Assessing Spurious Interaction Effects in Structural Equation Modeling
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming
2015-01-01
Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…
Communicating and Interacting with People Who Have Disabilities.
ERIC Educational Resources Information Center
Equal Employment Opportunity Commission, Washington, DC.
This manual provides guidelines to offices of the Equal Employment Opportunity Commission for effective interaction and communication with people who have disabilities. Each chapter provides suggestions for interacting with people with a specific disability. In addition to general suggestions for fostering courteous interactions, chapters include…
Kasom, Mohammad; Gharra, Samia; Sadiya, Isra; Avital-Shacham, Meirav; Kosloff, Mickey
2018-06-20
Regulators of G protein Signaling (RGS) proteins inactivate Gα subunits, thereby controling G protein-coupled signaling networks. Among all RGS proteins, RGS2 is unique in interacting only with the Gα q and not with the Gα i sub-family. Previous studies suggested that this specificity is determined by the RGS domain, and in particular by three RGS2-specific residues that lead to a unique mode of interaction with Gα q This interaction was further proposed to act through contacts with the Gα GTPase domain. Here, we combined energy calculations and GTPase activity measurements to determine which Gα residues dictate specificity toward RGS2. We identified putative specificity-determining residues in the Gα helical domain, which among G proteins is found only in Gα subunits. Replacing these helical domain residues in Gα i with their Gα q counterparts resulted in a dramatic specificity-switch towards RGS2. We further show that Gα-RGS2 specificity is set by Gα i residues that perturb interactions with RGS2, and by Gα q residues that enhance these interactions. These results show, for the first time, that the Gα helical domain is central to dictating specificity towards RGS2, suggesting this domain plays a general role in governing Gα-RGS specificity. Our insights provide new options for manipulating RGS-G protein interactions in vivo , for better understanding of their "wiring" into signaling networks, and for devising novel drugs targeting such interactions. ©2018 The Author(s).
Differential C3NET reveals disease networks of direct physical interactions
2011-01-01
Background Genes might have different gene interactions in different cell conditions, which might be mapped into different networks. Differential analysis of gene networks allows spotting condition-specific interactions that, for instance, form disease networks if the conditions are a disease, such as cancer, and normal. This could potentially allow developing better and subtly targeted drugs to cure cancer. Differential network analysis with direct physical gene interactions needs to be explored in this endeavour. Results C3NET is a recently introduced information theory based gene network inference algorithm that infers direct physical gene interactions from expression data, which was shown to give consistently higher inference performances over various networks than its competitors. In this paper, we present, DC3net, an approach to employ C3NET in inferring disease networks. We apply DC3net on a synthetic and real prostate cancer datasets, which show promising results. With loose cutoffs, we predicted 18583 interactions from tumor and normal samples in total. Although there are no reference interactions databases for the specific conditions of our samples in the literature, we found verifications for 54 of our predicted direct physical interactions from only four of the biological interaction databases. As an example, we predicted that RAD50 with TRF2 have prostate cancer specific interaction that turned out to be having validation from the literature. It is known that RAD50 complex associates with TRF2 in the S phase of cell cycle, which suggests that this predicted interaction may promote telomere maintenance in tumor cells in order to allow tumor cells to divide indefinitely. Our enrichment analysis suggests that the identified tumor specific gene interactions may be potentially important in driving the growth in prostate cancer. Additionally, we found that the highest connected subnetwork of our predicted tumor specific network is enriched for all proliferation genes, which further suggests that the genes in this network may serve in the process of oncogenesis. Conclusions Our approach reveals disease specific interactions. It may help to make experimental follow-up studies more cost and time efficient by prioritizing disease relevant parts of the global gene network. PMID:21777411
Specificity of marine microbial surface interactions.
Imam, S H; Bard, R F; Tosteson, T R
1984-01-01
The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293
Lateral organization of biological membranes: role of long-range interactions.
Duneau, Jean-Pierre; Sturgis, James N
2013-12-01
The lateral organization of biological membranes is of great importance in many biological processes, both for the formation of specific structures such as super-complexes and for function as observed in signal transduction systems. Over the last years, AFM studies, particularly of bacterial photosynthetic membranes, have revealed that certain proteins are able to segregate into functional domains with a specific organization. Furthermore, the extended non-random nature of the organization has been suggested to be important for the energy and redox transport properties of these specialized membranes. In the work reported here, using a coarse-grained Monte Carlo approach, we have investigated the nature of interaction potentials able to drive the formation and segregation of specialized membrane domains from the rest of the membrane and furthermore how the internal organization of the segregated domains can be modulated by the interaction potentials. These simulations show that long-range interactions are necessary to allow formation of membrane domains of realistic structure. We suggest that such possibly non-specific interactions may be of great importance in the lateral organization of biological membranes in general and in photosynthetic systems in particular. Finally, we consider the possible molecular origins of such interactions and suggest a fundamental role for lipid-mediated interactions in driving the formation of specialized photosynthetic membrane domains. We call these lipid-mediated interactions a 'lipophobic effect.'
Hargis, Jacqueline C; Vankayala, Sai Lakshmana; White, Justin K; Woodcock, H Lee
2014-02-11
Bacterial resistance to standard (i.e., β-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus β-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel β-lactam peptidomimetic complexed to the Stremptomyces R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π-π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to β-lactam specificity. Finally, interaction information is used to suggest modifications to current β-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties.
Motor-visual neurons and action recognition in social interactions.
de la Rosa, Stephan; Bülthoff, Heinrich H
2014-04-01
Cook et al. suggest that motor-visual neurons originate from associative learning. This suggestion has interesting implications for the processing of socially relevant visual information in social interactions. Here, we discuss two aspects of the associative learning account that seem to have particular relevance for visual recognition of social information in social interactions - namely, context-specific and contingency based learning.
ERIC Educational Resources Information Center
Stremel, Kathleen; Wilson, Rebecca M.
This document consists of three separately published fact sheets combined here because of the close relationship of their subject matter. The first fact sheet, "Communication Interactions: It Takes Two" (Kathleen Stremel), defines communication; suggests ways to find opportunities for interactive communication; offers specific suggestions for…
Miller, Andrew D
2015-02-01
A sense peptide can be defined as a peptide whose sequence is coded by the nucleotide sequence (read 5' → 3') of the sense (positive) strand of DNA. Conversely, an antisense (complementary) peptide is coded by the corresponding nucleotide sequence (read 5' → 3') of the antisense (negative) strand of DNA. Research has been accumulating steadily to suggest that sense peptides are capable of specific interactions with their corresponding antisense peptides. Unfortunately, although more and more examples of specific sense-antisense peptide interactions are emerging, the very idea of such interactions does not conform to standard biology dogma and so there remains a sizeable challenge to lift this concept from being perceived as a peripheral phenomenon if not worse, into becoming part of the scientific mainstream. Specific interactions have now been exploited for the inhibition of number of widely different protein-protein and protein-receptor interactions in vitro and in vivo. Further, antisense peptides have also been used to induce the production of antibodies targeted to specific receptors or else the production of anti-idiotypic antibodies targeted against auto-antibodies. Such illustrations of utility would seem to suggest that observed sense-antisense peptide interactions are not just the consequence of a sequence of coincidental 'lucky-hits'. Indeed, at the very least, one might conclude that sense-antisense peptide interactions represent a potentially new and different source of leads for drug discovery. But could there be more to come from studies in this area? Studies on the potential mechanism of sense-antisense peptide interactions suggest that interactions may be driven by amino acid residue interactions specified from the genetic code. If so, such specified amino acid residue interactions could form the basis for an even wider amino acid residue interaction code (proteomic code) that links gene sequences to actual protein structure and function, even entire genomes to entire proteomes. The possibility that such a proteomic code should exist is discussed. So too the potential implications for biology and pharmaceutical science are also discussed were such a code to exist.
Kulshrestha, Saurabh; Hallan, Vipin; Sharma, Anshul; Seth, Chandrika Attri; Chauhan, Anjali; Zaidi, Aijaz Asghar
2013-09-01
Coat protein (CP) and RNA3 from Prunus necrotic ringspot virus (PNRSV-rose), the most prevalent virus infecting rose in India, were characterized and regions in the coat protein important for self-interaction, during dimer formation were identified. The sequence analysis of CP and partial RNA 3 revealed that the rose isolate of PNRSV in India belongs to PV-32 group of PNRSV isolates. Apart from the already established group specific features of PV-32 group member's additional group-specific and host specific features were also identified. Presence of methionine at position 90 in the amino acid sequence alignment of PNRSV CP gene (belonging to PV-32 group) was identified as the specific conserved feature for the rose isolates of PNRSV. As protein-protein interaction plays a vital role in the infection process, an attempt was made to identify the portions of PNRSV CP responsible for self-interaction using yeast two-hybrid system. It was found (after analysis of the deletion clones) that the C-terminal region of PNRSV CP (amino acids 153-226) plays a vital role in this interaction during dimer formation. N-terminal of PNRSV CP is previously known to be involved in CP-RNA interactions, but our results also suggested that N-terminal of PNRSV CP represented by amino acids 1-77 also interacts with C-terminal (amino acids 153-226) in yeast two-hybrid system, suggesting its probable involvement in the CP-CP interaction.
A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases.
Shin, Sung-Bong; Golovkin, Maxim; Reddy, Anireddy S N
2014-06-12
Previous genetic studies have revealed that a pollen-specific calmodulin-binding protein, No Pollen Germination 1 (NPG1), is required for pollen germination. However, its mode of action is unknown. Here we report direct interaction of NPG1 with pectate lyase-like proteins (PLLs). A truncated form of AtNPG1 lacking the N-terminal tetratricopeptide repeat 1 (TPR1) failed to interact with PLLs, suggesting that it is essential for NPG1 interaction with PLLs. Localization studies with AtNPG1 fused to a fluorescent reporter driven by its native promoter revealed its presence in the cytosol and cell wall of the pollen grain and the growing pollen tube of plasmolyzed pollen. Together, our data suggest that the function of NPG1 in regulating pollen germination is mediated through its interaction with PLLs, which may modify the pollen cell wall and regulate pollen tube emergence and growth.
Dodds, Peter N.; Lawrence, Gregory J.; Catanzariti, Ann-Maree; Teh, Trazel; Wang, Ching-I. A.; Ayliffe, Michael A.; Kobe, Bostjan; Ellis, Jeffrey G.
2006-01-01
Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R–Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrL567 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvrL567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R–Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R–Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant–pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes. PMID:16731621
Evaluation of drug interaction microcomputer software: comparative study.
Poirier, T I; Giudici, R
1991-01-01
Twelve drug interaction microcomputer software programs were evaluated and compared using general and specific criteria. This article summarizes and compares the features, ratings, advantages, and disadvantages of each program. Features of an ideal drug interaction program are noted. Recommended programs based on three price ranges are suggested.
Hedger, George; Shorthouse, David; Koldsø, Heidi; Sansom, Mark S P
2016-08-25
Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. -40 to -4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins.
2016-01-01
Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. −40 to −4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins. PMID:27109430
Genetic Interactions with Prenatal Social Environment: Effects on Academic and Behavioral Outcomes
ERIC Educational Resources Information Center
Conley, Dalton; Rauscher, Emily
2013-01-01
Numerous studies report gene-environment interactions, suggesting that specific alleles have different effects on social outcomes depending on environment. In all these studies, however, environmental conditions are potentially endogenous to unmeasured genetic characteristics. That is, it could be that the observed interaction effects actually…
Precision and recall estimates for two-hybrid screens
Huang, Hailiang; Bader, Joel S.
2009-01-01
Motivation: Yeast two-hybrid screens are an important method to map pairwise protein interactions. This method can generate spurious interactions (false discoveries), and true interactions can be missed (false negatives). Previously, we reported a capture–recapture estimator for bait-specific precision and recall. Here, we present an improved method that better accounts for heterogeneity in bait-specific error rates. Result: For yeast, worm and fly screens, we estimate the overall false discovery rates (FDRs) to be 9.9%, 13.2% and 17.0% and the false negative rates (FNRs) to be 51%, 42% and 28%. Bait-specific FDRs and the estimated protein degrees are then used to identify protein categories that yield more (or fewer) false positive interactions and more (or fewer) interaction partners. While membrane proteins have been suggested to have elevated FDRs, the current analysis suggests that intrinsic membrane proteins may actually have reduced FDRs. Hydrophobicity is positively correlated with decreased error rates and fewer interaction partners. These methods will be useful for future two-hybrid screens, which could use ultra-high-throughput sequencing for deeper sampling of interacting bait–prey pairs. Availability: All software (C source) and datasets are available as supplemental files and at http://www.baderzone.org under the Lesser GPL v. 3 license. Contact: joel.bader@jhu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19091773
NASA Technical Reports Server (NTRS)
Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)
1998-01-01
We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.
NASA Astrophysics Data System (ADS)
(O' Lee, Dominic J.
2018-02-01
At present, there have been suggested two types of physical mechanism that may facilitate preferential pairing between DNA molecules, with identical or similar base pair texts, without separation of base pairs. One mechanism solely relies on base pair specific patterns of helix distortion being the same on the two molecules, discussed extensively in the past. The other mechanism proposes that there are preferential interactions between base pairs of the same composition. We introduce a model, built on this second mechanism, where both thermal stretching and twisting fluctuations are included, as well as the base pair specific helix distortions. Firstly, we consider an approximation for weak pairing interactions, or short molecules. This yields a dependence of the energy on the square root of the molecular length, which could explain recent experimental data. However, analysis suggests that this approximation is no longer valid at large DNA lengths. In a second approximation, for long molecules, we define two adaptation lengths for twisting and stretching, over which the pairing interaction can limit the accumulation of helix disorder. When the pairing interaction is sufficiently strong, both adaptation lengths are finite; however, as we reduce pairing strength, the stretching adaptation length remains finite but the torsional one becomes infinite. This second state persists to arbitrarily weak values of the pairing strength; suggesting that, if the molecules are long enough, the pairing energy scales as length. To probe differences between the two pairing mechanisms, we also construct a model of similar form. However, now, pairing between identical sequences solely relies on the intrinsic helix distortion patterns. Between the two models, we see interesting qualitative differences. We discuss our findings, and suggest new work to distinguish between the two mechanisms.
ERIC Educational Resources Information Center
Stremel, Kathleen
This document consists of three separately published fact sheets combined here because of the close relationship of their subject matter. The first fact sheet, "Communication Interactions: It Takes Two" (Kathleen Stremel), defines communication; suggests ways to find opportunities for interactive communication; offers specific suggestions for…
Cross, Katy A; Torrisi, Salvatore; Reynolds Losin, Elizabeth A; Iacoboni, Marco
2013-12-01
Humans have an automatic tendency to imitate others. Although several regions commonly observed in social tasks have been shown to be involved in imitation control, there is little work exploring how these regions interact with one another. We used fMRI and dynamic causal modeling to identify imitation-specific control mechanisms and examine functional interactions between regions. Participants performed a pre-specified action (lifting their index or middle finger) in response to videos depicting the same two actions (biological cues) or dots moving with similar trajectories (non-biological cues). On congruent trials, the stimulus and response were similar (e.g. index finger response to index finger or left side dot stimulus), while on incongruent trials the stimulus and response were dissimilar (e.g. index finger response to middle finger or right side dot stimulus). Reaction times were slower on incongruent compared to congruent trials for both biological and non-biological stimuli, replicating previous findings that suggest the automatic imitative or spatially compatible (congruent) response must be controlled on incongruent trials. Neural correlates of the congruency effects were different depending on the cue type. The medial prefrontal cortex, anterior cingulate, inferior frontal gyrus pars opercularis (IFGpo) and the left anterior insula were involved specifically in controlling imitation. In addition, the IFGpo was also more active for biological compared to non-biological stimuli, suggesting that the region represents the frontal node of the human mirror neuron system (MNS). Effective connectivity analysis exploring the interactions between these regions, suggests a role for the mPFC and ACC in imitative conflict detection and the anterior insula in conflict resolution processes, which may occur through interactions with the frontal node of the MNS. We suggest an extension of the previous models of imitation control involving interactions between imitation-specific and general cognitive control mechanisms. © 2013.
Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion*
He, Tao; Gershenson, Anne; Eyles, Stephen J.; Lee, Yan-Jiun; Liu, Wenshe R.; Wang, Jiangyun; Gao, Jianmin; Roberts, Mary F.
2015-01-01
Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins. PMID:26092728
Implications of non-specific strigolactone signaling in the rhizosphere.
Koltai, Hinanit
2014-08-01
Strigolactones produced by various plant species are involved in the development of different plant parts. They are also exuded by plant roots to the rhizosphere, where they are involved in the induction of seed germination of the parasitic plants Striga and Orobanche, hyphal branching of the symbiotic arbuscular mycorrhizal fungi (AMF), and the symbiotic interaction with Rhizobium. In the present discussion paper, the essentialness of strigolactones as communication signals in these plant interactions is discussed in view of the existence of other plant-derived substances that are able to promote these plant interactions. In addition, the importance of strigolactones for determination of interaction specificity is discussed based on current knowledge on strigolactone composition, perception and delivery. The different activities of strigolactones in plant development and in the rhizosphere suggest their possible use in agriculture. However, despite efforts made in this direction, there is no current, practical implementation. Possible reasons for the encountered difficulties and suggested solutions to promote strigolactone use in agriculture are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Effects of checklist interface on non-verbal crew communications
NASA Technical Reports Server (NTRS)
Segal, Leon D.
1994-01-01
The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.
Hochard, Kevin D; Heym, Nadja; Townsend, Ellen
2017-06-01
Heightened arousal significantly interacts with acquired capability to predict suicidality. We explore this interaction with insomnia and nightmares independently of waking state arousal symptoms, and test predictions of the Interpersonal Theory of Suicide (IPTS) and Escape Theory in relation to these sleep arousal symptoms. Findings from our e-survey (n = 540) supported the IPTS over models of Suicide as Escape. Sleep-specific measurements of arousal (insomnia and nightmares) showed no main effect, yet interacted with acquired capability to predict increased suicidality. The explained variance in suicidality by the interaction (1%-2%) using sleep-specific measures was comparable to variance explained by interactions previously reported in the literature using measurements composed of a mix of waking and sleep state arousal symptoms. Similarly, when entrapment (inability to escape) was included in models, main effects of sleep symptoms arousal were not detected yet interacted with entrapment to predict suicidality. We discuss findings in relation to treatment options suggesting that sleep-specific interventions be considered for the long-term management of at-risk individuals. © 2016 The American Association of Suicidology.
Kang, WonKyung; Imai, Noriko; Kawasaki, Yu; Nagamine, Toshihiro; Matsumoto, Shogo
2005-11-01
The Bombyx mori nucleopolyhedrovirus (BmNPV) ORF8 protein has previously been reported to colocalize with IE1 to specific nuclear sites during infection. Transient expression of green fluorescent protein (GFP)-fused ORF8 showed the protein to have cytoplasmic localization, but following BmNPV infection the protein formed foci, suggesting that ORF8 requires some other viral factor(s) for this. Therefore, interacting factors were looked for using the yeast two-hybrid system and IE1 was identified. We mapped the interacting region of ORF8 using a yeast two-hybrid assay. An N-terminal region (residues 1-110) containing a predicted coiled-coil domain interacted with IE1, while a truncated N-terminal region (residues 1-78) that lacks this domain did not. In addition, a protein with a complete deletion of the N-terminal region failed to interact with IE1. These results suggest that the ORF8 N-terminal region containing the coiled-coil domain is required for the interaction with IE1. Next, whether IE1 plays a role in ORF8 localization was investigated. In the presence of IE1, GFP-ORF8 localized to the nucleus. In addition, cotransfection with a plasmid expressing IE1 and a plasmid containing the hr3 element resulted in nuclear foci formation. A GFP-fused ORF8 mutant protein containing the coiled-coil domain, previously shown to interact with IE1, also formed nuclear foci in the presence of IE1 and hr3. However, ORF8 mutant proteins that did not interact with IE1 failed to form nuclear foci. In contrast to wild-type IE1, focus formation was not observed for an IE1 mutant protein that was deficient in hr binding. These results suggest that IE1 and hr facilitate the localization of BmNPV ORF8 to specific nuclear sites.
Extreme disorder in an ultrahigh-affinity protein complex
NASA Astrophysics Data System (ADS)
Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin
2018-03-01
Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.
Kabir, Ayesha; Suresh Kumar, Gopinatha
2013-01-01
Background The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Methodology/Principal Findings Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. Conclusion/Significance From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies. PMID:23894663
DNA binding by FOXP3 domain-swapped dimer suggests mechanisms of long-range chromosomal interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Chen, C.; Zhang, Z.
2015-01-07
FOXP3 is a lineage-specific transcription factor that is required for regulatory T cell development and function. In this study, we determined the crystal structure of the FOXP3 forkhead domain bound to DNA. The structure reveals that FOXP3 can form a stable domain-swapped dimer to bridge DNA in the absence of cofactors, suggesting that FOXP3 may play a role in long-range gene interactions. To test this hypothesis, we used circular chromosome conformation capture coupled with high throughput sequencing (4C-seq) to analyze FOXP3-dependent genomic contacts around a known FOXP3-bound locus, Ptpn22. Our studies reveal that FOXP3 induces significant changes in the chromatinmore » contacts between the Ptpn22 locus and other Foxp3-regulated genes, reflecting a mechanism by which FOXP3 reorganizes the genome architecture to coordinate the expression of its target genes. Our results suggest that FOXP3 mediates long-range chromatin interactions as part of its mechanisms to regulate specific gene expression in regulatory T cells.« less
Plantinga, Matthew J; Korennykh, Alexei V; Piccirilli, Joseph A; Correll, Carl C
2008-08-26
Restrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme-substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [partial differential log(k 2/ K 1/2)/ partial differential log[KCl
Buck, Moritz; Hamilton, Joshua J.; Wurzbacher, Christian; Grossart, Hans-Peter; Eiler, Alexander
2018-01-01
ABSTRACT Genome streamlining is frequently observed in free-living aquatic microorganisms and results in physiological dependencies between microorganisms. However, we know little about the specificity of these microbial associations. In order to examine the specificity and extent of these associations, we established mixed cultures from three different freshwater environments and analyzed the cooccurrence of organisms using a metagenomic time series. Free-living microorganisms with streamlined genomes lacking multiple biosynthetic pathways showed no clear recurring pattern in their interaction partners. Free-living freshwater bacteria form promiscuous cooperative associations. This notion contrasts with the well-documented high specificities of interaction partners in host-associated bacteria. Considering all data together, we suggest that highly abundant free-living bacterial lineages are functionally versatile in their interactions despite their distinct streamlining tendencies at the single-cell level. This metabolic versatility facilitates interactions with a variable set of community members. PMID:29848762
De Oliveira, S; Vitorino de Almeida, V; Calado, A; Rosário, H S; Saldanha, C
2012-03-01
Fibrinogen is a multifunctional plasma protein that plays a crucial role in several biological processes. Elevated fibrinogen induces erythrocyte hyperaggregation, suggesting an interaction between this protein and red blood cells (RBCs). Several studies support the concept that fibrinogen interacts with RBC membrane and this binding, due to specific and non-specific mechanisms, may be a trigger to RBC hyperaggregation in inflammation. The main goals of our work were to prove that human RBCs are able to specifically bind soluble fibrinogen, and identify membrane molecular targets that could be involved in this process. RBCs were first isolated from blood of healthy individuals and then separated in different age fractions by discontinuous Percoll gradients. After isolation RBC samples were incubated with human soluble fibrinogen and/or with a blocking antibody against CD47 followed by fluorescence confocal microscopy, flow cytometry acquisitions and zeta potential measurements. Our data show that soluble fibrinogen interacts with the human RBC membrane in an age-dependent manner, with younger RBCs interacting more with soluble fibrinogen than the older cells. Importantly, this interaction is abrogated in the presence of a specific antibody against CD47. Our results support a specific and age-dependent interaction of soluble fibrinogen with human RBC membrane; additionally we present CD47 as a putative mediator in this process. This interaction may contribute to RBC hyperaggregation in inflammation. Copyright © 2011 Elsevier B.V. All rights reserved.
Smith, Kiersten S.; Morrell, Joan I.
2010-01-01
The late preweanling rat has potential as a preclinical model for disorders initially manifested in early childhood that are characterized by dysfunctional interactions with specific stimuli (e.g., obsessive-compulsive disorder and autism). No reports, however, of specific-stimulus exploration in the late preweanling rat are found in the literature. We examined the behavioral responses of normal late preweanling (PND 18-19) and adult rats when presented with exemplars of categorically-varied stimuli, including inanimate objects systematically varied in size and interactive properties, biological stimuli, and food. Preweanlings were faster to initiate specific stimulus exploration and were more interactive with most specific stimuli than adults; the magnitude of these preweanling-adult quantitative differences ranged from fairly small to very large depending upon the stimulus. In contrast, preweanlings were adult-like in their interaction with food and prey. Preweanling response to some stimuli, for example to live pups, was qualitatively different from that of adults; the preweanling behavioral repertoire was characterized by pup-seeking while the adult response was characterized by pup-avoidance. The specific stimulus interactions of preweanlings were less impacted than those of adults by the time of day of testing and placement of a stimulus in an anxiety-provoking location. The impact of novelty was stimulus dependent. The differences in interactions of preweanlings versus adults with specific stimuli suggests that CNS systems underlying these behavior patterns are at different stages of immaturity at PND 18 such that there may be an array of developmental trajectories for various categories of specific stimuli. These data provide a basis for the use of the preweanling as a preclinical model for understanding and medicating human disorders during development that are characterized by dysfunctional interactions with specific stimuli. PMID:21056059
Hormones and the Resistance of Women to Paracoccidioidomycosis
Shankar, Jata; Restrepo, Angela; Clemons, Karl V.; Stevens, David A.
2011-01-01
Summary: Paracoccidioidomycosis, one of the most important endemic and systemic mycoses in Latin America, presents several clinical pictures. Epidemiological studies indicate a striking rarity of disease (but not infection) in females, but only during the reproductive years. This suggested a hormonal interaction between female hormones and the etiologic dimorphic fungus Paracoccidioides brasiliensis. Many fungi have been shown to use hormonal (pheromonal) fungal molecules for intercellular communication, and there are increasing numbers of examples of interactions between mammalian hormones and fungi, including the specific binding of mammalian hormones by fungal proteins, and suggestions of mammalian hormonal modulation of fungal behavior. This suggests an evolutionary conservation of hormonal receptor systems. We recount studies showing the specific hormonal binding of mammalian estrogen to proteins in P. brasiliensis and an action of estrogen to specifically block the transition from the saprophytic form to the invasive form of the fungus in vitro. This block has been demonstrated to occur in vivo in animal studies. These unique observations are consistent with an estrogen-fungus receptor-mediated effect on pathogenesis. The fungal genes responsive to estrogen action are under study. PMID:21482727
Teaching with Interactive Picture E-Books in Grades K-6
ERIC Educational Resources Information Center
Schugar, Heather Ruetschlin; Smith, Carol A.; Schugar, Jordan T.
2013-01-01
This article presents general implications for using interactive electronic picture books in the classroom. The suggestions are rooted in research with middle grades readers in a tutoring setting and kindergarten through fourth-grade classroom settings. Specific attention is given toward those features in eBooks that may distract, support, or…
Bond Strength of Methacrylate-Based Composite to Dentin using a Silorane Adhesive
2013-06-06
the smear layer is not removed, and the interaction with dentin is superficial, and the residual hydroxyapatite remains available for chemical...interaction. This chemical interaction is more stable in an aqueous environment, and occurs between specific monomers and the calcium of hydroxyapatite ...between the monomer and the calcium of the hydroxyapatite (HAp) crystal (Van Meerbeek et al., 9 2010). Van Meerbeek suggests that monomers such as
Brand, Matthias; Young, Kimberly S; Laier, Christian; Wölfling, Klaus; Potenza, Marc N
2016-12-01
Within the last two decades, many studies have addressed the clinical phenomenon of Internet-use disorders, with a particular focus on Internet-gaming disorder. Based on previous theoretical considerations and empirical findings, we suggest an Interaction of Person-Affect-Cognition-Execution (I-PACE) model of specific Internet-use disorders. The I-PACE model is a theoretical framework for the processes underlying the development and maintenance of an addictive use of certain Internet applications or sites promoting gaming, gambling, pornography viewing, shopping, or communication. The model is composed as a process model. Specific Internet-use disorders are considered to be the consequence of interactions between predisposing factors, such as neurobiological and psychological constitutions, moderators, such as coping styles and Internet-related cognitive biases, and mediators, such as affective and cognitive responses to situational triggers in combination with reduced executive functioning. Conditioning processes may strengthen these associations within an addiction process. Although the hypotheses regarding the mechanisms underlying the development and maintenance of specific Internet-use disorders, summarized in the I-PACE model, must be further tested empirically, implications for treatment interventions are suggested. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Perceptions of marital interaction among black and white newlyweds.
Oggins, J; Veroff, J; Leber, D
1993-09-01
Perceptions of marital interactions were gathered from a representative sample of urban newlywed couples (199 Black and 174 White). A factor analysis of the reports found 6 factors common to husbands and wives: Disclosing Communication, Affective Affirmation, Negative Sexual Interaction, Traditional Role Regulation, Destructive Conflict, and Constructive Conflict. Avoiding Conflict was specific to men and Positive Coorientation was specific to women. Wives reported fewer constructive and more destructive conflict behaviors. Compared with Whites, Blacks reported more disclosure, more positive sexual interactions, and fewer topics of disagreement. They also more often reported leaving the scene of conflict and talking with others more easily than with the spouse. As hypothesized, perceptions that marital interactions affirm one's sense of identity strongly predicted marital well-being. Although regression analyses predicting marital happiness yielded few interactions with race or gender, those that are significant, coupled with race and gender differences in perceiving interaction, suggest taking a contextual orientation to the meaning of marital interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Kerry M.; Yamagata, Masahito; Jin, Xiangshu
Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1–4), arranged in a horseshoe conformation. These Ig1–4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (viatransinteractions) and Sdk clusteringmore » in isolated cells (viacisinteractions). Sdk1/Sdk2 recognition specificity is encoded across Ig1–4, with Ig1–2 conferring the majority of binding affinity and differential specificity. We suggest that competition betweencisandtransinteractions provides a novel mechanism to sharpen the specificity of cell-cell interactions.« less
Pley, H W; Flaherty, K M; McKay, D B
1994-11-03
In large structured RNAs, RNA hairpins in which the strands of the duplex stem are connected by a tetraloop of the consensus sequence 5'-GNRA (where N is any nucleotide, and R is either G or A) are unusually frequent. In group I introns there is a covariation in sequence between nucleotides in the third and fourth positions of the loop with specific distant base pairs in putative RNA duplex stems: GNAA loops correlate with successive 5'-C-C.G-C base pairs in stems, whereas GNGA loops correlate with 5'-C-U.G-A. This has led to the suggestion that GNRA tetraloops may be involved in specific long-range tertiary interactions, with each A in position 3 or 4 of the loop interacting with a C-G base pair in the duplex, and G in position 3 interacting with a U-A base pair. This idea is supported experimentally for the GAAA loop of the P5b extension of the group I intron of Tetrahymena thermophila and the L9 GUGA terminal loop of the td intron of bacteriophage T4 (ref. 4). NMR has revealed the overall structure of the tetraloop for 12-nucleotide hairpins with GCAA and GAAA loops and models have been proposed for the interaction of GNRA tetraloops with base pairs in the minor groove of A-form RNA. Here we describe the crystal structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. The interactions we observe correlate with the specificity of GNRA tetraloops inferred from phylogenetic studies, suggesting that this complex is a legitimate model for intramolecular tertiary interactions mediated by GNRA tetraloops in large structured RNAs.
SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.
Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna
2011-02-04
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.
Friberg, Magne; Schwind, Christopher; Roark, Lindsey C; Raguso, Robert A; Thompson, John N
2014-09-01
Chemical defenses, repellents, and attractants are important shapers of species interactions. Chemical attractants could contribute to the divergence of coevolving plant-insect interactions, if pollinators are especially responsive to signals from the local plant species. We experimentally investigated patterns of daily floral scent production in three Lithophragma species (Saxifragaceae) that are geographically isolated and tested how scent divergence affects attraction of their major pollinator-the floral parasitic moth Greya politella (Prodoxidae). These moths oviposit through the corolla while simultaneously pollinating the flower with pollen adhering to the abdomen. The complex and species-specific floral scent profiles were emitted in higher amounts during the day, when these day-flying moths are active. There was minimal divergence found in petal color, which is another potential floral attractant. Female moths responded most strongly to scent from their local host species in olfactometer bioassays, and were more likely to oviposit in, and thereby pollinate, their local host species in no-choice trials. The results suggest that floral scent is an important attractant in this interaction. Local specialization in the pollinator response to a highly specific plant chemistry, thus, has the potential to contribute importantly to patterns of interaction specificity among coevolving plants and highly specialized pollinators.
ERIC Educational Resources Information Center
Adcroft, Andy
2011-01-01
Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues…
Kim, Jung Kuk; Kwon, Ohman; Kim, Jinho; Kim, Eung-Kyun; Park, Hye Kyung; Lee, Ji Eun; Kim, Kyung Lock; Choi, Jung Woong; Lim, Seyoung; Seok, Heon; Lee-Kwon, Whaseon; Choi, Jang Hyun; Kang, Byoung Heon; Kim, Sanguk; Ryu, Sung Ho; Suh, Pann-Ghill
2012-01-01
Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca2+ mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST. PMID:22528496
Insights into the RNA quadruplex binding specificity of DDX21.
McRae, Ewan K S; Davidson, David E; Dupas, Steven J; McKenna, Sean A
2018-06-12
Guanine quadruplexes can form in both DNA and RNA and influence many biological processes through various protein interactions. The DEAD-box RNA helicase protein DDX21 has been shown to bind and remodel RNA quadruplexes but little is known about its specificity for different quadruplex species. Previous reports have suggested DDX21 may interact with telomeric repeat containing RNA quadruplex (TERRA), an integral component of the telomere that contributes to telomeric heterochromatin formation and telomere length regulation. Here we report that the C-terminus of DDX21 specifically binds to TERRA. We use, for the first time, 2D saturation transfer difference NMR to map the protein binding site on a ribonucleic acid species and show that the quadruplex binding domain of DDX21 interacts primarily with the phosphoribose backbone of quadruplexes. Furthermore, by mutating the 2'OH of loop nucleotides we can drastically reduce DDX21's affinity for quadruplex, indicating that the recognition of quadruplex and specificity for TERRA is mediated by interactions with the 2'OH of loop nucleotides. Copyright © 2018. Published by Elsevier B.V.
Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio)
Oliveira, Rui F.
2015-01-01
Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio) in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5) and to other genes related to memory formation (btg2, npas4b), which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics. PMID:26713440
APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies
NASA Astrophysics Data System (ADS)
Shlyakhtenko, Luda S.; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S.; Lyubchenko, Yuri L.
2015-10-01
APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA.
APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies.
Shlyakhtenko, Luda S; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S; Lyubchenko, Yuri L
2015-10-27
APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA.
Cushner-Weinstein, Sandra; Berl, Madison; Salpekar, Jay A; Johnson, Jami L; Pearl, Phillip L; Conry, Joan A; Kolodgie, Marian; Scully, Audrey; Gaillard, William D; Weinstein, Steven L
2007-02-01
Children with epilepsy attending a condition-specific overnight camp were evaluated for behavioral changes over 3 consecutive years, using a modification of the Vineland Adaptive Behavioral Scale. Trained counselors completed pre- and postcamp assessments for each camper. Repeated-measures MANOVA was used to analyze effects of the camp experience for each year, with respect to gender and age. Repeated-measures ANOVA was conducted to evaluate long-term effects from year-to-year comparisons for return campers, following three successive camp experiences. A significant change in social interaction was observed over 3 years. Despite some decline at the start of camp in consecutive years, the overall trend for return campers suggests a positive cumulative impact of continued camp participation, with improvements in the domains of social interaction, responsibility, and communication. A condition-specific camp designed for children with epilepsy can improve adaptive behaviors and social interactions. Overall net gains appear to increase over time, suggesting additional benefits for return campers.
ERIC Educational Resources Information Center
Shipe, Ron; And Others
A study examined the development and implementation of an interactive video instruction system for teaching electronics and industrial maintenance at the University of Tennessee. The specific purposes of the study were to document unusual problems that may be encountered when this new technology is implemented, suggest corrective actions, and…
0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Heng; Denhard, Leslie A.; Zhou Huaxin
Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and roundmore » spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.« less
CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.
Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T; Wilczynski, Grzegorz M; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun
2015-12-17
Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Johnson, Reed F.; McCarthy, Sarah E.; Godlewski, Peter J.; Harty, Ronald N.
2006-01-01
The packaging of viral genomic RNA into nucleocapsids and subsequently into virions is not completely understood. Phosphoprotein (P) and nucleoprotein (NP) interactions link NP-RNA complexes with P-L (polymerase) complexes to form viral nucleocapsids. The nucleocapsid then interacts with the viral matrix protein, leading to specific packaging of the nucleocapsid into the virion. A mammalian two-hybrid assay and confocal microscopy were used to demonstrate that Ebola virus VP35 and VP40 interact and colocalize in transfected cells. VP35 was packaged into budding virus-like particles (VLPs) as observed by protease protection assays. Moreover, VP40 and VP35 were sufficient for packaging an Ebola virus minignome RNA into VLPs. Results from immunoprecipitation-reverse transcriptase PCR experiments suggest that VP35 confers specificity of the nucleocapsid for viral genomic RNA by direct VP35-RNA interactions. PMID:16698994
Competition between feeding guilds on cotton plants is species specific and likely plant-mediated.
USDA-ARS?s Scientific Manuscript database
Interspecific competition among herbivorous insects is often mediated by a common host plant. Changes in the common host plant induced by one herbivore species may make the plant less preferred or nutritious to another herbivore. We suggest that these interactions can be quite specific. We examine...
Characterizing interactions in online social networks during exceptional events
NASA Astrophysics Data System (ADS)
Omodei, Elisa; De Domenico, Manlio; Arenas, Alex
2015-08-01
Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events.
Paul, Carsten; Pohnert, Georg
2011-01-01
Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors. PMID:21695044
Paul, Carsten; Pohnert, Georg
2011-01-01
Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors.
Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise
2016-01-01
Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana. To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics of A. thaliana. PMID:26979961
Genetic and environmental factors interact to influence anxiety.
Gross, Cornelius; Hen, René
2004-01-01
Both genetic and environmental factors influence normal anxiety traits as well as anxiety disorders. In addition it is becoming increasingly clear that these factors interact to produce specific anxiety-related behaviors. For example, in humans and in monkeys mutations in the gene encoding for the serotonin transporter result in increased anxiety in adult life when combined with a stressful environment during development. Another recent example comes from twin studies suggesting that a small hippocampus can be a predisposing condition that renders individuals susceptible to post traumatic stress disorder. Such examples illustrate how specific mutations leading to abnormal brain development may increase vulnerability to environmental insults which may in turn lead to specific anxiety disorders.
Characterization of the interaction of yeast enolase with polynucleotides.
al-Giery, A G; Brewer, J M
1992-09-23
Yeast enolase is inhibited under certain conditions by DNA. The enzyme binds to single-stranded DNA-cellulose. Inhibition was used for routine characterization of the interaction. The presence of the substrate 2-phospho-D-glycerate reduces inhibition and binding. Both yeast enolase isozymes behave similarly. Impure yeast enolase was purified by adsorption onto a single-stranded DNA-cellulose column followed by elution with substrate. Interaction with RNA, double-stranded DNA, or degraded DNA results in less inhibition, suggesting that yeast enolase preferentially binds single-stranded DNA. However, yeast enolase is not a DNA-unwinding protein. The enzyme is inhibited by the short synthetic oligodeoxynucleotides G6, G8 and G10 but not T8 or T6, suggesting some base specificity in the interaction. The interaction is stronger at more acid pH values, with an apparent pK of 5.6. The interaction is prevented by 0.3 M KCl, suggesting that electrostatic factors are important. Histidine or lysine reverse the inhibition at lower concentrations, while phosphate is still more effective. Binding of single-stranded DNA to enolase reduces the reaction of protein histidyl residues with diethylpyrocarbonate. The inhibition of yeast enolase by single-stranded DNA is not total, and suggests the active site is not directly involved in the interaction. Binding of substrate may induce a conformational change in the enzyme that interferes with DNA binding and vice versa.
Li, Runsheng; Ren, Xiaoliang; Bi, Yu; Ho, Vincy Wing Sze; Hsieh, Chia-Ling; Young, Amanda; Zhang, Zhihong; Lin, Tingting; Zhao, Yanmei; Miao, Long; Sarkies, Peter; Zhao, Zhongying
2016-09-01
Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction. © 2016 Li et al.; Published by Cold Spring Harbor Laboratory Press.
ERIC Educational Resources Information Center
van Polanen, Marleen; Colonnesi, Cristina; Fukkink, Ruben G.; Tavecchio, Louis W. C.
2017-01-01
Outcomes of studies with exclusively or predominantly female caregivers suggest that boys in child care are involved with interactions, attachment relationships, and care of lower quality than girls. We investigated to what extent child gender (N = 38, 19 boys) and caregiver gender (N = 38, 19 males) is associated with child-caregiver interactions…
Dabek, Filip; Caban, Jesus J
2017-01-01
Despite the recent popularity of visual analytics focusing on big data, little is known about how to support users that use visualization techniques to explore multi-dimensional datasets and accomplish specific tasks. Our lack of models that can assist end-users during the data exploration process has made it challenging to learn from the user's interactive and analytical process. The ability to model how a user interacts with a specific visualization technique and what difficulties they face are paramount in supporting individuals with discovering new patterns within their complex datasets. This paper introduces the notion of visualization systems understanding and modeling user interactions with the intent of guiding a user through a task thereby enhancing visual data exploration. The challenges faced and the necessary future steps to take are discussed; and to provide a working example, a grammar-based model is presented that can learn from user interactions, determine the common patterns among a number of subjects using a K-Reversible algorithm, build a set of rules, and apply those rules in the form of suggestions to new users with the goal of guiding them along their visual analytic process. A formal evaluation study with 300 subjects was performed showing that our grammar-based model is effective at capturing the interactive process followed by users and that further research in this area has the potential to positively impact how users interact with a visualization system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Suzy; Kim, Hyun Jin, E-mail: kimhyunjin@skku.edu
2014-01-03
Highlights: •Split-ubiquitin MY2H screen identified GATE16 as an interacting protein of TRPML3. •TRPML3 specifically binds to a mammalian ATG8 homologue GATE16, not to LC3B. •The interaction of TRPML3 with GATE16 facilitates autophagosome formation. •GATE16 is expressed in both autophagosome and extra-autophagosomal compartments. -- Abstract: TRPML3 is a Ca{sup 2+} permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GSTmore » pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca{sup 2+} in the fusion process.« less
Intrinsic limits to gene regulation by global crosstalk
Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper
2016-01-01
Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144
Yoo, Eung Jae; Cajiao, Isabela; Kim, Jeong-Seon; Kimura, Atsushi P.; Zhang, Aiwen; Cooke, Nancy E.; Liebhaber, Stephen A.
2006-01-01
Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitarycell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome. PMID:16847312
ERIC Educational Resources Information Center
Yarbay Duman, Tuba; Topbas, Seyhun
2016-01-01
Background: Impairments in tense morphology are characteristic of English-speaking children with specific language impairment (SLI). Recent studies have investigated the role that aspect plays in the difficulties found in tense morphology. It has been suggested that children with SLI are less sensitive to aspect and its interaction with tense than…
Seo, Jang-Kyun; Kwon, Sun-Jung; Rao, A L N
2012-06-01
Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity.
Seo, Jang-Kyun; Kwon, Sun-Jung
2012-01-01
Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity. PMID:22438552
[Drosophila melanogaster as a model for studying the function of animal viral proteins].
Omelianchuk, L V; Iudina, O S
2011-07-01
Studies in which Drosophila melanogaster individuals carrying transgenes of animal viruses were used to analyze the action of animal viral proteins on the cell are reviewed. The data presented suggest that host specificity of viruses is determined by their proteins responsible for the penetration of the virus into the cell, while viral proteins responsible for interactions with the host cell are much less host-specific. Due to this, the model of Drosophila with its developed system of searching for genetic interactions can be used to find intracellular targets for the action of viral proteins of the second group.
Intercellular interaction mechanisms for the origination of blast crisis in chronic myeloid leukemia
Sachs, Rainer; Johnsson, Kerstin; Hahnfeldt, Philip; Luo, Janet; Chen, Allen; Hlatky, Lynn
2011-01-01
Chronic myeloid leukemia (CML) is characterized by a specific chromosome translocation, and its pathobiology is considered comparatively well understood. Thus, quantitative analysis of CML and its progression to blast crisis may help elucidate general mechanisms of carcinogenesis and cancer progression. Hitherto it has been widely postulated that CML blast crisis originates mainly via cell-autonomous mechanisms such as secondary mutations or genomic instability, rather than by intercellular interactions. However, recent results suggest that intercellular interactions play an important role in carcinogenesis. In this study, we analyzed alternative mechanisms, including pairwise intercellular interactions, for CML blast crisis origination. A quantitative, mechanistic cell population dynamics model was employed. This model used recent data on imatinib-treated CML; it also used earlier clinical data, not previously incorporated into current mathematical CML/imatinib models. With the pre-imatinib data, which include results on many more blast crises, we obtained evidence that the driving mechanism for blast crisis origination is intercellular interaction between specific cell types. Assuming leukemic-normal interactions resulted in a statistically significant improvement over assuming either cell-autonomous mechanisms or interactions between leukemic cells. This conclusion was robust with regard to changes in the model’s adjustable parameters. Application of the results to patients treated with imatinib suggests that imatinib may act not only on malignant blast precursors, but also, to a limited degree, on the malignant blasts themselves. Major Findings A comprehensive mechanistic model gives evidence that the main driving mechanisms for CML blast crisis origination are interactions between leukemic and normal cells. PMID:21487044
APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies
Shlyakhtenko, Luda S.; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S.; Lyubchenko, Yuri L.
2015-01-01
APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA. PMID:26503602
Neglected Children: Suggestions for Early Childhood Educators.
ERIC Educational Resources Information Center
Peterson, Karen L.; Roscoe, Bruce
1983-01-01
Discusses enhancing the development and improving the quality of life of neglected children through acquiring a special understanding and style of interacting with them and by using activities designed specifically to meet their developmental needs. (RH)
Higaki, Yuji; Fröhlich, Benjamin; Yamamoto, Akihisa; Murakami, Ryo; Kaneko, Makoto; Takahara, Atsushi; Tanaka, Motomu
2017-02-16
Zwitterionic polymer brushes draw increasing attention not only because of their superhydrophilic, self-cleaning capability but also due to their excellent antifouling capacity. We investigated the ion-specific modulation of the interfacial interaction potential via densely packed, uniform poly(sulfobetaine) brushes. The vertical Brownian motion of a cell-sized latex particle was monitored by microinterferometry, yielding the effective interfacial interaction potentials V(Δh) and the autocorrelation function of height fluctuation. The potential curvature V″(Δh) exhibited a monotonic increase according to the increase in monovalent salt concentrations, implying the sharpening of the potential confinement. An opposite tendency was observed in CaCl 2 solutions, suggesting that the ion specific modulation cannot be explained by the classical Hofmeister series. When the particle fluctuation was monitored in the presence of free sulfobetaine molecules, the increase in [sulfobetaine] resulted in a distinct increase in hydrodynamic friction. This was never observed in all the other salt solutions, suggesting the interference of zwitterionic pairing of sulfobetaine side chains by the intercalation of sulfobetaine molecules into the brush layer. Furthermore, poly(sulfobetaine) brushes exhibited a very low V″(Δh) and hydrodynamic friction to human erythrocytes, which seems to explain the excellent blood repellency of zwitterionic polymer materials.
Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation.
Ren, Chengcheng; Zhang, Qiuxiang; de Haan, Bart J; Zhang, Hao; Faas, Marijke M; de Vos, Paul
2016-10-06
Although many lactic acid bacteria (LAB) influence the consumer's immune status it is not completely understood how this is established. Bacteria-host interactions between bacterial cell-wall components and toll-like receptors (TLRs) have been suggested to play an essential role. Here we investigated the interaction between LABs with reported health effects and TLRs. By using cell-lines expressing single or combination of TLRs, we show that LABs can signal via TLR-dependent and independent pathways. The strains only stimulated and did not inhibit TLRs. We found that several strains such as L. plantarum CCFM634, L. plantarum CCFM734, L. fermentum CCFM381, L. acidophilus CCFM137, and S. thermophilus CCFM218 stimulated TLR2/TLR6. TLR2/TLR6 is essential in immune regulatory processes and of interest for prevention of diseases. Specificity of the TLR2/TLR6 stimulation was confirmed with blocking antibodies. Immunomodulatory properties of LABs were also studied by assessing IL-10 and IL-6 secretion patterns in bacteria-stimulated THP1-derived macrophages, which confirmed species and strain specific effects of the LABs. With this study we provide novel insight in LAB specific host-microbe interactions. Our data demonstrates that interactions between pattern recognition receptors such as TLRs is species and strain specific and underpins the importance of selecting specific strains for promoting specific health effects.
Evolution of specificity in cartilaginous fish glycoprotein hormones and receptors.
Buechi, Hanna B; Bridgham, Jamie T
2017-05-15
Glycoprotein hormones (GpH) interact very specifically with their receptors to mediate hypothalamic-pituitary-peripheral gland endocrine signaling. Vertebrates typically have three functionally distinct GpH endocrine signaling complexes: follicle-stimulating hormone, luteinizing hormone, and thyroid-stimulating hormone, and their receptors. Each hormone consists of a common α subunit bound to one of three different β subunits. Individual hormone subunits and receptors are present in genomes of early metazoans, and a subset of hormone subunits and receptors has been recently characterized in sea lamprey. However, it remains unclear when the full complement of hormone and receptor protein families first appeared, and when specificity of interactions between GpH hormones and receptors first evolved. Here we present phylogenetic analyses showing that the elephant shark (Callorhinchus milii) genome contains sequences representing the current diversity of all hormone subunits and receptors in these co-evolving protein families. We examined specificity of hormone and receptor interactions using functional assays testing reporter gene activation by elephant shark follicle-stimulating hormone, luteinizing hormone, and thyroid-stimulating hormone receptors. We show highly specific, dose-responsive hormone interactions for all three complexes. Our results suggest that co-evolution of specificity between proteins in these endocrine signaling complexes occurred prior to the divergence of Chondrichthyes from the chordate lineage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.
2000-05-01
RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.
Assessing Species-specific Contributions To Craniofacial Development Using Quail-duck Chimeras
Fish, Jennifer L.; Schneider, Richard A.
2014-01-01
The generation of chimeric embryos is a widespread and powerful approach to study cell fates, tissue interactions, and species-specific contributions to the histological and morphological development of vertebrate embryos. In particular, the use of chimeric embryos has established the importance of neural crest in directing the species-specific morphology of the craniofacial complex. The method described herein utilizes two avian species, duck and quail, with remarkably different craniofacial morphology. This method greatly facilitates the investigation of molecular and cellular regulation of species-specific pattern in the craniofacial complex. Experiments in quail and duck chimeric embryos have already revealed neural crest-mediated tissue interactions and cell-autonomous behaviors that regulate species-specific pattern in the craniofacial skeleton, musculature, and integument. The great diversity of neural crest derivatives suggests significant potential for future applications of the quail-duck chimeric system to understanding vertebrate development, disease, and evolution. PMID:24962088
Horchani, Habib; de Saint-Jean, Maud; Barelli, Hélène; Antonny, Bruno
2014-01-01
The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context.
