Sample records for suggests multiple modes

  1. Multiple periodicities in the solar magnetic field - Possible origin in a multiple-mode solar dynamo

    NASA Technical Reports Server (NTRS)

    Boyer, D. W.; Levy, E. H.

    1992-01-01

    The solar magnetic field is generated in an oscillatory mode with a 22 yr full period and gives rise to the 11 yr sunspot cycle. However, analyses of contemporary solar records, as well as other surrogate indicators of solar activity, suggest the presence also of longer term periodicities in the solar magnetic cycle. This paper suggests that the solar dynamo can operate in a multiply periodic state, with several periodicites being generated simultaneously at different depths in the convection zone. A simple two-layer model of the solar convection zone is used to illustrate the physical mechanism of spatially localized, multiple-periodicity-mode dynamo regeneration. The two layers are characterized by differences in their respective turbulent magnetic diffusivities. Although the magnetic modes interact with one another, each mode is produced large in one layer or the other, and has an oscillation period approximately equal to the time characteristic of magnetic diffusion across the layer. The observed complicated periodicity pattern in the solar magnetic field could be a combination of two (or more) dynamo modes generated in this manner. The calculations are carried out using a differential rotation model consistent with recent helioseismological measurements, illustrating the challenge to dynamo theory raised by those observational results.

  2. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    PubMed Central

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  3. Life-Span Extension by Caloric Restriction Is Determined by Type and Level of Food Reduction and by Reproductive Mode in Brachionus manjavacas (Rotifera)

    PubMed Central

    2013-01-01

    We measured life span and fecundity of three reproductive modes in a clone of the monogonont rotifer Brachionus manjavacas subjected to chronic caloric restriction (CCR) over a range of food concentrations or to intermittent fasting (IF). IF increased life span 50%–70% for all three modes, whereas CCR increased life span of asexual females derived from sexually or asexually produced eggs, but not that of sexual females. The main effect of CR on both asexual modes was to delay death at young ages, rather than to prevent death at middle ages or to greatly extend maximum life span; in contrast CR in sexual females greatly increased the life span of a few long-lived individuals. Lifetime fecundity did not decrease with CCR, suggesting a lack of resource allocation trade-off between somatic maintenance and reproduction. Multiple outcomes for a clonal lineage indicate that different responses are established through epigenetic programming, whereas differences in life-span allocations suggest that multiple genetic mechanisms mediate life-span extension. PMID:22904096

  4. Life-span extension by caloric restriction is determined by type and level of food reduction and by reproductive mode in Brachionus manjavacas (Rotifera).

    PubMed

    Gribble, Kristin E; Welch, David B Mark

    2013-04-01

    We measured life span and fecundity of three reproductive modes in a clone of the monogonont rotifer Brachionus manjavacas subjected to chronic caloric restriction (CCR) over a range of food concentrations or to intermittent fasting (IF). IF increased life span 50%-70% for all three modes, whereas CCR increased life span of asexual females derived from sexually or asexually produced eggs, but not that of sexual females. The main effect of CR on both asexual modes was to delay death at young ages, rather than to prevent death at middle ages or to greatly extend maximum life span; in contrast CR in sexual females greatly increased the life span of a few long-lived individuals. Lifetime fecundity did not decrease with CCR, suggesting a lack of resource allocation trade-off between somatic maintenance and reproduction. Multiple outcomes for a clonal lineage indicate that different responses are established through epigenetic programming, whereas differences in life-span allocations suggest that multiple genetic mechanisms mediate life-span extension.

  5. Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser.

    PubMed

    Peng, Junsong; Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry

    2016-09-19

    We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.

  6. The pedagogical potential of drawing and writing in a primary science multimodal unit

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel E.; Bradbury, Leslie U.

    2016-11-01

    In consideration of the potential of drawing and writing as assessment and learning tools, we explored how early primary students used these modes to communicate their science understandings. The context for this study was a curricular unit that incorporated multiple modes of representation in both the presentation of information and production of student understanding with a focus on the structure and function of carnivorous plants (CPs). Two science teacher educators and two first-grade teachers in the United States co-planned and co-taught a multimodal science unit on CP structure and function that included multiple representations of Venus flytraps (VFTs): physical specimens, photographs, videos, text, and discussions. Pre- and post-assessment student drawings and writings were statistically compared to note significant changes, and pre- and post-assessment writings were qualitatively analysed to note themes in student ideas. Results indicate that students increased their knowledge of VFT structure and function and synthesised information from multiple modes. While students included more structures of the VFT in their drawings, they were better able to describe the functions of structures in their writings. These results suggest the benefits for student learning and assessment of having early primary students represent their science understandings in multiple modes.

  7. "Multiple partial recognitions in dynamic equilibrium" in the binding sites of proteins form the molecular basis of promiscuous recognition of structurally diverse ligands.

    PubMed

    Kohda, Daisuke

    2018-04-01

    Promiscuous recognition of ligands by proteins is as important as strict recognition in numerous biological processes. In living cells, many short, linear amino acid motifs function as targeting signals in proteins to specify the final destination of the protein transport. In general, the target signal is defined by a consensus sequence containing wild-characters, and hence represented by diverse amino acid sequences. The classical lock-and-key or induced-fit/conformational selection mechanism may not cover all aspects of the promiscuous recognition. On the basis of our crystallographic and NMR studies on the mitochondrial Tom20 protein-presequence interaction, we proposed a new hypothetical mechanism based on "a rapid equilibrium of multiple states with partial recognitions". This dynamic, multiple recognition mode enables the Tom20 receptor to recognize diverse mitochondrial presequences with nearly equal affinities. The plant Tom20 is evolutionally unrelated to the animal Tom20 in our study, but is a functional homolog of the animal/fungal Tom20. NMR studies by another research group revealed that the presequence binding by the plant Tom20 was not fully explained by simple interaction modes, suggesting the presence of a similar dynamic, multiple recognition mode. Circumstantial evidence also suggested that similar dynamic mechanisms may be applicable to other promiscuous recognitions of signal peptides by the SRP54/Ffh and SecA proteins.

  8. Generation of double giant pulses in actively Q-switched lasers

    NASA Astrophysics Data System (ADS)

    Korobeynikova, A. P.; Shaikin, I. A.; Shaykin, A. A.; Koryukin, I. V.; Khazanov, E. A.

    2018-04-01

    Generation of a second giant pulse in a longitudinal mode neighbouring to the longitudinal mode possessing minimal losses is theoretically and experimentally studied in actively Q-switched lasers. A mathematical model is suggested for explaining the giant pulse generation in a laser with multiple longitudinal modes. The model makes allowance for not only a standing, but also a running wave for each cavity mode. Results of numerical simulation and data of experiments with a Nd : YLF laser explain the effect of second giant pulse generation in a neighbouring longitudinal mode. After a giant pulse in the mode with minimal losses is generated, the threshold for the neighbouring longitudinal mode is still exceeded due to the effect of burning holes in the population inversion spatial distribution.

  9. Use of multiple modes of flight subsidy by a soaring terrestrial bird, the golden eagle Aquila chrysaetos, when on migration

    PubMed Central

    Katzner, Todd E.; Turk, Philip J.; Duerr, Adam E.; Miller, Tricia A.; Lanzone, Michael J.; Cooper, Jeff L.; Brandes, David; Tremblay, Junior A.; Lemaître, Jérôme

    2015-01-01

    Large birds regularly use updrafts to subsidize flight. Although most research on soaring bird flight has focused on use of thermal updrafts, there is evidence suggesting that many species are likely to use multiple modes of subsidy. We tested the degree to which a large soaring species uses multiple modes of subsidy to provide insights into the decision-making that underlies flight behaviour. We statistically classified more than 22 000 global positioning satellite–global system for mobile communications telemetry points collected at 30-s intervals to identify the type of subsidized flight used by 32 migrating golden eagles during spring in eastern North America. Eagles used subsidized flight on 87% of their journey. They spent 41.9% ± 1.5 (, range: 18–56%) of their subsidized northbound migration using thermal soaring, 45.2% ± 2.1 (12–65%) of time gliding between thermals, and 12.9% ± 2.2 (1–55%) of time using orographic updrafts. Golden eagles responded to the variable local-scale meteorological events they encountered by switching flight behaviour to take advantage of multiple modes of subsidy. Orographic soaring occurred more frequently in morning and evening, earlier in the migration season, and when crosswinds and tail winds were greatest. Switching between flight modes allowed migration for relatively longer periods each day and frequent switching behaviour has implications for a better understanding of avian flight behaviour and of the evolution of use of subsidy in flight. PMID:26538556

  10. An electromechanical Ising Hamiltonian

    PubMed Central

    Mahboob, Imran; Okamoto, Hajime; Yamaguchi, Hiroshi

    2016-01-01

    Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling. PMID:28861469

  11. An electromechanical Ising Hamiltonian.

    PubMed

    Mahboob, Imran; Okamoto, Hajime; Yamaguchi, Hiroshi

    2016-06-01

    Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling.

  12. Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism

    PubMed Central

    Hughes, Travis S.; Chalmers, Michael J.; Novick, Scott; Kuruvilla, Dana S.; Chang, Mi Ra; Kamenecka, Theodore M.; Rance, Mark; Johnson, Bruce A.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.

    2011-01-01

    SUMMARY Ligand binding to proteins is not a static process, but rather involves a number of complex dynamic transitions. A flexible ligand can change conformation upon binding its target. The conformation and dynamics of a protein can change to facilitate ligand binding. The conformation of the ligand, however, is generally presumed to have one primary binding mode, shifting the protein conformational ensemble from one state to another. We report solution NMR studies that reveal peroxisome proliferator-activated receptor γ (PPARγ) modulators can sample multiple binding modes manifesting in multiple receptor conformations in slow conformational exchange. Our NMR, hydrogen/deuterium exchange and docking studies reveal that ligand-induced receptor stabilization and binding mode occupancy correlate with the graded agonist response of the ligand. Our results suggest that ligand and receptor dynamics affect the graded transcriptional output of PPARγ modulators. PMID:22244763

  13. Using multi-ring structure for suppression of mode competition in stable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai

    2017-12-01

    In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.

  14. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi).

    PubMed

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2007-06-01

    Koi carps frequently swim in burst-and-coast style, which consists of a burst phase and a coast phase. We quantify the swimming kinematics and the flow patterns generated by the carps in burst-and-coast swimming. In the burst phase, the carps burst in two modes: in the first, the tail beats for at least one cycle (multiple tail-beat mode); in the second, the tail beats for only a half-cycle (half tail-beat mode). The carp generates a vortex ring in each half-cycle beat. The vortex rings generated during bursting in multiple tail-beat mode form a linked chain, but only one vortex ring is generated in half tail-beat mode. The wake morphologies, such as momentum angle and jet angle, also show much difference between the two modes. In the burst phase, the kinematic data and the impulse obtained from the wake are linked to obtain the drag coefficient (C(d,burst) approximately 0.242). In the coast phase, drag coefficient (C(d,coast) approximately 0.060) is estimated from swimming speed deceleration. Our estimation suggests that nearly 45% of energy is saved when burst-and-coast swimming is used by the koi carps compared with steady swimming at the same mean speed.

  15. Theoretical and experimental investigation of multispectral photoacoustic osteoporosis detection method

    NASA Astrophysics Data System (ADS)

    Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay

    2014-03-01

    Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.

  16. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.

    PubMed

    Fu, Xing; Kutz, J Nathan

    2013-03-11

    We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.

  17. Transbulbar B-Mode Sonography in Multiple Sclerosis: Clinical and Biological Relevance.

    PubMed

    De Masi, Roberto; Orlando, Stefania; Conte, Aldo; Pasca, Sergio; Scarpello, Rocco; Spagnolo, Pantaleo; Muscella, Antonella; De Donno, Antonella

    2016-12-01

    Optic nerve sheath diameter quantification by transbulbar B-mode sonography is a recently validated technique, but its clinical relevance in relapse-free multiple sclerosis patients remains unexplored. In an open-label, comparative, cross-sectional study, we aimed to assess possible differences between patients and healthy controls in terms of optic nerve sheath diameter and its correlation with clinical/paraclinical parameters in this disease. Sixty unselected relapse-free patients and 35 matched healthy controls underwent transbulbar B-mode sonography. Patients underwent routine neurologic examination, brain magnetic resonance imaging and visual evoked potential tests. The mean optic nerve sheath diameter 3 and 5 mm from the eyeball was 22-25% lower in patients than controls and correlated with the Expanded Disability Status Scale (r = -0.34, p = 0.048, and r = -0.32, p = 0.042, respectively). We suggest that optic nerve sheath diameter quantified by transbulbar B-mode sonography should be included in routine assessment of the disease as an extension of the neurologic examination. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    PubMed Central

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  19. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    PubMed

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  20. Designing personal exercise monitoring employing multiple modes of delivery: implications from a qualitative study on heart rate monitoring.

    PubMed

    Segerståhl, Katarina; Oinas-Kukkonen, Harri

    2011-12-01

    Various personal monitoring technologies have been introduced for supporting regular physical activity, which is of critical importance in reducing the risks of several chronic diseases. Recent studies suggest that combining multiple modes of delivery, such as text messages and mobile monitoring devices with web applications, holds potential for effectively supporting physical exercise. Of particular interest is how the functionality and content of these systems should be distributed across the different modes for successful outcomes. The aim of this study was to: (a) investigate how users incorporate a system employing two modes of delivery - a wearable heart rate monitor and a web service - into their training and (b) to analyze benefits and limitations in personal exercise monitoring and how they relate to the different modes in use. A qualitative field study employing diaries and semi-structured interviews was carried out with 30 participants who used a heart rate monitoring system comprising a wearable heart rate monitor, Polar FT60 and a web service, Polar Personal Trainer for a period of 21 days. The data were systematically analyzed to identify specific benefits and limitations associated with the system characteristics and modes as perceived by the end-users. The benefits include supporting exploratory learning, controlling target behavior, rectifying behaviors, motivation and logging support. The limitations are associated with information for validating the system, virtual coaching, task-technology fit, data integrity and privacy concerns. Mobile interfaces enable exploratory learning and controlling of target behaviors in situ, while web services can effectively support users' need for cognition within the early stages of adoption and long-term training with intelligent coaching functionality. This study explains several benefits and limitations in personal exercise monitoring. These can be addressed with crossmedial design, i.e., strategic distribution of functionality and content across modes within the system. Our findings suggest that personal exercise monitoring systems may be improved by more systematically combining mobile and web-based functionality. 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Burst mode pumping: A new mechanism of drinking in mosquitoes

    DOE PAGES

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick; ...

    2018-03-20

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  2. Burst mode pumping: A new mechanism of drinking in mosquitoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  3. Free vibration of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Ru, C. Q.; Mioduchowski, A.

    2005-06-01

    A multiple-elastic shell model is applied to systematically study free vibration of multiwall carbon nanotubes (MWNTs). Using Flugge [Stresses in Shells (Springer, Berlin, 1960)] equations of elastic shells, vibrational frequencies and associated modes are calculated for MWNTs of innermost radii 5 and 0.65 nm, respectively. The emphasis is placed on the effect of interlayer van der Waals (vdW) interaction on free vibration of MWNTs. Our results show that the interlayer vdW interaction has a crucial effect on radial (R) modes of large-radius MWNTs (e.g., of the innermost radius 5 nm), but is less pronounced for R modes of small-radius MWNTs (e.g., of the innermost radius 0.65 nm), and usually negligible for torsional (T) and longitudinal (L) modes of MWNTs. This is attributed to the fact that the interlayer vdW interaction, characterized by a radius-independent vdW interaction coefficient, depends on radial deflections only, and is dominant only for large-radius MWNTs of lower radial rigidity but less pronounced for small-radius MWNTs of much higher radial rigidity. As a result, the R modes of large-radius MWNTs are typically collective motions of almost all nested tubes, and the R modes of small-radius MWNTs, as well as the T and L modes of MWNTs, are basically vibrations of individual tubes. In particular, an approximate single-shell model is suggested to replace the multiple-shell model in calculating the lowest frequency of R mode of thin MWNTs (defined by the innermost radius-to-thickness ratio not less than 4) with relative errors less than 10%. In addition, the simplified Flugge single equation is adopted to substitute the exact Flugge equations in determining the R-mode frequencies of MWNTs with relative errors less than 10%.

  4. Numerical simulation of the multiple core localized low shear toroidal Alfvenic eigenmodes

    NASA Astrophysics Data System (ADS)

    Wang, Wenjia; Zhou, Deng; Hu, Youjun; Ming, Yue

    2018-03-01

    In modern tokamak experiments, scenarios with weak central magnetic shear has been proposed. It is necessary to study the Alfvenic mode activities in such scenarios. Theoretical researches have predicted the multiplicity of core-localized toroidally induced Alfvenic eigenmodes for ɛ/s > 1, where ɛ is the inverse aspect ratio and s is magnetic shear. We numerically investigate the existence of multiplicity of core-localized TAEs and mode characteristics using NOVA code in the present work. We firstly verify the existence of the multiplicity for zero beta plasma and the even mode at the forbidden zone. For finite beta plasma, the mode parities become more distinguishable, and the frequencies of odd modes are close to the upper tip of the continuum, while the frequencies of even modes are close to the lower tip of the continuum. Their frequencies are well separated by the forbidden zone. With the increasing value of ɛ/s, more modes with multiple radial nodes will appear, which is in agreement with theoretical prediction. The discrepancy between theoretical prediction and our numerical simulation is also discussed in the main text.

  5. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    PubMed

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  6. Assessment of Cross-Chemical Predictibility for Changes in Serum Clinical Bioindicators and EEG Produced by Pesticides with Different Modes of Action

    EPA Science Inventory

    Electroencephalography (EEG) is often used as an apical measure of multiple types of central nervous system (CNS) changes, while biomarkers in blood may serve as predictors for adverse outcomes. Correlation between these two measures would suggest that certain changes in biomarke...

  7. Modeling of Beams’ Multiple-Contact Mode with an Application in the Design of a High-g Threshold Microaccelerometer

    PubMed Central

    Li, Kai; Chen, Wenyuan; Zhang, Weiping

    2011-01-01

    Beam’s multiple-contact mode, characterized by multiple and discrete contact regions, non-uniform stoppers’ heights, irregular contact sequence, seesaw-like effect, indirect interaction between different stoppers, and complex coupling relationship between loads and deformation is studied. A novel analysis method and a novel high speed calculation model are developed for multiple-contact mode under mechanical load and electrostatic load, without limitations on stopper height and distribution, providing the beam has stepped or curved shape. Accurate values of deflection, contact load, contact region and so on are obtained directly, with a subsequent validation by CoventorWare. A new concept design of high-g threshold microaccelerometer based on multiple-contact mode is presented, featuring multiple acceleration thresholds of one sensitive component and consequently small sensor size. PMID:22163897

  8. Mode Behavior in Ultralarge Ring Lasers

    NASA Astrophysics Data System (ADS)

    Hurst, Robert B.; Dunn, Robert W.; Schreiber, K. Ulrich; Thirkettle, Robert J.; MacDonald, Graeme K.

    2004-04-01

    Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to ~0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are greater than 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of ~100 MHz.

  9. Mode behavior in ultralarge ring lasers.

    PubMed

    Hurst, Robert B; Dunn, Robert W; Schreiber, K Ulrich; Thirkettle, Robert J; MacDonald, Graeme K

    2004-04-10

    Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to approximately0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are > 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of approximately 100 MHz.

  10. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward

    PubMed Central

    Lele, Pushkar P.; Roland, Thibault; Shrivastava, Abhishek; Chen, Yihao; Berg, Howard C.

    2016-01-01

    Caulobacter crescentus, a monotrichous bacterium, swims by rotating a single right-handed helical filament. CW motor rotation thrusts the cell forward 1, a mode of motility known as the pusher mode; CCW motor rotation pulls the cell backward, a mode of motility referred to as the puller mode 2. The situation is opposite in E. coli, a peritrichous bacterium, where CCW rotation of multiple left-handed filaments drives the cell forward. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells 3,4. However, monotrichous bacteria including C. crescentus swim forward and backward at similar speeds, prompting the assumption that motor torques in the two modes are the same 5,6. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque-generation is similar in two species, despite the differences in filament handedness and motor bias (probability of CW rotation). PMID:27499800

  11. A bioethics for all seasons

    PubMed Central

    Chan, Sarah

    2015-01-01

    The last four decades have seen the emergence and flourishing of the field of bioethics and its incorporation into wide-ranging aspects of society, from the clinic or laboratory through to public policy and the media. Yet considerable debate still exists over what bioethics is and how it should be done. In this paper I consider the question of what makes good bioethics. Drawing on historical and contemporary examples, I suggest that bioethics encompasses multiple modes of responding to moral disagreement, and that an awareness of which mode is operational in a given context is essential to doing good bioethics. PMID:25516926

  12. Network-based analysis of genotype-phenotype correlations between different inheritance modes.

    PubMed

    Hao, Dapeng; Li, Chuanxing; Zhang, Shaojun; Lu, Jianping; Jiang, Yongshuai; Wang, Shiyuan; Zhou, Meng

    2014-11-15

    Recent studies on human disease have revealed that aberrant interaction between proteins probably underlies a substantial number of human genetic diseases. This suggests a need to investigate disease inheritance mode using interaction, and based on which to refresh our conceptual understanding of a series of properties regarding inheritance mode of human disease. We observed a strong correlation between the number of protein interactions and the likelihood of a gene causing any dominant diseases or multiple dominant diseases, whereas no correlation was observed between protein interaction and the likelihood of a gene causing recessive diseases. We found that dominant diseases are more likely to be associated with disruption of important interactions. These suggest inheritance mode should be understood using protein interaction. We therefore reviewed the previous studies and refined an interaction model of inheritance mode, and then confirmed that this model is largely reasonable using new evidences. With these findings, we found that the inheritance mode of human genetic diseases can be predicted using protein interaction. By integrating the systems biology perspectives with the classical disease genetics paradigm, our study provides some new insights into genotype-phenotype correlations. haodapeng@ems.hrbmu.edu.cn or biofomeng@hotmail.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Multiple switching modes and multiple level states in memristive devices

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Yang, J. Joshua; Borghetti, Julien; Strachan, John Paul; Zhang, M.-X.; Goldfarb, Ilan; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2011-03-01

    As one of the most promising technologies for next generation non-volatile memory, metal oxide based memristive devices have demonstrated great advantages on scalability, operating speed and power consumption. Here we report the observation of multiple switching modes and multiple level states in different memristive systems. The multiple switching modes can be obtained by limiting the current during electroforming, and related transport behaviors, including ionic and electronic motions, are characterized. Such observation can be rationalized by a model of two effective switching layers adjacent to the bottom and top electrodes. Multiple level states, corresponding to different composition of the conducting channel, will also be discussed in the context of multiple-level storage for high density, non-volatile memory applications.

  14. A Unique Role of Endogenous Visual-Spatial Attention in Rapid Processing of Multiple Targets

    ERIC Educational Resources Information Center

    Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Palafox, German; Suzuki, Satoru

    2011-01-01

    Visual spatial attention can be exogenously captured by a salient stimulus or can be endogenously allocated by voluntary effort. Whether these two attention modes serve distinctive functions is debated, but for processing of single targets the literature suggests superiority of exogenous attention (it is faster acting and serves more functions).…

  15. Environmentally-Relevant Mixtures in Cumulative Assessments: An Acute Study of Toxicokinetics and Effects on Motor Activity in Rats Exposed to a Mixture of Pyrethroids

    EPA Science Inventory

    Due to extensive use, human exposure to multiple pyrethroid insecticides occurs frequently. Studies of pyrethroid neurotoxicity suggest a common mode of toxicity and that pyrethroids should be considered cumulatively to model risk. The objective of this work was to use a pyrethro...

  16. An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding.

    PubMed

    Liu, Baiyang; Lin, Guoying; Cui, Yuehui; Li, RongLin

    2017-08-29

    For purpose of utilizing orbital angular momentum (OAM) mode diversity, multiple OAM beams should be generated preferably by a single antenna. In this paper, an OAM mode reconfigurable antenna is proposed. Different from the existed OAM antennas with multiple ports for multiple OAM modes transmitting, the proposed antenna with only a single port, but it can be used to transmit mode 1 or mode -1 OAM beams arbitrary by controlling the PIN diodes on the feeding network through a programmable microcontroller which control by a remote controller. Simulation and measurement results such as return loss, near-field and far-field radiation patterns of two operating states for mode 1 and mode -1, and OAM mode orthogonality are given. The proposed antenna can serve as a candidate for utilizing OAM diversity, namely phase diversity to increase channel capacity at 2.4 GHz. Moreover, an OAM-mode based encoding method is experimentally carried out by the proposed OAM mode reconfigurable antenna, the digital data are encoded and decoded by different OAM modes. At the transmitter, the proposed OAM mode reconfigurable antenna is used to encode the digital data, data symbol 0 and 1 are mapped to OAM mode 1 and mode -1, respectively. At the receiver, the data symbols are decoded by phase gradient method.

  17. [Study on the biological characteristic of Blastocystis hominis: morphology, mode of reproduction and the relation to bacteria].

    PubMed

    Qiao, Ji-ying; Zhang, Xu; Wei, Zhi-chao; Yang, Jun-hua; Li, Ya-qing; Zhang, Rong

    2006-11-01

    To observe the reproductive modes of Blastocystis hominis and study the relation between this protozoa and bacteria. Using the Iodine and Haematoxylin staining, the morphology of B. h from patients and RPMI 1640 medium were observed. The B. h positive mucous diarrheal specimens were cultured and identified any possible known pathogenic intestinal bacteria. B. h and colibacillus were co-cultured to observe the interaction between them. Four modes of reproduction for B. h were confirmed: binary fission, endodyogeny, multiple fission and budding. The fact that there was no other intestinal pathogens in half of the B. h positive specimens suggested B. h may cause disease independently. B. h and colibacillus were restrained each other. B. h reproduces in at least four modes. B. h could be a pathogen and its pathogenesis may be related to micro-ecological changes.

  18. Stochastic Swift-Hohenberg Equation with Degenerate Linear Multiplicative Noise

    NASA Astrophysics Data System (ADS)

    Hernández, Marco; Ong, Kiah Wah

    2018-03-01

    We study the dynamic transition of the Swift-Hohenberg equation (SHE) when linear multiplicative noise acting on a finite set of modes of the dominant linear flow is introduced. Existence of a stochastic flow and a local stochastic invariant manifold for this stochastic form of SHE are both addressed in this work. We show that the approximate reduced system corresponding to the invariant manifold undergoes a stochastic pitchfork bifurcation, and obtain numerical evidence suggesting that this picture is a good approximation for the full system as well.

  19. Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.

    PubMed

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D

    2015-05-08

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  20. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    PubMed Central

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.

    2015-01-01

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714

  1. Cascade conical refraction for annular pumping of a vortex Nd:YAG laser and selective excitation of low- and high-order Laguerre–Gaussian modes

    NASA Astrophysics Data System (ADS)

    Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang

    2018-05-01

    We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.

  2. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  3. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing.

    PubMed

    Wang, Lixian; Nejad, Reza Mirzaei; Corsi, Alessandro; Lin, Jiachuan; Messaddeq, Younès; Rusch, Leslie; LaRochelle, Sophie

    2017-05-15

    We experimentally investigate mode-division multiplexing in an elliptical ring core fiber (ERCF) that supports linearly polarized vector modes (LPV). Characterization show that the ERCF exhibits good polarization maintaining properties over eight LPV modes with effective index difference larger than 1 × 10 -4 . The ERCF further displays stable mode power and polarization extinction ratio when subjected to external perturbations. Crosstalk between the LPV modes, after propagating through 0.9 km ERCF, is below -14 dB. By using six LPV modes as independent data channels, we achieved the transmission of 32 Gbaud QPSK over 0.9 km ERCF without any multiple-input-multiple-output (MIMO) or polarization-division multiplexing (PDM) signal processing.

  4. Raman dissipative soliton fiber laser pumped by an ASE source.

    PubMed

    Pan, Weiwei; Zhang, Lei; Zhou, Jiaqi; Yang, Xuezong; Feng, Yan

    2017-12-15

    The mode locking of a Raman fiber laser with an amplified spontaneous emission (ASE) pump source is investigated for performance improvement. Raman dissipative solitons with a compressed pulse duration of 1.05 ps at a repetition rate of 2.47 MHz are generated by utilizing nonlinear polarization rotation and all-fiber Lyot filter. A signal-to-noise ratio as high as 85 dB is measured in a radio-frequency spectrum, which suggests excellent temporal stability. Multiple-pulse operation with unique random static distribution is observed for the first time, to the best of our knowledge, at higher pump power in mode-locked Raman fiber lasers.

  5. Multi-Generational Kinship, Multiple Mating, and Flexible Modes of Parental Care in a Breeding Population of the Veery (Catharus fuscescens), a Trans-Hemispheric Migratory Songbird

    PubMed Central

    Kalavacharla, Venugopal

    2016-01-01

    We discovered variable modes of parental care in a breeding population of color-banded Veeries (Catharus fuscescens), a Nearctic-Neotropical migratory songbird, long thought to be socially monogamous, and performed a multi-locus DNA microsatellite analysis to estimate parentage and kinship in a sample of 37 adults and 21 offspring. We detected multiple mating in both sexes, and four modes of parental care that varied in frequency within and between years including multiple male feeders at some nests, and males attending multiple nests in the same season, each with a different female. Unlike other polygynandrous systems, genetic evidence indicates that multi-generational patterns of kinship occur among adult Veeries at our study site, and this was corroborated by the capture of an adult male in 2013 that had been banded as a nestling in 2011 at a nest attended by multiple male feeders. All genotyped adults (n = 37) were related to at least one other bird in the sample at the cousin level or greater (r ≥ 0.125), and 81% were related to at least one other bird at the half-sibling level or greater (r ≥ 0.25, range 0.25–0.60). Although our sample size is small, it appears that the kin structure is maintained by natal philopatry in both sexes, and that Veeries avoid mating with close genetic kin. At nests where all adult feeders were genotyped (n = 9), the male(s) were unrelated to the female (mean r = -0.11 ± 0.15), whereas genetic data suggest close kinship (r = 0.254) between two male co-feeders at the nests of two females in 2011, and among three of four females that were mated to the same polygynous male in 2012. To our knowledge, this is the first evidence of polygynandry occurring among multiple generations of close genetic kin on the breeding ground of a Nearctic-Neotropical migratory songbird. PMID:27331399

  6. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  7. Analyzing the Multiscale Processes in Tropical Cyclone Genesis Associated with African Easterly Waves using the PEEMD. Part I: Downscaling Processes

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Shen, B. W.; Cheung, S.

    2016-12-01

    Recent advance in high-resolution global hurricane simulations and visualizations have collectively suggested the importance of both downscaling and upscaling processes in the formation and intensification of TCs. To reveal multiscale processes from massive volume of global data for multiple years, a scalable Parallel Ensemble Empirical Mode Decomposition (PEEMD) method has been developed for the analysis. In this study, the PEEMD is applied to analyzing 10-year (2004-2013) ERA-Interim global 0.750 resolution reanalysis data to explore the role of the downscaling processes in tropical cyclogenesis associated with African Easterly Waves (AEWs). Using the PEEMD, raw data are decomposed into oscillatory Intrinsic Function Modes (IMFs) that represent atmospheric systems of the various length scales and the trend mode that represents a non-oscillatory large scale environmental flow. Among oscillatory modes, results suggest that the third oscillatory mode (IMF3) is statistically correlated with the TC/AEW scale systems. Therefore, IMF3 and trend mode are analyzed in details. Our 10-year analysis shows that more than 50% of the AEW associated hurricanes reveal the association of storms' formation with the significant downscaling shear transfer from the larger-scale trend mode to the smaller scale IMF3. Future work will apply the PEEMD to the analysis of higher-resolution datasets to explore the role of the upscaling processes provided by the convection (or TC) in the development of the TC (or AEW). Figure caption: The tendency for horizontal wind shear for the total winds (black line), IMF3 (blue line), and trend mode (red line) and SLP (black dotted line) along the storm track of Helene (2006).

