test. It was established that all anastomoses formed by HF-electric welding method were passable and hermetic, also had strong sufficiency. Strength of weld joint in the postoperative period increased in a linear progression and after 3 weeks almost reached strength intact intestine (240-250 mm Hg).
Gallos, Lazaros K; Makse, Hernán A; Sigman, Mariano
2012-02-21
The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are "large-world" self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the "strength of weak ties" crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain.
Gallos, Lazaros K.; Makse, Hernán A.; Sigman, Mariano
2012-01-01
The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are “large-world” self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the “strength of weak ties” crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain. PMID:22308319
Void migration in fusion materials
NASA Astrophysics Data System (ADS)
Cottrell, G. A.
2002-04-01
Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium.
Development of a core sheath process for production of oxide fibers
NASA Technical Reports Server (NTRS)
Freske, S.
1972-01-01
Improvements were sought in an oxide fiber of a core sheath configuration intended for structural applications at 2000 F (1093 C). Discontinuities in the core were eliminated by using core materials other than pure alumina, and continuous core sheath fibers were produced. In the case of some core materials, the continuous sections were sufficiently long for applications in short fiber composites. Creep at 2000 F (1093 C) was found to be due, in most cases, to breaks in the core, allowing the glass sheath to creep. Evidence was obtained indicating that a closer match between the thermal expansion coefficient of the sheath and the core would greatly improve the strength.
High strength-of-ties and low mobility enable the evolution of third-party punishment
Roos, Patrick; Gelfand, Michele; Nau, Dana; Carr, Ryan
2014-01-01
As punishment can be essential to cooperation and norm maintenance but costly to the punisher, many evolutionary game-theoretic studies have explored how direct punishment can evolve in populations. Compared to direct punishment, in which an agent acts to punish another for an interaction in which both parties were involved, the evolution of third-party punishment (3PP) is even more puzzling, because the punishing agent itself was not involved in the original interaction. Despite significant empirical studies of 3PP, little is known about the conditions under which it can evolve. We find that punishment reputation is not, by itself, sufficient for the evolution of 3PP. Drawing on research streams in sociology and psychology, we implement a structured population model and show that high strength-of-ties and low mobility are critical for the evolution of responsible 3PP. Only in such settings of high social-structural constraint are punishers able to induce self-interested agents toward cooperation, making responsible 3PP ultimately beneficial to individuals as well as the collective. Our results illuminate the conditions under which 3PP is evolutionarily adaptive in populations. Responsible 3PP can evolve and induce cooperation in cases where other mechanisms alone fail to do so. PMID:24335985
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen
2013-06-01
In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.
Growth morphology and properties of metals on graphene
Liu, Xiaojie; Han, Yong; Evans, James W.; ...
2015-12-01
Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. With this study, metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics applications, and for catalysis. All of these applications require good understanding and control of the metal growth morphology, which in part reflects the strength of the metal–graphene bond. The interaction between graphene and metal is sufficiently strong to modify the electronic structure of graphene is also of great importance. We will discussmore » recent experimental and computational studies related to deposition of metals on graphene supported on various substrates (SiC, SiO 2, and hexagonal close-packed metal surfaces). Of specific interest are the metal–graphene interactions (adsorption energies and diffusion barriers of metal adatoms), and the crystal structures and thermal stability of the metal nanoclusters.« less
Bosse, John D; Dixon, Brian M
2012-09-08
An appreciable volume of human clinical data supports increased dietary protein for greater gains from resistance training, but not all findings are in agreement. We recently proposed "protein spread theory" and "protein change theory" in an effort to explain discrepancies in the response to increased dietary protein in weight management interventions. The present review aimed to extend "protein spread theory" and "protein change theory" to studies examining the effects of protein on resistance training induced muscle and strength gains. Protein spread theory proposed that there must have been a sufficient spread or % difference in g/kg/day protein intake between groups during a protein intervention to see muscle and strength differences. Protein change theory postulated that for the higher protein group, there must be a sufficient change from baseline g/kg/day protein intake to during study g/kg/day protein intake to see muscle and strength benefits. Seventeen studies met inclusion criteria. In studies where a higher protein intervention was deemed successful there was, on average, a 66.1% g/kg/day between group intake spread versus a 10.2% g/kg/day spread in studies where a higher protein diet was no more effective than control. The average change in habitual protein intake in studies showing higher protein to be more effective than control was +59.5% compared to +6.5% when additional protein was no more effective than control. The magnitudes of difference between the mean spreads and changes of the present review are similar to our previous review on these theories in a weight management context. Providing sufficient deviation from habitual intake appears to be an important factor in determining the success of additional protein in enhancing muscle and strength gains from resistance training. An increase in dietary protein favorably effects muscle and strength during resistance training.
2012-01-01
An appreciable volume of human clinical data supports increased dietary protein for greater gains from resistance training, but not all findings are in agreement. We recently proposed “protein spread theory” and “protein change theory” in an effort to explain discrepancies in the response to increased dietary protein in weight management interventions. The present review aimed to extend “protein spread theory” and “protein change theory” to studies examining the effects of protein on resistance training induced muscle and strength gains. Protein spread theory proposed that there must have been a sufficient spread or % difference in g/kg/day protein intake between groups during a protein intervention to see muscle and strength differences. Protein change theory postulated that for the higher protein group, there must be a sufficient change from baseline g/kg/day protein intake to during study g/kg/day protein intake to see muscle and strength benefits. Seventeen studies met inclusion criteria. In studies where a higher protein intervention was deemed successful there was, on average, a 66.1% g/kg/day between group intake spread versus a 10.2% g/kg/day spread in studies where a higher protein diet was no more effective than control. The average change in habitual protein intake in studies showing higher protein to be more effective than control was +59.5% compared to +6.5% when additional protein was no more effective than control. The magnitudes of difference between the mean spreads and changes of the present review are similar to our previous review on these theories in a weight management context. Providing sufficient deviation from habitual intake appears to be an important factor in determining the success of additional protein in enhancing muscle and strength gains from resistance training. An increase in dietary protein favorably effects muscle and strength during resistance training. PMID:22958314
Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.
1996-03-12
The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.
Gelatinization kinetic of waxy starches under pressure according to ionic strength
NASA Astrophysics Data System (ADS)
Simonin, Hélène; Guyon, Claire; de Lamballerie, Marie; Lebail, Alain
2010-12-01
High pressure is a potential technology for the texturization of food products at ambient temperature. In this area, waxy starches are particularly interesting because they gelatinize quickly under sufficient pressure. However, gelatinization may be influenced by other components in the food matrix. Here, we investigate the influence of increasing ionic strength on gelatinization rate and kinetics at 500 MPa for waxy corn and waxy rice starches. We show that increasing ionic strength strongly retards and inhibits starch gelatinization under pressure and leads to heterogeneous gels with remnant granules.
NASA Astrophysics Data System (ADS)
Song, Ningfang; Wu, Chunxiao; Luo, Wenyong; Zhang, Zuchen; Li, Wei
2016-12-01
High strength fusion splicing hollow core photonic crystal fiber (HC-PCF) and single-mode fiber (SMF) requires sufficient energy, which results in collapse of the air holes inside HC-PCF. Usually the additional splice loss induced by the collapse of air holes is too large. By large offset reheating, the collapse length of HC-PCF is reduced, thus the additional splice loss induced by collapse is effectively suppressed. This method guarantees high-strength fusion splicing between the two types of fiber with a low splice loss. The strength of the splice compares favorably with the strength of HC-PCF itself. This method greatly improves the reliability of splices between HC-PCFs and SMFs.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi
2014-08-01
Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-04-01
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.
Sensitization of Laser-beam Welded Martensitic Stainless Steels
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan
Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.
Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks
Colon-Perez, Luis M.; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R.; Price, Catherine; Mareci, Thomas H.
2015-01-01
High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime. PMID:26173147
Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks.
Colon-Perez, Luis M; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R; Price, Catherine; Mareci, Thomas H
2015-01-01
High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime.
Stress Analysis and Fracture in Nanolaminate Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A stress analysis is performed on a nanolaminate subjected to bending. A composite mechanics computer code that is based on constituent properties and nanoelement formulation is used to evaluate the nanolaminate stresses. The results indicate that the computer code is sufficient for the analysis. The results also show that when a stress concentration is present, the nanolaminate stresses exceed their corresponding matrix-dominated strengths and the nanofiber fracture strength.
Bonding between oxide ceramics and adhesive cement systems: a systematic review.
Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per
2014-02-01
The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lee, Hyo Geun; Kim, Sang Suk; Kim, Sung Jo; Park, Su-Jin; Yun, Chang-wuk; Im, Gil-pyeong
2015-09-01
Photovoltaic generation systems have disadvantage in that they are usually installed outdoors and are exposed to extreme environments such as wind, snow and rain loadings. The structure of a photovoltaic generation system should be designed to have sufficient stiffness and strength against such loads. Especially, electric power generation by a concentrator photovoltaic(CPV) system can produce enough power if a right angle is main fained between the solar and the CPV panel within 90° ± 1°. To make the CPV tracking system in this study, we designed the structure by calculating the variations in and the strees applied to the structure by the wind load when the CPV tracking was influenced by the wind load. In this study, a 5-kW CPV tracking structure was designed through a structural analysis and a finiteelement analysis for a wind speed of 65 m/s by using ANSYS. The simulation of the structural design showed that the, structure of the 5-kW CPV tracking system corresponded with the ISO4017/ISO4762 standard. Based on this research, we will produce a 5-kW CPV tracking system and proceed to field test.
NASA Technical Reports Server (NTRS)
Petrasek, D. W.; Signorelli, R. A.
1974-01-01
Tungsten-hafnium-carbon - superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100- and 1000-hr rupture strengths calculated for 70 vol. % fiber composites based on test data at 1090C (2000F) were 420 and 280 MN/m2 (61,000 and 41,000 psi, respectively). The investigation indicated that, with better quality fibers, composites having 100- and 1000-hr rupture strengths of 570 and 370 MN/m2 (82,000 and 54,000 psi, respectively), may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for 1000 hr or more at 1090C (2000F).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuzumi, Satoshi; Hirose, Shigenobu, E-mail: okuzumi@nagoya-u.jp
Turbulence driven by magnetorotational instability (MRI) affects planetesimal formation by inducing diffusion and collisional fragmentation of dust particles. We examine conditions preferred for planetesimal formation in MRI-inactive 'dead zones' using an analytic dead-zone model based on our recent resistive MHD simulations. We argue that successful planetesimal formation requires not only a sufficiently large dead zone (which can be produced by tiny dust grains) but also a sufficiently small net vertical magnetic flux (NVF). Although often ignored, the latter condition is indeed important since the NVF strength determines the saturation level of turbulence in MRI-active layers. We show that direct collisionalmore » formation of icy planetesimal across the fragmentation barrier is possible when the NVF strength is lower than 10 mG (for the minimum-mass solar nebula model). Formation of rocky planetesimals via the secular gravitational instability is also possible within a similar range of the NVF strength. Our results indicate that the fate of planet formation largely depends on how the NVF is radially transported in the initial disk formation and subsequent disk accretion processes.« less
29 CFR 1910.25 - Portable wood ladders.
Code of Federal Regulations, 2011 CFR
2011-07-01
... library ladders are not specifically covered by this section. (b) Materials—(1) Requirements applicable to... device of sufficient size and strength to securely hold the front and back sections in open positions...
29 CFR 1910.25 - Portable wood ladders.
Code of Federal Regulations, 2010 CFR
2010-07-01
... library ladders are not specifically covered by this section. (b) Materials—(1) Requirements applicable to... device of sufficient size and strength to securely hold the front and back sections in open positions...
The sand bag model of the dispersion of the cosmic body in the atmosphere
NASA Technical Reports Server (NTRS)
Teterev, A. V.; Nemchinov, I. V.
1993-01-01
The strength of the extraterrestrial bodies depends on their structure, composition, dimensions, and the history of this body. The fragmentation of the body due to aerodynamic stresses begins at sufficiently large heights above the surface of the Earth. The process of fragmentation and dispersion of the fragments usually is studied by the hydrodynamic or even gasdynamic models. If the fragmentation process begins due to the initial cracks and faults of the body, or this body consists of large boulders glued by ice, the strength of these boulders after fragmentation remains higher than the aerodynamic stresses exerted at the remaining part of the body. It is supposed that fragmentation occurs at initial moment t = 0 at some height z(sub o) above the surface of the air, these fragments remain solid. The possibility of further fragmentation during the remaining part of the trajectory is not taken into account. If the number of these parts is large enough and their size is small in comparison to the initial radius of the body than we can use the sand bag model proposed in qualitative form.
A method to determine shear adhesive strength of fibrin sealants.
Sierra, D H; Feldman, D S; Saltz, R; Huang, S
1992-01-01
The adhesive strength of fibrin sealants has not been rigorously evaluated to date. The adhesive strength of six different concentrations of cryoprecipitated fibrinogen as well as the commercially available fibrin tissue adhesive Tissucol was tested under controlled conditions utilizing split-thickness skin grafts as the test adherand. This test configuration permitted the modeling of bonding strength for attachment of skin grafts as well as incorporate established engineering test standards for adhesives. An increase in fibrin concentration corresponded with an increase in shear adhesive strength. No significant increases in adhesive strength were attained after 5 min of bonding for all tested concentrations, except for the commercial adhesive, which attained the adhesive strength of an equivalent concentration of cryoprecipitated adhesive after 90 min. The adhesive strength, however, was an order of magnitude less than reported values of the tensile strength of fibrin material for similar concentrations. Therefore, it is important that the surgeon use a sufficiently high fibrinogen concentration for the specific clinical indication. The method of fibrin sealant preparation and/or the compounding adjuncts appear to have an effect on the development of adhesive strength.
Design of helicopter rotor blades for optimum dynamic characteristics
NASA Technical Reports Server (NTRS)
Peters, D. A.; Ko, T.; Korn, A. E.; Rossow, M. P.
1982-01-01
The possibilities and the limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are investigated. Changes in mass or stiffness distribution used to place rotor frequencies at desired locations are determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass moment of inertia size, strength, and stability are formulated. The extent hub loads can be minimized by proper choice of EL distribution is determined. Configurations that are simple enough to yield clear, fundamental insights into the structural mechanisms but which are sufficiently complex to result in a realistic result for an optimum rotor blade are emphasized.
Back strength and flexibility of EMS providers in practicing prehospital providers.
Crill, Matthew T; Hostler, David
2005-06-01
In the execution of prehospital care duties, an EMS provider may be required to carry equipment and patients over long distances or over multiple flights of stairs at any time of the day. At a minimum, a prehospital provider must have sufficient lower back strength and hamstring flexibility to prevent musculoskeletal injury while lifting. This study administered fitness assessments related to the occupational activities of the prehospital provider with the purpose of describing the incidence of occupational back injury and percentage of providers with known risk factors for back injury. Ninety subjects were tested during a regional EMS conference. Men were significantly taller and heavier than women and had significantly less hamstring flexibility. Body Mass Index was 30.7 +/- 7.2 in men and 28 +/- 5.7 in women. However, no significant differences were noted in an extension test of back strength. When surveyed, 47.8% of subjects reported a back injury in the previous 6 months but only 39.1% of these injuries were sustained while performing EMS duties. While only 13% of these injuries resulted in missed work, 52.2% reported their injury interfered with their daily activities. In spite of the physical nature of the profession, EMS providers in our sample were significantly overweight according to their Body Mass Index and may lack sufficient back strength and flexibilityfor safe execution of their duties. This group of professionals may be at risk for occupational injury and should be targeted for interventions to improve strength and flexibility.
Strength conditions for the elastic structures with a stress error
NASA Astrophysics Data System (ADS)
Matveev, A. D.
2017-10-01
As is known, the constraints (strength conditions) for the safety factor of elastic structures and design details of a particular class, e.g. aviation structures are established, i.e. the safety factor values of such structures should be within the given range. It should be noted that the constraints are set for the safety factors corresponding to analytical (exact) solutions of elasticity problems represented for the structures. Developing the analytical solutions for most structures, especially irregular shape ones, is associated with great difficulties. Approximate approaches to solve the elasticity problems, e.g. the technical theories of deformation of homogeneous and composite plates, beams and shells, are widely used for a great number of structures. Technical theories based on the hypotheses give rise to approximate (technical) solutions with an irreducible error, with the exact value being difficult to be determined. In static calculations of the structural strength with a specified small range for the safety factors application of technical (by the Theory of Strength of Materials) solutions is difficult. However, there are some numerical methods for developing the approximate solutions of elasticity problems with arbitrarily small errors. In present paper, the adjusted reference (specified) strength conditions for the structural safety factor corresponding to approximate solution of the elasticity problem have been proposed. The stress error estimation is taken into account using the proposed strength conditions. It has been shown that, to fulfill the specified strength conditions for the safety factor of the given structure corresponding to an exact solution, the adjusted strength conditions for the structural safety factor corresponding to an approximate solution are required. The stress error estimation which is the basis for developing the adjusted strength conditions has been determined for the specified strength conditions. The adjusted strength conditions presented by allowable stresses are suggested. Adjusted strength conditions make it possible to determine the set of approximate solutions, whereby meeting the specified strength conditions. Some examples of the specified strength conditions to be satisfied using the technical (by the Theory of Strength of Materials) solutions and strength conditions have been given, as well as the examples of stress conditions to be satisfied using approximate solutions with a small error.
Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.
1996-01-01
Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.
46 CFR 133.120 - Launching stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... station in the forward part of the OSV must— (1) Be located aft of the collision bulkhead in a sheltered position; and (2) Have a launching appliance approved as being of sufficient strength for forward...
46 CFR 133.120 - Launching stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... station in the forward part of the OSV must— (1) Be located aft of the collision bulkhead in a sheltered position; and (2) Have a launching appliance approved as being of sufficient strength for forward...
Protein 3D Structure Computed from Evolutionary Sequence Variation
Sheridan, Robert; Hopf, Thomas A.; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris
2011-01-01
The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures, new strategies in protein and drug design, and the identification of functional genetic variants in normal and disease genomes. PMID:22163331
Polymorphism in the two-locus Levene model with nonepistatic directional selection.
Bürger, Reinhard
2009-11-01
For the Levene model with soft selection in two demes, the maintenance of polymorphism at two diallelic loci is studied. Selection is nonepistatic and dominance is intermediate. Thus, there is directional selection in every deme and at every locus. We assume that selection is in opposite directions in the two demes because otherwise no polymorphism is possible. If at one locus there is no dominance, then a complete analysis of the dynamical and equilibrium properties is performed. In particular, a simple necessary and sufficient condition for the existence of an internal equilibrium and sufficient conditions for global asymptotic stability are obtained. These results are extended to deme-independent degree of dominance at one locus. A perturbation analysis establishes structural stability within the full parameter space. In the absence of genotype-environment interaction, which requires deme-independent dominance at both loci, nongeneric equilibrium behavior occurs, and the introduction of arbitrarily small genotype-environment interaction changes the equilibrium structure and may destroy stable polymorphism. The volume of the parameter space for which a (stable) two-locus polymorphism is maintained is computed numerically. It is investigated how this volume depends on the strength of selection and on the dominance relations. If the favorable allele is (partially) dominant in its deme, more than 20% of all parameter combinations lead to a globally asymptotically stable, fully polymorphic equilibrium.
Soil physical land degradation processes
NASA Astrophysics Data System (ADS)
Horn, Rainer
2017-04-01
According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy structure down to deeper depth and/or in combination with the deterioration of a continuous pore system an intensely degraded soil. A dominating anisotropy of pore functions causes a lateral soil and water movement. Doerner and Horn (2006), documented the increasing effect of stress and shear affected horizontal anisotropy on the hydraulic and gas permeability which coincides with a retarded gas exchange and an increased proportion of e.g. CO2 or even CH4 in soil pores and hinders the normal population growth. If the internal soil strength is exceeded the microbial composition and activity is converted to anoxia and even results in the emission of CH4 (Haas et al. 2016). Furthermore, the accessibility of nutrient adsorption places as well as connection between the pores within the compacted soils is decreased and results in a retarded ion mass flow and diffusion within the plats and /or in between the soil horizons. How to overcome these negative effects and how to deal with soils adequately according to their internal strength will be presented in the lecture - we need to improve the food production at an preserved land area for growing population. Literature Haas,C., Holthusen,D., Mordhorst,A., Lipiec,J., Horn, R. 2016. Elastic and plastic soil deformation and its influence on emission of greenhouse gases. Int. Agrophys., 30, 173-184 Krümmelbein, J., R.Horn 2013: Cycle of Soil Structure. Soil Degradation 183-198, Advances in Geoecology, 42, Catena Verlag, ISBN: 978-3-923381-59-3
Strengthening Mechanisms in Microtruss Metals
NASA Astrophysics Data System (ADS)
Ng, Evelyn K.
Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing treatments were conducted on O-temper and T8 temper AA2024 truss cores, the strength increase was different for different architectures, but was nearly the same for the two parent material tempers. Finally, the question of how much microtruss strengthening can be obtained for a given amount of parent metal strengthening was addressed by examining the interaction of material and geometric parameters in a model system.
In-vitro performance and fracture strength of thin monolithic zirconia crowns
Weigl, Paul; Wu, Yanyun; Felber, Roland; Lauer, Hans-Christoph
2018-01-01
PURPOSE All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: 5℃ and 55℃, 2×3,000 cycles, 2 min/cycle; ML: 50 N, 1.2×106 cycles), while the other samples were stored in water (37℃/24 h). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; α=.05). The fracture mode was analyzed. RESULTS In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application. PMID:29713427
NASA Astrophysics Data System (ADS)
Qing, Jiasheng; Wang, Lei; Dou, Kun; Wang, Bao; Liu, Qing
2016-06-01
The influence of V-N microalloying on the high-temperature mechanical behavior of high strength weathering steel is discussed through thermomechanical simulation experiment. The difference of tensile strength caused by variation of [%V][%N] appears after proeutectoid phase change, and the higher level of [%V][%N] is, the stronger the tensile strength tends to be. The ductility trough apparently becomes deeper and wider with the increase of [%V][%N]. When the level of [%V][%N] reaches to 1.7 × 10-3, high strength weathering steel shows almost similar reduction of area to 0.03% Nb-containing steel in the temperature range of 800-900°, however, the ductility trough at the low-temperature stage is wider than that of Nb-containing steel. Moreover, the net crack defect of bloom is optimized through the stable control of N content in low range under the precondition of high strength weathering steel with sufficient strength.
Grain-refining heat treatments to improve cryogenic toughness of high-strength steels
NASA Technical Reports Server (NTRS)
Rush, H. F.
1984-01-01
The development of two high Reynolds number wind tunnels at NASA Langley Research Center which operate at cryogenic temperatures with high dynamic pressures has imposed severe requirements on materials for model construction. Existing commercial high strength steels lack sufficient toughness to permit their safe use at temperatures approaching that of liquid nitrogen (-320 F). Therefore, a program to improve the cryogenic toughness of commercial high strength steels was conducted. Significant improvement in the cryogenic toughness of commercial high strength martensitic and maraging steels was demonstrated through the use of grain refining heat treatments. Charpy impact strength at -320 F was increased by 50 to 180 percent for the various alloys without significant loss in tensile strength. The grain sizes of the 9 percent Ni-Co alloys and 200 grade maraging steels were reduced to 1/10 of the original size or smaller, with the added benefit of improved machinability. This grain refining technique should permit these alloys with ultimate strengths of 220 to 270 ksi to receive consideration for cryogenic service.
Yield Potential of Sugar Beet – Have We Hit the Ceiling?
Hoffmann, Christa M.; Kenter, Christine
2018-01-01
The yield of sugar beet has continuously increased in the past decades. The question arises, whether this progress will continue in the future. A key factor for increasing yield potential of the crop is breeding progress. It was related to a shift in assimilate partitioning in the plant toward more storage carbohydrates (sucrose), whereas structural carbohydrates (leaves, cell wall compounds) unintendedly declined. The yield potential of sugar beet was estimated at 24 t sugar ha-1. For maximum yield, sufficient growth factors have to be available and the crop has to be able to fully utilize them. In sugar beet, limitations result from the lacking coincidence of maximum irradiation rates and full canopy cover, sink strength for carbon assimilation and high water demand, which cannot be met by rainfall alone. After harvest, sugar losses during storage occur. The paper discusses options for a further increase in yield potential, like autumn sowing of sugar beet, increasing sink strength and related constraints. It is prospected that yield increase by further widening the ratio of storage and structural carbohydrates will come to its natural limit as a certain cell wall stability is necessary. New challenges caused by climate change and by prolonged processing campaigns will occur. Thus breeding for improved pathogen resistance and storage properties will be even more important for successful sugar beet production than a further increase in yield potential itself. PMID:29599787
Yin, Anlin; Li, Jiukai; Bowlin, Gary L; Li, Dawei; Rodriguez, Isaac A; Wang, Jing; Wu, Tong; Ei-Hamshary, Hany A; Al-Deyab, Salem S; Mo, Xiumei
2014-08-01
In the vascular prosthetic field, the prevailing thought is that for clinical, long-term success, especially bioresorbable grafts, cellular migration and penetration into the prosthetic structure is required to promote neointima formation and vascular wall development. In this study, we fabricated poly (l-lactic acid-co-ɛ-caprolactone) P(LLA-CL)/silk fibroin (SF) vascular scaffolds through electrospinning using both perforated mandrel subjected to various intraluminal air pressures (0-300kPa), and solid mandrel. The scaffolds were evaluated the cellular infiltration in vitro and mechanical properties. Vascular scaffolds were seeded with smooth muscle cells (SMCs) to evaluate cellular infiltration at 1, 7, and 14 days. The results revealed that air-impedance scaffolds allowed significantly more cell infiltration as compared to the scaffolds fabricated with solid mandrel. Meanwhile, results showed that both mandrel model and applied air pressure determined the interfiber distance and the alignment of fibers in the enhanced porosity regions of the structure which influenced cell infiltration. Uniaxial tensile testing indicated that the air-impedance scaffolds have sufficient ultimate strength, suture retention strength, and burst pressure as well as compliance approximating a native artery. In conclusion, the air-impedance scaffolds improved cellular infiltration without compromising overall biomechanical properties. These results support the scaffold's potential for vascular grafting and in situ regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.
Gupta, Bhavana; Kumar, N.; Panda, Kalpataru; Dash, S.; Tyagi, A. K.
2016-01-01
Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication. PMID:26725334
Irradiation-induced formation of a spinel phase at the FeCr/MgO interface
Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; ...
2015-04-27
Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni 3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However,more » under irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.« less
Three-dimensional bioprinting is not only about cell-laden structures.
Zhang, Hong-Bo; Xing, Tian-Long; Yin, Rui-Xue; Shi, Yong; Yang, Shi-Mo; Zhang, Wen-Jun
2016-08-01
In this review, we focused on a few obstacles that hinder three-dimensional (3D) bioprinting process in tissue engineering. One of the obstacles is the bioinks used to deliver cells. Hydrogels are the most widely used bioink materials; however, they aremechanically weak in nature and cannot meet the requirements for supporting structures, especially when the tissues, such as cartilage, require extracellular matrix to be mechanically strong. Secondly and more importantly, tissue regeneration is not only about building all the components in a way that mimics the structures of living tissues, but also about how to make the constructs function normally in the long term. One of the key issues is sufficient nutrient and oxygen supply to the engineered living constructs. The other is to coordinate the interplays between cells, bioactive agents and extracellular matrix in a natural way. This article reviews the approaches to improve the mechanical strength of hydrogels and their suitability for 3D bioprinting; moreover, the key issues of multiple cell lines coprinting with multiple growth factors, vascularization within engineered living constructs etc. were also reviewed.
High strength, low carbon, dual phase steel rods and wires and process for making same
Thomas, Gareth; Nakagawa, Alvin H.
1986-01-01
A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.
1991-01-01
A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, S.M.; Tao, H.; Todd-Copley, J.A.
1991-06-11
A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.
De la Varga, I; Muñoz, J F; Bentz, D P; Spragg, R P; Stutzman, P E; Graybeal, B A
2018-05-01
Bond between two cementitious materials is crucial in applications such as repairs, overlays, and connections of prefabricated bridge elements (PBEs), to name just a few. It is the latter that has special interest to the authors of this paper. After performing a dimensional stability study on grout-like materials commonly used as connections between PBEs, it was observed that the so-called 'non-shrink' cementitious grouts showed a considerable amount of early-age shrinkage. This might have negative effects on the integrity of the structure, due not only to the grout material's early degradation, but also to a possible loss of bond between the grout and the prefabricated concrete element. Many factors affect the bond strength between two cementitious materials (e.g., grout-concrete), the presence of moisture at the existing concrete substrate surface being one of them. In this regard, pre-moistening the concrete substrate surface prior to the application of the grout material is sometimes recommended for bond enhancement. This topic has been the focus of numerous research studies in the past; however, there is still controversy among practitioners on the real benefits that this practice might provide. This paper evaluates the tensile bond performance of two non-shrink cementitious grouts applied to the exposed aggregate surface of a concrete substrate, and how the supply of moisture at the grout-concrete interface affects the bond strength. "Pull-off" bond results show increased tensile bond strength when the concrete surface is pre-moistened. Reasons to explain the observed increased bond strength are given after a careful microstructural analysis of the grout-concrete interface. Interfaces where sufficient moisture is provided to the concrete substrate such that moisture movement from the grout is prevented show reduced porosity and increased hydration on the grout side of the interface, which is thought to directly contribute to the increased tensile bond strength.