Electrostatically Accelerated Coupled Binding and Folding of Intrinsically Disordered Proteins
Ganguly, Debabani; Otieno, Steve; Waddell, Brett; Iconaru, Luigi; Kriwacki, Richard W.; Chen, Jianhan
2012-01-01
Intrinsically disordered proteins (IDPs) are now recognized to be prevalent in biology, and many potential functional benefits have been discussed. However, the frequent requirement of peptide folding in specific interactions of IDPs could impose a kinetic bottleneck, which could be overcome only by efficient folding upon encounter. Intriguingly, existing kinetic data suggest that specific binding of IDPs is generally no slower than that of globular proteins. Here, we exploited the cell cycle regulator p27Kip1 (p27) as a model system to understand how IDPs might achieve efficient folding upon encounter for facile recognition. Combining experiments and coarse-grained modeling, we demonstrate that long-range electrostatic interactions between enriched charges on p27 and near its binding site on cyclin A not only enhance the encounter rate (i.e., electrostatic steering), but also promote folding-competent topologies in the encounter complexes, allowing rapid subsequent formation of short-range native interactions en route to the specific complex. In contrast, nonspecific hydrophobic interactions, while hardly affecting the encounter rate, can significantly reduce the efficiency of folding upon encounter and lead to slower binding kinetics. Further analysis of charge distributions in a set of known IDP complexes reveals that, although IDP binding sites tend to be more hydrophobic compared to the rest of the target surface, their vicinities are frequently enriched with charges to complement those on IDPs. This observation suggests that electrostatically accelerated encounter and induced folding might represent a prevalent mechanism for promoting facile IDP recognition. PMID:22721951
Amarger, Valérie; Lecouillard, Angèle; Ancellet, Laure; Grit, Isabelle; Castellano, Blandine; Hulin, Philippe; Parnet, Patricia
2014-10-14
Maternal diet during pregnancy and early postnatal life influences the setting up of normal physiological functions in the offspring. Epigenetic mechanisms regulate cell differentiation during embryonic development and may mediate gene/environment interactions. We showed here that high methyl donors associated with normal protein content in maternal diet increased the in vitro proliferation rate of neural stem/progenitor cells isolated from rat E19 fetuses. Gene expression on whole hippocampi at weaning confirmed this effect as evidenced by the higher expression of the Nestin and Igf2 genes, suggesting a higher amount of undifferentiated precursor cells. Additionally, protein restriction reduced the expression of the insulin receptor gene, which is essential to the action of IGFII. Inhibition of DNA methylation in neural stem/progenitor cells in vitro increased the expression of the astrocyte-specific Gfap gene and decreased the expression of the neuron-specific Dcx gene, suggesting an impact on cell differentiation. Our data suggest a complex interaction between methyl donors and protein content in maternal diet that influence the expression of major growth factors and their receptors and therefore impact the proliferation and differentiation capacities of neural stem cells, either through external hormone signals or internal genomic regulation.
Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; de la Torre, Juan Carlos; Martínez-Sobrido, Luis
2011-12-01
Several arenaviruses cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. Arenavirus nucleoprotein (NP), the most abundant viral protein in infected cells and virions, encapsidates the viral genome RNA, and this NP-RNA complex, together with the viral L polymerase, forms the viral ribonucleoprotein (vRNP) that directs viral RNA replication and gene transcription. Formation of infectious arenavirus progeny requires packaging of vRNPs into budding particles, a process in which arenavirus matrix-like protein (Z) plays a central role. In the present study, we have characterized the NP-Z interaction for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). The LCMV NP domain that interacted with Z overlapped with a previously documented C-terminal domain that counteracts the host type I interferon (IFN) response. However, we found that single amino acid mutations that affect the anti-IFN function of LCMV NP did not disrupt the NP-Z interaction, suggesting that within the C-terminal region of NP different amino acid residues critically contribute to these two distinct and segregable NP functions. A similar NP-Z interaction was confirmed for the HF arenavirus Lassa virus (LASV). Notably, LCMV NP interacted similarly with both LCMV Z and LASV Z, while LASV NP interacted only with LASV Z. Our results also suggest the presence of a conserved protein domain within NP but with specific amino acid residues playing key roles in determining the specificity of NP-Z interaction that may influence the viability of reassortant arenaviruses. In addition, this NP-Z interaction represents a potential target for the development of antiviral drugs to combat human-pathogenic arenaviruses.
Phase-Specific Vocalizations of Male Mice at the Initial Encounter during the Courtship Sequence
Matsumoto, Yui K.; Okanoya, Kazuo
2016-01-01
Mice produce ultrasonic vocalizations featuring a variety of syllables. Vocalizations are observed during social interactions. In particular, males produce numerous syllables during courtship. Previous studies have shown that vocalizations change according to sexual behavior, suggesting that males vary their vocalizations depending on the phase of the courtship sequence. To examine this process, we recorded large sets of mouse vocalizations during male–female interactions and acoustically categorized these sounds into 12 vocal types. We found that males emitted predominantly short syllables during the first minute of interaction, more long syllables in the later phases, and mainly harmonic sounds during mounting. These context- and time-dependent changes in vocalization indicate that vocal communication during courtship in mice consists of at least three stages and imply that each vocalization type has a specific role in a phase of the courtship sequence. Our findings suggest that recording for a sufficiently long time and taking the phase of courtship into consideration could provide more insights into the role of vocalization in mouse courtship behavior in future study. PMID:26841117
Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation*♦
Yamano, Koji; Queliconi, Bruno B.; Koyano, Fumika; Saeki, Yasushi; Hirokawa, Takatsugu; Tanaka, Keiji; Matsuda, Noriyuki
2015-01-01
Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser65 by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity. PMID:26260794
Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.
Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E
2017-01-01
Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.
Hallford, D J; Austin, D W; Raes, F; Takano, K
2018-04-18
Overgeneral memory (OGM) refers to the failure to recall memories of specific personally experienced events, which occurs in various psychiatric disorders. One pathway through which OGM is theorized to develop is the avoidance of thinking of negative experiences, whereby cumulative avoidance may maladaptively generalize to autobiographical memory (AM) more broadly. We tested this, predicting that negative experiences would interact with avoidance to predict AM specificity. In Study 1 (N = 281), negative life events (over six months) and daily hassles (over one month) were not related to AM specificity, nor was avoidance, and no interaction was found. In Study 2 (N = 318), we revised our measurements and used an increased timeframe of 12 months for both negative life events and daily hassles. The results showed no interaction effect for negative life events, but they did show an interaction for daily hassles, whereby increased hassles and higher avoidance of thinking about them were associated with reduced AM specificity, independent of general cognitive avoidance and depressive symptoms. No evidence was found that cognitive avoidance or AM specificity moderated the effect of negative experiences on depressive symptoms. Our findings suggest that life events over 6-12 months are not associated with AM specificity, but chronic daily hassles over 12 months predict reduced AM specificity when individuals avoid thinking about them. The findings provide evidence for the functional-avoidance hypothesis of OGM development and future directions for longitudinal studies.
Detecting protein-protein interactions using Renilla luciferase fusion proteins.
Burbelo, Peter D; Kisailus, Adam E; Peck, Jeremy W
2002-11-01
We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.
Formal verification of an oral messages algorithm for interactive consistency
NASA Technical Reports Server (NTRS)
Rushby, John
1992-01-01
The formal specification and verification of an algorithm for Interactive Consistency based on the Oral Messages algorithm for Byzantine Agreement is described. We compare our treatment with that of Bevier and Young, who presented a formal specification and verification for a very similar algorithm. Unlike Bevier and Young, who observed that 'the invariant maintained in the recursive subcases of the algorithm is significantly more complicated than is suggested by the published proof' and who found its formal verification 'a fairly difficult exercise in mechanical theorem proving,' our treatment is very close to the previously published analysis of the algorithm, and our formal specification and verification are straightforward. This example illustrates how delicate choices in the formulation of the problem can have significant impact on the readability of its formal specification and on the tractability of its formal verification.
Using genome-wide measurements for computational prediction of SH2–peptide interactions
Wunderlich, Zeba; Mirny, Leonid A.
2009-01-01
Peptide-recognition modules (PRMs) are used throughout biology to mediate protein–protein interactions, and many PRMs are members of large protein domain families. Recent genome-wide measurements describe networks of peptide–PRM interactions. In these networks, very similar PRMs recognize distinct sets of peptides, raising the question of how peptide-recognition specificity is achieved using similar protein domains. The analysis of individual protein complex structures often gives answers that are not easily applicable to other members of the same PRM family. Bioinformatics-based approaches, one the other hand, may be difficult to interpret physically. Here we integrate structural information with a large, quantitative data set of SH2 domain–peptide interactions to study the physical origin of domain–peptide specificity. We develop an energy model, inspired by protein folding, based on interactions between the amino-acid positions in the domain and peptide. We use this model to successfully predict which SH2 domains and peptides interact and uncover the positions in each that are important for specificity. The energy model is general enough that it can be applied to other members of the SH2 family or to new peptides, and the cross-validation results suggest that these energy calculations will be useful for predicting binding interactions. It can also be adapted to study other PRM families, predict optimal peptides for a given SH2 domain, or study other biological interactions, e.g. protein–DNA interactions. PMID:19502496
Martínez, Jimena H; Fuentes, Federico; Vanasco, Virginia; Alvarez, Silvia; Alaimo, Agustina; Cassina, Adriana; Coluccio Leskow, Federico; Velazquez, Francisco
2018-08-01
α-synuclein is involved in both familial and sporadic Parkinson's disease. Although its interaction with mitochondria has been well documented, several aspects remains unknown or under debate such as the specific sub-mitochondrial localization or the dynamics of the interaction. It has been suggested that α-synuclein could only interact with ER-associated mitochondria. The vast use of model systems and experimental conditions makes difficult to compare results and extract definitive conclusions. Here we tackle this by analyzing, in a simplified system, the interaction between purified α-synuclein and isolated rat brain mitochondria. This work shows that wild type α-synuclein interacts with isolated mitochondria and translocates into the mitochondrial matrix. This interaction and the irreversibility of α-synuclein translocation depend on incubation time and α-synuclein concentration. FRET experiments show that α-synuclein localizes close to components of the TOM complex suggesting a passive transport of α-synuclein through the outer membrane. In addition, α-synuclein binding alters mitochondrial function at the level of Complex I leading to a decrease in ATP synthesis and an increase of ROS production. Copyright © 2018. Published by Elsevier Inc.
Galkiewicz, Julia P; Kellogg, Christina A
2008-12-01
PCR amplification of pure bacterial DNA is vital to the study of bacterial interactions with corals. Commonly used Bacteria-specific primers 8F and 27F paired with the universal primer 1492R amplify both eukaryotic and prokaryotic rRNA genes. An alternative primer set, 63F/1542R, is suggested to resolve this problem.
Galkiewicz, Julia P.; Kellogg, Christina A.
2008-01-01
PCR amplification of pure bacterial DNA is vital to the study of bacterial interactions with corals. Commonly used Bacteria-specific primers 8F and 27F paired with the universal primer 1492R amplify both eukaryotic and prokaryotic rRNA genes. An alternative primer set, 63F/1542R, is suggested to resolve this problem. PMID:18931299
Contreras, Azalia; Vitale, John; Hutchins-Carroll, Virginia; Carroll, Edward J.; Oppenheimer, Steven B.
2008-01-01
Summary Hyalin is a large glycoprotein, consisting of the hyalin repeat domain and non-repeated regions, and is the major component of the hyaline layer in the early sea urchin embryo of Strongylocentrotus purpuratus. The hyalin repeat domain has been identified in proteins from organisms as diverse as bacteria, sea urchins, worms, flies, mice and humans. While the specific function of hyalin and the hyalin repeat domain is incompletely understood, many studies suggest that it has a functional role in adhesive interactions. In part I of this series, we showed that hyalin isolated from the sea urchin S. purpuratus blocked archenteron elongation and attachment to the blastocoel roof occurring during gastrulation in S. purpuratus embryos, (Razinia et al., 2007). The cellular interactions that occur in the sea urchin, recognized by the U.S. National Institutes of Health as a model system, may provide insights into adhesive interactions that occur in human health and disease. In part II of this series, we showed that S. purpuratus hyalin heterospecifically blocked archenteron-ectoderm interaction in Lytechinus pictus embryos (Alvarez et al, 2007). In the current study, we have isolated hyalin from the sea urchin L. pictus and demonstrated that L. pictus hyalin homospecifically blocks archenteron-ectoderm interaction, suggesting a general role for this glycoprotein in mediating a specific set of adhesive interactions. We also found one major difference in hyalin activity in the two sea urchin species involving hyalin influence on gastrulation invagination. PMID:18925979
Huber, Roland G.; Bond, Peter J.
2017-01-01
An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners. PMID:29016650
Ivanov, Stefan M; Cawley, Andrew; Huber, Roland G; Bond, Peter J; Warwicker, Jim
2017-01-01
An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.
NASA Astrophysics Data System (ADS)
Corenblit, Dov; Steiger, Johannes; Till-Bottraud, Irène
2017-04-01
Riparian vegetation affects hydrogeomorphic processes and leads to the construction of wooded fluvial landforms within riparian corridors. Multiple plants form dense multi- and mono-specific stands that enhance plant resistance as grouped plants are less prone to be uprooted than free-standing individuals. Riparian plants which grow in dense stands also enhance their role as ecosystem engineers through the trapping of sediment, organic matter and nutrients. The wooded biogeomorphic landforms which originate from the effect of vegetation on geomorphology lead in return to an improved capacity of the plants to survive, exploit resources, and reach sexual maturity in the intervals between destructive floods. Thus, these vegetated biogeomorphic landforms likely represent a positive niche construction of riparian plants. The nature and intensity of biotic interactions between riparian plants of different species (inter-specific) or the same species (intra-specific) which form dense stands and construct together the niche remain unclear. We strongly suspect that indirect inter-specific positive interactions (facilitation) occur between plants but that more direct intra-specific interactions, such as cooperation and altruism, also operate during the niche construction process. Our aim is to propose an original theoretical framework of inter and intra-specific positive interactions between riparian plants. We suggest that positive interactions between riparian plants are maximized in river reaches with an intermediate level of hydrogeomorphic disturbance. During establishment, plants that grow within dense stands improve their survival and growth because individuals protect each other from shear stress. In addition to the improved capacity to trap mineral and organic matter, individuals which constitute the dense stand can cooperate to mutually support a mycorrhizal fungi network that will connect plants, soil and ground water and influence nutrient transfer, cycling and storage within the shared constructed niche. During post-establishment, the probability of finding functional natural root grafting between neighbour trees increases, which could represent a biomechanical and physiological advantage for anchorage and nutrient acquisition and exchange. These stands remain dense on alluvial bars until a threshold of landform construction and hydrogeomorphic disconnection is reached. We suggest that intra-specific competition for resources then increases and induces a density reduction in the stand (i.e. self-thinning), linked not only to competition but potentially also to altruism. This may be due to a grafted root system and the death of aboveground stems of some of the grafted individuals, resulting in more space for the development of the tall competitive individuals, whereas the initial riparian biogeomorphic landform turns more and more into a terrestrial biogeomorphic landform.
Polge, Cécile; Jossier, Mathieu; Crozet, Pierre; Gissot, Lionel; Thomas, Martine
2008-01-01
The SNF1/AMPK/SnRK1 kinases are evolutionary conserved kinases involved in yeast, mammals, and plants in the control of energy balance. These heterotrimeric enzymes are composed of one α-type catalytic subunit and two γ- and β-type regulatory subunits. In yeast it has been proposed that the β-type subunits regulate both the localization of the kinase complexes within the cell and the interaction of the kinases with their targets. In this work, we demonstrate that the three β-type subunits of Arabidopsis (Arabidopsis thaliana; AKINβ1, AKINβ2, and AKINβ3) restore the growth phenotype of the yeast sip1Δsip2Δgal83Δ triple mutant, thus suggesting the conservation of an ancestral function. Expression analyses, using AKINβ promoter∷β-glucuronidase transgenic lines, reveal different and specific patterns of expression for each subunit according to organs, developmental stages, and environmental conditions. Finally, our results show that the β-type subunits are involved in the specificity of interaction of the kinase with the cytosolic nitrate reductase. Together with previous cell-free phosphorylation data, they strongly support the proposal that nitrate reductase is a real target of SnRK1 in the physiological context. Altogether our data suggest the conservation of ancestral basic function(s) together with specialized functions for each β-type subunit in plants. PMID:18768910
Speaking and Listening with the Eyes: Gaze Signaling during Dyadic Interactions.
Ho, Simon; Foulsham, Tom; Kingstone, Alan
2015-01-01
Cognitive scientists have long been interested in the role that eye gaze plays in social interactions. Previous research suggests that gaze acts as a signaling mechanism and can be used to control turn-taking behaviour. However, early research on this topic employed methods of analysis that aggregated gaze information across an entire trial (or trials), which masks any temporal dynamics that may exist in social interactions. More recently, attempts have been made to understand the temporal characteristics of social gaze but little research has been conducted in a natural setting with two interacting participants. The present study combines a temporally sensitive analysis technique with modern eye tracking technology to 1) validate the overall results from earlier aggregated analyses and 2) provide insight into the specific moment-to-moment temporal characteristics of turn-taking behaviour in a natural setting. Dyads played two social guessing games (20 Questions and Heads Up) while their eyes were tracked. Our general results are in line with past aggregated data, and using cross-correlational analysis on the specific gaze and speech signals of both participants we found that 1) speakers end their turn with direct gaze at the listener and 2) the listener in turn begins to speak with averted gaze. Convergent with theoretical models of social interaction, our data suggest that eye gaze can be used to signal both the end and the beginning of a speaking turn during a social interaction. The present study offers insight into the temporal dynamics of live dyadic interactions and also provides a new method of analysis for eye gaze data when temporal relationships are of interest.
Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.
2014-01-01
Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245
Dpb11 may function with RPA and DNA to initiate DNA replication.
Bruck, Irina; Dhingra, Nalini; Martinez, Matthew P; Kaplan, Daniel L
2017-01-01
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.
Weddle, C B; Mitchell, C; Bay, S K; Sakaluk, S K; Hunt, J
2012-10-01
Phenotypic traits that convey information about individual identity or quality are important in animal social interactions, and the degree to which such traits are influenced by environmental variation can have profound effects on the reliability of these cues. Using inbred genetic lines of the decorated cricket, Gryllodes sigillatus, we manipulated diet quality to test how the cuticular hydrocarbon (CHC) profiles of males and females respond across two different nutritional rearing environments. There were significant differences between lines in the CHC profiles of females, but the effect of diet was not quite statistically significant. There was no significant genotype-by-environment interaction (GEI), suggesting that environmental effects on phenotypic variation in female CHCs are independent of genotype. There was, however, a significant effect of GEI for males, with changes in both signal quantity and content, suggesting that environmental effects on phenotypic expression of male CHCs are dependent on genotype. The differential response of male and female CHC expression to variation in the nutritional environment suggests that these chemical cues may be under sex-specific selection for signal reliability. Female CHCs show the characteristics of reliable cues of identity: high genetic variability, low condition dependence and a high degree of genetic determination. This supports earlier work showing that female CHCs are used in self-recognition to identify previous mates and facilitate polyandry. In contrast, male CHCs show the characteristics of reliable cues of quality: condition dependence and a relatively higher degree of environmental determination. This suggests that male CHCs are likely to function as cues of underlying quality during mate choice and/or male dominance interactions. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Ono, K; Ohtomo, T; Sato, S; Sugamata, Y; Suzuki, M; Hisamoto, N; Ninomiya-Tsuji, J; Tsuchiya, M; Matsumoto, K
2001-06-29
TAK1, a member of the MAPKKK family, is involved in the intracellular signaling pathways mediated by transforming growth factor beta, interleukin 1, and Wnt. TAK1 kinase activity is specifically activated by the TAK1-binding protein TAB1. The C-terminal 68-amino acid sequence of TAB1 (TAB1-C68) is sufficient for TAK1 interaction and activation. Analysis of various truncated versions of TAB1-C68 defined a C-terminal 30-amino acid sequence (TAB1-C30) necessary for TAK1 binding and activation. NMR studies revealed that the TAB1-C30 region has a unique alpha-helical structure. We identified a conserved sequence motif, PYVDXA/TXF, in the C-terminal domain of mammalian TAB1, Xenopus TAB1, and its Caenorhabditis elegans homolog TAP-1, suggesting that this motif constitutes a specific TAK1 docking site. Alanine substitution mutagenesis showed that TAB1 Phe-484, located in the conserved motif, is crucial for TAK1 binding and activation. The C. elegans homolog of TAB1, TAP-1, was able to interact with and activate the C. elegans homolog of TAK1, MOM-4. However, the site in TAP-1 corresponding to Phe-484 of TAB1 is an alanine residue (Ala-364), and changing this residue to Phe abrogates the ability of TAP-1 to interact with and activate MOM-4. These results suggest that the Phe or Ala residue within the conserved motif of the TAB1-related proteins is important for interaction with and activation of specific TAK1 MAPKKK family members in vivo.
Corticotropin-Releasing Hormone Drives Anandamide Hydrolysis in the Amygdala to Promote Anxiety
Gray, J. Megan; Vecchiarelli, Haley A.; Morena, Maria; Lee, Tiffany T.Y.; Hermanson, Daniel J.; Kim, Alexander B.; McLaughlin, Ryan J.; Hassan, Kowther I.; Kühne, Claudia; Wotjak, Carsten T.; Deussing, Jan M.; Patel, Sachin
2015-01-01
Corticotropin-releasing hormone (CRH) is a central integrator in the brain of endocrine and behavioral stress responses, whereas activation of the endocannabinoid CB1 receptor suppresses these responses. Although these systems regulate overlapping functions, few studies have investigated whether these systems interact. Here we demonstrate a novel mechanism of CRH-induced anxiety that relies on modulation of endocannabinoids. Specifically, we found that CRH, through activation of the CRH receptor type 1 (CRHR1), evokes a rapid induction of the enzyme fatty acid amide hydrolase (FAAH), which causes a reduction in the endocannabinoid anandamide (AEA), within the amygdala. Similarly, the ability of acute stress to modulate amygdala FAAH and AEA in both rats and mice is also mediated through CRHR1 activation. This interaction occurs specifically in amygdala pyramidal neurons and represents a novel mechanism of endocannabinoid–CRH interactions in regulating amygdala output. Functionally, we found that CRH signaling in the amygdala promotes an anxious phenotype that is prevented by FAAH inhibition. Together, this work suggests that rapid reductions in amygdala AEA signaling following stress may prime the amygdala and facilitate the generation of downstream stress-linked behaviors. Given that endocannabinoid signaling is thought to exert “tonic” regulation on stress and anxiety responses, these data suggest that CRH signaling coordinates a disruption of tonic AEA activity to promote a state of anxiety, which in turn may represent an endogenous mechanism by which stress enhances anxiety. These data suggest that FAAH inhibitors may represent a novel class of anxiolytics that specifically target stress-induced anxiety. PMID:25740517
The zinc fingers of YY1 bind single-stranded RNA with low sequence specificity.
Wai, Dorothy C C; Shihab, Manar; Low, Jason K K; Mackay, Joel P
2016-11-02
Classical zinc fingers (ZFs) are traditionally considered to act as sequence-specific DNA-binding domains. More recently, classical ZFs have been recognised as potential RNA-binding modules, raising the intriguing possibility that classical-ZF transcription factors are involved in post-transcriptional gene regulation via direct RNA binding. To date, however, only one classical ZF-RNA complex, that involving TFIIIA, has been structurally characterised. Yin Yang-1 (YY1) is a multi-functional transcription factor involved in many regulatory processes, and binds DNA via four classical ZFs. Recent evidence suggests that YY1 also interacts with RNA, but the molecular nature of the interaction remains unknown. In the present work, we directly assess the ability of YY1 to bind RNA using in vitro assays. Systematic Evolution of Ligands by EXponential enrichment (SELEX) was used to identify preferred RNA sequences bound by the YY1 ZFs from a randomised library over multiple rounds of selection. However, a strong motif was not consistently recovered, suggesting that the RNA sequence selectivity of these domains is modest. YY1 ZF residues involved in binding to single-stranded RNA were identified by NMR spectroscopy and found to be largely distinct from the set of residues involved in DNA binding, suggesting that interactions between YY1 and ssRNA constitute a separate mode of nucleic acid binding. Our data are consistent with recent reports that YY1 can bind to RNA in a low-specificity, yet physiologically relevant manner. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Nagao, Yusuke; Takada, Hiroyuki; Miyadai, Motohiro; Adachi, Tomoko; Kamei, Yasuhiro; Hara, Ikuyo; Naruse, Kiyoshi; Hibi, Masahiko
2018-01-01
Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type. PMID:29621239
Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert
2017-07-01
Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.
SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.
Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa
2016-04-07
The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
Nietzsche, Madlen; Schießl, Ingrid; Börnke, Frederik
2014-01-01
In plants, SNF1-related kinase (SnRK1) responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic α subunit associates with a regulatory β subunit and an activating γ subunit. Several different metabolites as well as the hormone abscisic acid (ABA) have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF) 581 could interact with both isoforms of the SnRK1α subunit (AKIN10/11) of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation.
Nietzsche, Madlen; Schießl, Ingrid; Börnke, Frederik
2014-01-01
In plants, SNF1-related kinase (SnRK1) responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic α subunit associates with a regulatory β subunit and an activating γ subunit. Several different metabolites as well as the hormone abscisic acid (ABA) have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF) 581 could interact with both isoforms of the SnRK1α subunit (AKIN10/11) of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation. PMID:24600465
A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction
NASA Astrophysics Data System (ADS)
Zhao, Yuejie; Yang, Jeong Yeh; Thieker, David F.; Xu, Yongmei; Zong, Chengli; Boons, Geert-Jan; Liu, Jian; Woods, Robert J.; Moremen, Kelley W.; Amster, I. Jonathan
2018-03-01
Roundabout 1 (Robo1) interacts with its receptor Slit to regulate axon guidance, axon branching, and dendritic development in the nervous system and to regulate morphogenesis and many cell functions in the nonneuronal tissues. This interaction is known to be critically regulated by heparan sulfate (HS). Previous studies suggest that HS is required to promote the binding of Robo1 to Slit to form the minimal signaling complex, but the molecular details and the structural requirements of HS for this interaction are still unclear. Here, we describe the application of traveling wave ion mobility spectrometry (TWIMS) to study the conformational details of the Robo1-HS interaction. The results suggest that Robo1 exists in two conformations that differ by their compactness and capability to interact with HS. The results also suggest that the highly flexible interdomain hinge region connecting the Ig1 and Ig2 domains of Robo1 plays an important functional role in promoting the Robo1-Slit interaction. Moreover, variations in the sulfation pattern and size of HS were found to affect its binding affinity and selectivity to interact with different conformations of Robo1. Both MS measurements and CIU experiments show that the Robo1-HS interaction requires the presence of a specific size and pattern of modification of HS. Furthermore, the effect of N-glycosylation on the conformation of Robo1 and its binding modes with HS is reported. [Figure not available: see fulltext.
Rydell, P J; Mirenda, P
1991-06-01
The effects of specific types of adult antecedent utterances (high vs. low constraint) on the verbal behaviors produced by three subjects with autism were examined. Adult utterance types were differentiated in terms of the amount of control the adults exhibited in their verbal interactions with the subjects during a free play setting. Videotaped interactions were analyzed and coded according to a predetermined categorical system. The results of this investigation suggest that the level of linguistic constraint exerted on the child interactants during naturalistic play sessions affected their communicative output. The overall findings suggest that (a) adult high constraint utterances elicited more verbal utterances in general, as well as a majority of the subjects' echolalia; (b) adult low constraint utterances elicited more subject high constraint utterances; and (c) the degree of constraint of adult utterances did not appear to influence the mean lengths of subjects' utterances. The results are discussed in terms of their implications for educational interventions, and suggestions are made for future research concerning the dynamics of echolalia in interactive contexts.
Motivation: As cancer genomics initiatives move toward comprehensive identification of genetic alterations in cancer, attention is now turning to understanding how interactions among these genes lead to the acquisition of tumor hallmarks. Emerging pharmacological and clinical data suggest a highly promising role of cancer-specific protein-protein interactions (PPIs) as druggable cancer targets. However, large-scale experimental identification of cancer-related PPIs remains challenging, and currently available resources to explore oncogenic PPI networks are limited.
Ball, David A.; Mehta, Gunjan D.; Salomon-Kent, Ronit; Mazza, Davide; Morisaki, Tatsuya; Mueller, Florian; McNally, James G.; Karpova, Tatiana S.
2016-01-01
In vivo single molecule tracking has recently developed into a powerful technique for measuring and understanding the transient interactions of transcription factors (TF) with their chromatin response elements. However, this method still lacks a solid foundation for distinguishing between specific and non-specific interactions. To address this issue, we took advantage of the power of molecular genetics of yeast. Yeast TF Ace1p has only five specific sites in the genome and thus serves as a benchmark to distinguish specific from non-specific binding. Here, we show that the estimated residence time of the short-residence molecules is essentially the same for Hht1p, Ace1p and Hsf1p, equaling 0.12–0.32 s. These three DNA-binding proteins are very different in their structure, function and intracellular concentration. This suggests that (i) short-residence molecules are bound to DNA non-specifically, and (ii) that non-specific binding shares common characteristics between vastly different DNA-bound proteins and thus may have a common underlying mechanism. We develop new and robust procedure for evaluation of adverse effects of labeling, and new quantitative analysis procedures that significantly improve residence time measurements by accounting for fluorophore blinking. Our results provide a framework for the reliable performance and analysis of single molecule TF experiments in yeast. PMID:27566148
Perry, Brea L.; Pescosolido, Bernice A.; Bucholz, Kathleen; Edenberg, Howard; Kramer, John; Kuperman, Samuel; Schuckit, Marc Alan; Nurnberger, John I.
2015-01-01
Gender-moderated gene–environment interactions are rarely explored, raising concerns about inaccurate specification of etiological models and inferential errors. The current study examined the influence of gender, negative and positive daily life events, and GABRA2 genotype (SNP rs279871) on alcohol dependence, testing two- and three-way interactions between these variables using multilevel regression models fit to data from 2,281 White participants in the Collaborative Study on the Genetics of Alcoholism. Significant direct effects of variables of interest were identified, as well as gender-specific moderation of genetic risk on this SNP by social experiences. Higher levels of positive life events were protective for men with the high-risk genotype, but not among men with the low-risk genotype or women, regardless of genotype. Our findings support the disinhibition theory of alcohol dependence, suggesting that gender differences in social norms, constraints and opportunities, and behavioral undercontrol may explain men and women’s distinct patterns of association. PMID:23974430
NASA Astrophysics Data System (ADS)
Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.
2016-11-01
Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.
Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.
2016-01-01
Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697
Invited commentary: on population subgroups, mathematics, and interventions.
Jacobs, David R; Meyer, Katie A
2011-02-15
New sex-specific equations, each with race/ethnic-specific intercept, for predicted lung function illustrate a methodological point, that complex differences between groups may not imply interactions with other predictors, such as age and height. The new equations find that race/ethnic identity does not interact with either age or height in the prediction equations, although there are race/ethnic-specific offsets. Further study is warranted of the effect of possible small race/ethnic interactions on disease classification. Additional study of repeated measures of lung function is warranted, given that the new equations were developed in cross-sectional designs. Predicting lung function is more than a methodological exercise. Predicted values are important in disease diagnosis and monitoring. It is suggested that measurement and tracking of lung function throughout young adulthood could be used to provide an early warning of potential long-term lung function losses to encourage improvement of risky behaviors including smoking and failure to maintain normal body weight in the general population.
SH3 interactome conserves general function over specific form
Xin, Xiaofeng; Gfeller, David; Cheng, Jackie; Tonikian, Raffi; Sun, Lin; Guo, Ailan; Lopez, Lianet; Pavlenco, Alevtina; Akintobi, Adenrele; Zhang, Yingnan; Rual, Jean-François; Currell, Bridget; Seshagiri, Somasekar; Hao, Tong; Yang, Xinping; Shen, Yun A; Salehi-Ashtiani, Kourosh; Li, Jingjing; Cheng, Aaron T; Bouamalay, Dryden; Lugari, Adrien; Hill, David E; Grimes, Mark L; Drubin, David G; Grant, Barth D; Vidal, Marc; Boone, Charles; Sidhu, Sachdev S; Bader, Gary D
2013-01-01
Src homology 3 (SH3) domains bind peptides to mediate protein–protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form. PMID:23549480
Sot, Begoña; Rubio-Muñoz, Alejandra; Leal-Quintero, Ahudrey; Martínez-Sabando, Javier; Marcilla, Miguel; Roodveldt, Cintia; Valpuesta, José M.
2017-01-01
The eukaryotic chaperonin CCT (chaperonin containing TCP-1) uses cavities built into its double-ring structure to encapsulate and to assist folding of a large subset of proteins. CCT can inhibit amyloid fibre assembly and toxicity of the polyQ extended mutant of huntingtin, the protein responsible for Huntington’s disease. This raises the possibility that CCT modulates other amyloidopathies, a still-unaddressed question. We show here that CCT inhibits amyloid fibre assembly of α-synuclein A53T, one of the mutants responsible for Parkinson’s disease. We evaluated fibrillation blockade in α-synuclein A53T deletion mutants and CCT interactions of full-length A53T in distinct oligomeric states to define an inhibition mechanism specific for α-synuclein. CCT interferes with fibre assembly by interaction of its CCTζ and CCTγ subunits with the A53T central hydrophobic region (NAC). This interaction is specific to NAC conformation, as it is produced once soluble α-synuclein A53T oligomers form and blocks the reaction before fibres begin to grow. Finally, we show that this association inhibits α-synuclein A53T oligomer toxicity in neuroblastoma cells. In summary, our results and those for huntingtin suggest that CCT is a general modulator of amyloidogenesis via a specific mechanism. PMID:28102321
Mohan, Nimmy; AP, Sudheesh; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S.
2015-01-01
Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3′-end processing. PMID:26138484
Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme
Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.
2016-01-01
A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360
Interaction between telencephalic signals and respiratory dynamics in songbirds
Méndez, Jorge M.; Mindlin, Gabriel B.
2012-01-01
The mechanisms by which telencephalic areas affect motor activities are largely unknown. They could either take over motor control from downstream motor circuits or interact with the intrinsic dynamics of these circuits. Both models have been proposed for telencephalic control of respiration during learned vocal behavior in birds. The interactive model postulates that simple signals from the telencephalic song control areas are sufficient to drive the nonlinear respiratory network into producing complex temporal sequences. We tested this basic assumption by electrically stimulating telencephalic song control areas and analyzing the resulting respiratory patterns in zebra finches and in canaries. We found strong evidence for interaction between the rhythm of stimulation and the intrinsic respiratory rhythm, including naturally emerging subharmonic behavior and integration of lateralized telencephalic input. The evidence for clear interaction in our experimental paradigm suggests that telencephalic vocal control also uses a similar mechanism. Furthermore, species differences in the response of the respiratory system to stimulation show parallels to differences in the respiratory patterns of song, suggesting that the interactive production of respiratory rhythms is manifested in species-specific specialization of the involved circuitry. PMID:22402649
Schapschröer, M; Baker, J; Schorer, J
2016-06-01
Studies examining experts' superiority within domain-specific structured pattern recall tasks have typically had athletes perform them at rest, which is far different from how they are executed in their sport. The aim of this study was to investigate whether performing these tasks under different physical exercise intensities influenced pattern recall results of experts, advanced and novices. In two experiments, 68 participants (experiment 1: n = 33; experiment 2: n = 35) were tested using a handball-specific pattern recall task both at rest and during physical exercise. Physical exercises of 60 % heart rate reserve (constant workload: experiment 1) and of 86.5-90 % HRmax (handball-specific interval load: experiment 2) were induced. Results of both experiments revealed significant group differences with experts recalling patterns more accurately than novices but no significant within-subject differences for the two conditions and no interaction between both factors. Our findings replicate prior research concerning perceptual-cognitive expertise in structured specific pattern recall tasks. However, the lack of intergroup differences between the two conditions or interactions was surprising, suggesting sport-specific pattern recall skill is robust to changes in exercise stimuli. Future work is needed to further examine the impact of "physiological specificity" on perceptual-cognitive expertise.
The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2
Wickliffe, Katherine E.; Lorenz, Sonja; Wemmer, David E.; Kuriyan, John; Rape, Michael
2011-01-01
Ubiquitin chains of different topologies trigger distinct functional consequences, including protein degradation and reorganization of complexes. The assembly of most ubiquitin chains is promoted by E2s, yet how these enzymes achieve linkage specificity is poorly understood. We have discovered that the K11-specific Ube2S orients the donor ubiquitin through an essential non-covalent interaction that occurs in addition to the thioester bond at the E2 active site. The E2-donor ubiquitin complex transiently recognizes the acceptor ubiquitin, primarily through electrostatic interactions. The recognition of the acceptor ubiquitin surface around Lys11, but not around other lysines, generates a catalytically competent active site, which is composed of residues of both Ube2S and ubiquitin. Our studies suggest that monomeric E2s promote linkage-specific ubiquitin chain formation through substrate-assisted catalysis. PMID:21376237
Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Schlötzer-Schrehardt, Ursula; Marschall, Manfred
2018-01-01
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction. PMID:29342872
Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred
2018-01-13
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
NASA Astrophysics Data System (ADS)
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
NASA Astrophysics Data System (ADS)
Suenaga, A.; Yatsu, C.; Komeiji, Y.; Uebayasi, M.; Meguro, T.; Yamato, I.
2000-08-01
Molecular dynamics simulation of Escherichia colitrp-repressor/operator complex was performed to elucidate protein-DNA interactions in solution for 800 ps on special-purpose computer MD-GRAPE. The Ewald summation method was employed to treat the electrostatic interaction without cutoff. DNA kept stable conformation in comparison with the result of the conventional cutoff method. Thus, the trajectories obtained were used to analyze the protein-DNA interaction and to understand the role of dynamics of water molecules forming sequence specific recognition interface. The dynamical cross-correlation map showed a significant positive correlation between the helix-turn-helix DNA-binding motifs and the major grooves of operator DNA. The extensive contact surface was stable during the simulation. Most of the contacts consisted of direct interactions between phosphates of DNA and the protein, but several water-mediated polar contacts were also observed. These water-mediated interactions, which were also seen in the crystal structure (Z. Otwinowski, et al., Nature, 335 (1998) 321) emerged spontaneously from the randomized initial configuration of the solvent. This result suggests the importance of the water-mediated interaction in specific recognition of DNA by the trp-repressor, consistent with X-ray structural information.
NASA Astrophysics Data System (ADS)
O'Connell, D. J.; Bombelli, F. Baldelli; Pitek, A. S.; Monopoli, M. P.; Cahill, D. J.; Dawson, K. A.
2015-09-01
Nanoparticles in physiological environments are known to selectively adsorb proteins and other biomolecules forming a tightly bound biomolecular `corona' on their surface. Where the exchange times of the proteins are sufficiently long, it is believed that the protein corona constitutes the particle identity in biological milieu. Here we show that proteins in the corona retain their functional characteristics and can specifically bind to cognate proteins on arrays of thousands of immobilised human proteins. The biological identity of the nanomaterial is seen to be specific to the blood plasma concentration in which they are exposed. We show that the resulting in situ nanoparticle interactome is dependent on the protein concentration in plasma, with the emergence of a small number of dominant protein-protein interactions. These interactions are those driven by proteins that are adsorbed onto the particle surface and whose binding epitopes are subsequently expressed or presented suitably on the particle surface. We suggest that, since specific tailored protein arrays for target systems and organs can be designed, their use may be an important element in an overall study of the biomolecular corona.Nanoparticles in physiological environments are known to selectively adsorb proteins and other biomolecules forming a tightly bound biomolecular `corona' on their surface. Where the exchange times of the proteins are sufficiently long, it is believed that the protein corona constitutes the particle identity in biological milieu. Here we show that proteins in the corona retain their functional characteristics and can specifically bind to cognate proteins on arrays of thousands of immobilised human proteins. The biological identity of the nanomaterial is seen to be specific to the blood plasma concentration in which they are exposed. We show that the resulting in situ nanoparticle interactome is dependent on the protein concentration in plasma, with the emergence of a small number of dominant protein-protein interactions. These interactions are those driven by proteins that are adsorbed onto the particle surface and whose binding epitopes are subsequently expressed or presented suitably on the particle surface. We suggest that, since specific tailored protein arrays for target systems and organs can be designed, their use may be an important element in an overall study of the biomolecular corona. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01970b
The Experienced Utility of Expected Utility Approaches
1980-04-01
extrin- 1 sic reinforcements on intrinsic motivation (Deci, 1975) reflects another such interaction, as it suggests that the value of intrinsic rewards...may be affected by the specific extrinsic reward received. This can, in principle, be handled in SEU models, by evaluating the conjunction of...this suspicion (p. 146). More pessimistically, Staw (1977) suggests that ordinary choice behavior is better modeled as " impulse buying " decisions of
Grober, J S; Bowen, B L; Ebling, H; Athey, B; Thompson, C B; Fox, D A; Stoolman, L M
1993-01-01
Blood monocytes are the principal reservoir for tissue macrophages in rheumatoid synovitis. Receptor-mediated adhesive interactions between circulating cells and the synovial venules initiate recruitment. These interactions have been studied primarily in cultured endothelial cells. Thus the functional activities of specific adhesion receptors, such as the endothelial selectins and the leukocytic integrins, have not been evaluated directly in diseased tissues. We therefore examined monocyte-microvascular interactions in rheumatoid synovitis by modifying the Stamper-Woodruff frozen section binding assay initially developed to study lymphocyte homing. Specific binding of monocytes to venules lined by low or high endothelium occurred at concentrations as low as 5 x 10(5) cells/ml. mAbs specific for P-selectin (CD62, GMP-140/PADGEM) blocked adhesion by > 90% in all synovitis specimens examined. In contrast, P-selectin-mediated adhesion to the microvasculature was either lower or absent in frozen sections of normal foreskin and placenta. mAbs specific for E-selectin (ELAM-1) blocked 20-50% of monocyte attachment in several RA synovial specimens but had no effect in others. mAbs specific for LFA-1, Mo1/Mac 1, the integrin beta 2-chain, and L-selectin individually inhibited 30-40% of adhesion. An mAb specific for the integrin beta 1-chain inhibited the attachment of elutriated monocytes up to 20%. We conclude that P-selectin associated with the synovial microvasculature initiates shear-resistant adhesion of monocytes in the Stamper-Woodruff assay and stabilizes bonds formed by other selectins and the integrins. Thus the frozen section binding assay permits direct evaluation of leukocyte-microvascular adhesive interactions in inflamed tissues and suggests a prominent role for P-selectin in monocyte recruitment in vivo. Images PMID:7685772
Dissociations and interactions between time, numerosity and space processing
Cappelletti, Marinella; Freeman, Elliot D.; Cipolotti, Lisa
2009-01-01
This study investigated time, numerosity and space processing in a patient (CB) with a right hemisphere lesion. We tested whether these magnitude dimensions share a common magnitude system or whether they are processed by dimension-specific magnitude systems. Five experimental tasks were used: Tasks 1–3 assessed time and numerosity independently and time and numerosity jointly. Tasks 4 and 5 investigated space processing independently and space and numbers jointly. Patient CB was impaired at estimating time and at discriminating between temporal intervals, his errors being underestimations. In contrast, his ability to process numbers and space was normal. A unidirectional interaction between numbers and time was found in both the patient and the control subjects. Strikingly, small numbers were perceived as lasting shorter and large numbers as lasting longer. In contrast, number processing was not affected by time, i.e. short durations did not result in perceiving fewer numbers and long durations in perceiving more numbers. Numbers and space also interacted, with small numbers answered faster when presented on the left side of space, and the reverse for large numbers. Our results demonstrate that time processing can be selectively impaired. This suggests that mechanisms specific for time processing may be partially independent from those involved in processing numbers and space. However, the interaction between numbers and time and between numbers and space also suggests that although independent, there maybe some overlap between time, numbers and space. These data suggest a partly shared mechanism between time, numbers and space which may be involved in magnitude processing or may be recruited to perform cognitive operations on magnitude dimensions. PMID:19501604
HAMLET interacts with lipid membranes and perturbs their structure and integrity.
Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger
2010-02-23
Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.
Tackett, Alan J.; Corey, David R.; Raney, Kevin D.
2002-01-01
Peptide nucleic acid (PNA) is a DNA mimic in which the nucleobases are linked by an N-(2-aminoethyl) glycine backbone. Here we report that PNA can interact with single-stranded DNA (ssDNA) in a non-sequence-specific fashion. We observed that a 15mer PNA inhibited the ssDNA-stimulated ATPase activity of a bacteriophage T4 helicase, Dda. Surprisingly, when a fluorescein-labeled 15mer PNA was used in binding studies no interaction was observed between PNA and Dda. However, fluorescence polarization did reveal non-sequence-specific interactions between PNA and ssDNA. Thus, the inhibition of ATPase activity of Dda appears to result from depletion of the available ssDNA due to non-Watson–Crick binding of PNA to ssDNA. Inhibition of the ssDNA-stimulated ATPase activity was observed for several PNAs of varying length and sequence. To study the basis for this phenomenon, we examined self-aggregation by PNAs. The 15mer PNA readily self-aggregates to the point of precipitation. Since PNAs are hydrophobic, they aggregate more than DNA or RNA, making the study of this phenomenon essential for understanding the properties of PNA. Non-sequence-specific interactions between PNA and ssDNA were observed at moderate concentrations of PNA, suggesting that such interactions should be considered for antisense and antigene applications. PMID:11842106
da Silva, Fernanda Luna; Coelho Cerqueira, Eduardo; de Freitas, Mônica Santos; Gonçalves, Daniela Leão; Costa, Lilian Terezinha; Follmer, Cristian
2013-01-01
In the last decades, a series of compounds, including quinones and polyphenols, has been described as having anti-fibrillogenic action on α-synuclein (α-syn) whose aggregation is associated to the pathogenesis of Parkinson's disease (PD). Most of these molecules act as promiscuous anti-amyloidogenic agents, interacting with the diverse amyloidogenic proteins (mostly unfolded) through non-specific hydrophobic interactions. Herein we investigated the effect of the vitamins K (phylloquinone, menaquinone and menadione), which are 1,4-naphthoquinone (1,4-NQ) derivatives, on α-syn aggregation, comparing them with other anti-fibrillogenic molecules such as quinones, polyphenols and lipophilic vitamins. Vitamins K delayed α-syn fibrillization in substoichiometric concentrations, leading to the formation of short, sheared fibrils and amorphous aggregates, which are less prone to produce leakage of synthetic vesicles. In seeding conditions, menadione and 1,4-NQ significantly inhibited fibrils elongation, which could be explained by their ability to destabilize preformed fibrils of α-syn. Bidimensional NMR experiments indicate that a specific site at the N-terminal α-syn (Gly31/Lys32) is involved in the interaction with vitamins K, which is corroborated by previous studies suggesting that Lys is a key residue in the interaction with quinones. Together, our data suggest that 1,4-NQ, recently showed up by our group as a potential scaffold for designing new monoamine oxidase inhibitors, is also capable to modulate α-syn fibrillization in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.
Community specificity: life and afterlife effects of genes.
Whitham, Thomas G; Gehring, Catherine A; Lamit, Louis J; Wojtowicz, Todd; Evans, Luke M; Keith, Arthur R; Smith, David Solance
2012-05-01
Community-level genetic specificity results when individual genotypes or populations of the same species support different communities. Our review of the literature shows that genetic specificity exhibits both life and afterlife effects; it is a widespread phenomenon occurring in diverse taxonomic groups, aquatic to terrestrial ecosystems, and species-poor to species-rich systems. Such specificity affects species interactions, evolution, ecosystem processes and leads to community feedbacks on the performance of the individuals expressing the traits. Thus, genetic specificity by communities appears to be fundamentally important, suggesting that specificity is a major driver of the biodiversity and stability of the world's ecosystems. Copyright © 2012. Published by Elsevier Ltd.
Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure.
Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra
2015-07-02
Metal-organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH4 adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH4-CH4 intermolecular interactions are minimized and the energetics solely reflects the CH4-MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH4 independent of coverage. This calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH4 adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH4-HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.
Thermodynamics of methane adsorption on copper HKUST-1 at low pressure
Wu, Di; Guo, Xiaofeng; Sun, Hui; ...
2015-06-11
Metal–organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH₄ adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH₄–CH₄ intermolecular interactions are minimized and the energetics solely reflects the CH₄–MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH₄ independent of coverage. The calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH₄more » adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH₄–HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.« less
Speaking and Listening with the Eyes: Gaze Signaling during Dyadic Interactions
Ho, Simon; Foulsham, Tom; Kingstone, Alan
2015-01-01
Cognitive scientists have long been interested in the role that eye gaze plays in social interactions. Previous research suggests that gaze acts as a signaling mechanism and can be used to control turn-taking behaviour. However, early research on this topic employed methods of analysis that aggregated gaze information across an entire trial (or trials), which masks any temporal dynamics that may exist in social interactions. More recently, attempts have been made to understand the temporal characteristics of social gaze but little research has been conducted in a natural setting with two interacting participants. The present study combines a temporally sensitive analysis technique with modern eye tracking technology to 1) validate the overall results from earlier aggregated analyses and 2) provide insight into the specific moment-to-moment temporal characteristics of turn-taking behaviour in a natural setting. Dyads played two social guessing games (20 Questions and Heads Up) while their eyes were tracked. Our general results are in line with past aggregated data, and using cross-correlational analysis on the specific gaze and speech signals of both participants we found that 1) speakers end their turn with direct gaze at the listener and 2) the listener in turn begins to speak with averted gaze. Convergent with theoretical models of social interaction, our data suggest that eye gaze can be used to signal both the end and the beginning of a speaking turn during a social interaction. The present study offers insight into the temporal dynamics of live dyadic interactions and also provides a new method of analysis for eye gaze data when temporal relationships are of interest. PMID:26309216
Law, Bernard M H; Spain, Victoria A; Leinster, Veronica H L; Chia, Ruth; Beilina, Alexandra; Cho, Hyun J; Taymans, Jean-Marc; Urban, Mary K; Sancho, Rosa M; Blanca Ramírez, Marian; Biskup, Saskia; Baekelandt, Veerle; Cai, Huaibin; Cookson, Mark R; Berwick, Daniel C; Harvey, Kirsten
2014-01-10
Mutations in LRRK2, encoding the multifunctional protein leucine-rich repeat kinase 2 (LRRK2), are a common cause of Parkinson disease. LRRK2 has been suggested to influence the cytoskeleton as LRRK2 mutants reduce neurite outgrowth and cause an accumulation of hyperphosphorylated Tau. This might cause alterations in the dynamic instability of microtubules suggested to contribute to the pathogenesis of Parkinson disease. Here, we describe a direct interaction between LRRK2 and β-tubulin. This interaction is conferred by the LRRK2 Roc domain and is disrupted by the familial R1441G mutation and artificial Roc domain mutations that mimic autophosphorylation. LRRK2 selectively interacts with three β-tubulin isoforms: TUBB, TUBB4, and TUBB6, one of which (TUBB4) is mutated in the movement disorder dystonia type 4 (DYT4). Binding specificity is determined by lysine 362 and alanine 364 of β-tubulin. Molecular modeling was used to map the interaction surface to the luminal face of microtubule protofibrils in close proximity to the lysine 40 acetylation site in α-tubulin. This location is predicted to be poorly accessible within mature stabilized microtubules, but exposed in dynamic microtubule populations. Consistent with this finding, endogenous LRRK2 displays a preferential localization to dynamic microtubules within growth cones, rather than adjacent axonal microtubule bundles. This interaction is functionally relevant to microtubule dynamics, as mouse embryonic fibroblasts derived from LRRK2 knock-out mice display increased microtubule acetylation. Taken together, our data shed light on the nature of the LRRK2-tubulin interaction, and indicate that alterations in microtubule stability caused by changes in LRRK2 might contribute to the pathogenesis of Parkinson disease.
Dpb11 may function with RPA and DNA to initiate DNA replication
Bruck, Irina; Dhingra, Nalini; Martinez, Matthew P.