  8. Intracranial Tumor Cell Migration and the Development of Multiple Brain Metastases in Malignant Melanoma.

    PubMed

    Simonsen, Trude G; Gaustad, Jon-Vidar; Rofstad, Einar K

    2016-06-01

    A majority of patients with melanoma brain metastases develop multiple lesions, and these patients show particularly poor prognosis. To develop improved treatment strategies, detailed insights into the biology of melanoma brain metastases, and particularly the development of multiple lesions, are needed. The purpose of this preclinical investigation was to study melanoma cell migration within the brain after cell injection into a well-defined intracerebral site. A-07, D-12, R-18, and U-25 human melanoma cells transfected with green fluorescent protein were injected stereotactically into the right cerebral hemisphere of nude mice. Moribund mice were killed and autopsied, and the brain was evaluated by fluorescence imaging or histological examination. Intracerebral inoculation of melanoma cells produced multiple lesions involving all regions of the brain, suggesting that the cells were able to migrate over substantial distances within the brain. Multiple modes of transport were identified, and all transport modes were observed in all four melanoma lines. Thus, the melanoma cells were passively transported via the flow of cerebrospinal fluid in the meninges and ventricles, they migrated actively along leptomeningeal and brain parenchymal blood vessels, and they migrated actively along the surfaces separating different brain compartments. Migration of melanoma cells after initial arrest, extravasation, and growth at a single location within the brain may contribute significantly to the development of multiple melanoma brain metastases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. 2007 Precision Strike Annual Programs Review

    DTIC Science & Technology

    2007-04-25

    Adapting our methods • Remaining a flexible combined-arms force • Enabling a generation of combat- experienced decision-makers by distributing...Sustain Propulsion Network RadioMEMS IMU Flexible Engagement Options Requirements Capabilities Precision Attack Missile (PAM) 67” (with Canister...Aimpoint 6 PAM Seeker Modes PAM’s Multiple Targeting Modes Increase Flexibility , Improve Lethality PAM’s Multiple Targeting Modes Increase Flexibility

  10. NWHSS Implement Family Member Assessment Component in the Millennium Cohort Study

    DTIC Science & Technology

    2013-11-25

    between the stress of  military life (e.g.,  multiple   PCS moves) and the health  and well‐being of spouses  and children     Does the stress of...Soldier Challenges  Study is longitudinal – funding decrements in DoD research is a concern • Budget submitted for the continuation of the...one contact mode. (This suggests obtaining and using multiple points of contact).  Providing pre-incentives with the request produces higher

  11. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  12. Calculation of normal modes of the closed waveguides in general vector case

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Sevastianov, L. A.; Tiutiunnik, A. A.

    2018-04-01

    The article is devoted to the calculation of normal modes of the closed waveguides with an arbitrary filling ɛ, μ in the system of computer algebra Sage. Maxwell equations in the cylinder are reduced to the system of two bounded Helmholtz equations, the notion of weak solution of this system is given and then this system is investigated as a system of ordinary differential equations. The normal modes of this system are an eigenvectors of a matrix pencil. We suggest to calculate the matrix elements approximately and to truncate the matrix by usual way but further to solve the truncated eigenvalue problem exactly in the field of algebraic numbers. This approach allows to keep the symmetry of the initial problem and in particular the multiplicity of the eigenvalues. In the work would be presented some results of calculations.

  13. Broadband multiple responses of surface modes in quasicrystalline plasmonic structure

    PubMed Central

    Yuan, Haiming; Jiang, Xiangqian; Huang, Feng; Sun, Xiudong

    2016-01-01

    We numerically study the multiple excitation of surface modes in 2D photonic quasicrystal/metal/substrate structure. An improved rigorous coupled wave analysis method that can handle the quasicrystalline structure is presented. The quasicrystalline lattice, which refers to Penrose tiling in this paper, is generated by the cut-and-project method. The normal incidence spectrum presents a broadband multiple responses property. We find that the phase matching condition determines the excitation frequency for a given incident angle, while the depth of the reflection valley depends on the incident polarization. The modes will split into several sub-modes at oblique incidence, which give rise to the appearance of more responses on the spectrum. PMID:27492782

  14. Generation of Multiple Vortex Beams with Specified Vortex Number from Lasers with Controlled Ince-Gaussian Modes

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Chun

    2008-07-01

    This study proposes a systematic method of selecting excitations of part of Ince-Gaussian modes (IGMs) and a three-lens configuration for generating multiple vortex beams with forced IGMs in the model of laser-diode (LD)-pumped solid-state lasers. Simply changing the lateral off-axis position of the tight pump beam focus on the laser crystal can produce the desired multiple optical vortex beam from the laser in a well-controlled manner using a proposed astigmatic mode converter assembled into one body with the laser cavity.

  15. Using speech for mode selection in control of multifunctional myoelectric prostheses.

    PubMed

    Fang, Peng; Wei, Zheng; Geng, Yanjuan; Yao, Fuan; Li, Guanglin

    2013-01-01

    Electromyogram (EMG) recorded from residual muscles of limbs is considered as suitable control information for motorized prostheses. However, in case of high-level amputations, the residual muscles are usually limited, which may not provide enough EMG for flexible control of myoelectric prostheses with multiple degrees of freedom of movements. Here, we proposed a control strategy, where the speech signals were used as additional information and combined with the EMG signals to realize more flexible control of multifunctional prostheses. By replacing the traditional "sequential mode-switching (joint-switching)", the speech signals were used to select a mode (joint) of the prosthetic arm, and then the EMG signals were applied to determine a motion class involved in the selected joint and to execute the motion. Preliminary results from three able-bodied subjects and one transhumeral amputee demonstrated the proposed strategy could achieve a high mode-selection rate and enhance the operation efficiency, suggesting the strategy may improve the control performance of commercial myoelectric prostheses.

  16. Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1

    PubMed Central

    Ryu, Stephen I.; Shenoy, Krishna V.; Cunningham, John P.; Churchland, Mark M.

    2016-01-01

    Cortical firing rates frequently display elaborate and heterogeneous temporal structure. One often wishes to compute quantitative summaries of such structure—a basic example is the frequency spectrum—and compare with model-based predictions. The advent of large-scale population recordings affords the opportunity to do so in new ways, with the hope of distinguishing between potential explanations for why responses vary with time. We introduce a method that assesses a basic but previously unexplored form of population-level structure: when data contain responses across multiple neurons, conditions, and times, they are naturally expressed as a third-order tensor. We examined tensor structure for multiple datasets from primary visual cortex (V1) and primary motor cortex (M1). All V1 datasets were ‘simplest’ (there were relatively few degrees of freedom) along the neuron mode, while all M1 datasets were simplest along the condition mode. These differences could not be inferred from surface-level response features. Formal considerations suggest why tensor structure might differ across modes. For idealized linear models, structure is simplest across the neuron mode when responses reflect external variables, and simplest across the condition mode when responses reflect population dynamics. This same pattern was present for existing models that seek to explain motor cortex responses. Critically, only dynamical models displayed tensor structure that agreed with the empirical M1 data. These results illustrate that tensor structure is a basic feature of the data. For M1 the tensor structure was compatible with only a subset of existing models. PMID:27814353

  17. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes

    NASA Astrophysics Data System (ADS)

    Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.

    2013-10-01

    In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.

  18. Heavy Ion and Proton-Induced Single Event Upset Characteristics of a 3D NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Seidleck, Christina; Kim, Hak; Phan, Anthony; Label, Kenneth

    2017-01-01

    We evaluated the effects of heavy ion and proton irradiation for a 3D NAND flash. The 3D NAND showed similar single-event upset (SEU) sensitivity to a planar NAND of identical density in the multiple-cell level (MLC) storage mode. The 3D NAND showed significantly reduced SEU susceptibility in single-level-cell (SLC) storage mode. Additionally, the 3D NAND showed less multiple-bit upset susceptibility than the planar NAND, with fewer number of upset bits per byte and smaller cross sections overall. However, the 3D architecture exhibited angular sensitivities for both base and face angles, reflecting the anisotropic nature of the SEU vulnerability in space. Furthermore, the SEU cross section decreased with increasing fluence for both the 3D NAND and the Micron 16 nm planar NAND, which suggests that typical heavy ion test fluences will underestimate the upset rate during a space mission. These unique characteristics introduce complexity to traditional ground irradiation test procedures.

  19. Information-Theoretical Quantifier of Brain Rhythm Based on Data-Driven Multiscale Representation

    PubMed Central

    2015-01-01

    This paper presents a data-driven multiscale entropy measure to reveal the scale dependent information quantity of electroencephalogram (EEG) recordings. This work is motivated by the previous observations on the nonlinear and nonstationary nature of EEG over multiple time scales. Here, a new framework of entropy measures considering changing dynamics over multiple oscillatory scales is presented. First, to deal with nonstationarity over multiple scales, EEG recording is decomposed by applying the empirical mode decomposition (EMD) which is known to be effective for extracting the constituent narrowband components without a predetermined basis. Following calculation of Renyi entropy of the probability distributions of the intrinsic mode functions extracted by EMD leads to a data-driven multiscale Renyi entropy. To validate the performance of the proposed entropy measure, actual EEG recordings from rats (n = 9) experiencing 7 min cardiac arrest followed by resuscitation were analyzed. Simulation and experimental results demonstrate that the use of the multiscale Renyi entropy leads to better discriminative capability of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest, thus suggesting an effective diagnostic and prognostic tool. PMID:26380297

  20. Two-mode division multiplexing in a silicon-on-insulator ring resonator.

    PubMed

    Dorin, Bryce A; Ye, Winnie N

    2014-02-24

    Mode-division multiplexing (MDM) is an emerging multiple-input multiple-output method, utilizing multimode waveguides to increase channel numbers. In the past, silicon-on-insulator (SOI) devices have been primarily focused on single-mode waveguides. We present the design and fabrication of a two-mode SOI ring resonator for MDM systems. By optimizing the device parameters, we have ensured that each mode is treated equally within the ring. Using adiabatic Bezier curves in the ring bends, our ring demonstrated a signal-to-crosstalk ratio above 18 dB for both modes at the through and drop ports. We conclude that the ring resonator has the potential for filtering and switching for MDM systems on SOI.

  1. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  2. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation.

    PubMed

    Karasawa, N; Mitsutake, A; Takano, H

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  3. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation

    NASA Astrophysics Data System (ADS)

    Karasawa, N.; Mitsutake, A.; Takano, H.

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  4. Multiple spatial modes based QKD over marine free-space optical channels in the presence of atmospheric turbulence.

    PubMed

    Sun, Xiaole; Djordjevic, Ivan B; Neifeld, Mark A

    2016-11-28

    We investigate a multiple spatial modes based quantum key distribution (QKD) scheme that employs multiple independent parallel beams through a marine free-space optical channel over open ocean. This approach provides the potential to increase secret key rate (SKR) linearly with the number of channels. To improve the SKR performance, we describe a back-propagation mode (BPM) method to mitigate the atmospheric turbulence effects. Our simulation results indicate that the secret key rate can be improved significantly by employing the proposed BPM-based multi-channel QKD scheme.

  5. Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics Driven by Soft Vibration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina

    2013-01-01

    It is widely accepted that room-temperature hydrogen storage on nanostructured or porous materials requires enhanced dihydrogen adsorption. In this work we reveal that room-temperature hydrogen storage is possible not only by the enhanced adsorption, but also by making use of the vibrational free energy from soft vibration modes. These modes exist for example in the case of metallo-porphyrin-incorporated graphenes (M-PIGs) with out-of-plane ( buckled ) metal centers. There, the in-plane potential surfaces are flat because of multiple-orbital-coupling between hydrogen molecules and the buckled-metal centers. This study investigates the finite-temperature adsorption/desorption thermodynamics of hydrogen molecules adsorbed on M-PIGs by employing first-principlesmore » total energy and vibrational spectrum calculations. Our results suggest that the current design strategy for room-temperature hydrogen storage materials should be modified by explicitly taking finite-temperature vibration thermodynamics into account.« less

  6. Improving information retrieval with multiple health terminologies in a quality-controlled gateway.

    PubMed

    Soualmia, Lina F; Sakji, Saoussen; Letord, Catherine; Rollin, Laetitia; Massari, Philippe; Darmoni, Stéfan J

    2013-01-01

    The Catalog and Index of French-language Health Internet resources (CISMeF) is a quality-controlled health gateway, primarily for Web resources in French (n=89,751). Recently, we achieved a major improvement in the structure of the catalogue by setting-up multiple terminologies, based on twelve health terminologies available in French, to overcome the potential weakness of the MeSH thesaurus, which is the main and pivotal terminology we use for indexing and retrieval since 1995. The main aim of this study was to estimate the added-value of exploiting several terminologies and their semantic relationships to improve Web resource indexing and retrieval in CISMeF, in order to provide additional health resources which meet the users' expectations. Twelve terminologies were integrated into the CISMeF information system to set up multiple-terminologies indexing and retrieval. The same sets of thirty queries were run: (i) by exploiting the hierarchical structure of the MeSH, and (ii) by exploiting the additional twelve terminologies and their semantic links. The two search modes were evaluated and compared. The overall coverage of the multiple-terminologies search mode was improved by comparison to the coverage of using the MeSH (16,283 vs. 14,159) (+15%). These additional findings were estimated at 56.6% relevant results, 24.7% intermediate results and 18.7% irrelevant. The multiple-terminologies approach improved information retrieval. These results suggest that integrating additional health terminologies was able to improve recall. Since performing the study, 21 other terminologies have been added which should enable us to make broader studies in multiple-terminologies information retrieval.

  7. Multiprocessor system with multiple concurrent modes of execution

    DOEpatents

    Ahn, Daniel; Ceze, Luis H; Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin

    2013-12-31

    A multiprocessor system supports multiple concurrent modes of speculative execution. Speculation identification numbers (IDs) are allocated to speculative threads from a pool of available numbers. The pool is divided into domains, with each domain being assigned to a mode of speculation. Modes of speculation include TM, TLS, and rollback. Allocation of the IDs is carried out with respect to a central state table and using hardware pointers. The IDs are used for writing different versions of speculative results in different ways of a set in a cache memory.

  8. Multiprocessor system with multiple concurrent modes of execution

    DOEpatents

    Ahn, Daniel; Ceze, Luis H.; Chen, Dong Chen; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin

    2016-11-22

    A multiprocessor system supports multiple concurrent modes of speculative execution. Speculation identification numbers (IDs) are allocated to speculative threads from a pool of available numbers. The pool is divided into domains, with each domain being assigned to a mode of speculation. Modes of speculation include TM, TLS, and rollback. Allocation of the IDs is carried out with respect to a central state table and using hardware pointers. The IDs are used for writing different versions of speculative results in different ways of a set in a cache memory.

  9. Experimental investigation on the initial expansion stage of vacuum arc on cup-shaped TMF contacts

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Xiu, Shixin; Liu, Zixi; Zhang, Yanzhe; Feng, Dingyu

    2018-02-01

    Arc behavior and measures to control it directly affect the properties of vacuum circuit breakers. Nowadays, transverse magnetic field (TMF) contacts are widely used for medium voltages. A magnetic field perpendicular to the current direction between the TMF contacts makes the arc move, transmitting its energy to the whole contact and avoiding excessive local ablation. Previous research on TMF arc behavior concentrated mainly on the arc movement and less on the initial stage (from arc ignition to an unstable arc column). A significant amount of experiment results suggest that there is a short period of arc stagnation after ignition. The duration of this arc stagnation and the arc characteristics during this stage affect the subsequent arc motion and even the breaking property of interrupters. The present study is of the arc characteristics in the initial stage. Experiments were carried out in a demountable vacuum chamber with cup-shaped TMF contacts. Using a high-speed camera, both single-point arc ignition mode and multiple-point arc ignition (MPAI) mode were observed. The experimental data show that the probability of MPAI mode occurring is related to the arc current. The influences of arc-ignition mode, arc current, and contact diameter on the initial expansion process were investigated. In addition, simulations were performed to analyze the multiple arc expansion process mechanically. Based on the experimental phenomena and simulation results, the mechanism of the arc expansion motion was analyzed.

  10. Multiple polarization states of vector soliton in fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan

    2007-11-01

    Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.

  11. A pricing approach for mitigating congestion in multimodal transportation systems.

    DOT National Transportation Integrated Search

    2010-02-19

    The problem addressed in this research is to determine usage prices for a system with : multiple modes of transportation with the objective of reducing congestion. With multiple : modes, these prices can take on several forms. On road networks, the u...

  12. Quasi-distributed fiber sensor using active mode locking laser cavity with multiple FBG reflections

    NASA Astrophysics Data System (ADS)

    Park, Chang Hyun; Kim, Gyeong Hun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo

    2017-04-01

    We have demonstrated a quasi-distributed sensor using an active mode-locking (AML) laser with multiple fiber Bragg grating (FBG) reflections of the same center wavelength. We found that variations in the multiple cavity segment lengths between FBGs can be measured by simply sweeping the modulation frequency, because the modulation frequency of the AML laser is proportionally affected by cavity length.

  13. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  14. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, Joseph C.

    1997-01-01

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  15. Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2017-09-01

    A systematic dynamic modeling methodology is presented to develop the rigid-flexible coupling dynamic model (RFDM) of an emerging flexible parallel manipulator with multiple actuation modes. By virtue of assumed mode method, the general dynamic model of an arbitrary flexible body with any number of lumped parameters is derived in an explicit closed form, which possesses the modular characteristic. Then the completely dynamic model of system is formulated based on the flexible multi-body dynamics (FMD) theory and the augmented Lagrangian multipliers method. An approach of combining the Udwadia-Kalaba formulation with the hybrid TR-BDF2 numerical algorithm is proposed to address the nonlinear RFDM. Two simulation cases are performed to investigate the dynamic performance of the manipulator with different actuation modes. The results indicate that the redundant actuation modes can effectively attenuate vibration and guarantee higher dynamic performance compared to the traditional non-redundant actuation modes. Finally, a virtual prototype model is developed to demonstrate the validity of the presented RFDM. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and controller design of other planar flexible parallel manipulators, especially the emerging ones with multiple actuation modes.

  16. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  17. Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model

    PubMed Central

    Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki

    2013-01-01

    Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628

  18. Charging system with galvanic isolation and multiple operating modes

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  19. The MACHO Project Sample of Galactic Bulge High-Amplitude δ Scuti Stars: Pulsation Behavior and Stellar Properties

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Geha, M.; Griest, K.; Lehner, M. J.; Marshall, S. L.; McNamara, B. J.; Minniti, D.; Nelson, C.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Sutherland, W.; Templeton, M. R.; Vandehei, T.; Welch, D. L.

    2000-06-01

    We have detected 90 objects with periods and light-curve structures similar to those of field δ Scuti stars using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude δ Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground δ Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population δ Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field δ Scuti stars and the δ Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude δ Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles day-1) and the observed period ratios of ~0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes.

  20. Design of elliptical-core mode-selective photonic lanterns with six modes for MIMO-free mode division multiplexing systems.

    PubMed

    Sai, Xiaowei; Li, Yan; Yang, Chen; Li, Wei; Qiu, Jifang; Hong, Xiaobin; Zuo, Yong; Guo, Hongxiang; Tong, Weijun; Wu, Jian

    2017-11-01

    Elliptical-core few mode fiber (EC-FMF) is used in a mode division multiplexing (MDM) transmission system to release multiple-input-multiple-output (MIMO) digital-signal-processing, which reduces the cost and the complexity of the receiver. However, EC-FMF does not match with conventional multiplexers/de-multiplexers (MUXs/DeMUXs) such as a photonic lantern, leading to extra mode coupling loss and crosstalk. We design elliptical-core mode-selective photonic lanterns (EC-MSPLs) with six modes, which can match well with EC-FMF in MIMO-free MDM systems. Simulation of the EC-MSPL using the beam propagation method was demonstrated employing a combination of either step-index or graded-index fibers with six different sizes of cores, and the taper transition length of 8 cm or 4 cm. Through numerical simulations and optimizations, both types of photonic lanterns can realize low loss transmission and low crosstalk of below -20.0  dB for all modes.

  1. A Theoretical and Experimental Comparison of 3-3 and 3-1 Mode Piezoelectric Microelectromechanical Systems (MEMS)

    PubMed Central

    Kim, Donghwan; Hewa-Kasakarage, Nishshanka; Hall, Neal A.

    2014-01-01

    Two piezoelectric transducer modes applied in microelectromechanical systems are (i) the 3-1 mode with parallel electrodes perpendicular to a vertical polarization vector, and (ii) the 3-3 mode which uses interdigitated (IDT) electrodes to realize an in-plane polarization vector. This study compares the two configurations by deriving a Norton equivalent representation of each approach – including expressions for output charge and device capacitance. The model is verified using a microfabricated device comprised of multiple epitaxial silicon beams with sol-gel deposited lead zirconate titanate at the surface. The beams have identical dimensions and are attached to a common moving element at their tip. The only difference between beams is electrode configuration – enabling a direct comparison. Capacitance and charge measurements verify the presented theory with high accuracy. The Norton equivalent representation is general and enables comparison of any figure of merit, including electromechanical coupling coefficient and signal to noise ratio. With respect to coupling coefficient, the experimentally validated theory in this work suggests that 3-3 mode IDT-electrode configurations offer the potential for modest improvements compared against 3-1 mode devices (less than 2×), and the only geometrical parameter affecting this ratio is the fill factor of the IDT electrode. PMID:25309041

  2. Analysis of Urinary Metabolites of Nerve and Blister Chemical Warfare Agents

    DTIC Science & Technology

    2014-08-01

    of CWAs. The analysis methods use UHPLC-MS/MS in Multiple Reaction Monitoring ( MRM ) mode to enhance the selectivity and sensitivity of the method...Chromatography Mass Spectrometry LOD Limit Of Detection LOQ Limit of Quantitation MRM Multiple Reaction Monitoring MSMS Tandem mass...urine [1]. Those analysis methods use UHPLC- MS/MS in Multiple Reaction Monitoring ( MRM ) mode to enhance the selectivity and sensitivity of the method

  3. A bioethics for all seasons.

    PubMed

    Chan, Sarah

    2015-01-01

    The last four decades have seen the emergence and flourishing of the field of bioethics and its incorporation into wide-ranging aspects of society, from the clinic or laboratory through to public policy and the media. Yet considerable debate still exists over what bioethics is and how it should be done. In this paper I consider the question of what makes good bioethics. Drawing on historical and contemporary examples, I suggest that bioethics encompasses multiple modes of responding to moral disagreement, and that an awareness of which mode is operational in a given context is essential to doing good bioethics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. GEODYN operations description, volume 3. [computer program for estimation of orbit and geodetic parameters

    NASA Technical Reports Server (NTRS)

    Martin, T. V.; Mullins, N. E.

    1972-01-01

    The operating and set-up procedures for the multi-satellite, multi-arc GEODYN- Orbit Determination program are described. All system output is analyzed. The GEODYN Program is the nucleus of the entire GEODYN system. It is a definitive orbit and geodetic parameter estimation program capable of simultaneously processing observations from multiple arcs of multiple satellites. GEODYN has two modes of operation: (1) the data reduction mode and (2) the orbit generation mode.

  5. On Holo-Hilbert Spectral Analysis: A Full Informational Spectral Representation for Nonlinear and Non-Stationary Data

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang; hide

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.

  6. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    PubMed Central

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  7. Exploring asynchronous brainstorming in large groups: a field comparison of serial and parallel subgroups.

    PubMed

    de Vreede, Gert-Jan; Briggs, Robert O; Reiter-Palmon, Roni

    2010-04-01

    The aim of this study was to compare the results of two different modes of using multiple groups (instead of one large group) to identify problems and develop solutions. Many of the complex problems facing organizations today require the use of very large groups or collaborations of groups from multiple organizations. There are many logistical problems associated with the use of such large groups, including the ability to bring everyone together at the same time and location. A field study involved two different organizations and compared productivity and satisfaction of group. The approaches included (a) multiple small groups, each completing the entire process from start to end and combining the results at the end (parallel mode); and (b) multiple subgroups, each building on the work provided by previous subgroups (serial mode). Groups using the serial mode produced more elaborations compared with parallel groups, whereas parallel groups produced more unique ideas compared with serial groups. No significant differences were found related to satisfaction with process and outcomes between the two modes. Preferred mode depends on the type of task facing the group. Parallel groups are more suited for tasks for which a variety of new ideas are needed, whereas serial groups are best suited when elaboration and in-depth thinking on the solution are required. Results of this research can guide the development of facilitated sessions of large groups or "teams of teams."

  8. On multiple manifestations of the second response branch in streamwise vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Cagney, N.; Balabani, S.

    2013-07-01

    The structural motion and velocity field in the wake of a cylinder exhibiting vortex-induced vibration (VIV) in the streamwise direction were measured using Particle-Image Velocimetry. The effect of hysteresis on the amplitude response of the cylinder and the existence of multiple wake modes in the region of the second response branch were examined. As the reduced velocity was decreased, there was a reduction in the lock-in range; outside this range the amplitude response was found to be negligible and the A-II mode (which is similar to the von Kármán vortex street) was observed in the wake. When the reduced velocity was increased the second branch could be manifested in two forms, depending on whether the wake exhibited the SA or the A-IV mode (in which two and four vortices are shed per wake cycle, respectively). The A-IV mode has been observed in studies in which a cylinder was forced to oscillate in the streamwise direction; however, this represents the first time that it has been recorded in the wake of a freely oscillating body, and it was not previously known that the A-IV mode was capable of exciting self-sustaining vibrations. Both the SA and A-IV modes were stable and no intermittent mode-switching was observed; however, it was found to be unpredictable which mode would dominate as the reduced velocity was varied and the cylinder entered the second response branch. Analysis of the cylinder displacement signals measured while each mode was dominant indicated that the SA mode excited larger amplitude vibrations than the A-IV mode. A reduced velocity near the second response branch was identified at which the wake could exhibit either the SA, A-IV, or A-II modes, with the latter occurring as the reduced velocity was decreased. Although bi-modal behaviour is well established in VIV studies, as far as the authors are aware, this represents the first time that a point has been observed in the response regime of a freely oscillating structure in which three stable states have been observed, each corresponding to a different wake mode and vibration amplitude, for the same structural parameters, reduced velocity, and Reynolds number. This suggests that the mechanism determining which wake mode dominates and the fluid-structure interaction in the case of streamwise VIV may be more complex than has previously been thought. Finally, the vortex-formation and shedding processes associated with the A-II, SA, and A-IV modes were described using phase-averaged vorticity fields, and the differences between the SA and A-IV modes were discussed.

  9. 78 FR 59372 - Certain Multiple Mode Outdoor Grills and Parts Thererof; Institution of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-895] Certain Multiple Mode Outdoor Grills and Parts Thererof; Institution of Investigation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade...

  10. An investigation of the role of some person and situation variables in multiple cue probability learning.

    PubMed

    Bayindir, Mustafa; Bolger, Fergus; Say, Bilge

    2016-07-19

    Making decisions using judgements of multiple non-deterministic indicators is an important task, both in everyday and professional life. Learning of such decision making has often been studied as the mapping of stimuli (cues) to an environmental variable (criterion); however, little attention has been paid to the effects of situation-by-person interactions on this learning. Accordingly, we manipulated cue and feedback presentation mode (graphic or numeric) and task difficulty, and measured individual differences in working memory capacity (WMC). We predicted that graphic presentation, fewer cues, and elevated WMC would facilitate learning, and that person and task characteristics would interact such that presentation mode compatible with the decision maker's cognitive capability (enhanced visual or verbal WMC) would assist learning, particularly for more difficult tasks. We found our predicted main effects, but no significant interactions, except that those with greater WMC benefited to a larger extent with graphic than with numeric presentation, regardless of which type of working memory was enhanced or number of cues. Our findings suggest that the conclusions of past research based predominantly on tasks using numeric presentation need to be reevaluated and cast light on how working memory helps us learn multiple cue-criterion relationships, with implications for dual-process theories of cognition.

  11. Modeling of the competition of stimulated Raman and Brillouin scatter in multiple beam experiments

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce I.; Baldis, Hector A.; Berger, Richard L.; Estabrook, Kent G.; Williams, Edward A.; Labaune, Christine

    2001-02-01

    Multiple laser beam experiments with plastic target foils at the Laboratoire pour L'Utilisation des Lasers Intenses (LULI) facility [Baldis et al., Phys. Rev. Lett. 77, 2957 (1996)] demonstrated anticorrelation of stimulated Brillouin and Raman backscatter (SBS and SRS). Detailed Thomson scattering diagnostics showed that SBS always precedes SRS, that secondary electron plasma waves sometimes accompanied SRS appropriate to the Langmuir Decay Instability (LDI), and that, with multiple interaction laser beams, the SBS direct backscatter signal in the primary laser beam was reduced while the SRS backscatter signal was enhanced and occurred earlier in time. Analysis and numerical calculations are presented here that evaluate the influences on the competition of SBS and SRS, of local pump depletion in laser hot spots due to SBS, of mode coupling of SBS and LDI ion waves, and of optical mixing of secondary and primary laser beams. These influences can be significant. The calculations take into account simple models of the laser beam hot-spot intensity probability distributions and assess whether ponderomotive and thermal self-focusing are significant. Within the limits of the model, which omits several other potentially important nonlinearities, the calculations suggest the effectiveness of local pump depletion, ion wave mode coupling, and optical mixing in affecting the LULI observations.

  12. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural system under failure correlations.

  13. Structural damage diagnostics via wave propagation-based filtering techniques

    NASA Astrophysics Data System (ADS)

    Ayers, James T., III

    Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable. As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite element plate models and experimental data obtained from Scanning Laser Doppler Vibrometry tests. Numerical and experimental parametric studies are conducted, and the current strengths and weaknesses of the proposed approaches are discussed. In particular, limitations to the damage profiling characterization are shown for low ultrasonic frequency regimes, whereas the multiple component mode conversion coefficients provide excellent noise mitigation. Multiple component estimation relies on an experimental technique developed for the estimation of Lamb wave polarization using a 1D Laser Vibrometer. Lastly, suggestions are made to apply the techniques to more structurally complex geometries.

  14. VLF Transmitter Signal Power Loss to Quasi-Electrostatic Whistler Mode Waves in Regions Containing Plasma Density Irregularities

    NASA Astrophysics Data System (ADS)

    Bell, T. F.; Foust, F.; Inan, U. S.; Lehtinen, N. G.

    2010-12-01

    The energetic particles comprising the Earth’s radiation belts are an important component of Space Weather. The commonly accepted model of the quasi-steady radiation belts developed by Abel and Thorne [1998] proposes that VLF signals from powerful ground based transmitters determine the lifetimes of energetic radiation belt electrons (100 keV-1.5 MeV) on L shells in the range 1.3-2.8. The primary mechanism of interaction is pitch angle scattering during gyro-resonance. Recent observations [Starks et al., 2008] from multiple spacecraft suggest that the actual night time intensity of VLF transmitter signals in the radiation belts is approximately 20 dB below the level assumed in the Abel and Thorne model and approximately 10 dB below model values during the day. In this work we discuss one mechanism which might be responsible for a large portion of this intensity discrepancy. The mechanism is linear mode coupling between electromagnetic whistler mode waves and quasi-electrostatic whistler mode waves. As VLF electromagnetic whistler mode waves propagate through regions containing small scale (2-100 m) magnetic-field-aligned plasma density irregularities, they excite quasi-electrostatic whistler mode waves, and this excitation represents a power loss for the input waves. We construct plausible models of the irregularities in order to use numerical simulations to determine the characteristics of the mode coupling mechanism and the conditions under which the input VLF waves can lose significant power to the excited quasi-electrostatic whistler mode waves.

  15. Experimental study on the statistic characteristics of a 3x3 RF MIMO channel over a single conventional multimode fiber.

    PubMed

    Lei, Yi; Li, Jianqiang; Wu, Rui; Fan, Yuting; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2017-06-01

    Based on the observed random fluctuation phenomenon of speckle pattern across multimode fiber (MMF) facet and received optical power distribution across three output ports, we experimentally investigate the statistic characteristics of a 3×3 radio frequency multiple-input multiple-output (MIMO) channel enabled by mode division multiplexing in a conventional 50 µm MMF using non-mode-selective three-dimensional waveguide photonic lanterns as mode multiplexer and demultiplexer. The impacts of mode coupling on the MIMO channel coefficients, channel matrix, and channel capacity have been analyzed over different fiber lengths. The results indicate that spatial multiplexing benefits from the greater fiber length with stronger mode coupling, despite a higher optical loss.

  16. Usefulness of Housekeeping Genes for the Diagnosis of Helicobacter pylori Infection, Strain Discrimination and Detection of Multiple Infection.