Process for strengthening aluminum based ceramics and material
Moorhead, Arthur J.; Kim, Hyoun-Ee
2000-01-01
A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.
NASA Astrophysics Data System (ADS)
Giancaspro, James William
Lightweight composites and structural sandwich panels are commonly used in marine and aerospace applications. Using carbon, glass, and a host of other high strength fiber types, a broad range of laminate composites and sandwich panels can be developed. Hybrid composites can be constructed by laminating multiple layers of varying fiber types while sandwich panels are manufactured by laminating rigid fiber facings onto a lightweight core. However, the lack of fire resistance of the polymers used for the fabrication remains a very important problem. The research presented in this dissertation deals with an inorganic matrix (Geopolymer) that can be used to manufacture laminate composites and sandwich panels that are resistant up to 1000°C. This dissertation deals with the influence of fiber type on the mechanical behavior and the fire response of hybrid composites and sandwich structures manufactured using this resin. The results are categorized into the following distinct studies. (i) High strength carbon fibers were combined with low cost E-glass fibers to obtain hybrid laminate composites that are both economical and strong. The E-glass fabrics were used as a core while the carbon fibers were placed on the tension face and on both tension and compression faces. (ii) Structural sandwich beams were developed by laminating various types of reinforcement onto the tension and compression faces of balsa wood cores. The flexural behavior of the beams was then analyzed and compared to beams reinforced with organic composite. The effect of core density was evaluated using oak beams reinforced with inorganic composite. (iii) To measure the fire response, balsa wood sandwich panels were manufactured using a thin layer of a fire-resistant paste to serve for fire protection. Seventeen sandwich panels were fabricated and tested to measure the heat release rates and smoke-generating characteristics. The results indicate that Geopolymer can be effectively used to fabricate both high strength composite plates and sandwich panels. A 2 mm thick coating of fireproofing on balsa wood is sufficient to satisfy FAA fire requirements.
Indoor magnetic navigation for the blind.
Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Giudice, Nicholas A; Sheikh, Suneel I; Knuesel, Robert J; Kollmann, Daniel T; Hedin, Daniel S
2012-01-01
Indoor navigation technology is needed to support seamless mobility for the visually impaired. This paper describes the construction of and evaluation of a navigation system that infers the users' location using only magnetic sensing. It is well known that the environments within steel frame structures are subject to significant magnetic distortions. Many of these distortions are persistent and have sufficient strength and spatial characteristics to allow their use as the basis for a location technology. This paper describes the development and evaluation of a prototype magnetic navigation system consisting of a wireless magnetometer placed at the users' hip streaming magnetic readings to a smartphone processing location algorithms. Human trials were conducted to assess the efficacy of the system by studying route-following performance with blind and sighted subjects using the navigation system for real-time guidance.
Mechanical testing of advanced coating system, volume 1
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Nagy, A.; Popelar, C. F.
1990-01-01
The Electron Beam Physical Vapor Deposition (EBPVD) coating material has a highly columnar microstructure, and as a result it was expected to have very low tensile strength. To be able to fabricate the required compression and tensile specimens, a substrate was required to provide structural integrity for the specimens. Substrate and coating dimensions were adjusted to provide sufficient sensitivity to resolve the projected loads carried by the EBPVD coating. The use of two distinctively different strain transducer systems, for tension and compression loadings, mandated two vastly different specimen geometries. Compression specimen and tensile specimen geometries are given. Both compression and tensile test setups are described. Data reduction mathematical models are given and discussed in detail as is the interpretation of the results. Creep test data is also given and discussed.
New interpretation of data of the Earth's solid core
NASA Astrophysics Data System (ADS)
Guliyev, H. H.
2017-06-01
The commonly accepted scientific opinions on the inner core as the deformable solid globe are based on the solution of the problem on the distribution of elastic parameters in the inner structures of the Earth. The given solution is obtained within the necessary integral conditions on its self-weight, moment of inertia concerning the axes of rotation and periods of free oscillations of the Earth. It is shown that this solution does not satisfy the mechanics of the deformable solid body with sufficient local conditions following from basic principles concerning the strength, stability and actuality of velocities of propagation of elastic waves. The violation of local conditions shows that the inner core cannot exist in the form of the deformable solid body within the commonly accepted elastic parameters.
NASA Astrophysics Data System (ADS)
Hirave, Vivek; Kalyanshetti, Mahesh
2018-02-01
Conventional fixed-base analysis ignoring the effect of soil-flexibility may result in unsafe design. Therefore, to evaluate the realistic behavior of structure the soil structure interaction (SSI) effect shall be incorporated in the analysis. In seismic analysis, provision of bracing system is one of the important option for the structure to have sufficient strength with adequate stiffness to resist lateral forces. The different configuration of these bracing systems alters the response of buildings, and therefore, it is important to evaluate the most effective bracing systems in view point of stability against SSI effect. In present study, three RC building frames, G+3, G+5 and G+7 and their respective scaled down steel model with two types of steel bracing system incorporating the effect of soil flexibility is considered for experimental and analytical study. The analytical study is carried out using Elastic continuum approach and the experimental study is carried out using Shake Table. The influence of SSI on various seismic parameters is presented. The study reveals that, steel bracing system is beneficial to control SSI effect and it is observed that V bracing is more effective, in resisting seismic load considering SSI.
Behaviour of concrete beams reinforced withFRP prestressed concrete prisms
NASA Astrophysics Data System (ADS)
Svecova, Dagmar
The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the same ultimate capacity, but reinforced with either steel, PCP or FRP rebars, the service load deflections of beams reinforced with PCP are comparable to that of a steel reinforced concrete beam, and are four times smaller than the deflection of the companion FRP reinforced beam. Similarly, the crack width of the PCP reinforced beams under service loads is comparable to that of the steel reinforced beam while the FRP reinforced beam developed unacceptably wide cracks. In the analytical part comprehensive analysis of the experimental data in both flexure and shear is performed. It is determined that the existing design expressions for ultimate flexural strength and service load deflection calculation cannot accurately predict the response of PCP reinforced beams. Accordingly, new expressions for calculation of deflection, crack width, tension stiffening, and ultimate capacity of the PCP reinforced beams are proposed. The predictions of the proposed methods of analysis agree very well with the corresponding experimental data. Based on the results of the current study, it is concluded that high strength concrete prisms prestressed with carbon fibre reinforced plastic bars can be used as reinforcement in concrete structures to avoid the problems of large deflections and wide cracks under service loads.
Acoustic Scattering Models of Zooplankton and Microstructure
1997-09-30
shelled (gastropods), and gas-bearing ( siphonophores )). 5) LABORATORY EXPERIMENTATION: ZOOPLANKTON. An extensive set of laboratory measurements on the...zooplankton ( siphonophores and pteropods) that have high enough target strengths and occur in sufficiently high numbers that they could interfere with
Towards a damage tolerance philosophy for composite materials and structures
NASA Technical Reports Server (NTRS)
O'Brien, T. Kevin
1990-01-01
A damage-threshold/fail-safe approach is proposed to ensure that composite structures are both sufficiently durable for economy of operation, as well as adequately fail-safe or damage tolerant for flight safety. Matrix cracks are assumed to exist throughout the off-axis plies. Delamination onset is predicted using a strain energy release rate characterization. Delamination growth is accounted for in one of three ways: either analytically, using delamination growth laws in conjunction with strain energy release rate analyses incorporating delamination resistance curves; experimentally, using measured stiffness loss; or conservatively, assuming delamination onset corresponds to catastrophic delamination growth. Fail-safety is assessed by accounting for the accumulation of delaminations through the thickness. A tension fatigue life prediction for composite laminates is presented as a case study to illustrate how this approach may be implemented. Suggestions are made for applying the damage-threshold/fail-safe approach to compression fatigue, tension/compression fatigue, and compression strength following low velocity impact.
Molecular structures of five adducts assembled from p-dimethylaminobenzaldehyde and organic acids
NASA Astrophysics Data System (ADS)
Jin, Shouwen; Wang, Lanqing; Liu, Hui; Liu, Li; Zhang, Huan; Wang, Daqi; Li, Minghui; Guo, Jianzhong; Guo, Ming
2016-07-01
Five adducts 1-5 derived from p-dimethylaminobenzaldehyde have been prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five adducts two are organic salts (1, and 2) and the other three (3-5) are cocrystals. In salts 1, and 2, the L molecules are protonated. The supramolecular architectures of the adducts 1-5 involve extensive intermolecular N-H⋯O, O-H⋯O, O-H⋯S, and C-H⋯O hydrogen bonds as well as other non-covalent interactions. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. The complexes displayed 2D/3D framework structure for the synergistic effect of the various non-covalent interactions. The results presented herein tell that the strength and directionality of the N-H⋯O, O-H⋯O, and O-H⋯S hydrogen bonds between organic acids and p-dimethylaminobenzaldehyde are sufficient to bring about the formation of binary cocrystals or organic salts.
Relationship of strength of turbulence to received power
NASA Technical Reports Server (NTRS)
Rottger, J.
1983-01-01
Because of contributions due to reflection, the determination of the turbulence refractive index structure constant may be affected. For pure scattering from turbulence in the inertial subrange, the radar echo power can be used to calculate the refractive index structure constant. The radar power is determined by a convolution integral. If the antenna beam is swung to sufficiently large off-zenith angles ( 12.5 deg) so that a quasi-isotropic response from the tail ends of the Gaussian angular distribution can be anticipated, the evaluation of the convolution integral depends only on the known antenna pattern of the radar. This procedure, swinging the radar beam to attenuate the reflected component, may be called angular or direction filtering. The tilted antenna also may be pick up reflected components from near the zenith through the sidelobes. This can be tested by the evaluation of the correlation function. This method applies a time domain filtering of the intensity time series but needs a very careful selection of the high pass filters.
Towards a damage tolerance philosophy for composite materials and structures
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin
1988-01-01
A damage-threshold/fail-safe approach is proposed to ensure that composite structures are both sufficiently durable for economy of operation, as well as adequately fail-safe or damage tolerant for flight safety. Matrix cracks are assumed to exist throughout the off-axis plies. Delamination onset is predicted using a strain energy release rate characterization. Delamination growth is accounted for in one of three ways: either analytically, using delamination growth laws in conjunction with strain energy release rate analyses incorporating delamination resistance curves; experimentally, using measured stiffness loss; or conservatively, assuming delamination onset corresponds to catastrophic delamination growth. Fail-safety is assessed by accounting for the accumulation of delaminations through the thickness. A tension fatigue life prediction for composite laminates is presented as a case study to illustrate how this approach may be implemented. Suggestions are made for applying the damage-threshold/fail-safe approach to compression fatigue, tension/compression fatigue, and compression strength following low velocity impact.
Li, Yinghui; Wu, Buling; Sun, Fengyang
2013-03-01
To evaluate the effects of sandblasting and different orthodontic adhesives on shear bond strength between zirconia and enamel. Zirconia ceramic samples were designed and manufactured for 40 extracted human maxillary first premolars with CAD/CAM system. The samples were randomized into 4 groups for surface treatment with sandblasting and non-treated with adhesives of 3M Transbond XT or Jingjin dental enamel bonding resin. After 24 h of bonded fixation, the shear bond strengths were measured by universal mechanical testing machine and analyzed with factorial variance analysis. The shear bond strength was significantly higher in sandblasting group than in untreated group (P<0.05) and comparable between the two groups with the adhesives of Transbond XT and dental enamel bonding resin (P>0.05). The shear bond strength between zirconia and enamel is sufficient after sandblasting regardless of the application of either adhesive.
Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths
Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.
2014-01-01
We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979
THE PRODUCTION OF DIPHTHERIA TOXIN
Park, W. H.; Williams, A. W.
1896-01-01
Toxin of sufficient strength to kill a 400-gramme guinea-pig in three days and a half in a dose of 0·cubic centimetre developed in suitable bouillon, contained in ordinary Erlenmeyer flasks, within a period of twenty-four hours. In such boullon the toxin reached its greatest strength in from four to seven days (0·005 cubic centimetre killing a 500-gramme guinea-pig in three days). This period of time covered that of the greatest growth of the bacilli, as shown both by the appearance of the culture and by the number of colonies developing an agar plates. The bodies of the diphtheria bacili did not at any time contain toxin in cosiderable amounts. The type of growth of the bacili and the rapidity and extent of the production of toxin depended more on the reaction of the bouillon than upon any other single factor. The best results were obtained in bouillon which, after being neutralized to litmus, had about seven cubic centimetres of normal soda solution added to each litre. An excessive amount of either acid or alkali prevented the development of toxin. Strong toxin was produced in bouillon containing peptone ranging from one to ten per cent. The strength of toxin averaged greater in the two and four-per-cent peptone solutions than in the one-percent. When the stage of acid reaction was brief and the degree of acidity probably slight, strong toxin developed while the culture bouillon was still acid; but when the stage of acid reaction was prolonged, little if any toxin was produced until just before the fluid became alkaline. Glucose is deleterious to the growth of the diphtheria bacillus and to the production of toxin when it is present in sufficient amounts to cause by its disintegration too great a degree of acidity in the fluid culture. When the acid resulting from decomposition of glucose is neutralized by the addition of alkali the diphtheria bacilus again grows abundantly. Glucose is not present, at least as a rule, in sufficient amounts in the meat as obtained from the New York butchers to prevent the rapid production of strong toxin if the bouillon is made sufficiently alkaline. In our experiments, when other conditions were similar, the strength of the toxin was in proportion to the virulence and vigour of growth of the bacillus employed. PMID:19866791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Carl R.
Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less
Comparative study on the welded structure fatigue strength assessment method
NASA Astrophysics Data System (ADS)
Hu, Tao
2018-04-01
Due to the welding structure is widely applied in various industries, especially the pressure container, motorcycle, automobile, aviation, ship industry, such as large crane steel structure, so for welded structure fatigue strength evaluation is particularly important. For welded structure fatigue strength evaluation method mainly has four kinds of, the more from the use of two kinds of welded structure fatigue strength evaluation method, namely the nominal stress method and the hot spot stress evaluation method, comparing from its principle, calculation method for the process analysis and research, compare the similarities and the advantages and disadvantages, the analysis of practical engineering problems to provide the reference for every profession and trade, as well as the future welded structure fatigue strength and life evaluation method put forward outlook.
NASA Technical Reports Server (NTRS)
Verduzio, Rodolfo
1922-01-01
The future development of aerial navigation is closely connected with the condition of obtaining airplanes of great stability and sufficient strength. Different construction materials such as wood, aluminum, iron, and alloys are examined to determine which materials or combination of materials provides a greater coefficient of safety.
Photoactive TiO2 antibacterial coating on surgical external fixation pins for clinical application
Villatte, Guillaume; Massard, Christophe; Descamps, Stéphane; Sibaud, Yves; Forestier, Christiane; Awitor, Komla-Oscar
2015-01-01
External fixation is a method of osteosynthesis currently used in traumatology and orthopedic surgery. Pin tract infection is a common problem in clinical practice. Infection occurs after bacterial colonization of the pin due to its contact with skin and the local environment. One way to prevent such local contamination is to create a specific coating that could be applied in the medical field. In this work, we developed a surface coating for external fixator pins based on the photocatalytic properties of titanium dioxide, producing a bactericidal effect with sufficient mechanical strength to be compatible with surgical use. The morphology and structure of the sol-gel coating layers were characterized using, respectively, scanning electron microscopy and X-ray diffraction. The resistance properties of the coating were investigated by mechanical testing. Photodegradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of the titanium dioxide layers under ultraviolet irradiation. The bactericidal effect induced by the process was evaluated against two strains, ie, Staphylococcus aureus and multiresistant Staphylococcus epidermidis. The coated pins showed good mechanical strength and an efficient antibacterial effect after 1 hour of ultraviolet irradiation. PMID:26005347
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen; ...
2018-01-24
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
Interaction of monopoles, dipoles, and turbulence with a shear flow
NASA Astrophysics Data System (ADS)
Marques Rosas Fernandes, V. H.; Kamp, L. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.
2016-09-01
Direct numerical simulations have been conducted to examine the evolution of eddies in the presence of large-scale shear flows. The numerical experiments consist of initial-value-problems in which monopolar and dipolar vortices as well as driven turbulence are superposed on a plane Couette or Poiseuille flow in a periodic two-dimensional channel. The evolution of the flow has been examined for different shear rates of the background flow and different widths of the channel. Results found for retro-grade and pro-grade monopolar vortices are consistent with those found in the literature. Boundary layer vorticity, however, can significantly modify the straining and erosion of monopolar vortices normally seen for unbounded domains. Dipolar vortices are shown to be much more robust coherent structures in a large-scale shear flow than monopolar eddies. An analytical model for their trajectories, which are determined by self-advection and advection and rotation by the shear flow, is presented. Turbulent kinetic energy is effectively suppressed by the shearing action of the background flow provided that the shear is linear (Couette flow) and of sufficient strength. Nonlinear shear as present in the Poiseuille flow seems to even increase the turbulence strength especially for high shear rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition
Li Tong, Wei; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K.; Mun Hung, Yew
2015-01-01
The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications. PMID:26100977
Impact of a daily 10-minute strength and flexibility program in a manufacturing plant.
Pronk, S J; Pronk, N P; Sisco, A; Ingalls, D S; Ochoa, C
1995-01-01
In summary, employees' flexibility and mood showed modest improvements following the implementation of a plant-wide, 10-minute, daily flexibility and strength program. The initial six-week pilot study, administered prior to the plant-wide program implementation, successfully assessed program feasibility, assessed the efficiency of program implementation, identified administrative and logistical concerns, and generated pilot data needed to secure managerial support. Despite the noted significant increases in grip strength in the pilot study, no increases were observed following the six months of plant-wide implementation. This may be related to the differences in low average pretest grip strength for the pilot study compared to the higher scores for the main study population. The pilot study subjects may have received a sufficient exercise stimulus to increase grip strength over the course of six weeks. In contrast, this may not have been the case for the main study subjects due to their higher initial mean grip strength. An increased number of exercises designed to directly impact grip strength may be needed to improve this parameter.
Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column
NASA Astrophysics Data System (ADS)
Liu, Taiyu; An, Yuwei
2018-01-01
The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.
NASA Technical Reports Server (NTRS)
Binayak, Panda; Jones, Clyde S. (Technical Monitor)
2001-01-01
NASA-23 alloy has been designed to fulfil NASA's unique need for a high strength, oxidation-and corrosion resistant alloy that is compatible with a high-pressure hydrogen environment. This alloy is a precipitation hardened iron-nickel base alloy with excellent strength and ductility art gaseous hydrogen (GH2), comparable to those of other alloys in its class, Inconel 718 and IN-903. NASA-23 has been designed with a sufficient amount of chromium to provide good corrosion/oxidation resistance. For hydrogen resistance, the alloy maintains a (Ni + Co)/Fe ratio close to 1.26, the same as that of Incoloy 903. Hardening constituents, Nb, Ti, and Al, are optimized for strength and ductility both in air and GH2 atmospheres.
On the Grain-modified Magnetic Diffusivities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Xu, Rui; Bai, Xue-Ning
2016-03-01
Weakly ionized protoplanetary disks (PPDs) are subject to nonideal magnetohydrodynamic (MHD) effects, including ohmic resistivity, the Hall effect, and ambipolar diffusion (AD), and the resulting magnetic diffusivities ({η }{{O}},{η }{{H}}, and {η }{{A}}) largely control the disk gas dynamics. The presence of grains not only strongly reduces the disk ionization fraction, but also modifies the scalings of {η }{{H}} and {η }{{A}} with magnetic field strength. We analytically derive asymptotic expressions of {η }{{H}} and {η }{{A}} in both the strong and weak field limits and show that toward a strong field, {η }{{H}} can change sign (at a threshold field strength {B}{{th}}), mimicking a flip of field polarity, and AD is substantially reduced. Applied to PPDs, we find that when small ˜0.1 (0.01)μm grains are sufficiently abundant (mass ratio ˜0.01 (10-4)), {η }{{H}} can change sign up to ˜2-3 scale heights above the midplane at a modest field strength (plasma β ˜ 100) over a wide range of disk radii. The reduction of AD is also substantial toward the AD-dominated outer disk and may activate the magnetorotational instability. We further perform local nonideal MHD simulations of the inner disk (within 10 au) and show that, with sufficiently abundant small grains, the magnetic field amplification due to the Hall-shear instability saturates at a very low level near the threshold field strength {B}{{th}}. Together with previous studies, we conclude by discussing the grain-abundance-dependent phenomenology of PPD gas dynamics.
Davies, Mark; Moore, Isabel S; Moran, Patrick; Mathema, Prabhat; Ranson, Craig A
2016-05-01
To provide normative values for cervical range of motion (CROM), isometric cervical and shoulder strength for; International Senior professional, and International Age-grade Rugby Union front-row forwards. Cross-sectional population study. All international level front-row players within a Rugby Union Tier 1 Nation. Nineteen Senior and 21 Age-grade front-row forwards underwent CROM, cervical and shoulder strength testing. CROM was measured using the CROM device and the Gatherer System was used to measure multi-directional isometric cervical and shoulder strength. The Age-grade players had significantly lower; cervical strength (26-57% deficits), cervical flexion to extension strength ratios (0.5 vs. 0.6), and shoulder strength (2-36% deficits) than the Senior players. However, there were no differences between front-row positions within each age group. Additionally, there were no differences between age groups or front-row positions in the CROM measurements. Senior Rugby Union front-row forwards have greater cervical and shoulder strength than Age-grade players, with the biggest differences being in cervical strength, highlighting the need for age specific normative values. Importantly, Age-grade players should be evaluated to ensure they have developed sufficient cervical strength prior to entering professional level Rugby Union. Copyright © 2015 Elsevier Ltd. All rights reserved.
Normative values of isometric elbow strength in healthy adults: a systematic review.
Kotte, Shamala H P; Viveen, Jetske; Koenraadt, Koen L M; The, Bertram; Eygendaal, Denise
2018-07-01
Post-traumatic deformities such as biceps tendon rupture or (peri-)articular fractures of the elbow are often related to a decrease in muscle strength. Postoperative evaluation of these deformities requires normative values of elbow strength. The purpose of this systematic review was to determine these normative values of isometric elbow strength in healthy adults resulting from studies evaluating this strength (i.e. flexion, extension, pronation and supination strength). The databases of PubMed, EMBASE and Web of Sciences were searched and screened for studies involving the isometric elbow strength as measured in asymptomatic volunteers. The quality of the studies was assessed and studies of low quality were excluded. Nineteen studies met the inclusion criteria and were of sufficiently high quality to be included in the present review. In these studies, elbow strength was measured in a total of 1880 healthy volunteers. The experimental set-up and devices used to measure elbow strength varied between studies. Using some assumptions, a normative values table was assembled. Large standard deviations of normative values in combination with different measurement devices used, as well as the different measurement positions of the subjects, demonstrated that there is no consensus about measuring the isometric elbow strength and therefore the normative values have to be interpreted with caution.
Pore- and micro-structural characterization of a novel structural binder based on iron carbonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sumanta, E-mail: Sumanta.Das@asu.edu; Stone, David, E-mail: dajstone@gmail.com; Convey, Diana, E-mail: Diana.Convey@asu.edu
2014-12-15
The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient for a majority of concrete applications are attained. The material pore structure is investigated primarily through mercury intrusion porosimetry whereas electron microscopy is used for microstructural characterization. Reduction in the overall porosity and the average pore size with an increase in carbonation duration from 1 day to 4 days ismore » noticed. The pore structure features are used in predictive models for gas and moisture transport (water vapor diffusivity and moisture permeability) through the porous medium which dictates its long-term durability when used in structural applications. Comparisons of the pore structure with those of a Portland cement paste are also provided. The morphology of the reaction products in the iron-based binder, and the distribution of constituent elements in the microstructure are also reported. - Highlights: • Carbonation of iron produces a dense microstructure. • Pore volume in iron carbonate lower, critical size higher than those in OPC pastes • Reaction product contains iron, carbon, silicon, aluminum and calcium. • Power-law for porosity-moisture permeability relationship was established.« less
Protonic and Electronic Charge Carriers in Solvated Biomacromolecules
1989-01-01
samples with sufficient mechanical strength. The pellets were approximately one millimeter thick and were placed between two platinium foil...attached to the vacuum line, Figure 2, by simply tilting them. The platinium electrodes were blocking for protons so all protonic carriers were released
Strength of surgical wire fixation. A laboratory study.
Guadagni, J R; Drummond, D S
1986-08-01
Because of the frequent use of stainless steel wire in spinal surgery and to augment fracture fixation, several methods of securing wire fixation were tested in the laboratory to determine the relative strength of fixation. Any method of fixation stronger than the yield strength of the wire is sufficient. Square knots, knot twists, symmetric twists, and the AO loop-tuck techniques afforded acceptable resistance against tension loads, but the wire wrap and AO loop technique were unacceptable. The double symmetric twist, which is frequently used for tension banding, was barely acceptable. The symmetric twist technique was the most practical because it is strong enough, efficient in maintaining tension applied during fixation, and least likely to cause damage to the wire. To optimize the fixation strength of the symmetrical twist, at least two twists are required at a reasonably tight pitch.
Crangle, Colleen E.; Perreau-Guimaraes, Marcos; Suppes, Patrick
2013-01-01
This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model. PMID:23799009
High-volume use of self-cementing spray dry absorber material for structural applications
NASA Astrophysics Data System (ADS)
Riley, Charles E.
Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to Portland cement.
Ng, Vincent; Cao, Mengyang; Marsh, Herbert W; Tay, Louis; Seligman, Martin E P
2017-08-01
The factor structure of the Values in Action Inventory of Strengths (VIA-IS; Peterson & Seligman, 2004) has not been well established as a result of methodological challenges primarily attributable to a global positivity factor, item cross-loading across character strengths, and questions concerning the unidimensionality of the scales assessing character strengths. We sought to overcome these methodological challenges by applying exploratory structural equation modeling (ESEM) at the item level using a bifactor analytic approach to a large sample of 447,573 participants who completed the VIA-IS with all 240 character strengths items and a reduced set of 107 unidimensional character strength items. It was found that a 6-factor bifactor structure generally held for the reduced set of unidimensional character strength items; these dimensions were justice, temperance, courage, wisdom, transcendence, humanity, and an overarching general factor that is best described as dispositional positivity. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Transcutaneous Raman Spectroscopy of Bone
NASA Astrophysics Data System (ADS)
Maher, Jason R.
Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral differences in murine bone.
Parametric Methods for Determining the Characteristics of Long-Term Metal Strength
NASA Astrophysics Data System (ADS)
Nikitin, V. I.; Rybnikov, A. I.
2018-06-01
A large number of parametric methods were proposed to calculate the characteristics of the long-term strength of metals. All of them are based on the fact that temperature and time are mutually compensating factors in the processes of metal degradation at high temperature under the action of a constant stress. The analysis of the well-known Larson-Miller, Dorn-Shcherby, Menson-Haferd, Graham-Wallace, and Trunin parametric equations is performed. The widely used Larson-Miller parameter was subjected to a detailed analysis. The application of this parameter to the calculation of ultimate long-term strength for steels and alloys is substantiated provided that the laws of exponential dependence on temperature and power dependence on strength for the heat resistance are observed. It is established that the coefficient C in the Larson- Miller equation is a characteristic of the heat resistance and is different for each material. Therefore, the use of a universal constant C = 20 in parametric calculations, as well as an a priori presetting of numerical C values for each individual group of materials, is unacceptable. It is shown in what manner it is possible to determine an exact value of coefficient C for any material of interest as well as to obtain coefficient C depending on stress in case such a dependence is manifested. At present, the calculation of long-term strength characteristics can be performed to a sufficient accuracy using Larson-Miller's parameter and its refinements described therein as well as on the condition that a linear law in logσ- P dependence is observed and calculations in the interpolation range is performed. The use of the presented recommendations makes it possible to obtain a linear parametric logσ- P dependence, which makes it possible to determine to a sufficient accuracy the values of ultimate long-term strength for different materials.
Improving the mechanical properties of nano-hydroxyapatite
NASA Astrophysics Data System (ADS)
Khanal, Suraj Prasad
Hydroxyapatite (HAp) is an ideal bioactive material that is used in orthopedics. Chemical composition and crystal structure properties of HAp are similar to the natural bone hence it promotes bone growth. However, its mechanical properties of synthetic HAp are not sufficient for major load-bearing bone replacement. The potential of improving the mechanical properties of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNT) and polymerized epsilon-caprolactam (nylon) is studied. The fracture toughness, tensile strength, Young's modulus, stiffness and fracture energy were studied for a series of HAp samples with CfSWCNT concentrations varying from 0 to 1.5 wt. % without, and with nylon addition. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) were used to characterize the samples. The fracture toughness and tensile test was performed under the standard protocol of ASTM D5045 and ASTM D638-02a respectively. Reproducible maximum values of (3.60 +/- 0.3) MPa.m1/2 for fracture toughness and 65.38 MPa for tensile strength were measured for samples containing 1 wt. % CfSWCNT and nylon. The Young's modulus, stiffness and fracture energy of the samples are 10.65 GPa, 1482.12 N/mm, and 644 J/m2 respectively. These values are comparable to those of the cortical bone. Further increase of the CfSWCNT content results to a decreased fracture toughness and tensile strength and formation of a secondary phase.