2017-01-01
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation. PMID:28467467
How do we think machines think? An fMRI study of alleged competition with an artificial intelligence
Chaminade, Thierry; Rosset, Delphine; Da Fonseca, David; Nazarian, Bruno; Lutcher, Ewald; Cheng, Gordon; Deruelle, Christine
2012-01-01
Mentalizing is defined as the inference of mental states of fellow humans, and is a particularly important skill for social interactions. Here we assessed whether activity in brain areas involved in mentalizing is specific to the processing of mental states or can be generalized to the inference of non-mental states by comparing brain responses during the interaction with an intentional and an artificial agent. Participants were scanned using fMRI during interactive rock-paper-scissors games while believing their opponent was a fellow human (Intentional agent, Int), a humanoid robot endowed with an artificial intelligence (Artificial agent, Art), or a computer playing randomly (Random agent, Rnd). Participants' subjective reports indicated that they adopted different stances against the three agents. The contrast of brain activity during interaction with the artificial and the random agents didn't yield any cluster at the threshold used, suggesting the absence of a reproducible stance when interacting with an artificial intelligence. We probed response to the artificial agent in regions of interest corresponding to clusters found in the contrast between the intentional and the random agents. In the precuneus involved in working memory, the posterior intraparietal suclus, in the control of attention and the dorsolateral prefrontal cortex, in executive functions, brain activity for Art was larger than for Rnd but lower than for Int, supporting the intrinsically engaging nature of social interactions. A similar pattern in the left premotor cortex and anterior intraparietal sulcus involved in motor resonance suggested that participants simulated human, and to a lesser extend humanoid robot actions, when playing the game. Finally, mentalizing regions, the medial prefrontal cortex and right temporoparietal junction, responded to the human only, supporting the specificity of mentalizing areas for interactions with intentional agents. PMID:22586381
Chaminade, Thierry; Rosset, Delphine; Da Fonseca, David; Nazarian, Bruno; Lutcher, Ewald; Cheng, Gordon; Deruelle, Christine
2012-01-01
Mentalizing is defined as the inference of mental states of fellow humans, and is a particularly important skill for social interactions. Here we assessed whether activity in brain areas involved in mentalizing is specific to the processing of mental states or can be generalized to the inference of non-mental states by comparing brain responses during the interaction with an intentional and an artificial agent. Participants were scanned using fMRI during interactive rock-paper-scissors games while believing their opponent was a fellow human (Intentional agent, Int), a humanoid robot endowed with an artificial intelligence (Artificial agent, Art), or a computer playing randomly (Random agent, Rnd). Participants' subjective reports indicated that they adopted different stances against the three agents. The contrast of brain activity during interaction with the artificial and the random agents didn't yield any cluster at the threshold used, suggesting the absence of a reproducible stance when interacting with an artificial intelligence. We probed response to the artificial agent in regions of interest corresponding to clusters found in the contrast between the intentional and the random agents. In the precuneus involved in working memory, the posterior intraparietal suclus, in the control of attention and the dorsolateral prefrontal cortex, in executive functions, brain activity for Art was larger than for Rnd but lower than for Int, supporting the intrinsically engaging nature of social interactions. A similar pattern in the left premotor cortex and anterior intraparietal sulcus involved in motor resonance suggested that participants simulated human, and to a lesser extend humanoid robot actions, when playing the game. Finally, mentalizing regions, the medial prefrontal cortex and right temporoparietal junction, responded to the human only, supporting the specificity of mentalizing areas for interactions with intentional agents.
Impact of immune-metabolic interactions on age-related thymic demise and T cell senescence.
Dixit, Vishwa Deep
2012-10-01
Emerging evidence indicates that the immune and metabolic interactions control several aspects of the aging process and associated chronic diseases. Among several sites of immune-metabolic interactions, thymic demise represents a particularly puzzling phenomenon because even in metabolically healthy middle-aged individuals the majority of thymic space is replaced with ectopic lipids. The new T cell specificities can only be generated in a functional thymus and, peripheral proliferation of pre-existing T cell clones provides limited immune-vigilance in the elderly. Therefore, it is hypothesized that the strategies that enhance thymic-lymphopoiesis may extend healthspan. Recent data suggest that byproducts of thymic fatty acids and lipids result in accumulation of 'lipotoxic DAMPs' (damage associated molecular patterns), which triggers the innate immune-sensing mechanism like inflammasome activation which links aging to thymic demise. The immune-metabolic interaction within the aging thymus produces a local pro-inflammatory state that directly compromises the thymic stromal microenvironment, thymic-lymphopoiesis and serves a precursor of systemic immune-dysregulation in the elderly. New evidence also suggests that ectopic thymic adipocytes may develop from specific intrathymic stromal cell precursors instead of a passive process that is simply a consequence of thymic lymphopenia. Thus the complex bidirectional interactions between metabolic and immune systems may link aging to health, T cell senescence, and associated diseases. This review discusses the immune-metabolic mechanisms during aging - with implications for developing future therapeutic strategies for living well beyond the expected. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Chongxu; Nielsen, Maria E. O.; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J.; Andersen, Jens S.; Yao, Gang
2013-01-01
Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1’s defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made. PMID:22836166
Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang
2012-09-01
Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.
Okochi, Mina; Nomura, Tomoko; Zako, Tamotsu; Arakawa, Takatoshi; Iizuka, Ryo; Ueda, Hiroshi; Funatsu, Takashi; Leroux, Michel; Yohda, Masafumi
2004-07-23
Prefoldin is a jellyfish-shaped hexameric co-chaperone of the group II chaperonins. It captures a protein folding intermediate and transfers it to a group II chaperonin for completion of folding. The manner in which prefoldin interacts with its substrates and cooperates with the chaperonin is poorly understood. In this study, we have examined the interaction between a prefoldin and a chaperonin from hyperthermophilic archaea by immunoprecipitation, single molecule observation, and surface plasmon resonance. We demonstrate that Pyrococcus prefoldin interacts most tightly with its cognate chaperonin, and vice versa, suggesting species specificity in the interaction. Using truncation mutants, we uncovered by kinetic analyses that this interaction is multivalent in nature, consistent with multiple binding sites between the two chaperones. We present evidence that both N- and C-terminal regions of the prefoldin beta sub-unit are important for molecular chaperone activity and for the interaction with a chaperonin. Our data are consistent with substrate and chaperonin binding sites on prefoldin that are different but in close proximity, which suggests a possible handover mechanism of prefoldin substrates to the chaperonin.
Effects of environmental tobacco smoke on nasal responses to live attenuated influenza virus
Background: Published and preliminary data in our laboratory suggest that airborne pollutants including tobacco smoke increase susceptibility of respiratory epithelium to infection with influenza A. However, no studies have specifically looked at the interaction between tobacco s...
ERIC Educational Resources Information Center
Hooper, Kristina
1982-01-01
Provides the rationale for considering communication in a graphic domain and suggests a specific goal for designing work stations which provide graphic capabilities in educational settings. The central element of this recommendation is the "pictorial conversation", a highly interactive exchange that includes pictures as the central elements.…
Galkiewicz, J.P.; Kellogg, C.A.
2008-01-01
PCR amplification of pure bacterial DNA is vital to the study of bacterial interactions with corals. Commonly used Bacteria-specific primers 8F and 27F paired with the universal primer 1492R amplify both eukaryotic and prokaryotic rRNA genes. An alternative primer set, 63F/1542R, is suggested to resolve this problem. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.
Pathological motivations for exercise and eating disorder specific health-related quality of life.
Cook, Brian; Engel, Scott; Crosby, Ross; Hausenblas, Heather; Wonderlich, Stephen; Mitchell, James
2014-04-01
To examine associations among pathological motivations for exercise with eating disorder (ED) specific health-related quality of life (HRQOL). Survey data assessing ED severity (i.e., Eating Disorder Diagnostic Survey), ED specific HRQOL (i.e., Eating Disorders Quality of Life Instrument), and pathological motivations for exercise (i.e., Exercise Dependence Scale) were collected from female students (N = 387) at seven universities throughout the United States. Regression analyses were conducted to examine the associations among exercise dependence, ED-specific HRQOL and ED severity, and the interaction of exercise dependence and ED severity on HRQOL scores. The overall model examining the impact of ED severity and exercise dependence (independent variables) on HRQOL (dependent variable) was significant and explained 16.1% of the variance in HRQOL scores. Additionally, the main effects for ED severity and exercise dependence and the interaction among ED severity and exercise dependence were significant, suggesting that the combined effects of ED severity and exercise dependence significantly impacts HRQOL. Our results suggest that pathological motivations for exercise may exacerbate ED's detrimental impact on HRQOL. Our results offer one possible insight into why exercise may be associated with deleterious effects on ED HRQOL. Future research is needed to elucidate the relationship among psychological aspects of exercise, ED, and HRQOL. Copyright © 2013 Wiley Periodicals, Inc.
First-principles simulations of electrostatic interactions between dust grains
NASA Astrophysics Data System (ADS)
Itou, H.; Amano, T.; Hoshino, M.
2014-12-01
We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. [Phys. Lett. A 239, 181-186 (1998)]. Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams [Phys. Lett. A 278, 152-158 (2000)], indicating the absence of the ODS attractive force.
Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P; Anaya, Yanett; Singer, Jonathan B; Hill, Annie E; Lander, Eric S; Nadeau, Joseph H; Bishop, Colin E
2004-11-01
The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1(A). Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo.
Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P.; Anaya, Yanett; Singer, Jonathan B.; Hill, Annie E.; Lander, Eric S.; Nadeau, Joseph H.; Bishop, Colin E.
2004-01-01
The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1A. Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo. PMID:15579706
Clarkson, Benjamin D; Walker, Alec; Harris, Melissa; Rayasam, Aditya; Sandor, Matyas; Fabry, Zsuzsanna
2014-01-01
Evidence from experimental autoimmune encephalomyelitis (EAE) suggests that CNS-infiltrating dendritic cells (DCs) are crucial for restimulation of coinfiltrating T cells. Here we systematically quantified and visualized the distribution and interaction of CNS DCs and T cells during EAE. We report marked periventricular accumulation of DCs and myelin-specific T cells during EAE disease onset prior to accumulation in the spinal cord, indicating that the choroid plexus-CSF axis is a CNS entry portal. Moreover, despite emphasis on spinal cord inflammation in EAE and in correspondence with MS pathology, inflammatory lesions containing interacting DCs and T cells are present in specific brain regions. PMID:25288303
Cunningham, C E; Barkley, R A
1979-03-01
Groups of 20 normal and 20 hyperactive boys ranging in age from 6 to 12 years were observed interacting with their mothers in 15-min free-play and 15-min structured-task situations. Using a 15-sec interval coding procedure, 1 observer recorded the mother's response to specific antecedent behaviors of the child while a second observer recorded the child's response to specific behaviors of the mother. Hyperactive boys proved more active, less compliant, and less likely to remain on task than nonhyperactive peers. Mothers of hyperactive boys were less likely to respond positively to the child's social interactions, solitary play activities, or compliant on-task behavior. In addition, mothers of hyperactive boys imposed more structure and control on the child's play, social interactions, and task-oriented activities. It is suggested that the controlling intrusive style observed among the mothers of hyperactive boys, while initially a response to the child's overactive, impulsive, inattentive style, may further contribute to the child's behavioral difficulties.
Wilkins, Laura E; Phillips, Daniel J; Deller, Robert C; Davies, Gemma-Louise; Gibson, Matthew I
2015-03-20
Carbohydrate-protein interactions can assist with the targeting of polymer- and nano-delivery systems. However, some potential protein targets are not specific to a single cell type, resulting in reductions in their efficacy due to undesirable non-specific cellular interactions. The glucose transporter 1 (GLUT-1) is expressed to different extents on most cells in the vasculature, including human red blood cells and on cancerous tissue. Glycosylated nanomaterials bearing glucose (or related) carbohydrates, therefore, could potentially undergo unwanted interactions with these transporters, which may compromise the nanomaterial function or lead to cell agglutination, for example. Here, RAFT polymerisation is employed to obtain well-defined glucose-functional glycopolymers as well as glycosylated gold nanoparticles. Agglutination and binding assays did not reveal any significant binding to ovine red blood cells, nor any haemolysis. These data suggest that gluco-functional nanomaterials are compatible with blood, and their lack of undesirable interactions highlights their potential for delivery and imaging applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kleino, Iivari; Järviluoma, Annika; Hepojoki, Jussi; Huovila, Ari Pekka; Saksela, Kalle
2015-01-01
A disintegrin and metalloproteinases (ADAMs) constitute a protein family essential for extracellular signaling and regulation of cell adhesion. Catalytic activity of ADAMs and their predicted potential for Src-homology 3 (SH3) domain binding show a strong correlation. Here we present a comprehensive characterization of SH3 binding capacity and preferences of the catalytically active ADAMs 8, 9, 10, 12, 15, 17, and 19. Our results revealed several novel interactions, and also confirmed many previously reported ones. Many of the identified SH3 interaction partners were shared by several ADAMs, whereas some were ADAM-specific. Most of the ADAM-interacting SH3 proteins were adapter proteins or kinases, typically associated with sorting and endocytosis. Novel SH3 interactions revealed in this study include TOCA1 and CIP4 as preferred partners of ADAM8, and RIMBP1 as a partner of ADAM19. Our results suggest that common as well as distinct mechanisms are involved in regulation and execution of ADAM signaling, and provide a useful framework for addressing the pathways that connect ADAMs to normal and aberrant cell behavior. PMID:25825872
Hypnosis and imaging of the living human brain.
Landry, Mathieu; Raz, Amir
2015-01-01
Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.
Sato, Motohiko; Cismowski, Mary J.; Toyota, Eiji; Smrcka, Alan V.; Lucchesi, Pamela A.; Chilian, William M.; Lanier, Stephen M.
2006-01-01
As part of a broader effort to identify postreceptor signal regulators involved in specific diseases or organ adaptation, we used an expression cloning system in Saccharomyces cerevisiae to screen cDNA libraries from rat ischemic myocardium, human heart, and a prostate leiomyosarcoma for entities that activated G protein signaling in the absence of a G protein coupled receptor. We report the characterization of activator of G protein signaling (AGS) 8 (KIAA1866), isolated from a rat heart model of repetitive transient ischemia. AGS8 mRNA was induced in response to ventricular ischemia but not by tachycardia, hypertrophy, or failure. Hypoxia induced AGS8 mRNA in isolated adult ventricular cardiomyocytes but not in rat aortic smooth muscle cells, endothelial cells, or cardiac fibroblasts, suggesting a myocyte-specific adaptation mechanism involving remodeling of G protein signaling pathways. The bioactivity of AGS8 in the yeast-based assay was independent of guanine nucleotide exchange by Gα, suggesting an impact on subunit interactions. Subsequent studies indicated that AGS8 interacts directly with Gβγ and this occurs in a manner that apparently does not alter the regulation of the effector PLC-β2 by Gβγ. Mechanistically, AGS8 appears to promote G protein signaling by a previously unrecognized mechanism that involves direct interaction with Gβγ. PMID:16407149
Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces
NASA Astrophysics Data System (ADS)
Barcellona, Pablo; Safari, Hassan; Salam, A.; Buhmann, Stefan Yoshi
2017-05-01
We predict a discriminatory interaction between a chiral molecule and an achiral molecule which is mediated by a chiral body. To achieve this, we generalize the van der Waals interaction potential between two ground-state molecules with electric, magnetic, and chiral response to nontrivial environments. The force is evaluated using second-order perturbation theory with an effective Hamiltonian. Chiral media enhance or reduce the free interaction via many-body interactions, making it possible to measure the chiral contributions to the van der Waals force with current technology. The van der Waals interaction is discriminatory with respect to enantiomers of different handedness and could be used to separate enantiomers. We also suggest a specific geometric configuration where the electric contribution to the van der Waals interaction is zero, making the chiral component the dominant effect.
Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions.
Colangelo-Lillis, Jesse R; Deming, Jody W
2013-01-01
The 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between -12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage-host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A's restricted temperature range for replication as compared to host. Comparative analyses suggest ribonucleotide reductase genes were acquired laterally from host. Neither restriction modification nor the CRISPR-Cas system appeared to be the predominant phage defense mechanism of Cp34H or other cold-adapted bacteria; we hypothesize that psychrophilic hosts rely more on the use of extracellular polymeric material to block cell surface receptors recognized by phages. The relative dearth of evidence for genome-specific defenses, genetic transfer events or auxiliary metabolic genes suggest that the 9A-Cp34H system may be less tightly coupled than are other genomically characterized marine phage-host systems, with possible implications for phage specificity under different environmental conditions.
Species-specific calls evoke asymmetric activity in the monkey's temporal poles.
Poremba, Amy; Malloy, Megan; Saunders, Richard C; Carson, Richard E; Herscovitch, Peter; Mishkin, Mortimer
2004-01-29
It has often been proposed that the vocal calls of monkeys are precursors of human speech, in part because they provide critical information to other members of the species who rely on them for survival and social interactions. Both behavioural and lesion studies suggest that monkeys, like humans, use the auditory system of the left hemisphere preferentially to process vocalizations. To investigate the pattern of neural activity that might underlie this particular form of functional asymmetry in monkeys, we measured local cerebral metabolic activity while the animals listened passively to species-specific calls compared with a variety of other classes of sound. Within the superior temporal gyrus, significantly greater metabolic activity occurred on the left side than on the right, only in the region of the temporal pole and only in response to monkey calls. This functional asymmetry was absent when these regions were separated by forebrain commissurotomy, suggesting that the perception of vocalizations elicits concurrent interhemispheric interactions that focus the auditory processing within a specialized area of one hemisphere.
T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures
Schaffter, Samuel W; Green, Leopold N; Schneider, Joanna; Subramanian, Hari K K; Schulman, Rebecca
2018-01-01
Abstract The use of proteins that bind and catalyze reactions with DNA alongside DNA nanostructures has broadened the functionality of DNA devices. DNA binding proteins have been used to specifically pattern and tune structural properties of DNA nanostructures and polymerases have been employed to directly and indirectly drive structural changes in DNA structures and devices. Despite these advances, undesired and poorly understood interactions between DNA nanostructures and proteins that bind DNA continue to negatively affect the performance and stability of DNA devices used in conjunction with enzymes. A better understanding of these undesired interactions will enable the construction of robust DNA nanostructure-enzyme hybrid systems. Here, we investigate the undesired disassembly of DNA nanotubes in the presence of viral RNA polymerases (RNAPs) under conditions used for in vitro transcription. We show that nanotubes and individual nanotube monomers (tiles) are non-specifically transcribed by T7 RNAP, and that RNA transcripts produced during non-specific transcription disassemble the nanotubes. Disassembly requires a single-stranded overhang on the nanotube tiles where transcripts can bind and initiate disassembly through strand displacement, suggesting that single-stranded domains on other DNA nanostructures could cause unexpected interactions in the presence of viral RNA polymerases. PMID:29718412
Species-Specific Viromes in the Ancestral Holobiont Hydra
Anton-Erxleben, Friederike; Lim, Yan Wei; Schmieder, Robert; Fraune, Sebastian; Franzenburg, Sören; Insua, Santiago; Machado, GloriaMay; Haynes, Matthew; Little, Mark; Kimble, Robert; Rosenstiel, Philip; Rohwer, Forest L.; Bosch, Thomas C. G.
2014-01-01
Recent evidence showing host specificity of colonizing bacteria supports the view that multicellular organisms are holobionts comprised of the macroscopic host in synergistic interdependence with a heterogeneous and host-specific microbial community. Whereas host-bacteria interactions have been extensively investigated, comparatively little is known about host-virus interactions and viral contribution to the holobiont. We sought to determine the viral communities associating with different Hydra species, whether these viral communities were altered with environmental stress, and whether these viruses affect the Hydra-associated holobiont. Here we show that each species of Hydra harbors a diverse host-associated virome. Primary viral families associated with Hydra are Myoviridae, Siphoviridae, Inoviridae, and Herpesviridae. Most Hydra-associated viruses are bacteriophages, a reflection of their involvement in the holobiont. Changes in environmental conditions alter the associated virome, increase viral diversity, and affect the metabolism of the holobiont. The specificity and dynamics of the virome point to potential viral involvement in regulating microbial associations in the Hydra holobiont. While viruses are generally regarded as pathogenic agents, our study suggests an evolutionary conserved ability of viruses to function as holobiont regulators and, therefore, constitutes an emerging paradigm shift in host-microbe interactions. PMID:25343582
Species-specific viromes in the ancestral holobiont Hydra.
Grasis, Juris A; Lachnit, Tim; Anton-Erxleben, Friederike; Lim, Yan Wei; Schmieder, Robert; Fraune, Sebastian; Franzenburg, Sören; Insua, Santiago; Machado, GloriaMay; Haynes, Matthew; Little, Mark; Kimble, Robert; Rosenstiel, Philip; Rohwer, Forest L; Bosch, Thomas C G
2014-01-01
Recent evidence showing host specificity of colonizing bacteria supports the view that multicellular organisms are holobionts comprised of the macroscopic host in synergistic interdependence with a heterogeneous and host-specific microbial community. Whereas host-bacteria interactions have been extensively investigated, comparatively little is known about host-virus interactions and viral contribution to the holobiont. We sought to determine the viral communities associating with different Hydra species, whether these viral communities were altered with environmental stress, and whether these viruses affect the Hydra-associated holobiont. Here we show that each species of Hydra harbors a diverse host-associated virome. Primary viral families associated with Hydra are Myoviridae, Siphoviridae, Inoviridae, and Herpesviridae. Most Hydra-associated viruses are bacteriophages, a reflection of their involvement in the holobiont. Changes in environmental conditions alter the associated virome, increase viral diversity, and affect the metabolism of the holobiont. The specificity and dynamics of the virome point to potential viral involvement in regulating microbial associations in the Hydra holobiont. While viruses are generally regarded as pathogenic agents, our study suggests an evolutionary conserved ability of viruses to function as holobiont regulators and, therefore, constitutes an emerging paradigm shift in host-microbe interactions.
T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures.
Schaffter, Samuel W; Green, Leopold N; Schneider, Joanna; Subramanian, Hari K K; Schulman, Rebecca; Franco, Elisa
2018-06-01
The use of proteins that bind and catalyze reactions with DNA alongside DNA nanostructures has broadened the functionality of DNA devices. DNA binding proteins have been used to specifically pattern and tune structural properties of DNA nanostructures and polymerases have been employed to directly and indirectly drive structural changes in DNA structures and devices. Despite these advances, undesired and poorly understood interactions between DNA nanostructures and proteins that bind DNA continue to negatively affect the performance and stability of DNA devices used in conjunction with enzymes. A better understanding of these undesired interactions will enable the construction of robust DNA nanostructure-enzyme hybrid systems. Here, we investigate the undesired disassembly of DNA nanotubes in the presence of viral RNA polymerases (RNAPs) under conditions used for in vitro transcription. We show that nanotubes and individual nanotube monomers (tiles) are non-specifically transcribed by T7 RNAP, and that RNA transcripts produced during non-specific transcription disassemble the nanotubes. Disassembly requires a single-stranded overhang on the nanotube tiles where transcripts can bind and initiate disassembly through strand displacement, suggesting that single-stranded domains on other DNA nanostructures could cause unexpected interactions in the presence of viral RNA polymerases.
Racine, Sarah E; Martin, Shelby J
2016-08-01
Negative urgency (i.e., the tendency to act impulsively when experiencing negative emotions) is a well-established risk factor for dysregulated eating (e.g., binge eating, loss of control eating, emotional eating). However, negative urgency is transdiagnostic, in that it is associated with multiple forms of psychopathology. It is currently unclear why some individuals with high negative urgency develop dysregulated eating while others experience depressive symptoms or problematic alcohol use. Investigating disorder-specific moderators of the association between negative urgency and psychopathology may help elucidate these divergent trajectories. The current study examined interactions among negative urgency and eating disorder-specific risk factors specified in the well-established dual-pathway model of bulimic pathology (i.e., appearance pressures, thin-ideal internalization, body dissatisfaction, dietary restraint). We hypothesized that these interactions would predict dysregulated eating, but not depressive symptoms or problematic alcohol use. Latent moderated structural equation modeling was used to test this hypothesis in a large (N = 313) sample of female college students. Negative urgency was significantly associated with dysregulated eating, depressive symptoms, and problematic alcohol use. However, interactions among negative urgency and dual-pathway model variables were specific to dysregulated eating and accounted for an additional 3-5% of the variance beyond main effects. Findings suggest that eating disorder-specific risk factors may shape negative urgency into manifesting as dysregulated eating versus another form of psychopathology. Future research should use longitudinal designs to further test the impact of interactions among disorder-specific risk factors and negative urgency on divergent psychopathology trajectories. Copyright © 2016 Elsevier Ltd. All rights reserved.
A genome-wide survey of transgenerational genetic effects in autism.
Tsang, Kathryn M; Croen, Lisa A; Torres, Anthony R; Kharrazi, Martin; Delorenze, Gerald N; Windham, Gayle C; Yoshida, Cathleen K; Zerbo, Ousseny; Weiss, Lauren A
2013-01-01
Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10(-4)) that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.
Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred
2016-01-01
The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200
Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T
2015-11-01
Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305-319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader-follower dynamics-when sensitive to the specific role structure of the interaction-impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.
Jefferis, R; Lund, J; Pound, J D
1998-06-01
The Fc region of human IgG expresses interaction sites for many effector ligands. In this review the topographical distributions of ten of these sites are discussed in relation to functional requirement. It is apparent that interaction sites localised to the inter-CH2-CH3 domain region of the Fc allow for functional divalency, whereas sites localised to the hinge proximal region of the CH2 domain are functionally monovalent, with expression of the latter sites being particularly dependent on glycosylation. All x-ray crystal structures for Fc and Fc-ligand complexes report that the protein structure of the hinge proximal region of the CH2 domain is "disordered", suggesting "internal mobility". We propose a model in which such "internal mobility" results in the generation of a dynamic equilibrium between multiple conformers, certain of which express interaction sites specific to individual ligands. The emerging understanding of the influence of oligosaccharide/protein interactions on protein conformation and biological function of IgG antibodies suggests a potential to generate novel glycoforms of antibody molecules having unique profiles of effector functions.
An experimental test of the fluctuation relation in an active camphor boat system
NASA Astrophysics Data System (ADS)
Paroor, H. M.; Nambiar, N.; Bandi, M. M.
The Gallavotti-Cohen fluctuation relation (FR) posits a specific symmetry between positive and negative fluctuations in entropy production, or a related quantity (e.g power) for systems in non-equilibrium stationary state. Successful tests in a variety of systems suggest the FR may be more generally applicable than the conditions under which it was originally derived. Systems where the FR fails are therefore valuable for the insight they provide into the FR's general success. It has recently been suggested that ``active matter'' should not satisfy the fluctuation-dissipation theorem or FR. We experimentally test this possibility in a system of active camphor boats, self-propelled by surface tension gradients at air-water interfaces. The boats interact via short-range capillary attraction which competes with long-range surface tension mediated repulsion. Tuning interaction strength with number density, we test the FR through the statistics of power as one goes from a free non-interacting camphor boat, through a few weakly interacting boats to several, strongly interacting boats. We present preliminary results of our experiments and data analysis.
Mapping Interactions between Myosin Relay and Converter Domains That Power Muscle Function*
Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.
2014-01-01
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile508, Asn509, and Asp511) in communicating with converter domain residue Arg759. We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle. PMID:24627474
Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola; Purkiss, Andrew G.; Thompson, Barry J.; McDonald, Neil Q.
2015-01-01
Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction. PMID:25760605
van den Biggelaar, Maartje; Madsen, Jesper J; Faber, Johan H; Zuurveld, Marleen G; van der Zwaan, Carmen; Olsen, Ole H; Stennicke, Henning R; Mertens, Koen; Meijer, Alexander B
2015-07-03
Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Social robots as embedded reinforcers of social behavior in children with autism.
Kim, Elizabeth S; Berkovits, Lauren D; Bernier, Emily P; Leyzberg, Dan; Shic, Frederick; Paul, Rhea; Scassellati, Brian
2013-05-01
In this study we examined the social behaviors of 4- to 12-year-old children with autism spectrum disorders (ASD; N = 24) during three tradic interactions with an adult confederate and an interaction partner, where the interaction partner varied randomly among (1) another adult human, (2) a touchscreen computer game, and (3) a social dinosaur robot. Children spoke more in general, and directed more speech to the adult confederate, when the interaction partner was a robot, as compared to a human or computer game interaction partner. Children spoke as much to the robot as to the adult interaction partner. This study provides the largest demonstration of social human-robot interaction in children with autism to date. Our findings suggest that social robots may be developed into useful tools for social skills and communication therapies, specifically by embedding social interaction into intrinsic reinforcers and motivators.
Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L
2015-07-01
Molecular interactions between benzoic acid and cations and water contained in montmorillonite clay interlayer spaces are characterized by using variable temperature diffuse reflection infrared Fourier transform spectroscopy (VT-DRIFTS). Using sample perturbation and difference spectroscopy, infrared spectral changes resulting from removal of interlayer water and associated changes in local benzoic acid environments are identified. Difference spectra features can be correlated with changes in specific molecular vibrations that are characteristic of benzoic acid molecular orientation. Results suggest that the carboxylic acid functionality of benzoic acid interacts with interlayer cations through a bridging water molecule and that this interaction is affected by the nature of the cation present in the clay interlayer space.
A unique latex protein, MLX56, defends mulberry trees from insects.
Wasano, Naoya; Konno, Kotaro; Nakamura, Masatoshi; Hirayama, Chikara; Hattori, Makoto; Tateishi, Ken
2009-05-01
The mulberry (Morus spp.)-silkworm (Bombyx mori) relationship has been a well-known plant-herbivore interaction for thousands of years. Recently, we found that mulberry leaves defend against insect herbivory by latex ingredients. Here we report that a 56-kDa (394 amino acid) defense protein in mulberry latex designated mulatexin (MLX56) with an extensin domain, two hevein-like chitin-binding domains, and an inactive chitinase-like domain provides mulberry trees with strong insect resistance. MLX56 is toxic to lepidopteran caterpillars, including the cabbage armyworm, Mamestra brassicae and the Eri silkworm, Samia ricini, at 0.01% concentration in a wet diet, suggesting that MLX56 is applicable for plant protection. MLX56 is highly resistant to protease digestion, and has a strong chitin-binding activity. Interestingly, MLX56 showed no toxicity to B. mori, suggesting that the mulberry specialist has developed adaptation to the mulberry defense. Our results show that defensive proteins in plant latex play key roles in mulberry-insect interactions, and probably also in other plant-insect interactions. Our results further suggest that plant latexes analogous to animal venom contain a treasury of applicable defense proteins and chemicals that has evolved through inter-specific interactions.
Kirsch, Louise P; Krahé, Charlotte; Blom, Nadia; Crucianelli, Laura; Moro, Valentina; Jenkinson, Paul M; Fotopoulou, Aikaterini
2017-05-29
Touch is central to interpersonal interactions. Touch conveys specific emotions about the touch provider, but it is not clear whether this is a purely socially learned function or whether it has neurophysiological specificity. In two experiments with healthy participants (N = 76 and 61) and one neuropsychological single case study, we investigated whether a type of touch characterised by peripheral and central neurophysiological specificity, namely the C tactile (CT) system, can communicate specific emotions and mental states. We examined the specificity of emotions elicited by touch delivered at CT-optimal (3cm/s) and CT-suboptimal (18cm/s) velocities (Experiment 1) at different body sites which contain (forearm) vs. do not contain (palm of the hand) CT fibres (Experiment 2). Blindfolded participants were touched without any contextual cues, and were asked to identify the touch provider's emotion and intention. Overall, CT-optimal touch (slow, gentle touch on the forearm) was significantly more likely than other types of touch to convey arousal, lust or desire. Affiliative emotions such as love and related intentions such as social support were instead reliably elicited by gentle touch, irrespective of CT-optimality, suggesting that other top-down factors contribute to these aspects of tactile social communication. To explore the neural basis of this communication, we also tested this paradigm in a stroke patient with right perisylvian damage, including the posterior insular cortex, which is considered as the primary cortical target of CT afferents, but excluding temporal cortex involvement that has been linked to more affiliative aspects of CT-optimal touch. His performance suggested an impairment in 'reading' emotions based on CT-optimal touch. Taken together, our results suggest that the CT system can add specificity to emotional and social communication, particularly with regards to feelings of desire and arousal. On the basis of these findings, we speculate that its primary functional role may be to enhance the 'sensual salience' of tactile interactions. Copyright © 2017. Published by Elsevier Ltd.
Sulkowski, Mikolaj J.; Iyer, Srividya Chandramouli; Kurosawa, Mathieu S.; Iyer, Eswar Prasad R.; Cox, Daniel N.
2011-01-01
Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. Methodology/Principal Findings The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. Conclusions/Significance Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory interaction between Cut and Turtle, representing a novel pathway for mediating class specific dendrite development. PMID:21811639
Mohan, Nimmy; Sudheesh, A P; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S
2015-08-18
Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3'-end processing. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Villarreal-Stewart, Irene
The purpose guiding this research has been to learn about and describe the phenomena of interactivity from the learners' perspectives and to learn which of the interactivity affordances and practices were actually used by students and why in the process of learning physics using an interactive multimedia distance learning course system. The bigger purpose behind learning about and describing interactivity has been to gain knowledge and perspective for its instructional design to benefit the learner, the school as curriculum implementer, and instructional media designers to create better products. Qualitative methodology in the interpretivist tradition was used, that is, in-depth interviews and on-site observations, to gain understanding of interactivity from the learners' perspective and to gain understanding of the student learning context impacting and shaping the students' interactivity experiences. NVivo was used to sort, organize and index data. All data were read on three levels: literally, interpretively, and reflexively; and were read comparatively to other perspectives to get descriptions and interpretations that were holistic to the implementation and had potential insight to improve practice for instructional designers, teachers, administrators, specifically to improve the learning experience for students. Site-Specific Findings: Students watched videos, resisted using phone and e-mail, and worked math problems to demonstrate learning, which resulted in very little interactivity, virtually no dialogue about physics, no physical activity, one-way communication, multifaceted dissatisfaction, student need for teacher involvement in the learning enterprise, student appreciation for interactivity, and expressed desire for a real, live teacher. I also found that some students did experience the system as interactive, did experience learner control and self-directed learning, and despite dissatisfaction, liked and appreciated the course. Wider Applications: Interactivity, a design element, requires scaffolding and nurturing in implementation. The variable and changing context of implementation suggests the requirement for its consideration in design work. The study suggests that during implementation the integrity of design as a whole and flexibility within the design are important continuing considerations. Recommendations. (1) implementation supervision by the school district, (2) use of a language and activity-based theory of learning and teaching and (3) dialogic inquiry (Wells, 1999) to continue learning about interactivity.
African genetic ancestry interacts with body mass index to modify risk for uterine fibroids
Hartmann, Katherine E.; Torstenson, Eric S.; Wellons, Melissa; Schreiner, Pamela J.; Velez Edwards, Digna R.
2017-01-01
Race, specifically African ancestry, and obesity are important risk factors for uterine fibroids, and likely interact to provide the right conditions for fibroid growth. However, existing studies largely focus on the main-effects rather than their interaction. Here, we firstly provide evidence for interaction between categories of body mass index (BMI) and reported-race in relation to uterine fibroids. We then investigate whether the association between inferred local European ancestry and fibroid risk is modified by BMI in African American (AA) women in the Vanderbilt University Medical Center bio-repository (BioVU) (539 cases and 794 controls) and the Coronary Artery Risk Development in Young Adults study (CARDIA, 264 cases and 173 controls). We used multiple logistic regression to evaluate interactions between local European ancestry and BMI in relation to fibroid risk, then performed fixed effects meta-analysis. Statistical significance threshold for local-ancestry and BMI interactions was empirically estimated with 10,000 permutations (p-value = 1.18x10-4). Admixture mapping detected an association between European ancestry and fibroid risk which was modified by BMI (continuous-interaction p-value = 3.75x10-5) around ADTRP (chromosome 6p24); the strongest association was found in the obese category (ancestry odds ratio (AOR) = 0.51, p-value = 2.23x10-5). Evaluation of interaction between genotyped/imputed variants and BMI in this targeted region suggested race-specific interaction, present in AAs only; strongest evidence was found for insertion/deletion variant (6:11946435), again in the obese category (OR = 1.66, p-value = 1.72x10-6). We found nominal evidence for interaction between local ancestry and BMI at a previously reported region in chromosome 2q31-32, which includes COL5A2, and TFPI, an immediate downstream target of ADTRP. Interactions between BMI and SNPs (single nucleotide polymorphisms) found in this region in AA women were also detected in an independent European American population of 1,195 cases and 1,164 controls. Findings from our study provide an example of how modifiable and non-modifiable factors may interact to influence fibroid risk and suggest a biological role for BMI in fibroid etiology. PMID:28715450
Strecker, Tanja; Barnard, Romain L.; Niklaus, Pascal A.; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico
2015-01-01
Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes. PMID:25938580
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Palla, Mirkó; Sun, Andrew; Liao, Jung-Chi
2013-09-01
DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116.
Automating the design of scientific computing software
NASA Technical Reports Server (NTRS)
Kant, Elaine
1992-01-01
SINAPSE is a domain-specific software design system that generates code from specifications of equations and algorithm methods. This paper describes the system's design techniques (planning in a space of knowledge-based refinement and optimization rules), user interaction style (user has option to control decision making), and representation of knowledge (rules and objects). It also summarizes how the system knowledge has evolved over time and suggests some issues in building software design systems to facilitate reuse.
Short report: Influence of culture and trauma history on autobiographical memory specificity.
Humphries, Clare; Jobson, Laura
2012-01-01
This study investigated the influence of culture and trauma history on autobiographical memory specificity. Chinese international and British undergraduate university students (N=64) completed the autobiographical memory test, Hopkins symptom checklist-25, twenty statements test, trauma history questionnaire, and impact of events scale-revised. The results indicated that the British group provided significantly more specific memories than the Chinese group. The high trauma exposure group provided significantly fewer specific autobiographical memories than the low trauma exposure group. The interaction was not significant. The findings suggest that even in cultures where specificity is not as evident in autobiographical remembering style, trauma exposure appears to exert similar influence on autobiographical memory specificity.
Are There Inherited Behavioral Traits that Predispose to Substance Abuse?
ERIC Educational Resources Information Center
Tarter, Ralph E.
1988-01-01
Research suggests predisposition toward alcoholism and drug abuse by inherited behavioral propensities or temperaments which, through interaction with the physical and social environments, shape the development of the personality. Certain personality characteristics, specifically antisocial and neurotic traits, are also linked with the risk for…
Language Labs for 1990: User-Friendly, Expandable and Affordable.
ERIC Educational Resources Information Center
Wiley, Patricia Davis
1990-01-01
Describes hardware available for school laboratories used for second-language learning. Vendors and prices for equipment ranging from simple audio to computer interactive capabilities are included, portable and fixed installations are reviewed, specifications for instructor consoles and student stations are suggested, and maintenance and repair…
Pires, Mathias M.; Cantor, Maurício; Guimarães, Paulo R.; de Aguiar, Marcus A. M.; dos Reis, Sérgio F.; Coltri, Patricia P.
2015-01-01
The network structure of biological systems provides information on the underlying processes shaping their organization and dynamics. Here we examined the structure of the network depicting protein interactions within the spliceosome, the macromolecular complex responsible for splicing in eukaryotic cells. We show the interactions of less connected spliceosome proteins are nested subsets of the connections of the highly connected proteins. At the same time, the network has a modular structure with groups of proteins sharing similar interaction patterns. We then investigated the role of affinity and specificity in shaping the spliceosome network by adapting a probabilistic model originally designed to reproduce food webs. This food-web model was as successful in reproducing the structure of protein interactions as it is in reproducing interactions among species. The good performance of the model suggests affinity and specificity, partially determined by protein size and the timing of association to the complex, may be determining network structure. Moreover, because network models allow building ensembles of realistic networks while encompassing uncertainty they can be useful to examine the dynamics and vulnerability of intracelullar processes. Unraveling the mechanisms organizing the spliceosome interactions is important to characterize the role of individual proteins on splicing catalysis and regulation. PMID:26443080
Will, Katrin; Warnecke, Gabriele; Wiesmüller, Lisa; Deppert, Wolfgang
1998-01-01
Mutant, but not wild-type p53 binds with high affinity to a variety of MAR-DNA elements (MARs), suggesting that MAR-binding of mutant p53 relates to the dominant-oncogenic activities proposed for mutant p53. MARs recognized by mutant p53 share AT richness and contain variations of an AATATATTT “DNA-unwinding motif,” which enhances the structural dynamics of chromatin and promotes regional DNA base-unpairing. Mutant p53 specifically interacted with MAR-derived oligonucleotides carrying such unwinding motifs, catalyzing DNA strand separation when this motif was located within a structurally labile sequence environment. Addition of GC-clamps to the respective MAR-oligonucleotides or introducing mutations into the unwinding motif strongly reduced DNA strand separation, but supported the formation of tight complexes between mutant p53 and such oligonucleotides. We conclude that the specific interaction of mutant p53 with regions of MAR-DNA with a high potential for base-unpairing provides the basis for the high-affinity binding of mutant p53 to MAR-DNA. PMID:9811860
Experimental Proof for the Role of Nonlinear Photoionization in Plasmonic Phototherapy.
Minai, Limor; Zeidan, Adel; Yeheskely-Hayon, Daniella; Yudovich, Shimon; Kviatkovsky, Inna; Yelin, Dvir
2016-07-13
Targeting individual cells within a heterogeneous tissue is a key challenge in cancer therapy, encouraging new approaches for cancer treatment that complement the shortcomings of conventional therapies. The highly localized interactions triggered by focused laser beams promise great potential for targeting single cells or small cell clusters; however, most laser-tissue interactions often involve macroscopic processes that may harm healthy nearby tissue and reduce specificity. Specific targeting of living cells using femtosecond pulses and nanoparticles has been demonstrated promising for various potential therapeutic applications including drug delivery via optoporation, drug release, and selective cell death. Here, using an intense resonant femtosecond pulse and cell-specific gold nanorods, we show that at certain irradiation parameters cell death is triggered by nonlinear plasmonic photoionization and not by thermally driven processes. The experimental results are supported by a physical model for the pulse-particle-medium interactions. A good correlation is found between the calculated total number and energy of the generated free electrons and the observed cell death, suggesting that femtosecond photoionization plays the dominant role in cell death.
Emotional processing and self-control in adolescents with type 1 diabetes.
Hughes, Amy E; Berg, Cynthia A; Wiebe, Deborah J
2012-09-01
This study examined whether emotional processing (understanding emotions), self-control (regulation of thoughts, emotions, and behavior), and their interaction predicted HbA1c for adolescents with type 1 diabetes over and above diabetes-specific constructs. Self-report measures of self-control, emotional processing, self-efficacy for diabetes management, diabetes-specific negative affect, and adherence, and HbA1c from medical records were obtained from 137 adolescents with type 1 diabetes (M age = 13.48 years). Emotional processing interacted with self-control to predict HbA1c, such that when adolescents had both low emotional processing and low self-control, HbA1c was poorest. Also, both high emotional processing and self-control buffered negative effects of low capacity in the other in relation to HbA1c. The interaction of emotional processing × self-control predicted HbA1c over diabetes-specific self-efficacy, negative affect, and adherence. These findings suggest the importance of emotional processing and self-control for health outcomes in adolescents with diabetes.
Emotional Processing and Self-Control in Adolescents With Type 1 Diabetes
Hughes, Amy E.; Wiebe, Deborah J.
2012-01-01
Objective This study examined whether emotional processing (understanding emotions), self-control (regulation of thoughts, emotions, and behavior), and their interaction predicted HbA1c for adolescents with type 1 diabetes over and above diabetes-specific constructs. Methods Self-report measures of self-control, emotional processing, self-efficacy for diabetes management, diabetes-specific negative affect, and adherence, and HbA1c from medical records were obtained from 137 adolescents with type 1 diabetes (M age = 13.48 years). Results Emotional processing interacted with self-control to predict HbA1c, such that when adolescents had both low emotional processing and low self-control, HbA1c was poorest. Also, both high emotional processing and self-control buffered negative effects of low capacity in the other in relation to HbA1c. The interaction of emotional processing × self-control predicted HbA1c over diabetes-specific self-efficacy, negative affect, and adherence. Conclusions These findings suggest the importance of emotional processing and self-control for health outcomes in adolescents with diabetes. PMID:22523404
Wang, J; Guo, W; Long, C; Zhou, H; Wang, H; Sun, X
2016-03-01
Protein-protein interactions can regulate different cellular processes, such as transcription, translation, and oncogenic transformation. The split Renilla luciferase complementation assay (SRLCA) is one of the techniques that detect protein-protein interactions. The SRLCA is based on the complementation of the LN and LC non-functional halves of Renilla luciferase fused to possibly interacting proteins which after interaction form a functional enzyme and emit luminescence. The BGLF4 of Epstein-Barr virus (EBV) is a viral protein kinase that is expressed during the early and late stages of lytic cycles, which can regulate multiple cellular and viral substrates to optimize the DNA replication environment. The heat shock protein Hsp90 is a molecular chaperone that maintains the integrity of structure and function of various interacting proteins, which can form a complex with BGLF4 and stabilize its expression in cells. The interaction between BGLF4 and Hsp90 could be specifically detected through the SRLCA. The region of aa 250-295 of BGLF4 is essential for the BGLF4/Hsp90 interaction and the mutation of Phe-254, Leu-266, and Leu-267 can disrupt this interaction. These results suggest that the SRLCA can specifically detect the BGLF4/Hsp90 interaction and provide a reference to develop inhibitors that disrupt the BGLF4/Hsp90 interaction.
Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide
2013-09-01
The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.
Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium.
Sripathi, Srinivas R; Sylvester, O'Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S; Bartoli, Manuela; Jahng, Wan Jin
2016-02-01
Previously, our molecular binding study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression.
Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium
Sripathi, Srinivasa R.; Sylvester, O’Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S.; Bartoli, Manuela; Jahng, Wan Jin
2016-01-01
Previously, our study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate (PIP3) and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression. PMID:26661103
Wong, Jennifer H K; Kelloway, E Kevin
2016-04-01
We investigated the relationship between workplace supervisory social interactions and blood pressure outcomes using hourly diary entries and ambulatory blood pressure data from an experience sampling study of 55 long-term care employees. After accounting for relevant cardiovascular controls, significant effects of supervisory interactions on cardiovascular reactivity and recovery were found. Multilevel analyses revealed that negatively perceived supervisory interactions predicted higher systolic blood pressure at work (B = -1.59, p < .05, N observations = 422). Using time-lagged hierarchical regression analyses, the average perceived valence of supervisory interactions at work predicted average systolic blood pressure recovery after work (B = -14.52, p < .05, N = 33). Specifically, negatively perceived supervisory interactions at work predicted poorer cardiovascular recovery after work. Suggestions for improving practices in organizations and in experience sampling research are discussed. (c) 2016 APA, all rights reserved).
Woodcock, K A; Oliver, C; Humphreys, G W
2009-06-01
Behavioural phenotypes associated with genetic syndromes have been extensively investigated in order to generate rich descriptions of phenomenology, determine the degree of specificity of behaviours for a particular syndrome, and examine potential interactions between genetic predispositions for behaviour and environmental influences. However, relationships between different aspects of behavioural phenotypes have been less frequently researched and although recent interest in potential cognitive phenotypes or endophenotypes has increased, these are frequently studied independently of the behavioural phenotypes. Taking Prader-Willi syndrome (PWS) as an example, we discuss evidence suggesting specific relationships between apparently distinct aspects of the PWS behavioural phenotype and relate these to specific endophenotypic characteristics. The framework we describe progresses through biological, cognitive, physiological and behavioural levels to develop a pathway from genetic characteristics to behaviour with scope for interaction with the environment at any stage. We propose this multilevel approach as useful in setting out hypotheses in order to structure research that can more rapidly advance theory.
A Critical Look at Entropy-Based Gene-Gene Interaction Measures.
Lee, Woojoo; Sjölander, Arvid; Pawitan, Yudi
2016-07-01
Several entropy-based measures for detecting gene-gene interaction have been proposed recently. It has been argued that the entropy-based measures are preferred because entropy can better capture the nonlinear relationships between genotypes and traits, so they can be useful to detect gene-gene interactions for complex diseases. These suggested measures look reasonable at intuitive level, but so far there has been no detailed characterization of the interactions captured by them. Here we study analytically the properties of some entropy-based measures for detecting gene-gene interactions in detail. The relationship between interactions captured by the entropy-based measures and those of logistic regression models is clarified. In general we find that the entropy-based measures can suffer from a lack of specificity in terms of target parameters, i.e., they can detect uninteresting signals as interactions. Numerical studies are carried out to confirm theoretical findings. © 2016 WILEY PERIODICALS, INC.
Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.
Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ohue, Masahito; Akiyama, Yutaka
Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.
Venkatraman, Prasanna
2010-06-01
Natural products are an abundant source of anti cancer agents. They act as cytotoxic drugs, and inhibitors of apoptosis, transcription, cell proliferation and angiogenesis. While pathways targeted by natural products have been well studied, there is paucity of information about the in vivo molecular target/s of these compounds. This review summarizes some of the natural compounds for which the molecular targets, mechanism of action and structural basis of specificity have been well documented. These examples illustrate that 'off target' binding can be explained on the basis of diversity inherent to biomolecular interactions. There is enough evidence to suggest that natural compounds are potent and versatile warheads that can be optimized for a multi targeted therapeutic intervention in cancer.
Dimensions of Temperament and Depressive Symptoms: Replicating a Three-Way Interaction
Vasey, Michael W.; Harbaugh, Casaundra N.; Lonigan, Chistopher J.; Phillips, Beth M.; Hankin, Benjamin L.; Willem, Lore; Bijttebier, Patricia
2014-01-01
High negative emotionality (NE), low positive emotionality (PE), and low self-regulatory capacity (i.e., effortful control or EC) are related to depressive symptoms and furthermore, may moderate one another’s relations to such symptoms. Indeed, preliminary evidence suggests they may operate in a three-way interaction (Dinovo & Vasey, 2011), but the replicability of that finding remains unknown. Therefore, we tested this NExPExEC interaction in association with depressive symptoms in 5 independent samples. This interaction was significant in 4 of the 5 samples and a combined sample and approached significance in the fifth sample. In contrast, the NExPExEC interaction was unrelated to general anxious symptoms and thus may be specific to symptoms of depression. Implications, directions for future research, and limitations are discussed. PMID:24493906
Heldt, Tatiane; Loss, Sergio Henrique
2013-01-01
To describe the interactions between drugs and nutrients and their frequency in the intensive care unit and to assess the professional team's awareness regarding this subject. The keywords "drug interactions" and "nutrition therapy" were searched in the PubMed (specifically MeSH) electronic database. The studies were systematically reviewed for descriptions of the types of interactions between drugs and nutrients, including their frequency and consequences. Sixty-seven articles were found. Among these, 20 articles were appropriate for the methodology adopted and accomplished the objectives of the study. Of these 20 articles, 14 articles described interactions between drugs and enteral nutrition, three described interactions between drugs and parenteral nutrition, and three described the importance and care required to avoid such interactions. The literature about drug and nutrient interactions is limited and suggests the inability of health care teams to recognize the potential for these interactions. Possibly, the elaboration of a protocol to evaluate drug-nutrient interactions will increase the safety and efficacy of therapeutics.
Drug-nutrient interactions in the intensive care unit: literature review and current recommendations
Heldt, Tatiane; Loss, Sergio Henrique
2013-01-01
Objective To describe the interactions between drugs and nutrients and their frequency in the intensive care unit and to assess the professional team's awareness regarding this subject. Methods The keywords "drug interactions" and "nutrition therapy" were searched in the PubMed (specifically MeSH) electronic database. The studies were systematically reviewed for descriptions of the types of interactions between drugs and nutrients, including their frequency and consequences. Results Sixty-seven articles were found. Among these, 20 articles were appropriate for the methodology adopted and accomplished the objectives of the study. Of these 20 articles, 14 articles described interactions between drugs and enteral nutrition, three described interactions between drugs and parenteral nutrition, and three described the importance and care required to avoid such interactions. Conclusions The literature about drug and nutrient interactions is limited and suggests the inability of health care teams to recognize the potential for these interactions. Possibly, the elaboration of a protocol to evaluate drug-nutrient interactions will increase the safety and efficacy of therapeutics. PMID:23917982
Endothelial cells promote the proliferation of lymphocytes partly through the Wnt pathway via LEF-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shu-Hong; Nan, Ke-Jun, E-mail: nankj@163.com; Wang, Yao-Chun
The function of T cells and B cells is to recognize specific 'non-self' antigens, during a process known as antigen presentation. Once they have identified an invader, the cells generate specific responses that are tailored to maximally eliminate specific pathogens or pathogen-infected cells. Endothelial cells (ECs) can trigger the activation of T cells through their class I and class II MHC molecules. In this study, we examined the effect of ECs on the proliferation of lymphocytes. We report that the proliferation of T and B cells can be improved by interaction with ECs. LEF-1 is one of the main molecularmore » mediators in this process, and the inhibition of LEF-1 induces apoptosis. These results suggest that LEF-1 modulates positively the proliferation of lymphocytes induced by their interaction with ECs.« less
Two motion systems with common and separate pathways for color and luminance.