    PubMed

    Palau, Montserrat; Kulmann, Marcos; Ramírez-Lázaro, María José; Lario, Sergio; Quilez, María Elisa; Campo, Rafael; Piqué, Núria; Calvet, Xavier; Miñana-Galbis, David

    2016-12-01

    Helicobacter pylori infects human stomachs of over half the world's population, evades the immune response and establishes a chronic infection. Although most people remains asymptomatic, duodenal and gastric ulcers, MALT lymphoma and progression to gastric cancer could be developed. Several virulence factors such as flagella, lipopolysaccharide, adhesins and especially the vacuolating cytotoxin VacA and the oncoprotein CagA have been described for H. pylori. Despite the extensive published data on H. pylori, more research is needed to determine new virulence markers, the exact mode of transmission or the role of multiple infection. Amplification and sequencing of six housekeeping genes (amiA, cgt, cpn60, cpn70, dnaJ, and luxS) related to H. pylori pathogenesis have been performed in order to evaluate their usefulness for the specific detection of H. pylori, the genetic discrimination at strain level and the detection of multiple infection. A total of 52 H. pylori clones, isolated from 14 gastric biopsies from 11 patients, were analyzed for this purpose. All genes were specifically amplified for H. pylori and all clones isolated from different patients were discriminated, with gene distances ranged from 0.9 to 7.8%. Although most clones isolated from the same patient showed identical gene sequences, an event of multiple infection was detected in all the genes and microevolution events were showed for amiA and cpn60 genes. These results suggested that housekeeping genes could be useful for H. pylori detection and to elucidate the mode of transmission and the relevance of the multiple infection. © 2016 John Wiley & Sons Ltd.

  17. Multiple vibration modes within the organ of Corti revealed by high-resolution, outer-hair-cell-driven micromechanical motions at acoustic frequencies

    NASA Astrophysics Data System (ADS)

    Karavitaki, K. Domenica; Guinan, John J.; Mountain, David C.

    2018-05-01

    Electrically-evoked outer-hair-cell-driven micromechanical motions within the organ of Corti were visualized and quantified using a video stroboscopy system. The resulting radial motions exhibited phase transitions along the radial direction, characteristic of a system that can exhibit multiple modes of vibration. We argue that the interaction of these modes would shape the input to the inner hair cell hair bundles and resulting auditory-nerve response patterns.

  18. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre

    PubMed Central

    Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.

    2015-01-01

    Mode division multiplexing (MDM)– using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams – has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than −15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM−1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10−3. PMID:26450398

  19. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre.

    PubMed

    Huang, Hao; Milione, Giovanni; Lavery, Martin P J; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R; Willner, Alan E

    2015-10-09

    Mode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting's 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10(-3).

  20. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.

    2015-10-01

    Mode division multiplexing (MDM)- using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10-3.

  1. Multiple harmonic frequencies resonant cavity design and half-scale prototype measurements for a fast kicker

    DOE PAGES

    Huang, Yulu; Wang, Haipeng; Wang, Shaoheng; ...

    2016-12-09

    Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes,more » four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Lastly, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.« less

  2. Analog nonlinear MIMO receiver for optical mode division multiplexing transmission.

    PubMed

    Spalvieri, Arnaldo; Boffi, Pierpaolo; Pecorino, Simone; Barletta, Luca; Magarini, Maurizio; Gatto, Alberto; Martelli, Paolo; Martinelli, Mario

    2013-10-21

    The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.

  3. Inhibition of Listeria monocytogenes on Ready-to-Eat Meats Using Bacteriocin Mixtures Based on Mode-of-Action

    PubMed Central

    Vijayakumar, Paul Priyesh; Muriana, Peter M.

    2017-01-01

    Bacteriocin-producing (Bac+) lactic acid bacteria (LAB) comprising selected strains of Lactobacillus curvatus, Lactococcus lactis, Pediococcus acidilactici, and Enterococcus faecium and thailandicus were examined for inhibition of Listeria monocytogenes during hotdog challenge studies. The Bac+ strains, or their cell-free supernatants (CFS), were grouped according to mode-of-action (MOA) as determined from prior studies. Making a mixture of as many MOAs as possible is a practical way to obtain a potent natural antimicrobial mixture to address L. monocytogenes contamination of RTE meat products (i.e., hotdogs). The heat resistance of the bacteriocins allowed the use of pasteurization to eliminate residual producer cells for use as post-process surface application or their inclusion into hotdog meat emulsion during cooking. The use of Bac+ LAB comprising 3× MOAs directly as co-inoculants on hotdogs was not effective at inhibiting L. monocytogenes. However, the use of multiple MOA Bac+ CFS mixtures in a variety of trials demonstrated the effectiveness of this approach by showing a >2-log decrease of L. monocytogenes in treatment samples and 6–7 log difference vs. controls. These data suggest that surface application of multiple mode-of-action bacteriocin mixtures can provide for an Alternative 2, and possibly Alternative 1, process category as specified by USDA-FSIS for control of L. monocytogenes on RTE meat products. PMID:28335414

  4. Inhibition of Listeria monocytogenes on Ready-to-Eat Meats Using Bacteriocin Mixtures Based on Mode-of-Action.

    PubMed

    Vijayakumar, Paul Priyesh; Muriana, Peter M

    2017-03-14

    Bacteriocin-producing (Bac⁺) lactic acid bacteria (LAB) comprising selected strains of Lactobacillus curvatus , Lactococcus lactis , Pediococcus acidilactici , and Enterococcus faecium and thailandicus were examined for inhibition of Listeria monocytogenes during hotdog challenge studies. The Bac⁺ strains, or their cell-free supernatants (CFS), were grouped according to mode-of-action (MOA) as determined from prior studies. Making a mixture of as many MOAs as possible is a practical way to obtain a potent natural antimicrobial mixture to address L. monocytogenes contamination of RTE meat products (i.e., hotdogs). The heat resistance of the bacteriocins allowed the use of pasteurization to eliminate residual producer cells for use as post-process surface application or their inclusion into hotdog meat emulsion during cooking. The use of Bac⁺ LAB comprising 3× MOAs directly as co-inoculants on hotdogs was not effective at inhibiting L. monocytogenes. However, the use of multiple MOA Bac⁺ CFS mixtures in a variety of trials demonstrated the effectiveness of this approach by showing a >2-log decrease of L. monocytogenes in treatment samples and 6-7 log difference vs. These data suggest that surface application of multiple mode-of-action bacteriocin mixtures can provide for an Alternative 2, and possibly Alternative 1, process category as specified by USDA-FSIS for control of L. monocytogenes on RTE meat products.

  5. Synchronous oscillation prior to disruption caused by kink modes in HL-2A tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Hu, D.; Wang, X. G.; Shi, Z. B.; Xu, Y.; Chen, W.; Ding, X. T.; Zhong, W. L.; Dong, Y. B.; Ji, X. Q.; Zhang, Y. P.; Gao, J. M.; Li, J. X.; Yang, Z. C.; Li, Y. G.; Liu, Y.

    2015-08-01

    A class of evident MHD activities prior to major disruption has been observed during recent radiation induced disruptions of the HL-2A tokamak discharges. It can be named SOD, synchronous oscillations prior to disruption, characterized by synchronous oscillation of electron cyclotron emission (ECE), core soft x-ray, Mirnov coil, and {{D}α} radiation signals at the divertor plate. The SOD activity is mostly observed in a parametric regime where the poloidal beta is low enough before disruption, typically corresponding to those radiation-induced disruptions. It has been found that the m/n = 2/1 mode is dominant during the SODs, and consequently it is the drop of the mode frequency and the final mode locking that lead to thermal quench. The mode frequency before the mode locking corresponds to the toroidal rotation frequency of the edge plasma. It is also found that during SODs, the location of the q = 2 surface is moving outward, and most of the plasma current is enclosed within the surface. This demonstrates that the current channel lies inside the rational surface during SOD, and thus the resistive kink mode is unstable. Further analysis of the electron temperature perturbation structure shows that the plasma is indeed dominated by the resistive kink mode, with kink-like perturbation in the core plasma region. It suggests that it is the nonlinear growth of the m/n = 2/1 resistive kink mode and its higher order harmonics, rather than the spontaneous overlapping of multiple neighboring islands, that ultimately triggered the disruption.

  6. First-year medical students prefer multiple learning styles.

    PubMed

    Lujan, Heidi L; DiCarlo, Stephen E

    2006-03-01

    Students have preferences for the ways in which they receive information. The visual, auditory, reading/writing, kinesthetic (VARK) questionnaire identifies student's preferences for particular modes of information presentation. We administered the VARK questionnaire to our first-year medical students, and 166 of 250 students (66%) returned the completed questionnaire. Only 36.1% of the students preferred a single mode of information presentation. Among these students, 5.4% preferred visual (learning from graphs, charts, and flow diagrams), 4.8% preferred auditory (learning from speech), 7.8% preferred printed words (learning from reading and writing), and 18.1% preferred using all their senses (kinesthetics: learning from touch, hearing, smell, taste, and sight). In contrast, most students (63.8%) preferred multiple modes [2 modes (24.5%), 3 modes (32.1%), or 4 modes (43.4%)] of information presentation. Knowing the students preferred modes can 1) help provide instruction tailored to the student's individual preference, 2) overcome the predisposition to treat all students in a similar way, and 3) motivate teachers to move from their preferred mode(s) to using others.

  7. Individual differences in hemispheric preference and emotion regulation difficulties

    PubMed Central

    Gupta, Garima; Dubey, Akanksha; Saxena, Prachi; Pandey, Rakesh

    2011-01-01

    Background: Hemisphericity or individual difference in the preference to use the left or the right hemispheric mode of information processing has been associated with various emotion-related differences. For example, the right hemisphericity has been linked with inhibition of emotional expression, feeling of tension, greater impulsivity etc. These observations suggest that right hemisphericity may be associated with greater difficulties in regulating emotions. However, direct empirical tests of such theoretical proposition are very thin. Aim: In view of this, the present study aims to investigate how and to what extent individual difference in hemispheric preference relate to emotion regulation. Materials and Methods: Thirty-two right-handed male subjects in the age range 18 to 20 years were assessed on self-report measures of hemispheric preference and emotion regulation difficulties. The correlation between dimensions of hemispheric preference and difficulties in regulating emotions was computed. A series of stepwise multiple regression analyses were also done to explore the relative significance of various dimensions of hemispheric preference in predicting emotion regulation difficulties. Results: The findings revealed that in general a preference for the right hemispheric mode of information processing was associated with greater emotion regulation difficulties. The correlation analysis indicated that while impulse control difficulties and difficulties in engaging goal directed behavior was associated with preference for almost all the right hemispheric mode of information processing, the nonacceptance of emotional responses and limited access to emotion regulation was related to preference for only global/synthetic (a right hemispheric) mode of information processing. Similarly, the lack of emotional clarity facet of emotion regulation difficulties correlated significantly with a preference for the emotional mode of information processing (again a right hemispheric mode). The results of stepwise multiple regression analyses, however, indicated that “nonacceptance of emotional responses’ and ‘limited access to emotion regulation strategies” facets of emotion regulation difficulties were best predicted by a preference for the global/synthetic mode of information processing. While others like difficulties engaging in goal-directed behaviour, impulse control difficulties, and lack of emotional clarity were best predicted by a preference for visuo-spatial rather than the verbal mode of information processing. Conclusion: Overall, the findings imply that greater preference for right hemispheric mode of information processing as compared to the left is associated with greater difficulties in regulating emotions. PMID:22969178

  8. A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes

    NASA Astrophysics Data System (ADS)

    Labadie, Nathan Richard

    Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and characterized the 2D scanning hybrid phased array demonstrating wide angle scanning with high antenna efficiency.

  9. Quantized edge modes in atomic-scale point contacts in graphene

    NASA Astrophysics Data System (ADS)

    Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  10. The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition.

    PubMed

    Wang, Gang; Teng, Chaolin; Li, Kuo; Zhang, Zhonglin; Yan, Xiangguo

    2016-09-01

    The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this paper, by using independent component analysis (ICA) and multivariate empirical mode decomposition (MEMD), the ICA-based MEMD method was proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. First, the EEG signals were decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-related components were then extracted by reconstructing the MIMFs corresponding to EOAs. After performing the ICA of EOG-related signals, the EOG-linked independent components were distinguished and rejected. Finally, the clean EEG signals were reconstructed by implementing the inverse transform of ICA and MEMD. The results of simulated and real data suggested that the proposed method could successfully eliminate EOAs from EEG signals and preserve useful EEG information with little loss. By comparing with other existing techniques, the proposed method achieved much improvement in terms of the increase of signal-to-noise and the decrease of mean square error after removing EOAs.

  11. Quantized edge modes in atomic-scale point contacts in graphene.

    PubMed

    Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0  = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  12. Splice loss requirements in multi-mode fiber mode-division-multiplex transmission links.

    PubMed

    Warm, Stefan; Petermann, Klaus

    2013-01-14

    We investigate numerically the influence of fiber splices and fiber connectors to the statistics of mode dependent loss (MDL) and multiple-input multiple-output (MIMO) outage capacity in mode multiplexed multi-mode fiber links. Our results indicate required splice losses much lower than currently feasible to achieve a reasonable outage capacity in long-haul transmission systems. Splice losses as low as 0.03dB may effectively lead to an outage of MIMO channels after only a few hundred kilometers transmission length. In a first approximation, the relative capacity solely depends on the accumulated splice loss and should be less than ≈ 2dB to ensure a relative capacity of 90%. We also show that discrete mode permutation (mixing) within the transmission line may effectively increase the maximum transmission distance by a factor of 5 for conventional splice losses.

  13. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  14. Constructing Standards: A Study of Nurses Negotiating with Multiple Modes of Knowledge

    ERIC Educational Resources Information Center

    Nes, Sturle; Moen, Anne

    2010-01-01

    Purpose: The aim of the paper is to explore how multiple modes of knowledge play out in the consolidation of nursing procedures in construction of "local universality". The paper seeks to explore processes where nurses negotiate universal procedures that are to become local standards in a hospital. Design/methodology/approach: The paper…

  15. The Mediating Effect of Context Variation in Mixed Practice for Transfer of Basic Science

    ERIC Educational Resources Information Center

    Kulasegaram, Kulamakan; Min, Cynthia; Howey, Elizabeth; Neville, Alan; Woods, Nicole; Dore, Kelly; Norman, Geoffrey

    2015-01-01

    Applying a previously learned concept to a novel problem is an important but difficult process called transfer. Practicing multiple concepts together (mixed practice mode) has been shown superior to practicing concepts separately (blocked practice mode) for transfer. This study examined the effect of single and multiple practice contexts for both…

  16. Multimodal Likelihoods in Educational Assessment: Will the Real Maximum Likelihood Score Please Stand up?

    ERIC Educational Resources Information Center

    Wothke, Werner; Burket, George; Chen, Li-Sue; Gao, Furong; Shu, Lianghua; Chia, Mike

    2011-01-01

    It has been known for some time that item response theory (IRT) models may exhibit a likelihood function of a respondent's ability which may have multiple modes, flat modes, or both. These conditions, often associated with guessing of multiple-choice (MC) questions, can introduce uncertainty and bias to ability estimation by maximum likelihood…

  17. Efficient vibration mode analysis of aircraft with multiple external store configurations

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1988-01-01

    A coupling method for efficient vibration mode analysis of aircraft with multiple external store configurations is presented. A set of low-frequency vibration modes, including rigid-body modes, represent the aircraft. Each external store is represented by its vibration modes with clamped boundary conditions, and by its rigid-body inertial properties. The aircraft modes are obtained from a finite-element model loaded by dummy rigid external stores with fictitious masses. The coupling procedure unloads the dummy stores and loads the actual stores instead. The analytical development is presented, the effects of the fictitious mass magnitudes are discussed, and a numerical example is given for a combat aircraft with external wing stores. Comparison with vibration modes obtained by a direct (full-size) eigensolution shows very accurate coupling results. Once the aircraft and stores data bases are constructed, the computer time for analyzing any external store configuration is two to three orders of magnitude less than that of a direct solution.

  18. Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri

    1999-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.

  19. Detecting scaling in the period dynamics of multimodal signals: Application to Parkinsonian tremor

    NASA Astrophysics Data System (ADS)

    Sapir, Nir; Karasik, Roman; Havlin, Shlomo; Simon, Ely; Hausdorff, Jeffrey M.

    2003-03-01

    Patients with Parkinson’s disease exhibit tremor, involuntary movement of the limbs. The frequency spectrum of tremor typically has broad peaks at “harmonic” frequencies, much like that seen in other physical processes. In general, this type of harmonic structure in the frequency domain may be due to two possible mechanisms: a nonlinear oscillation or a superposition of (multiple) independent modes of oscillation. A broad peak spectrum generally indicates that a signal is semiperiodic with a fluctuating period. These fluctuations may posses intrinsic order that can be quantified using scaling analysis. We propose a method to extract the correlation (scaling) properties in the period dynamics of multimodal oscillations, in order to distinguish between a nonlinear oscillation and a superposition of individual modes of oscillation. The method is based on our finding that the information content of the temporal correlations in a fluctuating period of a single oscillator is contained in a finite frequency band in the power spectrum, allowing for decomposition of modes by bandpass filtering. Our simulations for a nonlinear oscillation show that harmonic modes possess the same scaling properties. In contrast, when the method is applied to tremor records from patients with Parkinson’s disease, the first two modes of oscillations yield different scaling patterns, suggesting that these modes may not be simple harmonics, as might be initially assumed.

  20. Influence of light polymerization modes on degree of conversion and crosslink density of dental composites.

    PubMed

    da Silva, Eduardo Moreira; Poskus, Laiza Tatiana; Guimarães, José Guilherme Antunes; de Araújo Lima Barcellos, Alexandre; Fellows, Carlos Eduardo

    2008-03-01

    This study analyzed the influence of light polymerization modes on crosslink density (CD) and the degree of conversion (DC) of dental composites. A minifilled hybrid and a nanofilled dental composite were photoactivated with two light polymerization modes: Conventional-850 mW/cm2 for 20 s and Gradual-50 up to 1,000 mW/cm2 for 10 s+1,000 mW/cm2 for 10 s. DC was determined by the use of FT-Raman-spectrometer. A softening test, using Knoop diamond indentation, was carried out at the top and bottom of 2 mm thick dental composite disks, before and after storage in 100% ethanol for 24 h, in order to represent the amount of crosslink density. Data were analyzed by ANOVA and Student-Newman-Keuls' multiple range test (alpha=0.05). The DC was influenced by light polymerization modes, with Gradual mode presenting lower DC. On bottom surfaces, the nanofilled dental composite was more susceptible to softening by ethanol than minifilled hybrid, and gradual light polymerization of nanofilled dental composite resulted in more softening than when conventional light polymerization was used. The results suggest that nanofilled composites are capable undergoing more plasticization if applied in thick increments.

  1. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales.

    PubMed

    Larson-Johnson, Kathryn

    2016-01-01

    As a primary determinant of spatial structure in angiosperm populations, fruit dispersal may impact large-scale ecological and evolutionary processes. Essential to understanding these mechanisms is an accurate reconstruction of dispersal mode over the entire history of an angiosperm lineage. A total-evidence phylogeny is presented for most fossil fruit and all extant genera in Fagales over its c. 95 million yr history. This phylogeny - the largest of its kind to include plant fossils - was used to reconstruct an evolutionary history directly informed by fossil morphologies and to assess relationships among dispersal mode, biogeographic range size, and diversification rate. Reconstructions indicate four transitions to wind dispersal and seven to biotic dispersal, with the phylogenetic integration of fossils crucial to understanding these patterns. Complexity further increased when more specialized behaviors were considered, with fluttering, gliding, autorotating, and scatter-hoarding evolving multiple times across the order. Preliminary biogeographic analyses suggest larger range sizes in biotically dispersed lineages, especially when pollination mode was held constant. Biotically dispersed lineages had significantly higher diversification rates than abiotically dispersed lineages, although transitions in dispersal mode alone cannot explain all detected diversification rate shifts across Fagales. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. A reconstruction of sexual modes throughout animal evolution.

    PubMed

    Sasson, Daniel A; Ryan, Joseph F

    2017-12-06

    Although most extant animals have separate sexes, simultaneous hermaphrodites can be found in lineages throughout the animal kingdom. However, the sexual modes of key ancestral nodes including the last common ancestor (LCA) of all animals remain unclear. Without these data, it is difficult to infer the reproductive-state transitions that occurred early in animal evolution, and thus a broad understanding of the evolution of animal reproduction remains elusive. In this study, we use a composite phylogeny from four previously published studies, two alternative topologies (ctenophores or sponges as sister to the rest of animals), and multiple phylogenetic approaches to conduct the most extensive analysis to date of the evolution of animal sexual modes. Our analyses clarify the sexual mode of many ancestral animal nodes and allow for sound inferences of modal transitions that have occurred in animal history. Our results also indicate that the transition from separate sexes to hermaphroditism has been more common in animal history than the reverse. These results provide the most complete view of the evolution of animal sexual modes to date and provide a framework for future inquiries into the correlation of these transitions with genes, behaviors, and physiology. These results also suggest that mutations promoting hermaphroditism have historically been more likely to invade gonochoristic populations than vice versa.

  3. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  4. A multigenerational family with multiple sclerosis.

    PubMed

    Dyment, D A; Cader, M Z; Willer, C J; Risch, N; Sadovnick, A D; Ebers, G C

    2002-07-01

    We report a family with 15 individuals affected with multiple sclerosis present in three and possibly four generations. The segregation of multiple sclerosis within this pedigree is consistent with an autosomal dominant mode of inheritance with reduced penetrance. The clinical characteristics of the affected individuals are indistinguishable from those seen in sporadic multiple sclerosis with respect to sex ratio, age at onset, onset symptom, MRI and clinical course. Eleven of 14 cases (78.6%) were positive for the known multiple sclerosis-associated major histocompatibility complex (MHC) Class II HLA DRB1*15 allele. Parametric linkage analysis gave a non-significant LOD score of 0.31 (theta; = 0.33) for the DRB1 gene. However, among 11 affected children with at least one DRB1*15 bearing parent, all 11 out of 11 received at least one copy of this known susceptibility allele. A transmission disequilibrium test analysis was significant for the DRB1*15 allele within this single family; P = 0.0054. The inheritance pattern in this family suggests the presence of a single major locus responsible for multiple sclerosis susceptibility, with DRB1 acting as an important modifier. This family could be an important resource for the identification of a multiple sclerosis susceptibility gene.

  5. A unique role of endogenous visual-spatial attention in rapid processing of multiple targets

    PubMed Central

    Guzman, Emmanuel; Grabowecky, Marcia; Palafox, German; Suzuki, Satoru

    2012-01-01

    Visual spatial attention can be exogenously captured by a salient stimulus or can be endogenously allocated by voluntary effort. Whether these two attention modes serve distinctive functions is debated, but for processing of single targets the literature suggests superiority of exogenous attention (it is faster acting and serves more functions). We report that endogenous attention uniquely contributes to processing of multiple targets. For speeded visual discrimination, response times are faster for multiple redundant targets than for single targets due to probability summation and/or signal integration. This redundancy gain was unaffected when attention was exogenously diverted from the targets, but was completely eliminated when attention was endogenously diverted. This was not due to weaker manipulation of exogenous attention because our exogenous and endogenous cues similarly affected overall response times. Thus, whereas exogenous attention is superior for processing single targets, endogenous attention plays a unique role in allocating resources crucial for rapid concurrent processing of multiple targets. PMID:21517209

  6. AlignMe—a membrane protein sequence alignment web server

    PubMed Central

    Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.

    2014-01-01

    We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425

  7. Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission.

    PubMed

    Hu, Tao; Li, Juhao; Ge, Dawei; Wu, Zhongying; Tian, Yu; Shen, Lei; Liu, Yaping; Chen, Su; Li, Zhengbin; He, Yongqi; Chen, Zhangyuan

    2018-04-02

    Weakly coupled-mode division multiplexing (MDM) over few-mode fibers (FMF) for short-reach transmission has attracted great interest, which can avoid multiple-input-multiple-output digital signal processing (MIMO-DSP) by greatly suppressing modal crosstalk. In this paper, step-index FMF supporting 4 linearity polarization (LP) modes for MIMO-free transmission is designed and fabricated for the first time, to our knowledge. Modal crosstalk of the fiber is suppressed by increasing the mode effective refractive index differences. The same fabrication method as standard single-mode fiber is adopted so that it is practical and cost-effective. The mode multiplexer/demultiplexer (MUX/DEMUX) consists of cascaded mode-selective couplers (MSCs), which are designed and fabricated by tapering the proposed FMF with single-mode fiber (SMF). The mode MUX and DEMUX achieve very low modal crosstalk not only for the multiplexing/demultiplexing but also for the coupling to/from the FMF. Based on the fabricated FMF and mode MUX/DEMUX, we successfully demonstrate the first simultaneous 4-modes (LP 01 , LP 11 , LP 21 & LP 31 ) 10-km FMF transmission with 10-Gb/s intensity modulation and MIMO-free direct detection (IM/DD). The modal crosstalk of the whole transmission link is successfully suppressed to less than -16.5 dB. The experimental results indicate that FMF with simple step-index structure supporting 4 weakly-coupled modes is feasible.

  8. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  9. Multi-mode radio frequency device

    DOEpatents

    Gilbert, Ronald W [Morgan Hill, CA; Carrender, Curtis Lee [Morgan Hill, CA; Anderson, Gordon A [Benton City, WA; Steele, Kerry D [Kennewick, WA

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  10. Teaching Multiple Modes of Representation in Middle-School Science Classrooms: Impact on Student Learning and Multimodal Use

    ERIC Educational Resources Information Center

    Nixon, Ryan S.; Smith, Leigh K.; Wimmer, Jennifer J.

    2015-01-01

    This quasi-experimental study investigated how explicit instruction about multiple modes of representation (MMR) impacted grades 7 (n = 61) and 8 (n = 141) students' learning and multimodal use on end-of-unit assessments. Half of each teacher's (n = 3) students received an intervention consisting of explicit instruction on MMR in science…

  11. Video-Enhanced Lesson Observation as a Source of Multiple Modes of Data for School Leadership: A Videographic Approach

    ERIC Educational Resources Information Center

    Hidson, Elizabeth

    2018-01-01

    A growing body of literature recognizes the affordances of video in education, especially in relation to lesson observation and reflection as part of teachers' initial teacher education and continuing professional development. Minimal attention has been paid to the outcomes of video-enhanced observation as a source of multiple modes of data for…

  12. Individual differences in working memory capacity predict learned control over attentional capture.

    PubMed

    Robison, Matthew K; Unsworth, Nash

    2017-11-01

    Although individual differences in working memory capacity (WMC) typically predict susceptibility to attentional capture in various paradigms (e.g., Stroop, antisaccade, flankers), it sometimes fails to correlate with the magnitude of attentional capture effects in visual search (e.g., Stokes, 2016), which is 1 of the most frequently studied tasks to study capture (Theeuwes, 2010). But some studies have shown that search modes can mitigate the effects of attentional capture (Leber & Egeth, 2006). Therefore, the present study examined whether or not the relationship between WMC and attentional capture changes as a function of the search modes available. In Experiment 1, WMC was unrelated to attentional capture, but only 1 search mode (singleton-detection) could be employed. In Experiment 2, greater WMC predicted smaller attentional capture effects, but only when multiple search modes (feature-search and singleton-detection) could be employed. Importantly this relationship was entirely independent of variation in attention control, which suggests that this effect is driven by WMC-related long-term memory differences (Cosman & Vecera, 2013a, 2013b). The present set of findings help to further our understanding of the nuanced ways in which memory and attention interact. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Piloted Simulation Assessment of the Impact of Flexible Structures on Handling Qualities of Generic Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Stringer, Mary T.; Cowen, Brandon; Hoffler, Keith D.; Couch, Jesse C.; Ogburn, Marilyn E.; Diebler, Corey G.

    2013-01-01

    The NASA Langley Research Center Cockpit Motion Facility (CMF) was used to conduct a piloted simulation assessment of the impact of flexible structures on flying qualities. The CMF was used because of its relatively high bandwidth, six degree-of-freedom motion capability. Previous studies assessed and attempted to mitigate the effects of multiple dynamic aeroservoelastic modes (DASE). Those results indicated problems existed, but the specific cause and effect was difficult to ascertain. The goal of this study was to identify specific DASE frequencies, damping ratios, and gains that cause degradation in handling qualities. A generic aircraft simulation was developed and designed to have Cooper-Harper Level 1 handling qualities when flown without DASE models. A test matrix of thirty-six DASE modes was implemented. The modes had frequencies ranging from 1 to 3.5 Hz and were applied to each axis independently. Each mode consisted of a single axis, frequency, damping, and gain, and was evaluated individually by six subject pilots with test pilot backgrounds. Analysis completed to date suggests that a number of the DASE models evaluated degrade the handling qualities of this class of aircraft to an uncontrollable condition.

  14. An Experimental and Numerical Study of Roughness-Induced Instabilities in a Mach 3.5 Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; King, Rudolph A.; Owens, Lewis R.; Choudhari, Meelan M.; Norris, Andrew T.; Li, Fei; Chang, Chau-Layn

    2012-01-01

    Progress on a joint experimental and numerical study of laminar-to-turbulent transition induced by an isolated roughness element in a high-speed laminar boundary layer is reported in this paper. The numerical analysis suggests that transition is driven by the instability of high- and low-speed streaks embedded in the wake of the isolated roughness element. In addition, spatial stability analysis revealed that the wake flow supports multiple modes (even and odd) of convective instabilities that experience strong enough growth to cause transition. The experimental measurements, which included hot-wire and pitot-probe surveys, confirmed the existence of embedded high- and low-speed streaks in the roughness wake. Furthermore, the measurements indicate the presence of both even and odd modes of instability, although their relative magnitude depends on the specifics of the roughness geometry and flow conditions (e.g., the value of Re(sub kk) or k/delta. For the two test cases considered in the measurements (Re(sub kk) values of 462 and 319), the even mode and the odd mode were respectively dominant and appear to play a primary role in the transition process.

  15. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.

    2018-01-01

    In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.

  16. Three-Dimensional Structures Reveal Multiple ADP/ATP Binding Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Simmons; C Magee; D Smith

    The creation of synthetic enzymes with predefined functions represents a major challenge in future synthetic biology applications. Here, we describe six structures of de novo proteins that have been determined using protein crystallography to address how simple enzymes perform catalysis. Three structures are of a protein, DX, selected for its stability and ability to tightly bind ATP. Despite the addition of ATP to the crystallization conditions, the presence of a bound but distorted ATP was found only under excess ATP conditions, with ADP being present under equimolar conditions or when crystallized for a prolonged period of time. A bound ADPmore » cofactor was evident when Asp was substituted for Val at residue 65, but ATP in a linear configuration is present when Phe was substituted for Tyr at residue 43. These new structures complement previously determined structures of DX and the protein with the Phe 43 to Tyr substitution [Simmons, C. R., et al. (2009) ACS Chem. Biol. 4, 649-658] and together demonstrate the multiple ADP/ATP binding modes from which a model emerges in which the DX protein binds ATP in a configuration that represents a transitional state for the catalysis of ATP to ADP through a slow, metal-free reaction capable of multiple turnovers. This unusual observation suggests that design-free methods can be used to generate novel protein scaffolds that are tailor-made for catalysis.« less

  17. Introduction to the Portable Life Support Schematic and Technology Development Components

    NASA Technical Reports Server (NTRS)

    Conger, Bruce

    2008-01-01

    Conger presented the operations and functions of the baseline Constellation Program (CxP) Portable Life Support System (PLSS) schematic and key development technologies. He explained the functional descriptions of the schematic components in the fluid systems of the PLSS for multiple operational scenarios. PLSS subsystems include the oxygen subsystem, the ventilation subsystem, and the thermal subsystem. He also presented the operational PLSS modes: Nominal EVA mode, Umbilical - no recharge mode, Umbilical - with recharge mode, BENDS mode, BUDDY mode, Secondary oxygen mode, and the PLSS-removed umbilical mode.

  18. Portable multiplicity counter

    DOEpatents

    Newell, Matthew R [Los Alamos, NM; Jones, David Carl [Los Alamos, NM

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  19. Mixed-Mode Surveys: A Strategy to Reduce Costs and Enhance Response Rates

    ERIC Educational Resources Information Center

    Tobin, Daniel; Thomson, Joan; Radhakrishna, Rama; LaBorde, Luke

    2012-01-01

    Mixed-mode surveys present one opportunity for Extension to determine program outcomes at lower costs. In order to conduct a follow-up evaluation, we implemented a mixed-mode survey that relied on communication using the Web, postal mailings, and telephone calls. Using multiple modes conserved costs by reducing the number of postal mailings yet…

  20. Stratigraphic and compositional complexities of the late Quaternary Lethe tephra in South-central Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Ager, T.A.; Reger, R.D.; Pinney, D.S.; Kaufman, D.S.