Simulation of circularly polarized luminescence spectra using coupled cluster theory
NASA Astrophysics Data System (ADS)
McAlexander, Harley R.; Crawford, T. Daniel
2015-04-01
We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL signal but a weak circular dichroism signal.
Simulation of circularly polarized luminescence spectra using coupled cluster theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAlexander, Harley R.; Crawford, T. Daniel, E-mail: crawdad@vt.edu
2015-04-21
We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar thatmore » TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL signal but a weak circular dichroism signal.« less
Acoustic Scattering Models of Zooplankton and Microstructure
1998-09-30
siphonophores ) in a laboratory tank produced significant echoes. However, we could only hypothesize on what the scattering levels could be in the natural... siphonophores and pteropods) that have high enough target strengths and occur in sufficiently high numbers that they could interfere with the performance
Acoustic Scattering Models of Zooplankton and Microstructures
1998-09-30
scattering by the seafloor. SCATTERING BY GAS-BEARING ZOOPLANKTON. In earlier work we showed that the scattering by gas-bearing zooplankton ( siphonophores ... siphonophores and pteropods) that have high enough target strengths and occur in sufficiently high numbers that they could interfere with the performance of
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (right) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
The role of haptic versus visual volume cues in the size-weight illusion.
Ellis, R R; Lederman, S J
1993-03-01
Three experiments establish the size-weight illusion as a primarily haptic phenomenon, despite its having been more traditionally considered an example of vision influencing haptic processing. Experiment 1 documents, across a broad range of stimulus weights and volumes, the existence of a purely haptic size-weight illusion, equal in strength to the traditional illusion. Experiment 2 demonstrates that haptic volume cues are both sufficient and necessary for a full-strength illusion. In contrast, visual volume cues are merely sufficient, and produce a relatively weaker effect. Experiment 3 establishes that congenitally blind subjects experience an effect as powerful as that of blindfolded sighted observers, thus demonstrating that visual imagery is also unnecessary for a robust size-weight illusion. The results are discussed in terms of their implications for both sensory and cognitive theories of the size-weight illusion. Applications of this work to a human factors design and to sensor-based systems for robotic manipulation are also briefly considered.
Phase stability in the two-dimensional anisotropic boson Hubbard Hamiltonian
Ying, T.; Batrouni, G. G.; Rousseau, V. G.; ...
2013-05-15
The two dimensional square lattice hard-core boson Hubbard model with near neighbor interactions has a ‘checkerboard’ charge density wave insulating phase at half-filling and sufficiently large intersite repulsion. When doped, rather than forming a supersolid phase in which long range charge density wave correlations coexist with a condensation of superfluid defects, the system instead phase separates. However, it is known that there are other lattice geometries and interaction patterns for which such coexistence takes place. In this paper we explore the possibility that anisotropic hopping or anisotropic near neighbor repulsion might similarly stabilize the square lattice supersolid. Lastly, by consideringmore » the charge density wave structure factor and superfluid density for different ratios of interaction strength and hybridization in the ˆx and ˆy directions, we conclude that phase separation still occurs.« less
Compression molded energy storage flywheels
NASA Astrophysics Data System (ADS)
Burdick, P. A.
Materials choices, manufacturing processes, and benefits of flywheels as an effective energy storage device are discussed. Tests at the LL Laboratories have indicated that compressing molding of plies of structural sheet molding compound (SMC) filled with randomly oriented fibers produces a laminated disk with transversely isotropic properties. Good performance has been realized with a carbon/epoxy system, which displays satisfactory stiffness and strength in flywheel applications. A core profile has been selected, consisting of a uniform 1 in cross sectional thickness and a 21 in diam. Test configurations using three different resin paste formulations were compared after being mounted elastomerically on aluminum hubs. Further development was found necessary on accurate balancing and hub bonding. It was concluded that the SMC flywheels display the low-cost, sufficient energy densities, suitable dynamic stability characteristics, and acceptably benign failure modes for automotive applications.
Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making
Klueh, R.L.; Maziasz, P.J.
1994-03-08
This work describes a high strength, high toughness bainitic/ferritic steel alloy comprising about 2.75% to 4.0% chromium, about 2.0% to 3.5% tungsten, about 0.10% to 0.30% vanadium, and about 0.1% to 0.15% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy having been heated to an austenitizing temperature and then cooled at a rate sufficient to produce carbide-free acicular bainite. 15 figures.
Ultrathin metallized PBI paper
NASA Technical Reports Server (NTRS)
Chenevey, E. C.
1978-01-01
A study to determine the feasibility of preparing ultrathin papers with a target weight of 3.5 g/m squared from polybenzimidazole (PBI) fibrids was undertaken. Small hand sheets of target weight were fabricated. They were light brown, low density materials with sufficient strength to be readily handleable. Characterization of these sheets included strength, fold endurance, thermal gravimetric analysis in air and nitrogen and photomicrographs. Two different batches of PBI fibrids were studied and differences in fabrication performance were noted. In neither case could target weight papers be prepared using conventional paper making techniques.
Is Water a Universal Solvent for Life?
NASA Technical Reports Server (NTRS)
Pohorill, Andrew
2012-01-01
There are strong reasons to believe that the laws, principles and constraints of physics and chemistry are universal. It is much less clear how this universality translates into our understanding of the origins of life. Conventionally, discussions of this topic focus on chemistry that must be sufficiently rich to seed life. Although this is clearly a prerequisite for the emergence of living systems, I propose to focus instead on self-organization of matter into functional structures capable of reproduction, evolution and responding to environmental changes. In biology, most essential functions are largely mediated by noncovalent interactions (interactions that do not involve making or breaking chemical bonds). Forming chemical bonds is only a small part of what living systems do. There are specific implications of this point of view for universality. I will concentrate on one of these implications. Strength of non-covalent interactions must be properly tuned. If they were too weak, the system would exhibit undesired, uncontrolled response to natural fluctuations of physical and chemical parameters. If they were too strong kinetics of biological processes would be slow and energetics costly. This balance, however, is not a natural property of complex chemical systems. Instead, it has to be achieved with the aid of an appropriate solvent for life. In particular, potential solvents for life must be characterized by a high dielectric constant to ensure solubility of polar species and sufficient flexibility of biological structures stabilized by electrostatic interactions. Among these solvents, water exhibits a remarkable trait that it also promotes solvophobic (hydrophobic) interactions between non-polar species, typically manifested by a tendency of these species to aggregate and minimize their contacts with the aqueous solvent. Hydrophobic interactions are responsible, at least in part, for many self-organization phenomena in biological systems, such as the formation of cellular boundary structures or protein folding. Strengths of electrostatic and hydrophobic interactions are similar and can be balanced over a wide range of temperatures, which considerably increases the repertoire of interactions that can be used to modulate biological functions. Some properties of water, e.g. its chemical activity against polymerization reactions, are considered as unfavorable to life. In actuality, this might be a favorable trait because life requires a balance between constructive and destructive processes. For example, molecules synthesized in response to specific conditions must be degraded once these conditions change. Otherwise regulation of biological processes would be virtually impossible. Water might not be the only liquid with favorable properties for supporting life. It has been proposed that formamide, which might be present elsewhere in the universe in sufficient quantities to warrant interest, could be a potential alternative to water for the origin of life. However, this will remain highly hypothetical until it is demonstrated in further studies on its physical, chemical and biological properties it is capable of mediating self-organization of matter and providing proper balance between different types of non-covalent interactions.
Survey of long-term durability of fiberglass reinforced plastic structures
NASA Technical Reports Server (NTRS)
Lieblein, S.
1981-01-01
Included are fluid containment vessels, marine structures, and aircraft components with up to 19 years of service. Correlations were obtained for the variation of static fatigue strength, cyclic fatigue strength, and residual burst strength for pressure vessels. In addition, data are presented for the effects of moisture on strength retention. Data variations were analyzed, and relationships and implications for testing are discussed. Change in strength properties for complete structures was examined for indications of the effects of environmental conditions such as moisture and outdoor exposure (ultraviolet radiation, weathering) on long term durability.
A novel anchoring system for use in a nonfusion scoliosis correction device.
Wessels, Martijn; Homminga, Jasper J; Hekman, Edsko E G; Verkerke, Gijsbertus J
2014-11-01
Insertion of a pedicle screw in the mid- and high thoracic regions has a serious risk of facet joint damage. Because flexible implant systems require intact facet joints, we developed an enhanced fixation that is less destructive to spinal structures. The XSFIX is a posterior fixation system that uses cables that are attached to the transverse processes of a vertebra. To determine whether a fixation to the transverse process using the XSFIX is strong enough to withstand the loads applied by the XSLATOR (a novel, highly flexible nonfusion implant system) and thus, whether it is a suitable alternative for pedicle screw fixation. The strength of a novel fixation system using transverse process cables was determined and compared with the strength of a similar fixation using polyaxial pedicle screws on different vertebral levels. Each of the 58 vertebrae, isolated from four adult human cadavers, was instrumented with either a pedicle screw anchor (PSA) system or a prototype of the XSFIX. The PSA consisted of two polyaxial pedicle screws and a 5 mm diameter rod. The XSFIX prototype consisted of two bodies that were fixed to the transverse processes, interconnected with a similar rod. Each fixation system was subjected to a lateral or an axial torque. The PSA demonstrated fixation strength in lateral loading and torsion higher than required for use in the XSLATOR. The XSFIX demonstrated high enough fixation strength (in both lateral loading and torsion), only in the high and midthoracic regions (T10-T12). This experiment showed that the fixation strength of XSFIX is sufficient for use with the XSLATOR only in mid- and high thoracic regions. For the low thoracic and lumbar region, the PSA is a more rigid fixation. Because the performance of the new fixation system appears to be favorable in the high and midthoracic regions, a clinical study is the next challenge. Copyright © 2014 Elsevier Inc. All rights reserved.
Bonding strength and durability of alkaline-treated titanium to veneering resin.
Ban, Seiji; Kadokawa, Akihiko; Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Tanaka, Takuo
2004-09-01
The shear bonding strengths of a veneering resin to polished, sandblasted, and retention bead-cast commercially pure titanium (cpTi) plates with and without alkaline treatment were measured before and after thermal cycling. The bonding strengths to polished cpTi with and without alkaline treatment decreased remarkably with thermal cycling (p<0.01). The bonding strength to sandblasted cpTi with alkaline treatment at 5,000 thermal cycles showed no significant differences from those before thermal cycling (p>0.05), and those at 20,000 thermal cycles showed values which were quite small (p<0.01). On the other hand, there were no significant differences in the bonding strengths of veneering resin to retention bead-cast cpTi in all conditions (p>0.05). These results suggested that although alkaline treatment is a simple and effective surface modification technique for titanium improving adhesion to resin due to formation of tight-fine rutile particles, it does not provide sufficient bonding durability for long-period restorations.
Spath, Sebastian; Drescher, Philipp; Seitz, Hermann
2015-01-01
3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds. PMID:28793467
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Moor, Emmanuel
The present project investigated Quenching and Partitioning (Q&P) to process cold rolled steels to develop high strength sheet steels that exhibit superior ductility compared to available grades with the intent to allow forming of high strength parts at room temperature to provide an alternative to hot stamping of parts. Hot stamping of boron alloyed steel is the current technology to manufacture thinner gauge sections in automotive structures to guarantee anti-intrusion during collisions whilst improving fuel efficiency by decreasing vehicle weight. Hot stamping involves reheating steel to 900 °C or higher followed by deformation and quenching in the die to producemore » ultra-high strength materials. Hot stamping requires significant energy to reheat the steel and is less productive than traditional room temperature stamping operations. Stamping at elevated temperature was developed due to the lack of available steels with strength levels of interest possessing sufficient ductility enabling traditional room temperature forming. This process is seeing growing demand within the automotive industry and, given the reheating step in this operation, increased energy consumption during part manufacturing results. The present research program focused on the development of steel grades via Q&P processing that exhibit high strength and formability enabling room temperature forming to replace hot stamping. The main project objective consisted of developing sheet steels exhibiting minimum ultimate tensile strength levels of 1200 MPa in combination with minimum tensile elongation levels of 15 pct using Q&P processing through judicious alloy design and heat treating parameter definition. In addition, detailed microstructural characterization and study of properties, processing and microstructure interrelationships were pursued to develop strategies to further enhance tensile properties. In order to accomplish these objectives, alloy design was conducted towards achieving the target properties. Twelve alloys were designed and laboratory produced involving melting, alloying, casting, hot rolling, and cold rolling to obtain sheet steels of approximately 1 mm thickness. Q&P processing of the samples was then conducted. Target properties were achieved and substantially exceeded demonstrating success in the developed and employed alloy design approaches. The best combinations of tensile properties were found at approximately 1550 MPa with a total elongation in excess of 20 pct clearly showing the potential for replacement of hot stamping to produce advanced high strength steels.« less
Properties of indirect composites reinforced with monomer-impregnated glass fiber.
Tanoue, Naomi; Sawase, Takashi; Matsumura, Hideo; McCabe, John F
2012-07-01
Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer's instructions. Rectangular bar fiber-composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber-microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber-composite combination.
Reliability analysis of structures under periodic proof tests in service
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1976-01-01
A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.
2017-06-01
ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for Armor and Structural...to the originator. ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for...Fabrication of High -Strength Lightweight Metals for Armor and Structural Applications: Large-Scale Equal Channel Angular Extrusion Processing of
NASA Astrophysics Data System (ADS)
Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.
2016-02-01
This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2013 CFR
2013-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2012 CFR
2012-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2011 CFR
2011-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2014 CFR
2014-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...
Process for treating weldments
Malik, R.K.
The tensile ducttility and impact strength of weldments of nickel-based and stainless steel alloys are improved to that of the unaffected base metal by subjecting the weldments to an elevated temperature at an isostatic pressure for a period of time sufficient to render the material in the weld more homogeneous.
46 CFR 56.30-25 - Flared, flareless, and compression fittings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... form a pressure seal against the fitting body. (e) For fluid services, other than hydraulic systems... within the service limitations of size, pressure, temperature, and vibration recommended by the... outer surface of the tube with sufficient strength to hold the tube against pressure, but without...
46 CFR 56.30-25 - Flared, flareless, and compression fittings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... form a pressure seal against the fitting body. (e) For fluid services, other than hydraulic systems... within the service limitations of size, pressure, temperature, and vibration recommended by the... outer surface of the tube with sufficient strength to hold the tube against pressure, but without...
46 CFR 56.30-25 - Flared, flareless, and compression fittings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... form a pressure seal against the fitting body. (e) For fluid services, other than hydraulic systems... within the service limitations of size, pressure, temperature, and vibration recommended by the... outer surface of the tube with sufficient strength to hold the tube against pressure, but without...
46 CFR 56.30-25 - Flared, flareless, and compression fittings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... form a pressure seal against the fitting body. (e) For fluid services, other than hydraulic systems... within the service limitations of size, pressure, temperature, and vibration recommended by the... outer surface of the tube with sufficient strength to hold the tube against pressure, but without...
Electrets and Electrostatic Measurement
ERIC Educational Resources Information Center
Varney, R. N.; Hahn, H. T.
1975-01-01
Electrets, the electrical counterparts of magnets, are polarized dielectrics that are permanent on a scale of months. Describes procedures for making electrets out of plastic sheets like Mylar, for testing them and measuring their pole strengths, and for establishing necessary and sufficient demonstrations that they are not simply surface charged.…
After Divorce: Personality Factors Related to the Process of Adjustment.
ERIC Educational Resources Information Center
Thomas, Sandra Paul
1982-01-01
Considered personality variables related to postdivorce adjustment using a sample of 58 females and 31 males. Found persons with the best adjustment scored significantly higher on dominance/assertiveness, self-assurance, intelligence, creativity/imagination, social boldness, liberalism, self-sufficiency, ego strength and tranquility. (Author/JAC)
Electrokinetic transport of aerobic microorganisms under low-strength electric fields.
Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R
2011-01-01
To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.
Exploration of the validity of weak magnets as a suitable placebo in trials of magnetic therapy.
Greaves, C J; Harlow, T N
2008-06-01
To investigate whether 50 mT magnetic bracelets would be suitable as a placebo control condition for studying the pain relieving effects of higher strength magnetic bracelets in arthritis. Randomised controlled comparison between groups given either a weak 50 mT or a higher strength 180 mT magnetic bracelets to test. Four arthritis support groups in Devon, UK. One hundred sixteen people with osteoarthritis and rheumatoid arthritis. Beliefs about group allocation and expectation of benefit. There was no significant difference between groups in beliefs about allocation to the 'active magnet' group. Participants were however more likely to have an expectation of benefit (pain relief) with the higher strength magnetic bracelets. Asking about perceived group allocation is not sufficient to rule out placebo effects in trials of magnetic bracelets which use weak magnets as a control condition. There are differences in expectation of benefit between different magnet strengths.
Integrated head package for top mounted nuclear instrumentation
Malandra, Louis J.; Hornak, Leonard P.; Meuschke, Robert E.
1993-01-01
A nuclear reactor such as a pressurized water reactor has an integrated head package providing structural support and increasing shielding leading toward the vessel head. A reactor vessel head engages the reactor vessel, and a control rod guide mechanism over the vessel head raises and lowers control rods in certain of the thimble tubes, traversing penetrations in the reactor vessel head, and being coupled to the control rods. An instrumentation tube structure includes instrumentation tubes with sensors movable into certain thimble tubes disposed in the fuel assemblies. Couplings for the sensors also traverse penetrations in the reactor vessel head. A shroud is attached over the reactor vessel head and encloses the control rod guide mechanism and at least a portion of the instrumentation tubes when retracted. The shroud forms a structural element of sufficient strength to support the vessel head, the control rod guide mechanism and the instrumentation tube structure, and includes radiation shielding material for limiting passage of radiation from retracted instrumentation tubes. The shroud is thicker at the bottom adjacent the vessel head, where the more irradiated lower ends of retracted sensors reside. The vessel head, shroud and contents thus can be removed from the reactor as a unit and rested safely and securely on a support.
Saros, Jasmine E.; Stone, Jeffery R.; Pederson, Gregory T.; Slemmons, Krista; Spanbauer, Trisha; Schliep, Anna; Cahl, Douglas; Williamson, Craig E.; Engstrom, Daniel R.
2015-01-01
Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.
Composition and method for brazing graphite to graphite
Taylor, Albert J.; Dykes, Norman L.
1984-01-01
The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.
Nagpal, Manju; Singh, Shailendra Kumar; Mishra, Dinanath
2013-01-01
Objective: Present investigation was aimed at developing gastroretentive superporous hydrogels (SPHs) having desired mechanical characteristics with sustained release. Materials and Methods: The acrylamide based SPHs of various generations (1st, 2nd and 3rd) were synthesized by gas blowing technique. The prepared SPHs were evaluated for swelling, mechanical strength studies and scanning electron microscopy studies. Verapamil hydrochloride was loaded into selected SPHs by aqueous drug loading method and characterized via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-RD), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and in vitro drug release studies. Results: SPHs of third generation were observed to have desired mechanical strength with sufficient swelling properties. Integrity of the drug was maintained in hydrogel polymeric network as indicated by FTIR, X-RD, and DSC and NMR studies. Initially, fast drug release (up to 60%) was observed in 30 min in formulation batches containing pure drug only (A, C and E), which was further sustained untill 24 h. Discussion: The increase in mechanical strength was due to the chemical cross-linking of secondary polymer in hydrogel network. The initial burst release was due to the presence of free drug at the surface and later sustained drug release was due to diffusion of entrapped drug in polymeric network. Significant decrease in drug release was observed by the addition of hydroxypropyl methyl cellulose. Conclusion: SPH interpenetrating networks with fast swelling and sufficient mechanical strength were prepared, which can be potentially exploited for designing gastroretentive drug delivery devices. PMID:24167785
Design of magnetic Circuit Simulation for Curing Device of Anisotropic MRE
NASA Astrophysics Data System (ADS)
Hapipi, N.; Ubaidillah; Mazlan, S. A.; Widodo, P. J.
2018-03-01
The strength of magnetic field during fabrication of magnetorheological elastomer (MRE) plays a crucial role in order to form a pre-structured MRE. So far, gaussmeter were used to determine the magnetic intensity subjected to the MRE during curing. However, the magnetic flux reading through that measurement considered less accurate. Therefore, a simulation should be done to figure out the magnetic flux concentration around the sample. This paper investigates the simulation of magnetic field distribution in a curing device used during curing stage of anisotropic magnetorheological elastomer (MRE). The target in designing the magnetic circuit is to ensure a sufficient and uniform magnetic field to all the MRE surfaces during the curing process. The magnetic circuit design for the curing device was performed using Finite Element Method Magnetic (FEMM) to examine the magnetic flux density distribution in the device. The material selection was first done instantaneously during a magnetic simulation process. Then, the experimental validation of simulation was performed by measuring and comparing the actual flux generated within the specimen type and the one from the FEMM simulation. İt apparent that the data from FEMM simulation shows an agreement with the actual measurement. Furthermore, the FEMM results showed that the magnetic design is able to provide sufficient and uniform magnetic field all over the surfaces of the MRE.
Wu, Kai; Fang, Jinchao; Ma, Jinrui; Huang, Rui; Chai, Songgang; Chen, Feng; Fu, Qiang
2017-09-06
Boron nitride nanosheet (BNNS) films receive wide attention in both academia and industry because of their high thermal conductivity (TC) and good electrical insulation capability. However, the brittleness and low strength of the BNNS film largely limit its application. Herein, functionalized BNNSs (f-BNNSs) with a well-maintained in-plane crystalline structure were first prepared utilizing urea in the aqueous solution via ball-milling for the purpose of improving their stability in water and enhancing the interaction with the polymer matrix. Then, a biodegradable and highly thermally conductive film with an orderly oriented structure based on cellulose nanofibers (CNFs) and f-BNNSs was prepared just by simple vacuum-assisted filtration. The modification of the BNNS and the introduction of the CNF result in a better orientation of the f-BNNS, sufficient connection between f-BNNS themselves, and strong interaction between f-BNNS and CNF, which not only make the prepared composite film strong and tough but also possess higher in-plane TC. An increase of 70% in-plane TC, 63.2% tensile strength, and 77.8% elongation could be achieved for CNF/f-BNNS films, compared with that for CNF/BNNS films at the filler content of 70%. Although at such a high f-BNNS content, this composite film can be bended and folded. It is even more interesting to find that the in-plane TC could be greatly enhanced with the decrease of the thickness of the film, and a value of 30.25 W/m K can be achieved at the thickness of ∼30 μm for the film containing 70 wt % f-BNNS. We believe that this highly thermally conductive film with good strength and toughness could have potential applications in next-generation highly powerful and collapsible electronic devices.
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
14 CFR 23.1453 - Protection of oxygen equipment from rupture.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Protection of oxygen equipment from rupture... Equipment Miscellaneous Equipment § 23.1453 Protection of oxygen equipment from rupture. (a) Each element of the oxygen system must have sufficient strength to withstand the maximum pressure and temperature, in...
14 CFR 23.1453 - Protection of oxygen equipment from rupture.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protection of oxygen equipment from rupture... Equipment Miscellaneous Equipment § 23.1453 Protection of oxygen equipment from rupture. (a) Each element of the oxygen system must have sufficient strength to withstand the maximum pressure and temperature, in...
14 CFR 23.1453 - Protection of oxygen equipment from rupture.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Protection of oxygen equipment from rupture... Equipment Miscellaneous Equipment § 23.1453 Protection of oxygen equipment from rupture. (a) Each element of the oxygen system must have sufficient strength to withstand the maximum pressure and temperature, in...
14 CFR 23.1453 - Protection of oxygen equipment from rupture.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Protection of oxygen equipment from rupture... Equipment Miscellaneous Equipment § 23.1453 Protection of oxygen equipment from rupture. (a) Each element of the oxygen system must have sufficient strength to withstand the maximum pressure and temperature, in...
14 CFR 23.1453 - Protection of oxygen equipment from rupture.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Protection of oxygen equipment from rupture... Equipment Miscellaneous Equipment § 23.1453 Protection of oxygen equipment from rupture. (a) Each element of the oxygen system must have sufficient strength to withstand the maximum pressure and temperature, in...
29 CFR 1910.26 - Portable metal ladders.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shall be of sufficient strength to meet the test requirements, and shall be protected against corrosion unless inherently corrosion-resistant. (i)-(ii) [Reserved] (iii) The spacing of rungs or steps shall be... stepladder. The spreader shall have all sharp points or edges covered or removed to protect the user. (4...
Steroid receptors analysis in human mammary tumors by isoelectric focusing in agarose.
Bailleul, S; Gauduchon, P; Malas, J P; Lechevrel, C; Roussel, G; Goussard, J
1988-08-01
A high resolution and quantitative method for isoelectric focusing has been developed to separate the isoforms of estrogen and progesterone receptors in human mammary tumor cytosols stabilized by sodium molybdate. Agarose gels (0.5%) were used. Six samples can be analyzed on one gel in about 2 h, and 35-microliters samples are sufficient to determine the estrogen receptor isoform pattern. The constant yields and the reproducibility of data allow a quantitative analysis of these receptors. Four estrogen receptor isoforms have been observed (pI 4.7, 5.5, 6, and 6.5), isoforms with pI 4.7 and 6.5 being present in all tumors. After incubation at 28 degrees C in high ionic strength, the comparison of isoelectric focusing and high-performance size exclusion chromatography patterns of estrogen receptor confirms the oligomeric structure of the pI 4.7 isoform and suggests a monomeric structure for the pI 6.5 isoform. Under the same conditions of analysis, only one progesterone receptor isoform has been detected with pI 4.7.
Evaluation of Cross-Protocol Stability of a Fully Automated Brain Multi-Atlas Parcellation Tool.
Liang, Zifei; He, Xiaohai; Ceritoglu, Can; Tang, Xiaoying; Li, Yue; Kutten, Kwame S; Oishi, Kenichi; Miller, Michael I; Mori, Susumu; Faria, Andreia V
2015-01-01
Brain parcellation tools based on multiple-atlas algorithms have recently emerged as a promising method with which to accurately define brain structures. When dealing with data from various sources, it is crucial that these tools are robust for many different imaging protocols. In this study, we tested the robustness of a multiple-atlas, likelihood fusion algorithm using Alzheimer's Disease Neuroimaging Initiative (ADNI) data with six different protocols, comprising three manufacturers and two magnetic field strengths. The entire brain was parceled into five different levels of granularity. In each level, which defines a set of brain structures, ranging from eight to 286 regions, we evaluated the variability of brain volumes related to the protocol, age, and diagnosis (healthy or Alzheimer's disease). Our results indicated that, with proper pre-processing steps, the impact of different protocols is minor compared to biological effects, such as age and pathology. A precise knowledge of the sources of data variation enables sufficient statistical power and ensures the reliability of an anatomical analysis when using this automated brain parcellation tool on datasets from various imaging protocols, such as clinical databases.
Membrane materials for storing biological samples intended for comparative nanotoxicological testing
NASA Astrophysics Data System (ADS)
Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.
2015-11-01
The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.
Using DFT Methods to Study Activators in Optical Materials
Du, Mao-Hua
2015-08-17
Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns 2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for newmore » materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn 4+ activated red phosphors, scintillators activated by Ce 3+, Eu 2+, Tl +, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less
Deformation behavior and mechanical analysis of vertically aligned carbon nanotube (VACNT) bundles
NASA Astrophysics Data System (ADS)
Hutchens, Shelby B.
Vertically aligned carbon nanotubes (VACNTs) serve as integral components in a variety of applications including MEMS devices, energy absorbing materials, dry adhesives, light absorbing coatings, and electron emitters, all of which require structural robustness. It is only through an understanding of VACNT's structural mechanical response and local constitutive stress-strain relationship that future advancements through rational design may take place. Even for applications in which the structural response is not central to device performance, VACNTs must be sufficiently robust and therefore knowledge of their microstructure-property relationship is essential. This thesis first describes the results of in situ uniaxial compression experiments of 50 micron diameter cylindrical bundles of these complex, hierarchical materials as they undergo unusual deformation behavior. Most notably they deform via a series of localized folding events, originating near the bundle base, which propagate laterally and collapse sequentially from bottom to top. This deformation mechanism accompanies an overall foam-like stress-strain response having elastic, plateau, and densification regimes with the addition of undulations in the stress throughout the plateau regime that correspond to the sequential folding events. Microstructural observations indicate the presence of a strength gradient, due to a gradient in both tube density and alignment along the bundle height, which is found to play a key role in both the sequential deformation process and the overall stress-strain response. Using the complicated structural response as both motivation and confirmation, a finite element model based on a viscoplastic solid is proposed. This model is characterized by a flow stress relation that contains an initial peak followed by strong softening and successive hardening. Analysis of this constitutive relation results in capture of the sequential buckling phenomenon and a strength gradient effect. This combination of experimental and modeling approaches motivates discussion of the particular microstructural mechanisms and local material behavior that govern the non-trivial energy absorption via sequential, localized buckle formation in the VACNT bundles.
Yoshimura, Masato; Chen, Nai Chi; Guan, Hong Hsiang; Chuankhayan, Phimonphan; Lin, Chien Chih; Nakagawa, Atsushi; Chen, Chun Jung
2016-07-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures.
Mechanical properties and aesthetics of FRP orthodontic wire fabricated by hot drawing.