Gorea, A; Papathomas, T V; Kovacs, I
1993-01-01
We present psychological experiments that reveal two motion systems, a specific and an unspecific one. The specific system prevails at medium to high temporal frequencies. It comprises at least two separate motion pathways that are selective for color and for luminance and that do not interact until after the motion signal is extracted separately in each. By contrast, the unspecific system prevails at low temporal frequencies and it combines color and luminance signals at an earlier stage, before motion extraction. The successful implementation of an efficient and accurate technique for assessing equiluminance corroborates further the main findings. These results offer a general framework for understanding the nature of interactions between color and luminance signals in motion perception and suggest that previously proposed dichotomies in motion processing may be encompassed by the specific/unspecific dichotomy proposed here. Images Fig. 2 Fig. 4 PMID:8248227
Sumner, Jennifer A.; Griffith, James W.; Mineka, Susan; Rekart, Kathleen Newcomb; Zinbarg, Richard E.; Craske, Michelle G.
2012-01-01
This study investigated whether overgeneral autobiographical memory (OGM) predicts the course of depression in adolescents. As part of a larger longitudinal study of risk for emotional disorders, 55 adolescents with a past history of major depressive disorder or minor depressive disorder completed the Autobiographical Memory Test. Fewer specific memories predicted the subsequent onset of a major depressive episode (MDE) over a 16-month follow-up period, even when covarying baseline depressive symptoms. This main effect was qualified by an interaction between specific memories and chronic interpersonal stress: Fewer specific memories predicted greater risk of MDE onset over follow-up at high (but not low) levels of chronic interpersonal stress. Thus, our findings suggest that OGM, in interaction with chronic interpersonal stress, predicts the course of depression among adolescents, and highlight the importance of measuring interpersonal stress in OGM research. PMID:21432666
Mathew, Mohit P; Donaldson, Julie G
2018-05-11
Clathrin-independent endocytosis (CIE) is a form of endocytosis that lacks a defined cytoplasmic machinery. Here, we asked whether glycan interactions, acting from the outside, could be a part of that endocytic machinery. We show that the perturbation of global cellular patterns of protein glycosylation by modulation of metabolic flux affects CIE. Interestingly, these changes in glycosylation had cargo-specific effects. For example, in HeLa cells, GlcNAc treatment, which increases glycan branching, increased major histocompatibility complex class I (MHCI) internalization but inhibited CIE of the glycoprotein CD59 molecule (CD59). The effects of knocking down the expression of galectin 3, a carbohydrate-binding protein and an important player in galectin-glycan interactions, were also cargo-specific and stimulated CD59 uptake. By contrast, inhibition of all galectin-glycan interactions by lactose inhibited CIE of both MHCI and CD59. None of these treatments affected clathrin-mediated endocytosis, implying that glycosylation changes specifically affect CIE. We also found that the galectin lattice tailors membrane fluidity and cell spreading. Furthermore, changes in membrane dynamics mediated by the galectin lattice affected macropinocytosis, an altered form of CIE, in HT1080 cells. Our results suggest that glycans play an important and nuanced role in CIE, with each cargo being affected uniquely by alterations in galectin and glycan profiles and their interactions. We conclude that galectin-driven effects exist on a continuum from stimulatory to inhibitory, with distinct CIE cargo proteins having unique response landscapes and with different cell types starting at different positions on these conceptual landscapes.
Social Vulnerability and Bullying in Children with Asperger Syndrome
ERIC Educational Resources Information Center
Sofronoff, Kate; Dark, Elizabeth; Stone, Valerie
2011-01-01
Children with Asperger syndrome (AS) have IQ within the normal range but specific impairments in theory of mind, social interaction and communication skills. The majority receive education in mainstream schools and research suggests they are bullied more than typically developing peers. The current study aimed to evaluate factors that predict…
The Public Trustee: Ostrich, Mule or Owl?
ERIC Educational Resources Information Center
Pittenger, John C.
The role of state college trustees and their interaction with state government are considered. It is suggested that the trustee should be concerned about what is best for postsecondary education in the state generally as well as for the specific institution. The future trends indicate declining college enrollments, which require planning…
Learning Resources for the Secondary Speech Communication Classroom.
ERIC Educational Resources Information Center
Wolvin, Andrew D.
1974-01-01
New print and nonprint resources for secondary level classroom use are available in the field of speech communication, which has become process oriented with continual interaction between speaker and listener. Of five specific books, three provide valuable resource material for teachers, focusing on practical teaching suggestions and the necessity…
Antecedents to Team Performance on Student IT Projects
ERIC Educational Resources Information Center
Havelka, Douglas
2016-01-01
A study was performed to test the impact of factors suggested by social capital and social cognitive theories as important antecedents to team performance on information technology (IT) course projects. Specifically, the impact of personal outcome expectations and social interaction ties on the quality and quantity of knowledge sharing is…
Ecological Education: Integration of Scientific Knowledge and Figurative Representations.
ERIC Educational Resources Information Center
Senkevich, V. M.
1991-01-01
Argues that understanding the interaction of society and the environment is a social-economical, technological, and moral task. Describes techniques developed by one Soviet academy's ecological education laboratory for helping middle school students integrate knowledge from science and art. Suggests that the study of specific ecological problems…
Parent-Teen Communication about Premarital Sex: Factors Associated with the Extent of Communication.
ERIC Educational Resources Information Center
Jaccard, James; Dittus, Patricia J.; Gordon, Vivian V.
2000-01-01
This study explored topic-specific reservations about discussing sex and birth control among inner-city African American mothers and their 14- to 17-year-olds. Findings showed that reservations predicted communication behavior beyond that predicted by general family environment variables. Interaction effects suggested differential impact of…
Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae.
Belyy, Alexander; Levanova, Nadezhda; Tabakova, Irina; Rospert, Sabine; Belyi, Yury
2016-01-01
The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5' untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62-K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62-K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62-K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62-K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62-K70 segment of Rps26 and the 5' untranslated region of mRNA. The data suggested a specific role of the Y62-K70 motif during translation initiation. Here, we report that single-site substitutions within the Y62-K70 peptide did not affect the growth of engineered yeast strains, arguing against its having a critical role during translation initiation via specific interactions with the 5' untranslated region of mRNA molecules. Only the simultaneous replacement of five conserved residues within the Y62-K70 fragment or the replacement of the yeast protein with the human homolog resulted in growth defects and caused significant changes in polysome profiles. The results expand our knowledge of ribosomal protein function and suggest a role of Rps26 during ribosome assembly in yeast.
Hendrix, Jelle; van Heertum, Bart; Vanstreels, Els; Daelemans, Dirk; De Rijck, Jan
2014-01-01
Lens epithelium-derived growth factor (LEDGF/p75) is a transcriptional co-activator involved in targeting human immunodeficiency virus (HIV) integration and the development of MLL fusion-mediated acute leukemia. A previous study revealed that LEDGF/p75 dynamically scans the chromatin, and upon interaction with HIV-1 integrase, their complex is locked on chromatin. At present, it is not known whether LEDGF/p75-mediated chromatin locking is typical for interacting proteins. Here, we employed continuous photobleaching and fluorescence correlation and cross-correlation spectroscopy to investigate in vivo chromatin binding of JPO2, a LEDGF/p75- and c-Myc-interacting protein involved in transcriptional regulation. In the absence of LEDGF/p75, JPO2 performs chromatin scanning inherent to transcription factors. However, whereas the dynamics of JPO2 chromatin binding are decelerated upon interaction with LEDGF/p75, very strong locking of their complex onto chromatin is absent. Similar results were obtained with the domesticated transposase PogZ, another cellular interaction partner of LEDGF/p75. We furthermore show that diffusive JPO2 can oligomerize; that JPO2 and LEDGF/p75 interact directly and specifically in vivo through the specific interaction domain of JPO2 and the C-terminal domain of LEDGF/p75, comprising the integrase-binding domain; and that modulation of JPO2 dynamics requires a functional PWWP domain in LEDGF/p75. Our results suggest that the dynamics of the LEDGF/p75-chromatin interaction depend on the specific partner and that strong chromatin locking is not a property of all LEDGF/p75-binding proteins. PMID:24634210
NASA Astrophysics Data System (ADS)
Zhou, Wenting; Rizzuto, Lucia; Passante, Roberto
2018-04-01
We investigate the resonance dipole-dipole interaction energy between two identical atoms, one in the ground state and the other in the excited state, interacting with the electromagnetic field in the presence of a perfectly reflecting plane boundary. The atoms are prepared in a correlated (symmetric or antisymmetric) Bell-type state. Following a procedure due to Dalibard et al. [J. Dalibard et al., J. Phys. (Paris) 43, 1617 (1982);, 10.1051/jphys:0198200430110161700 J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], we separate the contributions of vacuum fluctuations and radiation reaction (source) field to the resonance interaction energy between the two atoms and show that only the source field contributes to the interatomic interaction, while vacuum field fluctuations do not. By considering specific geometric configurations of the two-atom system with respect to the mirror and specific choices of dipole orientations, we show that the presence of the mirror significantly affects the resonance interaction energy and that different features appear with respect to the case of atoms in free space, for example, a change in the spatial dependence of the interaction. Our findings also suggest that the presence of a boundary can be exploited to tailor and control the resonance interaction between two atoms, as well as the related energy transfer process. The possibility of observing these phenomena is also discussed.
Gilsohn, Eli; Volk, Talila
2010-01-01
The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, we describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.
Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.
Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver
2017-01-01
Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.
Warren, Zachary; Muramatsu, Taro; Yoshikawa, Yuichiro; Matsumoto, Yoshio; Miyao, Masutomo; Nakano, Mitsuko; Mizushima, Sakae; Wakita, Yujin; Ishiguro, Hiroshi; Mimura, Masaru; Minabe, Yoshio; Kikuchi, Mitsuru
2017-01-01
Recent rapid technological advances have enabled robots to fulfill a variety of human-like functions, leading researchers to propose the use of such technology for the development and subsequent validation of interventions for individuals with autism spectrum disorder (ASD). Although a variety of robots have been proposed as possible therapeutic tools, the physical appearances of humanoid robots currently used in therapy with these patients are highly varied. Very little is known about how these varied designs are experienced by individuals with ASD. In this study, we systematically evaluated preferences regarding robot appearance in a group of 16 individuals with ASD (ages 10–17). Our data suggest that there may be important differences in preference for different types of robots that vary according to interaction type for individuals with ASD. Specifically, within our pilot sample, children with higher-levels of reported ASD symptomatology reported a preference for specific humanoid robots to those perceived as more mechanical or mascot-like. The findings of this pilot study suggest that preferences and reactions to robotic interactions may vary tremendously across individuals with ASD. Future work should evaluate how such differences may be systematically measured and potentially harnessed to facilitate meaningful interactive and intervention paradigms. PMID:29028837
Jardine, Kolby J.; Gimenez, Bruno O.; Araujo, Alessandro C.; ...
2016-01-01
Oil palm plantations are rapidly expanding in the tropics because of insatiable global demand for fruit oil to be used in food, biofuels and cosmetics. Here we show that three tissue-specific volatiles can be quantified in ambient air above an African-American hybrid oil palm plantation in Brazil and linked photosynthesis (isoprene), floral scent (estragole), and for the first time, fruit oil processing (6-methyl-5-hepten-2-one, MHO). Plant enclosure techniques verified their tissue specific emission sources with ambient concentrations displaying distinct diurnal patterns above the canopy. Isoprene concentrations were near zero at night, but dramatically increased during the day while estragole showed elevatedmore » concentrations at night suggesting a light-independent, temperature-driven emission pattern from flowers. MHO also showed elevated concentrations at night and both estragole and MHO increased during the day. Our observations demonstrate that the African-American oil palm hybrid is strong isoprene emitter and suggest that MHO is a specific oxidation product of lycopene released during the industrial processing of palm oil. This study highlights the potential value of quantifying volatile oil palm signals in the atmosphere as a novel, non-invasive method to better understand biological functioning and its interactions with the environment including carbon assimilation, floral-insect interactions, and fruit oil production/processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, Kolby J.; Gimenez, Bruno O.; Araujo, Alessandro C.
Oil palm plantations are rapidly expanding in the tropics because of insatiable global demand for fruit oil to be used in food, biofuels and cosmetics. Here we show that three tissue-specific volatiles can be quantified in ambient air above an African-American hybrid oil palm plantation in Brazil and linked photosynthesis (isoprene), floral scent (estragole), and for the first time, fruit oil processing (6-methyl-5-hepten-2-one, MHO). Plant enclosure techniques verified their tissue specific emission sources with ambient concentrations displaying distinct diurnal patterns above the canopy. Isoprene concentrations were near zero at night, but dramatically increased during the day while estragole showed elevatedmore » concentrations at night suggesting a light-independent, temperature-driven emission pattern from flowers. MHO also showed elevated concentrations at night and both estragole and MHO increased during the day. Our observations demonstrate that the African-American oil palm hybrid is strong isoprene emitter and suggest that MHO is a specific oxidation product of lycopene released during the industrial processing of palm oil. This study highlights the potential value of quantifying volatile oil palm signals in the atmosphere as a novel, non-invasive method to better understand biological functioning and its interactions with the environment including carbon assimilation, floral-insect interactions, and fruit oil production/processing.« less
Guo, Jianchang; Mahurin, Shannon M; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W
2014-01-30
In recent years, the effect of molecular charge on the rotational dynamics of probe solutes in room-temperature ionic liquids (RTILs) has been a subject of growing interest. For the purpose of extending our understanding of charged solute behavior within RTILs, we have studied the rotational dynamics of three illustrative xanthene fluorescent probes within a series of N-alkylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cnmpyr][Tf2N]) RTILs with different n-alkyl chain lengths (n = 3, 4, 6, 8, or 10) using time-resolved fluorescence anisotropy decay. The rotational dynamics of the neutral probe rhodamine B (RhB) dye lies between the stick and slip boundary conditions due to the influence of specific hydrogen bonding interactions. The rotation of the negatively charged sulforhodamine 640 (SR640) is slower than that of its positively charged counterpart rhodamine 6G (R6G). An analysis based upon Stokes-Einstein-Debye hydrodynamics indicates that SR640 adheres to stick boundary conditions due to specific interactions, whereas the faster rotation of R6G is attributed to weaker electrostatic interactions. No significant dependence of the rotational dynamics on the solvent alkyl chain length was observed for any of the three dyes, suggesting that the specific interactions between dyes and RTILs are relatively independent of this solvent parameter.
McCullough, Christopher; Neumann, Terrence S.; Gone, Jayapal Reddy; He, Zhengjie; Herrild, Christian; Wondergem, Julie; Pandey, Rajesh K.; Donaldson, William A.; Sem, Daniel S.
2014-01-01
Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule. PMID:24315190
Development of Specific Aspects of Spirituality during a 6-Month Intensive Yoga Practice
Büssing, Arndt; Hedtstück, Anemone; Khalsa, Sat Bir S.; Ostermann, Thomas; Heusser, Peter
2012-01-01
The majority of research on yoga focuses on its psychophysiological and therapeutic benefits, while the spiritual aspects are rarely addressed. Changes of specific aspects of spirituality were thus investigated among 160 individuals (91% women, mean age 40.9 ± 8.3 years; 57% Christians) starting a 2-year yoga teacher training. We used standardized questionnaires to measure aspects of spirituality (ASP), mindfulness (FMI—Freiburg Mindfulness Inventory), life satisfaction (BMLSS—Brief Multidimensional Life Satisfaction Scale), and positive mood (lightheartedness/relief). At the start of the course, scores of the respective ASP subscales for search for insight/wisdom, transcendence conviction, and conscious interactions/compassion were high, while those for religious orientation were low. Within the 6 month observation period, both conscious interactions/compassion (effect size, Cohen's d = .33), Religious orientation (d = .21), Lightheartedness/Relief (d = .75) and mindfulness (d = .53) increased significantly. Particularly non-religious/non-spiritual individuals showed moderate effects for an increase of conscious interactions/compassion. The results from this study suggest that an intensive yoga practice (1) may significantly increase specific aspects of practitioners' spirituality, mindfulness, and mood, (2) that these changes are dependent in part on their original spiritual/religious self-perception, and (3) that there are strong correlations amongst these constructs (i.e., conscious interactions/compassion, and mindfulness). PMID:22852023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franson, R.; Miller, R.M.
1984-01-01
An investigation on how infection with vesicular-arbuscular mycorrhizal fungi (VAM) changes interactions between plants was initiated. Specifically addressed were how does the presence or absence of VAM affect: (1) a species that typically shows little or no infection; and (2) a species that typically possesses moderate levels of infection. Results show: roots for inoculated species were higher than uninoculated treatments; the above ground dry weight gain were significantly higher with inoculation. The growth response of both species suggests a fungus-to-plant interaction even though infection, as measured by arbuscules a vesicles, was not always present. 2 figures. (MF)
Understanding interactions in virtual HIV communities: a social network analysis approach.
Shi, Jingyuan; Wang, Xiaohui; Peng, Tai-Quan; Chen, Liang
2017-02-01
This study investigated the driving mechanism of building interaction ties among the people living with HIV/AIDS in one of the largest virtual HIV communities in China using social network analysis. Specifically, we explained the probability of forming interaction ties with homophily and popularity characteristics. The exponential random graph modeling results showed that members in this community tend to form homophilous ties in terms of shared location and interests. Moreover, we found a tendency away from popularity effect. This suggests that in this community, resources and information were not disproportionally received by a few of members, which could be beneficial to the overall community.
Ball, David A; Mehta, Gunjan D; Salomon-Kent, Ronit; Mazza, Davide; Morisaki, Tatsuya; Mueller, Florian; McNally, James G; Karpova, Tatiana S
2016-12-01
In vivo single molecule tracking has recently developed into a powerful technique for measuring and understanding the transient interactions of transcription factors (TF) with their chromatin response elements. However, this method still lacks a solid foundation for distinguishing between specific and non-specific interactions. To address this issue, we took advantage of the power of molecular genetics of yeast. Yeast TF Ace1p has only five specific sites in the genome and thus serves as a benchmark to distinguish specific from non-specific binding. Here, we show that the estimated residence time of the short-residence molecules is essentially the same for Hht1p, Ace1p and Hsf1p, equaling 0.12-0.32 s. These three DNA-binding proteins are very different in their structure, function and intracellular concentration. This suggests that (i) short-residence molecules are bound to DNA non-specifically, and (ii) that non-specific binding shares common characteristics between vastly different DNA-bound proteins and thus may have a common underlying mechanism. We develop new and robust procedure for evaluation of adverse effects of labeling, and new quantitative analysis procedures that significantly improve residence time measurements by accounting for fluorophore blinking. Our results provide a framework for the reliable performance and analysis of single molecule TF experiments in yeast. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
The role of aberrant salience and self-concept clarity in psychotic-like experiences.
Cicero, David C; Becker, Theresa M; Martin, Elizabeth A; Docherty, Anna R; Kerns, John G
2013-01-01
Most theories of psychotic-like experiences posit the involvement of cognitive mechanisms. The current research examined the relations between psychotic-like experiences and two cognitive mechanisms, high aberrant salience and low self-concept clarity. In particular, we examined whether aberrant salience, or the incorrect assignment of importance to neutral stimuli, and low self-concept clarity interacted to predict psychotic-like experiences. The current research included three large samples (n = 667, 724, 744) of participants and oversampled for increased schizotypal personality traits. In all three studies, an interaction between aberrant salience and self-concept clarity was found such that participants with high aberrant salience and low self-concept clarity had the highest levels of psychotic-like experiences. In addition, aberrant salience and self-concept clarity interacted to predict a supplemental measure of delusions in Study 2. In Study 3, in contrast to low self-concept clarity, neuroticism did not interact with aberrant salience to predict psychotic-like experiences, suggesting that the relation between low self-concept clarity and psychosis may not be a result of neuroticism. Additionally, aberrant salience and self-concept clarity did not interact to predict two other SPD criteria, social anhedonia or trait paranoia, which suggests the interaction is specific to psychotic-like experiences. Overall, our results are consistent with several cognitive models of psychosis suggesting that aberrant salience and self-concept clarity might be important mechanisms in the occurrence of psychotic-like symptoms.
The Role of Aberrant Salience and Self-Concept Clarity in Psychotic-Like Experiences
Cicero, David C.; Becker, Theresa M.; Martin, Elizabeth A.; Docherty, Anna R.; Kerns, John G.
2013-01-01
Most theories of psychotic-like experiences posit the involvement of social-cognitive mechanisms. The current research examined the relations between psychotic-like experiences and two social-cognitive mechanisms, high aberrant salience and low self-concept clarity. In particular, we examined whether aberrant salience, or the incorrect assignment of importance to neutral stimuli, and low self-concept clarity interacted to predict psychotic-like experiences. The current research included three large samples (n = 667, 724, 744) of participants and over-sampled for increased schizotypal personality traits. In all three studies, an interaction between aberrant salience and self-concept clarity was found such that participants with high aberrant salience and low self-concept clarity had the highest levels of psychotic-like experiences. In addition, aberrant salience and self-concept clarity interacted to predict a supplemental measure of delusions in Study 2. In Study 3, in contrast to low self-concept clarity, neuroticism did not interact with aberrant salience to predict psychotic-like experiences, suggesting that the relation between low self-concept clarity and psychosis may not be due to neuroticism. Additionally, aberrant salience and self-concept clarity did not interact to predict to other schizotypal personality disorder criteria, social anhedonia or trait paranoia, which suggests the interaction is specific to psychotic-like experiences. Overall, our results are consistent with several social-cognitive models of psychosis suggesting that aberrant salience and self-concept clarity might be important mechanisms in the occurrence of psychotic-like symptoms. PMID:22452775
Inhibition of polyomavirus ori-dependent DNA replication by mSin3B.
Xie, An-Yong; Folk, William R
2002-12-01
When tethered in cis to DNA, the transcriptional corepressor mSin3B inhibits polyomavirus (Py) ori-dependent DNA replication in vivo. Histone deacetylases (HDACs) appear not to be involved, since tethering class I and class II HDACs in cis does not inhibit replication and treating the cells with trichostatin A does not specifically relieve inhibition by mSin3B. However, the mSin3B L59P mutation that impairs mSin3B interaction with N-CoR/SMRT abrogates inhibition of replication, suggesting the involvement of N-CoR/SMRT. Py large T antigen interacts with mSin3B, suggesting an HDAC-independent mechanism by which mSin3B inhibits DNA replication.
May, Karen M.; Reynolds, Nicola; Cullen, C. Fiona; Yanagida, Mitsuhiro; Ohkura, Hiroyuki
2002-01-01
The fission yeast plo1 + gene encodes a polo-like kinase, a member of a conserved family of kinases which play multiple roles during the cell cycle. We show that Plo1 kinase physically interacts with the anaphase-promoting complex (APC)/cyclosome through the noncatalytic domain of Plo1 and the tetratricopeptide repeat domain of the subunit, Cut23. A new cut23 mutation, which specifically disrupts the interaction with Plo1, results in a metaphase arrest. This arrest can be rescued by high expression of Plo1 kinase. We suggest that this physical interaction is crucial for mitotic progression by targeting polo kinase activity toward the APC. PMID:11777938
Population-specific responses to light influence herbivory in the understory shrub Lindera benzoin.
Mooney, E H; Niesenbaum, R A
2012-12-01
Plants display photosynthetic plasticity in response to variation in light environment, and the extent of this plasticity often varies with genotype, i.e., genotype x environment interaction. Herbivory may also covary with light environment as a result of light-induced changes in photosynthetic traits. For example, greater levels of photoprotective phenolic compounds in high-light environments may reduce host quality to herbivores. We investigated intraspecific variation in photosynthetic responses to light and its consequences for herbivory in the understory shrub, Lindera benzoin (Lauraceae). We transplanted five plants from eight populations (N = 240) into three replicate sun and shade common gardens. Two years after transplantation, we tested for population x light environment interactions in six photosynthesis-related responses: specific leaf area, water content, chlorophyll content, chlorophyll fluorescence (F(0)), maximum quantum yield (F(v)/F(m)), and total phenolics. We assessed seasonal herbivory and consumption by a specialist lepidopteran herbivore (Epimecis hortaria). This allowed us to test for (1) population-specific patterns of photosynthetic acclimation and photoinhibition, (2) population-specific production of phenolics in response to photoinhibition, and (3) population-specific photosynthetic responses that contribute to population x light environment interactions in herbivory. Population X light environment interactions were insignificant in leaf variables but statistically significant for herbivory measured as consumption by E. hortaria. We found similar trends for population x light environment interactions in seasonal herbivory. Total phenolics and minimum chlorophyll fluorescence (F(0)) were significant covariates with herbivory, but their effects depended on light environment and population of origin. High-light environments eliminated differences among populations in how these leaf variables affected herbivory, while population-specific relationships were apparent in the shade. Analysis of total phenolics revealed that they were likely induced by photoinhibition, but that this response varied among the populations we assessed. However, phenolics increased herbivory in L. benzoin, which would limit the fitness value of this protective response to light-induced photoinhibition. Our results suggest that herbivores could affect evolution of photosynthetic plasticity in L. benzoin.
Specificity and autoregulation of Notch binding by tandem WW domains in suppressor of Deltex.
Jennings, Martin D; Blankley, Richard T; Baron, Martin; Golovanov, Alexander P; Avis, Johanna M
2007-09-28
WW domains target proline-tyrosine (PY) motifs and frequently function as tandem pairs. When studied in isolation, single WW domains are notably promiscuous and regulatory mechanisms are undoubtedly required to ensure selective interactions. Here, we show that the fourth WW domain (WW4) of Suppressor of Deltex, a modular Nedd4-like protein that down-regulates the Notch receptor, is the primary mediator of a direct interaction with a Notch-PY motif. A natural Trp to Phe substitution in WW4 reduces its affinity for general PY sequences and enhances selective interaction with the Notch-PY motif via compensatory specificity-determining interactions with PY-flanking residues. When WW4 is paired with WW3, domain-domain association, impeding proper folding, competes with Notch-PY binding to WW4. This novel mode of autoinhibition is relieved by binding of another ligand to WW3. Such cooperativity may facilitate the transient regulatory interactions observed in vivo between Su(dx) and Notch in the endocytic pathway. The highly conserved tandem arrangement of WW domains in Nedd4 proteins, and similar arrangements in more diverse proteins, suggests domain-domain communication may be integral to regulation of their associated cellular activities.
Med5(Nut1) and Med17(Srb4) Are Direct Targets of Mediator Histone H4 Tail Interactions
Liu, Zhongle; Myers, Lawrence C.
2012-01-01
The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. In addition to its canonical role in transcriptional activation, recent studies have demonstrated that S. cerevisiae Mediator can interact directly with nucleosomes, and their histone tails. Mutations in Mediator subunits have shown that Mediator and certain chromatin structures mutually impact each other structurally and functionally in vivo. We have taken a UV photo cross-linking approach to further delineate the molecular basis of Mediator chromatin interactions and help determine whether the impact of certain Mediator mutants on chromatin is direct. Specifically, by using histone tail peptides substituted with an amino acid analog that is a UV activatible crosslinker, we have identified specific subunits within Mediator that participate in histone tail interactions. Using Mediator purified from mutant yeast strains we have evaluated the impact of these subunits on histone tail binding. This analysis has identified the Med5 subunit of Mediator as a target for histone tail interactions and suggests that the previously observed effect of med5 mutations on telomeric heterochromatin and silencing is direct. PMID:22693636
Interactions of U24 from Roseolovirus with WW domains: canonical vs noncanonical.
Sang, Yurou; Zhang, Rui; Creagh, A Louise; Haynes, Charles A; Straus, Suzana K
2017-06-01
U24 is a C-terminal membrane-anchored protein found in both human herpes virus type 6 and 7 (HHV-6 and HHV-7), with an N-terminal segment that is rich in prolines (PPxY motif in both HHV-6A and 7; PxxP motif in HHV-6A). Previous work has shown that U24 interacts strongly with Nedd4 WW domains, in particular, hNedd4L-WW3*. It was also shown that this interaction depends strongly on the nature of the amino acids that are upstream from the PY motif in U24. In this contribution, data was obtained from pull-downs, isothermal titration calorimetry, and NMR to further determine what modulates U24:WW domain interactions. Specifically, 3 non-canonical WW domains from human Smad ubiquitination regulatory factor (Smurf), namely hSmurf2-WW2, hSmurf2-WW3, and a tandem construct hSmurf2-WW2 + 3, were studied. Overall, the interactions between U24 and these Smurf WW domains were found to be weaker than those in U24:Nedd4 WW domain pairs, suggesting that U24 function is tightly linked to specific E3 ubiqitin ligases.
Wang, Yin
2015-01-01
Notwithstanding the significant role that human–robot interactions (HRI) will play in the near future, limited research has explored the neural correlates of feeling eerie in response to social robots. To address this empirical lacuna, the current investigation examined brain activity using functional magnetic resonance imaging while a group of participants (n = 26) viewed a series of human–human interactions (HHI) and HRI. Although brain sites constituting the mentalizing network were found to respond to both types of interactions, systematic neural variation across sites signaled diverging social-cognitive strategies during HHI and HRI processing. Specifically, HHI elicited increased activity in the left temporal–parietal junction indicative of situation-specific mental state attributions, whereas HRI recruited the precuneus and the ventromedial prefrontal cortex (VMPFC) suggestive of script-based social reasoning. Activity in the VMPFC also tracked feelings of eeriness towards HRI in a parametric manner, revealing a potential neural correlate for a phenomenon known as the uncanny valley. By demonstrating how understanding social interactions depends on the kind of agents involved, this study highlights pivotal sub-routes of impression formation and identifies prominent challenges in the use of humanoid robots. PMID:25911418
Chereji, Răzvan V.; Bharatula, Vasudha; Elfving, Nils; Blomberg, Jeanette; Larsson, Miriam; Morozov, Alexandre V.; Broach, James R.
2017-01-01
Abstract Mediator is a multi-unit molecular complex that plays a key role in transferring signals from transcriptional regulators to RNA polymerase II in eukaryotes. We have combined biochemical purification of the Saccharomyces cerevisiae Mediator from chromatin with chromatin immunoprecipitation in order to reveal Mediator occupancy on DNA genome-wide, and to identify proteins interacting specifically with Mediator on the chromatin template. Tandem mass spectrometry of proteins in immunoprecipitates of mediator complexes revealed specific interactions between Mediator and the RSC, Arp2/Arp3, CPF, CF 1A and Lsm complexes in chromatin. These factors are primarily involved in chromatin remodeling, actin assembly, mRNA 3′-end processing, gene looping and mRNA decay, but they have also been shown to enter the nucleus and participate in Pol II transcription. Moreover, we have found that Mediator, in addition to binding Pol II promoters, occupies chromosomal interacting domain (CID) boundaries and that Mediator in chromatin associates with proteins that have been shown to interact with CID boundaries, such as Sth1, Ssu72 and histone H4. This suggests that Mediator plays a significant role in higher-order genome organization. PMID:28575439
Speed, Traci J; Richards, Jessica M; Finan, Patrick H; Smith, Michael T
2017-07-01
Sex differences in clinical pain severity and response to experimental pain are commonly reported, with women generally showing greater vulnerability. Affect, including state (a single rating) and stable (average daily ratings over two weeks) positive affect and negative affect has also been found to impact pain sensitivity and severity, and research suggests that affect may modulate pain differentially as a function of sex. The current study aimed to examine sex as a moderator of the relationships between affect and pain-related outcomes among participants with knee osteoarthritis (KOA). One hundred and seventy-nine participants (59 men) with KOA completed electronic diaries assessing clinical pain, positive affect, and negative affect. A subset of participants (n=120) underwent quantitative sensory testing, from which a single index of central sensitization to pain was derived. We used multiple regression models to test for the interactive effects of sex and affect (positive versus negative and stable versus state) on pain-related outcomes. We used mixed effects models to test for the moderating effects of sex on the relationships between state affect and pain over time. Sex differences in affect and pain were identified, with men reporting significantly higher stable positive affect and lower central sensitization to pain indexed by quantitative sensory testing, as well as marginally lower KOA-specific clinical pain compared to women. Moreover, there was an interaction between stable positive affect and sex on KOA-specific clinical pain and average daily non-specific pain ratings. Post hoc analyses revealed that men showed trends towards an inverse relationship between stable positive affect and pain outcomes, while women showed no relationship between positive affect and pain. There was also a significant interaction between sex and stable negative affect and sex on KOA-specific pain such that men showed a significantly stronger positive relationship between stable negative affect and KOA-specific pain than women. Sex did not interact with state affect on pain outcomes. Findings suggest that men may be particularly sensitive to the effects of stable positive affect and negative affect on clinical pain. Future work with larger samples is needed in order to identify potential mechanisms driving the sex-specific effects of affect on pain. The current study provides novel data that suggesting that the association of positive affect, negative affect, and pain are different in men versus women with KOA. Further understanding of the difference in affective expression between men and women may lead to the development of novel therapeutic interventions and help to identify additional modifiable factors in the prevention and management of pain. Copyright © 2017 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P
2016-05-31
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N.; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H.C.; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P.
2016-01-01
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma. PMID:27049916
Examination of Association to Autism of Common Genetic Variation in Genes Related to Dopamine
Anderson, B.M.; Schnetz-Boutaud, N.; Bartlett, J.; Wright, H.H.; Abramson, R.K.; Cuccaro, M.L.; Gilbert, J.R.; Pericak-Vance, M.A.; Haines, J.L.
2010-01-01
Autism is a severe neurodevelopmental disorder characterized by a triad of complications. Autistic individuals display significant disturbances in language and reciprocal social interactions, combined with repetitive and stereotypic behaviors. Prevalence studies suggest that autism is more common than originally believed, with recent estimates citing a rate of one in 150. Although this genomic approach has yielded multiple suggestive regions, a specific risk locus has yet to be identified and widely confirmed. Because many etiologies have been suggested for this complex syndrome, we hypothesize that one of the difficulties in identifying autism genes is that multiple genetic variants may be required to significantly increase the risk of developing autism. Thus we took the alternative approach of examining 14 prominent dopamine pathway candidate genes for detailed study by genotyping 28 SNPs. Although we did observe a nominally significant association for rs2239535 (p=.008) on chromosome 20, single locus analysis did not reveal any results as significant after correction for multiple comparisons. No significant interaction was identified when Multifactor Dimensionality Reduction (MDR) was employed to test specifically for multilocus effects. Although genome-wide linkage scans in autism have provided support for linkage to various loci along the dopamine pathway, our study does not provide strong evidence of linkage or association to any specific gene or combination of genes within the pathway. These results demonstrate that common genetic variation within the tested genes located within this pathway at most play a minor to moderate role in overall autism pathogenesis. PMID:19360691
Silva-Santiago, Evangelina; Pardo, Juan Pablo; Hernández-Muñoz, Rolando; Aranda-Anzaldo, Armando
2017-01-15
During the interphase the nuclear DNA of metazoan cells is organized in supercoiled loops anchored to constituents of a nuclear substructure or compartment known as the nuclear matrix. The stable interactions between DNA and the nuclear matrix (NM) correspond to a set of topological relationships that define a nuclear higher-order structure (NHOS). Current evidence suggests that the NHOS is cell-type-specific. Biophysical evidence and theoretical models suggest that thermodynamic and structural constraints drive the actualization of DNA-NM interactions. However, if the topological relationships between DNA and the NM were the subject of any biological constraint with functional significance then they must be adaptive and thus be positively selected by natural selection and they should be reasonably conserved, at least within closely related species. We carried out a coarse-grained, comparative evaluation of the DNA-NM topological relationships in primary hepatocytes from two closely related mammals: rat and mouse, by determining the relative position to the NM of a limited set of target sequences corresponding to highly-conserved genomic regions that also represent a sample of distinct chromosome territories within the interphase nucleus. Our results indicate that the pattern of topological relationships between DNA and the NM is not conserved between the hepatocytes of the two closely related species, suggesting that the NHOS, like the karyotype, is species-specific. Copyright © 2016 Elsevier B.V. All rights reserved.
Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1
Schwertassek, Ulla; Balmer, Yves; Gutscher, Marcus; Weingarten, Lars; Preuss, Marc; Engelhard, Johanna; Winkler, Monique; Dick, Tobias P
2007-01-01
The thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) is known to be secreted by leukocytes and to exhibit cytokine-like properties. Extracellular effects of Trx1 require a functional active site, suggesting a redox-based mechanism of action. However, specific cell surface proteins and pathways coupling extracellular Trx1 redox activity to cellular responses have not been identified so far. Using a mechanism-based kinetic trapping technique to identify disulfide exchange interactions on the intact surface of living lymphocytes, we found that Trx1 catalytically interacts with a single principal target protein. This target protein was identified as the tumor necrosis factor receptor superfamily member 8 (TNFRSF8/CD30). We demonstrate that the redox interaction is highly specific for both Trx1 and CD30 and that the redox state of CD30 determines its ability to engage the cognate ligand and transduce signals. Furthermore, we confirm that Trx1 affects CD30-dependent changes in lymphocyte effector function. Thus, we conclude that receptor–ligand signaling interactions can be selectively regulated by an extracellular redox catalyst. PMID:17557078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity; Reardon, Patrick N.; Chacon, Stephany S.
Molecular dynamics simulations, conventional and metadynamics, were performed to determine the interaction of model protein Gb1 over kaolinite (001), Na+-montmorillonite (001), Ca2+-montmorillonite (001), goethite (100), and Na+-birnessite (001) mineral surfaces. Gb1, a small (56 residue) protein with a well-characterized solution-state nuclear magnetic resonance (NMR) structure and having α-helix, four-fold β-sheet, and hydrophobic core features, is used as a model protein to study protein soil mineral interactions and gain insights on structural changes and potential degradation of protein. From our simulations, we observe little change to the hydrated Gb1 structure over the kaolinite, montmorillonite, and goethite surfaces relative to its solvatedmore » structure without these mineral surfaces present. Over the Na+-birnessite basal surface, however, the Gb1 structure is highly disturbed as a result of interaction with this birnessite surface. Unraveling of the Gb1 β-sheet at specific turns and a partial unraveling of the α-helix is observed over birnessite, which suggests specific vulnerable residue sites for oxidation or hydrolysis possibly leading to fragmentation.« less
A role for direct interactions in the modulation of rhodopsin by -3 polyunsaturated lipids
NASA Astrophysics Data System (ADS)
Grossfield, Alan; Feller, Scott E.; Pitman, Michael C.
2006-03-01
Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin's stability and function; -3 polyunsaturated chains, such as docosahexaenoic acid (DHA), destabilize rhodopsin and enhance the kinetics of the photocycle, whereas cholesterol has the opposite effect. Here, we use molecular dynamics simulations to investigate the possibility that polyunsaturated chains modulate rhodopsin stability and kinetics via specific direct interactions. By analyzing the results of 26 independent 100-ns simulations of dark-adapted rhodopsin, we found that DHA routinely forms tight associations with the protein in a small number of specific locations qualitatively different from the nonspecific interactions made by saturated chains and cholesterol. Furthermore, the presence of tightly packed DHA molecules tends to weaken the interhelical packing. These results are consistent with recent NMR work, which proposes that rhodopsin binds DHA, and they suggest a molecular rationale for DHA's effects on rhodopsin stability and kinetics. cholesterol | molecular dynamics | fatty acid | protein-lipid interactions
Attentional load and attentional boost: a review of data and theory.
Swallow, Khena M; Jiang, Yuhong V
2013-01-01
Both perceptual and cognitive processes are limited in capacity. As a result, attention is selective, prioritizing items and tasks that are important for adaptive behavior. However, a number of recent behavioral and neuroimaging studies suggest that, at least under some circumstances, increasing attention to one task can enhance performance in a second task (e.g., the attentional boost effect). Here we review these findings and suggest a new theoretical framework, the dual-task interaction model, that integrates these findings with current views of attentional selection. To reconcile the attentional boost effect with the effects of attentional load, we suggest that temporal selection results in a temporally specific enhancement across modalities, tasks, and spatial locations. Moreover, the effects of temporal selection may be best observed when the attentional system is optimally tuned to the temporal dynamics of incoming stimuli. Several avenues of research motivated by the dual-task interaction model are then discussed.
Attentional Load and Attentional Boost: A Review of Data and Theory
Swallow, Khena M.; Jiang, Yuhong V.
2013-01-01
Both perceptual and cognitive processes are limited in capacity. As a result, attention is selective, prioritizing items and tasks that are important for adaptive behavior. However, a number of recent behavioral and neuroimaging studies suggest that, at least under some circumstances, increasing attention to one task can enhance performance in a second task (e.g., the attentional boost effect). Here we review these findings and suggest a new theoretical framework, the dual-task interaction model, that integrates these findings with current views of attentional selection. To reconcile the attentional boost effect with the effects of attentional load, we suggest that temporal selection results in a temporally specific enhancement across modalities, tasks, and spatial locations. Moreover, the effects of temporal selection may be best observed when the attentional system is optimally tuned to the temporal dynamics of incoming stimuli. Several avenues of research motivated by the dual-task interaction model are then discussed. PMID:23730294
Favory, Jean-Jacques; Stec, Agnieszka; Gruber, Henriette; Rizzini, Luca; Oravecz, Attila; Funk, Markus; Albert, Andreas; Cloix, Catherine; Jenkins, Gareth I; Oakeley, Edward J; Seidlitz, Harald K; Nagy, Ferenc; Ulm, Roman
2009-01-01
The ultraviolet-B (UV-B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV-B perception systems. The UV-B-specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV-B response. We show here that uvr8-null mutants are deficient in UV-B-induced photomorphogenesis and hypersensitive to UV-B stress, whereas overexpression of UVR8 results in enhanced UV-B photomorphogenesis, acclimation and tolerance to UV-B stress. By using sun simulators, we provide evidence at the physiological level that UV-B acclimation mediated by the UV-B-specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV-B-dependent, rapid manner in planta. These data collectively suggest that UV-B-specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV-B ensuring UV-B acclimation and protection in the natural environment. PMID:19165148
Liu, Qian; Yao, Wei-Dong; Suzuki, Tatsuo
2013-06-01
Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.
Non-ionic detergents facilitate non-specific binding of M13 bacteriophage to polystyrene surfaces.
Hakami, Abdulrahim R; Ball, Jonathan K; Tarr, Alexander W
2015-09-01
Phage-displayed random peptide libraries are widely used for identifying peptide interactions with proteins and other substrates. Selection of peptide ligands involves iterative rounds of affinity enrichment. The binding properties of the selected phage clones are routinely tested using immunoassay after propagation to high titre in a bacterial host and precipitation using polyethylene glycol (PEG) and high salt concentration. These immunoassays can suffer from low sensitivity and high background signals. Polysorbate 20 (Tween(®) 20) is a non-ionic detergent commonly used in immunoassay washing buffers to reduce non-specific binding, and is also used as a blocking reagent. We have observed that Tween 20 enhances non-specific M13 library phage binding in a peptide-independent manner. Other non-ionic detergents were also found to promote significant, dose-dependent non-specific phage binding in ELISA. This effect was not observed for assays using phage concentrated by ultracentrifugation, suggesting that interactions occur between detergents and the PEG-precipitated phage, irrespective of the displayed peptide motif. This artefact may impact on successful affinity selection of peptides from phage-display libraries. We propose alternative methods for screening phage libraries for identifying binding interactions with target ligands. Copyright © 2015 Elsevier B.V. All rights reserved.
Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium.
Gross, Gabriele; van der Meulen, Jan; Snel, Johannes; van der Meer, Roelof; Kleerebezem, Michiel; Niewold, Theo A; Hulst, Marcel M; Smits, Mari A
2008-11-01
Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using an in situ pig Small Intestinal Segment Perfusion model. The effects of L. plantarum 299v wild-type strain were compared with those of two corresponding mutant strains either lacking the gene encoding for the mannose-specific adhesin (msa) or sortase (srtA; responsible for anchoring of cell surface proteins like Msa to the cell wall). A slight enrichment of the wild-type strain associated with the intestinal surface could be observed after 8 h of perfusion when a mixture of wild-type and msa-mutant strain had been applied. In contrast to the mutant strains, the L. plantarum wild-type strain tended to induce a decrease in jejunal net fluid absorption compared with control conditions. Furthermore, after 8 h of perfusion expression of the host gene encoding pancreatitis-associated protein, a protein with proposed bactericidal properties, was found to be upregulated by the wild-type strain only. These observations suggest a role of Msa in the induction of host responses in the pig intestine.
Sherman, Natasha A.; Victorine, Anna; Wang, Richard J.; Moyle, Leonie C.
2014-01-01
Despite extensive theory, little is known about the empirical accumulation and evolutionary timing of mutations that contribute to speciation. Here we combined QTL (Quantitative Trait Loci) analyses of reproductive isolation, with information on species evolutionary relationships, to reconstruct the order and timing of mutations contributing to reproductive isolation between three plant (Solanum) species. To evaluate whether reproductive isolation QTL that appear to coincide in more than one species pair are homologous, we used cross-specific tests of allelism and found evidence for both homologous and lineage-specific (non-homologous) alleles at these co-localized loci. These data, along with isolation QTL unique to single species pairs, indicate that >85% of isolation-causing mutations arose later in the history of divergence between species. Phylogenetically explicit analyses of these data support non-linear models of accumulation of hybrid incompatibility, although the specific best-fit model differs between seed (pairwise interactions) and pollen (multi-locus interactions) sterility traits. Our findings corroborate theory that predicts an acceleration (‘snowballing’) in the accumulation of isolation loci as lineages progressively diverge, and suggest different underlying genetic bases for pollen versus seed sterility. Pollen sterility in particular appears to be due to complex genetic interactions, and we show this is consistent with a snowball model where later arising mutations are more likely to be involved in pairwise or multi-locus interactions that specifically involve ancestral alleles, compared to earlier arising mutations. PMID:25211473
Factors affecting the formation of eutectic solid dispersions and their dissolution behavior.
Vippagunta, Sudha R; Wang, Zeren; Hornung, Stefanie; Krill, Steven L
2007-02-01
The objective of this work was to obtain a fundamental understanding of the factors, specifically the properties of poorly water-soluble drugs and water-soluble carriers, which influence predominantly, the formation of eutectic or monotectic crystalline solid dispersion and their dissolution behavior. A theoretical model was applied on five poorly water-soluble drugs (fenofibrate, flurbiprofen, griseofulvin, naproxen, and ibuprofen) having diverse physicochemical properties and water-soluble carrier (polyethylene glycol (PEG) 8000) for the evaluation of these factors. Of these, two drugs, fenofibrate and flurbiprofen, and PEG of different molecular weights (3350, 8000, and 20000), were chosen as model drugs and carriers for further investigation. Experimental phase diagrams were constructed and dissolution testing was performed to assess the performance of the systems. The theoretical model predicted the formation of eutectic or monotectic solid dispersions of fenofibrate, griseofulvin, ibuprofen, and naproxen with PEG, holding the contribution of specific intermolecular interactions between compound and carrier to zero. In the case of the flurbiprofen-PEG eutectic system, intermolecular interactions between drug and polymer needed to be taken into consideration to predict the experimental phase diagram. The results of the current work suggest that the thermodynamic function of melting point and heat of fusion (as a measure of crystal energy of drug) plays a significant role in the formation of a eutectic system. Lipophilicity of the compound (as represented by cLog P) was also demonstrated to have an effect. Specific interactions between drug and carrier play a significant role in influencing the eutectic composition. Molar volume of the drug did not seem to have an impact on eutectic formation. The polymer molecular weight appeared to have an impact on the eutectic composition for flurbiprofen, which exhibits specific interactions with PEG, whereas no such impact of polymer molecular weight on eutectic composition was observed for fenofibrate, which does not exhibit specific interactions with PEG. The impact of polymer molecular weight on dissolution of systems where specific drug-polymer interactions are exhibited was also observed. The current work provides valuable insight into factors affecting formation and dissolution of eutectic systems, which can facilitate the rational selection of suitable water-soluble carriers. Copyright (c) 2006 Wiley-Liss, Inc.
Williford, Amanda P.; Maier, Michelle F.; Downer, Jason T.; Pianta, Robert C.; Howes, Carolee
2015-01-01
This study examined the quality of preschool classroom experiences through the combination of teachers’ interactions at the classroom level and children’s individual patterns of engagement in predicting children’s gains in school readiness. A sample of 605 children and 309 teachers participated. The quality of children’s engagement and teacher interactions was directly observed in the classroom setting, and direct assessments of children’s school readiness skills were obtained in the fall and again in the spring. The quality of teacher interactions was associated with gains across all school readiness skills. The effect of children’s individual classroom engagement on their gains in school readiness skills (specifically phonological awareness and expressive vocabulary) was moderated by classroom level teacher interactions. The results suggest that if teachers provide highly responsive interactions at the classroom level, children may develop more equitable school readiness skills regardless of their individual engagement patterns. PMID:26722137
Waldman, Prunelle; Meseguer, Alba; Lucas, Françoise; Moulin, Laurent; Wurtzer, Sébastien
2017-12-05
Although the interaction between phages and bacteria has already been well described, it only recently emerged that human viruses also interact with bacteria in the mammalian gut. We studied whether this interaction could occur in tap water and thus confer enteric viruses protection against temperature and the classical disinfection treatments used in drinking water production. We demonstrated that the addition of lipopolysaccharide or peptidoglycan of bacterial origin to enterovirus provides thermal protection through stabilization of the viral capsid. This interaction plays a role when viruses are exposed to disinfection that targets the capsid, but less so when the virus genome is directly targeted. The interaction seems to be serotype-specific, suggesting that the capsid protein sequence could be important. The protection is linked to a direct association between viral particles and bacterial compounds as observed by microscopy. These results show that bacterial compounds present in the environment can affect virus inactivation.
Allen, Alexandra M.; Thorogood, Christopher J.; Hegarty, Matthew J.; Lexer, Christian; Hiscock, Simon J.
2011-01-01
Background Pollen–pistil interactions are an essential prelude to fertilization in angiosperms and determine compatibility/incompatibility. Pollen–pistil interactions have been studied at a molecular and cellular level in relatively few families. Self-incompatibility (SI) is the best understood pollen–pistil interaction at a molecular level where three different molecular mechanisms have been identified in just five families. Here we review studies of pollen–pistil interactions and SI in the Asteraceae, an important family that has been relatively understudied in these areas of reproductive biology. Scope We begin by describing the historical literature which first identified sporophytic SI (SSI) in species of Asteraceae, the SI system later identified and characterized at a molecular level in the Brassicaceae. Early structural and cytological studies in these two families suggested that pollen–pistil interactions and SSI were similar, if not the same. Recent cellular and molecular studies in Senecio squalidus (Oxford ragwort) have challenged this belief by revealing that despite sharing the same genetic system of SSI, the Brassicaceae and Asteraceae molecular mechanisms are different. Key cellular differences have also been highlighted in pollen–stigma interactions, which may arise as a consequence of the Asteraceae possessing a ‘semi-dry’ stigma, rather than the ‘dry’ stigma typical of the Brassicaceae. The review concludes with a summary of recent transcriptomic analyses aimed at identifying proteins regulating pollen–pistil interactions and SI in S. squalidus, and by implication the Asteraceae. The Senecio pistil transcriptome contains many novel pistil-specific genes, but also pistil-specific genes previously shown to play a role in pollen–pistil interactions in other species. Conclusions Studies in S. squalidus have shown that stigma structure and the molecular mechanism of SSI in the Asteraceae and Brassicaceae are different. The availability of a pool of pistil-specific genes for S. squalidus offers an opportunity to elucidate the molecular mechanisms of pollen–pistil interactions and SI in the Asteraceae. PMID:21752792
Fermented foods, neuroticism, and social anxiety: An interaction model.