    2008-01-01

    Recently discovered Lethe tephra has been proposed as a latest Pleistocene marker bed in Bristol Bay lowland NE to the Cook Inlet region, Alaska, on the basis of correlations involving a single "Lethe average" glass composition. Type deposits in the Valley of Ten Thousand Smokes, however, are chemically heterogeneous-individual lapilli as well as aggregate ash deposits have glass compositions that range from the average mode to much higher SiO2 and K2O. Moreover, a lake-sediment core from the Cook Inlet region contains one ash deposit similar to "Lethe average" and other, closely underlying deposits that resemble a mixture of the average mode and high-Si high-K mode of proximal deposits. Synthesis of previously published radiocarbon ages indicates a major eruption mainly of "Lethe average" mode about 13,000 14C yr BP. As many as six deposits in the Cook Inlet region-five chiefly "Lethe average" mode-range from about 13,000 to 15-16,000 14C yr BP, and an early Holocene deposit in the Bristol Bay lowland extends the minimum age range of Lethe tephra throughout this region to 8000 14C yr BP. Because of the appearance of "Lethe average" composition in multiple deposits spanning thousands of years, we urge caution when using a Lethe-like composition as a basis for inferring a latest Pleistocene age of a tephra deposit in south-central Alaska. Linear variation plots suggest that magma mixing caused the Lethe heterogeneity; multiple magmas were involved as well in other large pyroclastic eruptions such as Katmai (Alaska) and Rotorua (New Zealand). Lethe is an example of a heterogeneous tephra that may be better compared with other tephras by use of plots of individual analytical points rather than by calculating similarity coefficients based on edited data. ?? 2006 Elsevier Ltd and INQUA.

  1. A vibrational spectroscopic study of tengerite-(Y) Y2(CO3)3 2-3H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Wang, Lina; Scholz, Ricardo; Sampaio, Ney Pinheiro; de Oliveira, Fernando A. N.

    2015-02-01

    The mineral tengerite-(Y) has been studied by vibrational spectroscopy. Multiple carbonate stretching modes are observed and support the concept of non-equivalent carbonate units in the tengerite-(Y) structure. Intense sharp bands at 464, 479 and 508 cm-1 are assigned to YO stretching modes. Raman bands at 765 and 775 cm-1 are assigned to the CO32- ν4 bending modes and Raman bands at 589, 611, 674 and 689 cm-1 are assigned to the CO32- ν2 bending modes. Multiple Raman and infrared bands in the OH stretching region are observed, proving the existence of water in different molecular environments in the structure of tengerite-(Y).

  2. On decentralized adaptive full-order sliding mode control of multiple UAVs.

    PubMed

    Xiang, Xianbo; Liu, Chao; Su, Housheng; Zhang, Qin

    2017-11-01

    In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Terahertz response of fractal meta-atoms based on concentric rectangular square resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhiqiang; Zhao, Zhenyu, E-mail: zyzhao@shnu.edu.cn; Shi, Wangzhou

    We investigate the terahertz electromagnetic responses of fractal meta-atoms (MAs) induced by different mode coupling mechanisms. Two types of MAs based on concentric rectangular square (CRS) resonators are presented: independent CRS (I-CRS) and junctional-CRS (J-CRS). In I-CRS, each resonator works as an independent dipole so as to result in the multiple resonance modes when the fractal level is above 1. In J-CRS, however, the generated layer is rotated by π/2 radius to the adjacent CRS in one MA. The multiple resonance modes are coupled into a single mode resonance. The fractal level increasing induces resonance modes redshift in I-CRS whilemore » blueshift in J-CRS. When the fractal level is below 4, the mode Q factor of J-CRS is in between the two modes of I-CRS; when the fractal level is 4 or above, the mode Q factor of J-CRS exceeds the two modes of I-CRS. Furthermore, the modulation depth (MD) decreases in I-CRS while it increases in J-CRS with the increase in fractal levels. The surface currents analysis reveals that the capacitive coupling of modes in I-CRS results in the modes redshift, while the conductive coupling of modes in J-CRS induces the mode blueshift. A high Q mode with large MD can be achieved via conductive coupling between the resonators of different scales in a fractal MA.« less

  4. Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    2008-01-01

    A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

  5. Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    2007-01-01

    A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

  6. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices

    DOE PAGES

    Wang, Danqing; Yang, Ankun; Wang, Weijia; ...

    2017-07-10

    Single band-edge states can trap light and function as high-quality optical feedback for microscale lasers and nanolasers. However, access to more than a single band-edge mode for nanolasing has not been possible because of limited cavity designs. Here, we describe how plasmonic superlattices-finite-arrays of nanoparticles (patches) grouped into microscale arrays-can support multiple band-edge modes capable of multi-modal nanolasing at programmed emission wavelengths and with large mode spacings. Different lasing modes show distinct input-output light behaviour and decay dynamics that can be tailored by nanoparticle size. By modelling the superlattice nanolasers with a four-level gain system and a time-domain approach, wemore » reveal that the accumulation of population inversion at plasmonic hot spots can be spatially modulated by the diffractive coupling order of the patches. Furthermore, we show that symmetry-broken superlattices can sustain switchable nanolasing between a single mode and multiple modes.« less

  7. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    NASA Astrophysics Data System (ADS)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  8. Stellar Content and Star Formation in Young Clusters Influenced by Massive Stars

    NASA Astrophysics Data System (ADS)

    Jose, J.

    2014-09-01

    Star Formation (SF) in extreme environment is always challenging and can be significantly different from that in quiet environments. This study presents the comprehensive multi-wavelength (optical, NIR, MIR and radio) observational analysis of three Galactic starforming regions associated with H II regions/young clusters and located at > 2 kpc, which are found to be evolving under the influence of massive stars within their vicinity. The candidate massive stars, young stellar objects, their mass, age, age spread, the form of K-band Luminosity Function (KLF), Initial Mass Function (IMF) and a possible formation history of each region are studied. The major results on Sh2-252, an extended H II region that appears to be undergoing multiple episodes of SF, are highlighted. Our analysis shows that all the regions are undergoing complex SF activity and the new generation of stars in each region seem to be an outcome of the influence by the presence of massive stars within them. SF process in these regions are likely to be multi-fold and the results suggest that multiple modes of triggering mechanism and hierarchial modes of SF are a common phenomena within young clusters.

  9. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber.

    PubMed

    Zhu, Long; Wang, Andong; Chen, Shi; Liu, Jun; Mo, Qi; Du, Cheng; Wang, Jian

    2017-10-16

    Twisted light carrying orbital angular momentum (OAM) is a special kind of structured light that has a helical phase front, a phase singularity, and a doughnut intensity profile. Beyond widespread developments in manipulation, microscopy, metrology, astronomy, nonlinear and quantum optics, OAM-carrying twisted light has seen emerging application of optical communications in free space and specially designed fibers. Instead of specialty fibers, here we show the direct use of a conventional graded-index multi-mode fiber (MMF) for OAM communications. By exploiting fiber-compatible mode exciting and filtering elements, we excite the first four OAM mode groups in an MMF. We demonstrate 2.6-km MMF transmission using four data-carrying OAM mode groups (OAM 0,1 , OAM +1,1 /OAM -1,1 , OAM +2,1 , OAM +3,1 ). Moreover, we demonstrate two data-carrying OAM mode groups multiplexing transmission over the 2.6-km MMF with low-level crosstalk free of multiple-input multiple-output digital signal processing (MIMO-DSP). The demonstrations may open up new perspectives to fiber-based OAM communication/non-communication applications using already existing conventional fibers.

  10. Stable Isotope-Assisted Metabolic Profiling Reveals Growth Mode Dependent Differential Metabolism and Multiple Catabolic Pathways of l-Phenylalanine in Rubrivivax benzoatilyticus JA2.

    PubMed

    Mekala, Lakshmi Prasuna; Mohammed, Mujahid; Chintalapati, Sasikala; Chintalapati, Venkata Ramana

    2018-01-05

    Anoxygenic phototrophic bacteria are metabolically versatile and survive under different growth modes using diverse organic compounds, yet their metabolic diversity is largely unexplored. In the present study, we employed stable-isotope-assisted metabolic profiling to unravel the l-phenylalanine catabolism in Rubrivivax benzoatilyticus JA2 under varying growth modes. Strain JA2 grows under anaerobic and aerobic conditions by utilizing l-phenylalanine as a nitrogen source. Furthermore, ring-labeled 13 C 6 -phenylalanine feeding followed by liquid chromatography-mass spectrometry exometabolite profiling revealed 60 labeled metabolic features (M + 6, M + 12, and M + 18) derived solely from l-phenylalanine, of which 11 were identified, 7 putatively identified, and 42 unidentified under anaerobic and aerobic conditions. However, labeled metabolites were significantly higher in aerobic compared to anaerobic conditions. Furthermore, detected metabolites and enzyme activities indicated multiple l-phenylalanine catabolic routes mainly Ehrlich, homogentisate-dependent melanin, benzenoid, and unidentified pathways operating under anaerobic and aerobic conditions in strain JA2. Interestingly, the study indicated l-phenylalanine-dependent and independent benzenoid biosynthesis in strain JA2 and a differential flux of l-phenylalanine to Ehrlich and benzenoid pathways under anaerobic and aerobic conditions. Additionally, unidentified labeled metabolites strongly suggest the presence of unknown phenylalanine catabolic routes in strain JA2. Overall, the study uncovered the l-phenylalanine catabolic diversity in strain JA2 and demonstrated the potential of stable isotope-assisted metabolomics in unraveling the hidden metabolic repertoire.

  11. Multicentric epidemiological study of Aspergillus fumigatus isolates by multilocus enzyme electrophoresis.

    PubMed Central

    Rodriguez, E; De Meeüs, T; Mallie, M; Renaud, F; Symoens, F; Mondon, P; Piens, M A; Lebeau, B; Viviani, M A; Grillot, R; Nolard, N; Chapuis, F; Tortorano, A M; Bastide, J M

    1996-01-01

    The genotypes of 63 isolates of Aspergillus fumigatus obtained from three hospitals in different geographical areas and of eight culture collection strains were determined by multilocus enzyme electrophoresis. Twelve of the 17 enzymatic loci studied were polymorphic, giving rise to 48 different electrophoretic types. The existence of fixed multilocus genotypes, significant heterozygote deficits and excesses at the different loci, and linkage disequilibria within subpopulations strongly suggests a clonal reproduction mode for A. fumigatus. Numerical analysis of the comparison and disposition of the different electrophoretic types demonstrates a significant genetic differentiation between the three sampling sites. However, no correlation could be found between geographical distances and genetic differentiation. On account of the multiple discriminatory markers, multilocus enzyme electrophoresis typing seems to be a very powerful tool for epidemiological and reproductive mode studies of A. fumigatus. PMID:8880520

  12. Ares Vallis Polygons

    NASA Image and Video Library

    2002-12-04

    The jumble of eroded ridges and mesas seen in this NASA Mars Odyssey image occurs within Ares Vallis, one of the largest catastrophic outflow channels on the planet. Floods raged through this channel, pouring out into the Chryse Basin to the north. Close inspection of the THEMIS image reveals polygonal shapes on the floor of the channel system. Polygonal terrain on Mars is fairly common although the variety of forms and scales of the polygons suggests multiple modes of origin. Those in Ares Vallis resemble giant desiccation polygons that form in soils on Earth when a moist layer at depth drys out. While polygons can form in icy soils (permafrost) and even lava flows, their presence in a channel thought to have been carved by flowing water is at least consistent with a mode of origin that involved liquid water. http://photojournal.jpl.nasa.gov/catalog/PIA04019

  13. Multiplexed electronically programmable multimode ionization detector for chromatography

    DOEpatents

    Wise, M.B.; Buchanan, M.V.

    1988-05-19

    Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electronically programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity. 6 figs.

  14. Multiplexed electronically programmable multimode ionization detector for chromatography

    DOEpatents

    Wise, Marcus B.; Buchanan, Michelle V.

    1989-01-01

    Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electroncially programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity.

  15. Multiple time scale analysis of pressure oscillations in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  16. Black Hole Spectroscopy with Coherent Mode Stacking.

    PubMed

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  17. The current practice of using multiple representations in year 4 science classrooms

    NASA Astrophysics Data System (ADS)

    Chuenmanee, Chanoknat; Thathong, Kongsak

    2018-01-01

    Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.

  18. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  19. Apparent Activation Energies Associated with Protein Dynamics on Hydrophobic and Hydrophilic Surfaces

    PubMed Central

    Langdon, Blake B.; Kastantin, Mark; Schwartz, Daniel K.

    2012-01-01

    With the use of single-molecule total internal reflection fluorescence microscopy (TIRFM), the dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature on hydrophobic trimethylsilane (TMS) and hydrophilic fused silica (FS) surfaces. Multiple dynamic modes and populations were observed and characterized by their surface residence times and squared-displacement distributions (surface diffusion). Characteristic desorption and diffusion rates for each population/mode were generally found to increase with temperature, and apparent activation energies were determined from Arrhenius analyses. The apparent activation energies of desorption and diffusion were typically higher on FS than on TMS surfaces, suggesting that protein desorption and mobility were hindered on hydrophilic surfaces due to favorable protein-surface and solvent-surface interactions. The diffusion of BSA on TMS appeared to be activationless for several populations, whereas diffusion on FS always exhibited an apparent activation energy. All activation energies were small in absolute terms (generally only a few kBT), suggesting that most adsorbed protein molecules are weakly bound and move and desorb readily under ambient conditions. PMID:22713578

  20. Pulsewidth-dependent nature of laser-induced DNA damage in RPE cells

    NASA Astrophysics Data System (ADS)

    Hall, Rebecca M.; Glickman, Randolph D.; Rockwell, Benjamin A.; Kumar, Neeru; Noojin, Gary D.

    2001-07-01

    Ultrashort pulse laser radiation may produce cellular damage through unique mechanisms. Primary cultures of bovine retinal pigment epithelial (RPE) cells were exposed to the out put of a Ti:Sapphire laser producing 30 fs (mode-locked) pulses, 44 amplified fs pulses, or continuous wave exposures at 800 nm. Laser exposures at and below the damage threshold were studied. DNA damage was detected using single cell gel electrophoresis (comet assay). Unexposed (control) cells produced short tails with low tail moments. In contrast, all laser-exposed cells showed some degree of DNA fragmentation, but the size and shape of the resulting comets differed among the various modalities. CW-exposed cells produced generally light and relatively compact tails, suggesting fewer and larger DNA fragments, while mode-locked laser exposures (30 fs pulses) resulted in large and diffuse comets, indicating the DNA was fragmented into many very small pieces. Work is continuing to define the relationship of laser pulsewidth and intensity with the degree of DNA fragmentation. These results suggest that DNA damage may result from multiple mechanisms of laser-cell interaction, including multiphoton absorption.

  1. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks.

    PubMed

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-06-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model.

  2. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks

    PubMed Central

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-01-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171

  3. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  4. Architecture of GnRH-Gonadotrope-Vasculature Reveals a Dual Mode of Gonadotropin Regulation in Fish.

    PubMed

    Golan, Matan; Zelinger, Einat; Zohar, Yonathan; Levavi-Sivan, Berta

    2015-11-01

    The function and components of the hypothalamic-pituitary axis are conserved among vertebrates; however, in fish, a neuroglandular mode of delivery (direct contact between axons and endocrine cells) was considered dominant, whereas in tetrapods hypothalamic signals are relayed to their targets via the hypophysial portal blood system (neurovascular delivery mode). By using a transgenic zebrafish model we studied the functional and anatomical aspects of gonadotrope regulation thus revisiting the existing model. FSH cells were found to be situated close to the vasculature whereas the compact organization of LH cells prevented direct contact of all cells with the circulation. GnRH3 fibers formed multiple boutons upon reaching the pituitary, but most of these structures were located in the neurohypophysis rather than adjacent to gonadotropes. A close association was observed between FSH cells and GnRH3 boutons, but only a fifth of the LH cells were in direct contact with GnRH3 axons, suggesting that FSH cells are more directly regulated than LH cells. GnRH3 fibers closely followed the vasculature in the neurohypophysis and formed numerous boutons along these tracts. These vessels were found to be permeable to relatively large molecules, suggesting the uptake of GnRH3 peptides. Our findings have important implications regarding the differential regulation of LH and FSH and contradict the accepted notion that fish pituitary cells are mostly regulated directly by hypothalamic fibers. Instead, we provide evidence that zebrafish apply a dual mode of gonadotrope regulation by GnRH3 that combines both neuroglandular and neurovascular components.

  5. System and process for pulsed multiple reaction monitoring

    DOEpatents

    Belov, Mikhail E

    2013-05-17

    A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.

  6. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter.

    PubMed

    Zhang, Z X; Xu, Z W; Zhang, L

    2012-11-19

    We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.

  7. Low-bending loss and single-mode operation in few-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  8. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  9. Research on Comprehensive Evaluation Method for Heating Project Based on Analytic Hierarchy Processing

    NASA Astrophysics Data System (ADS)

    Han, Shenchao; Yang, Yanchun; Liu, Yude; Zhang, Peng; Li, Siwei

    2018-01-01

    It is effective to reduce haze in winter by changing the distributed heat supply system. Thus, the studies on comprehensive index system and scientific evaluation method of distributed heat supply project are essential. Firstly, research the influence factors of heating modes, and an index system with multiple dimension including economic, environmental, risk and flexibility was built and all indexes were quantified. Secondly, a comprehensive evaluation method based on AHP was put forward to analyze the proposed multiple and comprehensive index system. Lastly, the case study suggested that supplying heat with electricity has great advantage and promotional value. The comprehensive index system of distributed heating supply project and evaluation method in this paper can evaluate distributed heat supply project effectively and provide scientific support for choosing the distributed heating project.

  10. Discovery and identification of O, O-diethyl O-(4-(5-phenyl-4, 5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) as a novel mode of action of organophosphorus insecticides.

    PubMed

    Zeng, Zhigang; Yan, Ying; Wang, Bingfeng; Liu, Niu; Xu, Hanhong

    2017-06-15

    Organophosphorus (OP) insecticides play an important role in pest control. Many OP insecticides have been removed from the market because of their high toxicity to humans. We designed and synthesized a new OP insecticide with the goal of providing a low cost, and less toxic insecticide. The mode of action of O, O-diethyl O-(4-(5-phenyl-4, 5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) was studied in Drosophila melanogaster. Bioassays showed that XP-1408 at a concentration of 50 mg/L delayed larval development. Molecular docking into Drosophila acetylcholinesterase (AChE) and voltage-gated sodium channels suggested that XP-1408 fitted into their active sites and could be inhibitory. Whole-cell patch clamp recordings indicated that XP-1408 exhibited synergistic effects involving the inhibition of cholinergic synaptic transmission and blockage of voltage-gated potassium (K v ) channels and sodium (Na v ) channels. In conclusion, the multiple actions of XP-1408 rendered it as a lead compound for formulating OP insecticides with a novel mode of action.

  11. Multi-species detection using multi-mode absorption spectroscopy (MUMAS)

    NASA Astrophysics Data System (ADS)

    Northern, J. H.; Thompson, A. W. J.; Hamilton, M. L.; Ewart, P.

    2013-06-01

    The detection of multiple species using a single laser and single detector employing multi-mode absorption spectroscopy (MUMAS) is reported. An in-house constructed, diode-pumped, Er:Yb:glass micro-laser operating at 1,565 nm with 10 modes separated by 18 GHz was used to record MUMAS signals in a gas mixture containing C2H2, N2O and CO. The components of the mixture were detected simultaneously by identifying multiple transitions in each of the species. By using temperature- and pressure-dependent modelled spectral fits to the data, partial pressures of each species in the mixture were determined with an uncertainty of ±2 %.

  12. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    PubMed

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  13. Cos-Gaussian modal field of a terahertz rectangular metal waveguide filled with multiple slices of dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing

    2018-06-01

    Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.

  14. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    PubMed

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  15. Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-01-01

    We propose three-mode mode-division-multiplexing passive optical network (MDM-PON) based on low mode-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). The FMF with step-index profile is designed and fabricated for effectively three-independent-spatial-mode transmission and low mode-crosstalk for MDM-PON transmission. The all-fiber mode MUX/DEMUX are composed of cascaded mode selective couplers (MSCs), which simultaneously multiplex or demultiplex multiple modes. Based on the low mode-crosstalk of the FMF and all-fiber mode MUX/DEMUX, each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing a different optical linearly polarized (LP) spatial mode in MDM-PON system. We experimentally demonstrate MDM-PON transmission of three independent-spatial-modes over 12-km FMF with 10-Gb/s optical on-off keying (OOK) signal and direct detection.

  16. Dual-color single-mode lasing in axially coupled organic nanowire resonators

    PubMed Central

    Zhang, Chunhuan; Zou, Chang-Ling; Dong, Haiyun; Yan, Yongli; Yao, Jiannian; Zhao, Yong Sheng

    2017-01-01

    Miniaturized lasers with multicolor output and high spectral purity are of crucial importance for yielding more compact and more versatile photonic devices. However, multicolor lasers usually operate in multimode, which largely restricts their practical applications due to the lack of an effective mode selection mechanism that is simultaneously applicable to multiple wavebands. We propose a mutual mode selection strategy to realize dual-color single-mode lasing in axially coupled cavities constructed from two distinct organic self-assembled single-crystal nanowires. The unique mode selection mechanism in the heterogeneously coupled nanowires was elucidated experimentally and theoretically. With each individual nanowire functioning as both the laser source and the mode filter for the other nanowire, dual-color single-mode lasing was successfully achieved in the axially coupled heterogeneous nanowire resonators. Furthermore, the heterogeneously coupled resonators provided multiple nanoscale output ports for delivering coherent signals with different colors, which could greatly contribute to increasing the integration level of functional photonic devices. These results advance the fundamental understanding of the lasing modulation in coupled cavity systems and offer a promising route to building multifunctional nanoscale lasers for high-level practical photonic integrations. PMID:28785731

  17. Reduced rank models for travel time estimation of low order mode pulses.

    PubMed

    Chandrayadula, Tarun K; Wage, Kathleen E; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Howe, Bruce M

    2013-10-01

    Mode travel time estimation in the presence of internal waves (IWs) is a challenging problem. IWs perturb the sound speed, which results in travel time wander and mode scattering. A standard approach to travel time estimation is to pulse compress the broadband signal, pick the peak of the compressed time series, and average the peak time over multiple receptions to reduce variance. The peak-picking approach implicitly assumes there is a single strong arrival and does not perform well when there are multiple arrivals due to scattering. This article presents a statistical model for the scattered mode arrivals and uses the model to design improved travel time estimators. The model is based on an Empirical Orthogonal Function (EOF) analysis of the mode time series. Range-dependent simulations and data from the Long-range Ocean Acoustic Propagation Experiment (LOAPEX) indicate that the modes are represented by a small number of EOFs. The reduced-rank EOF model is used to construct a travel time estimator based on the Matched Subspace Detector (MSD). Analysis of simulation and experimental data show that the MSDs are more robust to IW scattering than peak picking. The simulation analysis also highlights how IWs affect the mode excitation by the source.

  18. Burst Mode Composite Photography for Dynamic Physics Demonstrations

    ERIC Educational Resources Information Center

    Lincoln, James

    2018-01-01

    I am writing this article to raise awareness of burst mode photography as a fun and engaging way for teachers and students to experience physics demonstration activities. In the context of digital photography, "burst mode" means taking multiple photographs per second, and this is a feature that now comes standard on most digital…

  19. 75 FR 77569 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ... Unusual Design Features The GVI will have a fly-by-wire electronic flight control system. This system... the design of the flight control system has multiple modes of operation, a means must be provided to... Control System Mode Annunciation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...

  20. Bicoherence Analysis of Electrostatic Interchange Mode Coupling in a Turbulent Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Abler, M. C.; Saperstein, A.; Yan, J. R.; Mauel, M. E.

    2017-10-01

    Plasmas confined by a strong dipole field exhibit interchange and entropy mode turbulence, which previous experiments have shown respond locally to active feedback. On the Collisionless Terrella Experiment (CTX), this turbulence is characterized by low frequency, low order, quasi-coherent modes with complex spectral dynamics. We apply bicoherence analysis to study nonlinear phase coupling in a variety of scenarios. First, we study the self-interaction of the naturally occurring interchange turbulence; this analysis is then expanded to include the effects of driven modes in the frequency range of the background turbulent oscillations. Initial measurements of coupling coefficients are presented in both cases. Driven low frequency interchange modes are observed to generate multiple harmonics which persist throughout the plasma, becoming weaker as they propagate away from the actuator in the direction of the electron magnetic drift. Future work is also discussed, including application of wavelet bicoherence analysis, excitation of interchange modes at multiple frequencies, and applications to planetary magnetospheres. Supported by NSF-DOE Partnership for Plasma Science Grants DOE-DE-FG02-00ER54585.

  1. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Zhu, Guoxuan; Liu, Jie; Wu, Xiong; Zhu, Jiangbo; Du, Cheng; Luo, Wenyong; Chen, Yujie; Yu, Siyuan

    2018-02-01

    An orbital-angular-momentum (OAM) mode-group multiplexing (MGM) scheme based on a graded-index ring-core fiber (GIRCF) is proposed, in which a single-input two-output (or receive diversity) architecture is designed for each MG channel and simple digital signal processing (DSP) is utilized to adaptively resist the mode partition noise resulting from random intra-group mode crosstalk. There is no need of complex multiple-input multiple-output (MIMO) equalization in this scheme. Furthermore, the signal-to-noise ratio (SNR) of the received signals can be improved if a simple maximal ratio combining (MRC) technique is employed on the receiver side to efficiently take advantage of the diversity gain of receiver. Intensity-modulated direct-detection (IM-DD) systems transmitting three OAM mode groups with total 100-Gb/s discrete multi-tone (DMT) signals over a 1-km GIRCF and two OAM mode groups with total 40-Gb/s DMT signals over an 18-km GIRCF are experimentally demonstrated, respectively, to confirm the feasibility of our proposed OAM-MGM scheme.

  2. Ultrasonic Imaging in Solids Using Wave Mode Beamforming.

    PubMed

    di Scalea, Francesco Lanza; Sternini, Simone; Nguyen, Thompson Vu

    2017-03-01

    This paper discusses some improvements to ultrasonic synthetic imaging in solids with primary applications to nondestructive testing of materials and structures. Specifically, the study proposes new adaptive weights applied to the beamforming array that are based on the physics of the propagating waves, specifically the displacement structure of the propagating longitudinal (L) mode and shear (S) mode that are naturally coexisting in a solid. The wave mode structures can be combined with the wave geometrical spreading to better filter the array (in a matched filter approach) and improve its focusing ability compared to static array weights. This paper also proposes compounding, or summing, images obtained from the different wave modes to further improve the array gain without increasing its physical aperture. The wave mode compounding can be performed either incoherently or coherently, in analogy with compounding multiple frequencies or multiple excitations. Numerical simulations and experimental testing demonstrate the potential improvements obtainable by the wave structure adaptive weights compared to either static weights in conventional delay-and-sum focusing, or adaptive weights based on geometrical spreading alone in minimum-variance distortionless response focusing.

  3. Observations of discrete magnetosonic waves off the magnetic equator

    DOE PAGES

    Zhima, Zeren; Chen, Lunjin; Fu, Huishan; ...

    2015-11-23

    Fast mode magnetosonic waves are typically confined close to the magnetic equator and exhibit harmonic structures at multiples of the local, equatorial proton cyclotron frequency. Here, we report observations of magnetosonic waves well off the equator at geomagnetic latitudes from -16.5°to -17.9° and L shell ~2.7–4.6. The observed waves exhibit discrete spectral structures with multiple frequency spacings. The predominant frequency spacings are ~6 and 9 Hz, neither of which is equal to the local proton cyclotron frequency. Backward ray tracing simulations show that the feature of multiple frequency spacings is caused by propagation from two spatially narrow equatorial source regionsmore » located at L ≈ 4.2 and 3.7. The equatorial proton cyclotron frequencies at those two locations match the two observed frequency spacings. Finally, our analysis provides the first observations of the harmonic nature of magnetosonic waves well away from the equatorial region and suggests that the propagation from multiple equatorial sources contributes to these off-equatorial magnetosonic emissions with varying frequency spacings.« less

  4. Mode identification from spectroscopy of gravity-mode pulsators

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Brunsden, E.; Cottrell, P. L.; Davie, M.; Greenwood, A.; Wright, D. J.; De Cat, P.

    2014-02-01

    The gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. For the MUSICIAN programme at the University of Canterbury, we obtain extensive high-resolution echelle spectra of γ Dor stars from the Mt John University Observatory in New Zealand. We analyze these to obtain the pulsational frequencies and identify these with the multiple pulsational modes excited in the star. A summary of recent results from our spectroscopic mode-identification programme is given.

  5. Multiple Modes of Communication between Neurons and Oligodendrocyte Precursor Cells.

    PubMed

    Maldonado, Paloma P; Angulo, María Cecilia

    2015-06-01

    The surprising discovery of bona fide synapses between neurons and oligodendrocytes precursor cells (OPCs) 15 years ago placed these progenitors as real partners of neurons in the CNS. The role of these synapses has not been established yet, but a main hypothesis is that neuron-OPC synaptic activity is a signaling pathway controlling OPC proliferation/differentiation, influencing the myelination process. However, new evidences describing non-synaptic mechanisms of communication between neurons and OPCs have revealed that neuron-OPC interactions are more complex than expected. The activation of extrasynaptic receptors by ambient neurotransmitter or local spillover and the ability of OPCs to sense neuronal activity through a potassium channel suggest that distinct modes of communication mediate different functions of OPCs in the CNS. This review discusses different mechanisms used by OPCs to interact with neurons and their potential roles during postnatal development and in brain disorders. © The Author(s) 2014.

  6. Analytical minimization of synchronicity errors in stochastic identification

    NASA Astrophysics Data System (ADS)

    Bernal, D.

    2018-01-01

    An approach to minimize error due to synchronicity faults in stochastic system identification is presented. The scheme is based on shifting the time domain signals so the phases of the fundamental eigenvector estimated from the spectral density are zero. A threshold on the mean of the amplitude-weighted absolute value of these phases, above which signal shifting is deemed justified, is derived and found to be proportional to the first mode damping ratio. It is shown that synchronicity faults do not map precisely to phasor multiplications in subspace identification and that the accuracy of spectral density estimated eigenvectors, for inputs with arbitrary spectral density, decrease with increasing mode number. Selection of a corrective strategy based on signal alignment, instead of eigenvector adjustment using phasors, is shown to be the product of the foregoing observations. Simulations that include noise and non-classical damping suggest that the scheme can provide sufficient accuracy to be of practical value.

  7. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that modes were reduced. Based on our results, we propose that WT loop C has an important role in determining resting affinity, in part by making stable interactions with the complementary surface of the alphadelta binding pocket. We suggest a possible structural basis for the fluctuations caused by loop C perturbations and propose that at the alphadelta agonist binding site, both loop C and the complementary subunit surface can adopt alternative conformations and interact with each other with respect to the aromatic core, to cause the variations in affinity.

  8. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    PubMed Central

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  9. Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions.

    PubMed

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Hendrickx, Marc; Van Loey, Ann

    2006-10-04

    Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.

  10. Gas production strategy of underground coal gasification based on multiple gas sources.

    PubMed

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  11. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    PubMed

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.

  12. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves

    PubMed Central

    Samaitis, Vykintas; Mažeika, Liudas

    2017-01-01

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system. PMID:28786924

  13. Spectroscopic pulsational frequency identification and mode determination of γ Doradus star HD 12901

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.

    2012-12-01

    Using multisite spectroscopic data collected from three sites, the frequencies and pulsational modes of the γ Doradus star HD 12901 were identified. A total of six frequencies in the range 1-2 d-1 were observed, their identifications supported by multiple line-profile measurement techniques and previously published photometry. Five frequencies were of sufficient signal-to-noise ratio for mode identification, and all five displayed similar three-bump standard deviation profiles which were fitted well with (l,m) = (1,1) modes. These fits had reduced χ2 values of less than 18. We propose that this star is an excellent candidate to test models of non-radially pulsating γ Doradus stars as a result of the presence of multiple (1,1) modes. This paper includes data taken at the Mount John University Observatory of the University of Canterbury (New Zealand), the McDonald Observatory of the University of Texas at Austin (Texas, USA) and the European Southern Observatory at La Silla (Chile).

  14. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.

    2016-05-01

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  15. Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.

    2018-01-01

    Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.