Imai, T; Watari, F; Yamagata, S; Kobayashi, M; Nagayama, K; Toyoizumi, Y; Nakamura, S
1998-12-01
The FRP wires 0.5 mm in diameter with a multiple fiber structure were fabricated by drawing the fiber polymer complex at 250 degrees C for an esthetic, transparent orthodontic wire. Biocompatible CaO-P2O5-SiO2-Al2O3 (CPSA) glass fibers of 8-20 microm in diameter were oriented unidirectionally in the longitudinal direction in PMMA matrix. The mechanical properties were investigated by 3-point flexural test. The FRP wire showed sufficient strength and a very good elastic recovery after deformation. Young's modulus and the flexural load at deflection 1 mm were nearly independent of the fiber diameter and linearly increased with the fiber fraction. The dependence on fiber fraction obeys well the rule of mixture. This FRP wire could cover the range of strength corresponding to the conventional metal orthodontic wires from Ni-Ti used in the initial stage of orthodontic treatments to Co-Cr used in the final stage by changing the volume ratio of glass fibers with the same external diameter. The estheticity in external appearance was excellent. Thus the new FRP wire can satisfy both mechanical properties necessary for an orthodontic wire and enough estheticity, which was not possible for the conventional metal wire.
Ellis, William L.; Swolfs, Henri S.
1983-01-01
Observations made during drilling and subsequent testing of the USW G-1 drill hole, Yucca Mountain, Nevada, provide qualitative insights into the in- situ geomechanical characteristics of the layered tuff units penetrated by the hole. Substantial drilling-fluid losses, and the occurrence of drilling-induced fracturing, are understandable in terms of the low, minimum horizontal stress magnitudes interpreted from six hydraulic-fracturing stress measurements conducted between hole depths of 640 and 1,300 meters. Although not confirmed directly by the hydraulic-fracturing data, other observations suggest that the minimum stress magnitudes in the more densely welded and brittle tuff layers may be even smaller than in the less welded and more ductile rocks. Stress-induced borehole ellipticity observed along most of the length of USW G-1 indicates that the horizontal stress components are not equal, and that the concentration of these stresses around the hole is sufficient to locally exceed the yield strength of the rock. The low, minimum horizontal stress magnitudes, perhaps variable with lithology, and the indications from borehole ellipticity of a high in-situ stress/strength ratio, indicate the need for further studies to characterize the structural and geomechanical properties of the rocks at depth in Yucca Mountain.
Magnetic Field Effects on In-Medium ϒ Dissociation
NASA Astrophysics Data System (ADS)
Hoelck, Johannes; Nendzig, Felix; Wolschin, Georg
2017-12-01
The electromagnetic fields during relativistic heavy ion collisions are calculated using a simple model which characterises the emerging quark-gluon medium by its conductivity only. An estimate of the average magnetic field strength experienced by the bb¯ mesons produced in the collision is made. In a sufficiently strong magnetic field, the individual spins of bb¯ mesons can align with the field leading to quantum mixing of the singlet and triplet spin configurations. The extent of this intermixture, however, is found to be negligible at field strengths occurring in heavy ion collisions at LHC energies.
Laminar flow control perforated wing panel development
NASA Technical Reports Server (NTRS)
Fischler, J. E.
1986-01-01
Many structural concepts for a wing leading edge laminar flow control hybrid panel were analytically investigated. After many small, medium, and large tests, the selected design was verified. New analytic methods were developed to combine porous titanium sheet bonded to a substructure of fiberglass and carbon/epoxy cloth. At -65 and +160 F test conditions, the critical bond of the porous titanium to the composite failed at lower than anticipated test loads. New cure cycles, design improvements, and test improvements significantly improved the strength and reduced the deflections from thermal and lateral loadings. The wave tolerance limits for turbulence were not exceeded. Consideration of the beam column midbay deflections from the combinations of the axial and lateral loadings and thermal bowing at -65 F, room temperature, and +160 F were included. Many lap shear tests were performed at several cure cycles. Results indicate that sufficient verification was obtained to fabricate a demonstration vehicle.
LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.
1998-01-01
A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.
LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.
1998-06-16
A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.
NASA Astrophysics Data System (ADS)
Syrunin, M. A.; Fedorenko, A. G.
2006-08-01
We have shown experimentally that, for cylindrical shells made of oriented fiberglass platic and basalt plastic there exists a critical level of deformations, at which a structure sustains a given number of explosions from the inside. The magnitude of critical deformation for cylindrical fiberglass shells depends linearly on the logarithm of the number of loads that cause failure. For a given type of fiberglass, there is a limiting level of explosive action, at which the number of loads that do not lead to failure can be sufficiently large (more than ˜ 102). This level is attained under loads, which are an order of magnitude lower than the limiting loads under a single explosive action. Basalt plastic shells can be repeatedly used even at the loads, which cause deformation by ˜ 30-50% lower than the safe value ˜ 3.3.5% at single loading.
Gene Ontology: Pitfalls, Biases, and Remedies.
Gaudet, Pascale; Dessimoz, Christophe
2017-01-01
The Gene Ontology (GO) is a formidable resource, but there are several considerations about it that are essential to understand the data and interpret it correctly. The GO is sufficiently simple that it can be used without deep understanding of its structure or how it is developed, which is both a strength and a weakness. In this chapter, we discuss some common misinterpretations of the ontology and the annotations. A better understanding of the pitfalls and the biases in the GO should help users make the most of this very rich resource. We also review some of the misconceptions and misleading assumptions commonly made about GO, including the effect of data incompleteness, the importance of annotation qualifiers, and the transitivity or lack thereof associated with different ontology relations. We also discuss several biases that can confound aggregate analyses such as gene enrichment analyses. For each of these pitfalls and biases, we suggest remedies and best practices.
NASA Technical Reports Server (NTRS)
Walley, J. L.; Nunes, A. C.; Clounch, J. L.; Russell, C. K.
2007-01-01
This study presents examples and considerations for differentiating linear radiographic indications produced by gas tungsten arc welds in a 0.05-in-thick sheet of Inconel 718. A series of welds with different structural features, including the enigma indications and other defect indications such as lack of fusion and penetration, were produced, radiographed, and examined metallographically. The enigma indications were produced by a large columnar grain running along the center of the weld nugget occurring when the weld speed was reduced sufficiently below nominal. Examples of respective indications, including the effect of changing the x-ray source location, are presented as an aid to differentiation. Enigma, nominal, and hot-weld specimens were tensile tested to demonstrate the harmlessness of the enigma indication. Statistical analysis showed that there is no difference between the strengths of these three weld conditions.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2016-01-01
We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky-Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.
Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory
NASA Astrophysics Data System (ADS)
Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas
2013-03-01
The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.
Liu, Chain T.; Inouye, Henry
1979-01-01
Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.
Investigation of low compressive strengths of concrete in paving, precast and structural concrete
DOT National Transportation Integrated Search
2000-08-01
This research examines the causes for a high incidence of catastrophically low compressive strengths, primarily on structural concrete, during the 1997 construction season. The source for the low strengths was poor aggregate-paste bond associated wit...
Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W
2014-03-11
Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.
Mi, Hao-Yang; Jing, Xin; Yu, Emily; Wang, Xiaofeng; Li, Qian; Turng, Lih-Sheng
2018-02-01
The success of blood vessel transplants with vascular scaffolds (VSs) highly depends on their structure and mechanical properties. The fabrication of small diameter vascular scaffolds (SDVSs) mimicking the properties of native blood vessels has been a challenge. Herein, we propose a facile method to fabricate thermoplastic polyurethane (TPU)/polycaprolactone (PCL) hybrid SDVSs via electrospinning using a modified rotating collector. By varying the ratio between the TPU and the PCL, and changing the electrospinning volume, SDVSs with a wavy configuration and different properties could be obtained. Detailed investigation revealed that certain TPU/PCL hybrid SDVSs closely resembled the mechanical behaviors of blood vessels due to the presence of a wavy region and the combination of flexible TPU and rigid PCL, which mimicked the properties of elastin and collagen in blood vessels. The fabricated TPU/PCL SDVSs achieved lumen diameters of 1-3mm, wall thicknesses of 100-570µm, circumferential moduli of 1-6MPa, ultimate strengths of 2-8MPa, over 250% elongation-at-break values, toe regions of 5.3-9.4%, high recoverability, and compliances close to those of human veins. Moreover, these TPU/PCL SDVSs possessed sufficient suture retention strength and burst pressure to fulfill transplantation requirements and maintain normal blood flow. Human endothelial cell culture revealed good biocompatibility of the scaffolds, and cells were able to grow on the inner surface of the tubular scaffolds, indicating promising prospects for use as tissue-engineered vascular grafts. Copyright © 2017 Elsevier Ltd. All rights reserved.
MAGNETIC FIELD IN ATYPICAL PROMINENCE STRUCTURES: BUBBLE, TORNADO, AND ERUPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levens, P. J.; Labrosse, N.; Schmieder, B.
Spectropolarimetric observations of prominences have been obtained with the THEMIS telescope during four years of coordinated campaigns. Our aim is now to understand the conditions of the cool plasma and magnetism in “atypical” prominences, namely when the measured inclination of the magnetic field departs, to some extent, from the predominantly horizontal field found in “typical” prominences. What is the role of the magnetic field in these prominence types? Are plasma dynamics more important in these cases than the magnetic support? We focus our study on three types of “atypical” prominences (tornadoes, bubbles, and jet-like prominence eruptions) that have all beenmore » observed by THEMIS in the He i D{sub 3} line, from which the Stokes parameters can be derived. The magnetic field strength, inclination, and azimuth in each pixel are obtained by using the inversion method of principal component analysis on a model of single scattering in the presence of the Hanle effect. The magnetic field in tornadoes is found to be more or less horizontal, whereas for the eruptive prominence it is mostly vertical. We estimate a tendency toward higher values of magnetic field strength inside the bubbles than outside in the surrounding prominence. In all of the models in our database, only one magnetic field orientation is considered for each pixel. While sufficient for most of the main prominence body, this assumption appears to be oversimplified in atypical prominence structures. We should consider these observations as the result of superposition of multiple magnetic fields, possibly even with a turbulent field component.« less
NASA Technical Reports Server (NTRS)
Dutta, Sunil
1999-01-01
The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.
Factor Structure of Character Strengths in Youth: Consistency across Ages and Measures
ERIC Educational Resources Information Center
McGrath, Robert E.; Walker, David Ian
2016-01-01
The VIA Classification of Strengths and Virtues attempts to provide a comprehensive model of character based on 24 character strengths. The present study is the largest study to date exploring the structure of the 24 strengths in youth. One sample (N = 23,850) completed the VIA-Youth, a teen measure of the VIA Classification. Based on a random…
Effects of Stiffener/Rib Separation on Damage Growth and Residual Strength
DOT National Transportation Integrated Search
1996-05-01
Two existing composite aircraft structures were used to evaluate the effects of skin/stiffener separation on the residual strength of the structures. These structures are basically compression dominated upper wing structures designed to comply with t...
A study of tensile residual strength of composite laminates under different patch-repaired series
NASA Astrophysics Data System (ADS)
Ding, M. H.; zhan, S.; Tang, Y. H.; Wang, L.; Ma, D. Q.; Wang, R. G.
2017-09-01
The tensile behavior of composite laminate structures repaired by bonding external patches was studied in the paper. Two different types of patches including wedge patches and inverted wedge patches were used and failure mechanisms, failure load and strength predictions were studied. A convenient and fast method of building 2-D finite element modeling (FEM) of laminate structure repaired was proposed and the strength of repaired laminate structures was calculated by FEM. The results showed that more than 80% tensile strength of the undamaged laminate could be recovered by bonding patch repairs. Moreover, the results indicated that the strength of inverted wedge patches repair were higher than that of wedge patches repair. FEM simulation results indicated that high stress concentration was found along the edges of invert patches and the most weakness part located in the adhesive bondline. FEM analysis results showed that the strength predicted matched well with the test strength.
Cumulative Damage in Strength-Dominated Collisions of Rocky Asteroids: Rubble Piles and Brick Piles
NASA Technical Reports Server (NTRS)
Housen, Kevin
2009-01-01
Laboratory impact experiments were performed to investigate the conditions that produce large-scale damage in rock targets. Aluminum cylinders (6.3 mm diameter) impacted basalt cylinders (69 mm diameter) at speeds ranging from 0.7 to 2.0 km/s. Diagnostics included measurements of the largest fragment mass, velocities of the largest remnant and large fragments ejected from the periphery of the target, and X-ray computed tomography imaging to inspect some of the impacted targets for internal damage. Significant damage to the target occurred when the kinetic energy per unit target mass exceeded roughly 1/4 of the energy required for catastrophic shattering (where the target is reduced to one-half its original mass). Scaling laws based on a rate-dependent strength were developed that provide a basis for extrapolating the results to larger strength-dominated collisions. The threshold specific energy for widespread damage was found to scale with event size in the same manner as that for catastrophic shattering. Therefore, the factor of four difference between the two thresholds observed in the lab also applies to larger collisions. The scaling laws showed that for a sequence of collisions that are similar in that they produce the same ratio of largest fragment mass to original target mass, the fragment velocities decrease with increasing event size. As a result, rocky asteroids a couple hundred meters in diameter should retain their large ejecta fragments in a jumbled rubble-pile state. For somewhat larger bodies, the ejection velocities are sufficiently low that large fragments are essentially retained in place, possibly forming ordered "brick-pile" structures.
A theory of photometric stereo for a class of diffuse non-Lambertian surfaces
NASA Technical Reports Server (NTRS)
Tagare, Hemant D.; Defigueiredo, Rui J. P.
1991-01-01
A theory of photometric stereo is proposed for a large class of non-Lambertian reflectance maps. The authors review the different reflectance maps proposed in the literature for modeling reflection from real-world surfaces. From this, they obtain a mathematical class of reflectance maps to which the maps belong. They show that three lights can be sufficient for a unique inversion of the photometric stereo equation for the entire class of reflectance maps. They also obtain a constraint on the positions of light sources for obtaining this solution. They investigate the sufficiency of three light sources to estimate the surface normal and the illuminant strength. The issue of completeness of reconstruction is addressed. They shown that if k lights are sufficient for a unique inversion, 2k lights are necessary for a complete inversion.
The research on delayed fracture behavior of high-strength bolts in steel structure
NASA Astrophysics Data System (ADS)
Li, Guo dong; Li, Nan
2017-07-01
High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.
Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E
2017-09-01
The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to mimic collagen fiber orientation as found in nature - in collagen type I sponges. We show that the mechanical behavior of CHCs is very similar to native tissue and strengths structurally weak tubular constructs. The production procedure is relatively easy, reproducible and mechanical features can be controlled to meet different mechanical demands. This is promising in template manufacture, hence offering new opportunities in tissue engineering of tubular organs and preventing graft failure. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Reproducibility of structural strength and stiffness for graphite-epoxy aircraft spoilers
NASA Technical Reports Server (NTRS)
Howell, W. E.; Reese, C. D.
1978-01-01
Structural strength reproducibility of graphite epoxy composite spoilers for the Boeing 737 aircraft was evaluated by statically loading fifteen spoilers to failure at conditions simulating aerodynamic loads. Spoiler strength and stiffness data were statistically modeled using a two parameter Weibull distribution function. Shape parameter values calculated for the composite spoiler strength and stiffness were within the range of corresponding shape parameter values calculated for material property data of composite laminates. This agreement showed that reproducibility of full scale component structural properties was within the reproducibility range of data from material property tests.
Influence of recreational activity and muscle strength on ulnar bending stiffness in men
NASA Technical Reports Server (NTRS)
Myburgh, K. H.; Charette, S.; Zhou, L.; Steele, C. R.; Arnaud, S.; Marcus, R.
1993-01-01
Bone bending stiffness (modulus of elasticity [E] x moment of inertia [I]), a measure of bone strength, is related to its mineral content (BMC) and geometry and may be influenced by exercise. We evaluated the relationship of habitual recreational exercise and muscle strength to ulnar EI, width, and BMC in 51 healthy men, 28-61 yr of age. BMC and width were measured by single photon absorptiometry and EI by mechanical resistance tissue analysis. Maximum biceps strength was determined dynamically (1-RM) and grip strength isometrically. Subjects were classified as sedentary (S) (N = 13), moderately (M) (N = 18), or highly active (H) (N = 20) and exercised 0.2 +/- 0.2; 2.2 +/- 1.3; and 6.8 +/- 2.3 h.wk-1 (P < 0.001). H had greater biceps (P < 0.0005) and grip strength (P < 0.05), ulnar BMC (P < 0.05), and ulnar EI (P = 0.01) than M or S, who were similar. Amount of activity correlated with grip and biceps strength (r = 0.47 and 0.49; P < 0.001), but not with bone measurements, whereas muscle strength correlated with both EI and BMC (r = 0.40-0.52, P < 0.005). EI also correlated significantly with both BMC and ulnar width (P < 0.0001). Ulnar width and biceps strength were the only independent predictors of EI (r2 = 0.67, P < 0.0001). We conclude that levels of physical activity sufficient to increase arm strength influence ulnar bending stiffness.
Moore, Diane E.; Lockner, D.A.; Summers, R.; Shengli, M.; Byerlee, J.D.
1996-01-01
Chrysotile-bearing serpentinite is a constituent of the San Andreas fault zone in central and northern California. At room temperature, chrysotile gouge has a very low coefficient of friction (?? ??? 0.2), raising the possibility that under hydrothermal conditions ?? might be reduced sufficiently (to ???0.1) to explain the apparent weakness of the fault. To test this hypothesis, we measured the frictional strength of a pure chrysotile gouge at temperatures to 290??C and axial-shortening velocities as low as 0.001 ??m/s. As temperature increases to ???100??C, the strength of the chrysotile gouge decreases slightly at low velocities, but at temperatures ???200??C, it is substantially stronger and essentially independent of velocity at the lowest velocities tested. We estimate that pure chrysotile gouge at hydrostatic fluid pressure and appropriate temperatures would have shear strength averaged over a depth of 14 km of 50 MPa. Thus, on the sole basis of its strength, chrysotile cannot be the cause of a weak San Andreas fault. However, chrysotile may also contribute to low fault strength by forming mineral seals that promote the development of high fluid pressures.
Strength Performance Assessment in a Simulated Men’s Gymnastics Still Rings Cross
Dunlavy, Jennifer K.; Sands, William A.; McNeal, Jeni R.; Stone, Michael H.; Smith, Sarah L.; Jemni, Monem; Haff, G. Gregory
2007-01-01
Athletes in sports such as the gymnastics who perform the still rings cross position are disadvantaged due to a lack of objective and convenient measurement methods. The gymnastics “cross ”is a held isometric strength position considered fundamental to all still rings athletes. The purpose of this investigation was to determine if two small force platforms (FPs) placed on supports to simulate a cross position could demonstrate the fidelity necessary to differentiate between athletes who could perform a cross from those who could not. Ten gymnasts (5 USA Gymnastics, Senior National Team, and 5 Age Group Level Gymnasts) agreed to participate. The five Senior National Team athletes were grouped as cross Performers; the Age Group Gymnasts could not successfully perform the cross position and were grouped as cross Non- Performers. The two small FPs were first tested for reliability and validity and were then used to obtain a force-time record of a simulated cross position. The simulated cross test consisted of standing between two small force platforms placed on top of large solid gymnastics spotting blocks. The gymnasts attempted to perform a cross position by placing their hands at the center of the FPs and pressing downward with sufficient force that they could remove the support of their feet from the floor. Force-time curves (100 Hz) were obtained and analyzed for the sum of peak and mean arm ground reaction forces. The summed arm forces, mean and peak, were compared to body weight to determine how close the gymnasts came to achieving forces equal to body weight and thus the ability to perform the cross. The mean and peak summed arm forces were able to statistically differentiate between athletes who could perform the cross from those who could not (p < 0.05). The force-time curves and small FPs showed sufficient fidelity to differentiate between Performer and Non- Performer groups. This experiment showed that small and inexpensive force platforms may serve as useful adjuncts to athlete performance measurement such as the gymnastics still rings cross. Key pointsStrength-related skills are difficult to assess in some sports and thus require special means.Small force platforms have sufficient fidelity to assess the differences between gymnasts who can perform a still rings cross from those who cannot.Strength assessment via small force platforms may serve as a means of assessing skill readiness, strength symmetry, and progress in learning a still rings cross. PMID:24149230
NASA Astrophysics Data System (ADS)
Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.
2017-10-01
Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing without surface machining.
Self Assembly and Many-Body Effects at Surfaces of Biomedical Relevance
NASA Astrophysics Data System (ADS)
Beckerman, Bernard M.
I present research in systems of biomedical relevance consisting of agents near or comprising surfaces using computational approaches. The research topics include formation of bacterial biofilms, behavior of charged species near stacked, like-charged lamellae, and the conformational behavior of lamellae with strong self-attraction. In chapter 2, I present agent-based simulations and experimental analysis of bacterial surface colonization behavior. Results show that the bacterial population exhibits polyphenic motility despite being genetically homogeneous, and that the deposition of a polysaccharide causes the emergence of distinct bacterial subpopulations that specialize separately in microcolony nucleation and surface exploration. Chapter 3 considers aggregation behavior on a much smaller length scale, wherein an attraction between like-charged cellular lamellae is mediated by the antiviral molecule squalamine. Free-energy calculations along with structural analysis of the resulting compounds reveals that the squalamine molecules form bridging configurations that are highly effective at condensing membranes, and that the strength of this condensation is sufficient to eject the viral protein Rac1 from the lamellae. In chapter 4, I explore the ability of such condensed, charged lamellae to selectively exclude ions as a means to control ionic current. Simulations and theory of ion-selective graphene-oxide paper in series with a bulk salt solution under an applied field show how this exclusion leads to a nonlinear current-voltage relationship. Additionally, geometrical asymmetries are introduced into the system to achieve ionic current rectification. Chapter 5 studies the behavior of dilute graphene oxide sheets in poor solvent. In such a case, the conformations taken by the sheet are determined by a competition between its intrinsic bending rigidity and effective self-attraction. I show how self-attraction of a finite range and sufficient strength can overcome bending energy barriers of 100kBT to allow sheets to spontaneously condense in solution.
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
49 CFR 238.219 - Truck-to-car-body attachment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Truck-to-car-body attachment. 238.219 Section 238... I Passenger Equipment § 238.219 Truck-to-car-body attachment. Passenger equipment shall have a truck-to-car-body attachment with an ultimate strength sufficient to resist without failure the following...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
Electrohydrodynamically driven large-area liquid ion sources
Pregenzer, Arian L.
1988-01-01
A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.
NASA Astrophysics Data System (ADS)
Trigo-Rodríguez, J. M.; Madiedo, J. M.; Williams, I. P.; Castro-Tirado, A. J.; Llorca, J.; Vítek, S.; Jelínek, M.
2009-03-01
A meter-sized meteoroid probably produced during the disintegration of comet C1919Q2 Metcalf was observed producing a -18 magn. bolide (MNRAS, in press).The progenitor meteoroid was sufficiently large and of high enough tensile strength to produce meteorites.
2003-09-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Dan Kenna and Jim Landy prepare to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
NASA Astrophysics Data System (ADS)
Jain, Shrenik Kumar
Fused deposition modeling (FDM) technology uses thermoplastic filament for layer by layer fabrication of objects. To make functional objects with desired properties, composite filaments are required in the FDM. In this thesis, less expensive mesoporous Nano carbon (NC) and carbon nanotube (CNT) infused in Polylactide (PLA) thermoplastic filaments were fabricated to improve the electrical properties and maintain sufficient strength for 3D printing. Solution blending was used for nanocomposite fabrication and melt extrusion was employed to make cylindrical filaments. Mechanical and electrical properties of 1 to 20 wt% of NC and 1 to 3 wt% of CNT filaments were investigated and significant improvement of conductivity (3.76 S/m) and sufficient yield strength (35MPa) were obtained. Scanning electron microscopy (SEM) images exhibited uniform dispersion of nanoparticles in polymer matrix and differential scanning calorimetry (DSC) results showed no significant changes in the glass transition temperature (Tg) for all the compositions. Perspective uses of this filament are for fabrication of electrical wires in 3D printed robots, drones, prosthetics, orthotics and others.
Maheshwari, Manish; Ketkar, Anant R; Chauhan, Bhaskar; Patil, Vinay B; Paradkar, Anant R
2003-08-11
Ibuprofen (IBU) exhibits short half-life, poor compressibility, flowability and caking tendency. IBU melt has sufficiently low viscosity and exhibits interfacial tension sufficient to form droplet even at low temperature. A single step novel melt solidification technique (MST) was developed to produce IBU beads with lower amounts of excipient. Effect of variables was studied using a 3(2) factorial approach with speed of agitation and amount of cetyl alcohol (CA) as variables. The beads were evaluated using DSC, FT-IR and scanning electron microscope (SEM). Yield, micromeritic properties, crushing strength and release kinetics were also studied. Spherical beads with a method yield of above 90% were obtained. The data was analyzed by response surface methodology. The variables showed curvilinear relationship with yield in desired particle size range, crushing strength and, bulk and tap density. The drug release followed non-Fickian case II transport and the release rate decreased linearly with respect to amount of CA in the initial stages followed by curvilinearity at later stages of elution. The effect of changing porosity and tortuosity was well correlated.
2003-09-08
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) finishes installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-08
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above), Saul Ngy (right) and Jerry Belt (below) install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) completes installation of a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-08
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt looks over a Reinforced Carbon Carbon (RCC) panel that will be attached to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-08
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above) and Saul Ngy (below right) finish installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
Analysis and Design of Fuselage Structures Including Residual Strength Prediction Methodology
NASA Technical Reports Server (NTRS)
Knight, Norman F.
1998-01-01
The goal of this research project is to develop and assess methodologies for the design and analysis of fuselage structures accounting for residual strength. Two primary objectives are included in this research activity: development of structural analysis methodology for predicting residual strength of fuselage shell-type structures; and the development of accurate, efficient analysis, design and optimization tool for fuselage shell structures. Assessment of these tools for robustness, efficient, and usage in a fuselage shell design environment will be integrated with these two primary research objectives.
The Structure of Character Strengths: Variable- and Person-Centered Approaches
Najderska, Małgorzata; Cieciuch, Jan
2018-01-01
This article examines the structure of character strengths (Peterson and Seligman, 2004) following both variable-centered and person-centered approaches. We used the International Personality Item Pool-Values in Action (IPIP-VIA) questionnaire. The IPIP-VIA measures 24 character strengths and consists of 213 direct and reversed items. The present study was conducted in a heterogeneous group of N = 908 Poles (aged 18–78, M = 28.58). It was part of a validation project of a Polish version of the IPIP-VIA questionnaire. The variable-centered approach was used to examine the structure of character strengths on both the scale and item levels. The scale-level results indicated a four-factor structure that can be interpreted based on four of the five personality traits from the Big Five theory (excluding neuroticism). The item-level analysis suggested a slightly different and limited set of character strengths (17 not 24). After conducting a second-order analysis, a four-factor structure emerged, and three of the factors could be interpreted as being consistent with the scale-level factors. Three character strength profiles were found using the person-centered approach. Two of them were consistent with alpha and beta personality metatraits. The structure of character strengths can be described by using categories from the Five Factor Model of personality and metatraits. They form factors similar to some personality traits and occur in similar constellations as metatraits. The main contributions of this paper are: (1) the validation of IPIP-VIA conducted in variable-centered approach in a new research group (Poles) using a different measurement instrument; (2) introducing the person-centered approach to the study of the structure of character strengths. PMID:29515482
A Rational Approach to Determine Minimum Strength Thresholds in Novel Structural Materials
NASA Technical Reports Server (NTRS)
Schur, Willi W.; Bilen, Canan; Sterling, Jerry
2003-01-01
Design of safe and survivable structures requires the availability of guaranteed minimum strength thresholds for structural materials to enable a meaningful comparison of strength requirement and available strength. This paper develops a procedure for determining such a threshold with a desired degree of confidence, for structural materials with none or minimal industrial experience. The problem arose in attempting to use a new, highly weight-efficient structural load tendon material to achieve a lightweight super-pressure balloon. The developed procedure applies to lineal (one dimensional) structural elements. One important aspect of the formulation is that it extrapolates to expected probability distributions for long length specimen samples from some hypothesized probability distribution that has been obtained from a shorter length specimen sample. The use of the developed procedure is illustrated using both real and simulated data.
High-Pressure Lightweight Thrusters
NASA Technical Reports Server (NTRS)
Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander
2013-01-01
Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening interface realizes pseudo-plastic behavior with significant increase in the tensile strength. The investigation of high-temperature strength of C/Cs under high-rate heating (critical for thrust chambers) shows that tensile and compression strength increases from 70 MPa at room temperature to 110 MPa at 1,773 K, and up to 125 MPa at 2,473 K. Despite these unique properties, the use of C/Cs is limited by its high oxidation rate at elevated temperatures. Lining carbon/carbon chambers with a thin layer of iridium or iridium and rhenium is an innovative way to use proven refractory metals and provide the oxidation barrier necessary to enable the use of carbon/ carbon composites. Due to the lower density of C/Cs as compared to SiC/SiC composites, an iridium liner can be added to the C/C structure and still be below the overall thruster weight. Weight calculations show that C/C, C/C with 50 microns of Ir, and C/C with 100 microns of Ir are of less weight than alternative materials for the same construction.
Structuring of composite hydrogel bioadhesives and its effect on properties and bonding mechanism.