Hilimire, Matthew R; DeVylder, Jordan E; Forestell, Catherine A
2015-08-15
Animal models and clinical trials in humans suggest that probiotics can have an anxiolytic effect. However, no studies have examined the relationship between probiotics and social anxiety. Here we employ a cross-sectional approach to determine whether consumption of fermented foods likely to contain probiotics interacts with neuroticism to predict social anxiety symptoms. A sample of young adults (N=710, 445 female) completed self-report measures of fermented food consumption, neuroticism, and social anxiety. An interaction model, controlling for demographics, general consumption of healthful foods, and exercise frequency, showed that exercise frequency, neuroticism, and fermented food consumption significantly and independently predicted social anxiety. Moreover, fermented food consumption also interacted with neuroticism in predicting social anxiety. Specifically, for those high in neuroticism, higher frequency of fermented food consumption was associated with fewer symptoms of social anxiety. Taken together with previous studies, the results suggest that fermented foods that contain probiotics may have a protective effect against social anxiety symptoms for those at higher genetic risk, as indexed by trait neuroticism. While additional research is necessary to determine the direction of causality, these results suggest that consumption of fermented foods that contain probiotics may serve as a low-risk intervention for reducing social anxiety. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sun, Penglin; Kao, Teh-hui
2013-01-01
The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitination and degradation. Using a gain-of-function assay, we examined the relationships between S2-SLF1 (for S2-allelic product of Type-1 SLF) and four S-RNases. The results suggest that S2-SLF1 interacts with S7- and S13-RNases, and the previously identified S1- and S3-RNases, but not with S5- or S11-RNase. An artificial microRNA expressed by the S2-SLF1 promoter, but not by the vegetative cell-specific promoter, Late Anther Tomato 52, suppressed expression of S2-SLF1 in S2 pollen, suggesting that SLF1 is specific to the generative cell. The S2 pollen with S2-SLF1 suppressed was compatible with S3-, S5-, S7-, S11-, and S13-carrying pistils, confirming that other SLF proteins are responsible for detoxifying S5- and S11-RNases and suggesting that S2-SLF1 is not the only SLF in S2 pollen that interacts with S3-, S7-, and S13-RNases. Petunia may have evolved at least two types of SLF proteins to detoxify any non-self S-RNase to minimize the deleterious effects of mutation in any SLF. PMID:23444333
Sun, Penglin; Kao, Teh-hui
2013-02-01
The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitination and degradation. Using a gain-of-function assay, we examined the relationships between S2-SLF1 (for S2-allelic product of Type-1 SLF) and four S-RNases. The results suggest that S2-SLF1 interacts with S7- and S13-RNases, and the previously identified S1- and S3-RNases, but not with S5- or S11-RNase. An artificial microRNA expressed by the S2-SLF1 promoter, but not by the vegetative cell-specific promoter, Late Anther Tomato 52, suppressed expression of S2-SLF1 in S2 pollen, suggesting that SLF1 is specific to the generative cell. The S2 pollen with S2-SLF1 suppressed was compatible with S3-, S5-, S7-, S11-, and S13-carrying pistils, confirming that other SLF proteins are responsible for detoxifying S5- and S11-RNases and suggesting that S2-SLF1 is not the only SLF in S2 pollen that interacts with S3-, S7-, and S13-RNases. Petunia may have evolved at least two types of SLF proteins to detoxify any non-self S-RNase to minimize the deleterious effects of mutation in any SLF.
Edwards, Deanna N.; Orren, David K.; Machwe, Amrita
2014-01-01
Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underlie early onset of aging phenotypes in WS. Furthermore, TRF2, a protein essential for telomere protection, interacts with WRN and influences its basic helicase and exonuclease activities. However, these studies provided little insight into WRN's specific function at telomeres. Here, we explored the possibility that WRN and TRF2 cooperate during telomeric recombination processes. Our results indicate that TRF2, through its interactions with both WRN and telomeric DNA, stimulates WRN-mediated strand exchange specifically between telomeric substrates; TRF2's basic domain is particularly important for this stimulation. Although TRF1 binds telomeric DNA with similar affinity, it has minimal effects on WRN-mediated strand exchange of telomeric DNA. Moreover, TRF2 is displaced from telomeric DNA by WRN, independent of its ATPase and helicase activities. Together, these results suggest that TRF2 and WRN act coordinately during telomeric recombination processes, consistent with certain telomeric abnormalities associated with alteration of WRN function. PMID:24880691
Anatomy of a new B-cell-specific enhancer.
Koch, W; Benoist, C; Mathis, D
1989-01-01
The major histocompatibility complex class II molecules, like the immunoglobulins, are prominent B-lymphocyte markers. Herein, we describe a B-cell-specific enhancer associated with the murine class II gene, Ek alpha. This enhancer has a complex anatomy that suggests interactions between remotely spaced elements. Of particular interest is the finding that two CCAAT boxes spaced one kilobase apart are important for enhancer activity. Somewhat surprisingly, the E alpha and immunoglobulin enhancers seem to show little resemblance. Images PMID:2467189
Problem-Solving Examples as Interactive Learning Objects for Educational Digital Libraries
ERIC Educational Resources Information Center
Brusilovsky, Peter; Yudelson, Michael; Hsiao, I-Han
2009-01-01
The paper analyzes three major problems encountered by our team as we endeavored to turn problem solving examples in the domain of programming into highly reusable educational activities, which could be included as first class objects in various educational digital libraries. It also suggests three specific approaches to resolving these problems,…
Teaching Reading in a Learning Assistance Center.
ERIC Educational Resources Information Center
Caverly, David
This paper reviews nine principles regarding the reading process, and six scaffolds for teaching students to read, and then suggests a specific developmental reading program for a learning center built upon this knowledge. It is generally accepted that four factors interact to form the reading/learning process: (1) Material; (2) Self; (3)…
Morphosyntactic Learning and the Development of Tense
ERIC Educational Resources Information Center
Legate, Julie Anne; Yang, Charles
2007-01-01
In this article, we propose that the Root Infinitive (RI) phenomenon in child language is best viewed and explained as the interaction between morphological learning and syntactic development. We make the following specific suggestions: The optionality in RI reflects the presence of a grammar such as Chinese which does not manifest tense marking.…
ERIC Educational Resources Information Center
Danish, Joshua Adam; Saleh, Asmalina
2014-01-01
It is common practice in elementary science classrooms to have students create representations, such as drawings, as a way of exploring new content. While numerous studies suggest the benefits of representation in science, the majority focus on specific, canonical representations, such as graphs. Few offer insight or guidance regarding how…
Response to Thomas et al.: Biocontrol and indirect effects
Dean E. Pearson; Ragan M. Callaway
2004-01-01
In a recent TREE article [1], we identified three categories of unintended indirect effects that can arise from host-specific biological control agents: (i) ecological replacement; (ii) compensatory responses; and (iii) food-web interactions. Although our review focused on the biocontrol of plant pests, we suggested these concepts also apply to the biocontrol...
The Proof of the Pudding: When You're Eyeball-to-Eyeball with Students.
ERIC Educational Resources Information Center
Sinclair, Phillip A.
Suggestions for communicating and therefore teaching college students effectively are put forth. Emphasis is on lively interactions between students and teachers, with additional focus on the instructor's need to understand student needs both in the classroom and after graduation. Specific methods are illustrated with classroom examples for…
Assessing Reflection: Understanding Skill Development through Reflective Learning Journals
ERIC Educational Resources Information Center
Cathro, Virginia; O'Kane, Paula; Gilbertson, Deb
2017-01-01
Purpose: The purpose of this paper is to suggest ways in which business educators can interact successfully with reflective learning journals (RLJs). Specifically, the research was interested in how students used RLJs and how educators assessed these RLJs. Design/methodology/approach: In total, 31 RLJs, submitted as part of an international…
ERIC Educational Resources Information Center
Weeks, Cristal E.; Kanter, Jonathan W.; Bonow, Jordan T.; Landes, Sara J.; Busch, Andrew M.
2012-01-01
Functional analytic psychotherapy (FAP) provides a behavioral analysis of the psychotherapy relationship that directly applies basic research findings to outpatient psychotherapy settings. Specifically, FAP suggests that a therapist's in vivo (i.e., in-session) contingent responding to targeted client behaviors, particularly positive reinforcement…
ERIC Educational Resources Information Center
Diestel, Stefan; Schmidt, Klaus-Helmut
2010-01-01
Two specific sources of stress at work have recently received increasing attention in organizational stress research: emotional dissonance (ED) and self-control demands (SCDs). Both theoretical arguments and experimental findings in basic research strongly suggest that ED and different SCDs draw on a common limited regulatory resource.…
Uauy, Ricardo
2007-10-01
The interaction between nutrition and infection is a key determinant of human health. Traditionally the interaction has centered on the role of nutrients in defining host defenses and the impact of infection in defining nutritional needs and status. Over the past decades the interaction has expanded its scope to encompass the role of specific nutrients in defining acquired immune function, in the modulation of inflammatory processes and on the virulence of the infectious agent itself. More recently the role of micronutrients and fatty acids on the response of cells and tissues to hypoxic and toxic damage has been recognized suggesting a fourth dimension to the interaction. The list of nutrients affecting infection, immunity, inflammation and cell injury has expanded from traditional protein-energy supply to several vitamins, multiple minerals and more recently specific lipid components of the diet. The promise of nutrition in the defense against infection, inflammation and tissue injury has spawned a thriving pharma-nutritional supplement industry and the development of novel foods that require appropriate evaluation of efficacy, safety and effectiveness relative to costs. Academics need to aware of the ethics and the pitfalls in the interaction with industry; conversely industry has to define its role in the process of bringing new knowledge to useful products. The process needs to be interactive, transparent and clearly place public interest above all other considerations.
Social Anxiety and Loneliness in Adults Who Solicit Minors Online.
Schulz, Anja; Bergen, Emilia; Schuhmann, Petya; Hoyer, Jürgen
2017-09-01
This study examined the association of social anxiety, loneliness, and problematic Internet use (PIU) with the online solicitation of minors. Within a convenience sample of adult Internet users from Germany, Finland, and Sweden ( N = 2,828), we compared the responses of participants who had not interacted sexually with strangers online ( n = 2,049) with participants who sexually interacted with unknown adults online ( n = 642), and both groups with adults who sexually solicited unknown minors online ( n = 137). Online sexual interaction with adults was associated with higher levels of social anxiety, loneliness, and PIU compared with not sexually interacting with strangers online. Sexually soliciting minors online was associated with higher levels of social anxiety, loneliness, and PIU compared with sexually interacting with adults and not sexually interacting with strangers at all. Interestingly, compared with those with adult contacts, loneliness was specifically pronounced for participants who solicited children, whereas social anxiety and PIU were pronounced for participants soliciting adolescents. These findings suggest that social anxiety, loneliness, and PIU may be among the motivators for using the Internet to solicit individuals of different age groups for sexual purposes. These factors emerged as specifically relevant for adults who sexually solicited minors and who reported greater impairments compared with adults who sexually interacted with adults. These characteristics may thus be important to consider for assessment and treatment procedures for individuals soliciting minors online.
Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.
Beck, John J; Vannette, Rachel L
2017-01-11
Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.
Hald, Lea A.; Hocking, Ian; Vernon, David; Marshall, Julie-Ann; Garnham, Alan
2013-01-01
Theories of embodied cognition (e.g., Perceptual Symbol Systems Theory; Barsalou, 1999, 2009) suggest that modality specific simulations underlie the representation of concepts. Supporting evidence comes from modality switch costs: participants are slower to verify a property in one modality (e.g., auditory, BLENDER-loud) after verifying a property in a different modality (e.g., gustatory, CRANBERRIES-tart) compared to the same modality (e.g., LEAVES-rustling, Pecher et al., 2003). Similarly, modality switching costs lead to a modulation of the N400 effect in event-related potentials (ERPs; Collins et al., 2011; Hald et al., 2011). This effect of modality switching has also been shown to interact with the veracity of the sentence (Hald et al., 2011). The current ERP study further explores the role of modality match/mismatch on the processing of veracity as well as negation (sentences containing “not”). Our results indicate a modulation in the ERP based on modality and veracity, plus an interaction. The evidence supports the idea that modality specific simulations occur during language processing, and furthermore suggest that these simulations alter the processing of negation. PMID:23450002
Bastos-Aristizabal, Sara; Kozlov, Guennadi; Gehring, Kalle
2014-01-01
Protein Disulfide Isomerase-Like protein of the Testis (PDILT) is a testis-specific member of the PDI family. PDILT displays similar domain architecture to PDIA1, the founding member of this protein family, but lacks catalytic cysteines needed for oxidoreduction reactions. This suggests special importance of chaperone activity of PDILT, but how it recognizes misfolded protein substrates is unknown. Here, we report the high-resolution crystal structure of the b′ domain of human PDILT. The structure reveals a conserved hydrophobic pocket, which is likely a principal substrate-binding site in PDILT. In the crystal, this pocket is occupied by side chains of tyrosine and tryptophan residues from another PDILT molecule, suggesting a preference for binding exposed aromatic residues in protein substrates. The lack of interaction of the b′ domain with the P-domains of calreticulin-3 and calmegin hints at a novel way of interaction between testis-specific lectin chaperones and PDILT. Further studies of this recently discovered PDI member would help to understand the important role that PDILT plays in the differentiation and maturation of spermatozoids. PMID:24662985
Hot Spots in a Network of Functional Sites
Ozbek, Pemra; Soner, Seren; Haliloglu, Turkan
2013-01-01
It is of significant interest to understand how proteins interact, which holds the key phenomenon in biological functions. Using dynamic fluctuations in high frequency modes, we show that the Gaussian Network Model (GNM) predicts hot spot residues with success rates ranging between S 8–58%, C 84–95%, P 5–19% and A 81–92% on unbound structures and S 8–51%, C 97–99%, P 14–50%, A 94–97% on complex structures for sensitivity, specificity, precision and accuracy, respectively. High specificity and accuracy rates with a single property on unbound protein structures suggest that hot spots are predefined in the dynamics of unbound structures and forming the binding core of interfaces, whereas the prediction of other functional residues with similar dynamic behavior explains the lower precision values. The latter is demonstrated with the case studies; ubiquitin, hen egg-white lysozyme and M2 proton channel. The dynamic fluctuations suggest a pseudo network of residues with high frequency fluctuations, which could be plausible for the mechanism of biological interactions and allosteric regulation. PMID:24023934
Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M
2016-10-07
Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.
Ligat, G; Jacquet, C; Chou, S; Couvreux, A; Alain, S; Hantz, S
2017-08-18
The human cytomegalovirus (HCMV) terminase complex consists of several components acting together to cleave viral DNA into unit length genomes and translocate them into capsids, a critical process in the production of infectious virions subsequent to DNA replication. Previous studies suggest that the carboxyl-terminal portion of the pUL56 subunit interacts with the pUL89 subunit. However, the specific interacting residues of pUL56 remain unknown. We identified a conserved sequence in the C-terminal moiety of pUL56 ( 671 WMVVKYMGFF 680 ). Overrepresentation of conserved aromatic amino acids through 20 herpesviruses homologues of pUL56 suggests an involvement of this short peptide into the interaction between the larger pUL56 terminase subunit and the smaller pUL89 subunit. Use of Alpha technology highlighted an interaction between pUL56 and pUL89 driven through the peptide 671 WMVVKYMGFF 680 . A deletion of these residues blocks viral replication. We hypothesize that it is the consequence of the disruption of the pUL56-pUL89 interaction. These results show that this motif is essential for HCMV replication and could be a target for development of new small antiviral drugs or peptidomimetics.
Than, Minh T; Kudlow, Brian A; Han, Min
2013-06-01
Identifying the physiological functions of microRNAs (miRNAs) is often challenging because miRNAs commonly impact gene expression under specific physiological conditions through complex miRNA::mRNA interaction networks and in coordination with other means of gene regulation, such as transcriptional regulation and protein degradation. Such complexity creates difficulties in dissecting miRNA functions through traditional genetic methods using individual miRNA mutations. To investigate the physiological functions of miRNAs in neurons, we combined a genetic "enhancer" approach complemented by biochemical analysis of neuronal miRNA-induced silencing complexes (miRISCs) in C. elegans. Total miRNA function can be compromised by mutating one of the two GW182 proteins (AIN-1), an important component of miRISC. We found that combining an ain-1 mutation with a mutation in unc-3, a neuronal transcription factor, resulted in an inappropriate entrance into the stress-induced, alternative larval stage known as dauer, indicating a role of miRNAs in preventing aberrant dauer formation. Analysis of this genetic interaction suggests that neuronal miRNAs perform such a role partly by regulating endogenous cyclic guanosine monophosphate (cGMP) signaling, potentially influencing two other dauer-regulating pathways. Through tissue-specific immunoprecipitations of miRISC, we identified miRNAs and their likely target mRNAs within neuronal tissue. We verified the biological relevance of several of these miRNAs and found that many miRNAs likely regulate dauer formation through multiple dauer-related targets. Further analysis of target mRNAs suggests potential miRNA involvement in various neuronal processes, but the importance of these miRNA::mRNA interactions remains unclear. Finally, we found that neuronal genes may be more highly regulated by miRNAs than intestinal genes. Overall, our study identifies miRNAs and their targets, and a physiological function of these miRNAs in neurons. It also suggests that compromising other aspects of gene expression, along with miRISC, can be an effective approach to reveal miRNA functions in specific tissues under specific physiological conditions.
Did Convergent Protein Evolution Enable Phytoplasmas to Generate 'Zombie Plants'?
Rümpler, Florian; Gramzow, Lydia; Theißen, Günter; Melzer, Rainer
2015-12-01
Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Doberenz, Claudia; Zorn, Michael; Falke, Dörte; Nannemann, David; Hunger, Doreen; Beyer, Lydia; Ihling, Christian H; Meiler, Jens; Sinz, Andrea; Sawers, R Gary
2014-07-29
The FNT (formate-nitrite transporters) form a superfamily of pentameric membrane channels that translocate monovalent anions across biological membranes. FocA (formate channel A) translocates formate bidirectionally but the mechanism underlying how translocation of formate is controlled and what governs substrate specificity remains unclear. Here we demonstrate that the normally soluble dimeric enzyme pyruvate formate-lyase (PflB), which is responsible for intracellular formate generation in enterobacteria and other microbes, interacts specifically with FocA. Association of PflB with the cytoplasmic membrane was shown to be FocA dependent and purified, Strep-tagged FocA specifically retrieved PflB from Escherichia coli crude extracts. Using a bacterial two-hybrid system, it could be shown that the N-terminus of FocA and the central domain of PflB were involved in the interaction. This finding was confirmed by chemical cross-linking experiments. Using constraints imposed by the amino acid residues identified in the cross-linking study, we provide for the first time a model for the FocA-PflB complex. The model suggests that the N-terminus of FocA is important for interaction with PflB. An in vivo assay developed to monitor changes in formate levels in the cytoplasm revealed the importance of the interaction with PflB for optimal translocation of formate by FocA. This system represents a paradigm for the control of activity of FNT channel proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.
Navarrete, Leonardo P; Guzmán, Leonardo; San Martín, Aurelio; Astudillo-Saavedra, Luis; Maccioni, Ricardo B
2012-01-01
The neurofibrillary tangles (NFTs) generated by self-aggregation of anomalous forms of tau represent a neuropathological hallmark of Alzheimer's disease (AD). These lesions begin to form long before the clinical manifestation of AD, and its severity is correlated with cognitive impairment in patients. We focused on the search for molecules that interact with aggregated tau of the Alzheimer's type and that may block its aggregation before the formation of NFTs. We show that molecules from a family of quinolines interact specifically with oligomeric forms of tau, inhibiting their assembly into AD filaments. The quinolines 2-(4-methylphenyl)-6-methyl quinoline (THQ-4S) and 2-(4-aminophenyl)-6-methylquinoline (THQ-55) inhibited in vitro aggregation of heparin-induced polymers of purified brain tau and aggregates of human recombinant tau. They also interact with paired helical filaments (PHFs) purified from AD postmortem brains. In vitro studies indicated a significantly lower inhibitory effect of amyloid-β42 on the aggregation, suggesting that tau aggregates are specific targets for quinoline interactions. These compounds showed highly lipophilic properties as corroborated with the analysis of total polar surface areas, and evaluation of their molecular properties. Moreover, these quinolines exhibit physical chemical properties similar to drugs able to penetrate the human brain blood barrier. Docking studies based on tau modeling, as a structural approach to the analysis of the interaction of tau-binding ligands, indicated that a C-terminal tau moiety, involved in the formation of PHFs, seems to be a site for binding of quinolines. Studies suggest the potential clinical use of these quinolines and of their derivatives to inhibit tau aggregation and possible therapeutic routes for AD.
Im, Young Jun; Kim, Jeong-Il; Shen, Yu; Na, Young; Han, Yun-Jeong; Kim, Seong-Hee; Song, Pill-Soon; Eom, Soo Hyun
2004-10-22
In plants, nucleoside diphosphate kinases (NDPKs) play a key role in the signaling of both stress and light. However, little is known about the structural elements involved in their function. Of the three NDPKs (NDPK1-NDPK3) expressed in Arabidopsis thaliana, NDPK2 is involved in phytochrome-mediated signal transduction. In this study, we found that the binding of dNDP or NTP to NDPK2 strengthens the interaction significantly between activated phytochrome and NDPK2. To better understand the structural basis of the phytochrome-NDPK2 interaction, we determined the X-ray structures of NDPK1, NDPK2, and dGTP-bound NDPK2 from A.thaliana at 1.8A, 2.6A, and 2.4A, respectively. The structures showed that nucleotide binding caused a slight conformational change in NDPK2 that was confined to helices alphaA and alpha2. This suggests that the presence of nucleotide in the active site and/or the evoked conformational change contributes to the recognition of NDPK2 by activated phytochrome. In vitro binding assays showed that only NDPK2 interacted specifically with the phytochrome and the C-terminal regulatory domain of phytochrome is involved in the interaction. A domain swap experiment between NDPK1 and NDPK2 showed that the variable C-terminal region of NDPK2 is important for the activation by phytochrome. The structure of Arabidopsis NDPK1 and NDPK2 showed that the isoforms share common electrostatic surfaces at the nucleotide-binding site, but the variable C-terminal regions have distinct electrostatic charge distributions. These findings suggest that the binding of nucleotide to NDPK2 plays a regulatory role in phytochrome signaling and that the C-terminal extension of NDPK2 provides a potential binding surface for the specific interaction with phytochromes.
Dresser, M. E.; Ewing, D. J.; Conrad, M. N.; Dominguez, A. M.; Barstead, R.; Jiang, H.; Kodadek, T.
1997-01-01
Meiotic recombination in the yeast Saccharomyces cerevisiae requires two similar recA-like proteins, Dmc1p and Rad51p. A screen for dominant meiotic mutants provided DMC1-G126D, a dominant allele mutated in the conserved ATP-binding site (specifically, the A-loop motif) that confers a null phenotype. A recessive null allele, dmc1-K69E, was isolated as an intragenic suppressor of DMC1-G126D. Dmc1-K69Ep, unlike Dmc1p, does not interact homotypically in a two-hybrid assay, although it does interact with other fusion proteins identified by two-hybrid screen with Dmc1p. Dmc1p, unlike Rad51p, does not interact in the two-hybrid assay with Rad52p or Rad54p. However, Dmc1p does interact with Tid1p, a Rad54p homologue, with Tid4p, a Rad16p homologue, and with other fusion proteins that do not interact with Rad51p, suggesting that Dmc1p and Rad51p function in separate, though possibly overlapping, recombinational repair complexes. Epistasis analysis suggests that DMC1 and RAD51 function in separate pathways responsible for meiotic recombination. Taken together, our results are consistent with a requirement for DMC1 for meiosis-specific entry of DNA double-strand break ends into chromatin. Interestingly, the pattern on CHEF gels of chromosome fragments that result from meiotic DNA double-strand break formation is different in DMC1 mutant strains from that seen in rad50S strains. PMID:9335591
Shan, S O; Herschlag, D
2000-01-01
The presence of catalytic metal ions in RNA active sites has often been inferred from metal-ion rescue of modified substrates and sometimes from inhibitory effects of alternative metal ions. Herein we report that, in the Tetrahymena group I ribozyme reaction, the deleterious effect of a thio substitution at the pro-Sp position of the reactive phosphoryl group is rescued by Mn2+. However, analysis of the reaction of this thio substrate and of substrates with other modifications strongly suggest that this rescue does not stem from a direct Mn2+ interaction with the Sp sulfur. Instead, the apparent rescue arises from a Mn2+ ion interacting with the residue immediately 3' of the cleavage site, A(+1), that stabilizes the tertiary interactions between the oligonucleotide substrate (S) and the active site. This metal site is referred to as site D herein. We also present evidence that a previously observed Ca2+ ion that inhibits the chemical step binds to metal site D. These and other observations suggest that, whereas the interactions of Mn2+ at site D are favorable for the chemical reaction, the Ca2+ at site D exerts its inhibitory effect by disrupting the alignment of the substrates within the active site. These results emphasize the vigilance necessary in the design and interpretation of metal-ion rescue and inhibition experiments. Conversely, in-depth mechanistic analysis of the effects of site-specific substrate modifications can allow the effects of specific metal ion-RNA interactions to be revealed and the properties of individual metal-ion sites to be probed, even within the sea of metal ions bound to RNA. PMID:10864040
Negureanu, Lacramioara; Salsbury, Freddie R
2013-11-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.
B cells and TCR avidity determine distinct functions of CD4+ T cells in retroviral infection1
Ploquin, Mickaël J-Y; Eksmond, Urszula; Kassiotis, George
2011-01-01
The T-cell-dependent B-cell response relies on cognate interaction between B cells and CD4+ Th cells. However, the consequences of this interaction for CD4+ T cells are not entirely known. B cells generally promote CD4+ T-cell responses to pathogens, albeit to a variable degree. In contrast, CD4+ T-cell responses to self or tumor antigens are often suppressed by B cells. Here we demonstrated that interaction with B cells dramatically inhibited the function of virus-specific CD4+ T cells in retroviral infection. We have used Friend virus (FV) infection of mice as a model for retroviral infection, in which the behavior of virus-specific CD4+ T cells was monitored according to their TCR avidity. We report that avidity for antigen and interaction with B cells determine distinct aspects of the primary CD4+ T-cell response to FV infection. Virus-specific CD4+ T cells followed exclusive Th1 and T follicular helper (Tfh) differentiation. High avidity for antigen facilitated expansion during priming and enhanced the capacity for IFN-γ and IL-21 production. In contrast, Tfh differentiation was not affected by avidity for antigen. By reducing or preventing B-cell interaction we found that B cells promoted Tfh differentiation, induced programmed death 1 (PD-1) expression and inhibited IFN-γ production by virus-specific CD4+ T cells. Ultimately, B cells protected hosts from CD4+ T-cell-mediated immune pathology, at the detriment of CD4+ T-cell-mediated protective immunity. Our results suggest that B-cell presentation of vaccine antigens could be manipulated to direct the appropriate CD4+ T-cell response. PMID:21841129
Structural Basis of Egg Coat-Sperm Recognition at Fertilization.
Raj, Isha; Sadat Al Hosseini, Hamed; Dioguardi, Elisa; Nishimura, Kaoru; Han, Ling; Villa, Alessandra; de Sanctis, Daniele; Jovine, Luca
2017-06-15
Recognition between sperm and the egg surface marks the beginning of life in all sexually reproducing organisms. This fundamental biological event depends on the species-specific interaction between rapidly evolving counterpart molecules on the gametes. We report biochemical, crystallographic, and mutational studies of domain repeats 1-3 of invertebrate egg coat protein VERL and their interaction with cognate sperm protein lysin. VERL repeats fold like the functionally essential N-terminal repeat of mammalian sperm receptor ZP2, whose structure is also described here. Whereas sequence-divergent repeat 1 does not bind lysin, repeat 3 binds it non-species specifically via a high-affinity, largely hydrophobic interface. Due to its intermediate binding affinity, repeat 2 selectively interacts with lysin from the same species. Exposure of a highly positively charged surface of VERL-bound lysin suggests that complex formation both disrupts the organization of egg coat filaments and triggers their electrostatic repulsion, thereby opening a hole for sperm penetration and fusion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Computer Assisted Assessment of Face-to-Face Interactions in Health Care Settings
Ayers, James L.; Haight, Stewart A.
1981-01-01
In this paper, the development of an objective procedure for the empirical assessment of dyadic face-to-face interactions is presented. This procedure, called the Interpersonal Tracking Task (ITT) permits two persons who have just finished video taping their conversation to watch themselves immediately after and, while viewing themselves, answer a sequence of questions systematically presented on a second monitor by a microcomputer. Immediately after viewing their tape, each participant can receive feedback in the form of descriptive statistics summarizing their responses to specific questions and a series of colored bar graphs by which they can view change in their responses over the course of their interaction. The unique role of a computer in this assessment is discussed together with specific components of the software. Preliminary research with the ITT in health care settings has suggested steps for its further development as a research instrument and learning tool whereby individuals might more closely examine their dealings with each other. ImagesFigure 1
Stange, Jonathan P.; Hamlat, Elissa J.; Hamilton, Jessica L.; Abramson, Lyn Y.; Alloy, Lauren B.
2012-01-01
Overgeneral autobiographical memory (OGM) is associated with depression and may confer risk for the development of depressed mood, but few longitudinal studies have evaluated OGM as a predictor of depressive symptoms in early adolescence, particularly in the context of environmental stressors. We investigated whether OGM and emotional maltreatment would interact to predict prospective increases in depressive symptoms in early adolescents and whether these effects differed by race. Among 174 seventh-graders, OGM and familial emotional abuse interacted to predict depressive symptoms eight months later, controlling for initial depressive symptoms. Specifically, emotional abuse predicted increases in depressive symptoms among Caucasian adolescents with more OGM, but not among those with less OGM. This association was not significant for African American adolescents. These results provide support for a cognitive vulnerability-stress relationship between OGM and emotional abuse in early adolescence and suggest that these mechanisms of risk for depression may be specific to Caucasian adolescents. PMID:23186994
New Gravity Wave Treatments for GISS Climate Models
NASA Technical Reports Server (NTRS)
Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye
2011-01-01
Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.
Mariller, C; Haendler, B; Allain, F; Denys, A; Spik, G
1996-07-15
Cyclophilin B (CyPB) is secreted in biological fluids such as blood or milk and binds to a specific receptor present on the human lymphoblastic cell line Jurkat and on human peripheral blood lymphocytes. This study was intended to specify the areas of CyPB that are involved in the interaction with the receptor. A synthetic peptide corresponding to the first 24 N-terminal amino acid residues of CyPB was shown to specifically recognize the receptor. Moreover, modification of Arg18 of CyPB by p-hydroxyphenlglyoxal led to a dramatic loss of affinity for the receptor. However, when this residue was replaced by an alanine residue using site-directed mutagenesis, no modification of the binding properties was found, suggesting that Arg18 is not directly involved but is sufficiently close to the interaction site to interfere with the binding when modified. Competitive binding experiments using a chimaeric protein made up of the 24 N-terminal amino acid residues of CyPB fused to the cyclophilin A core sequence confirmed the involvement of this region of CyPB in receptor binding.
New Gravity Wave Treatments for GISS Climate Models
NASA Technical Reports Server (NTRS)
Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye
2010-01-01
Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.
Compernolle, Sofie; De Cocker, Katrien; Teixeira, Pedro J; Oppert, Jean-Michel; Roda, Célina; Mackenbach, Joreintje D; Lakerveld, Jeroen; McKee, Martin; Glonti, Ketevan; Rutter, Harry; Bardos, Helga; Cardon, Greet; De Bourdeaudhuij, Ilse
2016-10-06
Sedentary behaviour has been associated with obesity and related chronic diseases. Disentangling the nature of this association is complicated due to interactions with other lifestyle factors, such as dietary habits, yet limited research has investigated the relation between domain-specific sedentary behaviours and dietary habits in adults. The aim of this paper was to examine the association between domain-specific sedentary behaviours and dietary habits in adults and to test the moderating effect of age and gender on this association. A total of 6,037 participants from five urban regions in Europe completed an online survey, of which 6,001 were included in the analyses. Multilevel mixed-effects logistic regression analyses were used to examine main associations and interaction effects. All domain-specific sedentary behaviours, except transport-related sitting time, were significantly related to dietary habits. In general, having a higher sitting time was related to having less healthy dietary habits, especially for television viewing. Gender did not moderate any of the relations, and age was only a significant moderator in the relation between other leisure sitting time and alcohol consumption. Domain-specific sitting behaviours were related to unhealthy dietary behaviours. However, the small effect sizes suggest that individual level behavioural interventions focusing on sedentary behaviour will not be sufficient to improve dietary habits. The fact that almost none of the associations were moderated by age or gender suggests that these associations, and possibly also the effects of interventions targeting both behaviours, may hold across age and gender groups.
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Hazelbauer, Gerald L; Falke, Joseph J; Parkinson, John S
2008-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on-off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device.
Bacterial chemoreceptors: high-performance signaling in networked arrays
Hazelbauer, Gerald L.; Falke, Joseph J.; Parkinson, John S.
2010-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on–off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device. PMID:18165013
Superglue from bacteria: unbreakable bridges for protein nanotechnology.
Veggiani, Gianluca; Zakeri, Bijan; Howarth, Mark
2014-10-01
Biotechnology is often limited by weak interactions. We suggest that an ideal interaction between proteins would be covalent, specific, require addition of only a peptide tag to the protein of interest, and form under a wide range of conditions. Here we summarize peptide tags that are able to form spontaneous amide bonds, based on harnessing reactions of adhesion proteins from the bacterium Streptococcus pyogenes. These include the irreversible peptide-protein interaction of SpyTag with SpyCatcher, as well as irreversible peptide-peptide interactions via SpyLigase. We describe existing applications, including polymerization to enhance cancer cell capture, assembly of living biomaterial, access to diverse protein shapes, and improved enzyme resilience. We also indicate future opportunities for resisting biological force and extending the scope of protein nanotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhancer Sharing Promotes Neighborhoods of Transcriptional Regulation Across Eukaryotes
Quintero-Cadena, Porfirio; Sternberg, Paul W.
2016-01-01
Enhancers physically interact with transcriptional promoters, looping over distances that can span multiple regulatory elements. Given that enhancer–promoter (EP) interactions generally occur via common protein complexes, it is unclear whether EP pairing is predominantly deterministic or proximity guided. Here, we present cross-organismic evidence suggesting that most EP pairs are compatible, largely determined by physical proximity rather than specific interactions. By reanalyzing transcriptome datasets, we find that the transcription of gene neighbors is correlated over distances that scale with genome size. We experimentally show that nonspecific EP interactions can explain such correlation, and that EP distance acts as a scaling factor for the transcriptional influence of an enhancer. We propose that enhancer sharing is commonplace among eukaryotes, and that EP distance is an important layer of information in gene regulation. PMID:27799341
Field theories and fluids for an interacting dark sector
NASA Astrophysics Data System (ADS)
Carrillo González, Mariana; Trodden, Mark
2018-02-01
We consider the relationship between fluid models of an interacting dark sector and the field theoretical models that underlie such descriptions. This question is particularly important in light of suggestions that such interactions may help alleviate a number of current tensions between different cosmological datasets. We construct consistent field theory models for an interacting dark sector that behave exactly like the coupled fluid ones, even at the level of linear perturbations, and can be trusted deep in the nonlinear regime. As a specific example, we focus on the case of a Dirac, Born-Infeld (DBI) field conformally coupled to a quintessence field. We show that the fluid linear regime breaks before the field gradients become large; this means that the field theory is valid inside a large region of the fluid nonlinear regime.
Patterns of non-verbal social interactions within intensive mathematics intervention contexts
NASA Astrophysics Data System (ADS)
Thomas, Jonathan Norris; Harkness, Shelly Sheats
2016-06-01
This study examined the non-verbal patterns of interaction within an intensive mathematics intervention context. Specifically, the authors draw on social constructivist worldview to examine a teacher's use of gesture in this setting. The teacher conducted a series of longitudinal teaching experiments with a small number of young, school-age children in the context of early arithmetic development. From these experiments, the authors gathered extensive video records of teaching practice and, from an inductive analysis of these records, identified three distinct patterns of teacher gesture: behavior eliciting, behavior suggesting, and behavior replicating. Awareness of their potential to influence students via gesture may prompt teachers to more closely attend to their own interactions with mathematical tools and take these teacher interactions into consideration when forming interpretations of students' cognition.
Campbell, Elliot; Wheeldon, Ian R; Banta, Scott
2010-12-01
Cofactor specificity in the aldo-keto reductase (AKR) superfamily has been well studied, and several groups have reported the rational alteration of cofactor specificity in these enzymes. Although most efforts have focused on mesostable AKRs, several putative AKRs have recently been identified from hyperthermophiles. The few that have been characterized exhibit a strong preference for NAD(H) as a cofactor, in contrast to the NADP(H) preference of the mesophilic AKRs. Using the design rules elucidated from mesostable AKRs, we introduced two site-directed mutations in the cofactor binding pocket to investigate cofactor specificity in a thermostable AKR, AdhD, which is an alcohol dehydrogenase from Pyrococcus furiosus. The resulting double mutant exhibited significantly improved activity and broadened cofactor specificity as compared to the wild-type. Results of previous pre-steady-state kinetic experiments suggest that the high affinity of the mesostable AKRs for NADP(H) stems from a conformational change upon cofactor binding which is mediated by interactions between a canonical arginine and the 2'-phosphate of the cofactor. Pre-steady-state kinetics with AdhD and the new mutants show a rich conformational behavior that is independent of the canonical arginine or the 2'-phosphate. Additionally, experiments with the highly active double mutant using NADPH as a cofactor demonstrate an unprecedented transient behavior where the binding mechanism appears to be dependent on cofactor concentration. These results suggest that the structural features involved in cofactor specificity in the AKRs are conserved within the superfamily, but the dynamic interactions of the enzyme with cofactors are unexpectedly complex. © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Creutzig, Felix; Corbera, Esteve; Bolwig, Simon; Hunsberger, Carol
2013-09-01
Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences.
Lamech, Lilian T.; Mallam, Anna L.; Lambowitz, Alan M.
2014-01-01
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mtTyrRS; CYT-18 protein) evolved a new function as a group I intron splicing factor by acquiring the ability to bind group I intron RNAs and stabilize their catalytically active RNA structure. Previous studies showed: (i) CYT-18 binds group I introns by using both its N-terminal catalytic domain and flexibly attached C-terminal anticodon-binding domain (CTD); and (ii) the catalytic domain binds group I introns specifically via multiple structural adaptations that occurred during or after the divergence of Peziomycotina and Saccharomycotina. However, the function of the CTD and how it contributed to the evolution of splicing activity have been unclear. Here, small angle X-ray scattering analysis of CYT-18 shows that both CTDs of the homodimeric protein extend outward from the catalytic domain, but move inward to bind opposite ends of a group I intron RNA. Biochemical assays show that the isolated CTD of CYT-18 binds RNAs non-specifically, possibly contributing to its interaction with the structurally different ends of the intron RNA. Finally, we find that the yeast mtTyrRS, which diverged from Pezizomycotina fungal mtTyrRSs prior to the evolution of splicing activity, binds group I intron and other RNAs non-specifically via its CTD, but lacks further adaptations needed for group I intron splicing. Our results suggest a scenario of constructive neutral (i.e., pre-adaptive) evolution in which an initial non-specific interaction between the CTD of an ancestral fungal mtTyrRS and a self-splicing group I intron was “fixed” by an intron RNA mutation that resulted in protein-dependent splicing. Once fixed, this interaction could be elaborated by further adaptive mutations in both the catalytic domain and CTD that enabled specific binding of group I introns. Our results highlight a role for non-specific RNA binding in the evolution of RNA-binding proteins. PMID:25536042
Lamech, Lilian T; Mallam, Anna L; Lambowitz, Alan M
2014-12-01
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mtTyrRS; CYT-18 protein) evolved a new function as a group I intron splicing factor by acquiring the ability to bind group I intron RNAs and stabilize their catalytically active RNA structure. Previous studies showed: (i) CYT-18 binds group I introns by using both its N-terminal catalytic domain and flexibly attached C-terminal anticodon-binding domain (CTD); and (ii) the catalytic domain binds group I introns specifically via multiple structural adaptations that occurred during or after the divergence of Peziomycotina and Saccharomycotina. However, the function of the CTD and how it contributed to the evolution of splicing activity have been unclear. Here, small angle X-ray scattering analysis of CYT-18 shows that both CTDs of the homodimeric protein extend outward from the catalytic domain, but move inward to bind opposite ends of a group I intron RNA. Biochemical assays show that the isolated CTD of CYT-18 binds RNAs non-specifically, possibly contributing to its interaction with the structurally different ends of the intron RNA. Finally, we find that the yeast mtTyrRS, which diverged from Pezizomycotina fungal mtTyrRSs prior to the evolution of splicing activity, binds group I intron and other RNAs non-specifically via its CTD, but lacks further adaptations needed for group I intron splicing. Our results suggest a scenario of constructive neutral (i.e., pre-adaptive) evolution in which an initial non-specific interaction between the CTD of an ancestral fungal mtTyrRS and a self-splicing group I intron was "fixed" by an intron RNA mutation that resulted in protein-dependent splicing. Once fixed, this interaction could be elaborated by further adaptive mutations in both the catalytic domain and CTD that enabled specific binding of group I introns. Our results highlight a role for non-specific RNA binding in the evolution of RNA-binding proteins.
Malishev, Ravit; Nandi, Sukhendu; Kolusheva, Sofiya; Shaham-Niv, Shira; Gazit, Ehud; Jelinek, Raz
2016-09-01
Bacosides, class of compounds extracted from the Bacopa monniera plant, exhibit interesting therapeutic properties, particularly enhancing cognitive functions and putative anti-amyloid activity. We show that bacoside-A exerted significant effects upon fibrillation and membrane interactions of the amyloidogenic fragment of the prion protein [PrP(106-126)]. Specifically, when co-incubated with PrP(106-126), bacoside-A accelerated fibril formation in the presence of lipid bilayers and in parallel inhibited bilayer interactions of the peptide aggregates formed in solution. These interesting phenomena were studied by spectroscopic and microscopic techniques, which suggest that bacoside A-promoted fibrillation reduced the concentration of membrane-active pre-fibrillar species of the prion fragment. This study suggests that induction of fibril formation and corresponding inhibition of membrane interactions are likely the underlying factors for ameliorating amyloid protein toxicity by bacoside-A. Copyright © 2016 Elsevier B.V. All rights reserved.
Chromatin Insulators: A Role in Nuclear Organization and Gene Expression
Yang, Jingping; Corces, Victor G.
2011-01-01
Chromatin insulators are DNA-protein complexes with broad functions in nuclear biology. Based on the ability of insulator proteins to interact with each other, it was originally thought that insulators form loops that could constitute functional domains of co-regulated gene expression. Nevertheless, data from genome-wide localization studies indicate that insulator proteins can be present in intergenic regions as well as at the 5′, introns or 3′ of genes, suggesting a broader role in chromosome biology. Cells have developed mechanisms to control insulator activity by recruiting specialized proteins or by covalent modification of core components. Recent results suggest that insulators mediate intra- and inter-chromosomal interactions to affect transcription, imprinting and recombination. It is possible that these interactions set up cell-specific blueprints of nuclear organization that may contribute to the establishment of different patterns of gene expression during cell differentiation. As a consequence, disruption of insulator activity could result in the development of cancer or other disease states. PMID:21704228
Biswas-Fiss, Esther E.; Kurpad, Deepa S.; Joshi, Kinjalben; Biswas, Subhasis B.
2010-01-01
The retina-specific ATP-binding cassette (ABC) transporter, ABCA4, is essential for transport of all-trans-retinal from the rod outer segment discs in the retina and is associated with a broad range of inherited retinal diseases, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. A unique feature of the ABCA subfamily of ABC transporters is the presence of highly conserved, long extracellular loops or domains (ECDs) with unknown function. The high degree of sequence conservation and mapped disease-associated mutations in these domains suggests an important physiological significance. Conformational analysis using CD spectroscopy of purified, recombinant ECD2 protein demonstrated that it has an ordered and stable structure composed of 27 ± 3% α-helix, 20 ± 3% β-pleated sheet, and 53 ± 3% coil. Significant conformational changes were observed in disease-associated mutant proteins. Using intrinsic tryptophan fluorescence emission spectrum of ECD2 polypeptide and fluorescence anisotropy, we have demonstrated that this domain specifically interacts with all-trans-retinal. Furthermore, the retinal interaction appeared preferential for the all-trans-isomer and was directly measurable through fluorescence anisotropy analysis. Our results demonstrate that the three macular degeneration-associated mutations lead to significant changes in the secondary structure of the ECD2 domain of ABCA4, as well as in its interaction with all-trans-retinal. PMID:20404325
Barrijal, S; Perros, M; Gu, Z; Avalosse, B L; Belenguer, P; Amalric, F; Rommelaere, J
1992-01-01
Nucleolin, a major nucleolar protein, forms a specific complex with the genome (a single-stranded DNA molecule of minus polarity) of parvovirus MVMp in vitro. By means of South-western blotting experiments, we mapped the binding site to a 222-nucleotide motif within the non-structural transcription unit, referred to as NUBE (nucleolin-binding element). The specificity of the interaction was confirmed by competitive gel retardation assays. DNaseI and nuclease S1 probing showed that NUBE folds into a secondary structure, in agreement with a computer-assisted conformational prediction. The whole NUBE may be necessary for the interaction with nucleolin, as suggested by the failure of NUBE subfragments to bind the protein and by the nuclease footprinting experiments. The present work extends the previously reported ability of nucleolin to form a specific complex with ribosomal RNA, to a defined DNA substrate. Considering the tropism of MVMp DNA replication for host cell nucleoli, these data raise the possibility that nucleolin may contribute to the regulation of the parvoviral life-cycle. Images PMID:1408821
The importance of understanding: Model space moderates goal specificity effects.
Kistner, Saskia; Burns, Bruce D; Vollmeyer, Regina; Kortenkamp, Ulrich
2016-01-01
The three-space theory of problem solving predicts that the quality of a learner's model and the goal specificity of a task interact on knowledge acquisition. In Experiment 1 participants used a computer simulation of a lever system to learn about torques. They either had to test hypotheses (nonspecific goal), or to produce given values for variables (specific goal). In the good- but not in the poor-model condition they saw torque depicted as an area. Results revealed the predicted interaction. A nonspecific goal only resulted in better learning when a good model of torques was provided. In Experiment 2 participants learned to manipulate the inputs of a system to control its outputs. A nonspecific goal to explore the system helped performance when compared to a specific goal to reach certain values when participants were given a good model, but not when given a poor model that suggested the wrong hypothesis space. Our findings support the three-space theory. They emphasize the importance of understanding for problem solving and stress the need to study underlying processes.
Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae
Belyy, Alexander; Levanova, Nadezhda; Tabakova, Irina; Rospert, Sabine
2016-01-01
ABSTRACT The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5′ untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62–K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62–K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62–K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62–K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62–K70 segment of Rps26 and the 5′ untranslated region of mRNA. The data suggested a specific role of the Y62–K70 motif during translation initiation. Here, we report that single-site substitutions within the Y62–K70 peptide did not affect the growth of engineered yeast strains, arguing against its having a critical role during translation initiation via specific interactions with the 5′ untranslated region of mRNA molecules. Only the simultaneous replacement of five conserved residues within the Y62–K70 fragment or the replacement of the yeast protein with the human homolog resulted in growth defects and caused significant changes in polysome profiles. The results expand our knowledge of ribosomal protein function and suggest a role of Rps26 during ribosome assembly in yeast. PMID:27303706
Dechaine, Jennifer M; Brock, Marcus T; Iniguez-Luy, Federico L; Weinig, Cynthia
2014-01-01
Growth in plants occurs via the addition of repeating modules, suggesting that the genetic architecture of similar subunits may vary between earlier- and later-developing modules. These complex environment × ontogeny interactions are not well elucidated, as studies examining quantitative trait loci (QTLs) expression over ontogeny have not included multiple environments. Here, we characterized the genetic architecture of vegetative traits and onset of reproduction over ontogeny in recombinant inbred lines of Brassica rapa in the field and glasshouse. The magnitude of genetic variation in plasticity of seedling internodes was greater than in those produced later in ontogeny. We correspondingly detected that QTLs for seedling internode length were environment-specific, whereas later in ontogeny the majority of QTLs affected internode lengths in all treatments. The relationship between internode traits and onset of reproduction varied with environment and ontogenetic stage. This relationship was observed only in the glasshouse environment and was largely attributable to one environment-specific QTL. Our results provide the first evidence of a QTL × environment × ontogeny interaction, and provide QTL resolution for differences between early- and later-stage plasticity for stem elongation. These results also suggest potential constraints on morphological evolution in early vs later modules as a result of associations with reproductive timing. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Chase, Z. A. J.; Sakimoto, S. E. H.
2003-01-01
The Cerberus region of Mars has numerous geologically recent fluvial and volcanic features superimposed spatially, with some of them using the same flow channels and apparent vent structures. Lava-water interaction landforms such as psuedocraters suggest some interaction of emplacing lava flows with underlying ground ice or water. This study investigates a related interaction type a region where the emplaced lava might have melted underlying ice in the regolith, as there are small outflow channel networks emerging from the flank flows of a lava shield over a portion of the Eastern Cerberus Rupes. Specifically, we use high-resolution Mars Orbiter Laser Altimeter (MOLA) topography to constrain channel and flow dimensions, and thus estimate the thermal pulse from the emplaced lava into the substrate and the resulting melting durations and refreezing intervals. These preliminary thermal models indicate that the observed flows could easily create thermal pulse(s) sufficient to melt enough ground ice to fill the observed fluvial small outflow channels. Depending on flow eruption timing and hydraulic recharge times, this system could easily have produced multiple thermal pulses and fluvial releases. This specific case suggests that regional small water releases from similar cases may be more common than suspected, and that there is a possibility for future fluvial releases if ground ices are currently present and future volcanic eruptions in this young region are possible.
Specificity and non-specificity in RNA–protein interactions
Jankowsky, Eckhard; Harris, Michael E.
2016-01-01
Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679
Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer.
Nyitrai, Gabriella; Keszthelyi, Tamás; Bóta, Attila; Simon, Agnes; Tőke, Orsolya; Horváth, Gergő; Pál, Ildikó; Kardos, Julianna; Héja, László
2013-08-01
Polyamidoamine (PAMAM) dendrimers are highly charged hyperbranched protein-like polymers that are known to interact with cell membranes. In order to disclose the mechanisms of dendrimer-membrane interaction, we monitored the effect of PAMAM generation five (G5) dendrimer on the membrane permeability of living neuronal cells followed by exploring the underlying structural changes with infrared-visible sum frequency vibrational spectroscopy (SVFS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). G5 dendrimers were demonstrated to irreversibly increase the membrane permeability of neurons that could be blocked in low-[Na(+)], but not in low-[Ca(2+)] media suggesting the formation of specific Na(+) permeable channels. SFVS measurements on silica supported DPPG-DPPC bilayers suggested G5-specific trans-polarization of the membrane. SAXS data and freeze-fracture TEM imaging of self-organized DPPC vesicle systems demonstrated disruption of DPPC vesicle layers by G5 through polar interactions between G5 terminal amino groups and the anionic head groups of DPPC. We propose a nanoscale mechanism by which G5 incorporates into the membrane through multiple polar interactions that disrupt proximate membrane bilayer and shape a unique hydrophilic Na(+) ion permeable channel around the dendrimer. In addition, we tested whether these artificial Na(+) channels can be exploited as antibiotic tools. We showed that G5 quickly arrest the growth of resistant bacterial strains below 10μg/ml concentration, while they show no detrimental effect on red blood cell viability, offering the chance for the development of new generation anti-resistant antibiotics. Copyright © 2013 Elsevier B.V. All rights reserved.
Xiao, Yucheng; Jackson, James O; Liang, Songping; Cummins, Theodore R
2011-08-05
The voltage sensors of domains II and IV of sodium channels are important determinants of activation and inactivation, respectively. Animal toxins that alter electrophysiological excitability of muscles and neurons often modify sodium channel activation by selectively interacting with domain II and inactivation by selectively interacting with domain IV. This suggests that there may be substantial differences between the toxin-binding sites in these two important domains. Here we explore the ability of the tarantula huwentoxin-IV (HWTX-IV) to inhibit the activity of the domain II and IV voltage sensors. HWTX-IV is specific for domain II, and we identify five residues in the S1-S2 (Glu-753) and S3-S4 (Glu-811, Leu-814, Asp-816, and Glu-818) regions of domain II that are crucial for inhibition of activation by HWTX-IV. These data indicate that a single residue in the S3-S4 linker (Glu-818 in hNav1.7) is crucial for allowing HWTX-IV to interact with the other key residues and trap the voltage sensor in the closed configuration. Mutagenesis analysis indicates that the five corresponding residues in domain IV are all critical for endowing HWTX-IV with the ability to inhibit fast inactivation. Our data suggest that the toxin-binding motif in domain II is conserved in domain IV. Increasing our understanding of the molecular determinants of toxin interactions with voltage-gated sodium channels may permit development of enhanced isoform-specific voltage-gating modifiers.