  16. Combined training improves walking mobility in persons with significant disability from multiple sclerosis: a pilot study.

    PubMed

    Motl, Robert W; Smith, Douglas C; Elliott, Jeannette; Weikert, Madeline; Dlugonski, Deirdre; Sosnoff, Jacob J

    2012-03-01

    The disabling consequences of multiple sclerosis (MS) emphasize the significance of developing physiologically relevant strategies for rehabilitation of function. This pilot study examined changes in walking function associated with combined exercise training consisting of aerobic, resistance, and balance activities in persons with MS who had recent onset of gait impairment. Thirteen participants with significant disability due to MS (Expanded Disability Status Scale range = 4.0-6.0) completed the Multiple Sclerosis Walking Scale-12, 2 trials of the Timed 25-Foot Walk, the Timed Up & Go, and functional ambulation profile score derived from 4 walking trials on an instrumented walkway (GaitRite) before and after an 8-week training period. The training program was designed by a physical therapist and was performed 3 days per week under the supervision of an exercise specialist. In week 1, the session was 15 minutes in duration (ie, 5 minutes of each mode of exercise), session durations were increased by approximately 5 minutes per week up to a maximum of 60 minutes in week 8 (ie, 20 minutes of each mode of exercise). There were significant improvements in Multiple Sclerosis Walking Scale-12 scores (Mpre = 56.0, Mpost = 46.7, P = 0.03, d = 0.56), Timed 25-Foot Walk (Mpre = 11.7, Mpost = 9.8, P = 0.004, d = 0.90) and Timed Up & Go (Mpre = 16.0, Mpost = 13.0, P = 0.01, d = 0.72) performance, and functional ambulation profile score (Mpre = 72.8, Mpost = 77.6, P = 0.02, d = 0.65). These results suggest that a moderately intense, comprehensive, combined exercise training program represents a rehabilitation strategy that is associated with improved walking mobility in a small sample of persons with MS who have recent onset of gait impairment.

  17. Why we need small-ICBM options

    NASA Astrophysics Data System (ADS)

    Herbst, R. F.

    1984-01-01

    A small ICBM (SICBM) offers the multiple projectile structures (MPS) of which the various MX ICBM basing modes proposed to date are examples several important advantages over a large missile. Smaller shelters and transporters are inherently less expensive, and allow the MPS system to employ more primitive roads which already exist in Minuteman ICBM fields. A dash-on-warning system has been suggested which involves the SICBM's transportation aboard VTOL aircraft that could be operated from several hundred small bases. Program management reforms are suggested in order to preclude the dismissal of weapon system alternatives (as the SICBM was) in the future. The use of several competing engineering organizations during the system definition phase may prove an effective measure toward this end.

  18. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    NASA Astrophysics Data System (ADS)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  19. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    NASA Technical Reports Server (NTRS)

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  20. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    PubMed

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  1. Shuttle ku-band communications/radar technical concepts

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.; Kelley, J. S.; Steiner, A. W.; Vang, H. A.; Zrubek, W. E.; Huth, G. K.

    1985-01-01

    Technical data on the Shuttle Orbiter K sub u-band communications/radar system are presented. The more challenging aspects of the system design and development are emphasized. The technical problems encountered and the advancements made in solving them are discussed. The radar functions are presented first. Requirements and design/implementation approaches are discussed. Advanced features are explained, including Doppler measurement, frequency diversity, multiple pulse repetition frequencies and pulse widths, and multiple modes. The communications functions that are presented include advances made because of the requirements for multiple communications modes. Spread spectrum, quadrature phase shift keying (QPSK), variable bit rates, and other advanced techniques are discussed. Performance results and conclusions reached are outlined.

  2. Investigation of Association Between Hip Osteoarthritis Susceptibility Loci and Radiographic Proximal Femur Shape

    PubMed Central

    Thiagarajah, Shankar; Wilkinson, J. Mark; Panoutsopoulou, Kalliope; Day‐Williams, Aaron G.; Cootes, Timothy F.; Wallis, Gillian A.; Loughlin, John; Arden, Nigel; Birrell, Fraser; Carr, Andrew; Chapman, Kay; Deloukas, Panos; Doherty, Michael; McCaskie, Andrew; Ollier, William E. R.; Rai, Ashok; Ralston, Stuart H.; Spector, Timothy D.; Valdes, Ana M.; Wallis, Gillian A.; Mark Wilkinson, J.; Zeggini, Eleftheria

    2015-01-01

    Objective To test whether previously reported hip morphology or osteoarthritis (OA) susceptibility loci are associated with proximal femur shape as represented by statistical shape model (SSM) modes and as univariate or multivariate quantitative traits. Methods We used pelvic radiographs and genotype data from 929 subjects with unilateral hip OA who had been recruited previously for the Arthritis Research UK Osteoarthritis Genetics Consortium genome‐wide association study. We built 3 SSMs capturing the shape variation of the OA‐unaffected proximal femur in the entire mixed‐sex cohort and for male/female‐stratified cohorts. We selected 41 candidate single‐nucleotide polymorphisms (SNPs) previously reported as being associated with hip morphology (for replication analysis) or OA (for discovery analysis) and for which genotype data were available. We performed 2 types of analysis for genotype–phenotype associations between these SNPs and the modes of the SSMs: 1) a univariate analysis using individual SSM modes and 2) a multivariate analysis using combinations of SSM modes. Results The univariate analysis identified association between rs4836732 (within the ASTN2 gene) and mode 5 of the female SSM (P = 0.0016) and between rs6976 (within the GLT8D1 gene) and mode 7 of the mixed‐sex SSM (P = 0.0003). The multivariate analysis identified association between rs5009270 (near the IFRD1 gene) and a combination of modes 3, 4, and 9 of the mixed‐sex SSM (P = 0.0004). Evidence of associations remained significant following adjustment for multiple testing. All 3 SNPs had previously been associated with hip OA. Conclusion These de novo findings suggest that rs4836732, rs6976, and rs5009270 may contribute to hip OA susceptibility by altering proximal femur shape. PMID:25939412

  3. Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections

    NASA Astrophysics Data System (ADS)

    Wakazuki, Y.

    2015-12-01

    A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.

  4. Color vision predicts processing modes of goal activation during action cascading.

    PubMed

    Jongkees, Bryant J; Steenbergen, Laura; Colzato, Lorenza S

    2017-09-01

    One of the most important functions of cognitive control is action cascading: the ability to cope with multiple response options when confronted with various task goals. A recent study implicates a key role for dopamine (DA) in this process, suggesting higher D1 efficiency shifts the action cascading strategy toward a more serial processing mode, whereas higher D2 efficiency promotes a shift in the opposite direction by inducing a more parallel processing mode (Stock, Arning, Epplen, & Beste, 2014). Given that DA is found in high concentration in the retina and modulation of retinal DA release displays characteristics of D2-receptors (Peters, Schweibold, Przuntek, & Müller, 2000), color vision discrimination might serve as an index of D2 efficiency. We used color discrimination, assessed with the Lanthony Desaturated Panel D-15 test, to predict individual differences (N = 85) in a stop-change paradigm that provides a well-established measure of action cascading. In this task it is possible to calculate an individual slope value for each participant that estimates the degree of overlap in task goal activation. When the stopping process of a previous task goal has not finished at the time the change process toward a new task goal is initiated (parallel processing), the slope value becomes steeper. In case of less overlap (more serial processing), the slope value becomes flatter. As expected, participants showing better color vision were more prone to activate goals in a parallel manner as indicated by a steeper slope. Our findings suggest that color vision might represent a predictor of D2 efficiency and the predisposed processing mode of goal activation during action cascading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    PubMed Central

    Shinn, Ann K.; Baker, Justin T.; Lewandowski, Kathryn E.; Öngür, Dost; Cohen, Bruce M.

    2015-01-01

    Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the “cognitive dysmetria” and “dysmetria of thought” models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks) relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of schizophrenia. PMID:25852520

  6. The impact of embedding multiple modes of representation on student construction of chemistry knowledge

    NASA Astrophysics Data System (ADS)

    McDermott, Mark Andrew

    2009-12-01

    This study was designed to examine the impact of embedding multiple modes of representing science information on student conceptual understanding in science. Multiple representations refer to utilizing charts, graphs, diagrams, and other types of representations to communicate scientific information. This study investigated the impact of encouraging students to embed or integrate the multiple modes with text in end of unit writing-to-learn activities. A quasi-experimental design with four separate sites consisting of intact chemistry classes taught by different teachers at each site was utilized. At each site, approximately half of the classes were designated treatment classes and students in these classes participated in activities designed to encourage strategies to embed multiple modes within text in student writing. The control classes did not participate in these activities. All classes participated in identical end of unit writing tasks in which they were required to use at least one mode other than text, followed by identical end of unit assessments. This progression was then repeated for a second consecutive unit of study. Analysis of quantitative data indicated that in several cases, treatment classes significantly outperformed control classes both on measures of embeddedness in writing and on end of unit assessment measures. In addition, analysis at the level of individual students indicated significant positive correlations in many cases between measures of student embeddedness in writing and student performance on end of unit assessments. Three factors emerged as critical in increasing the likelihood of benefit for students from these types of activities. First, the level of teacher implementation and emphasis on the embeddedness lessons was linked to the possibility of conceptual benefit. Secondly, students participating in two consecutive lessons appeared to receive greater benefit during the second unit, inferring a cumulative benefit. Finally, differential impact of the degree of embeddedness on student performance was noted based on student's level of science ability prior to the initiation of study procedures.

  7. Multiplicity of transmission coefficients in photonic crystal and split ring resonator waveguides with Kerr nonlinear impurities

    NASA Astrophysics Data System (ADS)

    Rai, Buddhi; McGurn, Arthur R.

    2015-02-01

    Photonic crystal and split ring resonator (SRR) metamaterial waveguides with Kerr nonlinear dielectric impurities are studied. The transmission coefficients for two guided modes of different frequencies scattering from the Kerr impurities are computed. The systems are shown to exhibit multiple transmission coefficient solutions arising from the Kerr nonlinearity. Multiple transmission coefficients occur when different input intensities into a waveguide result in the same transmitted output intensities past its nonlinear impurities. (In the case of a single incident guided mode the multiplicity of transmission coefficients is known as optical bistability.) The analytical conditions under which the transmission coefficients are single and multiple valued are determined, and specific examples of both single and multiple valued transmission coefficient scattering are presented. Both photonic crystal and split ring resonator systems are studied as the Kerr nonlinearity enters the photonic crystal and SRR systems in different ways. This allows for an interesting comparison of the differences in behaviors of these two types of system which are described by distinctly different mathematical structures. Both the photonic crystal and SRR models used in the calculations are based on a difference equation approach to the system dynamics. The difference equation approach has been extensively employed in previous papers to model the basic properties of these systems. The paper is a continuation of work on the optical bistability of single guided modes interacting with Kerr impurities in photonic crystals originally considered by McGurn [Chaos 13, 754 (2003), 10.1063/1.1568691] and work on the resonant scattering from Kerr impurities in photonic crystal waveguides considered by McGurn [J. Phys.: Condens. Matter 16, S5243 (2004), 10.1088/0953-8984/16/44/021]. It generalizes this work making the extension to the more complex interaction of two guided modes at different frequencies. It extends the two guided mode treatment by McGurn [Organ. Electron. 8, 227 (2007), 10.1016/j.orgel.2006.06.008] which was limited to a special case of one of the photonic crystal systems considered here.

  8. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems.

    PubMed

    Winzer, Peter J; Foschini, Gerard J

    2011-08-15

    With wavelength-division multiplexing (WDM) rapidly nearing its scalability limits, space-division multiplexing (SDM) seems the only option to further scale the capacity of optical transport networks. In order for SDM systems to continue the WDM trend of reducing energy and cost per bit with system capacity, integration will be key to SDM. Since integration is likely to introduce non-negligible crosstalk between multiple parallel transmission paths, multiple-input multiple output (MIMO) signal processing techniques will have to be used. In this paper, we discuss MIMO capacities in optical SDM systems, including related outage considerations which are an important part in the design of such systems. In order to achieve the low-outage standards required for optical transport networks, SDM transponders should be capable of individually addressing, and preferably MIMO processing all modes supported by the optical SDM waveguide. We then discuss the effect of distributed optical noise in MIMO SDM systems and focus on the impact of mode-dependent loss (MDL) on system capacity and system outage. Through extensive numerical simulations, we extract scaling rules for mode-average and mode-dependent loss and show that MIMO SDM systems composed of up to 128 segments and supporting up to 128 modes can tolerate up to 1 dB of per-segment MDL at 90% of the system's full capacity at an outage probability of 10(-4). © 2011 Optical Society of America

  9. Optoelectronic Devices with Complex Failure Modes

    NASA Technical Reports Server (NTRS)

    Johnston, A.

    2000-01-01

    This part of the NSREC-2000 Short Course discusses radiation effects in basic photonic devices along with effects in more complex optoelectronic devices where the overall radiation response depends on several factors, with the possibility of multiple failure modes.

  10. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    NASA Astrophysics Data System (ADS)

    Dhote, Sharvari; Zu, Jean; Zhu, Yang

    2015-04-01

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  11. Comparisons of Remote Sensing Retrievals and in situ Measurements of Aerosol Fine Mode Fraction during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; O'Neill, Norm

    2006-01-01

    We present sunphotometer-retrieved and in situ fine mode fractions (FMF) measured onboard the same aircraft during the ACE-Asia experiment. Comparisons indicate that the latter can be used to identify whether the aerosol under observation is dominated by a mixture of modes or a single mode. Differences between retrieved and in situ FMF range from 5-20%. When profiles contained multiple layers of aerosols, the retrieved and measured FMF were segregated by layers. The comparison of layered and total FMF from the same profile indicates that columnar values are intermediate to those derived from layers. As a result, a remotely sensed FMF cannot be used to distinguish whether the aerosol under observation is composed of layers each with distinctive modal features or all layers with the same modal features. Thus, the use of FMF in multiple layer environments does not provide unique information on the aerosol under observation.

  12. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  13. Multiple period s-p hybridization in nano-strip embedded photonic crystal.

    PubMed

    Han, Seunghoon; Lee, Il-Min; Kim, Hwi; Lee, Byoungho

    2005-04-04

    We report and analyze hybridization of s-state and p-state modes in photonic crystal one-dimensional defect cavity array. When embedding a nano-strip into a dielectric rod photonic crystal, an effective cavity array is made, where each cavity possesses two cavity modes: s-state and p-state. The two modes are laterally even versus the nano-strip direction, and interact with each other, producing defect bands, of which the group velocity becomes zero within the first Brillouin zone. We could model and describe the phenomena by using the tight-binding method, well agreeing with the plane-wave expansion method analysis. We note that the reported s- and p-state mode interaction corresponds to the hybridization of atomic orbital in solid-state physics. The concept of multiple period s-p hybridization and the proposed model can be useful for analyzing and developing novel photonic crystal waveguides and devices.

  14. The Dependence of Cirrus Gamma Size Distributions Expressed as Volumes in N(sub 0)-Lambda-Mu Phase Space and Bulk Cloud Properties on Environmental Conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS)

    NASA Technical Reports Server (NTRS)

    Jackson, Robert C.; McFarquhar, Greg M.; Fridlind, Ann M.; Atlas, Rachel

    2015-01-01

    The variability of cirrus ice microphysical properties is investigated using observations obtained during the Small Particles in Cirrus (SPARTICUS) campaign. An existing approach that represents a size distribution (SD) as a single gamma function using an ellipsoid of equally realizable solutions in (N(sub 0), lambda, mu) phase space is modified to automatically identify multiple modes in SDs and characterize each mode by such an ellipsoid. The modified approach is applied to ice crystals with maximum dimension D greater than15 micrometers collected by the 2-D stereo and 2-D precipitation probes on the Stratton Park Engineering Company Learjet. The dependencies of N(sub 0), mu, and lambda from each mode, total number concentration, bulk extinction, ice water content (IWC), and mass median maximum dimension D(sub mm) as a function of temperature T and cirrus type are then analyzed. The changes in the observed codependencies between N(sub 0), mu, and lambda, bulk extinction, IWC, and D(sub mm) with environmental conditions indicate that particles were larger at higher T during SPARTICUS. At most two modes were observed in any SD during SPARTICUS, with the average boundary between them at 115 micrometers, similar to past studies not using probes with shatter mitigating tips and artifact removal algorithms. The bimodality of the SDs increased with T. This and the differences in N(sub 0), mu, and lambda between the modes suggest that particles with smaller D nucleated more recently than particles with larger D, which grew via vapor deposition and aggregation. Because smaller crystals, whose concentrations are uncertain, make marginal contributions to higher order moments, the use of higher moments for evaluating model fields is suggested.

  15. How Does Mg2+ Modulate the RNA Folding Mechanism: A Case Study of the G:C W:W Trans Basepair.

    PubMed

    Halder, Antarip; Roy, Rohit; Bhattacharyya, Dhananjay; Mitra, Abhijit

    2017-07-25

    Reverse Watson-Crick G:C basepairs (G:C W:W Trans) occur frequently in different functional RNAs. This is one of the few basepairs whose gas-phase-optimized isolated geometry is inconsistent with the corresponding experimental geometry. Several earlier studies indicate that through post-transcriptional modification, direct protonation, or coordination with Mg 2+ , accumulation of positive charge near N7 of guanine can stabilize the experimental geometry. Interestingly, recent studies reveal significant variation in the position of putatively bound Mg 2+ . This, in conjunction with recently raised doubts regarding some of the Mg 2+ assignments near the imino nitrogen of guanine, is suggestive of the existence of multiple Mg 2+ binding modes for this basepair. Our detailed investigation of Mg 2+ -bound G:C W:W Trans pairs occurring in high-resolution RNA crystal structures shows that they are found in 14 different contexts, eight of which display Mg 2+ binding at the Hoogsteen edge of guanine. Further examination of occurrences in these eight contexts led to the characterization of three different Mg 2+ binding modes: 1) direct binding via N7 coordination, 2) direct binding via O6 coordination, and 3) binding via hydrogen-bonding interaction with the first-shell water molecules. In the crystal structures, the latter two modes are associated with a buckled and propeller-twisted geometry of the basepair. Interestingly, respective optimized geometries of these different Mg 2+ binding modes (optimized using six different DFT functionals) are consistent with their corresponding experimental geometries. Subsequent interaction energy calculations at the MP2 level, and decomposition of its components, suggest that for G:C W:W Trans , Mg 2+ binding can fine tune the basepair geometries without compromising with their stability. Our results, therefore, underline the importance of the mode of binding of Mg 2+ ions in shaping RNA structure, folding and function. Copyright © 2017. Published by Elsevier Inc.

  16. Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition

    NASA Astrophysics Data System (ADS)

    Lv, Yan; Li, Xiang; Xu, Ting Ting; Cheng, Tian Tao; Yang, Xin; Chen, Jian Min; Iinuma, Yoshiteru; Herrmann, Hartmut

    2016-03-01

    In order to better understand the particle size distribution of polycyclic aromatic hydrocarbons (PAHs) and their source contribution to human respiratory system, size-resolved PAHs have been studied in ambient aerosols at a megacity Shanghai site during a 1-year period (2012-2013). The results showed the PAHs had a bimodal distribution with one mode peak in the fine-particle size range (0.4-2.1 µm) and another mode peak in the coarse-particle size range (3.3-9.0 µm). Along with the increase in ring number of PAHs, the intensity of the fine-mode peak increased, while the coarse-mode peak decreased. Plotting of log(PAH / PM) against log(Dp) showed that all slope values were above -1, suggesting that multiple mechanisms (adsorption and absorption) controlled the particle size distribution of PAHs. The total deposition flux of PAHs in the respiratory tract was calculated as being 8.8 ± 2.0 ng h-1. The highest lifetime cancer risk (LCR) was estimated at 1.5 × 10-6, which exceeded the unit risk of 10-6. The LCR values presented here were mainly influenced by accumulation mode PAHs which came from biomass burning (24 %), coal combustion (25 %), and vehicular emission (27 %). The present study provides us with a mechanistic understanding of the particle size distribution of PAHs and their transport in the human respiratory system, which can help develop better source control strategies.

  17. Bandwidth Extension of an S-band, Fundamental-Mode Eight-Beam Klystron

    DTIC Science & Technology

    2006-04-01

    Extension of an S - band , Fundamental-Mode Eight-Beam Klystron Khanh T. Nguyen Beam-Wave Research, Inc. Bethesda, MD 20814 Dean E. Pershing ATK Mission...of a five-cavity, approximately 18 cm downstream from the center of the broadband, high - power multiple-beam klystron (MBK) first gap - the logical...the circuit generates >550 kW across the band with a peak power of more than 600 kW at -3.27 Keywords: Multiple-beam klystron ; MBK; bandwidth GHz. The 1

  18. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.

  19. STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.

  20. On functional determinants of matrix differential operators with multiple zero modes

    NASA Astrophysics Data System (ADS)

    Falco, G. M.; Fedorenko, Andrei A.; Gruzberg, Ilya A.

    2017-12-01

    We generalize the method of computing functional determinants with a single excluded zero eigenvalue developed by McKane and Tarlie to differential operators with multiple zero eigenvalues. We derive general formulas for such functional determinants of r× r matrix second order differential operators O with 0 < n ≤slant 2r linearly independent zero modes. We separately discuss the cases of the homogeneous Dirichlet boundary conditions, when the number of zero modes cannot exceed r, and the case of twisted boundary conditions, including the periodic and anti-periodic ones, when the number of zero modes is bounded above by 2r. In all cases the determinants with excluded zero eigenvalues can be expressed only in terms of the n zero modes and other r-n or 2r-n (depending on the boundary conditions) solutions of the homogeneous equation O h=0 , in the spirit of Gel’fand-Yaglom approach. In instanton calculations, the contribution of the zero modes is taken into account by introducing the so-called collective coordinates. We show that there is a remarkable cancellation of a factor (involving scalar products of zero modes) between the Jacobian of the transformation to the collective coordinates and the functional fluctuation determinant with excluded zero eigenvalues. This cancellation drastically simplifies instanton calculations when one uses our formulas.

  1. Quantification of MDL-induced signal degradation in MIMO-OFDM mode-division multiplexing systems.

    PubMed

    Tian, Yu; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Chen, Yuanxiang; He, Yongqi; Chen, Zhangyuan

    2016-08-22

    Mode-division multiplexing (MDM) transmission over few-mode optical fiber has emerged as a promising technology to enhance transmission capacity, in which multiple-input-multiple-output (MIMO) digital signal processing (DSP) after coherent detection is used to demultiplex the signals. Compared with conventional single-mode systems, MIMO-MDM systems suffer non-recoverable signal degradation induced by mode-dependent loss (MDL). In this paper, the MDL-induced signal degradation in orthogonal-frequency-division-multiplexing (OFDM) MDM systems is theoretically quantified in terms of mode-average error vector magnitude (EVM) through frequency domain norm analysis. A novel scalar MDL metric is proposed considering the probability distribution of the practical MDM input signals, and a closed-form expression for EVM measured after zero-force (ZF) MIMO equalization is derived. Simulation results show that the EVM estimations utilizing the novel MDL metric remain unbiased for unrepeated links. For a 6 × 100 km 20-mode MDM transmission system, the estimation accuracy is improved by more than 90% compared with that utilizing traditional condition number (CN) based MDL metric. The proposed MDL metric can be used to predict the MDL-induced SNR penalty in a theoretical manner, which will be beneficial for the design of practical MIMO-MDM systems.

  2. Smooth adaptive sliding mode vibration control of a flexible parallel manipulator with multiple smart linkages in modal space

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Jianhui

    2017-12-01

    This paper addresses the dynamic model and active vibration control of a rigid-flexible parallel manipulator with three smart links actuated by three linear ultrasonic motors. To suppress the vibration of three flexible intermediate links under high speed and acceleration, multiple Lead Zirconium Titanate (PZT) sensors and actuators are collocated mounted on each link, forming a smart structure which can achieve self-sensing and self-actuating. The dynamic characteristics and equations of the flexible link incorporated with the PZT sensors and actuator are analyzed and formulated. The smooth adaptive sliding mode based active vibration control is proposed to suppress the vibration of the smart links, and the first and second modes of the three links are targeted to be suppressed in modal space to avoid the spillover phenomenon. Simulations and experiments are implemented to validate the effectiveness of the smart structures and the proposed control laws. Experimental results show that the vibration of the first mode around 92 Hz and the second mode around 240 Hz of the three smart links are reduced respectively by 64.98%, 59.47%, 62.28%, and 45.80%, 36.79%, 33.33%, which further verify the multi-mode vibration control ability of the smooth adaptive sliding mode control law.

  3. Emotional expression in music: contribution, linearity, and additivity of primary musical cues

    PubMed Central

    Eerola, Tuomas; Friberg, Anders; Bresin, Roberto

    2013-01-01

    The aim of this study is to manipulate musical cues systematically to determine the aspects of music that contribute to emotional expression, and whether these cues operate in additive or interactive fashion, and whether the cue levels can be characterized as linear or non-linear. An optimized factorial design was used with six primary musical cues (mode, tempo, dynamics, articulation, timbre, and register) across four different music examples. Listeners rated 200 musical examples according to four perceived emotional characters (happy, sad, peaceful, and scary). The results exhibited robust effects for all cues and the ranked importance of these was established by multiple regression. The most important cue was mode followed by tempo, register, dynamics, articulation, and timbre, although the ranking varied across the emotions. The second main result suggested that most cue levels contributed to the emotions in a linear fashion, explaining 77–89% of variance in ratings. Quadratic encoding of cues did lead to minor but significant increases of the models (0–8%). Finally, the interactions between the cues were non-existent suggesting that the cues operate mostly in an additive fashion, corroborating recent findings on emotional expression in music (Juslin and Lindström, 2010). PMID:23908642

  4. Emotional expression in music: contribution, linearity, and additivity of primary musical cues.

    PubMed

    Eerola, Tuomas; Friberg, Anders; Bresin, Roberto

    2013-01-01

    The aim of this study is to manipulate musical cues systematically to determine the aspects of music that contribute to emotional expression, and whether these cues operate in additive or interactive fashion, and whether the cue levels can be characterized as linear or non-linear. An optimized factorial design was used with six primary musical cues (mode, tempo, dynamics, articulation, timbre, and register) across four different music examples. Listeners rated 200 musical examples according to four perceived emotional characters (happy, sad, peaceful, and scary). The results exhibited robust effects for all cues and the ranked importance of these was established by multiple regression. The most important cue was mode followed by tempo, register, dynamics, articulation, and timbre, although the ranking varied across the emotions. The second main result suggested that most cue levels contributed to the emotions in a linear fashion, explaining 77-89% of variance in ratings. Quadratic encoding of cues did lead to minor but significant increases of the models (0-8%). Finally, the interactions between the cues were non-existent suggesting that the cues operate mostly in an additive fashion, corroborating recent findings on emotional expression in music (Juslin and Lindström, 2010).

  5. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  6. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    NASA Astrophysics Data System (ADS)

    Lin, J. Y. Y.; Aczel, A. A.; Abernathy, D. L.; Nagler, S. E.; Buyers, W. J. L.; Granroth, G. E.

    2014-04-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of-flight chopper spectrometers [A. A. Aczel et al., Nat. Commun. 3, 1124 (2012), 10.1038/ncomms2117]. These modes are well described by three-dimensional isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states, and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature-dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  7. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  8. The evolution of dorsal-ventral patterning mechanisms in insects.

    PubMed

    Lynch, Jeremy A; Roth, Siegfried

    2011-01-15

    The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.

  9. Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Dhote, Sharvari; Yang, Zhengbao; Zu, Jean

    2018-01-01

    This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.

  10. Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA

    DOE PAGES

    Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.; ...

    2018-03-23

    In a series of direct-drive implosions on OMEGA, multiple time resolved x-ray images were used to tomographically measure their 3-D modes 1, 2, and 3 at a convergence ratio of ~3. Results show that the target modes vary linearly with the laser modes and are not affected by the Rayleigh–Taylor growth or lateral heat transport. This indicates that the residual modes (resulting from physical effects including beam mistiming, mispointing, and laser energy calibration) are approximately constant between shots. Lastly, this demonstrates that the low-mode amplitudes can be mitigated within by adjusting the laser-energy balance to compensate the residual target modes.

  11. Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.

    In a series of direct-drive implosions on OMEGA, multiple time resolved x-ray images were used to tomographically measure their 3-D modes 1, 2, and 3 at a convergence ratio of ~3. Results show that the target modes vary linearly with the laser modes and are not affected by the Rayleigh–Taylor growth or lateral heat transport. This indicates that the residual modes (resulting from physical effects including beam mistiming, mispointing, and laser energy calibration) are approximately constant between shots. Lastly, this demonstrates that the low-mode amplitudes can be mitigated within by adjusting the laser-energy balance to compensate the residual target modes.

  12. Nonlinear dynamics of toroidal Alfvén eigenmodes in presence of tearing modes

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Ma, Zhiwei; Wang, Sheng; Zhang, Wei

    2016-10-01

    A new hybrid kinetic-MHD code CLT-K is developed to study nonlinear dynamics of n =1 toroidal Alfvén eigenmodes (TAEs) with the m/n =2/1 tearing mode. It is found that the n =1 TAE is first excited by isotropic energetic particles in the earlier stage and reaches the steady state due to wave-particle interaction. After the saturation of the n =1 TAE, the tearing mode intervenes and triggers the second growth of the mode. The modes goes into the second steady state due to multiple tearing mode-mode nonlinear coupling. Both wave-particle and wave-wave interactions are observed in our hybrid simulation.

  13. Spray deposition inside multiple-row nursery trees with a laser-guided sprayer

    USDA-ARS?s Scientific Manuscript database

    Multiple-row container-grown trees require specially designed sprayers to achieve efficient spray delivery quality. A five-port air-assisted sprayer with both automatic and manual control modes was developed to discharge adequate spray deposition inside multiple-row tree plants. The sprayer resulted...

  14. Viscous driving of global oscillations in accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Miranda, Ryan; Horák, Jiří; Lai, Dong

    2015-01-01

    We examine the role played by viscosity in the excitation of global oscillation modes (both axisymmetric and non-axisymmetric) in accretion discs around black holes using two-dimensional hydrodynamic simulations. The turbulent viscosity is modelled by the α-ansatz, with different equations of state. We consider both discs with transonic radial inflows across the innermost stable circular orbit, and stationary discs truncated by a reflecting wall at their inner edge, representing a magnetosphere. In transonic discs, viscosity can excite several types of global oscillation modes. These modes are either axisymmetric with frequencies close to multiples of the maximum radial epicyclic frequency κmax, non-axisymmetric with frequencies close to multiples of the innermost stable orbit frequency ΩISCO, or hybrid modes whose frequencies are linear combinations of these two frequencies. Small values of the viscosity parameter α primarily produce non-axisymmetric modes, while axisymmetric modes become dominant for large α. The excitation of these modes may be related to an instability of the sonic point, at which the radial infall speed is equal to the sound speed of the gas. In discs with a reflective inner boundary, we explore the effect of viscosity on trapped p modes which are intrinsically overstable due to the corotation resonance effect. The effect of viscosity is either to reduce the growth rates of these modes, or to completely suppress them and excite a new class of higher frequency modes. The latter requires that the dynamic viscosity scales positively with the disc surface density, indicating that it is a result of the classic viscous overstability effect.

  15. Engineered circuit QED with dense resonant modes

    NASA Astrophysics Data System (ADS)

    Wilhelm, Frank; Egger, Daniel

    2013-03-01

    In circuit quantum electrodynamics even in the ultrastrong coupling regime, strong quasi-resonant interaction typically involves only one mode of the resonator as the mode spacing is comparable to the frequency of the mode. We are going to present an engineered hybrid transmission line consisting of a left-handed and a right-handed portion that has a low-frequency van-Hove singularity hence showing a dense mode spectrum at an experimentally accessible point. This gives rise to strong multi-mode coupling and can be utilized in multiple ways to create strongly correlated microwave photons. Supported by DARPA through the QuEST program and by NSERC Discovery grants

  16. Identification of Binding Modes for Amino Naphthalene 2-Cyanoacrylate (ANCA) Probes to Amyloid Fibrils from Molecular Dynamics Simulations.