Pinkas, Oded; Goder, Daniella; Noyvirt, Roni; Peleg, Sivan; Kahlon, Maayan; Zilberman, Meital
2017-03-15
Bioadhesives are polymeric hydrogels that can adhere to a tissue after crosslinking and are an essential element in nearly all surgeries worldwide. Several bioadhesives are commercially available. However, none of them are ideal. The main limitation of current tissue adhesives is the tradeoff between biocompatibility and mechanical strength, especially in wet hemorrhagic environments. Our novel bioadhesives are based on the natural polymers gelatin (coldwater fish) and alginate, crosslinked by carbodiimide (EDC). Two types of hemostatic agents with a layered silicate structure, montmorillonite (MMT) and kaolin, were loaded in order to improve the sealing ability in a hemorrhagic environment. The effect of the adhesive's components on its mechanical strength was studied by three different methods - burst strength, lap shear and compression. The viscosity, gelation time and structural features of the adhesive were also studied. A qualitative model that describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength was developed. A formulation based on 400mg/mL gelatin, 10mg/mL alginate and 20mg/mL EDC was found as optimal, enabling a burst strength of 387mmHg. Incorporation of kaolin increased the burst strength by 25% due to microcomposite structuring, whereas MMT increased the burst strength by 50% although loaded in a smaller concentration, due to nano-structuring effects. This research clearly shows that the incorporation of kaolin and MMT in gelatin-alginate surgical sealants is a very promising novel approach for improving the bonding strength and physical properties of surgical sealants for use in hemorrhagic environments. The current manuscript focuses on novel bioadhesives, based on natural polymers and loaded with hemostatic agents with a layered silicate structure, in order to improve the sealing ability in hemorrhagic environment. Such composite bioadhesives have not been developed and studied before. The effect of the adhesive's components on its mechanical strength was studied by three different methods, as well as the physical properties and structural features. Thorough understanding of these unique biomaterials resulted in a qualitative model which describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength. Thus, structure-property-function relationships are presented. Structuring of the composite bioadhesives and its effect of the properties and bonding mechanism, are expected to be of high interest to Acta readership. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
75 FR 62893 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... for using portland cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of the structure... of the structure depends on the functional reliability of the structure's principal strength elements...
Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1994-01-01
Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.
STAGS Developments for Residual Strength Analysis Methods for Metallic Fuselage Structures
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rose, Cheryl A.
2014-01-01
A summary of advances in the Structural Analysis of General Shells (STAGS) finite element code for the residual strength analysis of metallic fuselage structures, that were realized through collaboration between the structures group at NASA Langley, and Dr. Charles Rankin is presented. The majority of the advancements described were made in the 1990's under the NASA Airframe Structural Integrity Program (NASIP). Example results from studies that were conducted using the STAGS code to develop improved understanding of the nonlinear response of cracked fuselage structures subjected to combined loads are presented. An integrated residual strength analysis methodology for metallic structure that models crack growth to predict the effect of cracks on structural integrity is demonstrated
Low void content autoclave molded titanium alloy and polyimide graphite composite structures.
NASA Technical Reports Server (NTRS)
Vaughan, R. W.; Jones, R. J.; Creedon, J. F.
1972-01-01
This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.
Photopic transduction implicated in human circadian entrainment
NASA Technical Reports Server (NTRS)
Zeitzer, J. M.; Kronauer, R. E.; Czeisler, C. A.
1997-01-01
Despite the preeminence of light as the synchronizer of the circadian timing system, the phototransductive machinery in mammals which transmits photic information from the retina to the hypothalamic circadian pacemaker remains largely undefined. To determine the class of photopigments which this phototransductive system uses, we exposed a group (n = 7) of human subjects to red light below the sensitivity threshold of a scotopic (i.e. rhodopsin/rod-based) system, yet of sufficient strength to activate a photopic (i.e. cone-based) system. Exposure to this light stimulus was sufficient to reset significantly the human circadian pacemaker, indicating that the cone pigments which mediate color vision can also mediate circadian vision.
Dissecting the relationship between protein structure and sequence variation
NASA Astrophysics Data System (ADS)
Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team
2015-03-01
Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang
2018-01-01
The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.
The strength of polyaxial locking interfaces of distal radius plates.
Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas
2009-10-01
Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.
Hooghe, Marc; Oser, Jennifer
2017-11-01
The literature on political parties suggests that strong partisan identities are associated with citizens' effective interaction with the political system, and with higher levels of political trust. Traditionally, party identity therefore is seen as a mechanism that allows for political integration. Simultaneously, however, political parties have gained recent attention for their role in promoting societal polarization by reinforcing competing and even antagonistic group identities. This article uses General Social Survey data from 1972 - 2014 to investigate the relationship between partisan strength and both political and generalized trust. The findings show that increases in partisan strength are positively related to political trust, but negatively related to generalized trust. This suggests that while partisan strength is indeed an important linkage mechanism for the political system, it is also associated with a tendency toward social polarization, and this corrosive effect thus far has not gained sufficient attention in literature on party identity. Copyright © 2017 Elsevier Inc. All rights reserved.
Rosa-Garrido, Manuel; Chapski, Douglas J.; Schmitt, Anthony D.; Kimball, Todd H.; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J.; Ren, Shuxun; Wang, Yibin; Ren, Bing
2017-01-01
Background: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. Methods: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload–induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Results: Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. Conclusions: These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. PMID:28802249
Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M
2017-10-24
Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.
Heravi, Farzin; Omidkhoda, Maryam; Koohestanian, Niloufar; Hooshmand, Tabassom; Bagheri, Hossein; Ghaffari, Negin
2017-01-01
The aim of this study was to evaluate and compare the retentive strength of orthodontic bands cemented with amorphous calcium phosphate (ACP)-containing and conventional glass ionomer cements (GICs). One-hundred-and-twenty mandibular third molars were embedded in acrylic resin blocks with the buccal surface of crowns perpendicular to the base of the mold. The teeth were randomly divided into four groups containing 30 teeth each. Groups 1 and 3 were cemented using conventional GIC and groups 2 and 4 were cemented using ACP-containing orthodontic cement. Groups 1 and 2 without thermocycling, and groups 3 and 4 after thermocycling (5000 cycles, 5° to 55°C) were tested for retentive strength using a universal testing machine (crosshead speed of 1mm/minute). Two-way ANOVA was performed to compare the retentive strength of the groups. The highest retentive strength belonged to group 1, and it was significantly higher than that of group 2 (P<0.001) and group 3 (P=0.02). The mean strength for group 2 was significantly lower than that of group 1 (P<0.001) and group 4 (P=0.04). Although retentive strength decreased when ACP was added to GIC, the retentive strength of the samples cemented by ACP-containing GIC was remarkably high after thermocycling. It seems that in the oral cavity, ACP-containing GIC provides sufficient strength to endure forces applied on posterior teeth.
Nunez, Paul L.; Srinivasan, Ramesh
2013-01-01
The brain is treated as a nested hierarchical complex system with substantial interactions across spatial scales. Local networks are pictured as embedded within global fields of synaptic action and action potentials. Global fields may act top-down on multiple networks, acting to bind remote networks. Because of scale-dependent properties, experimental electrophysiology requires both local and global models that match observational scales. Multiple local alpha rhythms are embedded in a global alpha rhythm. Global models are outlined in which cm-scale dynamic behaviors result largely from propagation delays in cortico-cortical axons and cortical background excitation level, controlled by neuromodulators on long time scales. The idealized global models ignore the bottom-up influences of local networks on global fields so as to employ relatively simple mathematics. The resulting models are transparently related to several EEG and steady state visually evoked potentials correlated with cognitive states, including estimates of neocortical coherence structure, traveling waves, and standing waves. The global models suggest that global oscillatory behavior of self-sustained (limit-cycle) modes lower than about 20 Hz may easily occur in neocortical/white matter systems provided: Background cortical excitability is sufficiently high; the strength of long cortico-cortical axon systems is sufficiently high; and the bottom-up influence of local networks on the global dynamic field is sufficiently weak. The global models provide "entry points" to more detailed studies of global top-down influences, including binding of weakly connected networks, modulation of gamma oscillations by theta or alpha rhythms, and the effects of white matter deficits. PMID:24505628
Effective Collision Strengths for Fine-structure Transitions in Si VII
NASA Astrophysics Data System (ADS)
Sossah, A. M.; Tayal, S. S.
2014-05-01
The effective collision strengths for electron-impact excitation of fine-structure transitions in Si VII are calculated as a function of electron temperature in the range 5000-2,000,000 K. The B-spline Breit-Pauli R-matrix method has been used to calculate collision strengths by electron impact. The target wave functions have been obtained using the multi-configuration Hartree-Fock method with term-dependent non-orthogonal orbitals. The 92 fine-structure levels belonging to the 46 LS states of 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, 2s 22p 33d, and 2s2p 43s configurations are included in our calculations of oscillator strengths and collision strengths. There are 4186 possible fine-structure allowed and forbidden transitions among the 92 levels. The present excitation energies, oscillator strengths, and collision strengths have been compared with previous theoretical results and available experimental data. Generally, a good agreement is found with the 6 LS-state close-coupling approximation results of Butler & Zeippen and the 44 LS-state distorted wave calculation of Bhatia & Landi.
On the evolutionary advantage of multi-cusped teeth
Bush, Mark B.; Barani, Amir; Lawn, Brian R.
2016-01-01
A hallmark of mammalian evolution is a progressive complexity in postcanine tooth morphology. However, the driving force for this complexity remains unclear: whether to expand the versatility in diet source, or to bolster tooth structural integrity. In this study, we take a quantitative approach to this question by examining the roles of number, position and height of multiple cusps in determining sustainable bite forces. Our approach is to use an extended finite-element methodology with due provision for step-by-step growth of an embedded crack to determine how fracture progresses with increasing occlusal load. We argue that multi-cusp postcanine teeth are well configured to withstand high bite forces provided that multiple cusps are contacted simultaneously to share the load. However, contact on a single near-wall cusp diminishes the strength. Location of the load points and cusp height, rather than cusp number or radius, are principal governing factors. Given these findings, we conclude that while complex tooth structures can enhance durability, increases in cusp number are more likely to be driven by the demands of food manipulation. Structural integrity of complex teeth is maintained when individual cusps remain sufficiently distant from the side walls and do not become excessively tall relative to tooth width. PMID:27558851
Lovtsova, Julia; Gorb, Elena; Dai, Zhendong; Ji, Aihong; Zhao, Zhihui; Jiang, Nan; Gorb, Stanislav N.
2017-01-01
Silks play an important role in the life of various arthropods. A highly neglected prerequisite to make versatile use of silks is sufficient attachment to substrates. Although there have been some studies on the structure and mechanics of silk anchorages of spiders, for insects only anecdotal reports on attachment-associated spinning behaviour exist. Here, we experimentally studied the silk attachment of the pupae and last instar caterpillars of the tea bagworm Eumeta minuscula (Butler 1881) (Lepidoptera, Psychidae) to the leaves of its host plant Ilex chinensis. We found that the bagworms spin attachment discs, which share some structural features with those of spiders, like a plaque consisting of numerous overlaid, looped glue-coated silk fibres and the medially attaching suspension thread. Although the glue, which coats the fibres, cannot spread and adhere very well to the leaf surface, high pull-off forces were measured, yielding a mean safety factor (force divided by the animal weight) of 385.6. Presumably, the bagworms achieve this by removal of the leaf epidermis prior to silk attachment, which exposes the underlying tissue that represents a much better bonding site. This ensures a reliable attachment during the immobile, vulnerable pupal stage. This is the first study on the biomechanics and structure of silk attachments to substrates in insects. PMID:28250101
Development of stiffer and ductile glulam portal frame
NASA Astrophysics Data System (ADS)
Komatsu, Kohei
2017-11-01
Portal frame structures, which are constituted of straight glulam beams and columns connected semi-rigidly by steel insert gusset plate with a lot of drift pins, were the first successful glulam structures widely used in Japan. In addition to this connection system, the author invented also a new type of jointing devise for glulam structures named as "Lagscrewbolt" which had a full threaded portion at inner part to grip wooden member as well as another thread part at the end of shank to connect with other member. The initial type of "Lagscrewbolt" was successfully applied to a various types of glulam buildings which could be rapidly built-up on construction site. Its strength performance, however, was rather brittle therefore the improvement of the ductility was a crucial research subject. In order to give a sufficient ductility on the "Lagscrewbolted joint system", so-called "Slotted Bolted Connection" concept was adopted for making use of large energy dissipation characteristics due to high-tension bolted steel connection with slotted bolt holes. Static & dynamic performance of glulam portal frame specimens was evaluated by static cyclic loading test as well as shaking table test. Current latest form of the jointing system can show very high ductility as well as stable hysteretic cyclic loops by inserting brass-shim between steel-to-steel friction interfaces
Characteristics of ZrC/Ni-UDD coatings for a tungsten carbide cutting tool
NASA Astrophysics Data System (ADS)
Chayeuski, V. V.; Zhylinski, V. V.; Rudak, P. V.; Rusalsky, D. P.; Višniakov, N.; Černašėjus, O.
2018-07-01
This work deals with the features of the structure of combined ZrC/Ni-ultradisperse diamonds (UDD) coating synthesized by electroplating and cathode arc evaporation physical vapor deposition (CAE-PVD) techniques on the tungsten carbide WC - 2 wt% Co on cutting inserts to improve tool life. The microstructure, phase composition, and micro-scratch test analysis of the ZrC/Ni-UDD coating were studied. The ZrC/Ni-UDD coating consists of separate phases of zirconium carbide ZrC, α-Ni, and Ni-UDD phase. The surface morphology of the coating shows a pattern with pits, pores, and particles. Separated nanodiamond particles are present in the pores of the combined coating. Therefore, the structure of the bottom layer of Ni-UDD affects the morphology of the surface of the ZrC/Ni-UDD coating. The obtained value of the critical loads on the scratch track of the coating in 26 N proves a sufficiently high value of the adhesion strength of the intermediate Ni-UDD-layer with hard alloy of WC-Co substrate. Due to their unique structure ZrC/Ni-UDD-coatings can be used to increase the durability period of a wood-cutting milling tool for cutting chipboard by CNC machines.
Damage during the 6-24 February 2017 Ayvacık (Çanakkale) earthquake swarm
NASA Astrophysics Data System (ADS)
Livaoğlu, Ramazan; Ömer Timurağaoğlu, Mehmet; Serhatoğlu, Cavit; Sami Döven, Mahmud
2018-03-01
On 6 February 2017 an earthquake swarm began at the western end of Turkey. This was the first recorded swarm in the Çanakkale region since continuous seismic monitoring began in 1970. The number of earthquakes located increased during the following 10 days. This paper describes the output of a survey carried out in the earthquake-prone towns in the area of Ayvacık, Çanakkale, Turkey, in February 2017 after the earthquakes. Observations of traditional buildings were made on site at the rural area of Ayvacık. A description of the main structural features and their effects on the most frequently viewed damage modes were made according to in-plane, out-of-plane behavior of the wall regarding construction practice, connection type, etc. It was found that there were no convenient connections like cavity ties or sufficient mortar strength resulting in decreased and/or lack of lateral load bearing capacity of the wall. Furthermore, distribution maps of damaged/undamaged buildings according to villages, damage ratios, structures and damage levels are generated. Distribution maps showed that damage ratio of structures is higher in villages close to epicenter and decrease away from epicenter except Gülpınar, where past experiences and development level affect the construction quality.
Millet, Antoine; Kristjánsson, Bjarni K; Einarsson, Arni; Räsänen, Katja
2013-09-01
Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments - favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.
Millet, Antoine; Kristjánsson, Bjarni K; Einarsson, Árni; Räsänen, Katja
2013-01-01
Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow. PMID:24223263
Li, X; Bian, W; Li, D; Lian, Q; Jin, Z
2011-03-01
The tissue engineering scaffolds with three-dimensional porous structure are regarded to be beneficial to facilitate a sufficient supply of nutrients and enable cell ingrowth in bone reconstruction. However, the pores in scaffolds tend to be blocked by the cell ingrowth and result in a restraint of nutrient supply in the further side of the scaffold. An indirect approach of combining the rapid prototyping and gel-casting technique is introduced in this study to fabricate beta-tricalcium phosphate (beta-TCP) scaffolds which not only have interconnected porous structure, but also have a microchannel network inside. The scaffold was designed with customized geometry that matches the defect area, and a double-scale (micropores-microchannel) porous structure inside that is beneficial for cell ingrowth. The scaffolds fabricated have an open, uniform, and interconnected porous architecture with a pore size of 200-400 microm, and posses an internal channel network with a diameter of 600 microm. The porosity was controllable. The compressive yield strength was 4.5 MPa with a porosity of 70 per cent. X-ray diffraction analysis shows that these fabrication processes do not change the crystal structure and chemical composition of beta-TCP. With this technique, it was also possible to fabricate porous scaffolds with desired pore size, porosity, and microchannel, as well as customized geometries by other bioceramics.
NASA Astrophysics Data System (ADS)
Jin, Shouwen; Zhang, Huan; Liu, Hui; Wen, Xianhong; Li, Minghui; Wang, Daqi
2015-09-01
Eight organic salts of imidazole/benzimidazole have been prepared with carboxylic acids as 2-methyl-2-phenoxypropanoic acid, α-ketoglutaric acid, 5-nitrosalicylic acid, isophthalic acid, 4-nitro-phthalic acid, and 3,5-dinitrosalicylic acid. The eight crystalline forms reported are proton-transfer compounds of which the crystals and compounds were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted hetero supramolecular synthons, with the most common R22(7) motif observed at salts 2, 3, 5, 6 and 8. Analysis of the crystal packing of 1-8 suggests that there are extensive strong Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds (charge assisted or neutral) between acid and imidazolyl components in all of the salts. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. This variety, coupled with the varying geometries and number of acidic groups of the acids utilized, has led to the creation of eight supramolecular arrays with 1D-3D structure. The role of weak and strong noncovalent interactions in the crystal packing is analyzed. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds between acids and imidazole/benzimidazole are sufficient to bring about the formation of organic salts.
Mechanical properties of canine osteosarcoma-affected antebrachia.
Steffey, Michele A; Garcia, Tanya C; Daniel, Leticia; Zwingenberger, Allison L; Stover, Susan M
2017-05-01
To determine the influence of neoplasia on the biomechanical properties of canine antebrachia. Ex vivo biomechanical study. Osteosarcoma (OSA)-affected canine antebrachia (n = 12) and unaffected canine antebrachia (n = 9). Antebrachia were compressed in axial loading until failure. A load-deformation curve was used to acquire the structural mechanical properties of neoplastic and unaffected specimens. Structural properties and properties normalized by body weight (BW) and radius length were compared using analysis of variance (ANOVA). Modes of failure were compared descriptively. Neoplastic antebrachia fractured at, or adjacent to, the OSA in the distal radial diaphysis. Unaffected antebrachia failed via mid-diaphyseal radial fractures with a transverse cranial component and an oblique caudal component. Structural mechanical properties were more variable in neoplastic antebrachia than unaffected antebrachia, which was partially attributable to differences in bone geometry related to dog size. When normalized by dog BW and radial length, strength, stiffness, and energy to yield and failure, were lower in neoplastic antebrachia than in unaffected antebrachia. OSA of the distal radial metaphysis in dogs presented for limb amputation markedly compromises the structural integrity of affected antebrachia. However, biomechanical properties of affected bones was sufficient for weight-bearing, as none of the neoplastic antebrachia fractured before amputation. The behavior of tumor invaded bone under cyclic loading warrants further investigations to evaluate the viability of in situ therapies for bone tumors in dogs. © 2017 The American College of Veterinary Surgeons.
Ideal strength of bcc molybdenum and niobium
NASA Astrophysics Data System (ADS)
Luo, Weidong; Roundy, D.; Cohen, Marvin L.; Morris, J. W.
2002-09-01
The behavior of bcc Mo and Nb under large strain was investigated using the ab initio pseudopotential density-functional method. We calculated the ideal shear strength for the {211}<111> and {011}<111> slip systems and the ideal tensile strength in the <100> direction, which are believed to provide the minimum shear and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to this tetragonal ``saddle-point'' structure sets the ideal shear strength. When either material is strained in tension along <100>, it initially follows the tetragonal, ``Bain,'' path toward a stress-free fcc structure. However, before the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc extremum as in W. However, a Nb crystal strained in <100> becomes orthorhombic at tensile stress below the ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths of Mo (τ*=τm/G111=0.12, σ*=σm/E100=0.078) are essentially identical to those previously calculated for W. Nb is anomalous. Its dimensionless shear strength is unusually high, τ*=0.15, even though the saddle-point structure that causes it is similar to that in Mo and W, while its dimensionless tensile strength, σ*=0.079, is almost the same as that of Mo and W, even though the saddle-point structure is quite different.
Goksel, Mehmet A.
1983-11-01
Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.
Ceramic applications in turbine engines. [for improved component performance and reduced fuel usage
NASA Technical Reports Server (NTRS)
Hudson, M. S.; Janovicz, M. A.; Rockwood, F. A.
1980-01-01
Ceramic material characterization and testing of ceramic nozzle vanes, turbine tip shrouds, and regenerators disks at 36 C above the baseline engine TIT and the design, analysis, fabrication and development activities are described. The design of ceramic components for the next generation engine to be operated at 2070 F was completed. Coupons simulating the critical 2070 F rotor blade was hot spin tested for failure with sufficient margin to quality sintered silicon nitride and sintered silicon carbide, validating both the attachment design and finite element strength. Progress made in increasing strength, minimizing variability, and developing nondestructive evaluation techniques is reported.
Kevlar reinforced neoprene composites
NASA Technical Reports Server (NTRS)
Penn, B. G.; Daniels, J. G.; White, W. T.; Thompson, L. M.; Clemons, L. M.
1985-01-01
Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating Kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of Kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi).
Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N
2016-03-24
The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.
Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures
NASA Astrophysics Data System (ADS)
Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.
2018-03-01
Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.
Effect of Isothermal Bainitic Quenching on Rail Steel Impact Strength and Wear Resistance
NASA Astrophysics Data System (ADS)
Çakir, Fatih Hayati; Çelik, Osman Nuri
2017-09-01
The effect of heat treatment regimes on hardness, impact strength, and wear resistance of rail steel for high-speed tracks (rail quality category R350HT) is studied. Analysis of steel properties with a different structure is compared: pearlitic, and upper and lower bainite. It is shown that the steel with bainitic structure has the best impact strength, but wear resistance is better for steel with a lower bainite structure.
Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?
NASA Technical Reports Server (NTRS)
Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.
2005-01-01
A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.
Inventory of Military Real Property
1966-12-21
priate manner. The covers used for binding will be of a stiff hard - back material of sufficient strength to permit stowing on edge within file cabinets...SYRMBH0L S FO OM UNI TS O F MEV.A SOUBA 5241/01. UINT SF MEASSURE SYMBOL SlTJ OF IERS//IS AC acresl .. O A. aaiyKilonolt-saperrn, rapacity (KVA) B/D
DOT National Transportation Integrated Search
1996-09-27
This research has shown that a Grade 70 construction steel of 1/2- to 1-inch plate thicknesses can be produced without a quench and temper or accelerated cooling from hot-rolling if the Cu content in the steel is sufficiently high. Coherent very fine...
1990-08-01
ENGINEERS 601 Pavonia Avenue, Jersey City, NJ 07306 Paper presented at the NSRP 1990 Ship Production Symposium, Pfister Hotel , Milwaukee, Wisconsin, August 21... Smm ) where intermittent or staggered welding would have been sufficient for strength, but not acceptable to the MOD(N). Adhesive joints would appear
Genovés, A.; Pallás, V.; Navarro, J. A.
2011-01-01
The p7B movement protein (MP) of Melon necrotic spot virus (MNSV) is a single-pass membrane protein associated with the endoplasmic reticulum (ER), the Golgi apparatus (GA), and plasmodesmata (Pd). Experimental data presented here revealed that the p7B transmembrane domain (TMD) was sufficient to target the green fluorescent protein (GFP) to ER membranes. In addition, the short extramembrane regions of p7B were essential for subsequent ER export and transport to the GA and Pd. Microsomal partitioning and bimolecular fluorescence assays supported a type II topology of p7B in planta. Mutations affecting conventional determinants of p7B membrane topology, such as the TMD secondary structure, the overall hydrophobicity profile, the so-called “aromatic belt,” and the net charge distribution on either side of the TMD, were engineered into infectious RNAs to investigate the relationship between the MP structure and MNSV cell-to-cell movement. The results revealed that (i) the overall hydrophobic profile and the α-helix integrity of the TMD were relevant for virus movement, (ii) modification of the net charge balance of the regions flanking both TMD sides drastically reduced cell-to-cell movement, (iii) localization of p7B to the GA was necessary but not sufficient for virus movement, and (iv) membrane insertion was essential for p7B function in virus movement. Our results therefore indicate that MNSV cell-to-cell movement requires sequential transport of p7B from the ER via the GA to Pd, which is modulated by a combination of several signals with different strengths in the extramembrane regions and TMD of the MP. PMID:21593169
Ahmadi, S. M.; Lietaert, K.; Tümer, N.; Li, Y.; Amin Yavari, S.; Zadpoor, A. A.
2018-01-01
Abstract Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load‐bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress–strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6–12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite‐like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798–1811, 2018. PMID:29468807
NASA Astrophysics Data System (ADS)
Zenkov, E. V.
2018-01-01
Two methods are given in the article by considering the type of stressed-Deformed state (SDS) based on equations limit condition and analyzing the results of laboratory tests of special specimens for mechanical testing, focus having destruction thereof in the same view of SDS as in focus possible destruction of the structural member. The considered limited use of these methods in terms of considering physically consistent strength criterion type Pisarenko-Lebedev. A revised design-experimental procedure for determining the strength of the material of the structure, combining therein the elements of these two methods, consisting in determining the strength parameters of construction material, entering criterion equation Pisarenko-Lebedev, considering the actual appearance of the region-of-interest SDS structure. The implementation of the procedure is performed on the basis of the selection of the respective experimental laboratory specimens for mechanical testing, plan SDS in working zone coinciding with a SDS: structure whose strength is evaluated. The refinement process limit state equations demonstrated in determining 50CrV4 steel strength parameters, being in a state of biaxial stretching. Design-experimentally determined by, that steel for a given voltage limit value is almost a quarter of its value is reduced compared to the conventional tensile strength. value is reduced compared to the conventional tensile strength.
The engineering of construction specifications for externally bonded FRP composites
NASA Astrophysics Data System (ADS)
Yang, Xinbao
This dissertation, consisting of six technical papers, presents the results of research on the theme of developing engineering and the construction specifications for externally bonded FRP composites. For particular, the work focuses on three critical aspects of the performance of FRP systems: fiber misalignment, corner radius, and lap splice length. Based on both experimental and theoretical investigations, the main contribution of this work is the development of recommendations on fiber misalignment limit, minimum corner radius, lap splice length to be used as guidance in the construction practice of FRP strengthening of concrete structures. The first three papers focus on the strength and stiffness degradation of CFRP laminates from fiber misalignment. It was concluded that misalignment affects strength more than stiffness. In practice, when all fibers in a laminate can be regarded as through fibers, it is recommended to use a reduction factor for strength and no reduction factor for stiffness to account for fiber misalignment. Findings from concrete beams strengthened with misaligned CFRP laminates verified these recommendations. The fourth and fifth papers investigate the effect of corner radius on the mechanical properties of CFRP laminates wrapped around a rectangular cross section. A unique reusable test device was fabricated to determine fiber stress and radial stress of CFRP laminates with different corner radii. Comparison performed with finite element analyses shows that the test method and the reusable device were viable and the stress concentration needs to be considered in FRP laminate wrapped corners. A minimum of 1.0 in. corner radius was recommended for practice. The sixth paper summarizes the research on the lap splice length of FRP laminates under static and repeated loads. Although a lap splice length of 1.5 in. is sufficient for CFRP laminates to develop the ultimate static tensile strength, a minimum of 4.0 in. is recommended in order to account for repeated loads.
ERIC Educational Resources Information Center
Dickey, Wayne C.; Blumberg, Stephen J.
2004-01-01
Objective: The Strengths and Difficulties Questionnaire is a 25-item instrument developed to assess emotional and behavioral problems. The current study attempted to replicate previous European structural analyses and to describe the latent dimensions that underlie responses to the parent-reported version of the Strengths and Difficulties…
One-step synthesis of mesoporous pentasil zeolite with single-unit-cell lamellar structural features
Tsapstsis, Michael; Zhang, Xueyi
2015-11-17
A method for making a pentasil zeolite material includes forming an aqueous solution that includes a structure directing agent and a silica precursor; and heating the solution at a sufficient temperature and for sufficient time to form a pentasil zeolite material from the silica precursor, wherein the structure directing agent includes a quaternary phosphonium ion.
Steric interactions determine side-chain conformations in protein cores.
Caballero, D; Virrueta, A; O'Hern, C S; Regan, L
2016-09-01
We investigate the role of steric interactions in defining side-chain conformations in protein cores. Previously, we explored the strengths and limitations of hard-sphere dipeptide models in defining sterically allowed side-chain conformations and recapitulating key features of the side-chain dihedral angle distributions observed in high-resolution protein structures. Here, we show that modeling residues in the context of a particular protein environment, with both intra- and inter-residue steric interactions, is sufficient to specify which of the allowed side-chain conformations is adopted. This model predicts 97% of the side-chain conformations of Leu, Ile, Val, Phe, Tyr, Trp and Thr core residues to within 20°. Although the hard-sphere dipeptide model predicts the observed side-chain dihedral angle distributions for both Thr and Ser, the model including the protein environment predicts side-chain conformations to within 20° for only 60% of core Ser residues. Thus, this approach can identify the amino acids for which hard-sphere interactions alone are sufficient and those for which additional interactions are necessary to accurately predict side-chain conformations in protein cores. We also show that our approach can predict alternate side-chain conformations of core residues, which are supported by the observed electron density. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A comparison of screw insertion torque and pullout strength.