Opatovsky, Itai; Santos-Garcia, Diego; Ruan, Zhepu; Lahav, Tamar; Ofaim, Shany; Mouton, Laurence; Barbe, Valérie; Jiang, Jiandong; Zchori-Fein, Einat; Freilich, Shiri
2018-05-25
Individual organisms are linked to their communities and ecosystems via metabolic activities. Metabolic exchanges and co-dependencies have long been suggested to have a pivotal role in determining community structure. In phloem-feeding insects such metabolic interactions with bacteria enable complementation of their deprived nutrition. The phloem-feeding whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) harbors an obligatory symbiotic bacterium, as well as varying combinations of facultative symbionts. This well-defined bacterial community in B. tabaci serves here as a case study for a comprehensive and systematic survey of metabolic interactions within the bacterial community and their associations with documented occurrences of bacterial combinations. We first reconstructed the metabolic networks of five common B. tabaci symbionts genera (Portiera, Rickettsia, Hamiltonella, Cardinium and Wolbachia), and then used network analysis approaches to predict: (1) species-specific metabolic capacities in a simulated bacteriocyte-like environment; (2) metabolic capacities of the corresponding species' combinations, and (3) dependencies of each species on different media components. The predictions for metabolic capacities of the symbionts in the host environment were in general agreement with previously reported genome analyses, each focused on the single-species level. The analysis suggests several previously un-reported routes for complementary interactions and estimated the dependency of each symbiont in specific host metabolites. No clear association was detected between metabolic co-dependencies and co-occurrence patterns. The analysis generated predictions for testable hypotheses of metabolic exchanges and co-dependencies in bacterial communities and by crossing them with co-occurrence profiles, contextualized interaction patterns into a wider ecological perspective.
Hayatsu, Norihito; Miyao, Takahisa; Tachibana, Masashi; Murakami, Ryuichi; Kimura, Akihiko; Kato, Takako; Kawakami, Eiryo; Endo, Takaho A; Setoguchi, Ruka; Watarai, Hiroshi; Nishikawa, Takeshi; Yasuda, Takuwa; Yoshida, Hisahiro; Hori, Shohei
2017-08-15
Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues. Mechanistically, repressed BATF expression contributed to these A384T effects. At the molecular level, the A384T mutation altered Foxp3 interactions with its specific target genes including Batf by broadening its DNA-binding specificity. Our findings identify BATF as a critical regulator of tissue Treg cells and suggest that sequence-specific perturbations of Foxp3-DNA interactions can influence specific facets of Treg cell physiology and the immunopathologies they regulate. Copyright © 2017 Elsevier Inc. All rights reserved.
Dendritic Cell Immune Responses in HIV-1 Controllers.
Martin-Gayo, Enrique; Yu, Xu G
2017-02-01
Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.
ERIC Educational Resources Information Center
Pittman, Chavella T.
2012-01-01
What role does race play in the lives of fourteen African American (7 women, 7 men) faculty on a predominantly White campus? This case study focuses on their narratives which revealed that racial microaggressions were a common and negative facet of their lives on campus. Specifically, their narratives suggest interactions of microinvalidations…
ERIC Educational Resources Information Center
Broadhead, Glenn J.; Freed, Richard C.
Describing the variables of composition, offering researchers a methodology with which to investigate how the variables interact in specific writing strategies, and suggesting how teachers might make use of the variables of revision to help students learn successful writing strategies appropriate to a business setting, this book reports a research…
Emergent Fields through Adaptation and Identity: Overcoming Social Distance
ERIC Educational Resources Information Center
DeGennaro, Donna; Brown, Tiffany
2009-01-01
We examine the inseparability of one's environment with the elements of adaptation and identity. Specifically, we revisit the Project H.O.M.E. learning environment as we suggest that the entities of adaption and environment are not only binding, but also naturally in constant flux as they interact with each other. Contrary to nature, however, the…
ERIC Educational Resources Information Center
Laubenthal, Jennifer
2018-01-01
A significant amount of literature exists about how to design and implement an effective assessment process for students in a music program, specifically in the classroom setting. This article suggests a framework for incorporating individualized assessment in the private-lesson setting based on effective classroom assessment practices. Many…
The Way of the Web: Answers to Your Questions about Web Site Marketing.
ERIC Educational Resources Information Center
Wassom, Julie
2002-01-01
Provides suggestions for effective web site marketing for child care and early education programs. Includes key considerations in designing a web site, specific elements that cause visitors to stay on and return to the site, use of interactive sites, web-site updating and revision, and use of traditional marketing activities to direct prospective…
Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel
2013-12-23
Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition of side chains that interact with the substrate atoms and substituents that project away from the Zn²⁺ bimetallo core.
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-01-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity. PMID:26646790
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-12-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity.
Social curiosity and interpersonal perception: a judge x trait interaction.
Hartung, Freda-Marie; Renner, Britta
2011-06-01
The present study examined the impact of social curiosity on the utilization of social information and the accuracy of personality judgments. In total, 182 individuals who never met each other before were asked to interact for 10 minutes and afterwards to evaluate the personality (Big Five) of their interaction partner. High socially curious judges were more accurate in evaluating the degree of Extraversion and Openness of their interaction partners. Interestingly, high and low curious judges differed significantly in the utilization of verbal and nonverbal cues displayed by their interaction partner. Specifically, high socially curious judges more often used valid cues for inferring Extraversion and Openness. No differences in interpersonal accuracy and cue utilization were found for Neuroticism, Conscientiousness, and Agreeableness. The results suggest that high socially curious individuals are more accurate in judging visible traits and that this higher accuracy is grounded in a more comprehensive utilization of valid cues.
A test of an interactive model of binge eating among undergraduate men.
Minnich, Allison M; Gordon, Kathryn H; Holm-Denoma, Jill M; Troop-Gordon, Wendy
2014-12-01
Past research has shown that a combination of high perfectionism, high body dissatisfaction, and low self-esteem is predictive of binge eating in college women (Bardone-Cone et al., 2006). In the current study, we examined whether this triple interaction model is applicable to men. Male undergraduate college students from a large Midwestern university (n=302) completed self-report measures online at two different time points, a minimum of eight weeks apart. Analyses revealed a significant interaction between the three risk factors, such that high perfectionism, high body dissatisfaction, and low self-esteem at Time 1 were associated with higher levels of Time 2 binge eating symptoms. The triple interaction model did not predict Time 2 anxiety or depressive symptoms, which suggests model specificity. These findings offer a greater understanding of the interactive nature of risk factors in predicting binge eating symptoms among men. Copyright © 2014 Elsevier Ltd. All rights reserved.
Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation
NASA Astrophysics Data System (ADS)
Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai
2016-11-01
Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD+-dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some “loose-binding” substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.
Ryan, Sarah M; Ollendick, Thomas H
2018-02-20
Both child temperament and parenting have been extensively researched as predictors of child outcomes. However, theoretical models suggest that specific combinations of temperament styles and parenting behaviors are better predictors of certain child outcomes such as internalizing and externalizing symptoms than either temperament or parenting alone. The current qualitative review examines the interaction between one childhood temperamental characteristic (child behavioral inhibition) and parenting behaviors, and their subsequent impact on child psychopathology. Specifically, the moderating role of parenting on the relationship between child behavioral inhibition and both internalizing and externalizing psychopathology is examined, and the methodological variations which may contribute to inconsistent findings are explored. Additionally, support for the bidirectional relations between behavioral inhibition and parenting behaviors, as well as for the moderating role of temperament on the relationships between parenting and child outcomes, is briefly discussed. Finally, the clinical applicability of this overall conceptual model, specifically in regard to future research directions and potential clinical interventions, is considered.
Nahinsky, Irwin D; Harbison, J Isaiah
2011-01-01
We investigated the effects of specific stimulus information on the use of rule information in a category learning task in 2 experiments, one presented here and an intercategory transfer task reported in an earlier article. In the present experiment photograph--name combinations, called identifiers, were associated with 4 demographic attributes. The same attribute information was shown to all participants. However, for one group of participants, half of the identifiers were paired with attribute values repeated over presentation blocks. For the other group the identifier information was new for each presentation block. The first group performed less well than the second group on stimuli with nonrepeated identifiers, indicating a negative effect of specific stimulus information on processing rule information. Application of a network model to the 2 experiments, which provided for the growth of connections between attribute values in learning, indicated that repetition of identifiers produced a unitizing effect on stimuli. Results suggested that unitization produced interference through connections between irrelevant attribute values.
An organelle-specific protein landscape identifies novel diseases and molecular mechanisms
Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy
2016-01-01
Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435
Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice
Huang, Shanshan; Yang, Su; Guo, Jifeng; Yan, Sen; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang
2015-01-01
SUMMARY In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knock-in mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases. PMID:26387956
Sumner, Jennifer A; Griffith, James W; Mineka, Susan; Rekart, Kathleen Newcomb; Zinbarg, Richard E; Craske, Michelle G
2011-01-01
This study investigated whether overgeneral autobiographical memory (OGM) predicts the course of depression in adolescents. As part of a larger longitudinal study of risk for emotional disorders, 55 adolescents with a past history of major depressive disorder or minor depressive disorder completed the Autobiographical Memory Test. Fewer specific memories predicted the subsequent onset of a major depressive episode (MDE) over a 16-month follow-up period, even when covarying baseline depressive symptoms. This main effect was qualified by an interaction between specific memories and chronic interpersonal stress: Fewer specific memories predicted greater risk of MDE onset over follow-up at high (but not low) levels of chronic interpersonal stress. Thus, our findings suggest that OGM, in interaction with chronic interpersonal stress, predicts the course of depression among adolescents, and highlight the importance of measuring interpersonal stress in OGM research. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business
Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.
Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan
2017-10-19
Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.
Regulation of chromatin organization and inducible gene expression by a Drosophila insulator
Wood, Ashley M.; Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Rohrbaugh, Margaret; Jones, Brian C.; Jones, Keith C.; Corces, Victor G.
2011-01-01
SUMMARY Insulators are multi-protein-DNA complexes thought to affect gene expression by mediating inter- and intra-chromosomal interactions. Drosophila insulators contain specific DNA binding proteins plus common components, such as CP190, that facilitate these interactions. Here we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to the DNA in order to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli. PMID:21981916
Regulation of chromatin organization and inducible gene expression by a Drosophila insulator.
Wood, Ashley M; Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Rohrbaugh, Margaret; Jones, Brian C; Jones, Keith C; Corces, Victor G
2011-10-07
Insulators are multiprotein-DNA complexes thought to affect gene expression by mediating inter- and intrachromosomal interactions. Drosophila insulators contain specific DNA-binding proteins plus common components, such as CP190, that facilitate these interactions. Here, we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA-binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to DNA to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli. Copyright © 2011 Elsevier Inc. All rights reserved.
Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation.
Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai
2016-11-30
Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD + -dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some "loose-binding" substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.
Intrinsic limits to gene regulation by global crosstalk
NASA Astrophysics Data System (ADS)
Friedlander, Tamar; Prizak, Roshan; Guet, Calin; Barton, Nicholas H.; Tkacik, Gasper
Gene activity is mediated by the specificity of binding interactions between special proteins, called transcription factors, and short regulatory sequences on the DNA, where different protein species preferentially bind different DNA targets. Limited interaction specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to spurious interactions or remains erroneously inactive. Since each protein can potentially interact with numerous DNA targets, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyze the effects of global crosstalk on gene regulation, using statistical mechanics. We find that crosstalk in regulatory interactions puts fundamental limits on the reliability of gene regulation that are not easily mitigated by tuning proteins concentrations or by complex regulatory schemes proposed in the literature. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement Nr. 291734 (T.F.) and ERC Grant Nr. 250152 (N.B.).
Gene-environment interactions in the aetiology of systemic lupus erythematosus.
Jönsen, Andreas; Bengtsson, Anders A; Nived, Ola; Truedsson, Lennart; Sturfelt, Gunnar
2007-12-01
Systemic lupus erythematosus (SLE) is a disease that displays a multitude of symptoms and a vast array of autoantibodies. The disease course may vary substantially between patients. The current understanding of SLE aetiology includes environmental factors acting on a genetically prone individual during an undetermined time period resulting in autoimmunity and finally surpassing that individual's disease threshold. Genetic differences and environmental factors may interact specifically in the pathogenetic processes and may influence disease development and modify the disease course. Identification of these factors and their interactions in the pathogenesis of SLE is vital in understanding the disease and may contribute to identify new treatment targets and perhaps also aid in disease prevention. However, there are several problems that need to be overcome, such as the protracted time frame of environmental influence, time dependent epigenetic alterations and the possibility that different pathogenetic pathways may result in a similar disease phenotype. This is mirrored by the relatively few studies that suggest specific gene-environment interactions. These include an association between SLE diagnosis and glutation S-transferase gene variants combined with occupational sun exposure as well as variants of the N-acetyl transferase gene in combination with either aromatic amine exposure or hydralazine. With increased knowledge on SLE pathogenesis, the role of environmental factors and their genetic interactions may be further elucidated.
Chereji, Razvan V; Bharatula, Vasudha; Elfving, Nils; Blomberg, Jeanette; Larsson, Miriam; Morozov, Alexandre V; Broach, James R; Björklund, Stefan
2017-09-06
Mediator is a multi-unit molecular complex that plays a key role in transferring signals from transcriptional regulators to RNA polymerase II in eukaryotes. We have combined biochemical purification of the Saccharomyces cerevisiae Mediator from chromatin with chromatin immunoprecipitation in order to reveal Mediator occupancy on DNA genome-wide, and to identify proteins interacting specifically with Mediator on the chromatin template. Tandem mass spectrometry of proteins in immunoprecipitates of mediator complexes revealed specific interactions between Mediator and the RSC, Arp2/Arp3, CPF, CF 1A and Lsm complexes in chromatin. These factors are primarily involved in chromatin remodeling, actin assembly, mRNA 3'-end processing, gene looping and mRNA decay, but they have also been shown to enter the nucleus and participate in Pol II transcription. Moreover, we have found that Mediator, in addition to binding Pol II promoters, occupies chromosomal interacting domain (CID) boundaries and that Mediator in chromatin associates with proteins that have been shown to interact with CID boundaries, such as Sth1, Ssu72 and histone H4. This suggests that Mediator plays a significant role in higher-order genome organization. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Scolari, Vittore F.; Cosentino Lagomarsino, Marco
Recent experimental results suggest that the E. coli chromosome feels a self-attracting interaction of osmotic origin, and is condensed in foci by bridging interactions. Motivated by these findings, we explore a generic modeling framework combining solely these two ingredients, in order to characterize their joint effects. Specifically, we study a simple polymer physics computational model with weak ubiquitous short-ranged self attraction and stronger sparse bridging interactions. Combining theoretical arguments and simulations, we study the general phenomenology of polymer collapse induced by these dual contributions, in the case of regularly-spaced bridging. Our results distinguish a regime of classical Flory-like coil-globule collapse dictated by the interplay of excluded volume and attractive energy and a switch-like collapse where bridging interaction compete with entropy loss terms from the looped arms of a star-like rosette. Additionally, we show that bridging can induce stable compartmentalized domains. In these configurations, different "cores" of bridging proteins are kept separated by star-like polymer loops in an entropically favorable multi-domain configuration, with a mechanism that parallels micellar polysoaps. Such compartmentalized domains are stable, and do not need any intra-specific interactions driving their segregation. Domains can be stable also in presence of uniform attraction, as long as the uniform collapse is above its theta point.
Examination of association to autism of common genetic variationin genes related to dopamine.
Anderson, B M; Schnetz-Boutaud, N; Bartlett, J; Wright, H H; Abramson, R K; Cuccaro, M L; Gilbert, J R; Pericak-Vance, M A; Haines, J L
2008-12-01
Autism is a severe neurodevelopmental disorder characterized by a triad of complications. Autistic individuals display significant disturbances in language and reciprocal social interactions, combined with repetitive and stereotypic behaviors. Prevalence studies suggest that autism is more common than originally believed, with recent estimates citing a rate of one in 150. Although multiple genetic linkage and association studies have yielded multiple suggestive genes or chromosomal regions, a specific risk locus has yet to be identified and widely confirmed. Because many etiologies have been suggested for this complex syndrome, we hypothesize that one of the difficulties in identifying autism genes is that multiple genetic variants may be required to significantly increase the risk of developing autism. Thus, we took the alternative approach of examining 14 prominent dopamine pathway candidate genes for detailed study by genotyping 28 single nucleotide polymorphisms. Although we did observe a nominally significant association for rs2239535 (P=0.008) on chromosome 20, single-locus analysis did not reveal any results as significant after correction for multiple comparisons. No significant interaction was identified when Multifactor Dimensionality Reduction was employed to test specifically for multilocus effects. Although genome-wide linkage scans in autism have provided support for linkage to various loci along the dopamine pathway, our study does not provide strong evidence of linkage or association to any specific gene or combination of genes within the pathway. These results demonstrate that common genetic variation within the tested genes located within this pathway at most play a minor to moderate role in overall autism pathogenesis.
Hogan, Daniel J; Riordan, Daniel P; Gerber, André P; Herschlag, Daniel; Brown, Patrick O
2008-10-28
RNA-binding proteins (RBPs) have roles in the regulation of many post-transcriptional steps in gene expression, but relatively few RBPs have been systematically studied. We searched for the RNA targets of 40 proteins in the yeast Saccharomyces cerevisiae: a selective sample of the approximately 600 annotated and predicted RBPs, as well as several proteins not annotated as RBPs. At least 33 of these 40 proteins, including three of the four proteins that were not previously known or predicted to be RBPs, were reproducibly associated with specific sets of a few to several hundred RNAs. Remarkably, many of the RBPs we studied bound mRNAs whose protein products share identifiable functional or cytotopic features. We identified specific sequences or predicted structures significantly enriched in target mRNAs of 16 RBPs. These potential RNA-recognition elements were diverse in sequence, structure, and location: some were found predominantly in 3'-untranslated regions, others in 5'-untranslated regions, some in coding sequences, and many in two or more of these features. Although this study only examined a small fraction of the universe of yeast RBPs, 70% of the mRNA transcriptome had significant associations with at least one of these RBPs, and on average, each distinct yeast mRNA interacted with three of the RBPs, suggesting the potential for a rich, multidimensional network of regulation. These results strongly suggest that combinatorial binding of RBPs to specific recognition elements in mRNAs is a pervasive mechanism for multi-dimensional regulation of their post-transcriptional fate.
Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales
Passot, Fanny M.; Calderon, Virginie; Fichant, Gwennaele; Lane, David
2012-01-01
How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species. PMID:22522899
Centromere binding and evolution of chromosomal partition systems in the Burkholderiales.
Passot, Fanny M; Calderon, Virginie; Fichant, Gwennaele; Lane, David; Pasta, Franck
2012-07-01
How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.
Drosophila TIM binds importin α1, and acts as an adapter to transport PER to the nucleus.
Jang, A Reum; Moravcevic, Katarina; Saez, Lino; Young, Michael W; Sehgal, Amita
2015-02-01
Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER.
Lum, Thomas E.; Merritt, Thomas J. S.
2011-01-01
Regulation of transcription can be a complex process in which many cis- and trans-interactions determine the final pattern of expression. Among these interactions are trans-interactions mediated by the pairing of homologous chromosomes. These trans-effects are wide ranging, affecting gene regulation in many species and creating complex possibilities in gene regulation. Here we describe a novel case of trans-interaction between alleles of the Malic enzyme (Men) locus in Drosophila melanogaster that results in allele-specific, non-additive gene expression. Using both empirical biochemical and predictive bioinformatic approaches, we show that the regulatory elements of one allele are capable of interacting in trans with, and modifying the expression of, the second allele. Furthermore, we show that nonlocal factors—different genetic backgrounds—are capable of significant interactions with individual Men alleles, suggesting that these trans-effects can be modified by both locally and distantly acting elements. In sum, these results emphasize the complexity of gene regulation and the need to understand both small- and large-scale interactions as more complete models of the role of trans-interactions in gene regulation are developed. PMID:21900270
Correa, Loreto A; Zapata, Beatriz; Samaniego, Horacio; Soto-Gamboa, Mauricio
2013-09-01
Social life involves costs and benefits mostly associated with how individuals interact with each other. The formation of hierarchies inside social groups has evolved as a common strategy to avoid high costs stemming from social interactions. Hierarchical relationships seem to be associated with different features such as body size, body condition and/or age, which determine dominance ability ('prior attributes' hypothesis). In contrast, the 'social dynamic' hypothesis suggests that an initial social context is a determinant in the formation of the hierarchy, more so than specific individual attributes. Hierarchical rank places individuals in higher positions, which presumably increases resource accessibility to their benefit, including opportunities for reproduction. We evaluate the maintenance of hierarchy in a family group of guanacos (Lama guanicoe) and evaluate the possible mechanisms involved in the stability of these interactions and their consequences. We estimate the linearity of social hierarchy and their dynamics. We find evidence of the formation of a highly linear hierarchy among females with males positioned at the bottom of the hierarchy. This hierarchy is not affected by physical characteristics or age, suggesting that it is established only through intra-group interactions. Rank is not related with calves' weight gain either; however, subordinated females, with lower rank, exhibit higher rates of allosuckling. We found no evidence of hierarchical structure in calves suggesting that hierarchical relationship in guanacos could be established during the formation of the family group. Hence, our results suggest that hierarchical dynamics could be related more to social dynamics than to prior attributes. We finally discuss the importance of hierarchies established by dominance and their role in minimizing social costs of interactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Nomikou, Iris; Leonardi, Giuseppe; Radkowska, Alicja; Rączaszek-Leonardi, Joanna; Rohlfing, Katharina J.
2017-01-01
Dynamical systems approaches to social coordination underscore how participants' local actions give rise to and maintain global interactive patterns and how, in turn, they are also shaped by them. Developmental research can deliver important insights into both processes: (1) the stabilization of ways of interacting, and (2) the gradual shaping of the agentivity of the individuals. In this article we propose that infants' agentivity develops out of participation, i.e., acting a part in an interaction system. To investigate this development this article focuses on the ways in which participation in routinized episodes may shape infant's agentivity in social events. In contrast to existing research addressing more advanced forms of participating in social routines, our goal was to assess infants' early participation as evidence of infants' agentivity. In our study, 19 Polish mother–infant dyads were filmed playing peekaboo when the infants were 4 and 6 months of age. We operationalized infants' participation in the peekaboo in terms of their use of various behaviors across modalities during specific phases of the game: We included smiles, vocalizations, and attempts to cover and uncover themselves or their mothers. We hypothesized that infants and mothers would participate actively in the routine by regulating their behavior so as to adhere to the routine format. Furthermore, we hypothesized that infants who experienced more scaffolding would be able to adopt a more active role in the routine. We operationalized scaffolding as mothers' use of specific peekaboo structures that allowed infants to anticipate when it was their turn to act. Results suggested that infants as young as 4 months of age engaged in peekaboo and took up turns in the game, and that their participation increased at 6 months of age. Crucially, our results suggest that infants' behavior was organized by the global structure of the peekaboo game, because smiles, vocalizations, and attempts to uncover occurred significantly more often during specific phases rather than being evenly distributed across the whole interaction. Furthermore, the way mothers structured the game at 4 months predicted infant participation at both 4 and 6 months of age. PMID:29066985
Su, H; Watkins, N G; Zhang, Y X; Caldwell, H D
1990-01-01
The major outer membrane protein (MOMP) of Chlamydia trachomatis is characterized by four symmetrically spaced variable domains (VDs I to IV) whose sequences vary among serotypes. The surface-exposed portions of these VDs contain contiguous sequences that are both serotyping determinants and in vivo target sites for neutralizing antibodies. Previous studies using surface proteolysis of C. trachomatis B implicated VDs II and IV of the MOMP of this serotype in the attachment of chlamydiae to host cells. In this study, we used monoclonal antibodies (MAbs) specific to antigenic determinants located in VDs II and IV of the MOMP of serotype B to further investigate the role of the MOMP in the attachment of chlamydiae to host cells. MABs specific to serotype- and subspecies-specific epitopes located in exposed VDs II and IV, respectively, neutralized chlamydial infectivity for hamster kidney cells by blocking chlamydial attachment. We radioiodinated these MAbs and used them to determine the number and topology of the surface-exposed VDs II and IV epitopes on chlamydial elementary bodies. VDs II and IV each comprised approximately 2.86 x 10(4) negatively charged sites and were in proximity on the chlamydial cell surface. These studies suggest that the MAbs blocked chlamydial attachment by inhibiting electrostatic interactions with host cells. We examined the effects of thermal inactivation on both chlamydial attachment and conformation of the MOMP. Heat-inactivated chlamydiae failed to attach to host cells and exhibited a conformational change in an inaccessible invariant hydrophobic nonapeptide sequence located within VD IV of the MOMPs of C. trachomatis serotypes. These findings suggest that in addition to electrostatic interactions, a common hydrophobic component of the MOMP also contributes to the binding of chlamydiae to host cells. Thus, we propose that the MOMP functions as a chlamydial adhesin by promoting nonspecific (electrostatic and hydrophobic) interactions with host cells. Surface-accessible negatively charged VDs appear to be important in electrostatic binding, while the invariant region of VD IV may provide a subsurface hydrophobic depression which further promotes binding of chlamydiae to host cells through hydrophobic interactions. Images PMID:2318528
Reed, James R.; Cawley, George F.; Backes, Wayne L.
2013-01-01
The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450•P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450•P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450•P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771
A Protein Linkage Map of the P2 Nonstructural Proteins of Poliovirus
Cuconati, Andrea; Xiang, Wenkai; Lahser, Frederick; Pfister, Thomas; Wimmer, Eckard
1998-01-01
The yeast two-hybrid system was used to catalog all detectable interactions among the P2 nonstructural cleavage products of poliovirus type 1 (Mahoney). Evidence has been obtained for specific associations among 2Apro, 2BC, 2C, and 2B. Specifically, 2Apro can interact with itself and 2BC and its cleavage products (2B and 2C) interact in all possible combinations, with the exception of 2C/2C. Detected interactions were confirmed in vitro by a glutathione S-transferase pulldown assay, which allowed us to detect 2C/2C association. trans-dominant-negative mutants of 2B (K. Johnson and P. J. Sarnow, J. Virol. 65:4341–4349, 1991) were examined and were found to retain interaction with wild-type 2B, perhaps reflecting a need for 2B multimerization in viral RNA replication. The multimerization of 2B was examined further by screening a mutagenized library for 2B variants that have lost the ability to bind wild-type 2B. The screen identified two nonconservative missense mutations within a central hydrophobic region, as well as truncations and frameshifts that implicate the C terminus in homointeraction. Introduction of the missense mutations into the genome of the virus conferred a quasi-infectious phenotype, an observation strongly suggesting that the 2B/2B interaction is required for replication of the viral genome. PMID:9445030
Degeneracy-Driven Self-Structuring Dynamics in Selective Repertoires
Atamas, Sergei P.; Bell, Jonathan
2013-01-01
Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or “sloppy,” systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka–Volterra and Verhulst types. In the degenerate systems of Lotka–Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka–Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple “mirroring” of the environment by the “fittest” elements of population. PMID:19337776
Degeneracy-driven self-structuring dynamics in selective repertoires.
Atamas, Sergei P; Bell, Jonathan
2009-08-01
Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or "sloppy," systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka-Volterra and Verhulst types. In the degenerate systems of Lotka-Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka-Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple "mirroring" of the environment by the "fittest" elements of population.
The Interaction of Genotype and Environment Determines Variation in the Maize Kernel Ionome
Asaro, Alexandra; Ziegler, Gregory; Ziyomo, Cathrine; Hoekenga, Owen A.; Dilkes, Brian P.; Baxter, Ivan
2016-01-01
Plants obtain soil-resident elements that support growth and metabolism from the water-flow facilitated by transpiration and active transport processes. The availability of elements in the environment interacts with the genetic capacity of organisms to modulate element uptake through plastic adaptive responses, such as homeostasis. These interactions should cause the elemental contents of plants to vary such that the effects of genetic polymorphisms will be dramatically dependent on the environment in which the plant is grown. To investigate genotype by environment interactions underlying elemental accumulation, we analyzed levels of elements in maize kernels of the Intermated B73 × Mo17 (IBM) recombinant inbred population grown in 10 different environments, spanning a total of six locations and five different years. In analyses conducted separately for each environment, we identified a total of 79 quantitative trait loci (QTL) controlling seed elemental accumulation. While a set of these QTL was found in multiple environments, the majority were specific to a single environment, suggesting the presence of genetic by environment interactions. To specifically identify and quantify QTL by environment interactions (QEIs), we implemented two methods: linear modeling with environmental covariates, and QTL analysis on trait differences between growouts. With these approaches, we found several instances of QEI, indicating that elemental profiles are highly heritable, interrelated, and responsive to the environment. PMID:27770027
The Interaction of Genotype and Environment Determines Variation in the Maize Kernel Ionome.
Asaro, Alexandra; Ziegler, Gregory; Ziyomo, Cathrine; Hoekenga, Owen A; Dilkes, Brian P; Baxter, Ivan
2016-12-07
Plants obtain soil-resident elements that support growth and metabolism from the water-flow facilitated by transpiration and active transport processes. The availability of elements in the environment interacts with the genetic capacity of organisms to modulate element uptake through plastic adaptive responses, such as homeostasis. These interactions should cause the elemental contents of plants to vary such that the effects of genetic polymorphisms will be dramatically dependent on the environment in which the plant is grown. To investigate genotype by environment interactions underlying elemental accumulation, we analyzed levels of elements in maize kernels of the Intermated B73 × Mo17 (IBM) recombinant inbred population grown in 10 different environments, spanning a total of six locations and five different years. In analyses conducted separately for each environment, we identified a total of 79 quantitative trait loci (QTL) controlling seed elemental accumulation. While a set of these QTL was found in multiple environments, the majority were specific to a single environment, suggesting the presence of genetic by environment interactions. To specifically identify and quantify QTL by environment interactions (QEIs), we implemented two methods: linear modeling with environmental covariates, and QTL analysis on trait differences between growouts. With these approaches, we found several instances of QEI, indicating that elemental profiles are highly heritable, interrelated, and responsive to the environment. Copyright © 2016 Asaro et al.
Human stanniocalcin-1 interacts with nuclear and cytoplasmic proteins and acts as a SUMO E3 ligase.
dos Santos, Marcos Tadeu; Trindade, Daniel Maragno; Gonçalves, Kaliandra de Almeida; Bressan, Gustavo Costa; Anastassopoulos, Filipe; Yunes, José Andres; Kobarg, Jörg
2011-01-01
Human stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in different physiological process, including angiogenesis, apoptosis and carcinogenesis. Here we identified STC1 as a putative molecular marker for the leukemic bone marrow microenvironment and identified new interacting protein partners for STC1. Seven selected interactions retrieved from yeast two-hybrid screens were confirmed by GST-pull down assays in vitro. The N-terminal region was mapped to be the region that mediates the interaction with cytoplasmic, mitochondrial and nuclear proteins. STC1 interacts with SUMO-1 and several proteins that have been shown to be SUMOylated and localized to SUMOylation related nuclear bodies. Although STC1 interacts with SUMO-1 and has a high theoretical prediction score for a SUMOylation site, endogenous co-immunoprecipitation and in vitro SUMOylation assays with the purified recombinant protein could not detect STC1 SUMOylation. However, when we tested STC1 for SUMO E3 ligase activity, we found in an in vitro assay, that it significantly increases the SUMOylation of two other proteins. Confocal microscopic subcellular localization studies using both transfected cells and specific antibodies for endogenous STC1 revealed a cytoplasmic and nuclear deposition, the latter in the form of some specific dot-like substructure resembling SUMOylation related nuclear bodies. Together, these findings suggest a new role for STC1 in SUMOylation pathways, in nuclear bodies.
Navarro, Sandi L; Neuhouser, Marian L; Cheng, Ting-Yuan David; Tinker, Lesley F; Shikany, James M; Snetselaar, Linda; Martinez, Jessica A; Kato, Ikuko; Beresford, Shirley A A; Chapkin, Robert S; Lampe, Johanna W
2016-11-30
Combined intakes of specific dietary fiber and fat subtypes protect against colon cancer in animal models. We evaluated associations between self-reported individual and combinations of fiber (insoluble, soluble, and pectins, specifically) and fat (omega-6, omega-3, and docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), specifically) and colorectal cancer (CRC) risk in the Women's Health Initiative prospective cohort ( n = 134,017). During a mean 11.7 years (1993-2010), 1952 incident CRC cases were identified. Cox regression models computed multivariate adjusted hazard ratios to estimate the association between dietary factors and CRC risk. Assessing fiber and fat individually, there was a modest trend for lower CRC risk with increasing intakes of total and insoluble fiber ( p-trend 0.09 and 0.08). An interaction ( p = 0.01) was observed between soluble fiber and DHA + EPA, with protective effects of DHA + EPA with lower intakes of soluble fiber and an attenuation at higher intakes, however this association was no longer significant after correction for multiple testing. These results suggest a modest protective effect of higher fiber intake on CRC risk, but not in combination with dietary fat subtypes. Given the robust results in preclinical models and mixed results in observational studies, controlled dietary interventions with standardized intakes are needed to better understand the interaction of specific fat and fiber subtypes on colon biology and ultimately CRC susceptibility in humans.
Cassidy, Kira A.; Mech, L. David; MacNulty, Daniel R; Stahler, Daniel R.; Smith, Douglas W.
2017-01-01
Aggression directed at conspecific groups is common among gregarious, territorial species, and for some species such as gray wolves (Canis lupus) intraspecific strife is the leading cause of natural mortality. Each individual in a group likely has different measures of the costs and benefits associated with a group task, such as an aggressive attack on another group, which can alter motivation and behavior. We observed 292 inter-pack aggressive interactions in Yellowstone National Park between 1 April 1995 and 1 April 2011 (>5300 days of observation) in order to determine the role of both sexes, and the influence of pack, age, and other traits on aggression. We recorded the behaviors and characteristics of all individuals present during the interactions (n = 534 individuals) and which individuals participated in each step (i.e. chase, attack, kill, flight) of the interaction. Overall, all wolves were more likely to chase rivals if they outnumbered their opponent, suggesting packs accurately assess their opponent’s size during encounters and individuals adjust their behavior based on relative pack size. Males were more likely than females to chase rival packs and gray-colored wolves were more aggressive than black-colored wolves. Male wolves and gray-colored wolves also recorded higher cortisol levels than females and black-colored wolves, indicating hormonal support for more intense aggressive behavior. Further, we found a positive correlation between male age and probability of chasing, while age-specific participation for females remained constant. Chasing behavior was influenced by the sex of lone intruders, with males more likely to chase male intruders. This difference in behavior suggests male and female wolves may have different strategies and motivations during inter-pack aggressive interactions related to gray wolf mating systems. A division of labor between pack members concerning resource and territory defense suggests selection for specific traits related to aggression is an adaptive response to intense competition between groups of conspecifics.
Cassidy, Kira A; Mech, L David; MacNulty, Daniel R; Stahler, Daniel R; Smith, Douglas W
2017-03-01
Aggression directed at conspecific groups is common among gregarious, territorial species, and for some species such as gray wolves (Canis lupus) intraspecific strife is the leading cause of natural mortality. Each individual in a group likely has different measures of the costs and benefits associated with a group task, such as an aggressive attack on another group, which can alter motivation and behavior. We observed 292 inter-pack aggressive interactions in Yellowstone National Park between 1 April 1995 and 1 April 2011 (>5300days of observation) in order to determine the role of both sexes, and the influence of pack, age, and other traits on aggression. We recorded the behaviors and characteristics of all individuals present during the interactions (n=534 individuals) and which individuals participated in each step (i.e. chase, attack, kill, flight) of the interaction. Overall, all wolves were more likely to chase rivals if they outnumbered their opponent, suggesting packs accurately assess their opponent's size during encounters and individuals adjust their behavior based on relative pack size. Males were more likely than females to chase rival packs and gray-colored wolves were more aggressive than black-colored wolves. Male wolves and gray-colored wolves also recorded higher cortisol levels than females and black-colored wolves, indicating hormonal support for more intense aggressive behavior. Further, we found a positive correlation between male age and probability of chasing, while age-specific participation for females remained constant. Chasing behavior was influenced by the sex of lone intruders, with males more likely to chase male intruders. This difference in behavior suggests male and female wolves may have different strategies and motivations during inter-pack aggressive interactions related to gray wolf mating systems. A division of labor between pack members concerning resource and territory defense suggests selection for specific traits related to aggression is an adaptive response to intense competition between groups of conspecifics. Copyright © 2017 Elsevier B.V. All rights reserved.
De Fine Licht, Henrik H; Boomsma, Jacobus J
2014-12-04
Cooperative benefits of mutualistic interactions are affected by genetic variation among the interacting partners, which may have consequences for interaction-specificities across guilds of sympatric species with similar mutualistic life histories. The gardens of fungus-growing (attine) ants produce carbohydrate active enzymes that degrade plant material collected by the ants and offer them food in exchange. The spectrum of these enzyme activities is an important symbiont service to the host but may vary among cultivar genotypes. The sympatric occurrence of several Trachymyrmex and Sericomyrmex higher attine ants in Gamboa, Panama provided the opportunity to do a quantitative study of species-level interaction-specificity. We genotyped the ants for Cytochrome Oxidase and their Leucoagaricus fungal cultivars for ITS rDNA. Combined with activity measurements for 12 carbohydrate active enzymes, these data allowed us to test whether garden enzyme activity was affected by fungal strain, farming ants or combinations of the two. We detected two cryptic ant species, raising ant species number from four to six, and we show that the 38 sampled colonies reared a total of seven fungal haplotypes that were different enough to represent separate Leucoagaricus species. The Sericomyrmex species and one of the Trachymyrmex species reared the same fungal cultivar in all sampled colonies, but the remaining four Trachymyrmex species largely shared the other cultivars. Fungal enzyme activity spectra were significantly affected by both cultivar species and farming ant species, and more so for certain ant-cultivar combinations than others. However, relative changes in activity of single enzymes only depended on cultivar genotype and not on the ant species farming a cultivar. Ant cultivar symbiont-specificity varied from almost full symbiont sharing to one-to-one specialization, suggesting that trade-offs between enzyme activity spectra and life-history traits such as desiccation tolerance, disease susceptibility and temperature sensitivity may apply in some combinations but not in others. We hypothesize that this may be related to ecological specialization in general, but this awaits further testing. Our finding of both cryptic ant species and extensive cultivar diversity underlines the importance of identifying all species-level variation before embarking on estimates of interaction specificity.
Smith, Shanna J; Hickey, Robert J; Malkas, Linda H
2016-01-01
Human DNA replication and repair is a highly coordinated process involving the specifically timed actions of numerous proteins and enzymes. Many of these proteins require interaction with proliferating cell nuclear antigen (PCNA) for activation within the process. The interdomain connector loop (IDCL) of PCNA provides a docking site for many of those proteins, suggesting that this region is critically important in the regulation of cellular function. Previous work in this laboratory has demonstrated that a peptide mimicking a specific region of the IDCL (caPeptide) has the ability to disrupt key protein-protein interactions between PCNA and its binding partners, thereby inhibiting DNA replication within the cells. In this study, we confirm the ability of the caPeptide to disrupt DNA replication function using both intact cell and in vitro DNA replication assays. Further, we were able to demonstrate that treatment with caPeptide results in a decrease of polymerase δ activity that correlates with the observed decrease in DNA replication. We have also successfully developed a surface plasmon resonance (SPR) assay to validate the disruption of the PCNA-pol δ interaction with caPeptide.
Host-to-host variation of ecological interactions in polymicrobial infections
NASA Astrophysics Data System (ADS)
Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit
2015-02-01
Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.
Hu, Mingqian; Wang, Jiongkun; Cai, Jiye; Wu, Yangzhe; Wang, Xiaoping
2008-09-12
To date, nanoscale imaging of the morphological changes and adhesion force of CD4(+) T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4(+) T cells. The AFM images revealed that the volume of activated CD4(+) T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4(+) T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf
2008-05-15
The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M.more » nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.« less
Ullers, Ronald S.; Houben, Edith N.G.; Raine, Amanda; ten Hagen-Jongman, Corinne M.; Ehrenberg, Måns; Brunner, Joseph; Oudega, Bauke; Harms, Nellie; Luirink, Joen
2003-01-01
As newly synthesized polypeptides emerge from the ribosome, they interact with chaperones and targeting factors that assist in folding and targeting to the proper location in the cell. In Escherichia coli, the chaperone trigger factor (TF) binds to nascent polypeptides early in biosynthesis facilitated by its affinity for the ribosomal proteins L23 and L29 that are situated around the nascent chain exit site on the ribosome. The targeting factor signal recognition particle (SRP) interacts specifically with the signal anchor (SA) sequence in nascent inner membrane proteins (IMPs). Here, we have used photocross-linking to map interactions of the SA sequence in a short, in vitro–synthesized, nascent IMP. Both TF and SRP were found to interact with the SA with partially overlapping binding specificity. In addition, extensive contacts with L23 and L29 were detected. Both purified TF and SRP could be cross-linked to L23 on nontranslating ribosomes with a competitive advantage for SRP. The results suggest a role for L23 in the targeting of IMPs as an attachment site for TF and SRP that is close to the emerging nascent chain. PMID:12756233
Vishnivetskiy, Sergey A; Gimenez, Luis E; Francis, Derek J; Hanson, Susan M; Hubbell, Wayne L; Klug, Candice S; Gurevich, Vsevolod V
2011-07-08
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.
Vishnivetskiy, Sergey A.; Gimenez, Luis E.; Francis, Derek J.; Hanson, Susan M.; Hubbell, Wayne L.; Klug, Candice S.; Gurevich, Vsevolod V.
2011-01-01
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements. PMID:21471193
Computational studies of sequence-specific driving forces in peptide self-assembly
NASA Astrophysics Data System (ADS)
Jeon, Joohyun
Peptides are biopolymers made from various sequences of twenty different types of amino acids, connected by peptide bonds. There are practically an infinite number of possible sequences and tremendous possible combinations of peptide-peptide interactions. Recently, an increasing number of studies have shown a stark variety of peptide self-assembled nanomaterials whose detailed structures depend on their sequences and environmental factors; these have end uses in medical and bio-electronic applications, for example. To understand the underlying physics of complex peptide self-assembly processes and to delineate sequence specific effects, in this study, I use various simulation tools spanning all-atom molecular dynamics to simple lattice models and quantify the balance of interactions in the peptide self-assembly processes. In contrast to the existing view that peptides' aggregation propensities are proportional to the net sequence hydrophobicity and inversely proportional to the net charge, I show the more nuanced effects of electrostatic interactions, including the cooperative effects between hydrophobic and electrostatic interactions. Notably, I suggest rather unexpected, yet important roles of entropies in the small scale oligomerization processes. Overall, this study broadens our understanding of the role of thermodynamic driving forces in peptide self-assembly.
Hessle, Viktoria; Björk, Petra; Sokolowski, Marcus; de Valdivia, Ernesto González; Silverstein, Rebecca; Artemenko, Konstantin; Tyagi, Anu; Maddalo, Gianluca; Ilag, Leopold; Helbig, Roger; Zubarev, Roman A.
2009-01-01
Eukaryotic cells have evolved quality control mechanisms to degrade aberrant mRNA molecules and prevent the synthesis of defective proteins that could be deleterious for the cell. The exosome, a protein complex with ribonuclease activity, is a key player in quality control. An early quality checkpoint takes place cotranscriptionally but little is known about the molecular mechanisms by which the exosome is recruited to the transcribed genes. Here we study the core exosome subunit Rrp4 in two insect model systems, Chironomus and Drosophila. We show that a significant fraction of Rrp4 is associated with the nascent pre-mRNPs and that a specific mRNA-binding protein, Hrp59/hnRNP M, interacts in vivo with multiple exosome subunits. Depletion of Hrp59 by RNA interference reduces the levels of Rrp4 at transcription sites, which suggests that Hrp59 is needed for the exosome to stably interact with nascent pre-mRNPs. Our results lead to a revised mechanistic model for cotranscriptional quality control in which the exosome is constantly recruited to newly synthesized RNAs through direct interactions with specific hnRNP proteins. PMID:19494042
Chlamydiae interaction with the endoplasmic reticulum: contact, function and consequences.
Derré, Isabelle
2015-07-01
Chlamydiae and chlamydiae-related organisms are obligate intracellular bacterial pathogens. They reside in a membrane-bound compartment termed the inclusion and have evolved sophisticated mechanisms to interact with cellular organelles. This review focuses on the nature, the function(s) and the consequences of chlamydiae-inclusion interaction with the endoplasmic reticulum (ER). The inclusion membrane establishes very close contact with the ER at specific sites termed ER-inclusion membrane contact sites (MCSs). These MCSs are constituted of a specific set of factors, including the C. trachomatis effector protein IncD and the host cell proteins CERT and VAPA/B. Because CERT and VAPA/B have a demonstrated role in the non-vesicular trafficking of lipids between the ER and the Golgi, it was proposed that Chlamydia establish MCSs with the ER to acquire host lipids. However, the recruitment of additional factors to ER-inclusion MCSs, such as the ER calcium sensor STIM1, may suggest additional functions unrelated to lipid acquisition. Finally, chlamydiae interaction with the ER appears to induce the ER stress response, but this response is quickly dampened by chlamydiae to promote host cell survival. © 2015 John Wiley & Sons Ltd.
Emotion attribution to a non-humanoid robot in different social situations.
Lakatos, Gabriella; Gácsi, Márta; Konok, Veronika; Brúder, Ildikó; Bereczky, Boróka; Korondi, Péter; Miklósi, Ádám
2014-01-01
In the last few years there was an increasing interest in building companion robots that interact in a socially acceptable way with humans. In order to interact in a meaningful way a robot has to convey intentionality and emotions of some sort in order to increase believability. We suggest that human-robot interaction should be considered as a specific form of inter-specific interaction and that human-animal interaction can provide a useful biological model for designing social robots. Dogs can provide a promising biological model since during the domestication process dogs were able to adapt to the human environment and to participate in complex social interactions. In this observational study we propose to design emotionally expressive behaviour of robots using the behaviour of dogs as inspiration and to test these dog-inspired robots with humans in inter-specific context. In two experiments (wizard-of-oz scenarios) we examined humans' ability to recognize two basic and a secondary emotion expressed by a robot. In Experiment 1 we provided our companion robot with two kinds of emotional behaviour ("happiness" and "fear"), and studied whether people attribute the appropriate emotion to the robot, and interact with it accordingly. In Experiment 2 we investigated whether participants tend to attribute guilty behaviour to a robot in a relevant context by examining whether relying on the robot's greeting behaviour human participants can detect if the robot transgressed a predetermined rule. Results of Experiment 1 showed that people readily attribute emotions to a social robot and interact with it in accordance with the expressed emotional behaviour. Results of Experiment 2 showed that people are able to recognize if the robot transgressed on the basis of its greeting behaviour. In summary, our findings showed that dog-inspired behaviour is a suitable medium for making people attribute emotional states to a non-humanoid robot.
Emotion Attribution to a Non-Humanoid Robot in Different Social Situations
Lakatos, Gabriella; Gácsi, Márta; Konok, Veronika; Brúder, Ildikó; Bereczky, Boróka; Korondi, Péter; Miklósi, Ádám
2014-01-01
In the last few years there was an increasing interest in building companion robots that interact in a socially acceptable way with humans. In order to interact in a meaningful way a robot has to convey intentionality and emotions of some sort in order to increase believability. We suggest that human-robot interaction should be considered as a specific form of inter-specific interaction and that human–animal interaction can provide a useful biological model for designing social robots. Dogs can provide a promising biological model since during the domestication process dogs were able to adapt to the human environment and to participate in complex social interactions. In this observational study we propose to design emotionally expressive behaviour of robots using the behaviour of dogs as inspiration and to test these dog-inspired robots with humans in inter-specific context. In two experiments (wizard-of-oz scenarios) we examined humans' ability to recognize two basic and a secondary emotion expressed by a robot. In Experiment 1 we provided our companion robot with two kinds of emotional behaviour (“happiness” and “fear”), and studied whether people attribute the appropriate emotion to the robot, and interact with it accordingly. In Experiment 2 we investigated whether participants tend to attribute guilty behaviour to a robot in a relevant context by examining whether relying on the robot's greeting behaviour human participants can detect if the robot transgressed a predetermined rule. Results of Experiment 1 showed that people readily attribute emotions to a social robot and interact with it in accordance with the expressed emotional behaviour. Results of Experiment 2 showed that people are able to recognize if the robot transgressed on the basis of its greeting behaviour. In summary, our findings showed that dog-inspired behaviour is a suitable medium for making people attribute emotional states to a non-humanoid robot. PMID:25551218
Lumpkin, Will; Hurtado, Paul J.; Dyer, Lee A.
2018-01-01
Most of earth’s biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly; thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models. The results presented here will help develop realistic predictions of the relationships between consumer diet breadth, interaction diversity, and species diversity within multi-trophic communities, which is critical for the conservation of biodiversity in this period of accelerated global change. PMID:29579077
Pardikes, Nicholas A; Lumpkin, Will; Hurtado, Paul J; Dyer, Lee A
2018-01-01
Most of earth's biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly; thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models. The results presented here will help develop realistic predictions of the relationships between consumer diet breadth, interaction diversity, and species diversity within multi-trophic communities, which is critical for the conservation of biodiversity in this period of accelerated global change.
Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L
2016-01-01
Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.
Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions
Rashu, Rasheduzzaman; Begum, Yasmin Ara; Ciorba, Matthew A.; Hultgren, Scott J.; Qadri, Firdausi
2017-01-01
Enterotoxigenic Escherichia coli (ETEC), defined by their elaboration of heat-labile (LT) and/or heat-stable (ST) enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF) fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE) and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these diverse pathogens. PMID:28531220
Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de los Santos, Berta; Arroyo, Francisco T.; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L.
2016-01-01
Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515
Sonti, Rajesh; Rai, Rajkishor; Ragothama, Srinivasarao; Balaram, Padmanabhan
2012-12-13
Cross strand aromatic interactions between a facing pair of phenylalanine residues in antiparallel β-sheet structures have been probed using two structurally defined model peptides. The octapeptide Boc-LFV(D)P(L)PLFV-OMe (peptide 1) favors the β-hairpin conformation nucleated by the type II' β-turn formed by the (D)Pro-(L)Pro segment, placing Phe2 and Phe7 side chains in proximity. Two centrally positioned (D)Pro-(L)Pro segments facilitate the three stranded β-sheet formation in the 14 residue peptide Boc-LFV(D)P(L)PLFVA(D)P(L)PLFV-OMe (peptide 2) in which the Phe2/Phe7 orientations are similar to that in the octapeptide. The anticipated folded conformations of peptides 1 and 2 are established by the delineation of intramolecularly hydrogen bonded NH groups and by the observation of specific cross strand NOEs. The observation of ring current shifted aromatic protons is a diagnostic of close approach of the Phe2 and Phe7 side chains. Specific assignment of aromatic proton resonances using HSQC and HSQC-TOCSY methods allow an analysis of interproton NOEs between the spatially proximate aromatic rings. This approach facilitates specific assignments in systems containing multiple aromatic rings in spectra at natural abundance. Evidence is presented for a dynamic process which invokes a correlated conformational change about the C(α)-C(β)(χ(1)) bond for the pair of interacting Phe residues. NMR results suggest that aromatic ring orientations observed in crystals are maintained in solution. Anomalous temperature dependence of ring current induced proton chemical shifts suggests that solvophobic effects may facilitate aromatic ring clustering in apolar solvents.
Nakamura, Kenta; Katayama, Tsutomu
2010-04-01
Escherichia coli ATP-DnaA initiates chromosomal replication. For preventing extra-initiations, a complex of ADP-Hda and the DNA-loaded replicase clamp promotes DnaA-ATP hydrolysis, yielding inactive ADP-DnaA. However, the Hda-DnaA interaction mode remains unclear except that the Hda Box VII Arg finger (Arg-153) and DnaA sensor II Arg-334 within each AAA(+) domain are crucial for the DnaA-ATP hydrolysis. Here, we demonstrate that direct and functional interaction of ADP-Hda with DnaA requires the Hda residues Ser-152, Phe-118 and Asn-122 as well as Hda Arg-153 and DnaA Arg-334. Structural analyses suggest intermolecular interactions between Hda Ser-152 and DnaA Arg-334 and between Hda Phe-118 and the DnaA Walker B motif region, in addition to an intramolecular interaction between Hda Asn-122 and Arg-153. These interactions likely sustain a specific association of ADP-Hda and DnaA, promoting DnaA-ATP hydrolysis. Consistently, ATP-DnaA and ADP-DnaA interact with the ADP-Hda-DNA-clamp complex with similar affinities. Hda Phe-118 and Asn-122 are contained in the Box VI region, and their hydrophobic and electrostatic features are basically conserved in the corresponding residues of other AAA(+) proteins, suggesting a conserved role for Box VI. These findings indicate novel interaction mechanisms for Hda-DnaA as well as a potentially fundamental mechanism in AAA(+) protein interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klucevsek, K.; Daley, J.; Darshan, M.S.