    PubMed

    He, Huan; Xu, Juan; Cheng, Dan-Yang; Fu, Li; Ge, Yu-Shu; Jiang, Feng-Lei; Liu, Yi

    2017-02-16

    The amino naphthalene 2-cyanoacrylate (ANCA) probe is a kind of fluorescent amyloid binding probe that can report different fluorescence emissions when bound to various amyloid deposits in tissue, while their interactions with amyloid fibrils remain unclear due to the insoluble nature of amyloid fibrils. Here, all-atom molecular dynamics simulations were used to investigate the interaction between ANCA probes with three different amyloid fibrils. Two common binding modes of ANCA probes on Aβ40 amyloid fibrils were identified by cluster analysis of multiple simulations. The van der Waals and electrostatic interactions were found to be major driving forces for the binding. Atomic contacts analysis and binding free energy decomposition results suggested that the hydrophobic part of ANCA mainly interacts with aromatic side chains on the fibril surface and the hydrophilic part mainly interacts with positive charged residues in the β-sheet region. By comparing the binding modes with different fibrils, we can find that ANCA adopts different conformations while interacting with residues of different hydrophobicity, aromaticity, and electrochemical properties in the β-sheet region, which accounts for its selective mechanism toward different amyloid fibrils.

  17. Multiple injection mode with or without repeated sample injections: Strategies to enhance productivity in countercurrent chromatography.

    PubMed

    Müller, Marco; Wasmer, Katharina; Vetter, Walter

    2018-06-29

    Countercurrent chromatography (CCC) is an all liquid based separation technique typically used for the isolation and purification of natural compounds. The simplicity of the method makes it easy to scale up CCC separations from analytical to preparative and even industrial scale. However, scale-up of CCC separations requires two different instruments with varying coil dimensions. Here we developed two variants of the CCC multiple injection mode as an alternative to increase the throughput and enhance productivity of a CCC separation when using only one instrument. The concept is based on the parallel injection of samples at different points in the CCC column system and the simultaneous separation using one pump only. The wiring of the CCC setup was modified by the insertion of a 6-port selection valve, multiple T-pieces and sample loops. Furthermore, the introduction of storage sample loops enabled the CCC system to be used with repeated injection cycles. Setup and advantages of both multiple injection modes were shown by the isolation of the furan fatty acid 11-(3,4-dimethyl-5-pentylfuran-2-yl)-undecanoic acid (11D5-EE) from an ethyl ester oil rich in 4,7,10,13,16,19-docosahexaenoic acid (DHA-EE). 11D5-EE was enriched in one step from 1.9% to 99% purity. The solvent consumption per isolated amount of analyte could be reduced by ∼40% compared to increased throughput CCC and by ∼5% in the repeated multiple injection mode which also facilitated the isolation of the major compound (DHA-EE) in the sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parke, E.; Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706; Anderson, J. K.

    2016-05-15

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm withmore » neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].« less

  19. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio.

    PubMed

    Zhang, Jun; Sun, Min; Zhou, Li; Li, Zhi; Liu, Zhen; Li, Xi-Yin; Liu, Xiao-Li; Liu, Wei; Gui, Jian-Fang

    2015-06-04

    Unisexual polyploid vertebrates are commonly known to reproduce by gynogenesis, parthenogenesis, or hybridogenesis. One clone of polyploid Carassius gibelio has been revealed to possess multiple modes of unisexual gynogenesis and sexual reproduction, but the cytological and developmental mechanisms have remained unknown. In this study, normal meiosis completion was firstly confirmed by spindle co-localization of β-tubulin and Spindlin. Moreover, three types of various nuclear events and development behaviors were revealed by DAPI staining and BrdU-incorporated immunofluorescence detection during the first mitosis in the fertilized eggs by three kinds of different sperms. They include normal sexual reproduction in response to sperm from the same clone male, typical unisexual gynogenesis in response to sperm from the male of another species Cyprinus carpio, and an unusual hybrid-similar development mode in response to sperm from another different clone male. Based on these findings, we have discussed cytological and developmental mechanisms on multiple reproduction modes in the polyploid fish, and highlighted evolutionary significance of meiosis completion and evolutionary consequences of reproduction mode diversity in polyploid vertebrates.

  20. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio

    PubMed Central

    Zhang, Jun; Sun, Min; Zhou, Li; Li, Zhi; Liu, Zhen; Li, Xi-Yin; Liu, Xiao-Li; Liu, Wei; Gui, Jian-Fang

    2015-01-01

    Unisexual polyploid vertebrates are commonly known to reproduce by gynogenesis, parthenogenesis, or hybridogenesis. One clone of polyploid Carassius gibelio has been revealed to possess multiple modes of unisexual gynogenesis and sexual reproduction, but the cytological and developmental mechanisms have remained unknown. In this study, normal meiosis completion was firstly confirmed by spindle co-localization of β-tubulin and Spindlin. Moreover, three types of various nuclear events and development behaviors were revealed by DAPI staining and BrdU-incorporated immunofluorescence detection during the first mitosis in the fertilized eggs by three kinds of different sperms. They include normal sexual reproduction in response to sperm from the same clone male, typical unisexual gynogenesis in response to sperm from the male of another species Cyprinus carpio, and an unusual hybrid-similar development mode in response to sperm from another different clone male. Based on these findings, we have discussed cytological and developmental mechanisms on multiple reproduction modes in the polyploid fish, and highlighted evolutionary significance of meiosis completion and evolutionary consequences of reproduction mode diversity in polyploid vertebrates. PMID:26042995

  1. The impacts of freight mode splitting on congestion, risk, and delivery reliability.

    DOT National Transportation Integrated Search

    2012-09-01

    Although splitting shipments across multiple delivery or transportation modes typically : increases total shipping costs as a result of diseconomies of scale, it may offer certain benefits : that can more than offset these costs. These benefits inclu...

  2. Genetics of host plant use and life history in the comma butterfly across Europe: varying modes of inheritance as a potential reproductive barrier.

    PubMed

    Nygren, G H; Nylin, S; Stefanescu, C

    2006-11-01

    Comma butterflies (Nymphalidae: Polygonia c-album L.) from one Belgian site and three Spanish sites were crossed with butterflies from a Swedish population in order to investigate inheritance of female host plant choice, egg mass and larval growth rate. We found three different modes of inheritance for the three investigated traits. In line with earlier results from crosses between Swedish and English populations, the results regarding female oviposition preference (choice between Urtica dioica and Salix caprea) showed X-linked inheritance to be of importance for the variation between Sweden and the other sites. Egg mass and growth rate did not show any sex-linked inheritance. Egg mass differences between populations seem to be controlled mainly by additive autosomal genes, as hybrids showed intermediate values. The growth rates of both hybrid types following reciprocal crossings were similar to each other but consistently higher than for the two source populations, suggesting a nonadditive mode of inheritance which is not sex-linked. The different modes of inheritance for host plant preference vs. important life history traits are likely to result in hybrids with unfit combinations of traits. This type of potential reproductive barrier based on multiple ecologically important traits deserves more attention, as it should be a common situation for instance in the early stages of population divergence in host plant usage, facilitating ecological speciation.

  3. Optical Fibers Would Sense Local Strains

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.

  4. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    NASA Astrophysics Data System (ADS)

    Bahl, C. R. H.; Lefmann, K.; Abrahamsen, A. B.; Rønnow, H. M.; Saxild, F.; Jensen, T. B. S.; Udby, L.; Andersen, N. H.; Christensen, N. B.; Jakobsen, H. S.; Larsen, T.; Häfliger, P. S.; Streule, S.; Niedermayer, Ch.

    2006-05-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  5. Anatomy of the dorsal default-mode network in conduct disorder: Association with callous-unemotional traits.

    PubMed

    Sethi, Arjun; Sarkar, Sagari; Dell'Acqua, Flavio; Viding, Essi; Catani, Marco; Murphy, Declan G M; Craig, Michael C

    2018-04-01

    We recently reported that emotional detachment in adult psychopathy was associated with structural abnormalities in the dorsal 'default-mode' network (DMN). However, it is unclear whether these differences are present in young people at risk of psychopathy. The most widely recognised group at risk for psychopathy are children/adolescents with conduct disorder (CD) and callous-unemotional (CU) traits. We therefore examined the microstructure of the dorsal DMN in 27 CD youths (14-with/13-without CU traits) compared to 16 typically developing controls using DTI tractography. Both CD groups had significantly (p < 0.025) reduced dorsal DMN radial diffusivity compared to controls. In those with diagnostically significant CU traits, exploratory analyses (uncorrected for multiple comparisons) suggested that radial diffusivity was negatively correlated with CU severity (Left: rho = -0.68, p = 0.015). These results suggest that CD youths have microstructural abnormalities in the same network as adults with psychopathy. Further, the association with childhood/adolescent measures of emotional detachment (CU traits) resembles the relationship between emotional detachment and network microstructure in adult psychopaths. However, these changes appear to occur in opposite directions - with increased myelination in adolescent CD but reduced integrity in adult psychopathy. Collectively, these findings suggest that developmental abnormalities in dorsal DMN may play a role in the emergence of psychopathy. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Spatial accessibility to healthcare services in Shenzhen, China: improving the multi-modal two-step floating catchment area method by estimating travel time via online map APIs.

    PubMed

    Tao, Zhuolin; Yao, Zaoxing; Kong, Hui; Duan, Fei; Li, Guicai

    2018-05-09

    Shenzhen has rapidly grown into a megacity in the recent decades. It is a challenging task for the Shenzhen government to provide sufficient healthcare services. The spatial configuration of healthcare services can influence the convenience for the consumers to obtain healthcare services. Spatial accessibility has been widely adopted as a scientific measurement for evaluating the rationality of the spatial configuration of healthcare services. The multi-modal two-step floating catchment area (2SFCA) method is an important advance in the field of healthcare accessibility modelling, which enables the simultaneous assessment of spatial accessibility via multiple transport modes. This study further develops the multi-modal 2SFCA method by introducing online map APIs to improve the estimation of travel time by public transit or by car respectively. As the results show, the distribution of healthcare accessibility by multi-modal 2SFCA shows significant spatial disparity. Moreover, by dividing the multi-modal accessibility into car-mode and transit-mode accessibility, this study discovers that the transit-mode subgroup is disadvantaged in the competition for healthcare services with the car-mode subgroup. The disparity in transit-mode accessibility is the main reason of the uneven pattern of healthcare accessibility in Shenzhen. The findings suggest improving the public transit conditions for accessing healthcare services to reduce the disparity of healthcare accessibility. More healthcare services should be allocated in the eastern and western Shenzhen, especially sub-districts in Dapeng District and western Bao'an District. As these findings cannot be drawn by the traditional single-modal 2SFCA method, the advantage of the multi-modal 2SFCA method is significant to both healthcare studies and healthcare system planning.

  7. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  8. Multi-Mode Estimation for Small Fixed Wing Unmanned Aerial Vehicle Localization Based on a Linear Matrix Inequality Approach

    PubMed Central

    Elzoghby, Mostafa; Li, Fu; Arafa, Ibrahim. I.; Arif, Usman

    2017-01-01

    Information fusion from multiple sensors ensures the accuracy and robustness of a navigation system, especially in the absence of global positioning system (GPS) data which gets degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on the interaction between multiple measurement modes and a continuous observer. The state estimation is performed in a switching environment between multiple active sensors to exploit the available information as much as possible, especially in GPS-denied environments. Luenberger observer-based projection is implemented as a continuous observer to optimize the estimation performance. The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm. Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L). Simulation results are presented for a small UAV fixed wing localization problem. The results obtained using the proposed approach are compared with a single mode Extended Kalman Filter (EKF). Simulation results are presented to demonstrate the viability of the proposed strategy. PMID:28420214

  9. Discovery of multiple, ionization-created CS{sub 2} anions and a new mode of operation for drift chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Ifft, Daniel P.

    2014-01-15

    This paper focuses on the surprising discovery of multiple species of ionization-created CS{sub 2} anions in gas mixtures containing electronegative CS{sub 2} and O{sub 2}, identified by their slightly different drift velocities. Data are presented to understand the formation mechanism and identity of these new anions. Regardless of the micro-physics, however, this discovery offers a new, trigger-less mode of operation for the drift chambers. A demonstration of trigger-less operation is presented.

  10. Acupuncture, the limbic system, and the anticorrelated networks of the brain.

    PubMed

    Hui, Kathleen K S; Marina, Ovidiu; Liu, Jing; Rosen, Bruce R; Kwong, Kenneth K

    2010-10-28

    The study of the mechanism of acupuncture action was revolutionized by the use of functional magnetic resonance imaging (fMRI). Over the past decade, our fMRI studies of healthy subjects have contributed substantially to elucidating the central effect of acupuncture on the human brain. These studies have shown that acupuncture stimulation, when associated with sensations comprising deqi, evokes deactivation of a limbic-paralimbic-neocortical network, which encompasses the limbic system, as well as activation of somatosensory brain regions. These networks closely match the default mode network and the anti-correlated task-positive network described in the literature. We have also shown that the effect of acupuncture on the brain is integrated at multiple levels, down to the brainstem and cerebellum. Our studies support the hypothesis that the effect of acupuncture on the brain goes beyond the effect of attention on the default mode network or the somatosensory stimulation of acupuncture needling. The amygdala and hypothalamus, in particular, show decreased activation during acupuncture stimulation that is not commonly associated with default mode network activity. At the same time, our research shows that acupuncture stimulation needs to be done carefully, limiting stimulation when the resulting sensations are very strong or when sharp pain is elicited. When acupuncture induced sharp pain, our studies show that the deactivation was attenuated or reversed in direction. Our results suggest that acupuncture mobilizes the functionally anti-correlated networks of the brain to mediate its actions, and that the effect is dependent on the psychophysical response. In this work we also discuss multiple avenues of future research, including the role of neurotransmitters, the effect of different acupuncture techniques, and the potential clinical application of our research findings to disease states including chronic pain, major depression, schizophrenia, autism, and Alzheimer's disease. Published by Elsevier B.V.

  11. Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Robin J.; Goodsell, David S.; Musah, Rabi A.; Morris, Garrett M.; Goodin, David B.; Olson, Arthur J.

    2003-08-01

    The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxidation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained by including an additional crystallographically observed water molecule in the protein model. For the remaining 2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished, to some extent, from non-binders using a combination of two trends: predicted binding energy and level of clustering. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand binding in the W191G cavity.

  12. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development.

    PubMed

    Marshall, Eleanor; Costa, Liliana M; Gutierrez-Marcos, Jose

    2011-03-01

    Cell-cell communication in plants is essential for the correct co-ordination of reproduction, growth, and development. Studies to dissect this mode of communication have previously focussed primarily on the action of plant hormones as mediators of intercellular signalling. In animals, peptide signalling is a well-documented intercellular communication system, however, relatively little is known about this system in plants. In recent years, numerous reports have emerged about small, secreted peptides controlling different aspects of plant reproduction. Interestingly, most of these peptides are cysteine-rich, and there is convincing evidence suggesting multiple roles for related cysteine-rich peptides (CRPs) as signalling factors in developmental patterning as well as during plant pathogen responses and symbiosis. In this review, we discuss how CRPs are emerging as key signalling factors in regulating multiple aspects of vegetative growth and reproductive development in plants.

  13. Influence of driving frequency on discharge modes in a dielectric-barrier discharge with multiple current pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weiman; Tang, Jie; Wang, Yishan

    2013-07-15

    A one-dimensional self-consistent fluid model was employed to investigate the effect of the driving frequency on the discharge modes in atmospheric-pressure argon discharge with multiple current pulses. The discharge mode was discussed in detail not only at current peaks but also between two adjacent peaks. The simulation results show that different transitions between the Townsend and glow modes during the discharge take place with the driving frequency increased. A complicated transition from the Townsend mode, through glow, Townsend, and glow, and finally back to the Townsend one is found in the discharge with the driving frequency of 8 kHz. Theremore » is a tendency of transition from the Townsend to glow mode for the discharge both at the current peaks and troughs with the increasing frequency. The discharge in the half period can all along operate in the glow mode with the driving frequency high enough. This is resulted from the preservation of more electrons in the gas gap and acquisition of more electron energy from the swiftly varying electric field with the increase in driving frequency. Comparison of the spatial and temporal evolutions of the electron density at different driving frequencies indicates that the increment of the driving frequency allows the plasma chemistry to be enhanced. This electrical characteristic is important for the applications, such as surface treatment and biomedical sterilization.« less

  14. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography.

    PubMed

    Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang

    2017-04-07

    Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modeling and performance metrics of MIMO-SDM systems with different amplification schemes in the presence of mode-dependent loss.

    PubMed

    Antonelli, Cristian; Mecozzi, Antonio; Shtaif, Mark; Winzer, Peter J

    2015-02-09

    Mode-dependent loss (MDL) is a major factor limiting the achievable information rate in multiple-input multiple-output space-division multiplexed systems. In this paper we show that its impact on system performance, which we quantify in terms of the capacity reduction relative to a reference MDL-free system, may depend strongly on the operation of the inline optical amplifiers. This dependency is particularly strong in low mode-count systems. In addition, we discuss ways in which the signal-to-noise ratio of the MDL-free reference system can be defined and quantify the differences in the predicted capacity loss. Finally, we stress the importance of correctly accounting for the effect of MDL on the accumulation of amplification noise.

  16. Effects of auditory and visual modalities in recall of words.

    PubMed

    Gadzella, B M; Whitehead, D A

    1975-02-01

    Ten experimental conditions were used to study the effects of auditory and visual (printed words, uncolored and colored pictures) modalities and their various combinations with college students. A recall paradigm was employed in which subjects responded in a written test. Analysis of data showed the auditory modality was superior to visual (pictures) ones but was not significantly different from visual (printed words) modality. In visual modalities, printed words were superior to colored pictures. Generally, conditions with multiple modes of representation of stimuli were significantly higher than for conditions with single modes. Multiple modalities, consisting of two or three modes, did not differ significantly from each other. It was concluded that any two modalities of the stimuli presented simultaneously were just as effective as three in recall of stimulus words.

  17. Observation, Identification, and Impact of Multi-Modal Plasma Responses to Applied Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas

    2015-11-01

    Experiments on DIII-D have demonstrated that multiple kink modes with comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n=2, in good agreement with ideal MHD models. In contrast to a single-mode model, the structure of the response measured using poloidally distributed magnetic sensors changes when varying the applied poloidal spectrum. This is most readily evident in that different spectra of applied fields can independently excite inboard and outboard magnetic responses, which are identified as distinct plasma modes by IPEC modeling. The outboard magnetic response is correlated with the plasma pressure and consistent with the long wavelength perturbations of the least stable, pressure driven kinks calculated by DCON and used in IPEC. The models show the structure of the pressure driven modes extends throughout the bad curvature region and into the plasma core. The inboard plasma response is correlated with the edge current profile and requires the inclusion of multiple kink modes with greater stability, including opposite helicity modes, to replicate the experimental observations in the models. IPEC reveals the resulting mode structure to be highly localized in the plasma edge. Scans of the applied spectrum show this response induces the transport that influences the density pump-out, as well as the toroidal rotation drag observed in experiment and modeled using PENT. The classification of these two mode types establishes a new multi-modal paradigm for n=2 plasma response and guides the understanding needed to optimize 3D fields for independent control of stability and transport. Supported by US DOE contract DE-AC02-09CH11466.

  18. Time-Frequency Analysis of the Dispersion of Lamb Modes

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Seale, Michael D.; Smith, Barry T.

    1999-01-01

    Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo-Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the AO, A I , So, and S2 Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.

  19. Subpulse drifting, nulling, and mode changing in PSR J1822-2256

    NASA Astrophysics Data System (ADS)

    Basu, Rahul; Mitra, Dipanjan

    2018-05-01

    We report a detailed observational study of the single pulses from the pulsar J1822-2256. The pulsar shows the presence of subpulse drifting, nulling as well as multiple emission modes. During these observations the pulsar existed primarily in two modes; mode A with prominent drift bands and mode B which was more disorderly without any clear subpulse drifting. A third mode C was also seen for a short duration with a different drifting periodicity compared to mode A. The nulls were present throughout the observations but were more frequent during the disorderly B mode. The nulling also exhibited periodicity with a clear peak in the fluctuation spectra. Before the transition from mode A to nulling the pulsar switched to a third drifting state with periodicity different from both mode A and C. The diversity seen in the single pulse behaviour from the pulsar J1822-2256 provides an unique window into the emission physics.

  20. Service offerings and interfaces for the ACTS network of Earth stations

    NASA Technical Reports Server (NTRS)

    Coney, Thom A.

    1988-01-01

    The Advanced Communications Satellite (ACTS) is capable of two modes of communication. Mode 1 is a mesh network of Earth stations using baseband-switched, time-division multiple-access (BBS-TDMA) and hopping beams. Mode 2 is a mesh network using satellite-switched, time-division multiple-access (SS-TDMA) and fixed (or hopping) beams. The purpose of this paper is to present the functional requirements and the design of the ACTS Mode 1 Earth station terrestrial interface. Included among the requirements are that: (1) the interface support standard telecommunications service offerings (i.e., voice, video and data at rates ranging from 9.6 kbps to 44 Mbps); (2) the interface support the unique design characteristics of the ACTS communications systems (e.g., the real time demand assignment of satellite capacity); and (3) the interface support test hardware capable of validating ACTS communications processes. The resulting interface design makes use of an appropriate combination of T1 or T3 multiplexers and a small central office (maximum capacity 56 subscriber lines per unit).

  1. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode

    NASA Astrophysics Data System (ADS)

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the `modular' body mapping sportswear was designed and subsequently assessed on a `Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  2. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode.

    PubMed

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the 'modular' body mapping sportswear was designed and subsequently assessed on a 'Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  3. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications

    NASA Astrophysics Data System (ADS)

    Chen, H.; Jin, C.; Huang, B.; Fontaine, N. K.; Ryf, R.; Shang, K.; Grégoire, N.; Morency, S.; Essiambre, R.-J.; Li, G.; Messaddeq, Y.; Larochelle, S.

    2016-08-01

    Space-division multiplexing (SDM), whereby multiple spatial channels in multimode and multicore optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.

  4. Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities.

    PubMed

    Zhu, X; Cassidy, D T

    1996-08-20

    A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%.

  5. Formal Derivation of Lotka-Volterra-Haken Amplitude Equations of Task-Related Brain Activity in Multiple, Consecutively Performed Tasks

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.

  6. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first threemore » vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.« less

  7. Energy-aware embedded classifier design for real-time emotion analysis.

    PubMed

    Padmanabhan, Manoj; Murali, Srinivasan; Rincon, Francisco; Atienza, David

    2015-01-01

    Detection and classification of human emotions from multiple bio-signals has a wide variety of applications. Though electronic devices are available in the market today that acquire multiple body signals, the classification of human emotions in real-time, adapted to the tight energy budgets of wearable embedded systems is a big challenge. In this paper we present an embedded classifier for real-time emotion classification. We propose a system that operates at different energy budgeted modes, depending on the available energy, where each mode is constrained by an operating energy bound. The classifier has an offline training phase where feature selection is performed for each operating mode, with an energy-budget aware algorithm that we propose. Across the different operating modes, the classification accuracy ranges from 95% - 75% and 89% - 70% for arousal and valence respectively. The accuracy is traded off for less power consumption, which results in an increased battery life of up to 7.7 times (from 146.1 to 1126.9 hours).

  8. Methods and circuitry for reconfigurable SEU/SET tolerance

    NASA Technical Reports Server (NTRS)

    Shuler, Jr., Robert L. (Inventor)

    2010-01-01

    A device is disclosed in one embodiment that has multiple identical sets of programmable functional elements, programmable routing resources, and majority voters that correct errors. The voters accept a mode input for a redundancy mode and a split mode. In the redundancy mode, the programmable functional elements are identical and are programmed identically so the voters produce an output corresponding to the majority of inputs that agree. In a split mode, each voter selects a particular programmable functional element output as the output of the voter. Therefore, in the split mode, the programmable functional elements can perform different functions, operate independently, and/or be connected together to process different parts of the same problem.

  9. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J. Y. Y.; Aczel, Adam A; Abernathy, Douglas L

    2014-01-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accountingmore » for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.« less

  10. Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells

    NASA Astrophysics Data System (ADS)

    Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.

    2018-06-01

    The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

  11. Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform

    PubMed Central

    Swiontek, Stephen E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2013-01-01

    The commonly used optical sensor based on surface plasmon-polariton wave phenomenon can sense just one chemical, because only one SPP wave can be guided by the interface of a metal and a dielectric material contained in the sensor. Multiple analytes could be detected and/or the sensing reliability for a single analyte could be enhanced, if multiple SPP-wave modes could be excited on a single metal/dielectric interface. For that to happen, the partnering dielectric material must be periodically non-homogeneous. Using a chiral sculptured thin film (CSTF) as that material in a SPP-wave platform, we show that the angular locations of multiple SPP-wave modes shift when the void regions of the CSTF are infiltrated with a fluid. The sensitivities realized in the proof-of-concept experiments are comparable to state-of-research values. PMID:23474988

  12. Realization of multiple orbital angular momentum modes simultaneously through four-dimensional antenna arrays.

    PubMed

    Sun, Chao; Yang, Shiwen; Chen, Yikai; Guo, Jixin; Qu, Shiwei

    2018-01-09

    Electromagnetic waves carrying orbital angular momentum (OAM) in radio frequency range have drawn great attention owing to its potential applications in increasing communication capacity. In this paper, both single-pole single-throw (SPST) switches and single-pole double-throw (SPDT) switches are designed and implemented. Optimal time sequence allows four-dimensional (4-D) circular antenna array to generate multiple OAM-carrying waves as well as enhance the field intensity of each OAM-carrying wave. A novel experimental platform is developed to measure the phase distribution when the transmitting antenna and the receiving antenna operate at different frequencies. The good agreement between the measurement and simulation results demonstrate that 4-D circular antenna array is able to generate multiple OAM modes simultaneously. Furthermore, the superiority of the 4-D circular antenna array in receiving and demodulating multiple OAM-carrying signals is validated through the filter and bit error rate (BER) simulations.

  13. Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer.

    PubMed

    Jeyabalan, Jeyaprakash; Aqil, Farrukh; Munagala, Radha; Annamalai, Lakshmanan; Vadhanam, Manicka V; Gupta, Ramesh C

    2014-05-07

    Berries are gaining increasing importance lately for their chemopreventive and therapeutic potential against several cancers. In earlier studies, a blueberry-supplemented diet has shown protection against 17β-estradiol (E2)-mediated mammary tumorigenesis. This study tested both preventive and therapeutic activities of diet supplemented with whole blueberry powder (50:50 blend of Tifblue and Rubel). Animals received 5% blueberry diet, either 2 weeks prior to or 12 weeks after E2 treatment in preventive and therapeutic groups, respectively. Both interventions delayed the tumor latency for palpable mammary tumors by 28 and 37 days, respectively. Tumor volume and multiplicity were also reduced significantly in both modes. The effect on mammary tumorigenesis was largely due to down-regulation of CYP 1A1 and ER-α gene expression and also favorable modulation of microRNA (miR-18a and miR-34c) levels. These data suggest that the blueberry blend tested is effective in inhibiting E2-mediated mammary tumorigenesis in both preventive and therapeutic modes.

  14. Emergence of multiple synchronization modes in hydrodynamically-coupled cilia

    NASA Astrophysics Data System (ADS)

    Guo, Hanliang; Kanso, Eva

    2016-11-01

    Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.

  15. 3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip

    2017-07-01

    We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.

  16. Quantal basis of vesicle growth and information content, a unified approach.

    PubMed

    Nitzany, Eyal; Hammel, Ilan; Meilijson, Isaac

    2010-09-07

    Secretory vesicles express a periodic multimodal size distribution. The successive modes are integral multiples of the smallest mode (G(1)). The vesicle content ranges from macromolecules (proteins, mucopolysaccharides and hormones) to low molecular weight molecules (neurotransmitters). A steady-state model has been developed to emulate a mechanism for the introduction of vesicles of monomer size, which grow by a unit addition mechanism, G(1)+G(n)-->G(n+1) which, at a later stage are eliminated from the system. We describe a model of growth and elimination transition rates which adequately illustrates the distributions of vesicle population size at steady-state and upon elimination. Consequently, prediction of normal behavior and pathological perturbations is feasible. Careful analysis of spontaneous secretion, as compared to short burst-induced secretion, suggests that the basic character-code for reliable communication should be within a range of only 8-10 vesicles' burst which may serve as a yes/no message. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Using Science Songs to Enhance Learning: An Interdisciplinary Approach

    PubMed Central

    Crowther, Gregory

    2012-01-01

    Music is recognized as an effective mode of teaching young children but is rarely used in university-level science courses. This article reviews the somewhat limited evidence on whether and how content-rich music might affect college students' understanding of science and offers practical suggestions for incorporating music into courses. Aside from aiding memorization, songs may potentially improve learning by helping students feel relaxed and welcome in stressful settings, engaging students through multiple modes (verbal vs. nonverbal) and modalities (auditory vs. visual vs. kinesthetic) simultaneously, challenging students to integrate and “own” the material through the medium of song lyrics, and increasing students' time on task outside of class through enjoyable listening or songwriting assignments. Students may produce content-rich songs of good quality if given sufficient assistance and encouragement by instructors and peers. The challenges ahead include 1) defining the circumstances in which music is most likely to promote learning and 2) developing rubrics for evaluating the quality of songs. PMID:22383614

  18. An examination of the default mode network in individuals with autonomous sensory meridian response (ASMR).

    PubMed

    Smith, Stephen D; Katherine Fredborg, Beverley; Kornelsen, Jennifer

    2017-08-01

    Autonomous Sensory Meridian Response (ASMR) is a perceptual condition in which specific visual and auditory stimuli consistently trigger tingling sensations on the scalp and neck, sometimes spreading to the back and limbs. These triggering stimuli are often social, almost intimate, in nature (e.g., hearing whispering, or watching someone brush her hair), and often elicit a calm and positive emotional state. Surprisingly, despite its prevalence in the general population, no published study has examined the neural underpinnings of ASMR. In the current study, the default mode network (DMN) of 11 individuals with ASMR was contrasted to that of 11 matched controls. The results indicated that the DMN of individuals with ASMR showed significantly less functional connectivity than that of controls. The DMN of individuals with ASMR also demonstrated increased connectivity between regions in the occipital, frontal, and temporal cortices, suggesting that ASMR was associated with a blending of multiple resting-state networks. This atypical functional connectivity likely influences the unique sensory-emotional experiences associated with ASMR.

  19. Opto-electronic oscillators having optical resonators

    NASA Technical Reports Server (NTRS)

    Yao, Xiaotian Steve (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor)

    2003-01-01

    Systems and techniques of incorporating an optical resonator in an optical part of a feedback loop in opto-electronic oscillators. This optical resonator provides a sufficiently long energy storage time and hence to produce an oscillation of a narrow linewidth and low phase noise. Certain mode matching conditions are required. For example, the mode spacing of the optical resonator is equal to one mode spacing, or a multiplicity of the mode spacing, of an opto-electronic feedback loop that receives a modulated optical signal and to produce an electrical oscillating signal.

  20. Active damping of modal vibrations by force apportioning

    NASA Technical Reports Server (NTRS)

    Hallauer, W. L., Jr.

    1980-01-01

    Force apportioning, a method of active structural damping based on that used in modal vibration testing of isolating modes by multiple shaker excitation, was analyzed and numerically simulated. A distribution of as few forces as possible on the structure is chosen so as to maximally affect selected vibration modes while minimally exciting all other modes. The accuracy of numerical simulations of active damping, active damping of higher-frequency modes, and studies of imperfection sensitivity are discussed. The computer programs developed are described and possible refinements of the research are examined.

  1. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    PubMed

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges.

  2. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges. PMID:26085821

  3. Multiscale low-frequency circulation modes in the global atmosphere

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Sheu, P.-J.; Kang, I.-S.