Ricci, William M; Tornetta, Paul; Petteys, Timothy; Gerlach, Darin; Cartner, Jacob; Walker, Zakiyyah; Russell, Thomas A
2010-06-01
Pullout strength of screws is a parameter used to evaluate plate screw fixation strength. However, screw fixation strength may be more closely related to its ability to generate sufficient insertion because stable nonlocked plate-screw fracture fixation requires sufficient compression between plate and bone such that no motion occurs between the plate and bone under physiological loads. Compression is generated by tightening of screws. In osteoporotic cancellous bone, sufficient screw insertion torque may not be generated before screw stripping. The effect of screw thread pitch on generation of maximum insertion torque (MIT) and pullout strength (POS) was investigated in an osteoporotic cancellous bone model and the relationship between MIT and POS was analyzed. Stainless steel screws with constant major (5.0 mm) and minor (2.7 mm) diameters but with varying thread pitches (1, 1.2, 1.5, 1.6, and 1.75 mm) were tested for MIT and POS in a validated osteoporotic surrogate for cancellous bone (density of 160 kg/m(3) [10 lbs/ft(3)]). MIT was measured with a torque-measuring hex driver for screws inserted through a one-third tubular plate. POS was measured after insertion of screws to a depth of 20 mm based on the Standard Specification and Test Methods for Metallic Medical Bone Screws (ASTM F 543-07). Five screws were tested for each failure mode and screw design. The relationship between MIT and compressive force between the plate and bone surrogate was evaluated using pressure-sensitive film. There was a significant difference in mean MIT based on screw pitch (P < 0.0001), whereas POS did not show statistically significant differences among the different screw pitches (P = 0.052). Small screw pitches (1.0 mm and 1.2 mm) had lower MIT and were distinguished from large pitches (1.5 mm, 1.6 mm, and the 1.75 mm) with higher MIT. For POS, only the 1-mm and 1.6-mm pitch screws were found to be different from each other. Linear regression analysis of MIT revealed a moderate correlation to the screw pitch (R(2) = 0.67, P < 0.0001), whereas the analysis of POS suggested no correlation to the screw pitch (R(2) = 0.28, P = 0.006). Pearson correlation analysis indicated no correlation between MIT and POS (P = 0.069, r = -0.37). A linear relationship of increased compression between the plate and bone surrogate was found for increasing screw torque (R(2) = 0.97). These results indicate that the ability of different screw designs to generate high screw insertion torque in a model of osteoporotic cancellous bone is unrelated to their pullout strength. Therefore, extrapolation of results for POS to identify optimal screw design for osteoporotic bone may not be valid. Screw designs that optimize MIT should be sought for fixation in osteoporotic bone.
1981-07-01
ADVANCED COMPOSITE STRUCTURES VOLUME II - TASKS Ix AND III K. N. Lauraitis Tl J. T. Ryder ?l4 D. E. Pettit ~ Lockheed-California Company S Burbank...Strength Degradation Rate Final Report Modeling for Advanced Composite Structures 1 July 1979 to 29 May 1981 Vol II - Task II and III S. PERFORMIN ONG...identify by block namber) composites , graphite/epoxy, impact damage, damaged holes, fatigue, damage propagation, residual strength, NDI 20. ABSTRACT
Yoshimura, Masato; Chen, Nai-Chi; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Lin, Chien-Chih; Nakagawa, Atsushi; Chen, Chun-Jung
2016-01-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380
Design and development of advanced castable refractory materials
NASA Astrophysics Data System (ADS)
Davis, Robert Bruce
New formulations of castable refractory composite materials were studied. This technology is used to produce low cost composite concrete structures designed for high temperature stability, superior wear resistance and improved strength. An in situ fired, castable cement installation is a heterogeneous structure divided into three zones according to the temperature history and microstructure. The properties of each zone depend on the predominant bonding mode between constituents. Each zone has a characteristic microstructure that influences the integrity of the monolith. The hot side may have a highly dense and developed network of ceramic bonds between constituent particles while the cold side may never reach temperatures sufficient to drive off free water. The thermal, structural and tribological properties depend on the microstructure and the type of bonding that holds the monolith together. The phase distributions are defined by sets of metastable phase conditions driven by the local hydrated chemistry, nearest neighbor oxide compounds, impurities and sintering temperature. Equilibrium phase diagrams were used to select optimum compositions based on higher melting point phases. The phase diagrams were also used to target high temperature phase fields that are stable over wide temperature and stoichiometric ranges. Materials selection of candidate hydraulic clinkers, high temperature oxides, and reinforcement phases were based on requirements for high temperature stability. The calcium aluminate (CaO-Al2O3) and calcium dialuminate (CaO-(Al2O3)2) are common refractory clinkers used in castable refractory cements. The thermodynamics and kinetics of cement hydrate formation are well studied and suited to become the building block of a design for a superior refractory castable cement. The inert oxides mixed with the calcium aluminate clinkers are magnesia (MgO), alumina (Al 2O3), spinel (MgAl2O4) and chromic (Cr2O3). The bulk of the experiments concentrated in the Al2O3--MgO--CaO ternary system. Materials selection criteria for reinforcement materials was based on improved high temperature stability, increased strength, reduced thermal expansion mismatch, low thermal conductivity and increasing wear resistance. The reinforcement phases selected for this investigation are zircon (ZrSiO4), zirconia (ZrO2), spinel (MgAl2O4) and dead burnt magnesia (MgO). Batches of the formulations were tested for thermal conductivity, wear resistance and mechanical strength. Relative rankings of the formulations against commercial products indicate improved or similar performance with increased maximum temperature limits and improved thermal insulating power. The new cement formulations proved to exhibit superior high temperature stability with an increasing volume fraction of high temperature oxides. The addition of reinforcement aggregates and powder sizing to offset the loss of strength. The room temperature compression strength and wear resistance of the optimized formulations exceeded the properties of conventional refractory, brick and castable cement tested concurrently.
[A Structural Equation Model on Family Strength of Married Working Women].
Hong, Yeong Seon; Han, Kuem Sun
2015-12-01
The purpose of this study was to identify the effect of predictive factors related to family strength and develop a structural equation model that explains family strength among married working women. A hypothesized model was developed based on literature reviews and predictors of family strength by Yoo. This constructed model was built of an eight pathway form. Two exogenous variables included in this model were ego-resilience and family support. Three endogenous variables included in this model were functional couple communication, family stress and family strength. Data were collected using a self-report questionnaire from 319 married working women who were 30~40 of age and lived in cities of Chungnam province in Korea. Data were analyzed with PASW/WIN 18.0 and AMOS 18.0 programs. Family support had a positive direct, indirect and total effect on family strength. Family stress had a negative direct, indirect and total effect on family strength. Functional couple communication had a positive direct and total effect on family strength. These predictive variables of family strength explained 61.8% of model. The results of the study show a structural equation model for family strength of married working women and that predicting factors for family strength are family support, family stress, and functional couple communication. To improve family strength of married working women, the results of this study suggest nursing access and mediative programs to improve family support and functional couple communication, and reduce family stress.
Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: M f )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, M m ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and M f was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between M f and M m in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.
Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549
NASA Astrophysics Data System (ADS)
Ding, Jow; Alexander, C. Scott; Asay, James
2015-06-01
MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Robustness analysis of elastoplastic structure subjected to double impulse
NASA Astrophysics Data System (ADS)
Kanno, Yoshihiro; Takewaki, Izuru
2016-11-01
The double impulse has extensively been used to evaluate the critical response of an elastoplastic structure against a pulse-type input, including near-fault earthquake ground motions. In this paper, we propose a robustness assessment method for elastoplastic single-degree-of-freedom structures subjected to the double impulse input. Uncertainties in the initial velocity of the input, as well as the natural frequency and the strength of the structure, are considered. As fundamental properties of the structural robustness, we show monotonicity of the robustness measure with respect to the natural frequency. In contrast, we show that robustness is not necessarily improved even if the structural strength is increased. Moreover, the robustness preference between two structures with different values of structural strength can possibly reverse when the performance requirement is changed.
Osteoporosis: Are we measuring what we intend to measure? In search of the ideal bone strength study
NASA Astrophysics Data System (ADS)
de Riese, Cornelia
2006-02-01
In 1991 the World Health Organization (WHO) defined osteoporosis as a "loss of bone mass and micro architectural deterioration of the skeleton leading to increased risk of fracture." 1,2 Since microarchitecture can not be measured directly, a panel of the WHO recommended that the diagnosis be made according to a quantifiable surrogate marker, calcium mineral, in bone. Subsequently in 1994, the definition focused on the actual bone "density," giving densitometric technology a central place in establishing the diagnosis of osteoporosis. 3,4 But soon it became obvious that there was only limited correlation between bone mineral density (BMD) and actual occurrence of fractures and that decreases in bone mass account for only about 50% of the deterioration of bone strength with aging. In other words only about 60% of bone strength is related to BMD. 5 Recent developments in bone research have shown that bone mineral density in itself is not sufficient to accurately predict fracture risk. Bone is composed of inorganic calcium apatite crystals that mineralize an organic type I collagen matrix. The degree of mineralization, the properties of the collagen matrix, crystal size, trabecular orientation, special distribution of the different components and many more factors are all impacting bone strength. 6-14 Human cadaver studies have confirmed the correlation between bone density and bone. 26 strength. 5,15-20 Changes in cancellous bone morphology appear to lead to a disproportionate decrease in bone strength. 21-26 When postmenopausal women are stratified by age, obvious differences between BMD and actual fracture risk are observed. 24 Felsenberg eloquently summarizes what he calls the "Bone Quality Framework." In great detail he talks about the geometry and micro- architecture of bone and how the different components are related to functional stability. 27 Are our current testing modalities appropriately addressing these structural factors? Are we keeping in mind that in screening for osteoporosis the key variable is fragility, not bone density itself? All currently FDA approved and commercially available equipments for the evaluation of bone status claim that they - at least indirectly - assess the biological fracture risk. This review summarizes an extensive current literature research covering FDA approved as well as experimental devices for the evaluation of bone. The pros and cons of the different techniques are discussed in the context of diagnostic accuracies and practical implications.
NASA Astrophysics Data System (ADS)
Minguet, Pierre; Llorente, Steven; Fay, Russell
1991-05-01
The results of an evaluation of DuPont Kevlar-based material systems in sandwich structure designed for rotorcraft primary airframe structure are presented in this report. The focus of this work has been to evaluate the durability and compression strength of thin-gage Kevlar sandwich panels and investigate means of improvement. It was found that sandwich panels made with Kevlar 149 fibers can be as strong as Kevlar 49 structures but have reduced compression stiffness properties at typical operating strain levels. Thermal cycling was found to affect permeability but not strength in thin facesheet sandwich structure. Any increased permeability can be prevented with the use of an interleaf or surfacing plies. The surfacing plies investigated also had a beneficial effect on sandwich strength due to their stabilizing effect on the facesheet in compression. Finally, a previously developed model was used to analyze the residual strength of a sandwich panel after impact damage.
Aircraft landing dynamics facility carriage weld test program
NASA Technical Reports Server (NTRS)
Lawson, A. G.
1984-01-01
A welded tubular structure constructed of low alloy high strength quenched and tempered steel was tested. The consistency of the mechanical strengths and chemical composition and the degree of difficulty of obtaining full strength welds with these steels is characterized. The results of constructing and testing two typical connections which are used in the structure design are reported.
Anisotropy of machine building materials
NASA Technical Reports Server (NTRS)
Ashkenazi, Y. K.
1981-01-01
The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.
Eraslan, Oguz
2016-01-01
PURPOSE To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with 60℃ heat-treatment), and G4 (silane alone-then dried with 100℃ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in N/mm2). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin–ceramic interface. RESULTS SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (P<.001). FIN ceramics had the highest rate of cohesive failure on the ceramic surfaces than other ceramic groups. AFM images showed that the surface treatment groups exhibited similar topographies, except the group treated with HF. CONCLUSION The heat treatment was not sufficient to achieve high SBS values as compared with HF acid etching. The surface topography of ceramics was affected by surface treatments. PMID:27141250
Zhou, Sheng-Yang; Huang, Hua-Dong; Ji, Xu; Yan, Ding-Xiang; Zhong, Gan-Ji; Hsiao, Benjamin S; Li, Zhong-Ming
2016-03-01
Remarkable combination of excellent gas barrier performance, high strength, and toughness was realized in polylactide (PLA) composite films by constructing the supernetworks of oriented and pyknotic crystals with the assistance of ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate) (PBAT). On the basis that the permeation of gas molecules through polymer materials with anisotropic structure would be more frustrated, we believe that oriented crystalline textures cooperating with inerratic amorphism can be favorable for the enhancement of gas barrier property. By taking full advantage of intensively elongational flow field, the dispersed phase of PBAT in situ forms into nanofibrils, and simultaneously sufficient row-nuclei for PLA are induced. After appropriate thermal treatment with the acceleration effect of PBAT on PLA crystallization, oriented lamellae of PLA tend to be more perfect in a preferential direction and constitute into a kind of network interconnecting with each other. At the same time, the molecular chains between lamellae tend to be more extended. This unique structure manifests superior ability in ameliorating the performance of PLA film. The oxygen permeability coefficient can be achieved as low as 2 × 10(-15) cm(3) cm cm(-2) s(-1) Pa(-1), combining with the high strength, modulus, and ductility (104.5 MPa, 3484 MPa, and 110.6%, respectively). The methodology proposed in this work presents an industrially scalable processing method to fabricate super-robust PLA barrier films. It would indeed push the usability of biopolymers forward, and certainly prompt wider application of biodegradable polymers in the fields of environmental protection such as food packaging, medical packaging, and biodegradable mulch.
NASA Technical Reports Server (NTRS)
Seshadri, B. R.; Smith, S. W.; Johnston, W. M.
2008-01-01
This viewgraph presentation describes residual strength analysis of integral structures fabricated using different manufacturing procedures. The topics include: 1) Built-up and Integral Structures; 2) Development of Prediction Methodology for Integral Structures Fabricated using different Manufacturing Procedures; 3) Testing Facility; 4) Fracture Parameters Definition; 5) Crack Branching in Integral Structures; 6) Results and Discussion; and 7) Concluding Remarks.
Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur
Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi
2013-01-01
Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute. PMID:24892010
Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur.
Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi
2013-11-01
Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute.
Influence of cross section variations on the structural behaviour of composite rotor blades
NASA Astrophysics Data System (ADS)
Rapp, Helmut; Woerndle, Rudolf
1991-09-01
A highly sophisticated structural analysis is required for helicopter rotor blades with nonhomogeneous cross sections made from nonisotropic material. Combinations of suitable analytical techniques with FEM-based techniques permit a cost effective and sufficiently accurate analysis of these complicated structures. It is determined that in general the 1D engineering theory of bending combined with 2D theories for determining the cross section properties is sufficient to describe the structural blade behavior.
Dimensionality and entropy of spontaneous and evoked rate activity
NASA Astrophysics Data System (ADS)
Engelken, Rainer; Wolf, Fred
Cortical circuits exhibit complex activity patterns both spontaneously and evoked by external stimuli. Finding low-dimensional structure in population activity is a challenge. What is the diversity of the collective neural activity and how is it affected by an external stimulus? Using concepts from ergodic theory, we calculate the attractor dimensionality and dynamical entropy production of these networks. We obtain these two canonical measures of the collective network dynamics from the full set of Lyapunov exponents. We consider a randomly-wired firing-rate network that exhibits chaotic rate fluctuations for sufficiently strong synaptic weights. We show that dynamical entropy scales logarithmically with synaptic coupling strength, while the attractor dimensionality saturates. Thus, despite the increasing uncertainty, the diversity of collective activity saturates for strong coupling. We find that a time-varying external stimulus drastically reduces both entropy and dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in several limiting cases by random matrix theory. Our study opens a novel avenue to characterize the complex dynamics of rate networks and the geometric structure of the corresponding high-dimensional chaotic attractor. received funding from Evangelisches Studienwerk Villigst, DFG through CRC 889 and Volkswagen Foundation.
Illumination of rheological mantle heterogeneity by the M7.2 2010 El Mayor-Cucapah earthquake
Pollitz, Fred F.; Bürgmann, Roland; Thatcher, Wayne R.
2012-01-01
Major intracontinental strike-slip faults tend to mark boundaries between lithospheric blocks of contrasting mechanical properties along much of their length. Both crustal and mantle heterogeneities can form such boundaries, but the role of crustal versus mantle strength contrasts for localizing strain sufficiently to generate major faults remains unclear. Using the crustal velocity field observed through the Global Positioning System (GPS) in the epicentral area of the M7.2 2010 El Mayor-Cucapah earthquake, Baja California, we find that transient deformation observed after the event is anomalously small in areas of relatively high seismic velocity in the shallow upper mantle (∼50 km depth). This pattern is best explained with a laterally heterogeneous viscoelastic structure that mimics the seismic structure. The mantle of the Southern Colorado River Desert (SCRD) and Peninsular Ranges (PR), which bound the fault system to its east and west, respectively, have anomalously high viscosity and seismic velocity. We hypothesize that compared with the rest of the San Andreas fault (SAF) system to its north, the strike-slip fault system in northern Baja California is narrow because of the presence of the PR and SCRD high-viscosity regions which bound it.
Thermalization and light cones in a model with weak integrability breaking
Bertini, Bruno; Essler, Fabian H. L.; Groha, Stefan; ...
2016-12-09
Here, we employ equation-of-motion techniques to study the nonequilibrium dynamics in a lattice model of weakly interacting spinless fermions. Our model provides a simple setting for analyzing the effects of weak integrability-breaking perturbations on the time evolution after a quantum quench. We establish the accuracy of the method by comparing results at short and intermediate times to time-dependent density matrix renormalization group computations. For sufficiently weak integrability-breaking interactions we always observe prethermalization plateaus, where local observables relax to nonthermal values at intermediate time scales. At later times a crossover towards thermal behavior sets in. We determine the associated time scale,more » which depends on the initial state, the band structure of the noninteracting theory, and the strength of the integrability-breaking perturbation. Our method allows us to analyze in some detail the spreading of correlations and in particular the structure of the associated light cones in our model. We find that the interior and exterior of the light cone are separated by an intermediate region, the temporal width of which appears to scale with a universal power law t 1/3.« less
Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin
2014-01-01
Nonmetal materials take up about 70 wt% of waste printed wiring boards (WPWB), which are usually recycled as low-value fillers or even directly disposed by landfill dumping and incineration. In this research, a novel reuse ofthe nonmetals to produce porous composites for sound absorbing application was demonstrated. The manufacturing process, absorbing performance and mechanical properties of the composites were studied. The results show that the high porous structure of the composites leads to an excellent sound absorption ability in broad-band frequency range. Average absorption coefficient of above 0.4 can be achievedby the composite in the frequency range from 100 to 6400 Hz. When the particle size is larger than 0.2 mm, the absorption ability of the composite is comparable to that of commercial wood-fibre board and urea-formaldehyde foam. Mechanical analysis indicates that the porous composites possess sufficient structural strength for self-sustaining applications. All the results indicate that producing sound absorbing composite with nonmetal particles from WPWB provides an efficient and profitable way for recycling this waste resource and can resolve both the environment pollution and noise pollution problems.
NASA Technical Reports Server (NTRS)
Tayon, Wesley A.; Domack, Marcia S.; Hoffman, Eric K.; Hales, Stephen J.
2013-01-01
In order to improve manufacturing efficiency and reduce structural mass and costs in the production of launch vehicle structures, NASA is pursuing a wide-range of innovative, near-net shape manufacturing technologies. A technology that combines friction stir welding (FSW) and spin-forming has been applied to manufacture a single-piece crew module using Aluminum-Lithium (AL-Li) Alloy 2195. Plate size limitations for Al-Li alloy 2195 require that two plates be FSW together to produce a spin-forming blank of sufficient size to form the crew module. Subsequent forming of the FSW results in abnormal grain growth (AGG) within the weld region upon solution heat treatment (SHT), which detrimentally impacts strength, ductility, and fracture toughness. The current study seeks to identify microstructural factors that contribute to the development of AGG. Electron backscatter diffraction (EBSD) was used to correlate driving forces for AGG, such as stored energy, texture, and grain size distributions, with the propensity for AGG. Additionally, developmental annealing treatments prior to SHT are examined to reduce or eliminate the occurrence of AGG by promoting continuous, or uniform, grain growth
NASA Astrophysics Data System (ADS)
Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.
2013-01-01
Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials
Static and dynamic crush testing and analysis of a rail vehicle corner structural element
DOT National Transportation Integrated Search
1999-11-01
This paper presents the results of an experimental study to establish the strength and energy absorption capability of cab car rail vehicle corner structures built to current strength requirements and for structures modified to carry higher loads and...
NASA Astrophysics Data System (ADS)
Mukaida, Jun; Nishitani, Yosuke; Kitano, Takeshi
2015-05-01
For the purpose of developing the new engineering materials such as structural materials and tribomaterials based on all plants-derived materials, the effect of the addition of plant-derived polyamide 11 Elastomer (PA11E) on the mechanical and tribological properties of hemp fiber(HF) reinforced polyamide 1010 (HF/PA1010) composites was investigated. PA1010 and PA11E (except the polyether groups used as soft segment) were made from plant-derived castor oil. Hemp fiber was surface-treated by two types of treatment: alkali treatment by NaOH solution and surface treatment by ureido silane coupling agent. HF/PA1010/PA11E ternary composites were extruded by a twin screw extruder and injection-molded. Their mechanical properties such as tensile, bending, Izod impact and tribological properties by ring-on-plate type sliding wear testing were evaluated. The effect of the addition of PA11E on the mechanical and tribological properties of HF/PA1010 composite differed for each property. Izod impact strength and specific wear rate improved with the addition of PA11E although tensile strength, modulus, and friction coefficient decreased with PA11E. It follows from these results that it may be possible to develop the new engineering materials with sufficient balance between mechanical and tribological properties.
Development of Advanced Ods Ferritic Steels for Fast Reactor Fuel Cladding
NASA Astrophysics Data System (ADS)
Ukai, S.; Oono, N.; Ohtsuka, S.; Kaito, T.
Recent progress of the 9CrODS steel development is presented focusing on their microstructure control to improve sufficient high-temperature strength as well as cladding manufacturing capability. The martensitic 9CrODS steel is primarily candidate cladding materials for the Generation IV fast reactor fuel. They are the attractive composite-like materials consisting of the hard residual ferrite and soft tempered martensite, which are able to be easily controlled by α-γ phase transformation. The residual ferrite containing extremely nanosized oxide particles leads to significantly improved creep rupture strength in 9CrODS cladding. The creep strength stability at extended time of 60,000 h at 700 ºC is ascribed to the stable nanosized oxide particles. It was also reviewed that 9CrODS steel has well irradiation stability and fuel pin irradiation test was conducted up to 12 at% burnup and 51 dpa at the cladding temperature of 700ºC.
Formation of cycloidal features on Europa.
Hoppa, G V; Tufts, B R; Greenberg, R; Geissler, P E
1999-09-17
Cycloidal patterns are widely distributed on the surface of Jupiter's moon Europa. Tensile cracks may have developed such a pattern in response to diurnal variations in tidal stress in Europa's outer ice shell. When the tensile strength of the ice is reached, a crack may occur. Propagating cracks would move across an ever-changing stress field, following a curving path to a place and time where the tensile stress was insufficient to continue the propagation. A few hours later, when the stress at the end of the crack again exceeded the strength, propagation would continue in a new direction. Thus, one arcuate segment of the cycloidal chain would be produced during each day on Europa. For this model to work, the tensile strength of Europa's ice crust must be less than 40 kilopascals, and there must be a thick fluid layer below the ice to allow sufficient tidal amplitude.
Guo, Minghui; Liu, Shucheng; Ismail, Marliya; Farid, Mohammed M; Ji, Hongwu; Mao, Weijie; Gao, Jing; Li, Chengyong
2017-07-15
Dense phase carbon dioxide (DPCD) could induce protein conformation changes. Myosin and shrimp surimi from Litopenaeus vannamei were treated with DPCD at 5-25MPa and 40-60°C for 20min. Myosin secondary structure was investigated by circular dichroism and shrimp surimi gel strength was determined using textural analysis to develop correlations between them. DPCD had a greater effect on secondary structure and gel strength than heating. With increasing pressure and temperature, the α-helix content of DPCD-treated myosin decreased, while the β-sheet, β-turn and random coil contents increased, and the shrimp surimi gel strength increased. The α-helix content was negatively correlated with gel strength, while the β-sheet, β-turn and random coil contents were positively correlated with gel strength. Therefore, when DPCD induced myosin to form a gel, the α-helix of myosin was unfolded and gradually converted to a β-sheet. Such transformations led to protein-protein interactions and cross-linking, which formed a three-dimensional network to enhance the gel strength. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.
McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind
2018-06-08
McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p < 0.05), whereas all strength measures correlated significantly with CMJ heights (p < 0.001). The associations between jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.
49 CFR 180.407 - Requirements for test and inspection of specification cargo tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... constructed of mild steel or high-strength, low-alloy steel, that create air cavities adjacent to the tank...) Equipment must consist of: (A) A high frequency spark tester capable of producing sufficient voltage to...; and (C) A steel calibration coupon 30.5 cm × 30.5 cm (12 inches × 12 inches) covered with the same...
49 CFR 180.407 - Requirements for test and inspection of specification cargo tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... constructed of mild steel or high-strength, low-alloy steel, that create air cavities adjacent to the tank...) Equipment must consist of: (A) A high frequency spark tester capable of producing sufficient voltage to...; and (C) A steel calibration coupon 30.5 cm × 30.5 cm (12 inches × 12 inches) covered with the same...
49 CFR 180.407 - Requirements for test and inspection of specification cargo tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... constructed of mild steel or high-strength, low-alloy steel, that create air cavities adjacent to the tank...) Equipment must consist of: (A) A high frequency spark tester capable of producing sufficient voltage to...; and (C) A steel calibration coupon 30.5 cm × 30.5 cm (12 inches × 12 inches) covered with the same...
Development of Biodegradable Implants for Use in Maxillofacial Surgery.
1981-10-28
PAGE(WhM D .m4m 20 Abstract - continued -to obtain the desired composite material properties. In vitro -- experiments with these materials showed that...the composites were capable of retaining sufficient strength and integrity, in a pseudo-physiological environment, throughout the period normally...VII. Mechanical Properties of Reinforcing Fibers .......... .23 VIII. Effect of Sterilization on High-viscosity Polylactide Composites
Guha, Subhendu; Ovshinsky, Stanford R.
1990-02-02
A method of fabricating doped microcrystalline semiconductor alloy material which includes a band gap widening element through a glow discharge deposition process by subjecting a precursor mixture which includes a diluent gas to an a.c. glow discharge in the absence of a magnetic field of sufficient strength to induce electron cyclotron resonance.
49 CFR 178.345-9 - Pumps, piping, hoses and connections.
Code of Federal Regulations, 2014 CFR
2014-10-01
... greater of 120 psig or 4.8 times the MAWP of the cargo tank, and must be designed so that there will be no... sufficient strength, or be protected by a sacrificial device, such that any load applied by loading/unloading or charging lines connected to the cargo tank cannot cause damage resulting in loss of lading from...
49 CFR 178.345-9 - Pumps, piping, hoses and connections.
Code of Federal Regulations, 2011 CFR
2011-10-01
... greater of 120 psig or 4.8 times the MAWP of the cargo tank, and must be designed so that there will be no... sufficient strength, or be protected by a sacrificial device, such that any load applied by loading/unloading or charging lines connected to the cargo tank cannot cause damage resulting in loss of lading from...
49 CFR 178.345-9 - Pumps, piping, hoses and connections.
Code of Federal Regulations, 2012 CFR
2012-10-01
... greater of 120 psig or 4.8 times the MAWP of the cargo tank, and must be designed so that there will be no... sufficient strength, or be protected by a sacrificial device, such that any load applied by loading/unloading or charging lines connected to the cargo tank cannot cause damage resulting in loss of lading from...
49 CFR 178.345-9 - Pumps, piping, hoses and connections.
Code of Federal Regulations, 2013 CFR
2013-10-01
... greater of 120 psig or 4.8 times the MAWP of the cargo tank, and must be designed so that there will be no... sufficient strength, or be protected by a sacrificial device, such that any load applied by loading/unloading or charging lines connected to the cargo tank cannot cause damage resulting in loss of lading from...
Code of Federal Regulations, 2014 CFR
2014-07-01
... minimize hydraulic head on the containment system at the earliest practicable time. (c) A secondary...) Constructed of a granular drainage material with a hydraulic conductivity of 1 × 10−2 cm/sec or more and a... containment building and of sufficient strength and thickness to prevent collapse under the pressure exerted...
Code of Federal Regulations, 2013 CFR
2013-07-01
... minimize hydraulic head on the containment system at the earliest practicable time. (c) A secondary...) Constructed of a granular drainage material with a hydraulic conductivity of 1 × 10−2 cm/sec or more and a... containment building and of sufficient strength and thickness to prevent collapse under the pressure exerted...