We have investigated the nuclear import strategies of high-risk HPV18 L2 minor capsid protein. HPV18 L2 interacts with Kap {alpha}{sub 2} adapter, and Kap {beta}{sub 2} and Kap {beta}{sub 3} nuclear import receptors. Moreover, binding of RanGTP to either Kap {beta}{sub 2} or Kap {beta}{sub 3} inhibits their interaction with L2, suggesting that these Kap {beta}/L2 complexes are import competent. Mapping studies show that HPV18 L2 contains two NLSs: in the N-terminus (nNLS) and in the C-terminus (cNLS), both of which can independently mediate nuclear import. Both nNLS and cNLS form a complex with Kap {alpha}{sub 2}{beta}{sub 1} heterodimer andmore » mediate nuclear import via a classical pathway. The nNLS is also essential for the interaction of HPV18 L2 with Kap {beta}{sub 2} and Kap {beta}{sub 3}. Interestingly, both nNLS and cNLS interact with the viral DNA and this DNA binding occurs without nucleotide sequence specificity. Together, the data suggest that HPV18 L2 can interact via its NLSs with several Kaps and the viral DNA and may enter the nucleus via multiple import pathways mediated by Kap {alpha}{sub 2}{beta}{sub 1} heterodimers, Kap {beta}{sub 2} and Kap {beta}{sub 3}.« less
Fluctuating interaction network and time-varying stability of a natural fish community
NASA Astrophysics Data System (ADS)
Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio
2018-02-01
Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.
Use of Phage Display to Identify Novel Mineralocorticoid Receptor-Interacting Proteins
Yang, Jun; Fuller, Peter J.; Morgan, James; Shibata, Hirotaka; McDonnell, Donald P.; Clyne, Colin D.
2014-01-01
The mineralocorticoid receptor (MR) plays a central role in salt and water homeostasis via the kidney; however, inappropriate activation of the MR in the heart can lead to heart failure. A selective MR modulator that antagonizes MR signaling in the heart but not the kidney would provide the cardiovascular protection of current MR antagonists but allow for normal electrolyte balance. The development of such a pharmaceutical requires an understanding of coregulators and their tissue-selective interactions with the MR, which is currently limited by the small repertoire of MR coregulators described in the literature. To identify potential novel MR coregulators, we used T7 phage display to screen tissue-selective cDNA libraries for MR-interacting proteins. Thirty MR binding peptides were identified, from which three were chosen for further characterization based on their nuclear localization and their interaction with other MR-interacting proteins or, in the case of x-ray repair cross-complementing protein 6, its known status as an androgen receptor coregulator. Eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 modulated MR-mediated transcription in a ligand-, cell- and/or promoter-specific manner and colocalized with the MR upon agonist treatment when imaged using immunofluorescence microscopy. These results highlight the utility of phage display for rapid and sensitive screening of MR binding proteins and suggest that eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 may be potential MR coactivators whose activity is dependent on the ligand, cellular context, and target gene promoter. PMID:25000480
Free-Energy Landscape of Protein-Ligand Interactions Coupled with Protein Structural Changes.
Moritsugu, Kei; Terada, Tohru; Kidera, Akinori
2017-02-02
Protein-ligand interactions are frequently coupled with protein structural changes. Focusing on the coupling, we present the free-energy surface (FES) of the ligand-binding process for glutamine-binding protein (GlnBP) and its ligand, glutamine, in which glutamine binding accompanies large-scale domain closure. All-atom simulations were performed in explicit solvents by multiscale enhanced sampling (MSES), which adopts a multicopy and multiscale scheme to achieve enhanced sampling of systems with a large number of degrees of freedom. The structural ensemble derived from the MSES simulation yielded the FES of the coupling, described in terms of both the ligand's and protein's degrees of freedom at atomic resolution, and revealed the tight coupling between the two degrees of freedom. The derived FES led to the determination of definite structural states, which suggested the dominant pathways of glutamine binding to GlnBP: first, glutamine migrates via diffusion to form a dominant encounter complex with Arg75 on the large domain of GlnBP, through strong polar interactions. Subsequently, the closing motion of GlnBP occurs to form ligand interactions with the small domain, finally completing the native-specific complex structure. The formation of hydrogen bonds between glutamine and the small domain is considered to be a rate-limiting step, inducing desolvation of the protein-ligand interface to form the specific native complex. The key interactions to attain high specificity for glutamine, the "door keeper" existing between the two domains (Asp10-Lys115) and the "hydrophobic sandwich" formed between the ligand glutamine and Phe13/Phe50, have been successfully mapped on the pathway derived from the FES.
Plants and pathogens: putting infection strategies and defence mechanisms on the map.
Faulkner, Christine; Robatzek, Silke
2012-12-01
All plant organs are vulnerable to colonisation and molecular manipulation by microbes. When this interaction allows proliferation of the microbe at the expense of the host, the microbe can be described as a pathogen. In our attempts to understand the full nature of the interactions that occur between a potential pathogen and its host, various aspects of the molecular mechanisms of infection and defence have begun to be characterised. There is significant variation in these mechanisms. While previous research has examined plant-pathogen interactions with whole plant/organ resolution, the specificity of infection strategies and changes in both gene expression and protein localisation of immune receptors upon infection suggest there is much to be gained from examination of plant-microbe interactions at the cellular level. Copyright © 2012 Elsevier Ltd. All rights reserved.
Friedl, Martina A.
2012-01-01
In this paper, we report on the in situ diversity of the mycotrophic fungus Trichoderma (teleomorph Hypocrea, Ascomycota, Dikarya) revealed by a taxon-specific metagenomic approach. We designed a set of genus-specific internal transcribed spacer (ITS)1 and ITS2 rRNA primers and constructed a clone library containing 411 molecular operational taxonomic units (MOTUs). The overall species composition in the soil of the two distinct ecosystems in the Danube floodplain consisted of 15 known species and two potentially novel taxa. The latter taxa accounted for only 1.5 % of all MOTUs, suggesting that almost no hidden or uncultivable Hypocrea/Trichoderma species are present at least in these temperate forest soils. The species were unevenly distributed in vertical soil profiles although no universal factors controlling the distribution of all of them (chemical soil properties, vegetation type and affinity to rhizosphere) were revealed. In vitro experiments simulating infrageneric interactions between the pairs of species that were detected in the same soil horizon showed a broad spectrum of reactions from very strong competition over neutral coexistence to the pronounced synergism. Our data suggest that only a relatively small portion of Hypocrea/Trichoderma species is adapted to soil as a habitat and that the interaction between these species should be considered in a screening for Hypocrea/Trichoderma as an agent(s) of biological control of pests. PMID:22075025
Fluctuating selection across years and phenotypic variation in food-deceptive orchids.
Scopece, Giovanni; Juillet, Nicolas; Lexer, Christian; Cozzolino, Salvatore
2017-01-01
Nectarless flowers that deceive pollinators offer an opportunity to study asymmetric plant-insect interactions. Orchids are a widely used model for studying these interactions because they encompass several thousand species adopting deceptive pollination systems. High levels of intra-specific phenotypic variation have been reported in deceptive orchids, suggesting a reduced consistency of pollinator-mediated selection on their floral traits. Nevertheless, several studies report on widespread directional selection mediated by pollinators even in these deceptive orchids. In this study we test the hypothesis that the observed selection can fluctuate across years in strength and direction thus likely contributing to the phenotypic variability of this orchid group. We performed a three-year study estimating selection differentials and selection gradients for nine phenotypic traits involved in insect attraction in two Mediterranean orchid species, namely Orchis mascula and O. pauciflora , both relying on a well-described food-deceptive pollination strategy. We found weak directional selection and marginally significant selection gradients in the two investigated species with significant intra-specific differences in selection differentials across years. Our data do not link this variation with a specific environmental cause, but our results suggest that pollinator-mediated selection in food-deceptive orchids can change in strength and in direction over time. In perennial plants, such as orchids, different selection differentials in the same populations in different flowering seasons can contribute to the maintenance of phenotypic variation often reported in deceptive orchids.
Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts
Doolittle, Janet M.; Gomez, Shawn M.
2011-01-01
Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811
Paramanik, Vijay; Thakur, Mahendra Kumar
2012-01-01
The localization of estrogen receptor (ER)β in mitochondria suggests ERβ-dependent regulation of genes, which is poorly understood. Here, we analyzed the ERβ interacting mitochondrial as well as nuclear proteins in mouse brain using pull-down assay and matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS). In the case of mitochondria, ERβ interacted with six proteins of 35–152 kDa, its transactivation domain (TAD) interacted with four proteins of 37–172 kDa, and ligand binding domain (LBD) interacted with six proteins of 37–161 kDa. On the other hand, in nuclei, ERβ interacted with seven proteins of 30–203 kDa, TAD with ten proteins of 31–160 kDa, and LBD with fourteen proteins of 42–179 kDa. For further identification, these proteins were cleaved by trypsin into peptides and analyzed by MALDI-MS using mascot search engine, immunoprecipitation, immunoblotting, and far-Western blotting. To find the consensus binding motifs in interacting proteins, their unique tryptic peptides were analyzed by the motif scan software. All the interacting proteins were found to contain casein kinase (CK) 2, phosphokinase (PK)C phosphorylation, and N-myristoylation sites. These were further confirmed by peptide pull-down assays using specific mutations in the interacting sites. Thus, the present findings provide evidence for the interaction of ERβ with specific mitochondrial and nuclear proteins through consensus CK2, PKC phosphorylation, and N-myristoylation sites, and may represent an essential step toward designing selective ER modulators for regulating estrogen-mediated signaling. PMID:22566700
Hagedorn, Elliott J.; Bayraktar, Jennifer L.; Kandachar, Vasundhara R.; Bai, Ting; Englert, Dane M.; Chang, Henry C.
2006-01-01
We have isolated mutations in the Drosophila melanogaster homologue of auxilin, a J-domain–containing protein known to cooperate with Hsc70 in the disassembly of clathrin coats from clathrin-coated vesicles in vitro. Consistent with this biochemical role, animals with reduced auxilin function exhibit genetic interactions with Hsc70 and clathrin. Interestingly, the auxilin mutations interact specifically with Notch and disrupt several Notch-mediated processes. Genetic evidence places auxilin function in the signal-sending cells, upstream of Notch receptor activation, suggesting that the relevant cargo for this auxilin-mediated endocytosis is the Notch ligand Delta. Indeed, the localization of Delta protein is disrupted in auxilin mutant tissues. Thus, our data suggest that auxilin is an integral component of the Notch signaling pathway, participating in the ubiquitin-dependent endocytosis of Delta. Furthermore, the fact that auxilin is required for Notch signaling suggests that ligand endocytosis in the signal-sending cells needs to proceed past coat disassembly to activate Notch. PMID:16682530
Emergence and evolution of an interaction between intrinsically disordered proteins
Hultqvist, Greta; Åberg, Emma; Camilloni, Carlo; Sundell, Gustav N; Andersson, Eva; Dogan, Jakob; Chi, Celestine N; Vendruscolo, Michele; Jemth, Per
2017-01-01
Protein-protein interactions involving intrinsically disordered proteins are important for cellular function and common in all organisms. However, it is not clear how such interactions emerge and evolve on a molecular level. We performed phylogenetic reconstruction, resurrection and biophysical characterization of two interacting disordered protein domains, CID and NCBD. CID appeared after the divergence of protostomes and deuterostomes 450–600 million years ago, while NCBD was present in the protostome/deuterostome ancestor. The most ancient CID/NCBD formed a relatively weak complex (Kd∼5 µM). At the time of the first vertebrate-specific whole genome duplication, the affinity had increased (Kd∼200 nM) and was maintained in further speciation. Experiments together with molecular modeling using NMR chemical shifts suggest that new interactions involving intrinsically disordered proteins may evolve via a low-affinity complex which is optimized by modulating direct interactions as well as dynamics, while tolerating several potentially disruptive mutations. DOI: http://dx.doi.org/10.7554/eLife.16059.001 PMID:28398197
Role of ligand-ligand vs. core-core interactions in gold nanoclusters.
Milowska, Karolina Z; Stolarczyk, Jacek K
2016-05-14
The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.
Li, Ang; Lim, Tong Seng; Shi, Hui; Yin, Jing; Tan, Swee Jin; Li, Zhengjun; Low, Boon Chuan; Tan, Kevin Shyong Wei; Lim, Chwee Teck
2011-01-01
Cytoadherence or sequestration is essential for the pathogenesis of the most virulent human malaria species, Plasmodium falciparum (P. falciparum). Similar to leukocyte-endothelium interaction in response to inflammation, cytoadherence of P. falciparum infected red blood cells (IRBCs) to endothelium occurs under physiological shear stresses in blood vessels and involves an array of molecule complexes which cooperate to form stable binding. Here, we applied single-molecule force spectroscopy technique to quantify the dynamic force spectra and characterize the intrinsic kinetic parameters for specific ligand-receptor interactions involving two endothelial receptor proteins: thrombospondin (TSP) and CD36. It was shown that CD36 mediated interaction was much more stable than that mediated by TSP at single molecule level, although TSP-IRBC interaction appeared stronger than CD36-IRBC interaction in the high pulling rate regime. This suggests that TSP-mediated interaction may initiate cell adhesion by capturing the fast flowing IRBCs whereas CD36 functions as the ‘holder’ for providing stable binding. PMID:21437286
Negureanu, Lacramioara; Salsbury, Freddie R
2013-01-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854
Harsch, Melanie A.; HilleRisLambers, Janneke
2016-01-01
Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834
Chemokines and their receptors: insights from molecular modeling and crystallography.
Kufareva, Irina
2016-10-01
Chemokines are small secreted proteins that direct cell migration in development, immunity, inflammation, and cancer. They do so by binding and activating specific G protein coupled receptors on the surface of migrating cells. Despite the importance of receptor:chemokine interactions, their structural basis remained unclear for a long time. In 2015, the first atomic resolution insights were obtained with the publication of X-ray structures for two distantly related receptors bound to chemokines. In conjunction with experiment-guided molecular modeling, the structures suggest a conserved receptor:chemokine complex architecture, while highlighting the diverse details and functional roles of individual interaction epitopes. Novel findings promote the development and detailed structural interpretation of the canonical two-site hypothesis of receptor:chemokine recognition, and suggest new avenues for pharmacological modulation of chemokine receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Regulatory Capacity of Bivalent Genes—A Theoretical Approach
Thalheim, Torsten; Herberg, Maria; Loeffler, Markus; Galle, Joerg
2017-01-01
Bivalent genes are frequently associated with developmental and lineage specification processes. Resolving their bivalency enables fast changes in their expression, which potentially can trigger cell fate decisions. Here, we provide a theoretical model of bivalency that allows for predictions on the occurrence, stability and regulatory capacity of this prominent modification state. We suggest that bivalency enables balanced gene expression heterogeneity that constitutes a prerequisite of robust lineage priming in somatic stem cells. Moreover, we demonstrate that interactions between the histone and DNA methylation machineries together with the proliferation activity control the stability of the bivalent state and can turn it into an unmodified state. We suggest that deregulation of these interactions underlies cell transformation processes as associated with acute myeloid leukemia (AML) and provide a model of AML blast formation following deregulation of the Ten-eleven Translocation (TET) pathway. PMID:28513551
Specificity of V1-V2 Orientation Networks in the Primate Visual Cortex
Roe, Anna W.; Ts'o, Daniel Y.
2015-01-01
The computation of texture and shape involves integration of features of various orientations. Orientation networks within V1 tend to involve cells which share similar orientation selectivity. However, emergent properties in V2 require the integration of multiple orientations. We now show that, unlike interactions within V1, V1-V2 orientation interactions are much less synchronized and are not necessarily orientation dependent. We find V1-V2 orientation networks are of two types: a more tightly synchronized, orientation-preserving network and a less synchronized orientation-diverse network. We suggest that such diversity of V1-V2 interactions underlies the spatial and functional integration required for computation of higher order contour and shape in V2. PMID:26314798
The region of CQQQKPQRRP of PGC-1{alpha} interacts with the DNA-binding complex of FXR/RXR{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanaya, Eiko; Jingami, Hisato
2006-04-14
PGC-1{alpha} co-activates transcription by several nuclear receptors. To study the interaction among PGC-1{alpha}, RXR{alpha}/FXR, and DNA, we performed electrophoresis mobility shift assays. The RXR{alpha}/FXR proteins specifically bound to DNA containing the IR-1 sequence in the absence of ligand. When the fusion protein of GST-PGC-1{alpha} was added to the mixture of RXR{alpha}/FXR/DNA, the ligand-influenced retardation of the mobility was observed. The ligand for RXR{alpha} (9-cis-retinoic acid) was necessary for this retardation, whereas, the ligand for FXR, chenodeoxycholic acid, barely had an effect. The results obtained using truncated PGC-1{alpha} proteins suggested that two regions are necessary for PGC-1{alpha} to interact with themore » DNA-binding complex of RXR{alpha}/FXR. One is the region of the second leucine-rich motif, and the other is that of the amino acid sequence CQQQKPQRRP, present between the second and third leucine-rich motifs. The results obtained with the SPQSS mutation for KPQRR suggested that the basic amino acids are important for the interaction.« less
Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
NASA Astrophysics Data System (ADS)
Baltoumas, Fotis A.; Theodoropoulou, Margarita C.; Hamodrakas, Stavros J.
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
Handling Qualities Specifications for U.S. Military Helicopters
NASA Technical Reports Server (NTRS)
Key, David L.
1982-01-01
Inadequacies in the military specification for helicopter handling qualities, MIL-H-8501A, have long been recognized, and the latest procurements by the U.S. Army used special Prime Item Development Specifications (PIDS). This paper assesses the efficacy of these PIDS and suggests that changes should be made. In particular, the structure developed in MIL-F-8785B (ASG) (the specification for flying qualities of piloted airplanes) should be incorporated. Improved requirements must be based on a systematic data base and concentrated on topics most important in preliminary design: static and dynamic stability, control power and sensitivity, and interaction with controllers and displays. Emphasis should be on current military helicopter missions and helicopter idiosyncrasies such as cross-coupling, nonlinearities, and higher-order dynamics.
Habu, Toshiyuki; Wakabayashi, Nobunao; Yoshida, Kayo; Yomogida, Kenntaro; Nishimune, Yoshitake; Morita, Takashi
2004-06-01
The tumor suppressor protein p53 is specifically expressed during meiosis in spermatocytes. Subsets of p53 knockout mice exhibit testicular giant cell degenerative syndrome, which suggests p53 may be associated with meiotic cell cycle and/or DNA metabolism. Here, we show that p53 binds to the mouse meiosis-specific RecA-like protein Mus musculus DMC1 (MmDMC1). The C-terminal domain (amino acid 234-340) of MmDMC1 binds to DNA-binding domain of p53 protein. p53 might be involved in homologous recombination and/or checkpoint function by directly binding to DMC1 protein to repress genomic instability in meiotic germ cells.
Aittoniemi, Jussi; Niemelä, Perttu S.; Hyvönen, Marja T.; Karttunen, Mikko; Vattulainen, Ilpo
2007-01-01
The effects of cholesterol (Chol) on phospholipid bilayers include ordering of the fatty acyl chains, condensing of the lipids in the bilayer plane, and promotion of the liquid-ordered phase. These effects depend on the type of phospholipids in the bilayer and are determined by the nature of the underlying molecular interactions. As for Chol, it has been shown to interact more favorably with sphingomyelin than with most phosphatidylcholines, which in given circumstances leads to formation of lateral domains. However, the exact origin and nature of Chol-phospholipid interactions have recently been subjects of speculation. We examine interactions between Chol, palmitoylsphingomyelin (PSM) and palmitoyl-oleoyl-phosphatidylcholine (POPC) in hydrated lipid bilayers by extensive atom-scale molecular dynamics simulations. We employ a tailored lipid configuration: Individual PSM and Chol monomers, as well as PSM-Chol dimers, are embedded in a POPC lipid bilayer in the liquid crystalline phase. Such a setup allows direct comparison of dimeric and monomeric PSMs and Chol, which ultimately shows how the small differences in PSM and POPC structure can lead to profoundly different interactions with Chol. Our analysis shows that direct hydrogen bonding between PSM and Chol does not provide an adequate explanation for their putative specific interaction. Rather, a combination of charge-pairing, hydrophobic, and van der Waals interactions leads to a lower tilt in PSM neighboring Chol than in Chol with only POPC neighbors. This implies improved Chol-induced ordering of PSM's chains over POPC's chains. These findings are discussed in the context of the hydrophobic mismatch concept suggested recently. PMID:17114220
Thomsen, Dana; Lee, Chow H.
2014-01-01
Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3′UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862–3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862–3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions. PMID:24622399
King, Dustin T; Barnes, Mark; Thomsen, Dana; Lee, Chow H
2014-01-01
Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3'UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862-3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862-3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.
Becklin, Katie M; Gamez, Guadalupe; Uelk, Bryan; Raguso, Robert A; Galen, Candace
2011-08-01
Plants interact with above- and belowground organisms; the combined effects of these interactions determine plant fitness and trait evolution. To better understand the ecological and evolutionary implications of multispecies interactions, we explored linkages between soil fungi, pollinators, and floral larcenists in Polemonium viscosum (Polemoniaceae). Using a fungicide, we experimentally reduced fungal colonization of krummholz and tundra P. viscosum in 2008-2009. We monitored floral signals and rewards, interactions with pollinators and larcenists, and seed set for fungicide-treated and control plants. Fungicide effects varied among traits, between interactions, and with environmental context. Treatment effects were negligible in 2008, but stronger in 2009, especially in the less-fertile krummholz habitat. There, fungicide increased nectar sugar content and damage by larcenist ants, but did not affect pollination. Surprisingly, fungicide also enhanced seed set, suggesting that direct resource costs of soil fungi exceed indirect benefits from reduced larceny. In the tundra, fungicide effects were negligible in both years. However, pooled across treatments, colonization by mycorrhizal fungi in 2009 correlated negatively with the intensity and diversity of floral volatile organic compounds, suggesting integrated above- and belowground signaling pathways. Fungicide effects on floral rewards in P. viscosum link soil fungi to ecological costs of pollinator attraction. Trait-specific linkages to soil fungi should decouple expression of sensitive and buffered floral phenotypes in P. viscosum. Overall, this study demonstrates how multitrophic linkages may lead to shifting selection pressures on interaction traits, restricting the evolution of specialization.
Henry, Elizabeth; Berglund, Kathy; Millar, Lynn; Locke, Frederick
2015-12-01
Recent evidence suggests performing a warm-up prior to golf can improve performance and reduce injuries. While some characteristics of effective golf warm-ups have been determined, no studies have explored the immediate effects of a rotational-specific warm-up with elements of motor control on the biomechanical aspects of the full X-Factor and X-Factor Stretch during the golf swing. Thirty-six amateur golfers (mean ± SD age: 64 ± 8 years old; 75% male) were randomized into a Dynamic Rotation-Specific Warm-up group (n=20), or a Sham Warm-up group (n=16). X-Factor and X-Factor Stretch were measured at baseline and immediately following the warm-up. Mixed model ANCOVAs were used to determine if a Group*Time interaction existed for each variable with group as the between-subjects variable and time as the within-subjects variable. The mixed model ANCOVAs did not reveal a statistically significant group*time interaction for X-Factor or X-Factor Stretch. There was not a significant main effect for time for X-Factor but there was for X-Factor Stretch. These results indicate that neither group had a significant effect on improving X-Factor, however performing either warm-up increased X-Factor Stretch without significant difference between the two. The results of this study suggest that performing the Dynamic Rotation-Specific Warm-up did not increase X-Factor or X-Factor Stretch when controlled for age compared to the Sham Warm-up. Further study is needed to determine the long-term effects of the Dynamic Rotation-Specific Warm-up on performance factors of the golf swing while examining across all ages. 2b.
Computing Support for Basic Research in Perception and Cognition
1988-12-07
hearing aids and cochlear implants, this suggests that certain types of proposed coding schemes, specifically those employing periodicity tuning in...developing a computer model of the interaction of declarative and procedural knowledge in skill acquisition. In the Visual Psychophysics Laboratory... Psycholinguistics - Laboratory a computer model of text comprehension and recall has been constructed and several - experiments have been completed that verify basic
ERIC Educational Resources Information Center
Puig, Blanca; Ageitos, Noa; Jiménez-Aleixandre, María Pilar
2017-01-01
There is emerging interest on the interactions between modelling and argumentation in specific contexts, such as genetics learning. It has been suggested that modelling might help students understand and argue on genetics. We propose modelling gene expression as a way to learn molecular genetics and diseases with a genetic component. The study is…
Melissa A. Baynes; Danelle M. Russell; George Newcombe; Lynn K. Carta; Amy Y. Rossman; Adnan Ismaiel
2012-01-01
In its invaded range in western North America, Bromus tectorum (cheatgrass) can host more than 100 sequence-based, operational taxonomic units of endophytic fungi, of which an individual plant hosts a subset. Research suggests that the specific subset is determined by plant genotype, environment, dispersal of locally available endophytes, and mycorrhizal associates....
Coordinated crew performance in commercial aircraft operations
NASA Technical Reports Server (NTRS)
Murphy, M. R.
1977-01-01
A specific methodology is proposed for an improved system of coding and analyzing crew member interaction. The complexity and lack of precision of many crew and task variables suggest the usefulness of fuzzy linguistic techniques for modeling and computer simulation of the crew performance process. Other research methodologies and concepts that have promise for increasing the effectiveness of research on crew performance are identified.
Sparapani, Silvia; Bellini, Stefania; Gunaratnam, Mekala; Haider, Shozeb M; Andreani, Aldo; Rambaldi, Mirella; Locatelli, Alessandra; Morigi, Rita; Granaiola, Massimiliano; Varoli, Lucilla; Burnelli, Silvia; Leoni, Alberto; Neidle, Stephen
2010-08-21
A bis-guanylhydrazone derivative of diimidazo[1,2-a:1,2-c]pyrimidine has unexpectedly been found to be a potent stabiliser of several quadruplex DNAs, whereas there is no significant interaction with duplex DNA. Molecular modeling suggests that the guanylhydrazone groups play an active role in quadruplex binding.
Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor
Mohammed, Riyazaddin; Are, Ashok K.; Bhavanasi, Ramaiah; Munghate, Rajendra S.; Kavi Kishor, Polavarapu B.; Sharma, Hari C.
2015-01-01
The productivity in sorghum is low, owing to various biotic and abiotic constraints. Combining insect resistance with desirable agronomic and morphological traits is important to increase sorghum productivity. Therefore, it is important to understand the variability for various agronomic traits, their heritabilities and nature of gene action to develop appropriate strategies for crop improvement. Therefore, a full diallel set of 10 parents and their 90 crosses including reciprocals were evaluated in replicated trials during the 2013–14 rainy and postrainy seasons. The crosses between the parents with early- and late-flowering flowered early, indicating dominance of earliness for anthesis in the test material used. Association between the shoot fly resistance, morphological, and agronomic traits suggested complex interactions between shoot fly resistance and morphological traits. Significance of the mean sum of squares for GCA (general combining ability) and SCA (specific combining ability) of all the studied traits suggested the importance of both additive and non-additive components in inheritance of these traits. The GCA/SCA, and the predictability ratios indicated predominance of additive gene effects for majority of the traits studied. High broad-sense and narrow-sense heritability estimates were observed for most of the morphological and agronomic traits. The significance of reciprocal combining ability effects for days to 50% flowering, plant height and 100 seed weight, suggested maternal effects for inheritance of these traits. Plant height and grain yield across seasons, days to 50% flowering, inflorescence exsertion, and panicle shape in the postrainy season showed greater specific combining ability variance, indicating the predominance of non-additive type of gene action/epistatic interactions in controlling the expression of these traits. Additive gene action in the rainy season, and dominance in the postrainy season for days to 50% flowering and plant height suggested G X E interactions for these traits. PMID:26579183
Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi.
Zhang, Ning; Cai, Guohong; Price, Dana C; Crouch, Jo Anne; Gladieux, Pierre; Hillman, Bradley; Khang, Chang Hyun; LeBrun, Marc-Henri; Lee, Yong-Hwan; Luo, Jing; Qiu, Huan; Veltri, Daniel; Wisecaver, Jennifer H; Zhu, Jie; Bhattacharya, Debashish
2018-04-12
The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated genome sequence data from five additional Magnaporthales fungi including non-pathogenic species, and performed comparative genome analysis of a total of 13 fungal species in the class Sordariomycetes to understand the evolutionary history of the Magnaporthales and of fungal pathogenesis. Our results suggest that the Magnaporthales diverged ca. 31 millon years ago from other Sordariomycetes, with the phytopathogenic blast clade diverging ca. 21 million years ago. Little evidence of inter-phylum horizontal gene transfer (HGT) was detected in Magnaporthales. In contrast, many genes underwent positive selection in this order and the majority of these sequences are clade-specific. The blast clade genomes contain more secretome and avirulence effector genes, which likely play key roles in the interaction between Pyricularia species and their plant hosts. Finally, analysis of transposable elements (TE) showed differing proportions of TE classes among Magnaporthales genomes, suggesting that species-specific patterns may hold clues to the history of host/environmental adaptation in these fungi.
Probiotics as an Immune Modulator.
Kang, Hye-Ji; Im, Sin-Hyeog
2015-01-01
Probiotics are nonpathogenic live microorganism that can provide a diverse health benefits on the host when consumed in adequate amounts. Probiotics are consumed in diverse ways including dairy product, food supplements and functional foods with specific health claims. Recently, many reports suggest that certain probiotic strains or multi strain mixture have potent immunomodulatory activity in diverse disorders including allergic asthma, atopic dermatitis and rheumatoid arthritis. However, underlying mechanism of action is still unclear and efficacy of probiotic administration is quite different depending on the type of strains and the amounts of doses. We and others have suggested that live probiotics or their metabolites could interact with diverse immune cells (antigen presenting cells and T cells) and confer them to have immunoregulatory functions. Through this interaction, probiotics could contribute to maintaining immune homeostasis by balancing pro-inflammatory and anti-inflammatory immune responses. However, the effect of probiotics in prevention or modulation of ongoing disease is quite diverse even within a same species. Therefore, identification of functional probiotics with specific immune regulatory property is a certainly important issue. Herein, we briefly review selection methods for immunomodulatory probiotic strains and the mechanism of action of probiotics in immune modulation.
Computational Identification of Diverse Mechanisms Underlying Transcription Factor-DNA Occupancy
Cheng, Qiong; Kazemian, Majid; Pham, Hannah; Blatti, Charles; Celniker, Susan E.; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh
2013-01-01
ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF's occupancy profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding, called “STAP,” to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation framework that compares a baseline model, based on the ChIP'ed (“primary”) TF's motif, to more complex models where binding by secondary TFs is hypothesized to influence the primary TF's occupancy. Candidates interacting TFs were chosen based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by ≤150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding. Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we were able to categorize the effects into those that are likely to be mediated by the secondary TF's effect on local accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to test model-based predictions of short-range cooperative interactions, and found that seven of the eight TF pairs tested physically interact and that some of these interactions mediate cooperative binding to DNA. PMID:23935523
Cooperativity between various types of polar solute-solvent interactions in aqueous media.
Madeira, Pedro P; Bessa, Ana; Loureiro, Joana A; Álvares-Ribeiro, Luís; Rodrigues, Alírio E; Zaslavsky, Boris Y
2015-08-21
Partition coefficients of seven low molecular weight compounds were measured in multiple aqueous two-phase systems (ATPSs) formed by pairs of different polymers. The ionic composition of each ATPS was varied to include 0.01M sodium phosphate buffer (NaPB), pH 7.4 and 0.1M Na2SO4, 0.15M NaCl, and 0.15M NaClO4 all in 0.01M NaPB, pH 7.4. The differences between the solvent features of the coexisting phases in all the ATPSs were estimated from partitioning of a homologous series of dinitrophenylated-amino acids and by the solvatochromic method. The solute-specific coefficients for the compounds examined were determined by the multiple linear regression analysis using the modified linear solvation energy relationship equation. It is established that the solute specific coefficients characterizing different types of the solute-water interactions (dipole-dipole, dipole-ion, and H-bonding) for a given solute change in the presence of different salt additives in the solute specific manner. It is also found that these characteristics are linearly interrelated. It is suggested that there is a cooperativity between various types of solute-water interactions governed by the solute structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Binding of perlecan to transthyretin in vitro.
Smeland, S; Kolset, S O; Lyon, M; Norum, K R; Blomhoff, R
1997-01-01
Transthyretin is one of two specific proteins involved in the transport of thyroid hormones in plasma; it possesses two binding sites for serum retinol-binding protein. In the present study we demonstrate that transthyretin also interacts in vitro with [35S]sulphate-labelled material from the medium of HepG2 cells. By using the same strategy as for purifying serum retinol-binding protein, [35S]sulphate-labelled medium was specifically eluted from a transthyretin-affinity column. Ion-exchange chromatography showed that the material was highly polyanionic, and its size and alkali susceptibility suggested that it was a proteoglycan. Structural analyses with chondroitinase ABC lyase and nitrous acid revealed that approx. 20% was chondroitin sulphate and 80% heparan sulphate. Immunoprecipitation showed that the [35S]sulphate-labelled material contained perlecan. Further analysis by binding studies revealed specific and saturable binding of 125I-transthyretin to perlecan-enriched Matrigel. Because inhibition of sulphation by treating HepG2 cells with sodium chlorate increased the affinity of the perlecan for transthyretin, and [3H]heparin was not retained by the transthyretin affinity column, the binding is probably mediated by the core protein and is not a protein-glycosaminoglycan interaction. Because perlecan is released from transthyretin in water, the binding might be due to hydrophobic interactions. PMID:9307034
Prognostic and functional role of subtype-specific tumor-stroma interaction in breast cancer.
Merlino, Giuseppe; Miodini, Patrizia; Callari, Maurizio; D'Aiuto, Francesca; Cappelletti, Vera; Daidone, Maria Grazia
2017-10-01
None of the clinically relevant gene expression signatures available for breast cancer were specifically developed to capture the influence of the microenvironment on tumor cells. Here, we attempted to build subtype-specific signatures derived from an in vitro model reproducing tumor cell modifications after interaction with activated or normal stromal cells. Gene expression signatures derived from HER2+, luminal, and basal breast cancer cell lines (treated by normal fibroblasts or cancer-associated fibroblasts conditioned media) were evaluated in clinical tumors by in silico analysis on published gene expression profiles (GEPs). Patients were classified as microenvironment-positive (μENV+ve), that is, with tumors showing molecular profiles suggesting activation by the stroma, or microenvironment-negative (μENV-ve) based on correlation of their tumors' GEP with the respective subtype-specific signature. Patients with estrogen receptor alpha (ER)+/HER2-/μENV+ve tumors were characterized by 2.5-fold higher risk of developing distant metastases (HR = 2.546; 95% CI: 1.751-3.701, P = 9.84E-07), while μENV status did not affect, or only suggested the risk of distant metastases, in women with HER2+ (HR = 1.541; 95% CI: 0.788-3.012, P = 0.206) or ER-/HER2- tumors (HR = 1.894; 95% CI: 0.938-3.824; P = 0.0747), respectively. In ER+/HER2- tumors, the μENV status remained significantly associated with metastatic progression (HR = 2.098; CI: 1.214-3.624; P = 0.00791) in multivariable analysis including size, age, and Genomic Grade Index. Validity of our in vitro model was also supported by in vitro biological endpoints such as cell growth (MTT assay) and migration/invasion (Transwell assay). In vitro-derived gene signatures tracing the bidirectional interaction with cancer activated fibroblasts are subtype-specific and add independent prognostic information to classical prognostic variables in women with ER+/HER2- tumors. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Multivariate Brain Prediction of Heart Rate and Skin Conductance Responses to Social Threat.
Eisenbarth, Hedwig; Chang, Luke J; Wager, Tor D
2016-11-23
Psychosocial stressors induce autonomic nervous system (ANS) responses in multiple body systems that are linked to health risks. Much work has focused on the common effects of stress, but ANS responses in different body systems are dissociable and may result from distinct patterns of cortical-subcortical interactions. Here, we used machine learning to develop multivariate patterns of fMRI activity predictive of heart rate (HR) and skin conductance level (SCL) responses during social threat in humans (N = 18). Overall, brain patterns predicted both HR and SCL in cross-validated analyses successfully (r HR = 0.54, r SCL = 0.58, both p < 0.0001). These patterns partly reflected central stress mechanisms common to both responses because each pattern predicted the other signal to some degree (r HR→SCL = 0.21 and r SCL→HR = 0.22, both p < 0.01), but they were largely physiological response specific. Both patterns included positive predictive weights in dorsal anterior cingulate and cerebellum and negative weights in ventromedial PFC and local pattern similarity analyses within these regions suggested that they encode common central stress mechanisms. However, the predictive maps and searchlight analysis suggested that the patterns predictive of HR and SCL were substantially different across most of the brain, including significant differences in ventromedial PFC, insula, lateral PFC, pre-SMA, and dmPFC. Overall, the results indicate that specific patterns of cerebral activity track threat-induced autonomic responses in specific body systems. Physiological measures of threat are not interchangeable, but rather reflect specific interactions among brain systems. We show that threat-induced increases in heart rate and skin conductance share some common representations in the brain, located mainly in the vmPFC, temporal and parahippocampal cortices, thalamus, and brainstem. However, despite these similarities, the brain patterns that predict these two autonomic responses are largely distinct. This evidence for largely output-measure-specific regulation of autonomic responses argues against a common system hypothesis and provides evidence that different autonomic measures reflect distinct, measurable patterns of cortical-subcortical interactions. Copyright © 2016 the authors 0270-6474/16/3611987-12$15.00/0.
Connexin channels and phospholipids: association and modulation
Locke, Darren; Harris, Andrew L
2009-01-01
Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents. PMID:19686581
Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi
van Mierlo, Joël T.; Overheul, Gijs J.; Obadia, Benjamin; van Cleef, Koen W. R.; Webster, Claire L.; Saleh, Maria-Carla; Obbard, Darren J.; van Rij, Ronald P.
2014-01-01
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors. PMID:25032815
Santino, Andrea; Tallada, Victor A; Jimenez, Juan; Garzón, Andrés
2012-08-01
In Schizosaccharomyces pombe, cytokinesis occurs by ordered recruitment of actomyosin components at the division site, followed by lateral condensation to produce a ring-like structure early in anaphase, which eventually matures and contracts at the end of mitosis. We found that in temperature-sensitive hsp90-w1 mutant cells, encoding an Hsp90 mutant protein, ring components were recruited to form a cortical network at the division site, but this network failed to condense into a compact ring, suggesting a role for Hsp90 in this particular step. hsp90-w1 mutant shows strong genetic interaction with specific mutant alleles of the fission yeast cdc2, such as cdc2-33. Interestingly, actomyosin ring defects in hsp90-w1 cdc2-33 mutant cells resembled that of hsp90-w1 single mutant at restrictive temperature. Noteworthy, similar genetic interaction was found with a mutant allele of polo-like kinase, plo1-ts4, suggesting that Hsp90 collaborates with Cdc2 and Plo1 cell cycle kinases to condense medial ring components. In vitro analyses suggested that Cdc2 and Plo1 physically interact with Hsp90. Association of Cdc2 to Hsp90 was ATP independent, while Plo1 binds to this chaperone in an ATP-dependent manner, indicating that these two kinases interact with different Hsp90 complexes. Overall, our analyses of hsp90-w1 reveal a possible role for this chaperone in medial ring condensation in association with Cdc2 and Plo1 kinases.
Human Milk Blocks DC-SIGN–Pathogen Interaction via MUC1
Koning, Nathalie; Kessen, Sabine F. M.; Van Der Voorn, J. Patrick; Appelmelk, Ben J.; Jeurink, Prescilla V.; Knippels, Leon M. J.; Garssen, Johan; Van Kooyk, Yvette
2015-01-01
Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out. PMID:25821450
Wernet, Mathias F.; Meier, Kerstin M.; Baumann-Klausener, Franziska; Dorfman, Ruslan; Weihe, Ulrich; Labhart, Thomas; Desplan, Claude
2014-01-01
The elbow/no ocelli (elb/noc) complex of Drosophila melanogaster encodes two paralogs of the evolutionarily conserved NET family of zinc finger proteins. These transcriptional repressors share a conserved domain structure, including a single atypical C2H2 zinc finger. In flies, Elb and Noc are important for the development of legs, eyes and tracheae. Vertebrate NET proteins play an important role in the developing nervous system, and mutations in the homolog ZNF703 human promote luminal breast cancer. However, their interaction with transcriptional regulators is incompletely understood. Here we show that loss of both Elb and Noc causes mis-specification of polarization-sensitive photoreceptors in the ‘dorsal rim area’ (DRA) of the fly retina. This phenotype is identical to the loss of the homeodomain transcription factor Homothorax (Hth)/dMeis. Development of DRA ommatidia and expression of Hth are induced by the Wingless/Wnt pathway. Our data suggest that Elb/Noc genetically interact with Hth, and we identify two conserved domains crucial for this function. Furthermore, we show that Elb/Noc specifically interact with the transcription factor Orthodenticle (Otd)/Otx, a crucial regulator of rhodopsin gene transcription. Interestingly, different Elb/Noc domains are required to antagonize Otd functions in transcriptional activation, versus transcriptional repression. We propose that similar interactions between vertebrate NET proteins and Meis and Otx factors might play a role in development and disease. PMID:24625735
Mundim, Fabiane M; Bruna, Emilio M
2016-09-01
Climate change can drive major shifts in community composition and interactions between resident species. However, the magnitude of these changes depends on the type of interactions and the biome in which they take place. We review the existing conceptual framework for how climate change will influence tropical plant-herbivore interactions and formalize a similar framework for the temperate zone. We then conduct the first biome-specific tests of how plant-herbivore interactions change in response to climate-driven changes in temperature, precipitation, ambient CO2, and ozone. We used quantitative meta-analysis to compare predicted and observed changes in experimental studies. Empirical studies were heavily biased toward temperate systems, so testing predicted changes in tropical plant-herbivore interactions was virtually impossible. Furthermore, most studies investigated the effects of CO2 with limited plant and herbivore species. Irrespective of location, most studies manipulated only one climate change factor despite the fact that different factors can act in synergy to alter responses of plants and herbivores. Finally, studies of belowground plant-herbivore interactions were also rare; those conducted suggest that climate change could have major effects on belowground subsystems. Our results suggest that there is a disconnection between the growing literature proposing how climate change will influence plant-herbivore interactions and the studies testing these predictions. General conclusions will also be hampered without better integration of above- and belowground systems, assessing the effects of multiple climate change factors simultaneously, and using greater diversity of species in experiments.
An RNA matchmaker protein regulates the activity of the long noncoding RNA HOTAIR
Meredith, Emily K.; Balas, Maggie M.; Sindy, Karla; Haislop, Krystal; Johnson, Aaron M.
2016-01-01
The human long noncoding RNA (lncRNA) HOTAIR acts in trans to recruit the Polycomb repressive complex 2 (PRC2) to the HOXD gene cluster and to promote gene silencing during development. In breast cancers, overexpression of HOTAIR increases metastatic potential via the repression of many additional genes. It has remained unclear what factors determine HOTAIR-dependent PRC2 activity at specific genomic loci, particularly when high levels of HOTAIR result in aberrant gene silencing. To identify additional proteins that contribute to the specific action of HOTAIR, we performed a quantitative proteomic analysis of the HOTAIR interactome. We found that the most specific interaction was between HOTAIR and the heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, a member of a family of proteins involved in nascent mRNA processing and RNA matchmaking. Our data suggest that A2/B1 are key contributors to HOTAIR-mediated chromatin regulation in breast cancer cells: A2/B1 knockdown reduces HOTAIR-dependent breast cancer cell invasion and decreases PRC2 activity at the majority of HOTAIR-dependent loci. We found that the B1 isoform, which differs from A2 by 12 additional amino acids, binds with highest specificity to HOTAIR. B1 also binds chromatin and associates preferentially with RNA transcripts of HOTAIR gene targets. We furthermore demonstrate a direct RNA–RNA interaction between HOTAIR and a target transcript that is enhanced by B1 binding. Together, these results suggest a model in which B1 matches HOTAIR with transcripts of target genes on chromatin, leading to repression by PRC2. PMID:27146324
NASA Technical Reports Server (NTRS)
Jones, Denise R.
1990-01-01
A piloted simulation study was conducted comparing three different input methods for interfacing to a large-screen, multiwindow, whole-flight-deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side-arm controller. The touch screen concept provided data entry through a capacitive touch screen. The voice concept utilized a speech recognition system with input through a head-worn microphone. No single input concept emerged as the most desirable method of interacting with the display. Subjective results, however, indicate that the voice concept was the most preferred method of data entry and had the most potential for future applications. The objective results indicate that, overall, the touch screen concept was the most effective input method. There was also significant differences between the time required to perform specific tasks and the input concept employed, with each concept providing better performance relative to a specific task. These results suggest that a system combining all three input concepts might provide the most effective method of interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himanen, J.; Goldgur, Y; Miao, H
2009-01-01
Ephrin (Eph) receptor tyrosine kinases fall into two subclasses (A and B) according to preferences for their ephrin ligands. All published structural studies of Eph receptor/ephrin complexes involve B-class receptors. Here, we present the crystal structures of an A-class complex between EphA2 and ephrin-A1 and of unbound EphA2. Although these structures are similar overall to their B-class counterparts, they reveal important differences that define subclass specificity. The structures suggest that the A-class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a 'lock-and-key'-type binding mechanism, in contrast to the 'induced fit' mechanism defining the B-class molecules.more » This model is supported by structure-based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell-based Eph receptor activation assays. Finally, the structure of the unligated receptor reveals a homodimer assembly that might represent EphA2-specific homotypic cell adhesion interactions.« less
Functional brain networks related to individual differences in human intelligence at rest.
Hearne, Luke J; Mattingley, Jason B; Cocchi, Luca
2016-08-26
Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.
Zubeidat, Ihab; Salinas, José María; Sierra, Juan Carlos; Fernández-Parra, Antonio
2007-01-01
In this study, we analyzed the reliability and validity of the Social Interaction Anxiety Scale (SIAS) and propose a separation criterion between youths with specific and generalized social anxiety and youths without social anxiety. A sample of 1012 Spanish youths attending school completed the SIAS, the Liebowitz Social Anxiety Scale, the Social Avoidance and Distress Scale, the Fear of Negative Evaluation Scale, the Youth Self-Report for Ages 11-18 and the Minnesota Multiphasic Personality Inventory-Adolescent. The factor analysis suggests the existence of three factors in the SIAS, the first two of which explain most of the variance of the construct assessed. Internal consistency is adequate in the first two factors. The SIAS features an adequate theoretical validity with the scores of different variables related to social interaction. Analysis of the criterion scores yields three groups pertaining to three clearly differentiated clusters. In the third cluster, two of social anxiety groups - specific and generalized - have been identified by means of a quantitative separation criterion.
Chemical Ecology of Stingless Bees.
Leonhardt, Sara Diana
2017-04-01
Stingless bees (Hymenoptera, Apidae: Meliponini) represent a highly diverse group of social bees confined to the world's tropics and subtropics. They show a striking diversity of structural and behavioral adaptations and are important pollinators of tropical plants. Despite their diversity and functional importance, their ecology, and especially chemical ecology, has received relatively little attention, particularly compared to their relative the honeybee, Apis mellifera. Here, I review various aspects of the chemical ecology of stingless bees, from communication over resource allocation to defense. I list examples in which functions of specific compounds (or compound groups) have been demonstrated by behavioral experiments, and show that many aspects (e.g., queen-worker interactions, host-parasite interactions, neuronal processing etc.) remain little studied. This review further reveals that the vast majority of studies on the chemical ecology of stingless bees have been conducted in the New World, whereas studies on Old World stingless bees are still comparatively rare. Given the diversity of species, behaviors and, apparently, chemical compounds used, I suggest that stingless bees provide an ideal subject for studying how functional context and the need for species specificity may interact to shape pheromone diversification in social insects.
Erickson, Timothy; Morgan, Clive P; Olt, Jennifer; Hardy, Katherine; Busch-Nentwich, Elisabeth; Maeda, Reo; Clemens, Rachel; Krey, Jocelyn F; Nechiporuk, Alex; Barr-Gillespie, Peter G; Marcotti, Walter; Nicolson, Teresa
2017-01-01
Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle. DOI: http://dx.doi.org/10.7554/eLife.28474.001 PMID:28534737
Salami, Temilola K; Brooks, Bianca A; Lamis, Dorian A
2015-05-15
This study aims to explore the impact of specific facets of impulsivity as measured by the UPPS Impulsive Behavior Scale (UPPS), as well as reasons for living in predicting suicidal ideation among African American college-aged students. The incremental validity of each facet of the UPPS interacting with reasons for living, a construct meant to buffer against risk for suicide, was explored in a sample of African American students (N = 130; ages 18-24). Results revealed significant interactions between reasons for living and two factors of impulsivity, (lack of) premeditation and sensation seeking. Higher levels of sensation seeking and lack of premeditation in conjunction with lower reasons for living was associated with increased suicidal ideation. Neither urgency nor (lack of) perseverance significantly interacted with reasons for living in association with suicidal ideation. These results suggest including elements of impulsivity, specifically sensation seeking and (lack of) premeditation, when screening for suicidal ideation among African American youth. Future investigations should continue to integrate factors of both risk and protection when determining risk for suicide.
Shell, Scarlet S; Putnam, Christopher D; Kolodner, Richard D
2007-06-26
Msh2-Msh3 and Msh2-Msh6 are two partially redundant mispair-recognition complexes that initiate mismatch repair in eukaryotes. Crystal structures of the prokaryotic homolog MutS suggest the mechanism by which Msh6 interacts with mispairs because key mispair-contacting residues are conserved in these two proteins. Because Msh3 lacks these conserved residues, we constructed a series of mutants to investigate the requirements for mispair interaction by Msh3. We found that a chimeric protein in which the mispair-binding domain (MBD) of Msh6 was replaced by the equivalent domain of Msh3 was functional for mismatch repair. This chimera possessed the mispair-binding specificity of Msh3 and revealed that communication between the MBD and the ATPase domain is conserved between Msh2-Msh3 and Msh2-Msh6. Further, the chimeric protein retained Msh6-like properties with respect to genetic interactions with the MutL homologs and an Msh2 MBD deletion mutant, indicating that Msh3-like behaviors beyond mispair specificity are not features controlled by the MBD.
Mast cell tryptase changes with Aspergillus fumigatus - Host crosstalk in cystic fibrosis patients.