    1994-01-01

    In this paper, fundamental multiscale circulation modes in the global atmosphere are identified with the objective of providing better understanding of atmospheric low-frequency variabilities over a wide range of spatial and temporal scales. With the use of a combination of rotated principal component technique, singular spectrum analysis, and phase space portraits, three categories of basic multiscale modes in the atmosphere are found. The first is the interannual-mode (IAM), which is dominated by time scales longer than a year and can be attributed to heating and circulation anomalies associated with the coupled tropical ocean-atmosphere, in particular the El Nino-Southern Oscillation. The second is a set of tropical intraseasonal modes consisting of three separate multiscale patterns (ISO-1, -2, -3) related to tropical heating that can be identified with the different phases of the Madden-Julian Oscillation (MJO), including its teleconnection to the extratropics. The ISO spatial and temporal patterns suggest that the extratropical wave train in the North Pacific and North America is related to heating over the Maritime Continent and that the evolution of the MJO around the equator may require forcing from the extratropics spawning convection over the Indian Ocean. The third category represents extratropical intraseasonal oscillations arising from internal dynamics of the basic-state circulation. In the Northern Hemisphere, there are two distinct circulation modes with multiple frequencies in this category: the Pacific/North America (PNA) and the North Atlantic/Eurasia (NAE). In the Southern Hemisphere, two phase-locked modes (PSA-1 and PSA-2) are found depicting an eastward propagating wave train from eastern Australia, via the Pacific South America to the South Atlantic. The extratropical modes exhibit temporal characteristics such as phase locking and harmonic oscillations possibly associated with quadratically nonlinear dynamical systems. Additionally, the observed monthly and seasonal anomalies arise from a complex interplay of the various multiscale low-frequency modes. The relative dominance of the different modes varies widely from month to month and from year to year. On the monthly time scale, while one or two mechanisms may dominate in one year, no single mechanism seems to dominate for all years. There are indications that when the IAM, that is, ENSO heating patterns are strong, the extratropical modes may be suppressed and vice versa. For the seasonal mean, the interannual mode tends to dominate and the contribution from the PNA remains quite significant.

  4. Laboratory study on the life history of bloom-forming Ulva prolifera in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Yu, Ren-Cheng; Yan, Tian; Zhang, Qing-Chun; Zhou, Ming-Jiang

    2015-09-01

    Ulva prolifera is the major causative species of large-scale green tides in the Yellow Sea (YS) of China. It has complex life cycles and multiple reproduction modes, such as parthenogenesis, a reproduction mode previously reported in many Ulva species with different consequences. However, there is little knowledge on the consequences of parthenogenesis in the following generations of U. prolifera. In this study, four strains of bloom-forming U. prolifera isolated from the YS were observed for multiple successive generations in the laboratory for approximately 2 years, and the type of thalli developed directly from unfertilized gametes and their following generations was determined by the zoids they produced. Among the four strains we examined, the gametes of two strains developed into parthenosporophytes (PS), followed by alternative generations of gametophytes (G) and parthenosporophytes. The other two strains, however, exhibited repeating generations of gametophyte, and then reverted to the isomorphic PS/G life cycle in February, 2013, after 8 gametophytic generations. The findings in this study suggest that parthenogenetic reproduction is a common feature of bloom-forming U. prolifera in the YS, which is likely to promote the rapid proliferation of U. prolifera population and to maintain its unique features. However, more detailed investigations are required to elucidate the role of parthenogenesis in the formation of green tides of U. prolifera in the YS.

  5. Using Spatial Multiple Regression to Identify Intrinsic Connectivity Networks Involved in Working Memory Performance

    PubMed Central

    Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.

    2012-01-01

    Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505

  6. Exact docking flight controller for autonomous aerial refueling with back-stepping based high order sliding mode

    NASA Astrophysics Data System (ADS)

    Su, Zikang; Wang, Honglun; Li, Na; Yu, Yue; Wu, Jianfa

    2018-02-01

    Autonomous aerial refueling (AAR) exact docking control has always been an intractable problem due to the strong nonlinearity, the tight coupling of the 6 DOF aircraft model and the complex disturbances of the multiple environment flows. In this paper, the strongly coupled nonlinear 6 DOF model of the receiver aircraft which considers the multiple flow disturbances is established in the affine nonlinear form to facilitate the nonlinear controller design. The items reflecting the influence of the unknown flow disturbances in the receiver dynamics are taken as the components of the "lumped disturbances" together with the items which have no linear correlation with the virtual control variables. These unmeasurable lumped disturbances are estimated and compensated by a specially designed high order sliding mode observer (HOSMO) with excellent estimation property. With the compensation of the estimated lumped disturbances, a back-stepping high order sliding mode based exact docking flight controller is proposed for AAR in the presence of multiple flow disturbances. Extensive simulation results demonstrate the feasibility and superiority of the proposed docking controller.

  7. Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA

    NASA Astrophysics Data System (ADS)

    Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.; Edgell, D. H.; Froula, D. H.; Jacobs-Perkins, D. W.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Campbell, E. M.

    2018-03-01

    Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.

  8. Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser

    NASA Astrophysics Data System (ADS)

    Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.

    2017-12-01

    A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.

  9. Principal Component Relaxation Mode Analysis of an All-Atom Molecular Dynamics Simulation of Human Lysozyme

    NASA Astrophysics Data System (ADS)

    Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi

    2013-02-01

    A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.

  10. Bicoherence Analysis of Electrostatic Interchange Mode Coupling in a Turbulent Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Abler, M. C.; Mauel, M. E.; Saperstein, A.

    2017-12-01

    Plasmas confined by a strong dipole field exhibit interchange and entropy mode turbulence, which previous experiments have shown respond locally to active feedback [1]. On the Collisionless Terrella Experiment (CTX), this turbulence is characterized by low frequency, low order, quasi-coherent modes with complex spectral dynamics. We apply bicoherence analysis [2] to study nonlinear phase coupling in a variety of scenarios. First, we study the self-interaction of the naturally occurring interchange turbulence; this analysis is then expanded to include the effects of single or multiple driven modes in the frequency range of the background turbulent oscillations. Initial measurements of coupling coefficients are presented in both cases. Driven low frequency interchange modes are observed to generate multiple harmonics which persist throughout the plasma, becoming weaker as they propagate away from the actuator in the direction of the electron magnetic drift. Future work is also discussed, including application of wavelet bicoherence analysis and applications to planetary magnetospheres. [1] Roberts, Mauel, and Worstell, Phys Plasmas (2015). [2] Grierson, Worstell, and Mauel, Phys Plasmas (2009). Supported by NSF-DOE Partnership for Plasma Science Grants DOE-DE-FG02-00ER54585 and NSF-PHY-1201896.

  11. Detection and characterization of nonspecific, sparsely-populated binding modes in the early stages of complexation

    PubMed Central

    Cardone, A.; Bornstein, A.; Pant, H. C.; Brady, M.; Sriram, R.; Hassan, S. A.

    2015-01-01

    A method is proposed to study protein-ligand binding in a system governed by specific and non-specific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultra-weak associations lead instead to broader distributions, a manifestation of non-specific, sparsely-populated binding modes with multiple interfaces. The method is based on the notion that a discrete set of preferential first-encounter modes are metastable states from which stable (pre-relaxation) complexes at equilibrium evolve. The method can be used to explore alternative pathways of complexation with statistical significance and can be integrated into a general algorithm to study protein interaction networks. The method is applied to a peptide-protein complex. The peptide adopts several low-population conformers and binds in a variety of modes with a broad range of affinities. The system is thus well suited to analyze general features of binding, including conformational selection, multiplicity of binding modes, and nonspecific interactions, and to illustrate how the method can be applied to study these problems systematically. The equilibrium distributions can be used to generate biasing functions for simulations of multiprotein systems from which bulk thermodynamic quantities can be calculated. PMID:25782918

  12. A Patch to MCNP5 for Multiplication Inference: Description and User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Jr., Clell J.

    2014-05-05

    A patch to MCNP5 has been written to allow generation of multiple neutrons from a spontaneous-fission event and generate list-mode output. This report documents the implementation and usage of this patch.

  13. Image-driven Population Analysis through Mixture Modeling

    PubMed Central

    Sabuncu, Mert R.; Balci, Serdar K.; Shenton, Martha E.; Golland, Polina

    2009-01-01

    We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output of the algorithm is a small number of template images that represent different modes in a population. This is in contrast with traditional, hypothesis-driven computational anatomy approaches that assume a single template to construct an atlas. We derive the algorithm based on a generative model of an image population as a mixture of deformable template images. We validate and explore our method in four experiments. In the first experiment, we use synthetic data to explore the behavior of the algorithm and inform a design choice on parameter settings. In the second experiment, we demonstrate the utility of having multiple atlases for the application of localizing temporal lobe brain structures in a pool of subjects that contains healthy controls and schizophrenia patients. Next, we employ iCluster to partition a data set of 415 whole brain MR volumes of subjects aged 18 through 96 years into three anatomical subgroups. Our analysis suggests that these subgroups mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the final experiment, we run iCluster on a group of 15 patients with dementia and 15 age-matched healthy controls. The algorithm produces two modes, one of which contains dementia patients only. These results suggest that the algorithm can be used to discover sub-populations that correspond to interesting structural or functional “modes.” PMID:19336293

  14. Interpreting anomalous electron pairs as new particle decays

    NASA Astrophysics Data System (ADS)

    Wilczynski, Henryk

    1999-08-01

    In heavy particle decays found in cosmic ray interactions recorded in the JACEE emulsion chambers, multiple electron pairs were previously reported. These pairs apparently originated from conversions of photons emitted in the decays. It is difficult to explain the overall properties of these decays in terms of known heavy particle decay modes. A recently published compilation of low-energy nuclear data suggests existence of excess electron pairs with invariant mass about 9 MeV/c2 , which may be explained by postulating a new neutral boson decaying into the electron pair. The feasibility of explaining the JACEE electron pairs with this hypothesis is presented.

  15. Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications.

    PubMed

    Liu, Jun; Wang, Jian

    2016-02-22

    We present a simple configuration incorporating single polarization-sensitive phase-only liquid crystal spatial light modulator (SLM) to facilitate polarization-insensitive free-space optical communications employing orbital angular momentum (OAM) modes. We experimentally demonstrate several polarization-insensitive optical communication subsystems by propagating a single OAM mode, multicasting 4 and 10 OAM modes, and multiplexing 8 OAM modes, respectively. Free-space polarization-insensitive optical communication links using OAM modes that carry four-level pulse-amplitude modulation (PAM-4) signal are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties are less than 1 dB in both polarization-insensitive N-fold OAM modes multicasting and multiple OAM modes multiplexing at a bit-error rate (BER) of 2e-3 (enhanced forward-error correction (EFEC) threshold).

  16. Spatiotemporal mode-locking in multimode fiber lasers

    NASA Astrophysics Data System (ADS)

    Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.

    2017-10-01

    A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made toward controlling the interactions of longitudinal modes in lasers with a single transverse mode. For example, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of longitudinal and transverse modes in a laser has received little attention. We show that modal and chromatic dispersions in fiber lasers can be counteracted by strong spatial and spectral filtering. This allows locking of multiple transverse and longitudinal modes to create ultrashort pulses with a variety of spatiotemporal profiles. Multimode fiber lasers thus open new directions in studies of nonlinear wave propagation and capabilities for applications.

  17. Parametrically excited multidegree-of-freedom systems with repeated frequencies

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.

    1983-05-01

    An analysis is presented of the linear response of multidegree-of-freedom systems with a repeated frequency of order three to a harmonic parametric excitation. The method of multiple scales is used to determine the modulation of the amplitudes and phases for two cases: fundamental resonance of the modes with the repeated frequency and combination resonance involving these modes and another mode. Conditions are then derived for determining the stability of the motion.

  18. Interface circuit for a multiple-beam tuning-fork gyroscope with high quality factors

    NASA Astrophysics Data System (ADS)

    Wang, Ren

    This research work presents the design, theoretical analysis, fabrication, interface electronics, and experimental results of a Silicon-On-Insulator (SOI) based Multiple-Beam Tuning-Fork Gyroscope (MB-TFG). Based on a numerical model of Thermo-Elastic Damping (TED), a Multiple-Beam Tuning-Fork Structure (MB-TFS) is designed with high Quality factors (Qs) in its two operation modes. A comprehensive theoretical analysis of the MB-TFG design is conducted to relate the design parameters to its operation parameters and further performance parameters. In conjunction with a mask that defines the device through trenches to alleviate severe fabrication effect on anchor loss, a simple one-mask fabrication process is employed to implement this MB-TFG design on SOI wafers. The fabricated MB-TFGs are tested with PCB-level interface electronics and a thorough comparison between the experimental results and a theoretical analysis is conducted to verify the MB-TFG design and accurately interpret the measured performance. The highest measured Qs of the fabricated MB-TFGs in vacuum are 255,000 in the drive-mode and 103,000 in the sense-mode, at a frequency of 15.7kHz. Under a frequency difference of 4Hz between the two modes (operation frequency is 16.8kHz) and a drive-mode vibration amplitude of 3.0um, the measured rate sensitivity is 80mVpp/°/s with an equivalent impedance of 6MQ. The calculated overall rate resolution of this device is 0.37/hrhiElz, while the measured Angle Random Walk (ARW) and bias instability are 6.67°/'vhr and 95°/hr, respectively.

  19. Deconvolution of azimuthal mode detection measurements

    NASA Astrophysics Data System (ADS)

    Sijtsma, Pieter; Brouwer, Harry

    2018-05-01

    Unequally spaced transducer rings make it possible to extend the range of detectable azimuthal modes. The disadvantage is that the response of the mode detection algorithm to a single mode is distributed over all detectable modes, similarly to the Point Spread Function of Conventional Beamforming with microphone arrays. With multiple modes the response patterns interfere, leading to a relatively high "noise floor" of spurious modes in the detected mode spectrum, in other words, to a low dynamic range. In this paper a deconvolution strategy is proposed for increasing this dynamic range. It starts with separating the measured sound into shaft tones and broadband noise. For broadband noise modes, a standard Non-Negative Least Squares solver appeared to be a perfect deconvolution tool. For shaft tones a Matching Pursuit approach is proposed, taking advantage of the sparsity of dominant modes. The deconvolution methods were applied to mode detection measurements in a fan rig. An increase in dynamic range of typically 10-15 dB was found.

  20. Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang

    2018-01-01

    Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.

  1. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Lanctot, Matthew J.

    2016-10-01

    In several tokamaks, non-axisymmetric magnetic field studies show applied n=2 fields can lead to disruptive n=1 locked modes, suggesting nonlinear mode coupling. A multimode plasma response to n=2 fields can be observed in H-mode plasmas, in contrast to the single-mode response found in Ohmic plasmas. These effects highlight a role for n >1 error field correction in disruption avoidance, and identify additional degrees of freedom for 3D field optimization at high plasma pressure. In COMPASS, EAST, and DIII-D Ohmic plasmas, n=2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q 3 and low density. Similar to previous studies, the thresholds are correlated with the ``overlap'' field for the dominant linear ideal MHD plasma mode calculated with the IPEC code. The overlap field measures the plasma-mediated coupling of the external field to the resonant field. Remarkably, the critical overlap fields are similar for n=1 and 2 fields with m >nq fields dominating the drive for resonant fields. Complementary experiments in RFX-Mod show fields with m 1 control, including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression). Optimal multi-harmonic (n=1 and n=2) error field control may be achieved using control algorithms that continuously respond to time-varying 3D field sources and plasma parameters. Supported by the US DOE under DE-FC02-04ER54698.

  2. Mathematical and Statistical Software Index.

    DTIC Science & Technology

    1986-08-01

    geometric) mean HMEAN - harmonic mean MEDIAN - median MODE - mode QUANT - quantiles OGIVE - distribution curve IQRNG - interpercentile range RANGE ... range mutliphase pivoting algorithm cross-classification multiple discriminant analysis cross-tabul ation mul tipl e-objecti ve model curve fitting...Statistics). .. .. .... ...... ..... ...... ..... .. 21 *RANGEX (Correct Correlations for Curtailment of Range ). .. .. .... ...... ... 21 *RUMMAGE II (Analysis

  3. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Following the completion of the third test phase of the applicable ramped modal cycle, conduct the post... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped modal... locomotive notch settings. Ramped modal cycles combine multiple test modes of a discrete-mode steady-state...

  4. Composing across Modes: A Comparative Analysis of Adolescents' Multimodal Composing Processes

    ERIC Educational Resources Information Center

    Smith, Blaine E.

    2017-01-01

    Although the shift from page to screen has dramatically redefined conceptions of writing, very little is known about how youth compose with multiple modes in digital environments. Integrating multimodality and multiliteracies theoretical frameworks, this comparative case study examined how urban twelfth-grade students collaboratively composed…

  5. Communicating Like a Scientist with Multimodal Writing

    ERIC Educational Resources Information Center

    McDermott, Mark; Kuhn, Mason

    2012-01-01

    If students are to accurately model how scientists use written communication, they must be given opportunities to use creative means to describe science in the classroom. Scientists often integrate pictures, diagrams, charts, and other modes within text and students should also be encouraged to use multiple modes of communication. This article…

  6. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.

    PubMed

    Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili

    2015-10-01

    The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.

  7. Effects of Multiple Simulation Presentation among Students of Different Anxiety Levels in the Learning of Probability

    ERIC Educational Resources Information Center

    Fong, Soon Fook; Por, Fei Ping; Tang, Ai Ling

    2012-01-01

    The purpose of this study was to investigate the effects of multiple simulation presentation in interactive multimedia are on the achievement of students with different levels of anxiety in the learning of Probability. The interactive multimedia courseware was developed in two different modes, which were Multiple Simulation Presentation (MSP) and…

  8. Feasibility of large volume tumor ablation using multiple-mode strategy with fast scanning method: A numerical study

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Shen, Guofeng; Qiao, Shan; Chen, Yazhu

    2017-03-01

    Sonication with fast scanning method can generate homogeneous lesions without complex planning. But when the target region is large, switching focus too fast will reduce the heat accumulation, the margin of which may not ablated. Furthermore, high blood perfusion rate will reduce this maximum volume that can be ablated. Therefore, fast scanning method may not be applied to large volume tumor. To expand the therapy scope, this study combines the fast scan method with multiple mode strategy. Through simulation and experiment, the feasibility of this new strategy is evaluated and analyzed.

  9. Time-Frequency Analysis of the Dispersion of Lamb Modes

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Seale, Michael D.; Smith, Barry T.

    1999-01-01

    Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A(sub 0), A(sub 1), S(sub 0), and S(sub 2)Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.

  10. Intertwined and vestigial order with ultracold atoms in multiple cavity modes

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Sarang; Shchadilova, Yulia E.; Demler, Eugene

    2017-12-01

    Atoms in transversely pumped optical cavities "self-organize" by forming a density wave and emitting superradiantly into the cavity mode(s). For a single-mode cavity, the properties of this self-organization transition are well characterized both theoretically and experimentally. Here, we explore the self-organization of a Bose-Einstein condensate in the presence of two cavity modes—a system that recently was realized experimentally [Léonard et al., Nature (London) 543, 87 (2017), 10.1038/nature21067]. We argue that this system can exhibit a "vestigially ordered" phase in which neither cavity mode exhibits superradiance but the cavity modes are mutually phase locked by the atoms. We argue that this vestigially ordered phase should generically be present in multimode cavity geometries.

  11. Multi-mode of Four and Six Wave Parametric Amplified Process

    NASA Astrophysics Data System (ADS)

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-01

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  12. Multi-mode of Four and Six Wave Parametric Amplified Process.

    PubMed

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-03

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  13. Song evolution, speciation, and vocal learning in passerine birds.

    PubMed

    Mason, Nicholas A; Burns, Kevin J; Tobias, Joseph A; Claramunt, Santiago; Seddon, Nathalie; Derryberry, Elizabeth P

    2017-03-01

    Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  14. The effects of two different ganoderma species (Lingzhi) on gene expression in human monocytic THP-1 cells.

    PubMed

    Cheng, Chun-Huai; Leung, Albert Y; Chen, Chin-Fu

    2010-01-01

    Lingzhi (ganoderma) is an important woody mushroom that is known for its medicinal benefits in China since ancient times. The mode of action in humans is still not clear. Using microarray technology, we have compared the ethanol extracts of two different lingzhi (red lingzhi, G. lucidum; and purple lingzhi, G. sinense) for their effects on gene expression profile in human monocytic cells. Our results suggest that at best approximately 25% of target genes are common to the two lingzhi: functionally ranging from cell development, negative regulation of cellular process, and cellular protein metabolic process to signal transduction and transcription. The pathways mediated by purple lingzhi focus on inflammation and immune response, whereas red lingzhi modestly increases levels of expression for genes involved in macromolecule metabolism. Furthermore, our ethanolic extracts of both red and purple lingzhi do not inhibit monocytic cell growth. The extract of red lingzhi does not have significant effect on the genes in the nuclear factor kappa B (NFkappaB) pathway (an important inflammation pathway), whereas the extract of purple lingzhi can increase multiple key genes in the NFkappaB pathway. Altogether, our results suggest that the common mode of action for lingzhi is complex; and different species of Ganoderma can modulate different pathways in human cells.

  15. Irreversible dual inhibitory mode: the novel Btk inhibitor PLS-123 demonstrates promising anti-tumor activity in human B-cell lymphoma.

    PubMed

    Ding, Ning; Li, Xitao; Shi, Yunfei; Ping, Lingyan; Wu, Lina; Fu, Kai; Feng, Lixia; Zheng, Xiaohui; Song, Yuqin; Pan, Zhengying; Zhu, Jun

    2015-06-20

    The B-cell receptor (BCR) signaling pathway has gained significant attention as a therapeutic target in B-cell malignancies. Recently, several drugs that target the BCR signaling pathway, especially the Btk inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicates that pharmacological inhibition of BCR pathway holds promise in B-cell lymphoma treatment. Here we present a novel covalent irreversible Btk inhibitor PLS-123 with more potent anti-proliferative activity compared with ibrutinib in multiple cellular and in vivo models through effective apoptosis induction and dual-action inhibitory mode of Btk activation. The phosphorylation of BCR downstream activating AKT/mTOR and MAPK signal pathways was also more significantly reduced after treatment with PLS-123 than ibrutinib. Gene expression profile analysis further suggested that the different selectivity profile of PLS-123 led to significant downregulation of oncogenic gene PTPN11 expression, which might also offer new opportunities beyond what ibrutinib has achieved. In addition, PLS-123 dose-dependently attenuated BCR- and chemokine-mediated lymphoma cell adhesion and migration. Taken together, Btk inhibitor PLS-123 suggested a new direction to pharmacologically modulate Btk function and develop novel therapeutic drug for B-cell lymphoma treatment.

  16. Irreversible dual inhibitory mode: the novel Btk inhibitor PLS-123 demonstrates promising anti-tumor activity in human B-cell lymphoma

    PubMed Central

    Ding, Ning; Li, Xitao; Shi, Yunfei; Ping, Lingyan; Wu, Lina; Fu, Kai; Feng, Lixia; Zheng, Xiaohui; Song, Yuqin; Pan, Zhengying; Zhu, Jun

    2015-01-01

    The B-cell receptor (BCR) signaling pathway has gained significant attention as a therapeutic target in B-cell malignancies. Recently, several drugs that target the BCR signaling pathway, especially the Btk inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicates that pharmacological inhibition of BCR pathway holds promise in B-cell lymphoma treatment. Here we present a novel covalent irreversible Btk inhibitor PLS-123 with more potent anti-proliferative activity compared with ibrutinib in multiple cellular and in vivo models through effective apoptosis induction and dual-action inhibitory mode of Btk activation. The phosphorylation of BCR downstream activating AKT/mTOR and MAPK signal pathways was also more significantly reduced after treatment with PLS-123 than ibrutinib. Gene expression profile analysis further suggested that the different selectivity profile of PLS-123 led to significant downregulation of oncogenic gene PTPN11 expression, which might also offer new opportunities beyond what ibrutinib has achieved. In addition, PLS-123 dose-dependently attenuated BCR- and chemokine-mediated lymphoma cell adhesion and migration. Taken together, Btk inhibitor PLS-123 suggested a new direction to pharmacologically modulate Btk function and develop novel therapeutic drug for B-cell lymphoma treatment. PMID:25944695

  17. The network property of the thalamus in the default mode network is correlated with trait mindfulness.

    PubMed

    Wang, X; Xu, M; Song, Y; Li, X; Zhen, Z; Yang, Z; Liu, J

    2014-10-10

    Mindfulness is typically defined as nonjudgmental awareness of experiences in the present moment, which is beneficial for mental and physical well-being. Previous studies have identified multiple regions in the default mode network (DMN) that are involved in mindfulness, but little is known about how these regions work collaboratively as a network. Here, we used resting-state functional magnetic resonance imaging to investigate the role of the DMN in trait mindfulness by correlating spontaneous functional connectivity among DMN nodes with self-reported trait mindfulness in a large population of young human adults. Among all pairs of the DMN nodes, we found that individuals with weaker functional connectivity between the thalamus and posterior cingulate cortex (PCC) were more mindful of the present. Post-hoc analyses of these two nodes further revealed that graph-based nodal properties of the thalamus, not the PCC, were negatively correlated with trait mindfulness, suggesting that a low involvement of the thalamus in the DMN is relevant for high trait mindfulness. Our findings not only suggest the thalamus as a switch between mind-wandering and mindfulness, but also invite future studies on mechanisms of how mindfulness produces beneficial effects by modulating the thalamus. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Brain system for mental orientation in space, time, and person.

    PubMed

    Peer, Michael; Salomon, Roy; Goldberg, Ilan; Blanke, Olaf; Arzy, Shahar

    2015-09-01

    Orientation is a fundamental mental function that processes the relations between the behaving self to space (places), time (events), and person (people). Behavioral and neuroimaging studies have hinted at interrelations between processing of these three domains. To unravel the neurocognitive basis of orientation, we used high-resolution 7T functional MRI as 16 subjects compared their subjective distance to different places, events, or people. Analysis at the individual-subject level revealed cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex. Comparison of orientation domains revealed a consistent order of cortical activity inside the precuneus and inferior parietal lobes, with space orientation activating posterior regions, followed anteriorly by person and then time. Core regions at the precuneus and inferior parietal lobe were activated for multiple orientation domains, suggesting also common processing for orientation across domains. The medial prefrontal cortex showed a posterior activation for time and anterior for person. Finally, the default-mode network, identified in a separate resting-state scan, was active for all orientation domains and overlapped mostly with person-orientation regions. These findings suggest that mental orientation in space, time, and person is managed by a specific brain system with a highly ordered internal organization, closely related to the default-mode network.

  19. Rhodopsin TM6 Can Interact with Two Separate and Distinct Sites on Arrestin: Evidence for Structural Plasticity and Multiple Docking Modes in Arrestin–Rhodopsin Binding

    PubMed Central

    2015-01-01

    Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodopsin may share some similar underlying mechanisms. We also identify two areas of contact between the proteins near this region. Both sites lie in the arrestin N-domain, one in the so-called “finger” loop (residues 67–79) and the other in the 160 loop (residues 155–165). We mapped these sites using a novel tryptophan-induced quenching method, in which we introduced Trp residues into arrestin and measured their ability to quench the fluorescence of bimane probes attached to cysteine residues on TM6 of rhodopsin (T242C and T243C). The involvement of finger loop binding to rhodopsin was expected, but the evidence of the arrestin 160 loop contacting rhodopsin was not. Remarkably, our data indicate one site on rhodopsin can interact with multiple structurally separate sites on arrestin that are almost 30 Å apart. Although this observation at first seems paradoxical, in fact, it provides strong support for recent hypotheses that structural plasticity and conformational changes are involved in the arrestin–rhodopsin binding interface and that the two proteins may be able to interact through multiple docking modes, with arrestin binding to both monomeric and dimeric rhodopsin. PMID:24724832

  20. Multi-frequency EIT system with radially symmetric architecture: KHU Mark1.

    PubMed

    Oh, Tong In; Woo, Eung Je; Holder, David

    2007-07-01

    We describe the development of a multi-frequency electrical impedance tomography (EIT) system (KHU Mark1) with a single balanced current source and multiple voltmeters. It was primarily designed for imaging brain function with a flexible strategy for addressing electrodes and a frequency range from 10 Hz-500 kHz. The maximal number of voltmeters is 64, and all of them can simultaneously acquire and demodulate voltage signals. Each voltmeter measures a differential voltage between a pair of electrodes. All voltmeters are configured in a radially symmetric architecture in order to optimize the routing of wires and minimize cross-talk. We adopted several techniques from existing EIT systems including digital waveform generation, a Howland current generator with a generalized impedance converter (GIC), digital phase-sensitive demodulation and tri-axial cables. New features of the KHU Mark1 system include multiple GIC circuits to maximize the output impedance of the current source at multiple frequencies. The voltmeter employs contact impedance measurements, data overflow detection, spike noise rejection, automatic gain control and programmable data averaging. The KHU Mark1 system measures both in-phase and quadrature components of trans-impedances. By using a script file describing an operating mode, the system setup can be easily changed. The performance of the developed multi-frequency EIT system was evaluated in terms of a common-mode rejection ratio, signal-to-noise ratio, linearity error and reciprocity error. Time-difference and frequency-difference images of a saline phantom with a banana object are presented showing a frequency-dependent complex conductivity of the banana. Future design of a more innovative system is suggested including miniaturization and wireless techniques.

  1. Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding.

    PubMed

    Sinha, Abhinav; Jones Brunette, Amber M; Fay, Jonathan F; Schafer, Christopher T; Farrens, David L

    2014-05-27

    Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodopsin may share some similar underlying mechanisms. We also identify two areas of contact between the proteins near this region. Both sites lie in the arrestin N-domain, one in the so-called "finger" loop (residues 67-79) and the other in the 160 loop (residues 155-165). We mapped these sites using a novel tryptophan-induced quenching method, in which we introduced Trp residues into arrestin and measured their ability to quench the fluorescence of bimane probes attached to cysteine residues on TM6 of rhodopsin (T242C and T243C). The involvement of finger loop binding to rhodopsin was expected, but the evidence of the arrestin 160 loop contacting rhodopsin was not. Remarkably, our data indicate one site on rhodopsin can interact with multiple structurally separate sites on arrestin that are almost 30 Å apart. Although this observation at first seems paradoxical, in fact, it provides strong support for recent hypotheses that structural plasticity and conformational changes are involved in the arrestin-rhodopsin binding interface and that the two proteins may be able to interact through multiple docking modes, with arrestin binding to both monomeric and dimeric rhodopsin.

  2. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  3. Interactions of multiple predators with different foraging modes in an aquatic food web.

    PubMed

    Carey, Michael P; Wahl, David H

    2010-02-01

    Top predators can have different foraging modes that may alter their interactions and effects on food webs. Interactions between predators may be non-additive resulting from facilitation or interference, whereas their combined effects on a shared prey may result in emergent effects that are risk enhanced or risk reduced. To test the importance of multiple predators with different foraging modes, we examined the interaction between a cruising predator (largemouth bass, Micropterus salmoides) and an ambush predator (muskellunge, Esox masquinongy) foraging on a shared prey (bluegill sunfish, Lepomis macrochirus) with strong anti-predator defense behaviors. Additive and substitution designs were used to compare individual to combined predator treatments in experimental ponds. The multiple predator interaction facilitated growth of the cruising predator in the combined predator treatments, whereas predator species had substitutable effects on the growth of the ambush predator. The combined predator treatments created an emergent effect on the prey; however, the direction was dependent on the experimental design. The additive design found a risk-reducing effect, whereas the substitution design found a risk-enhancing effect for prey fish. Indirect effects from the predators weakly extended to lower trophic levels (i.e., zooplankton community). Our results highlight the need to consider differences in foraging mode of top predators, interactions between predators, and emergent effects on prey to understand food webs.

  4. MEM spectral analysis for predicting influenza epidemics in Japan.

    PubMed

    Sumi, Ayako; Kamo, Ken-ichi

    2012-03-01

    The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.

  5. Shape dependent resonant modes of skyrmions in magnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Lake, Roger K.; Zang, Jiadong

    2018-06-01

    Resonant modes of a single Néel type skyrmion in confined nanodisks with varying aspect ratios (AR) are investigated using micromagnetic simulations. The AR of the skyrmion has a non-linear dependence on that of the nanodisk. The power spectra of skyrmions in nanodisks with AR ranging from 1.0 to 2.0 are calculated. With the increase of disk AR, multiple new modes emerge in the power spectrum, which originate from the broken rotational symmetry of both the nanodisk and the skyrmion. All of the spin wave modes are resolved by spatial maps of the real time magnetization fluctuations. New mixed modes such as rotation modes and oscillation modes with different azimuthal and radial components are identified in the elliptical nanodisk with AR = 1.8. The new emergent modes may provide new approaches to skyrmion-based oscillators and spin wave sources in confined structures.

  6. Reconstruction of the in-plane mode shape of a rotating tire with a continuous scanning measurement using the Hilbert-Huang transform.