2003-09-08
KENNEDY SPACE CENTER, FLA. - Billy Witt, a midbody shop mechanic with United Space Alliance, checks a part used for installation of a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of an orbiter. Above him is an RCC panel just installed on Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers share the task of examining a Reinforced Carbon Carbon panel using flash thermography. From left are Paul Ogletree, Jim Landy (kneeling), Dan Phillips and Dan Kenna. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jim Landy, NDE specialist with United Space Alliance (USA), watches a monitor off-screen to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers share the task of examining a Reinforced Carbon Carbon panel using flash thermography. From left are Dan Kenna, Jim Landy, Paul Ogletree and Dan Phillips. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Dan Kenna (right) positions a Reinforced Carbon Carbon panel on the table to perform flash thermography. In the background, Paul Ogletree observes the monitor. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Saul Ngy (center) and Jerry Belt (right) lift a Reinforced Carbon Carbon (RCC) panel to attach onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-08
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left), Saul Ngy (center) and Jerry Belt (right) prepare to install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Jerry Belt (center), and Saul Ngy (right), lift a Reinforced Carbon Carbon (RCC) panel they will attach to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jerry Belt, with United Space Alliance, checks a spar attachment on the wing of the orbiter Atlantis before installing Reinforced Carbon Carbon (RCC) panels on the wing. The spars - floating joints - reduce loading on the panels caused by wing deflections. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Jim Landy (front), Dan Phillips and Dan Kenna watch a monitor showing results of flash thermography on the Reinforced Carbon Carbon panel on the table (foreground). Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers, from center, left to right, Saul Ngy, Jerry Belt and Mike Hyatt, prepare to attach a Reinforced Carbon Carbon (RCC) panel (on the table) to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
Notched Strength Allowables and Inplane Shear Strength of AS4/VRM-34 Textile Laminates
NASA Technical Reports Server (NTRS)
Grenoble, Ray W.; Johnston, William M.
2013-01-01
Notched and unnotched strength allowables were developed for a textile composite to provide input data to analytical structural models based on the Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS) concept. Filled-hole tensile strength, filled-hole compressive strength, and inplane shear strength along stitch lines have been measured. The material system evaluated in this study is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. All specimens were tested in as-fabricated (dry) condition. Filled-hole strengths were evaluated with and without through-thickness stitching. The effects of scaling on filled-hole tensile strength were evaluated by testing specimens in two widths, but with identical width / hole-diameter ratios. Inplane shear specimens were stitched in two configurations, and two specimen thicknesses were tested for each stitch configuration.
On sufficient statistics of least-squares superposition of vector sets.
Konagurthu, Arun S; Kasarapu, Parthan; Allison, Lloyd; Collier, James H; Lesk, Arthur M
2015-06-01
The problem of superposition of two corresponding vector sets by minimizing their sum-of-squares error under orthogonal transformation is a fundamental task in many areas of science, notably structural molecular biology. This problem can be solved exactly using an algorithm whose time complexity grows linearly with the number of correspondences. This efficient solution has facilitated the widespread use of the superposition task, particularly in studies involving macromolecular structures. This article formally derives a set of sufficient statistics for the least-squares superposition problem. These statistics are additive. This permits a highly efficient (constant time) computation of superpositions (and sufficient statistics) of vector sets that are composed from its constituent vector sets under addition or deletion operation, where the sufficient statistics of the constituent sets are already known (that is, the constituent vector sets have been previously superposed). This results in a drastic improvement in the run time of the methods that commonly superpose vector sets under addition or deletion operations, where previously these operations were carried out ab initio (ignoring the sufficient statistics). We experimentally demonstrate the improvement our work offers in the context of protein structural alignment programs that assemble a reliable structural alignment from well-fitting (substructural) fragment pairs. A C++ library for this task is available online under an open-source license.
NASA Astrophysics Data System (ADS)
Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang
Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.
NASA Technical Reports Server (NTRS)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.
Interfacial crystalline structures in injection over-molded polypropylene and bond strength.
Yan, Bowen; Wu, Hong; Jiang, Genjie; Guo, Shaoyun; Huang, Jian
2010-11-01
This paper describes interfacial crystalline structures found in injection overmolded polypropylene components and the relationship of these structures to bond strength between the components. The combined effects of the development of hierarchical gradient structures and the particular thermomechanical environment near the interface on the interfacial crystalline structures were investigated in detail by PLM, SEM, DSC, WAXD, and infrared dichroism spectroscopy. The experimental results showed that during molding there was competitive formation of interfacial crystalline structures consisted of "shish-kebab" layer (SKL) and a transcrystalline layers (TCL). Variation in shear stress (controlled by injection pressure and injection speed) plays an important role in the formation of the SKL. The formation of TCL is influenced by the thermal environment, namely melt temperature and mold temperature. Increasing within certain limits, interfacial temperature and the thermal gradient near the interface promotes β-iPP growth. The relationship between interfacial crystalline structures and interfacial bond strength was established by lap shear measurement. The interfacial bond strength is improved by enhancing the formation of TCL, but reduced if SKL predominates.
Saetermoe, Carrie L; Chavira, Gabriela; Khachikian, Crist S; Boyns, David; Cabello, Beverly
2017-01-01
Unconscious bias and explicit forms of discrimination continue to pervade academic institutions. Multicultural and diversity training activities have not been sufficient in making structural and social changes leading to equity, therefore, a new form of critical consciousness is needed to train diverse scientists with new research questions, methods, and perspectives. The purpose of this paper is to describe Building Infrastructure Leading to Diversity (BUILD); Promoting Opportunities for Diversity in Education and Research (PODER), which is an undergraduate biomedical research training program based on transformative framework rooted in Critical Race Theory (CRT). By employing a CRT-informed curriculum and training in BUILD PODER, students are empowered not only to gain access but also to thrive in graduate programs and beyond. Poder means "power" or "to be able to" in Spanish. Essentially, we are "building power" using students' strengths and empowering them as learners. The new curriculum helps students understand institutional policies and practices that may prevent them from persisting in higher education, learn to become their own advocates, and successfully confront social barriers and instances of inequities and discrimination. To challenge these barriers and sustain campus changes in support of students, BUILD PODER works toward changing campus culture and research mentoring relationships. By joining with ongoing university structures such as the state university Graduation Initiative, we include CRT tenets into the campus dialogue and stimulate campus-wide discussions around institutional change. Strong ties with five community college partners also enrich BUILD PODER's student body and strengthen mentor diversity. Preliminary evaluation data suggest that BUILD PODER's program has enhanced the racial/ethnic consciousness of the campus community, is effective in encouraging more egalitarian and respectful faculty-student relationships, and is a rigorous program of biomedical research training that supports students as they achieve their goals. Biomedical research programs may benefit from a reanalysis of the fit between current training programs and student strengths. By incorporating the voices of talented youth, drawing upon their native strengths, we will generate a new science that links biomedical research to community health and social justice, generating progress toward health equity through a promising new generation of scholars.
Kimoto, Aishi; Tanaka, Makoto; Nozaki, Kazutoshi; Mori, Masamichi; Fukushima, Shinji; Mori, Hiroshi; Shiroya, Tsutomu; Nakamura, Toshitaka
2013-07-01
This study examined and compared the effects of four-week intermittent and daily administrations of minodronic acid, a highly potent nitrogen-containing bisphosphonate, on bone mineral density (BMD), bone strength, bone turnover, and histomorphometry on established osteopenia in ovariectomized (OVX) rats. Fourteen-week-old female F344 rats were OVX or sham-operated. At 12 weeks post surgery, minodronic acid was orally administered once every 4 weeks at 0.2, 1, and 5 mg/kg and once daily at 0.006, 0.03, and 0.15 mg/kg for 12 months. The total dosing amount was comparable between the two dosing regimens. The levels of urinary deoxypyridinoline and serum osteocalcin were measured to assess bone turnover. BMD as assessed via dual-energy X-ray absorptiometry, bone structure and dynamical changes in vertebral trabecula and biomechanical properties were measured ex vivo at 12 months to assess bone content and material properties. Minodronic acid dose-dependently ameliorated the decrease in BMD of lumbar vertebrae and the femur in both treatment regimens similarly. Minodronic acid suppressed elevated urinary levels of deoxypyridinoline, a bone resorption marker, and reduced the serum levels of osteocalcin, a bone formation marker. In the mechanical test at 12 months of treatment, minodronic acid dose-dependently ameliorated the reduction in bone strength in femur and vertebral body. There is no significant difference in parameters between the two regimens except maximal load of lower doses in lumbar vertebral body and absorption energy of middle doses in femur. With these parameters with significant differences, values of the intermittent regimen were significantly lower than that of daily repeated regimen. Bone histomorphometric analysis of the lumbar vertebral body showed that minodronic acid significantly ameliorated the decrease in bone mass, trabecular thickness and number, and the increase in trabecular separation, bone resorption indices (Oc.S/BS and N.Oc/BS), and bone formation indices (BFR/BS, MAR and OV/BV) in both regimens. Minodronic acid suppressed OVX-induced increases in bone turnover at the tissue level and ameliorated all structural indices, thereby improving the deterioration of bone quality under osteoporotic disease conditions regardless of the regimen. In conclusion, a four-week intermittent treatment of minodronic acid suppressed increased bone resorption as daily treatment when considering the total administered dose in OVX rats with established osteopenia. The improvement of microarchitectural destruction in low dose of intermittent treatment was weaker than that observed in a daily repeated regimen; however the effects of high and middle doses of intermittent treatment were equivalent to that observed in daily repeated regimen accompanied by sufficient bone resorption inhibition in rats. These findings suggest that minodronic acid at an appropriate dose in an intermittent regimen may be as clinically useful in osteoporosis therapy as in daily treatment. Copyright © 2013 Elsevier Inc. All rights reserved.
Rheological and structural properties of sea cucumber Stichopus japonicus during heat treatment
NASA Astrophysics Data System (ADS)
Gao, Xin; Xue, Dongmei; Zhang, Zhaohui; Xu, Jiachao; Xue, Changhu
2005-07-01
Changes in tissue structure, rheological properties and water content of raw and heated sea cucumber meat were studied. Sea cucumber Stichopus japonicus was heated at 25°C , 70°C and 100°C water for 5 min. The structural changes were observed using a light microscope and the rheological parameters (rupture strength, adhesive strength and deformation) determined using a texture meter. Microscopic photograph revealed that the structural change of heated meat was greater than that of raw meat. The rupture strength, adhesive strength and deformation of raw meat were smaller than those of the heated meat. Meanwhile, rheological parameters showed positive correlation with heating temperature. These changes are mainly caused by thermal denaturation and gelatinization of collagen during heating. These changes were also evidenced in observations using a light microscope and differential scanning calorimetry.
Driving chiral domain walls in antiferromagnets using rotating magnetic fields
NASA Astrophysics Data System (ADS)
Pan, Keming; Xing, Lingdi; Yuan, H. Y.; Wang, Weiwei
2018-05-01
We show theoretically and numerically that an antiferromagnetic domain wall can be moved by a rotating magnetic field in the presence of Dzyaloshinskii-Moriya interaction (DMI). Two motion modes are found: rigid domain wall motion at low frequency (corresponding to the perfect frequency synchronization) and the oscillating motion at high frequency. In the full synchronized region, the steady velocity of the domain wall is universal, in the sense that it depends only on the frequency of the rotating field and the ratio between DMI strength and exchange constant. The domain wall velocity is independent of the Gilbert damping and the rotating field strength. Moreover, a rotating field in megahertz is sufficient to move the antiferromagnetic domain wall.
Aging transition in systems of oscillators with global distributed-delay coupling.
Rahman, B; Blyuss, K B; Kyrychko, Y N
2017-09-01
We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.
Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
Van Calcar, Pamela; Mackay, Richard; Sammells, Anthony F.
2002-01-01
The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.
Opening-assisted coherent transport in the semiclassical regime
NASA Astrophysics Data System (ADS)
Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev
2017-02-01
We study quantum enhancement of transport in open systems in the presence of disorder and dephasing. Quantum coherence effects may significantly enhance transport in open systems even in the semiclassical regime (where the decoherence rate is greater than the intersite hopping amplitude), as long as the disorder is sufficiently strong. When the strengths of disorder and dephasing are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected in the Fenna-Matthews-Olson (FMO) photosynthetic complex, which may be viewed as intermediate between these paradigmatic models.
Intratester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.
Brindle, Richard A; Ebaugh, David; Milner, Clare E
2018-06-06
Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a "break" test, the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intrarater reliability and construct validity of a hip abductor eccentric strength test. Intrarater reliability and construct validity study. Twenty healthy adults (26 [6] y; 1.66 [0.06] m; 62.2 [8.0] kg) made 2 visits to the laboratory at least 1 week apart. During the hip abductor eccentric strength test, a handheld dynamometer recorded peak force and time to peak force, and limb position was recorded via a motion capture system. Intrarater reliability was determined using intraclass correlation, SEM, and minimal detectable difference. Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a 1-sample t test. The hip abductor eccentric strength test had substantial intrarater reliability (intraclass correlation (3,3) = .88; 95% confidence interval, .65-.95), SEM of 0.9 %BWh, and a minimal detectable difference of 2.5 %BWh. Construct validity was established as peak force occurred 2.1 (0.6) seconds (range: 0.7-3.7 s) after the start of the lowering phase of the test (P ≤ .001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.
Evaluating the strength of concrete structure on terrace houses
NASA Astrophysics Data System (ADS)
Hasbullah, Mohd. Amran; Yusof, Rohana; Rahman, Mohd Nazaruddin Yusoff @ Abdul
2016-08-01
The concrete structure is the main component to support the structure of the building, but when concrete has been used for an extended period hence, it needs to be evaluated to determine the current strength, durability and how long it can last. The poor quality of concrete structures will cause discomfort to the user and, the safety will be affected due to lack of concrete strength. If these issues are not monitored or not precisely known performance, and no further action done then, the concrete structure will fail and eventually it will collapse. Five units of terrace houses that are built less than 10 years old with extension or renovations and have cracks at Taman Samar Indah, Samarahan, Sarawak have been selected for this study. The instrument used in this research is Ultrasonic Pulse Velocity (UPV), with the objective to determine the current strength and investigate the velocity of a pulse at the concrete cracks. The data showed that the average velocity of the pulse is less than 3.0 km/s and has shown that the quality of the concrete in the houses too weak scale / doubt in the strength of concrete. It also indicates that these houses need to have an immediate repair in order to remain secure other concrete structures.
3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
NASA Astrophysics Data System (ADS)
Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie
2018-04-01
The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.
Self-curing concrete with different self-curing agents
NASA Astrophysics Data System (ADS)
Gopala krishna sastry, K. V. S.; manoj kumar, Putturu
2018-03-01
Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.
NASA Astrophysics Data System (ADS)
Saleh, H.; Schmidtchen, M.; Kawalla, R.
2018-02-01
In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.
Androulakis-Korakakis, Patroklos; Langdown, Louis; Lewis, Adam; Fisher, James P; Gentil, Paulo; Paoli, Antonio; Steele, James
2018-02-01
Androulakis-Korakakis, P, Langdown, L, Lewis, A, Fisher, JP, Gentil, P, Paoli, A, and Steele, J. Effects of exercise modality during additional "high-intensity interval training" on aerobic fitness and strength in powerlifting and strongman athletes. J Strength Cond Res 32(2): 450-457, 2018-Powerlifters and strongman athletes have a necessity for optimal levels of muscular strength while maintaining sufficient aerobic capacity to perform and recover between events. High-intensity interval training (HIIT) has been popularized for its efficacy in improving both aerobic fitness and strength but never assessed within the aforementioned population group. This study looked to compare the effect of exercise modality, e.g., a traditional aerobic mode (AM) and strength mode (SM), during HIIT on aerobic fitness and strength. Sixteen well resistance-trained male participants, currently competing in powerlifting and strongman events, completed 8 weeks of approximately effort- and volume-matched HIIT in 2 groups: AM (cycling, n = 8) and SM (resistance training, n = 8). Aerobic fitness was measured as predicted V[Combining Dot Above]O2max using the YMCA 3 minutes step test and strength as predicted 1 repetition maximum from a 4-6RM test using a leg extension. Both groups showed significant improvements in both strength and aerobic fitness. There was a significant between-group difference for aerobic fitness improvements favoring the AM group (p ≤ 0.05). There was no between-group difference for change in strength. Magnitude of change using within-group effect size for aerobic fitness and strength was considered large for each group (aerobic fitness, AM = 2.6, SM = 2.0; strength, AM = 1.9, SM = 1.9). In conclusion, our results support enhanced strength and aerobic fitness irrespective of exercise modality (e.g., traditional aerobic and resistance training). However, powerlifters and strongman athletes wishing to enhance their aerobic fitness should consider HIIT using an aerobic HIIT mode.
Improving Powder Tableting Performance through Materials Engineering
NASA Astrophysics Data System (ADS)
Osei-Yeboah, Frederick
Adequate mechanical strength is a critical requirement to the successful development of a tablet product. Before tablet compression, powders are often engineered by various processes including wet granulation and surface coating, which may improve or adversely affect the powder tableting performance. Such effects, commonly, result from a change in either particle mechanical properties or particulate (size, shape) properties. In this work, tableting performance is interpreted based on the qualitative bonding-area and bonding-strength (BABS) model. The tabletability of the microcrystalline cellulose (MCC) granules deteriorates rapidly with increasing amount of granulating water and eventually leads to over-granulation at high water level. Granule surface smoothing, size enlargement, granule densification and shape rounding are the dominant factors leading to the tabletability reduction of plastic MCC. Incorporation of increasing amounts of brittle excipients, such as lactose or dibasic calcium phosphate reduces the rate of tabletability reduction by promoting more granule fragmentation, introducing more surface area available for bonding. When a sufficient amount of brittle excipients is used, the over-granulation phenomenon can be eliminated. Surface coating of incompressible MCC pellets with highly bonding polymer leads to sufficient surface deformation and adhesion to enable direct compression of the pellets into tablets of adequate mechanical strength. This improvement is enhanced by the presence of moisture, which plasticizes the polymer to allow the development of a larger bonding area between coated pellets. The relationship between mechanical properties and tableting behavior is systematically investigated in polymeric composites using celecoxib-polyvinylpyrrolidone vinyl acetate solid dispersions. Mechanical properties such as indentation hardness of the solid dispersions were measured using nanoindentation. Incorporation of celecoxib up to 60% by weight hardens the polymers, which reduces bonding area but increases bonding strength. On the other hand, moisture softens the solid dispersions and facilitates deformation under pressure to improve tablet mechanical strength. In summary, insights into the deteriorated tabletability of wet granulated powders have been developed and strategies for improving tabletability have been demonstrated. Also, the relationship between particle mechanical properties and tableting performance has been examined using solid dispersions. The BABS model has been further developed to enable its widespread application in interpreting complex tableting behavior.
Effective collision strengths for the electron impact excitation of Mg
NASA Astrophysics Data System (ADS)
Hudson, C. E.; Ramsbottom, C. A.; Norrington, P. H.; Scott, M. P.
2008-05-01
Electron impact excitation collision strengths for fine structure transitions of Mg,have been determined by a Breit-Pauli R-matrix calculation. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s^22p^4, 2s2p^5, 2p^6, 2s^22p^33s and 2s^22p^33p. These target states give rise to 37 fine structure levels and 666 possible transitions. The effective collision strengths are calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. Effective collision strengths for transitions between the fine structure levels are given for electron temperatures in the range 10Te(K) = 3.0 - 7.0. Results are compared with the previous R-matrix calculation of Butler & Zeippen (AASS, 1994) and the recent Distorted Wave evaluations of Bhatia, Landi & Eissner (ADNDT, 2006).
[Effect of pigmentation on the strength of dental Y-TZP/porcelain bilayered structure].
Ma, Ting-ting; Yi, Yuan-fu; Shao, Long-quan; Liu, Hong-chen; Tian, Jie-mo; Hou, Kang-lin; Zhang, Wei-wei; Wen, Ning; Deng, Bin
2010-05-01
To investigate the effect of two methods of pigmentation on the flexural strength of dental Y-TZP/porcelain layered structure. KaVo zirconia substructures were pigmented by dipping presintered blocks in the coloring solution VITA LL1 and LL5, and colored TZ-3YS zirconia substructures were fabricated by adding pigments before isostatic pressing. The colors No.1 and No.5 were used for the test. The specimens were made in monolithic or bilayered forms, and the flexural strength was tested. XRD and SEM with EDX were used to analyze the characteristics of the surface structure. In KaVo group, no significant differences were found in the flexural strength between white and LL1 and LL5 colored monoclinic materials, nor in bilayered structures. While in TZ-3YS group, significant differences were noted in the flexural strength between color No.5 white and color No.1 monoclinic materials, but not between the latter two subgroups. The flexural strength was significantly lowered by veneering with porcelain in both zirconia groups, and similar findings were observed with the monoclinic materials. Only the tetragonal phase was detected in both of the zirconia groups. Pigmentation has no apparent effects on the bonding strength between the veneering porcelain and zirconia. Both coloring methods are appropriate when the concentration of the pigments is under deliberate control.
High-strength cellular ceramic composites with 3D microarchitecture.
Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver
2014-02-18
To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).
Effect of core geometry and size on concrete compressive strength.
DOT National Transportation Integrated Search
2016-07-01
To evaluate the in-place concrete strength for acceptance for a structural member with : potentially substandard strength, the compressive strength of cores may be required for : assessment. Depending on the geometry and size of the core specimen, th...
The Influence of Chemical Structure on the Strength of Rubber.
1986-04-01
sticky, as if covered with an oily or tarry film. The debris from carbon-black-filled natural rubber vulcanizates is even more highly degraded , so...RD-RI66 355 THE INFLUENCE OF CHEMICAL STRUCTURE ON THE STRENGTH OF 1 1) RS 5355 RUBBER (U) KRON UNJY OH INST OF POLYMER SCIENCE UNCLSSIFEIDA N GENT...85-K-0222 .- Project NR 092-555 UTechnical Report No. 4 THE INFLUENCE OF CHEMICAL STRUCTURE ON THE * 4: STRENGTH OF RUBBER by S 2LECTE by A P R 0 9 I
Stochastic metallic-glass cellular structures exhibiting benchmark strength.
Demetriou, Marios D; Veazey, Chris; Harmon, John S; Schramm, Joseph P; Johnson, William L
2008-10-03
By identifying the key characteristic "structural scales" that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date.
NASA Astrophysics Data System (ADS)
Moawia, Rihab Musaad; Nasef, Mohamed Mahmoud; Mohamed, Nor Hasimah; Ripin, Adnan
2016-05-01
Flax fibres were modified by radiation induced graft copolymerization of glycidyl methacrylate (GMA) by pre-irradiation method in an emulsion medium. The effect of reaction parameters on the degree of grafting (DOG) such as concentration of bleaching agent, absorbed dose, monomer concentration, temperature and reaction time were investigated. The DOG was found to be dependent on the investigated parameters. The incorporation of poly(GMA) grafts in the bleached flax fibres was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The structural and mechanical changes were evaluated by X-ray diffraction (XRD) and mechanical tester, respectively. The results revealed that reacting bleached flax fibres irradiated with 20 kGy with 5% GMA emulsion containing 0.5% polyoxyethylene-sorbitan monolaurate (Tween 20) surfactant at 40 °C for 1 h led to a maximum DOG of 148%. The grafted fibres showed sufficient mechanical strength and hydrophobicity which make them promising precursors for development of adsorbents after appropriate chemical treatments.
Kaiser, Patrick; Reich, Steffen; Greiner, Andreas; Freitag, Ruth
2018-06-12
Biocomposites, i.e., materials consisting of metabolically active microorganisms embedded in a synthetic extracellular matrix, may find applications as highly specific catalysts in bioproduction and bioremediation. 3D constructs based on fibrous biocomposites, so-called "artificial biofilms," are of particular interest in this context. The inability to produce biocomposite fibers of sufficient mechanical strength for processing into bioactive fabrics has so far hindered progress in the area. Herein a method is proposed for the direct wet spinning of microfibers suitable for weaving and knitting. Metabolically active bacteria (either Shewanella oneidensis or Nitrobacter winogradskyi (N. winogradskyi)) are embedded in these fibers, using poly(vinyl alcohol) as matrix. The produced microfibers have a partially crystalline structure and are stable in water without further treatment, such as coating. In a first application, their potential for nitrite removal (N. winogradskyi) is demonstrated, a typical challenge in potable water treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheng, Yu-Chia; Lobo, Raul F; Sandler, Stanley I; Lenhoff, Abraham M
2006-05-05
The kinetics and thermodynamics of lysozyme precipitation in ammonium sulfate solutions at pH 4 and 8 and room temperature were studied. X-ray powder diffraction (XRD) was used to characterize the structure of lysozyme precipitates. It was found that, if sufficient time was allowed, microcrystals developed following an induction period after initial lysozyme precipitation, even up to ionic strengths of 8 m and at acidic pH, where lysozyme is refractory to crystallization in ammonium sulfate. The full set of precipitation and crystallization data allowed construction of a phase diagram of lysozyme, showing the ammonium sulfate dependence. It suggests that precipitation may reflect a frustrated metastable liquid-liquid phase separation, which would allow this process to be understood within the framework of the generic phase diagram for proteins. The results also demonstrate that XRD, more frequently used for characterizing inorganic and organic polycrystalline materials, is useful both in characterizing the presence of crystals in the dense phase and in verifying the crystal form of proteins.
Cluster studies of La[sub 2]CuO[sub 4]: A mapping onto the Pariser--Parr--Pople (PPP) model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.L.
1993-06-01
The techniques of [ital ab] [ital initio] electronic structure theory are used to study Cu[sub 2]O[sub 7] and Cu[sub 2]O[sub 11] cluster models of La[sub 2]CuO[sub 4]. Fair agreement is obtained with the experimentally determined spin exchange constant [ital J] (90 meV calculated vs 125 meV measured) at the expense of quite large configuration interactions (CI) expansions. Results for various charge states of the cluster are well described by a single-band'' Pariser--Parr--Pople (PPP) model. As in earlier local-density-functional (LDF) based parameter determinations, the present work suggests these materials fall in the strong coupling regime. However, a significant intersite Coulomb repulsionmore » is found in the present research. It is of sufficient strength [ital V][similar to][ital U]/5 to indicate that charge fluctuations may be more important in these materials than generally believed.« less
Reduction of CO 2 to methanol using aluminum ester FLPs
Smythe, Nathan C.; Dixon, David A.; Garner, III, Edward B.; ...
2015-10-09
Herein we report the synthesis of Al-based esters containing halogenated benzene rings. These Lewis acids were paired with phosphines to form frustrated Lewis pairs (FLPs) which could subsequently bind CO 2. While these FLPs were not sufficiently water-stable to catalyze the reduction of CO 2 to MeOH using NH 3BH 3 as the reductant, we examine the effect of varying Lewis acid strength. Frustrated Lewis pairs (FLPs) are combinations of Lewis acids and Lewis bases where the acid and base are either sterically or geometrically restricted from interacting as strongly as their electronic structures would allow. This effect leads tomore » enhanced reactivity towards small molecules and, consequently, interest in their potential as metal-free catalysts [1], [2], [3], [4] and [5]. Furthermore, to-date, the biggest success has been based around the ability of a myriad of systems to heterolytically cleave H 2 and perform catalytic hydrogenations [2] and [3].« less
Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure
NASA Astrophysics Data System (ADS)
Tang, Chi; Cheng, Bin; Aldosary, Mohammed; Wang, Zhiyong; Jiang, Zilong; Watanabe, K.; Taniguchi, T.; Bockrath, Marc; Shi, Jing
2018-02-01
Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches ¼ of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems.
Enhancement of gaps in thin graphitic films for heterostructure formation
NASA Astrophysics Data System (ADS)
Hague, J. P.
2014-04-01
There are a large number of atomically thin graphitic films with a structure similar to that of graphene. These films have a spread of band gaps relating to their ionicity and, also, to the substrate on which they are grown. Such films could have a range of applications in digital electronics, where graphene is difficult to use. I use the dynamical cluster approximation to show how electron-phonon coupling between film and substrate can enhance these gaps in a way that depends on the range and strength of the coupling. It is found that one of the driving factors in this effect is a charge density wave instability for electrons on a honeycomb lattice that can open a gap in monolayer graphene. The enhancement at intermediate coupling is sufficiently large that spatially varying substrates and superstrates could be used to create heterostructures in thin graphitic films with position-dependent electron-phonon coupling and gaps, leading to advanced electronic components.
VizieR Online Data Catalog: Effective collision strengths of Si VII (Sossah+, 2014)
NASA Astrophysics Data System (ADS)
Sossah, A. M.; Tayal, S. S.
2017-08-01
The purpose of present work is to calculate more accurate data for Si VII by using highly accurate target descriptions and by including a sufficient number of target states in the close-coupling expansion. We also included fine-structure effects in the close-coupling expansions to account for the relativistic effects. We used the B-spline Breit-Pauli R-matrix (BSR) codes (Zatsarinny 2006CoPhC.174..273Z) in our scattering calculations. The present method utilizes the term-dependent non-orthogonal orbital sets for the description of the target wave functions and scattering functions. The collisional and radiative parameters have been calculated for all forbidden and allowed transitions between the lowest 92 LSJ levels of 2s22p4, 2s2p5, 2p6, 2s22p33s, 2s22p33p, 2s22p33d, and 2s2p43s configurations of Si VII. (3 data files).