Gomez, Carine; Carsin, Ania; Gouitaa, Marion; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Mège, Jean-Louis; Ranque, Stéphane; Vitte, Joana
2018-02-15
Pulmonary and systemic antifungal immunity influences quality of life and survival of people with cystic fibrosis. Aspergillus fumigatus (Af) induces specific IgG and IgE. Mast cells respond to IgE, IgG and direct interactions with Af. Mast cells are the source of the protease tryptase. We aimed at evaluating serum baseline tryptase as a potential biomarker of the Af-host interaction in cystic fibrosis patients. Serum baseline tryptase, IgE and IgG directed to Af extract and Af molecular allergens were measured in 76 cystic fibrosis patients. The main findings were (i) lower levels of serum baseline tryptase in patients displaying specific IgE to Af (p < 0.0001) and (ii) an association between tryptase levels and IgE or IgG responses to Af and ribotoxin (Asp f 1). These findings suggest that serum baseline tryptase is influenced by Af-host interactions and thus might be a marker for mast cell regulation and pulmonary immune defenses. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
The Nuclear Pore-Associated TREX-2 Complex Employs Mediator to Regulate Gene Expression
Schneider, Maren; Hellerschmied, Doris; Schubert, Tobias; Amlacher, Stefan; Vinayachandran, Vinesh; Reja, Rohit; Pugh, B. Franklin; Clausen, Tim; Köhler, Alwin
2015-01-01
Summary Nuclear pore complexes (NPCs) influence gene expression besides their established function in nuclear transport. The TREX-2 complex localizes to the NPC basket and affects gene-NPC interactions, transcription, and mRNA export. How TREX-2 regulates the gene expression machinery is unknown. Here, we show that TREX-2 interacts with the Mediator complex, an essential regulator of RNA Polymerase (Pol) II. Structural and biochemical studies identify a conserved region on TREX-2, which directly binds the Mediator Med31/Med7N submodule. TREX-2 regulates assembly of Mediator with the Cdk8 kinase and is required for recruitment and site-specific phosphorylation of Pol II. Transcriptome and phenotypic profiling confirm that TREX-2 and Med31 are functionally interdependent at specific genes. TREX-2 additionally uses its Mediator-interacting surface to regulate mRNA export suggesting a mechanism for coupling transcription initiation and early steps of mRNA processing. Our data provide mechanistic insight into how an NPC-associated adaptor complex accesses the core transcription machinery. PMID:26317468
Stange, Jonathan P; Hamlat, Elissa J; Hamilton, Jessica L; Abramson, Lyn Y; Alloy, Lauren B
2013-02-01
Overgeneral autobiographical memory (OGM) is associated with depression and may confer risk for the development of depressed mood, but few longitudinal studies have evaluated OGM as a predictor of depressive symptoms in early adolescence, particularly in the context of environmental stressors. We investigated whether OGM and emotional maltreatment would interact to predict prospective increases in depressive symptoms in early adolescents and whether these effects differed by race. Among 174 seventh-graders, OGM and familial emotional abuse interacted to predict depressive symptoms eight months later, controlling for initial depressive symptoms. Specifically, emotional abuse predicted increases in depressive symptoms among Caucasian adolescents with more OGM, but not among those with less OGM. This association was not significant for African American adolescents. These results provide support for a cognitive vulnerability-stress relationship between OGM and emotional abuse in early adolescence and suggest that these mechanisms of risk for depression may be specific to Caucasian adolescents. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Salami, Temilola K.; Brooks, Bianca A.; Lamis, Dorian A.
2015-01-01
This study aims to explore the impact of specific facets of impulsivity as measured by the UPPS Impulsive Behavior Scale (UPPS), as well as reasons for living in predicting suicidal ideation among African American college-aged students. The incremental validity of each facet of the UPPS interacting with reasons for living, a construct meant to buffer against risk for suicide, was explored in a sample of African American students (N = 130; ages 18–24). Results revealed significant interactions between reasons for living and two factors of impulsivity, (lack of) premeditation and sensation seeking. Higher levels of sensation seeking and lack of premeditation in conjunction with lower reasons for living was associated with increased suicidal ideation. Neither urgency nor (lack of) perseverance significantly interacted with reasons for living in association with suicidal ideation. These results suggest including elements of impulsivity, specifically sensation seeking and (lack of) premeditation, when screening for suicidal ideation among African American youth. Future investigations should continue to integrate factors of both risk and protection when determining risk for suicide. PMID:25988310
Karki, Ichhuk; Christen, Martin T; Spiriti, Justin; Slack, Ryan L; Oda, Masayuki; Kanaori, Kenji; Zuckerman, Daniel M; Ishima, Rieko
2016-12-15
This article communicates our study to elucidate the molecular determinants of weak Mg 2+ interaction with the ribonuclease H (RNH) domain of HIV-1 reverse transcriptase in solution. As the interaction is weak (a ligand-dissociation constant >1 mM), nonspecific Mg 2+ interaction with the protein or interaction of the protein with other solutes that are present in the buffer solution can confound the observed Mg 2+ -titration data. To investigate these indirect effects, we monitored changes in the chemical shifts of backbone amides of RNH by recording NMR 1 H- 15 N heteronuclear single-quantum coherence spectra upon titration of Mg 2+ into an RNH solution. We performed the titration under three different conditions: (1) in the absence of NaCl, (2) in the presence of 50 mM NaCl, and (3) at a constant 160 mM Cl - concentration. Careful analysis of these three sets of titration data, along with molecular dynamics simulation data of RNH with Na + and Cl - ions, demonstrates two characteristic phenomena distinct from the specific Mg 2+ interaction with the active site: (1) weak interaction of Mg 2+ , as a salt, with the substrate-handle region of the protein and (2) overall apparent lower Mg 2+ affinity in the absence of NaCl compared to that in the presence of 50 mM NaCl. A possible explanation may be that the titrated MgCl 2 is consumed as a salt and interacts with RNH in the absence of NaCl. In addition, our data suggest that Na + increases the kinetic rate of the specific Mg 2+ interaction at the active site of RNH. Taken together, our study provides biophysical insight into the mechanism of weak metal interaction on a protein.
Modulation of TEL transcription activity by interaction with the ubiquitin-conjugating enzyme UBC9
Chakrabarti, Subhra Ranjan; Sood, Rashmi; Ganguly, Surajit; Bohlander, Stefan; Shen, Zhiyuan; Nucifora, Giuseppina
1999-01-01
The E-26 transforming specific (ETS)-related gene TEL, also known as ETV6, is involved in a large number of chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. The encoded protein contains two functional domains: a helix–loop–helix (HLH) domain (also known as pointed domain) located at the N terminus and a DNA-binding domain located at the C terminus. The HLH domain is involved in protein–protein interaction with itself and other members of the ETS family of transcription factors such as FLI1. TEL is a transcription factor, and we and others have shown that it is a repressor of gene expression. To understand further the role of TEL in the cell, we have used an in vivo interaction system to identify proteins that interact with TEL. We show that a protein, UBC9, interacts specifically with TEL in vitro and in vivo. UBC9 is a member of the family of ubiquitin-conjugating enzymes. These enzymes usually are involved in proteosome-mediated degradation; however, our data suggest that interaction of TEL with UBC9 does not lead to TEL degradation. Our studies show that UBC9 binds to TEL exclusively through the HLH domain of TEL. We also show that TEL expressed as fusion to the DNA-binding domain of Gal4 completely represses a Gal4-responsive promoter, but that the coexpression of UBC9 in the same system restores the activity of the promoter. Targeted point mutation of conserved amino acids in UBC9 essential for enzymatic ubiquitination of proteins does not affect interaction nor transcriptional activity. Based on our data, we conclude that UBC9 physically interacts with TEL through the HLH domain and that the interaction leads to modulation of the transcription activity of TEL. PMID:10377438
Yang, A S; Hitz, B; Honig, B
1996-06-21
The stability of beta-turns is calculated as a function of sequence and turn type with a Monte Carlo sampling technique. The conformational energy of four internal hydrogen-bonded turn types, I, I', II and II', is obtained by evaluating their gas phase energy with the CHARMM force field and accounting for solvation effects with the Finite Difference Poisson-Boltzmann (FDPB) method. All four turn types are found to be less stable than the coil state, independent of the sequence in the turn. The free-energy penalties associated with turn formation vary between 1.6 kcal/mol and 7.7 kcal/mol, depending on the sequence and turn type. Differences in turn stability arise mainly from intraresidue interactions within the two central residues of the turn. For each combination of the two central residues, except for -Gly-Gly-, the most stable beta-turn type is always found to occur most commonly in native proteins. The fact that a model based on local interactions accounts for the observed preference of specific sequences suggests that long-range tertiary interactions tend to play a secondary role in determining turn conformation. In contrast, for beta-hairpins, long-range interactions appear to dominate. Specifically, due to the right-handed twist of beta-strands, type I' turns for -Gly-Gly- are found to occur with high frequency, even when local energetics would dictate otherwise. The fact that any combination of two residues is found able to adopt a relatively low-energy turn structure explains why the amino acid sequence in turns is highly variable. The calculated free-energy cost of turn formation, when combined with related numbers obtained for alpha-helices and beta-sheets, suggests a model for the initiation of protein folding based on metastable fragments of secondary structure.
Amae as metalanguage: a critique of Doi's theory of amae.
Taketomo, Y
1986-10-01
For many years Doi's ideas on the links between amae and the satisfaction of dependency needs have influenced discussions of the so-called Japanese character. In reviewing Doi's theory, however, major problems emerge. Beginning with the very definition of amae, one finds that Doi has chosen to stress only one aspect of amae. When one returns to his lexical sources, one discovers that the common denominator in the various definitions of amae does not lie in a single, monolithic motivation, as Doi proposes. Instead, it is suggested, amae should be viewed as a metalanguage. To understand the metacommunicational significance of amae, one must consider the rules that govern the behavior of the interactants in amae. Three different situations of amae are delineated. In the childhood interaction, the child playfully mimicks the infant's attachment behavior. With the adult coquetry situation, one observes the female playfully behaving as if she were the child mimicking the infant-mother prototype. Finally, in the third context subset of amae, there is a "trespassing on" or "taking advantage of" another person, with the beneficent approval of the second interactant. The common factor thus appears to be a mutually agreed-upon suspension of certain ordinary restraints on behavior. A metalanguage theory of amae, as an alternative to Doi's proposal, places emphasis on the culture-specific message of the interaction itself rather than on a single, monolithic motivation or an object-language interpretation. Indeed, various motivations are suggested, depending on the specific context of amae as well as the individual case. In this way, it is hoped, a metacommunicational approach to the understanding of amae may broaden the consideration of motivational issues, extending far beyond Doi's insistence on dependency and the search for passive love.
NASA Astrophysics Data System (ADS)
Mizrachi, Yaffa; Naranjo, Jose R.; Levi, Ben-Zion; Pollard, Harvey B.; Lelkes, Peter I.
1990-08-01
Previously we described specific in vitro interactions between PC12 cells, a cloned, catecholamine-secreting pheochromocytoma cell line derived from the rat adrenal medulla, and bovine adrenal medullary endothelial cells. We now demonstrate that these interactions induce the PC12 cells to acquire physical and biochemical characteristics reminiscent of chromaffin cells. Under coculture conditions involving direct cell-cell contact, the endothelial cells and the PC12 cells reduced their rates of proliferation; upon prolonged coculture PC12 cells clustered into nests of cells similar to the organization of chromaffin cells seen in vivo. Within 3 days in coculture with endothelial cells, but not with unrelated control cells, PC12 cells synthesized increased levels of [Met]enkephalin. In addition, PC12 cells, growing on confluent endothelial monolayers, failed to extend neurites in response to nerve growth factor. Neither medium conditioned by endothelial cells nor fixed endothelial cells could by themselves induce all of these different phenomena in the PC12 cells. These results suggest that under coculture conditions PC12 cells change their state of differentiation toward a chromaffin cell-like phenotype. The rapid, transient increase in the expression of the protooncogene c-fos suggests that the mechanism(s) inducing the change in the state of differentiation in PC12 cells in coculture with the endothelial cells may be distinct from that described for the differentiation of PC12 cells--e.g., by glucocorticoids. We propose that similar interactions between endothelial cells and chromaffin cell precursors may occur during embryonic development and that these interactions might be instrumental for the organ-specific differentiation of the adrenal medulla in vivo.
Datta, Deepshikha; Vaidehi, Nagarajan; Floriano, Wely B; Kim, Kwang S; Prasadarao, Nemani V; Goddard, William A
2003-02-01
Esherichia coli, the most common gram-negative bacteria, can penetrate the brain microvascular endothelial cells (BMECs) during the neonatal period to cause meningitis with significant morbidity and mortality. Experimental studies have shown that outer-membrane protein A (OmpA) of E. coli plays a key role in the initial steps of the invasion process by binding to specific sugar moieties present on the glycoproteins of BMEC. These experiments also show that polymers of chitobiose (GlcNAcbeta1-4GlcNAc) block the invasion, while epitopes substituted with the L-fucosyl group do not. We used HierDock computational technique that consists of a hierarchy of coarse grain docking method with molecular dynamics (MD) to predict the binding sites and energies of interactions of GlcNAcbeta1-4GlcNAc and other sugars with OmpA. The results suggest two important binding sites for the interaction of carbohydrate epitopes of BMEC glycoproteins to OmpA. We identify one site as the binding pocket for chitobiose (GlcNAcbeta1-4GlcNAc) in OmpA, while the second region (including loops 1 and 2) may be important for recognition of specific sugars. We find that the site involving loops 1 and 2 has relative binding energies that correlate well with experimental observations. This theoretical study elucidates the interaction sites of chitobiose with OmpA and the binding site predictions made in this article are testable either by mutation studies or invasion assays. These results can be further extended in suggesting possible peptide antagonists and drug design for therapeutic strategies. Copyright 2002 Wiley-Liss, Inc.
USP7 small-molecule inhibitors interfere with ubiquitin binding.
Kategaya, Lorna; Di Lello, Paola; Rougé, Lionel; Pastor, Richard; Clark, Kevin R; Drummond, Jason; Kleinheinz, Tracy; Lin, Eva; Upton, John-Paul; Prakash, Sumit; Heideker, Johanna; McCleland, Mark; Ritorto, Maria Stella; Alessi, Dario R; Trost, Matthias; Bainbridge, Travis W; Kwok, Michael C M; Ma, Taylur P; Stiffler, Zachary; Brasher, Bradley; Tang, Yinyan; Jaishankar, Priyadarshini; Hearn, Brian R; Renslo, Adam R; Arkin, Michelle R; Cohen, Frederick; Yu, Kebing; Peale, Frank; Gnad, Florian; Chang, Matthew T; Klijn, Christiaan; Blackwood, Elizabeth; Martin, Scott E; Forrest, William F; Ernst, James A; Ndubaku, Chudi; Wang, Xiaojing; Beresini, Maureen H; Tsui, Vickie; Schwerdtfeger, Carsten; Blake, Robert A; Murray, Jeremy; Maurer, Till; Wertz, Ingrid E
2017-10-26
The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy more broadly applicable to inhibiting proteins that require ubiquitin binding for full functional activity.
Automatic prediction of facial trait judgments: appearance vs. structural models.
Rojas, Mario; Masip, David; Todorov, Alexander; Vitria, Jordi
2011-01-01
Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.
Interaction between cardiac myosin-binding protein C and formin Fhod3.
Matsuyama, Sho; Kage, Yohko; Fujimoto, Noriko; Ushijima, Tomoki; Tsuruda, Toshihiro; Kitamura, Kazuo; Shiose, Akira; Asada, Yujiro; Sumimoto, Hideki; Takeya, Ryu
2018-05-08
Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.
The interaction of ruminant IgG with receptor type II for IgG on human phagocytes.
Jungi, T W; Peterhans, E; Pfister, H; Fey, H
1989-01-01
The interaction of ruminant IgG with human phagocytes was assessed using Fc receptor (FcR)-mediated ingestion and the triggering of a respiratory burst as effector functions indicative of receptor-specific interaction. In monomeric form, ruminant IgG was three to five orders of magnitude less potent than homologous IgG in inhibiting FcR-specific phagocytosis by monocytes. However, when attached to tanned sheep erythrocytes (Es-T), ruminant IgG was opsonic, as it promoted enhanced phagocytosis of Es-T, comparable to ingestion of rabbit IgG-coated Es. This phagocytosis was inhibitable by high concentrations of human IgG in the fluid phase. Moreover, Es-T precoated with ferritin could be opsonized to a similar degree by anti-ferritin IgG from rabbit and cow. However, only bovine IgG1, but not IgG2, was opsonic. Bovine and goat IgG of some, but not other, suppliers were inactive. Similar results were obtained by measuring the respiratory burst triggered by heat-aggregated IgG, using a luminol-enhanced chemiluminescence assay. Thus, human IgG and ruminant IgG stimulated monocytes and, to a lesser extent, polymorphonuclear leucocytes (PMN), to generate CL. Depending on the manufacturer, some preparations of bovine and goat IgG were inactive, and bovine IgG2 failed to induce CL. These findings prove that certain ruminant IgG preparations, including bovine IgG1 interacting weakly with homologous PMN and monocytes, do interact with human PMN, monocytes and macrophages in a FcR-specific manner when offered in complexed form. Inhibition studies suggest that bovine IgG1 interacts mainly with human FcR type II. In contrast, bovine IgG2, regarded as cytophilic for homologous PMN, fails to interact with human PMN, monocytes and macrophages. PMID:15493277
Dynamic Modularity of Host Protein Interaction Networks in Salmonella Typhi Infection
Dhal, Paltu Kumar; Barman, Ranjan Kumar; Saha, Sudipto; Das, Santasabuj
2014-01-01
Background Salmonella Typhi is a human-restricted pathogen, which causes typhoid fever and remains a global health problem in the developing countries. Although previously reported host expression datasets had identified putative biomarkers and therapeutic targets of typhoid fever, the underlying molecular mechanism of pathogenesis remains incompletely understood. Methods We used five gene expression datasets of human peripheral blood from patients suffering from S. Typhi or other bacteremic infections or non-infectious disease like leukemia. The expression datasets were merged into human protein interaction network (PIN) and the expression correlation between the hubs and their interacting proteins was measured by calculating Pearson Correlation Coefficient (PCC) values. The differences in the average PCC for each hub between the disease states and their respective controls were calculated for studied datasets. The individual hubs and their interactors with expression, PCC and average PCC values were treated as dynamic subnetworks. The hubs that showed unique trends of alterations specific to S. Typhi infection were identified. Results We identified S. Typhi infection-specific dynamic subnetworks of the host, which involve 81 hubs and 1343 interactions. The major enriched GO biological process terms in the identified subnetworks were regulation of apoptosis and biological adhesions, while the enriched pathways include cytokine signalling in the immune system and downstream TCR signalling. The dynamic nature of the hubs CCR1, IRS2 and PRKCA with their interactors was studied in detail. The difference in the dynamics of the subnetworks specific to S. Typhi infection suggests a potential molecular model of typhoid fever. Conclusions Hubs and their interactors of the S. Typhi infection-specific dynamic subnetworks carrying distinct PCC values compared with the non-typhoid and other disease conditions reveal new insight into the pathogenesis of S. Typhi. PMID:25144185
Collisional quenching at ultralow energies: controlling efficiency with internal state selection.
Bovino, S; Bodo, E; Gianturco, F A
2007-12-14
Calculations have been carried out for the vibrational quenching of excited H(2) molecules which collide with Li(+) ions at ultralow energies. The dynamics has been treated exactly using the well-known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier by our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g., the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made such that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies.
Chue, Amanda E; Gunthert, Kathleen C; Ahrens, Anthony H; Skalina, Lauren M
2017-02-01
Research has suggested that there are benefits to socially sharing anger as an emotion regulation strategy. We hypothesized that these benefits may depend on the frequency with which one is experiencing anger. We used an experience sampling methodology to explore the interaction between frequency of anger and reliance on social expression of anger as a predictor of changes in depression symptoms 4 months later. We found that a strong reliance on social expression prospectively predicted lower depression symptoms when participants endorsed anger infrequently but predicted an increase in subsequent depression symptoms when anger was endorsed frequently. This interaction was specific to anger and did not extend to sadness or anxiety. These results highlight the importance of considering the effectiveness of emotion regulation strategies in the context of specific emotions and the frequency of the experienced emotion in everyday life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bmp2 and Notch cooperate to pattern the embryonic endocardium.
Papoutsi, T; Luna-Zurita, L; Prados, B; Zaffran, S; de la Pompa, J L
2018-05-31
Signaling interactions between myocardium and endocardium pattern embryonic cardiac regions, instructing their development to fulfill specific functions in the mature heart. We show that ectopic Bmp2 expression in the mouse chamber myocardium changes the transcriptional signature of adjacent chamber endocardial cells into valve tissue, and enables them to undergo epithelial-mesenchyme transition. This induction is independent of valve myocardium specification and requires high levels of Notch1 activity. Biochemical experiments suggest that Bmp2-mediated Notch1 induction is achieved through transcriptional activation of the Notch ligand Jag1, and physical interaction of Smad1/5 with the intracellular domain of the Notch1 receptor. Thus, widespread myocardial Bmp2 and endocardial Notch signaling drive presumptive ventricular endocardium to differentiate into valve endocardium. Understanding the molecular basis of valve development is instrumental to designing therapeutic strategies for congenital heart valve defects. © 2018. Published by The Company of Biologists Ltd.
Peluso, Ilaria; Romanelli, Luca; Palmery, Maura
2014-05-01
The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.
A Dynamic Network Model to Explain the Development of Excellent Human Performance
Den Hartigh, Ruud J. R.; Van Dijk, Marijn W. G.; Steenbeek, Henderien W.; Van Geert, Paul L. C.
2016-01-01
Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research. PMID:27148140
Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity
Lee, Eun-Young; Lee, Hyun-Cheol; Kim, Hyun-Kwan; Jang, Song Yee; Park, Seong-Jun; Kim, Yong-Hoon; Kim, Jong Hwan; Hwang, Jungwon; Kim, Jae-Hoon; Kim, Tae-Hwan; Arif, Abul; Kim, Seon-Young; Choi, Young-Ki; Lee, Cheolju; Lee, Chul-Ho; Jung, Jae U; Fox, Paul L; Kim, Sunghoon; Lee, Jong-Soo; Kim, Myung Hee
2016-01-01
The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/−) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection. PMID:27595231
Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence.
Lenain, Christelle; de Graaf, Carolyn A; Pagie, Ludo; Visser, Nils L; de Haas, Marcel; de Vries, Sandra S; Peric-Hupkes, Daniel; van Steensel, Bas; Peeper, Daniel S
2017-10-01
Cellular senescence is a mechanism that virtually irreversibly suppresses the proliferative capacity of cells in response to various stress signals. This includes the expression of activated oncogenes, which causes Oncogene-Induced Senescence (OIS). A body of evidence points to the involvement in OIS of chromatin reorganization, including the formation of senescence-associated heterochromatic foci (SAHF). The nuclear lamina (NL) is an important contributor to genome organization and has been implicated in cellular senescence and organismal aging. It interacts with multiple regions of the genome called lamina-associated domains (LADs). Some LADs are cell-type specific, whereas others are conserved between cell types and are referred to as constitutive LADs (cLADs). Here, we used DamID to investigate the changes in genome-NL interactions in a model of OIS triggered by the expression of the common BRAF V600E oncogene. We found that OIS cells lose most of their cLADS, suggesting the loss of a specific mechanism that targets cLADs to the NL. In addition, multiple genes relocated to the NL. Unexpectedly, they were not repressed, implying the abrogation of the repressive activity of the NL during OIS. Finally, OIS cells displayed an increased association of telomeres with the NL. Our study reveals that senescent cells acquire a new type of LAD organization and suggests the existence of as yet unknown mechanisms that tether cLADs to the NL and repress gene expression at the NL. © 2017 Lenain et al.; Published by Cold Spring Harbor Laboratory Press.
Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function.
Lee, Jongbo; Kim, Minjong; Itoh, Taichi Q; Lim, Chunghun
2018-06-05
Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications. © 2018 Wiley Periodicals, Inc.
Role of bundle helices in a regulatory crosstalk in the trimeric betaine transporter BetP.
Gärtner, Rebecca M; Perez, Camilo; Koshy, Caroline; Ziegler, Christine
2011-12-02
The Na(+)-coupled betaine symporter BetP regulates transport activity in response to hyperosmotic stress only in its trimeric state, suggesting a regulatory crosstalk between individual protomers. BetP shares the overall fold of two inverted structurally related five-transmembrane (TM) helix repeats with the sequence-unrelated Na(+)-coupled symporters LeuT, vSGLT, and Mhp1, which are neither trimeric nor regulated in transport activity. Conformational changes characteristic for this transporter fold involve the two first helices of each repeat, which form a four-TM-helix bundle. Here, we identify two ionic networks in BetP located on both sides of the membrane that might be responsible for BetP's unique regulatory behavior by restricting the conformational flexibility of the four-TM-helix bundle. The cytoplasmic ionic interaction network links both first helices of each repeat in one protomer to the osmosensing C-terminal domain of the adjacent protomer. Moreover, the periplasmic ionic interaction network conformationally locks the four-TM-helix bundle between the same neighbor protomers. By a combination of site-directed mutagenesis, cross-linking, and betaine uptake measurements, we demonstrate how conformational changes in individual bundle helices are transduced to the entire bundle by specific inter-helical interactions. We suggest that one purpose of bundle networking is to assist crosstalk between protomers during transport regulation by specifically modulating the transition from outward-facing to inward-facing state. Copyright © 2011 Elsevier Ltd. All rights reserved.
Whalen, M C; Innes, R W; Bent, A F; Staskawicz, B J
1991-01-01
To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.
Bergeaud, Marie; Mathieu, Lise; Guillaume, Arnaud; Moll, Ute M; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc; Rincheval, Vincent
2013-01-01
We and others previously reported that endogenous p53 can be located at mitochondria in the absence of stress, suggesting that p53 has a role in the normal physiology of this organelle. The aim of this study was to characterize in unstressed cells the intramitochondrial localization of p53 and identify new partners and functions of p53 in mitochondria. We find that the intramitochondrial pool of p53 is located in the intermembrane space and the matrix. Of note, unstressed HCT116 p53+/+ cells simultaneously show increased O₂ consumption and decreased mitochondrial superoxide production compared with their p53-null counterpart. This data was confirmed by stable H1299 cell lines expressing low levels of p53 specifically targeted to the matrix. Using immunoprecipitation and mass spectrometry, we identified the oligomycin sensitivity-conferring protein (OSCP), a subunit of the F₁F₀-ATP synthase complex, as a new partner of endogenous p53, specifically interacting with p53 localized in the matrix. Interestingly, this interaction seems implicated in mitochondrial p53 localization. Moreover, p53 localized in the matrix promotes the assembly of F₁F₀-ATP synthase. Taking into account that deregulations of mitochondrial respiration and reactive oxygen species production are tightly linked to cancer development, we suggest that mitochondrial p53 may be an important regulator of normal mitochondrial and cellular physiology, potentially exerting tumor suppression activity inside mitochondria. PMID:23966169
Bergeaud, Marie; Mathieu, Lise; Guillaume, Arnaud; Moll, Ute M; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc; Rincheval, Vincent
2013-09-01
We and others previously reported that endogenous p53 can be located at mitochondria in the absence of stress, suggesting that p53 has a role in the normal physiology of this organelle. The aim of this study was to characterize in unstressed cells the intramitochondrial localization of p53 and identify new partners and functions of p53 in mitochondria. We find that the intramitochondrial pool of p53 is located in the intermembrane space and the matrix. Of note, unstressed HCT116 p53(+/+) cells simultaneously show increased O₂ consumption and decreased mitochondrial superoxide production compared with their p53-null counterpart. This data was confirmed by stable H1299 cell lines expressing low levels of p53 specifically targeted to the matrix. Using immunoprecipitation and mass spectrometry, we identified the oligomycin sensitivity-conferring protein (OSCP), a subunit of the F₁F₀-ATP synthase complex, as a new partner of endogenous p53, specifically interacting with p53 localized in the matrix. Interestingly, this interaction seems implicated in mitochondrial p53 localization. Moreover, p53 localized in the matrix promotes the assembly of F₁F₀-ATP synthase. Taking into account that deregulations of mitochondrial respiration and reactive oxygen species production are tightly linked to cancer development, we suggest that mitochondrial p53 may be an important regulator of normal mitochondrial and cellular physiology, potentially exerting tumor suppression activity inside mitochondria.
McDonald, Nicole M.; Baker, Jason K.; Messinger, Daniel S.
2016-01-01
This longitudinal study investigated whether variation in the oxytocin receptor gene (OXTR) and early parent-child interactions predicted later empathic behavior in 84 toddlers at high or low familial risk for ASD. Two well-studied OXTR single nucleotide polymorphisms (SNPs), rs53576 and rs2254298, were examined. Parent-child interaction was measured at 15 and 18 months of age during free play sessions. Empathy was measured at 24 and 30 months using a response to parental distress paradigm. While there was no direct association between parent-child interaction quality or OXTR and empathy, rs53576 moderated the relation between interaction quality and empathy. Results suggest that the interplay between OXTR and early parent-child interactions predicts individual differences in empathy in children at varying risk for atypical social development. Findings are consonant with a differential susceptibility model in which an OXTR variant may increase the social salience of interaction processes for specific allele carriers. These results increase our understanding of predictors of empathy development in young children with a wide range of social outcomes. PMID:26998571
New perspective on glycoside hydrolase binding to lignin from pretreated corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth
Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less
New perspective on glycoside hydrolase binding to lignin from pretreated corn stover
Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth; ...
2015-12-18
Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less
Drosophila TIM Binds Importin α1, and Acts as an Adapter to Transport PER to the Nucleus
Jang, A. Reum; Moravcevic, Katarina; Saez, Lino; Young, Michael W.; Sehgal, Amita
2015-01-01
Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER. PMID:25674790
Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pei-Yao; Hsieh, Tsai-Yuan; Liu, Shu-Ting
2011-12-10
Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity bymore » interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.« less
Mariani, Luca; Weinand, Kathryn; Vedenko, Anastasia; Barrera, Luis A; Bulyk, Martha L
2017-09-27
Transcription factors (TFs) control cellular processes by binding specific DNA motifs to modulate gene expression. Motif enrichment analysis of regulatory regions can identify direct and indirect TF binding sites. Here, we created a glossary of 108 non-redundant TF-8mer "modules" of shared specificity for 671 metazoan TFs from publicly available and new universal protein binding microarray data. Analysis of 239 ENCODE TF chromatin immunoprecipitation sequencing datasets and associated RNA sequencing profiles suggest the 8mer modules are more precise than position weight matrices in identifying indirect binding motifs and their associated tethering TFs. We also developed GENRE (genomically equivalent negative regions), a tunable tool for construction of matched genomic background sequences for analysis of regulatory regions. GENRE outperformed four state-of-the-art approaches to background sequence construction. We used our TF-8mer glossary and GENRE in the analysis of the indirect binding motifs for the co-occurrence of tethering factors, suggesting novel TF-TF interactions. We anticipate that these tools will aid in elucidating tissue-specific gene-regulatory programs. Copyright © 2017 Elsevier Inc. All rights reserved.
Two intermediate states of the conformational switch in dual specificity phosphatase 13a.
Wei, Chun Hwa; Min, Hee Gyeong; Kim, Myeongbin; Kim, Gwan Hee; Chun, Ha-Jung; Ryu, Seong Eon
2018-02-01
Dual specificity phosphatases (DUSPs) include MAP kinase phosphatases and atypical dual specificity phosphatases and mediate cell growth and differentiation, brain function, and immune responses. They serve as targets for drug development against cancers, diabetes and depression. Several DUSPs have non-canonical conformation of the central β-sheet and active site loops, suggesting that they may have conformational switch that is related to the regulation of enzyme activity. Here, we determined the crystal structure of DUSP13a, and identified two different structures that represent intermediates of the postulated conformational switch. Amino acid sequence of DUSP13a is not significantly homologous to DUSPs with conformational switch, indicating that the conformational switch is not sequence-dependent, but rather determined by ligand interaction. The sequence-independency suggests that other DUSPs with canonical conformation may have the conformational switch during specific cellular regulation. The conformational switch leads to significant changes in the protein surface, including a hydrophobic surface and pockets, which can be exploited for development of allosteric modulators of drug target DUSPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Polimanti, Renato; Zhao, Hongyu; Farrer, Lindsay A; Kranzler, Henry R; Gelernter, Joel
2017-12-01
We previously mapped loci for the genome-wide association studies (GWAS) and genome-wide gene-by-alcohol dependence interaction (GW-GxAD) analyses of risky sexual behaviors (RSB). This study extends those findings by analyzing the ancestry- and sex-specific AD-stratified effects on RSB. We examined the concordance of findings for the AD-stratified GWAS and the GW-GxAD analysis of RSB, with concordance defined as genome-wide significance in one analysis and at least nominal significance in the second analysis. A total of 2,173 African-American (AA) and 1,751 European-American (EA) subjects were investigated. Information regarding RSB (lifetime experiences of unprotected sex and multiple sexual partners) and DSM-IV diagnosis of lifetime AD were derived from the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA). In our ancestry- and sex-specific analyses, we identified four independent genome-wide significant (GWS) loci (p < 5*10 -8 ) and one suggestive locus (p < 6*10 -8 ). In men, we observed a GWS signal in FAM162A (rs2002594, p = 4.96*10 -8 ). In women, there was a suggestive locus in PLGRKT (rs3824435, p = 5.52*10 -8 ). In AAs, there was a GWS signal in GRK5 (rs1316543, p = 1.25*10 -9 ). In AA men, we observed an intergenic GWS signal (rs12898370, p = 4.49*10 -8 ) near LINGO1. In EA men, there was a GWS signal in CCSER1 (rs62313897; p = 7.93*10 -10 ). The loci identified in this GWAS implicate molecular mechanisms related to psychiatric illness and personality features, suggesting that the interplay between AD and RSB is mediated by alleles associated with behavioral traits. © 2017 Wiley Periodicals, Inc.
Vermaas, Josh V.; Taguchi, Alexander T.; Dikanov, Sergei A.; ...
2015-03-03
Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, in this paper we have investigated and characterized themore » interactions of the protein with the quinones in the Q A and Q B sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q B site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q A and Q B sites. Finally, disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q A–Q B– biradical and competitive binding assays.« less
Pratt, Judith; Dawson, Neil; Morris, Brain J; Grent-'t-Jong, Tineke; Roux, Frederic; Uhlhaas, Peter J
2017-02-01
The thalamus has recently received renewed interest in systems-neuroscience and schizophrenia (ScZ) research because of emerging evidence highlighting its important role in coordinating functional interactions in cortical-subcortical circuits. Moreover, higher cognitive functions, such as working memory and attention, have been related to thalamo-cortical interactions, providing a novel perspective for the understanding of the neural substrate of cognition. The current review will support this perspective by summarizing evidence on the crucial role of neural oscillations in facilitating thalamo-cortical (TC) interactions during normal brain functioning and their potential impairment in ScZ. Specifically, we will focus on the relationship between NMDA-R mediated (glutamatergic) neurotransmission in TC-interactions. To this end, we will first review the functional anatomy and neurotransmitters in thalamic circuits, followed by a review of the oscillatory signatures and cognitive processes supported by TC-circuits. In the second part of the paper, data from preclinical research as well as human studies will be summarized that have implicated TC-interactions as a crucial target for NMDA-receptor hypofunctioning. Finally, we will compare these neural signatures with current evidence from ScZ-research, suggesting a potential overlap between alterations in TC-circuits as the result of NMDA-R deficits and stage-specific alterations in large-scale networks in ScZ. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid surface-biostructure interaction analysis using strong metal-based nanomagnets.
Rotzetter, Aline C C; Schumacher, Christoph M; Zako, Tamotsu; Stark, Wendelin J; Maeda, Mizuo
2013-11-19
Nanomaterials are increasingly suggested for the selective adsorption and extraction of complex compounds in biomedicine. Binding of the latter requires specific surface modifications of the nanostructures. However, even complicated macromolecules such as proteins can afford affinities toward basic surface characteristics such as hydrophobicity, topology, and electrostatic charge. In this study, we address these more basic physical interactions. In a model system, the interaction of bovine serum albumin and amyloid β 42 fibrillar aggregates with carbon-coated cobalt nanoparticles, functionalized with various polymers differing in character, was studied. The possibility of rapid magnetic separation upon binding to the surface represents a valuable tool for studying surface interactions and selectivities. We find that the surface interaction of Aβ 42 fibrillar aggregates is mostly hydrophobic in nature. Because bovine serum albumin (BSA) is conformationally adaptive, it is known to bind surfaces with widely differing properties (charge, topology, and hydrophobicity). However, the rate of tight binding (no desorption upon washing) can vary largely depending on the extent of necessary conformational changes for a specific surface. We found that BSA can only bind slowly to polyethylenimine-coated nanomagnets. Under competitive conditions (high excess BSA compared to that for β 42 fibrillar aggregates), this effect is beneficial for targeting the fibrillar species. These findings highlight the possibility of selective extractions from complex media when advantageous basic physical surface properties are chosen.
Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; Tajkhorshid, Emad
2015-03-31
Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, we have investigated and characterized the interactions of the protein with the quinones in the Q(A) and Q(B) sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q(B) site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q(A) and Q(B) sites. Disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q(A)⁻Q(B)⁻ biradical and competitive binding assays.
Stetz, Gabrielle; Verkhivker, Gennady M.
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400
Stetz, Gabrielle; Verkhivker, Gennady M
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.
Cofactor-dependent specificity of a DEAD-box protein.
Young, Crystal L; Khoshnevis, Sohail; Karbstein, Katrin
2013-07-16
DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiweilidan, Yimingjiang; Klauza, Izabela; Kordeli, Ekaterini, E-mail: ekaterini.kordeli@inserm.fr
2011-04-01
Ankyrins, the adapters of the spectrin skeleton, are involved in local accumulation and stabilization of integral proteins to the appropriate membrane domains. In striated muscle, tissue-dependent alternative splicing generates unique Ank3 gene products (ankyrins-G); they share the Obscurin/Titin-Binding-related Domain (OTBD), a muscle-specific insert of the C-terminal domain which is highly conserved among ankyrin genes, and binds obscurin and titin to Ank1 gene products. We previously proposed that OTBD sequences constitute a novel domain of protein-protein interactions which confers ankyrins with specific cellular functions in muscle. Here we searched for muscle proteins binding to ankyrin-G OTBD by yeast two hybrid assay,more » and we found plectin and filamin C, two organizing elements of the cytoskeleton with essential roles in myogenesis, muscle cell cytoarchitecture, and muscle disease. The three proteins coimmunoprecipitate from skeletal muscle extracts and colocalize at costameres in adult muscle fibers. During in vitro myogenesis, muscle ankyrins-G are first expressed in postmitotic myocytes undergoing fusion to myotubes. In western blots of subcellular fractions from C2C12 cells, the majority of muscle ankyrins-G appear associated with membrane compartments. Occasional but not extensive co-localization at nascent costameres suggested that ankyrin-G interactions with plectin and filamin C are not involved in costamere assembly; they would rather reinforce stability and/or modulate molecular interactions in sarcolemma microdomains by establishing novel links between muscle-specific ankyrins-G and the two costameric dystrophin-associated glycoprotein and integrin-based protein complexes. These results report the first protein-protein interactions involving the ankyrin-G OTBD domain and support the hypothesis that OTBD sequences confer ankyrins with a gain of function in vertebrates, bringing further consolidation and resilience of the linkage between sarcomeres and sarcolemma.« less
Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles
NASA Astrophysics Data System (ADS)
Touber, Emile; Sandham, Neil D.
2009-12-01
Three different large-eddy simulation investigations of the interaction between an impinging oblique shock and a supersonic turbulent boundary layer are presented. All simulations made use of the same inflow technique, specifically aimed at avoiding possible low-frequency interferences with the shock/boundary-layer interaction system. All simulations were run on relatively wide computational domains and integrated over times greater than twenty five times the period of the most commonly reported low-frequency shock-oscillation, making comparisons at both time-averaged and low-frequency-dynamic levels possible. The results confirm previous experimental results which suggested a simple linear relation between the interaction length and the oblique-shock strength if scaled using the boundary-layer thickness and wall-shear stress. All the tested cases show evidences of significant low-frequency shock motions. At the wall, energetic low-frequency pressure fluctuations are observed, mainly in the initial part of interaction.
A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.
Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O
2010-12-02
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.
On the Utilization of Social Animals as a Model for Social Robotics
Miklósi, Ádám; Gácsi, Márta
2012-01-01
Social robotics is a thriving field in building artificial agents. The possibility to construct agents that can engage in meaningful social interaction with humans presents new challenges for engineers. In general, social robotics has been inspired primarily by psychologists with the aim of building human-like robots. Only a small subcategory of “companion robots” (also referred to as robotic pets) was built to mimic animals. In this opinion essay we argue that all social robots should be seen as companions and more conceptual emphasis should be put on the inter-specific interaction between humans and social robots. This view is underlined by the means of an ethological analysis and critical evaluation of present day companion robots. We suggest that human–animal interaction provides a rich source of knowledge for designing social robots that are able to interact with humans under a wide range of conditions. PMID:22457658
Chtanova, Tatyana; Han, Seong-Ji; Schaeffer, Marie; van Dooren, Giel G; Herzmark, Paul; Striepen, Boris; Robey, Ellen A
2009-08-21
Memory T cells circulate through lymph nodes where they are poised to respond rapidly upon re-exposure to a pathogen; however, the dynamics of memory T cell, antigen-presenting cell, and pathogen interactions during recall responses are largely unknown. We used a mouse model of infection with the intracellular protozoan parasite, Toxoplasma gondii, in conjunction with two-photon microscopy, to address this question. After challenge, memory T cells migrated more rapidly than naive T cells, relocalized toward the subcapsular sinus (SCS) near invaded macrophages, and engaged in prolonged interactions with infected cells. Parasite invasion of T cells occurred by direct transfer of the parasite from the target cell into the T cell and corresponded to an antigen-specific increase in the rate of T cell invasion. Our results provide insight into cellular interactions during recall responses and suggest a mechanism of pathogen subversion of the immune response.
Damped transverse oscillations of interacting coronal loops
NASA Astrophysics Data System (ADS)
Soler, Roberto; Luna, Manuel
2015-10-01
Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.
Chimera states in nonlocally coupled phase oscillators with biharmonic interaction
NASA Astrophysics Data System (ADS)
Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong
2018-03-01
Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.
Athanasopoulou, Eirini; Fox, John R E
2014-01-01
The birth of a premature infant can have adverse effects on the mood of mothers and on the interaction patterns between parents and their preterm babies. The aim of the present systematic review was to examine whether the Kangaroo Mother Care (KMC) intervention can attenuate these adverse psychological effects of a premature birth by ameliorating negative maternal mood and/or promoting more positive interactions between preterm infants and their parents. The results showed that although findings of studies were inconclusive, there is some evidence to suggest that KMC can make a positive difference on these areas. Specifically, it was found that KMC can improve negative maternal mood (e.g., anxiety or depression) and promote more positive parent-child interactions. Limitations and directions for future research are discussed. © 2014 Michigan Association for Infant Mental Health.
Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds
NASA Astrophysics Data System (ADS)
Harada, Shusaku; Hiromori, Youhei; Nakamura, Shota; Kawahara, Kazuki; Fukakusa, Shunsuke; Maruno, Takahiro; Noda, Masanori; Uchiyama, Susumu; Fukui, Kiichi; Nishikawa, Jun-Ichi; Nagase, Hisamitsu; Kobayashi, Yuji; Yoshida, Takuya; Ohkubo, Tadayasu; Nakanishi, Tsuyoshi
2015-02-01
Organotin compounds such as triphenyltin (TPT) and tributyltin (TBT) act as endocrine disruptors through the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway. We recently found that TPT is a particularly strong agonist of PPARγ. To elucidate the mechanism underlying organotin-dependent PPARγ activation, we here analyzed the interactions of PPARγ ligand-binding domain (LBD) with TPT and TBT by using X-ray crystallography and mass spectroscopy in conjunction with cell-based activity assays. Crystal structures of PPARγ-LBD/TBT and PPARγ-LBD/TPT complexes were determined at 1.95 Å and 1.89 Å, respectively. Specific binding of organotins is achieved through non-covalent ionic interactions between the sulfur atom of Cys285 and the tin atom. Comparisons of the determined structures suggest that the strong activity of TPT arises through interactions with helix 12 of LBD primarily via π-π interactions. Our findings elucidate the structural basis of PPARγ activation by TPT.
Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds
Harada, Shusaku; Hiromori, Youhei; Nakamura, Shota; Kawahara, Kazuki; Fukakusa, Shunsuke; Maruno, Takahiro; Noda, Masanori; Uchiyama, Susumu; Fukui, Kiichi; Nishikawa, Jun-ichi; Nagase, Hisamitsu; Kobayashi, Yuji; Yoshida, Takuya; Ohkubo, Tadayasu; Nakanishi, Tsuyoshi
2015-01-01
Organotin compounds such as triphenyltin (TPT) and tributyltin (TBT) act as endocrine disruptors through the peroxisome proliferator–activated receptor γ (PPARγ) signaling pathway. We recently found that TPT is a particularly strong agonist of PPARγ. To elucidate the mechanism underlying organotin-dependent PPARγ activation, we here analyzed the interactions of PPARγ ligand-binding domain (LBD) with TPT and TBT by using X-ray crystallography and mass spectroscopy in conjunction with cell-based activity assays. Crystal structures of PPARγ-LBD/TBT and PPARγ-LBD/TPT complexes were determined at 1.95 Å and 1.89 Å, respectively. Specific binding of organotins is achieved through non-covalent ionic interactions between the sulfur atom of Cys285 and the tin atom. Comparisons of the determined structures suggest that the strong activity of TPT arises through interactions with helix 12 of LBD primarily via π-π interactions. Our findings elucidate the structural basis of PPARγ activation by TPT. PMID:25687586
Seyerle, Amanda A; Sitlani, Colleen M; Noordam, Raymond; Gogarten, Stephanie M; Li, Jin; Li, Xiaohui; Evans, Daniel S; Sun, Fangui; Laaksonen, Maarit A; Isaacs, Aaron; Kristiansson, Kati; Highland, Heather M; Stewart, James D; Harris, Tamara B; Trompet, Stella; Bis, Joshua C; Peloso, Gina M; Brody, Jennifer A; Broer, Linda; Busch, Evan L; Duan, Qing; Stilp, Adrienne M; O’Donnell, Christopher J; Macfarlane, Peter W; Floyd, James S; Kors, Jan A; Lin, Henry J; Li-Gao, Ruifang; Sofer, Tamar; Méndez-Giráldez, Raúl; Cummings, Steven R; Heckbert, Susan R; Hofman, Albert; Ford, Ian; Li, Yun; Launer, Lenore J; Porthan, Kimmo; Newton-Cheh, Christopher; Napier, Melanie D; Kerr, Kathleen F; Reiner, Alexander P; Rice, Kenneth M; Roach, Jeffrey; Buckley, Brendan M; Soliman, Elsayed Z; de Mutsert, Renée; Sotoodehnia, Nona; Uitterlinden, André G; North, Kari E; Lee, Craig R; Gudnason, Vilmundur; Stürmer, Til; Rosendaal, Frits R; Taylor, Kent D; Wiggins, Kerri L; Wilson, James G; Chen, Yii-Der I; Kaplan, Robert C; Wilhelmsen, Kirk; Cupples, L Adrienne; Salomaa, Veikko; van Duijn, Cornelia; Jukema, J Wouter; Liu, Yongmei; Mook-Kanamori, Dennis O; Lange, Leslie A; Vasan, Ramachandran S; Smith, Albert V; Stricker, Bruno H; Laurie, Cathy C; Rotter, Jerome I; Whitsel, Eric A; Psaty, Bruce M; Avery, Christy L
2017-01-01
Thiazide diuretics, commonly used antihypertensives, may cause QT interval (QT) prolongation, a risk factor for highly fatal and difficult to predict ventricular arrhythmias. We examined whether common SNPs modified the association between thiazide use and QT or its component parts (QRS interval, JT interval) by performing ancestry-specific, trans-ethnic, and cross-phenotype genome-wide analyses of European (66%), African American (15%), and Hispanic (19%) populations (N=78,199), leveraging longitudinal data, incorporating corrected standard errors to account for underestimation of interaction estimate variances and evaluating evidence for pathway enrichment. Although no loci achieved genome-wide significance (P<5×10−8), we found suggestive evidence (P<5×10−6) for SNPs modifying the thiazide-QT association at 22 loci, including ion transport loci (e.g. NELL1, KCNQ3). The biologic plausibility of our suggestive results and simulations demonstrating modest power to detect interaction effects at genome-wide significant levels indicate that larger studies and innovative statistical methods are warranted in future efforts evaluating thiazide-SNP interactions. PMID:28719597
Specific binding of a Pop6/Pop7 heterodimer to the P3 stem of the yeast RNase MRP and RNase P RNAs.
Perederina, Anna; Esakova, Olga; Koc, Hasan; Schmitt, Mark E; Krasilnikov, Andrey S
2007-10-01
Pop6 and Pop7 are protein subunits of Saccharomyces cerevisiae RNase MRP and RNase P. Here we show that bacterially expressed Pop6 and Pop7 form a soluble heterodimer that binds the RNA components of both RNase MRP and RNase P. Footprint analysis of the interaction between the Pop6/7 heterodimer and the RNase MRP RNA, combined with gel mobility assays, demonstrates that the Pop6/7 complex binds to a conserved region of the P3 domain. Binding of these proteins to the MRP RNA leads to local rearrangement in the structure of the P3 loop and suggests that direct interaction of the Pop6/7 complex with the P3 domain of the RNA components of RNases MRP and P may mediate binding of other protein components. These results suggest a role for a key element in the RNase MRP and RNase P RNAs in protein binding, and demonstrate the feasibility of directly studying RNA-protein interactions in the eukaryotic RNases MRP and P complexes.
Blind lineup administration as a prophylactic against the postidentification feedback effect.
Dysart, Jennifer E; Lawson, Victoria Z; Rainey, Anna
2012-08-01
Confidence and other testimony-relevant judgments may be distorted when witnesses are given confirming postidentification feedback, and double-blind procedures-wherein the lineup administrator does not know the identity of the suspect-are a commonly proposed, but untested, remedy for this effect. In the current study, mock witnesses viewed a staged crime video followed by a target-present or target-absent lineup where the administrator was or was not presumed to know the identity of the suspect. After making an identification decision, witnesses were or were not given realistic, but nonidentification-specific, feedback, and then confidence and other judgments were assessed. A significant interaction was found between blind condition and feedback such that feedback inflated confidence and other judgments in presumed nonblind conditions only; feedback had no effect on participants in presumed blind conditions. As predicted by the selective cue integration framework-a theoretical model suggested to explain the interaction between presumed blind administration and feedback-this interaction was significant only for inaccurate participants. These results suggest that blind administration may serve as a prophylactic against the negative effects of postidentification feedback. In addition, the effectiveness of our subtle feedback in influencing judgments suggests that lineup administrators should take care not to provide any feedback to eyewitnesses. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Karnahl, Matthias; Park, Misoon; Krause, Cornelia; Hiller, Ulrike; Mayer, Ulrike; Stierhof, York-Dieter; Jürgens, Gerd
2018-06-12
Sec1/Munc18 (SM) proteins contribute to membrane fusion by interacting with Qa-SNAREs or nascent trans -SNARE complexes. Gymnosperms and the basal angiosperm Amborella have only a single SEC1 gene related to the KEULE gene in Arabidopsis However, the genomes of most angiosperms including Arabidopsis encode three SEC1-related SM proteins of which only KEULE has been functionally characterized as interacting with the cytokinesis-specific Qa-SNARE KNOLLE during cell-plate formation. Here we analyze the closest paralog of KEULE named SEC1B. In contrast to the cytokinesis defects of keule mutants, sec1b mutants are homozygous viable. However, the keule sec1b double mutant was nearly gametophytically lethal, displaying collapsed pollen grains, which suggests substantial overlap between SEC1B and KEULE functions in secretion-dependent growth. SEC1B had a strong preference for interaction with the evolutionarily ancient Qa-SNARE SYP132 involved in secretion and cytokinesis, whereas KEULE interacted with both KNOLLE and SYP132. This differential interaction with Qa-SNAREs is likely conferred by domains 1 and 2a of the two SM proteins. Comparative analysis of all four possible combinations of the relevant SEC1 Qa-SNARE double mutants revealed that in cytokinesis, the interaction of SEC1B with KNOLLE plays no role, whereas the interaction of KEULE with KNOLLE is prevalent and functionally as important as the interactions of both SEC1B and KEU with SYP132 together. Our results suggest that functional diversification of the two SEC1-related SM proteins during angiosperm evolution resulted in enhanced interaction of SEC1B with Qa-SNARE SYP132, and thus a predominant role of SEC1B in secretion.
Nestedness across biological scales
Marquitti, Flavia M. D.; Raimundo, Rafael L. G.; Sebastián-González, Esther; Coltri, Patricia P.; Perez, S. Ivan; Brandt, Débora Y. C.; Nunes, Kelly; Daura-Jorge, Fábio G.; Floeter, Sergio R.; Guimarães, Paulo R.
2017-01-01
Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general compromise between two features: specificity (the number of interactions the elements of the system can have) and affinity (how these elements can be connected to each other). Our findings suggesting occurrence of nestedness throughout biological scales can stimulate the debate on how pervasive nestedness may be in nature, while the theoretical emergent principles can aid further research on commonalities of biological networks. PMID:28166284