NASA Astrophysics Data System (ADS)
Saltas, Ippocratis D.; Sawicki, Ignacy; Lopes, Ilidio
2018-05-01
We use the most recent, complete and independent measurements of masses and radii of white dwarfs in binaries to bound the class of non-trivial modified gravity theories, viable after GW170817/GRB170817, using its effect on the mass-radius relation of the stars. We show that the uncertainty in the latest data is sufficiently small that residual evolutionary effects, most notably the effect of core composition, finite temperature and envelope structure, must now accounted for if correct conclusions about the nature of gravity are to be made. We model corrections resulting from finite temperature and envelopes to a base Hamada-Salpeter cold equation of state and derive consistent bounds on the possible modifications of gravity in the stars' interiors, finding that the parameter quantifying the strength of the modification Y< 0.14 at 95% confidence, an improvement of a factor of three with respect to previous bounds. Finally, our analysis reveals some fundamental degeneracies between the theory of gravity and the precise chemical makeup of white dwarfs.
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less
NASA Astrophysics Data System (ADS)
Ng, Thian C.
2012-06-01
It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.
Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit.
Liu, Sha; Liu, Qili; Tabuchi, Masashi; Wu, Mark N
2016-06-02
Prolonged wakefulness leads to an increased pressure for sleep, but how this homeostatic drive is generated and subsequently persists is unclear. Here, from a neural circuit screen in Drosophila, we identify a subset of ellipsoid body (EB) neurons whose activation generates sleep drive. Patch-clamp analysis indicates these EB neurons are highly sensitive to sleep loss, switching from spiking to burst-firing modes. Functional imaging and translational profiling experiments reveal that elevated sleep need triggers reversible increases in cytosolic Ca(2+) levels, NMDA receptor expression, and structural markers of synaptic strength, suggesting these EB neurons undergo "sleep-need"-dependent plasticity. Strikingly, the synaptic plasticity of these EB neurons is both necessary and sufficient for generating sleep drive, indicating that sleep pressure is encoded by plastic changes within this circuit. These studies define an integrator circuit for sleep homeostasis and provide a mechanism explaining the generation and persistence of sleep drive. Copyright © 2016 Elsevier Inc. All rights reserved.
Chaotic nature of the spin-glass phase
NASA Technical Reports Server (NTRS)
Bray, A. J.; Moore, M. A.
1987-01-01
The microscopic structure of the ordered phase of spin glasses is investigated theoretically in the framework of the T = 0 fixed-point model (McMillan, 1984; Fisher and Huse, 1986; and Bray and Moore, 1986). The sensitivity of the ground state to changes in the interaction strengths at T = 0 is explored, and it is found that for sufficiently large length scales the ground state is unstable against arbitrarily weak perturbations to the bonds. Explicit results are derived for d = 1, and the implications for d = 2 and d = 3 are considered in detail. It is concluded that there is no hidden order pattern for spin glasses at all T less than T(C), the ordered-phase spin correlations being chaotic functions of spin separation at fixed temperature or of temperature (for a given pair of spins) at scale lengths L greater than (T delta T) exp -1/zeta, where zeta = d(s)/2 - y, d(s) is the interfacial fractal dimension, and -y is the thermal eigenvalue at T = 0.
Observations of the 51.8 micron (O III) emission line in Orion
NASA Technical Reports Server (NTRS)
Melnick, G.; Gull, G. E.; Harwit, M.; Ward, D. B.
1978-01-01
The 51.8 micron fine structure transition P2:3P2 3P1 for doubly ionized oxygen was observed in the Orion nebula. The observed line strength is of 5 plus or minus 3 times 10 to the minus 15th power watt/sq cm is in good agreement with theoretical predictions. Observations are consistent with the newly predicted 51.8 micron line position. The line lies close to an atmospheric water vapor feature at 51.7 micron, but is sufficiently distant so that corrections for this feature are straightforward. Observations of the 51.8 (O III) line are particularly important since the previously discovered 88 micron line from the same ion also is strong. This pair of lines should, therefore, yield new data about densities in observed H II regions; or else, if density data already are available from radio or other observations, the lines can be used to determine the differential dust absorption between 52 and 88 micron in front of heavily obscured regions.
Lee, Jung-Jin; Choi, Jung-Yun; Seo, Jae-Min
2017-04-01
The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength ( P <.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. Groups treated with the nanostructured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.
Heat-induced gelation of myosin in a low ionic strength solution containing L-histidine.
Hayakawa, T; Yoshida, Y; Yasui, M; Ito, T; Iwasaki, T; Wakamatsu, J; Hattori, A; Nishimura, T
2012-01-01
Binding properties are important for meat products and are substantially derived from the heat-induced gelation of myosin. We have shown that myosin is solubilized in a low ionic strength solution containing L-histidine. To clarify its processing characteristics, we investigated properties and structures of heat-induced gels of myosin solubilized in a low ionic strength solution containing L-histidine. Myosin in a low ionic strength solution formed transparent gels at 40-50°C, while myosin in a high ionic strength solution formed opaque gels at 60-70°C. The gel of myosin in a low ionic strength solution with L-histidine showed a fine network consisting of thin strands and its viscosity was lower than that of myosin in a high ionic strength solution at 40-50°C. The rheological properties of heat-induced gels of myosin at low ionic strength are different from those at high ionic strength. This difference might be caused by structural changes in the rod region of myosin in a low ionic strength solution containing L-histidine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Trends in aerospace structures
NASA Technical Reports Server (NTRS)
Card, M. F.
1978-01-01
Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.
The very good property for parabolic vector bundles over curves
NASA Astrophysics Data System (ADS)
Soibelman, Alexander
2018-06-01
The purpose of this note is to extend Beilinson and Drinfeld's "very good" property to moduli stacks of parabolic vector bundles on curves of genuses g = 0 and g = 1. Beilinson and Drinfeld show that for g > 1 a trivial parabolic structure is sufficient for the moduli stacks to be "very good." We give a sufficient condition on the parabolic structure for this property to hold in the case of nontrivial parabolic structure.
Influence of water immersion on the mechanical properties of fiber posts.
Komada, Wataru; Inagaki, Tasuku; Ueda, Yoji; Omori, Satoshi; Hosaka, Keiichi; Tagami, Junji; Miura, Hiroyuki
2017-01-01
The purpose of this study was to evaluate the influence of water immersion on the mechanical properties of three kinds of glass fiber posts and the fracture resistance of structures using resin composites with glass fiber posts. Each post was divided into three groups; a control group and two water immersion groups (30 and 90 days). Flexural strength was determined by three-point bending test. Each structure was divided into two groups; a control group and a water immersion group for 30 days. The fracture strength of structures was determined by a static loading test. In the flexural strength, two kinds of post in water immersion groups showed lower values than control groups. In the fracture strength, two kinds of structures in water immersion group showed lower values than control groups. The prefabricated glass fiber posts and structures using resin composites with glass fiber posts were affected by water immersion. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Reeve, Thomas E; Ur, Rebecca; Craven, Timothy E; Kaan, James H; Goldman, Matthew P; Edwards, Matthew S; Hurie, Justin B; Velazquez-Ramirez, Gabriela; Corriere, Matthew A
2018-05-01
Frailty is associated with adverse events, length of stay, and nonhome discharge after vascular surgery. Frailty measures based on walking-based tests may be impractical or invalid for patients with walking impairment from symptoms or sequelae of vascular disease. We hypothesized that grip strength is associated with frailty, comorbidity, and cardiac risk among patients with vascular disease. Dominant hand grip strength was measured during ambulatory clinic visits among patients with vascular disease (abdominal aortic aneurysm [AAA], carotid stenosis, and peripheral artery disease [PAD]). Frailty prevalence was defined on the basis of the 20th percentile of community-dwelling population estimates adjusted for age, gender, and body mass index. Associations between grip strength, Charlson Comorbidity Index (CCI), Revised Cardiac Risk Index (RCRI), and sarcopenia (based on total psoas area for patients with cross-sectional abdominal imaging) were evaluated using linear and logistic regression. Grip strength was measured in 311 participants; all had sufficient data for CCI calculation, 217 (69.8%) had sufficient data for RCRI, and 88 (28.3%) had cross-sectional imaging permitting psoas measurement. Eighty-six participants (27.7%) were categorized as frail on the basis of grip strength. Frailty was associated with CCI (odds ratio, 1.86; 95% confidence interval, 1.34-2.57; P = .0002) in the multivariable model. Frail participants also had a higher average number of RCRI components vs nonfrail patients (mean ± standard deviation, 1.8 ± 0.8 for frail vs 1.5 ± 0.7 for nonfrail; P = .018); frailty was also associated with RCRI in the adjusted multivariable model (odds ratio, 1.75; 95% confidence interval, 1.16-2.64; P = .008). Total psoas area was lower among patients categorized as frail vs nonfrail on the basis of grip strength (21.0 ± 6.6 vs 25.4 ± 7.4; P = .010). Each 10 cm 2 increase in psoas area was associated with a 5.7 kg increase in grip strength in a multivariable model adjusting for age and gender (P < .0001). Adjusted least squares mean psoas diameter estimates were 25.5 ± 1.1 cm 2 for participants with AAA, 26.7 ± 2.0 cm 2 for participants with carotid stenosis, and 22.7 ± 0.8 cm 2 for participants with PAD (P = .053 for PAD vs AAA; P = .057 for PAD vs carotid stenosis; and P = .564 for AAA vs carotid stenosis). Grip strength is useful for identifying frailty among patients with vascular disease. Frail status based on grip strength is associated with comorbidity, cardiac risk, and sarcopenia in this population. These findings suggest that grip strength may have utility as a simple and inexpensive risk screening tool that is easily implemented in ambulatory clinics, avoids the need for imaging, and overcomes possible limitations of walking-based measures. Lower mean psoas diameters among patients with PAD vs other diagnoses may warrant consideration of specific approaches to morphomic analysis. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Strength. 31.27 Section 31.27 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.27 Strength. (a) The structure must be able to...
Structural design parameters of current WSDOT mixtures.
DOT National Transportation Integrated Search
2013-06-01
The AASHTO LRFD, as well as other design manuals, has specifications that estimate the structural performance of a concrete mixture with regard to compressive strength, tensile strength, and deformation-related properties such as the modulus of elast...
Adaptive controller for a strength testbed for aircraft structures
NASA Astrophysics Data System (ADS)
Laperdin, A. I.; Yurkevich, V. D.
2017-07-01
The problem of control system design for a strength testbed of aircraft structures is considered. A method for calculating the parameters of a proportional-integral controller (control algorithm) using the time-scale separation method for the testbed taking into account the dead time effect in the control loop is presented. An adaptive control algorithm structure is proposed which limits the amplitude of high-frequency oscillations in the control system with a change in the direction of motion of the rod of the hydraulic cylinders and provides the desired accuracy and quality of transients at all stages of structural loading history. The results of tests of the developed control system with the adaptive control algorithm on an experimental strength testbed for aircraft structures are given.
NASA Astrophysics Data System (ADS)
Samoylenko, Vitaliy V.; Lenivtseva, Olga G.; Polyakov, Igor A.; Laptev, Ilya S.
2015-10-01
In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of cladded layers to the substrate, which exceeded cp-titanium strength characteristics.
Sarcopenic-obesity and cardiovascular disease risk in the elderly.
Stephen, W C; Janssen, I
2009-05-01
To determine: 1) whether sarcopenic-obesity is a stronger predictor of cardiovascular disease (CVD) than either sarcopenia or obesity alone in the elderly, and 2) whether muscle mass or muscular strength is a stronger marker of CVD risk. Prospective cohort study. Participants included 3366 community-dwelling older (>or= 65 years) men and women who were free of CVD at baseline. Waist circumference (WC), bioimpedance analysis, and grip strength were used to measure abdominal obesity, whole-body muscle mass, and muscular strength, respectively. Subjects were classified as normal, sarcopenic, obese, or sarcopenic-obese based on measures of WC and either muscle mass or strength. Participants were followed for 8 years for CVD development and proportional hazard regression models were used to compare risk estimates for CVD in the four groups after adjusting for age, sex, race, income, smoking, alcohol, and cognitive status. Compared with the normal group, CVD risk was not significantly elevated within the obese, sarcopenic, or sarcopenic-obese groups as determined by WC and muscle mass. When determined by WC and muscle strength, CVD risk was not significantly increased in the sarcopenic or obese groups, but was increased by 23% (95% confidence interval: 0.99-1.54, P=0.06) within the sarcopenic-obese group. Sarcopenia and obesity alone were not sufficient to increase CVD risk. Sarcopenic-obesity, based on muscle strength but not muscle mass, was modestly associated with increased CVD risk. These findings imply that strength may be more important than muscle mass for CVD protection in old age.
Kato, Yushi; Sawada, Atsushi; Numao, Shigeharu; Suzuki, Masashige
2011-01-01
We have previously reported on the possibility that light resistance exercise performed with a high plasma amino acid concentration resulting from the ingestion of a high-protein snack (HPS; 15 g protein, 18 g sugar) 3 h after a basal meal promotes the utilization of amino acids in peripheral tissues such as muscle in both rats and humans. In the present study, we further examined the effectiveness of a daily routine involving ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise (dumbbell exercise) in increasing the mass and strength of human muscle. Ten young adult males were subject to the following 3 conditions for 5 wk each, with sufficient recovery period between each condition: (1) Snack-Exercise (SE), (2) Snack-Sedentary (SS), and (3) No snack-Exercise (NE). The SE group showed a significant increase in lean body mass and total cross-sectional area (CSA) of the right forearm muscles along with a significant decrease in body fat mass. The SS group showed no change in body composition. Furthermore, the SE group showed significant increase in grip strength and isometric knee extensor muscle strength, while the SS group showed no increase in muscle strength. The NE group showed significant increase in grip strength. In conclusion, daily routine ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise is effective in increasing the mass and strength of human muscle.
Determining the Area of Review for Industrial Waste Disposal Wells.
1981-12-01
pressure increases sufficiently to force formation fluids and/or injected wastes up abandoned well bores to contaminate underground sources of drinking...Drilling Mud Circulating System . . 72 9. Increase in Gel Strength of Various Mud Types With Time . . . . . . . . . . . . . . . . . . 96 10. Gel... increased fluid pressure in a disposal zone which results from a waste injection operation may force injected and/or formation fluid to migrate up an
Tissue-Simulating Gel For Medical Research
NASA Technical Reports Server (NTRS)
Companion, John A.
1992-01-01
Nonhardening, translucent gel more nearly simulates soft human or animal tissue. Modified to be softer or harder by altering proportions of ingredients. Fillers added to change electrical, mechanical, heat-conducting, or sound-conducting/scattering properties. Molded to any desired shape and has sufficient mechanical strength to maintain shape without supporting shell. Because of its thermal stability, gel especially useful for investigation of hyperthermia as treatment for cancer.
Hardware Design for a Fixed-Wing Airborne Gravity Measurement System
1986-12-22
worldwide navigation system currently available that is sufficiently accurate for deter- mining Eotvos correction in airborne gravimetry is the Global...better in defining the strength of precipitation . The radar display is compact enough to be mounted on the cockpit, thus giving the pilots better...of the proposed AGMS version 3 MISCELLANEOUS AIRCRAFT CONSIDERATIONS Autopilot One of the most important considerations in airborne gravimetry is
Manganese-stabilized austenitic stainless steels for fusion applications
Klueh, Ronald L.; Maziasz, Philip J.
1990-08-07
An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.
Solid phase extraction membrane
Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI
2002-11-05
A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.
The engine of thought is a hybrid: roles of associative and structured knowledge in reasoning.
Bright, Aimée K; Feeney, Aidan
2014-12-01
Across a range of domains in psychology different theories assume different mental representations of knowledge. For example, in the literature on category-based inductive reasoning, certain theories (e.g., Rogers & McClelland, 2004; Sloutsky & Fisher, 2008) assume that the knowledge upon which inductive inferences are based is associative, whereas others (e.g., Heit & Rubinstein, 1994; Kemp & Tenenbaum, 2009; Osherson, Smith, Wilkie, López, & Shafir, 1990) assume that knowledge is structured. In this article we investigate whether associative and structured knowledge underlie inductive reasoning to different degrees under different processing conditions. We develop a measure of knowledge about the degree of association between categories and show that it dissociates from measures of structured knowledge. In Experiment 1 participants rated the strength of inductive arguments whose categories were either taxonomically or causally related. A measure of associative strength predicted reasoning when people had to respond fast, whereas causal and taxonomic knowledge explained inference strength when people responded slowly. In Experiment 2, we also manipulated whether the causal link between the categories was predictive or diagnostic. Participants preferred predictive to diagnostic arguments except when they responded under cognitive load. In Experiment 3, using an open-ended induction paradigm, people generated and evaluated their own conclusion categories. Inductive strength was predicted by associative strength under heavy cognitive load, whereas an index of structured knowledge was more predictive of inductive strength under minimal cognitive load. Together these results suggest that associative and structured models of reasoning apply best under different processing conditions and that the application of structured knowledge in reasoning is often effortful. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
1996-01-01
A detailed experimental investigation to understand and quantify the development of loss and blockage in the flow field of a transonic, axial flow compressor rotor has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at design and off-design conditions. The rotor was operated at 100%, 85%, 80%, and 60% of design speed which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89 respectively. At design speed the blockage is evaluated ahead of the rotor passage shock, downstream of the rotor passage shock, and near the trailing edge of the blade row. The blockage is evaluated in the core flow area as well as in the casing endwall region. Similarly at pm speed conditions for the cases of (1) where the rotor passage shock is much weaker than that at design speed and (2) where there is no rotor passage shock, the blockage and loss are evaluated and compared to the results at design speed. Specifically, the impact of the rotor passage shock on the blockage and loss development, pertaining to both the shock/boundary layer interactions and the shock/tip clearance flow interactions, is discussed. In addition, the blockage evaluated from the experimental data is compared to (1) an existing correlation of blockage development which was based on computational results, and (2) computational results on a limited basis. The results indicate that for this rotor the blockage in the endwall region is 2-3 times that of the core flow region and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer. The distribution of losses in the care flow region indicate that the total loss is primarily comprised of the shock loss when the shock strength is not sufficient to separate the suction surface boundary layer. However, when the shock strength is sufficient to separate the suction surface boundary layer, the profile loss is comparable to the shock loss and can exceed the shock loss.
NASA Astrophysics Data System (ADS)
Ma, Xiaoxue; Chen, Xin; Nie, Hongrui; Yang, Daquan
2018-01-01
Recently, due to its superior characteristics and simple manufacture, such as small size, low loss, high sensitivity and convenience to couple, the optical fiber sensor has become one of the most promising sensors. In order to achieve the most effective realization of light propagation by changing the structure of sensors, FOM(S •Q/λres) ,which is determined by two significant variables Q-factor and sensitivity, as a trade-off parameter should be optimized to a high value. In typical sensors, a high Q can be achieved by confining the optical field in the high refractive index dielectric region to make an interaction between analytes and evanescent field of the resonant mode. However, the ignored sensitivity is relatively low with a high Q achieved, which means that the resonant wavelength shift changes non-obviously when the refractive index increases. Meanwhile, the sensitivity also leads to a less desirable FOM. Therefore, a gradient structure, which can enhance the performance of sensors by achieving high Q and high sensitivity, has been developed by Kim et al. later. Here, by introducing parabolic-tapered structure, the light field localized overlaps strongly and sufficiently with analytes. And based on a one-dimensional photonic-crystal nanofiber air-mode cavity, a creative optical fiber sensor is proposed by combining good stability and transmission characteristics of fiber and strengths of tapered structure, realizing excellent FOM {4.7 x 105 with high Q-factors (Q{106) and high sensitivities (<700 nm/RIU).
Cayot, P; Fairise, J F; Colas, B; Lorient, D; Brulé, G
2003-11-01
The enhancement of the strength of set acid gels by heating milk was related to rheological parameters (water retention capacity, storage modulus) of corresponding stirred gels. To obtain accurate rheological data from stirred gel it was necessary to maintain a constant granulometry of gel particles and to recognize time after stirring as a contributing factor. Two hours after stirring, the gel exhibited a higher storage modulus when milk was heated above 80 degrees C. A measurement of viscosity of just-stirred yoghurt was sufficient to predict correctly the quality of a stirred gel analysed by viscoelastic measurements. Increased resistance to syneresis of just-stirred gels was related to higher viscosity. The quantity of beta-lactoglobulin (beta-Ig) bound to casein micelles explains the improvement of these gel qualities. We have considered that the structure of the initial firm gel (mesostructure level) was conserved in fragments within the stirred gel. Consequently, the explanation given by various authors for the effect of heating milk on the properties of set gels can also be applied to stirred gels. The same mechanism, described in literature for structure formation of set gels from acidified milk is purposed to explain the role of heating milk on the recovery of gel structure after stirring. The beta-Ig association with casein micelles during heating favoured micelle connections during the acidification. It also favoured the association of gel fragments after stirring during the recovery in gel structure.
Koodaryan, Roodabeh; Hafezeqoran, Ali
2016-12-01
Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (α=.05). The bond strength values of A and S were significantly higher than those of N ( P <.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG ( P <.001). The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin.
Krull, Annika; Morlock, Michael M; Bishop, Nicholas E
2017-10-01
Intraoperative interface contamination of modular head-stem taper junctions of hip implants can lead to poor fixation strength, causing fretting and crevice corrosion or even stem taper fracture. Careful cleaning before assembly should help to reduce these problems. The purpose of this study was to determine the effect of cleaning (with and without drying) contaminated taper interfaces on the taper fixation strength. Metal or ceramic heads were impacted onto titanium alloy stem tapers with cleaned or contaminated (fat or saline solution) interfaces. The same procedure was performed after cleaning and drying the contaminated interfaces. Pull-off force was used to determine the influence of contamination and cleaning on the taper strength. Pull-off forces after contamination with fat were significantly lower than those for uncontaminated interfaces for both head materials. Pull-off forces after application of saline solution were not significantly different from those for uncontaminated tapers. However, a large variation in taper strength was observed, pull-off forces for cleaned and dried tapers were similar to those for uncontaminated tapers for both head materials. Intraoperative contamination of taper interfaces may be difficult to detect but has a major influence on taper fixation strength. Cleaning of the stem taper with saline solution and drying with gauze directly before assembly allows the taper strength of the pristine components to be achieved. Not drying the taper results in a large variation in pull-off forces, emphasizing that drying is essential for sufficient and reproducible fixation strength. Copyright © 2017 Elsevier Inc. All rights reserved.
Influence of processing factors over concrete strength.
NASA Astrophysics Data System (ADS)
Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.
2018-03-01
Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.
Bio-Functional Design, Application and Trends in Metallic Biomaterials
Yang, Ke; Zhou, Changchun; Fan, Hongsong; Fan, Yujiang; Jiang, Qing; Song, Ping; Fan, Hongyuan; Chen, Yu; Zhang, Xingdong
2017-01-01
Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed. PMID:29271916
Bio-Functional Design, Application and Trends in Metallic Biomaterials.
Yang, Ke; Zhou, Changchun; Fan, Hongsong; Fan, Yujiang; Jiang, Qing; Song, Ping; Fan, Hongyuan; Chen, Yu; Zhang, Xingdong
2017-12-22
Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.
Effect of H-wave polarization on laser radar detection of partially convex targets in random media.
El-Ocla, Hosam
2010-07-01
A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.
Morey, Allen F.; Brandes, Steve; Dugi, Daniel David; Armstrong, John H.; Breyer, Benjamin N.; Broghammer, Joshua A.; Erickson, Bradley A.; Holzbeierlein, Jeff; Hudak, Steven J.; Mirvis, Stuart; Pruitt, Jeffrey H.; Reston, James T.; Santucci, Richard A.; Smith, Thomas G.; Wessells, Hunter
2014-01-01
Purpose The authors of this guideline reviewed the urologic trauma literature to guide clinicians in the appropriate methods of evaluation and management of genitourinary injuries. Methods A systematic review of the literature using the MEDLINE® and EMBASE databases (search dates 1/1/90-9/19/12) was conducted to identify peer-reviewed publications relevant to urotrauma. The review yielded an evidence base of 372 studies after application of inclusion/exclusion criteria. These publications were used to inform the statements presented in the guideline as Standards, Recommendations or Options. When sufficient evidence existed, the body of evidence for a particular treatment was assigned a strength rating of A (high), B (moderate) or C (low). In the absence of sufficient evidence, additional information is provided as Clinical Principles and Expert Opinions. PMID:24857651
Wolff, Jonas O; Lovtsova, Julia; Gorb, Elena; Dai, Zhendong; Ji, Aihong; Zhao, Zhihui; Jiang, Nan; Gorb, Stanislav N
2017-03-01
Silks play an important role in the life of various arthropods. A highly neglected prerequisite to make versatile use of silks is sufficient attachment to substrates. Although there have been some studies on the structure and mechanics of silk anchorages of spiders, for insects only anecdotal reports on attachment-associated spinning behaviour exist. Here, we experimentally studied the silk attachment of the pupae and last instar caterpillars of the tea bagworm Eumeta minuscula (Butler 1881) (Lepidoptera, Psychidae) to the leaves of its host plant Ilex chinensis We found that the bagworms spin attachment discs, which share some structural features with those of spiders, like a plaque consisting of numerous overlaid, looped glue-coated silk fibres and the medially attaching suspension thread. Although the glue, which coats the fibres, cannot spread and adhere very well to the leaf surface, high pull-off forces were measured, yielding a mean safety factor (force divided by the animal weight) of 385.6. Presumably, the bagworms achieve this by removal of the leaf epidermis prior to silk attachment, which exposes the underlying tissue that represents a much better bonding site. This ensures a reliable attachment during the immobile, vulnerable pupal stage. This is the first study on the biomechanics and structure of silk attachments to substrates in insects. © 2017 The Author(s).
Allen, Frank H; Cruz-Cabeza, Aurora J; Wood, Peter A; Bardwell, David A
2013-10-01
As part of a programme of work to extend central-group coverage in the Cambridge Crystallographic Data Centre's (CCDC) IsoStar knowledge base of intermolecular interactions, we have studied the hydrogen-bonding abilities of squaric acid (H2SQ) and its mono- and dianions (HSQ(-) and SQ(2-)) using the Cambridge Structural Database (CSD) along with dispersion-corrected density functional theory (DFT-D) calculations for a range of hydrogen-bonded dimers. The -OH and -C=O groups of H2SQ, HSQ(-) and SQ(2-) are potent donors and acceptors, as indicated by their hydrogen-bond geometries in available crystal structures in the CSD, and by the attractive energies calculated for their dimers with acetone and methanol, which were used as model acceptors and donors. The two anions have sufficient examples in the CSD for their addition as new central groups in IsoStar. It is also shown that charge- and resonance-assisted hydrogen bonds involving H2SQ and HSQ(-) are similar in strength to those made by carboxylate COO(-) acceptors, while hydrogen bonds made by the dianion SQ(2-) are somewhat stronger. The study reinforces the value of squaric acid and its anions as cocrystal formers and their actual and potential importance as isosteric replacements for carboxylic acid and carboxylate functions.
Structurally Caused Freezing Point Depression of Biological Tissues
Bloch, Rene; Walters, D. H.; Kuhn, Werner
1963-01-01
When investigating the freezing behaviour (by thermal analysis) of the glycerol-extracted adductor muscle of Mytilus edulis it was observed that the temperature of ice formation in the muscular tissue was up to 1.5°C lower than the freezing point of the embedding liquid, a 0.25 N KCl solution with pH = 4.9 with which the tissue had been equilibrated prior to the freezing experiment. A smaller freezing point depression was observed if the pH values of the embedding 0.25 N KCl solution were above or below pH = 4.9. Reasoning from results obtained previously in analogous experiments with artificial gels, the anomalous freezing depression is explained by the impossibility of growing at the normal freezing temperature regular macroscopic crystals inside the gel, due to the presence of the gel network. The freezing temperature is here determined by the size of the microprisms penetrating the meshes of the network at the lowered freezing temperature. This process leads finally to an ice block of more or less regular structure in which the filaments are embedded. Prerequisite for this hindrance of ideal ice growth is a sufficient tensile strength of the filamental network. The existence of structurally caused freezing point depression in biological tissue is likely to invalidate many conclusions reported in the literature, in which hypertonicity was deduced from cryoscopic data. PMID:13971682
The effect of carbon black loading and structure on tensile property of natural rubber composite
NASA Astrophysics Data System (ADS)
Savetlana, S.; Zulhendri; Sukmana, I.; Saputra, F. A.
2017-07-01
Natural rubber composite has been continuously developed due to its advantages such as a good combination of strength and damping property. Most of carbon black (CB)/Natural Rubber (NR) composite were used as material in tyre industry. The addition of CB in natural rubber is very important to enhance the strength of natural rubber. The particle loading and different structure of CB can affect the composite strength. The effects of CB particle loading of 20, 25 and 30 wt% and the effects of CB structures of N220, N330, N550 and N660 series on tensile property of composite were investigated. The result shows that the tensile strength and elastic modulus of natural rubber/CB composite was higher than pure natural rubber. From SEM observation the agglomeration of CB aggregate increases with particle loading. It leads to decrease of tensile strength of composite as more particle was added. High structure of CB particle i.e. N220 resulted in highest tensile stress. In fact, composite reinforced by N660 CB particle shown a comparable tensile strength and elastic modulus with N220 CB particle. SEM observation shows that agglomeration of CB aggregates of N330 and N550 results in lower stress of associate NR/CB composite.