    PubMed

    Lee, Jongsuh; Wang, Semyung; Pluymers, Bert; Desmet, Wim; Kindt, Peter

    2015-02-01

    Generally, the dynamic characteristics (natural frequency, damping, and mode shape) of a structure can be estimated by experimental modal analysis. Among these dynamic characteristics, mode shape requires multiple measurements of the structure at different positions, which increases the experimental cost and time. Recently, the Hilbert-Huang transform (HHT) method has been introduced to extract mode-shape information from a continuous measurement, which requires vibration measurements from one position to another position continuously with a non-contact sensor. In this research study, an effort has been made to estimate the mode shapes of a rolling tire with a single measurement instead of using the conventional experimental setup (i.e., measurement of the vibration of a rolling tire at multiple positions similar to the case of a non-rotating structure), which is used to estimate the dynamic behavior of a rolling tire. For this purpose, HHT, which was used in the continuous measurement of a non-rotating structure in previous research studies, has been used for the case of a rotating system in this study. Ambiguous mode combinations can occur in this rotating system, and therefore, a method to overcome this ambiguity is proposed in this study. In addition, the specific phenomenon for a rotating system is introduced, and the effect of this phenomenon with regard to the obtained results through HHT is investigated.

  7. A geospatial modelling approach to predict seagrass habitat recovery under multiple stressor regimes

    EPA Science Inventory

    Restoration of estuarine seagrass habitats requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed and demonstrated a geospatial modeling a...

  8. Two antenna, two pass interferometric synthetic aperture radar

    DOEpatents

    Martinez, Ana; Doerry, Armin W.; Bickel, Douglas L.

    2005-06-28

    A multi-antenna, multi-pass IFSAR mode utilizing data driven alignment of multiple independent passes can combine the scaling accuracy of a two-antenna, one-pass IFSAR mode with the height-noise performance of a one-antenna, two-pass IFSAR mode. A two-antenna, two-pass IFSAR mode can accurately estimate the larger antenna baseline from the data itself and reduce height-noise, allowing for more accurate information about target ground position locations and heights. The two-antenna, two-pass IFSAR mode can use coarser IFSAR data to estimate the larger antenna baseline. Multi-pass IFSAR can be extended to more than two (2) passes, thereby allowing true three-dimensional radar imaging from stand-off aircraft and satellite platforms.

  9. Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators

    DOE PAGES

    Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle

    2017-07-27

    Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less

  10. Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle

    Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less

  11. One Quiz File, Several Modes of Delivery

    ERIC Educational Resources Information Center

    Herbert, John C.

    2012-01-01

    This report offers online course designers, particularly those keen on using Moodle CMSs, a means of diversifying accessibility to their educational materials via multiple modes of delivery that do not require the creation of numerous files and formats for just one activity. The author has made contributions to the development of an open source…

  12. Critical Understanding: The Powers and Limits of Pluralism.

    ERIC Educational Resources Information Center

    Booth, Wayne C.

    The problems created by the competing claims of various schools of criticism for a unified view of meaning are examined in this book. Chapters deal with the following topics: the problem of the plurality of modes, Ronald Crane and the pluralism of discrete modes, Kenneth Burke's multiplication of perspectives, history as criticism and the…

  13. Automatic Rejection Of Multimode Laser Pulses

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Esproles, Carlos

    1991-01-01

    Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.

  14. Series Connected Buck-Boost Regulator

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G. (Inventor)

    2006-01-01

    A Series Connected Buck-Boost Regulator (SCBBR) that switches only a fraction of the input power, resulting in relatively high efficiencies. The SCBBR has multiple operating modes including a buck, a boost, and a current limiting mode, so that an output voltage of the SCBBR ranges from below the source voltage to above the source voltage.

  15. Video signal processing system uses gated current mode switches to perform high speed multiplication and digital-to-analog conversion

    NASA Technical Reports Server (NTRS)

    Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.

    1966-01-01

    Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.

  16. Academic In-Sourcing: International Postdoctoral Employment and New Modes of Academic Production

    ERIC Educational Resources Information Center

    Cantwell, Brendan

    2011-01-01

    International postdoctoral researchers are growing in number and importance in academic research around the world. This is contextualised by a shift to international and enterprise modes of academic production. Through a multiple case study, this paper analyses the role of international postdoctoral employment in life sciences and engineering…

  17. Non-syndrome multiple supernumerary teeth in Nigerians.

    PubMed

    Umweni, A A; Osunbor, G E N

    2002-09-01

    The present study was carried out to ascertain frequency of multiple supernumerary teeth not associated with syndrome in Nigerians. A total of 13 patients comprising of 10 males (76.92%) and 3 female (23.07%) representing 0.098% of the study population had multiple supernumerary teeth. Multiple supernumerary teeth without any associated systemic diseases or syndrome are rare as reported by BLUMENTHAL (3) RUHLMAN and NEELY (17), KANTOR et al. (10) is not the case in this study. The maxillary region has the highest frequency of occurrence with 12 times (66.67%) followed by the mandibular premolar region with 4 times (22.22%) while maxillary premolar and mandibular anterior region shared (5.55%) respectively. The conical and tuberculate types of supernumerary teeth were found in the midline region, while the supplemental supernumerary teeth were more in the mandibular premolar region with 12 (70.58%) follow by maxillary midline 4 (23.52%) and the lower incisor region 1 (5.88%) which is in consonant with WINTER and BROOK (2), STAFNE (19) NAZIF, FUTALO ZULLO (15). The role of genetics in the aetiology of multiple supernumerary teeth as found in this study, the occurrence of supernumerary teeth on two brothers and a daughter to one of the affected brothers, tends, to suggest an autosomal dominant mode of inheritance and the challenges to management by the orthodontists are discussed.

  18. Multiple Learning Approaches in the Professional Development of School Leaders -- Theoretical Perspectives and Empirical Findings on Self-assessment and Feedback

    ERIC Educational Resources Information Center

    Huber, Stephan Gerhard

    2013-01-01

    This article investigates the use of multiple learning approaches and different modes and types of learning in the (continuous) professional development (PD) of school leaders, particularly the use of self-assessment and feedback. First, formats and multiple approaches to professional learning are described. Second, a possible approach to…

  19. A Prescription for List-Mode Data Processing Conventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beddingfield, David H.; Swinhoe, Martyn Thomas; Huszti, Jozsef

    There are a variety of algorithmic approaches available to process list-mode pulse streams to produce multiplicity histograms for subsequent analysis. In the development of the INCC v6.0 code to include the processing of this data format, we have noted inconsistencies in the “processed time” between the various approaches. The processed time, tp, is the time interval over which the recorded pulses are analyzed to construct multiplicity histograms. This is the time interval that is used to convert measured counts into count rates. The observed inconsistencies in tp impact the reported count rate information and the determination of the error-values associatedmore » with the derived singles, doubles, and triples counting rates. This issue is particularly important in low count-rate environments. In this report we will present a prescription for the processing of list-mode counting data that produces values that are both correct and consistent with traditional shift-register technologies. It is our objective to define conventions for list mode data processing to ensure that the results are physically valid and numerically aligned with the results from shift-register electronics.« less

  20. Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Decha-Umphai, Kamolphan

    1987-01-01

    Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.

  1. The Effects of Suggestibility on Relaxation.

    ERIC Educational Resources Information Center

    Rickard, Henry C.; And Others

    1985-01-01

    Selected undergraduates (N=32) on the basis of Creative Imagination Scale scores and randomly assigned high and low suggestibility subjects to progressive relaxation (PR) and suggestions of relaxation (SR) training modes. Results revealed a significant pre-post relaxation effect, and main efffects for both suggestibility and training mode. (NRB)

  2. Optical Absorption and Raman Spectroscopy of Multiple Shocked Liquid Benzene to 10 GPa

    NASA Astrophysics Data System (ADS)

    Root, S.

    2005-07-01

    Liquid benzene samples were multiply shocked to peak pressures ranging from 3 GPa to 10 GPa to examine physical and chemical changes in benzene. A xenon flashlamp was used to probe the visible spectrum of benzene for loses in transmitted light intensity caused by changes in the electronic structure (absorption) or a possible liquid to solid phase transition (scattering). Raman spectroscopy was used to corroborate transmission measurements by examining changes in the benzene vibrational modes. The C-C symmetric ring breathing mode (992 cm-1), C-H symmetric stretch (3061 cm-1), along with several weaker modes at 607 cm-1, 1178 cm-1, 1586 cm-1, and 1606 cm-1 were monitored during shock loading. An EOS was developed to calculate the temperature of the shock compressed benzene. The present work has demonstrated that liquid benzene remains unchanged during multiple shock loading up to 10 GPa. Work supported by ONR and DOE.

  3. Scalable entanglement in trapped ions using optimal control of multimode couplings

    NASA Astrophysics Data System (ADS)

    Debnath, Shantanu; Choi, Taeyoung; Manning, T. Andrew; Figgatt, Caroline; Monroe, Chris

    2014-05-01

    We perform high fidelity multipartite entanglement of ion subsets in a chain of five Yb+ qubits using optimal pulse shaping. A focused mode-locked laser beam individually addresses qubits to couple them to multiple collective transverse modes of motion to perform entangling phase gates on pairs of adjacent qubits. Pulse shaping by modulating the amplitude and phase of the laser can drive high fidelity gates for certain pulse solutions that are relatively insensitive to detuning errors. We create entangled states in the GHZ class and witness genuine tripartite entanglement using individual state detection. This method of engineering the evolution of multiple modes scales well for large qubit registers by keeping gate times short. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  4. The dynamics of methicillin-resistant Staphylococcus aureus exposure in a hospital model and the potential for environmental intervention.

    PubMed

    Plipat, Nottasorn; Spicknall, Ian H; Koopman, James S; Eisenberg, Joseph Ns

    2013-12-17

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-associated infections. An important control strategy is hand hygiene; however, non-compliance has been a major problem in healthcare settings. Furthermore, modeling studies have suggested that the law of diminishing return applies to hand hygiene. Other additional control strategies such as environmental cleaning may be warranted, given that MRSA-positive individuals constantly shed contaminated desquamated skin particles to the environment. We constructed and analyzed a deterministic environmental compartmental model of MRSA fate, transport, and exposure between two hypothetical hospital rooms: one with a colonized patient, shedding MRSA; another with an uncolonized patient, susceptible to exposure. Healthcare workers (HCWs), acting solely as vectors, spread MRSA from one patient room to the other. Although porous surfaces became highly contaminated, their low transfer efficiency limited the exposure dose to HCWs and the uncolonized patient. Conversely, the high transfer efficiency of nonporous surfaces allows greater MRSA transfer when touched. In the colonized patient's room, HCW exposure occurred more predominantly through the indirect (patient to surfaces to HCW) mode compared to the direct (patient to HCW) mode. In contrast, in the uncolonized patient's room, patient exposure was more predominant in the direct (HCW to patient) mode compared to the indirect (HCW to surfaces to patient) mode. Surface wiping decreased MRSA exposure to the uncolonized patient more than daily surface decontamination. This was because wiping allowed higher cleaning frequency and cleaned more total surface area per day. Environmental cleaning should be considered as an integral component of MRSA infection control in hospitals. Given the previously under-appreciated role of surface contamination in MRSA transmission, this intervention mode can contribute to an effective multiple barrier approach in concert with hand hygiene.

  5. Plastic Responses of a Sessile Prey to Multiple Predators: A Field and Experimental Study

    PubMed Central

    Hirsch, Philipp Emanuel; Cayon, David; Svanbäck, Richard

    2014-01-01

    Background Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs. Principal Findings We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish) and a gape-size-limited (roach) predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength) against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density. Conclusions Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild. PMID:25517986

  6. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants

    PubMed Central

    Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.

    2008-01-01

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4′-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1–3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA’s. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as “expression signatures”. The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action. PMID:16488489

  7. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2006-05-25

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4'-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1-3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA's. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as "expression signatures". The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action.

  8. Coherent Terahertz Radiation from Multiple Electron Beams Excitation within a Plasmonic Crystal-like structure.

    PubMed

    Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang

    2017-01-23

    Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.

  9. Coherent Terahertz Radiation from Multiple Electron Beams Excitation within a Plasmonic Crystal-like structure

    PubMed Central

    Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang

    2017-01-01

    Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234

  10. Temperature Histories of Ti-6Al-4V Pulsed-Mode Laser Welds Calculated Using Multiple Constraints

    DTIC Science & Technology

    2015-08-12

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9621 Temperature Histories of Ti-6Al-4V Pulsed-Mode Laser Welds Calculated Using...b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Ti-6Al-4V Pulsed-Mode Laser Welds Calculated Using...plate structures. The results of the case studies provide parametric representations of weld temperature histories that can be adopted as input data to

  11. On boundaries of ping-pong modes in multipacting

    NASA Astrophysics Data System (ADS)

    Shemelin, Valery

    2018-05-01

    Multipactor is an avalanche multiplication of the number of electrons in radio-frequency devices due to secondary electron emission. One of the possible modes of this kind of discharge was studied in detail and was named "a ping-pong mode" in a publication by R. A. Kishek [Phys. Rev. Lett. 108, 035003 (2012) and Phys. Plasmas 20, 056702 (2013)]. In the present paper, I show that conditions of stability and cutoff limits are quite different from those derived in the cited papers.

  12. SEM, EDX and Raman and infrared spectroscopic study of brianyoungite Zn3(CO3,SO4)(OH)4 from Esperanza Mine, Laurion District, Greece

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Wang, Lina; Scholz, Ricardo; Sampaio, Ney Pinheiro

    2015-10-01

    The mineral brianyoungite, a carbonate-sulphate of zinc, has been studied by scanning electron microscopy (SEM) with chemical analysis using energy dispersive spectroscopy (EDX) and Raman and infrared spectroscopy. Multiple carbonate stretching modes are observed and support the concept of non-equivalent carbonate units in the brianyoungite structure. Intense Raman band at 1056 cm-1 with shoulder band at 1038 cm-1 is assigned to the CO32- ν1 symmetric stretching mode. Two intense Raman bands at 973 and 984 cm-1 are assigned to the symmetric stretching modes of the SO42- anion. The observation of two bands supports the concept of the non-equivalence of sulphate units in the brianyoungite structure. Raman bands at 704 and 736 cm-1 are assigned to the CO32- ν4 bending modes and Raman bands at 507, 528, 609 and 638 cm-1 are assigned to the CO32- ν2 bending modes. Multiple Raman and infrared bands in the OH stretching region are observed, proving the existence of water and hydroxyl units in different molecular environments in the structure of brianyoungite. Vibrational spectroscopy enhances our knowledge of the molecular structure of brianyoungite.

  13. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes

    PubMed Central

    Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935

  14. Feedback stabilization of resistive wall modes in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Cecconello, M.; Drake, J. R.; Manduchi, G.; Marchiori, G.

    2005-09-01

    An array of saddle coils having Nc=16 equally spaced positions along the toroidal direction has been installed for feedback control of resistive wall modes (RWMs) on the EXTRAP T2R reversed-field pinch [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]. Using feedback, multiple nonresonant RWMs are simultaneously suppressed for three to four wall times. Feedback stabilization of RWMs results in a significant prolongation of the discharge duration. This is linked to a better sustainment of the plasma and tearing mode toroidal rotation with feedback. Due to the limited number of coils in the toroidal direction, pairs of modes with toroidal mode numbers n ,n' that fulfill the condition ∣n-n'∣=Nc are coupled by the feedback action from the discrete coil array. With only one unstable mode in a pair of coupled modes, the suppression of the unstable mode is successful. If two modes are unstable in a coupled pair, two possibilities exist: partial suppression of both modes or, alternatively, complete stabilization of one target mode while the other is left unstable.

  15. Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field

    NASA Astrophysics Data System (ADS)

    Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry

    2018-05-01

    Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.

  16. Watching the coherence of multiple vibrational states in organic dye molecules by using supercontinuum probing photon echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Song, Yunfei; Wang, Yang; He, Xing; Liu, Yuqiang; Liu, Weilong; Yang, Yanqiang

    2011-12-01

    A modified photon echo (PE) technique, the supercontinuum probing photon echo (SCPPE), is introduced and performed to investigate the vibrational coherence in organic dye IR780 perchlorate doped polyvinyl alcohol (PVA) film. The coherences of multiple vibrational states which belong to four vibrational modes create complex oscillations in SCPPE signal. The frequencies of vibrational modes are confirmed from the results of Raman calculation which accord fairly well with the results of Raman scattering experiment. Compared with conventional one-color PE, the SCPPE technique can realize broadband detection and make the experiment about vibrational coherence more efficient.

  17. Differential BPFs with Multiple Transmission Zeros Based on Terminated Coupled Lines

    NASA Astrophysics Data System (ADS)

    Niu, Yiming; Yang, Guo; Wu, Wen

    2018-04-01

    Differential bandpass filters (BPFs) named Filter A and Filter B based on Terminated Coupled Lines (TCLs) are proposed in this letter. The TCLs contributes to not only three poles in differential-mode (DM) for wideband filtering response but also multiple zeros in both DM and common-mode (CM) offering wide DM out-of-band rejection and good CM suppression. Fabricated filters centred at 3.5 GHz with wide DM passband and wideband CM suppression have been designed and measured. The filters improved the noise suppression capability of the communication and radiometer systems. The simulated and measured results are in good agreement.

  18. Modal survey of the space shuttle solid rocket motor using multiple input methods

    NASA Technical Reports Server (NTRS)

    Brillhart, Ralph; Hunt, David L.; Jensen, Brent M.; Mason, Donald R.

    1987-01-01

    The ability to accurately characterize propellant in a finite element model is a concern of engineers tasked with studying the dynamic response of the Space Shuttle Solid Rocket Motor (SRM). THe uncertainties arising from propellant characterization through specimem testing led to the decision to perform a model survey and model correlation of a single segment of the Shuttle SRM. Multiple input methods were used to excite and define case/propellant modes of both an inert segment and, later, a live propellant segment. These tests were successful at defining highly damped, flexible modes, several pairs of which occured with frequency spacing of less than two percent.

  19. Robust partial integrated guidance and control for missiles via extended state observer.

    PubMed

    Wang, Qing; Ran, Maopeng; Dong, Chaoyang

    2016-11-01

    A novel extended state observer (ESO) based control is proposed for a class of nonlinear systems subject to multiple uncertainties, and then applied to partial integrated guidance and control (PIGC) design for a missile. The proposed control strategy incorporates both an ESO and an adaptive sliding mode control law. The multiple uncertainties are treated as an extended state of the plant, and then estimate them using the ESO and compensate for them in the control action, in real time. Based on the output of the ESO, the resulting adaptive sliding mode control law is inherently continuous and differentiable. Strict proof is given to show that the estimation error of the ESO can be arbitrarily small in a finite time. In addition, the adaptive sliding mode control law can achieve finite time convergence to a neighborhood of the origin, and the accurate expression of the convergent region is given. Finally, simulations are conducted on the planar missile-target engagement geometry. The effectiveness of the proposed control strategy in enhanced interception performance and improved robustness against multiple uncertainties are demonstrated. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Simultaneous entanglement swapping of multiple orbital angular momentum states of light.

    PubMed

    Zhang, Yingwen; Agnew, Megan; Roger, Thomas; Roux, Filippus S; Konrad, Thomas; Faccio, Daniele; Leach, Jonathan; Forbes, Andrew

    2017-09-21

    High-bit-rate long-distance quantum communication is a proposed technology for future communication networks and relies on high-dimensional quantum entanglement as a core resource. While it is known that spatial modes of light provide an avenue for high-dimensional entanglement, the ability to transport such quantum states robustly over long distances remains challenging. To overcome this, entanglement swapping may be used to generate remote quantum correlations between particles that have not interacted; this is the core ingredient of a quantum repeater, akin to repeaters in optical fibre networks. Here we demonstrate entanglement swapping of multiple orbital angular momentum states of light. Our approach does not distinguish between different anti-symmetric states, and thus entanglement swapping occurs for several thousand pairs of spatial light modes simultaneously. This work represents the first step towards a quantum network for high-dimensional entangled states and provides a test bed for fundamental tests of quantum science.Entanglement swapping in high dimensions requires large numbers of entangled photons and consequently suffers from low photon flux. Here the authors demonstrate entanglement swapping of multiple spatial modes of light simultaneously, without the need for increasing the photon numbers with dimension.

  1. The stability to two-dimensional wakes and shear layers at high Mach numbers

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1991-01-01

    This study is concerned with the stability properties of laminar free-shear-layer flows, and in particular symmetric two-dimensional wakes, for the supersonic through the hypersonic regimes. Emphasis is given to the use of proper wake profiles that satisfy the equations of motion at high Reynolds numbers. In particular the inviscid stability of a developing two-dimensional wake is studied as it accelerates at the trailing edge of a splitter plate. The nonparallelism of the flow is a leading-order effect in the calculation of the basic state, which is obtained numerically. Neutral stability characteristics are computed and the hypersonic stability is obtained by increasing the Mach number. It is found that the stability characteristics are altered significantly as the wake develops. Multiple modes (secondary modes) are found in the near wake that are closely related to the corresponding Blasius ones, but as the wake develops mode multiplicity is delayed to higher and higher Mach numbers. At a distance of about one plate length from the trailing edge, there is only one mode in a Mach number range of 0-20. The dominant mode emerging at all wake stations, and for high enough Mach numbers, is the so-called vorticity mode that is centered around the generalized inflection point layer. The structure of the dominant mode is also obtained analytically for all streamwise wake locations and it is shown how the far-wake limit is approached. Asymptotic results for the hypersonic mixing layer given by a tanh and a Lock distribution are also given.

  2. Properties of a novel linear sulfur response mode in a multiple flame photometric detector.

    PubMed

    Clark, Adrian G; Thurbide, Kevin B

    2014-01-24

    A new linear sulfur response mode was established in the multiple flame photometric detector (mFPD) by monitoring HSO* emission in the red spectral region above 600nm. Optimal conditions for this mode were found by using a 750nm interference filter and oxygen flows to the worker flames of this device that were about 10mL/min larger than those used for monitoring quadratic S2* emission. By employing these parameters, this mode provided a linear response over about 4 orders of magnitude, with a detection limit near 5.8×10(-11)gS/s and a selectivity of sulfur over carbon of about 3.5×10(3). Specifically, the minimum detectable masses for 10 different sulfur analytes investigated ranged from 0.4 to 3.6ng for peak half-widths spanning 4-6s. The response toward ten different sulfur compounds was examined and produced an average reproducibility of 1.7% RSD (n=10) and an average equimolarity value of 1.0±0.1. In contrast to this, a conventional single flame S2* mode comparatively yielded respective values of 6.7% RSD (n=10) and 1.1±0.4. HSO* emission in the mFPD was also found to be relatively much less affected by response quenching due to hydrocarbons compared to a conventional single flame S2* emission mode. Results indicate that this new alternative linear mFPD response mode could be beneficial for sulfur monitoring applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. 40 CFR 1066.410 - Dynamometer test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drive mode. (For purposes of this paragraph (g), the term four-wheel drive includes other multiple drive... Dynamometer test procedure. (a) Dynamometer testing may consist of multiple drive cycles with both cold-start...-setting part identifies the driving schedules and the associated sample intervals, soak periods, engine...

  4. Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2018-03-01

    This paper addresses the problem of rigid-flexible coupling dynamic modeling and active control of a novel flexible parallel manipulator (PM) with multiple actuation modes. Firstly, based on the flexible multi-body dynamics theory, the rigid-flexible coupling dynamic model (RFDM) of system is developed by virtue of the augmented Lagrangian multipliers approach. For completeness, the mathematical models of permanent magnet synchronous motor (PMSM) and piezoelectric transducer (PZT) are further established and integrated with the RFDM of mechanical system to formulate the electromechanical coupling dynamic model (ECDM). To achieve the trajectory tracking and vibration suppression, a hierarchical compound control strategy is presented. Within this control strategy, the proportional-differential (PD) feedback controller is employed to realize the trajectory tracking of end-effector, while the strain and strain rate feedback (SSRF) controller is developed to restrain the vibration of the flexible links using PZT. Furthermore, the stability of the control algorithm is demonstrated based on the Lyapunov stability theory. Finally, two simulation case studies are performed to illustrate the effectiveness of the proposed approach. The results indicate that, under the redundant actuation mode, the hierarchical compound control strategy can guarantee the flexible PM achieves singularity-free motion and vibration attenuation within task workspace simultaneously. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and efficient controller design of other flexible PMs, especially the emerging ones with multiple actuation modes.

  5. Mime as a Mode of Intelligence.

    ERIC Educational Resources Information Center

    Shope, Richard

    The dramatic art of mime can be viewed through a theory of multiple intelligences. Mime is a mode of the bodily-kinesthetic intelligence which is characterized as the ability to integrate body movement and to use the body in highly differentiated and skilled ways, for expression as well as directed goals. Mime is the language of the body, the…

  6. A Typology of Actional-Operational Modes in Earth Science and Implications for Science Literacy Instruction

    ERIC Educational Resources Information Center

    Wilson, Amy Alexandra

    2013-01-01

    Framed in theories of social semiotics, this multiple case study describes and categorizes the actional-operational modes used by three middle school earth science teachers throughout the course of one school year. Data included fieldnotes, photographs, and video recordings of classroom instructions as well as periodic interviews with the…

  7. The Pedagogical Potential of Drawing and Writing in a Primary Science Multimodal Unit

    ERIC Educational Resources Information Center

    Wilson, Rachel E.; Bradbury, Leslie U.

    2016-01-01

    In consideration of the potential of drawing and writing as assessment and learning tools, we explored how early primary students used these modes to communicate their science understandings. The context for this study was a curricular unit that incorporated multiple modes of representation in both the presentation of information and production of…

  8. 78 FR 76254 - Special Conditions: Airbus, Model A350-900 Series Airplane; Control Surface Awareness and Mode...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... or unusual design features: electronic flight control system providing control surface awareness and... system design must ensure that the flight crew is made suitably aware whenever the primary control means... awareness. 0 b. If the design of the flight control system has multiple modes of operation, a means must be...

  9. Transverse Mode Dynamics and Ultrafast Modulation of Vertical-Cavity Surface-Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We show that multiple transverse mode dynamics of VCSELs (Vertical-Cavity Surface-Emitting Lasers) can be utilized to generate ultrafast intensity modulation at a frequency over 100 GHz, much higher than the relaxation oscillation frequency. Such multimode beating can be greatly enhanced by taking laser output from part of the output facet.

  10. What Do Students Do in a F2F CSCL Classroom? The Optimization of Multiple Communications Modes

    ERIC Educational Resources Information Center

    Chen, Wenli; Looi, Chee-Kit; Tan, Sini

    2010-01-01

    This exploratory study analyzes how students use different communication modes to share information, negotiate meaning and construct knowledge in the process of doing a group learning activity in a Primary Grade 5 blended learning environment in Singapore. Small groups of students interacted face-to-face over a computer-mediated communication…

  11. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal).

    PubMed

    Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John; Sousa, Carla Alexandra

    2017-07-01

    Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control.

  12. Convection of tin in a Bridgman system. II - An electrochemical method for detecting flow regimes

    NASA Technical Reports Server (NTRS)

    Sears, B.; Fripp, A. L.; Debnam, W. J., Jr.; Woodell, G. A.; Anderson, T. J.; Narayanan, R.

    1992-01-01

    An ampoule was designed in order to obtain local flow behavior of the flow fields for convection of tin in a vertical Bridgman configuration. Multiple electrochemical cells were located along the periphery of the ampoule. Oxygen was titrated into the ampoule at one of the cell locations using a potentiostat and the concentration of oxygen was monitored at the other cell locations by operating the cells in a galvanic mode. Onset of oscillations were detected by means of thermocouples. We conclude that the flows are generally three dimensional for an aspect ratio of 5. Results on oscillations concurred with those of earlier workers. Suggestions for improved designs were made.

  13. Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires

    DOE PAGES

    Gamalski, A. D.; Tersoff, J.; Stach, E. A.

    2016-04-13

    We study the growth of GaN nanowires from liquid Au–Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either (11¯20) or (11¯00) directions, by the addition of {11¯00} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double-height step structure. Finally, the results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III–V semiconductor nanowires.

  14. Flexible muscle modes and synergies in challenging whole-body tasks.

    PubMed

    Danna-Dos-Santos, Alessander; Degani, Adriana M; Latash, Mark L

    2008-08-01

    We used the idea of hierarchical control to study multi-muscle synergies during a whole-body sway task performed by a standing person. Within this view, at the lower level of the hierarchy, muscles are united into groups (M-modes). At the higher level, gains at the M-modes are co-varied by the controller in a task-specific way to ensure low variability of important physical variables. In particular, we hypothesized that (1) the composition of M-modes could adjust and (2) an index of M-mode co-variation would become weaker in more challenging conditions. Subjects were required to perform a whole-body sway at 0.5 Hz paced by a metronome. They performed the task with eyes open and closed, while standing on both feet or on one foot only, with and without vibration applied to the Achilles tendons. Integrated indices of muscle activation were subjected to principal component analysis to identify M-modes. An increase in the task complexity led to an increase in the number of principal components that contained significantly loaded indices of muscle activation from 3 to 5. Hence, in more challenging tasks, the controller manipulated a larger number of variables. Multiple regression analysis was used to define the Jacobian of the system mapping small changes in M-mode gains onto shifts of the center of pressure (COP) in the anterior-posterior direction. Further, the variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect an average across cycles COP coordinate and the other that did (good and bad variance, respectively). Under all conditions, the subjects showed substantially more good variance than bad variance interpreted as a multi-M-mode synergy stabilizing the COP trajectory. An index of the strength of the synergy was comparable across all conditions, and there was no modulation of this index over the sway cycle. Hence, our first hypothesis that the composition of M-modes could adjust under challenging conditions has been confirmed while the second hypothesis stating that the index of M-mode co-variation would become weaker in more challenging conditions has been falsified. We interpret the observations as suggesting that adjustments at the lower level of the hierarchy-in the M-mode composition-allowed the subjects to maintain a comparable level of stabilization of the COP trajectory in more challenging tasks. The findings support the (at least) two-level hierarchical control scheme of whole-body movements.

  15. Flexible Muscle Modes and Synergies in Challenging Whole-Body Tasks

    PubMed Central

    Danna-dos-Santos, Alessander; Degani, Adriana M.; Latash, Mark L.

    2008-01-01

    We used the idea of hierarchical control to study multi-muscle synergies during a whole-body sway task performed by a standing person. Within this view, at the lower level of the hierarchy, muscles are united into groups (M-modes). At the higher level, gains at the M-modes are co-varied by the controller in a task specific way to ensure low variability of important physical variables. In particular, we hypothesized that (1) the composition of M-modes could adjust and (2) an index of M-mode co-variation would become weaker in more challenging conditions. Subjects were required to perform a whole-body sway at 0.5 Hz paced by a metronome. They performed the task with eyes open and closed, while standing on both feet or on one foot only, with and without vibration applied to the Achilles tendons. Integrated indices of muscle activation were subjected to principal component analysis to identify M-modes. An increase in the task complexity led to an increase in the number of principal components that contained significantly loaded indices of muscle activation from 3 to 5. Hence, in more challenging tasks, the controller manipulated a larger number of variables. Multiple regression analysis was used to define the Jacobian of the system mapping small changes in M-mode gains onto shifts of the center of pressure (COP) in the anterior-posterior direction. Further, the variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect an average across cycles COP coordinate and the other that did (good and bad variance, respectively). Under all conditions, the subjects showed substantially more good variance than bad variance interpreted as a multi-M-mode synergy stabilizing the COP trajectory. An index of the strength of the synergy was comparable across all conditions, and there was no modulation of this index over the sway cycle. Hence, our first hypothesis that the composition of M-modes could adjust under challenging conditions has been confirmed while the second hypothesis stating that the index of M-mode co-variation would become weaker in more challenging conditions has been falsified. We interpret the observations as suggesting that adjustments at the lower level of the hierarchy - in the M-mode composition - allowed the subjects to maintain a comparable level of stabilization of the COP trajectory in more challenging tasks. The findings support the (at least) two-level hierarchical control scheme of whole-body movements. PMID:18521583

  16. SU-F-P-07: Applying Failure Modes and Effects Analysis to Treatment Planning System QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, D; Alaei, P

    2016-06-15

    Purpose: A small-scale implementation of Failure Modes and Effects Analysis (FMEA) for treatment planning system QA by utilizing methodology of AAPM TG-100 report. Methods: FMEA requires numerical values for severity (S), occurrence (O) and detectability (D) of each mode of failure. The product of these three values gives a risk priority number (RPN). We have implemented FMEA for the treatment planning system (TPS) QA for two clinics which use Pinnacle and Eclipse TPS. Quantitative monthly QA data dating back to 4 years for Pinnacle and 1 year for Eclipse have been used to determine values for severity (deviations from predeterminedmore » doses at points or volumes), and occurrence of such deviations. The TPS QA protocol includes a phantom containing solid water and lung- and bone-equivalent heterogeneities. Photon and electron plans have been evaluated in both systems. The dose values at multiple distinct points of interest (POI) within the solid water, lung, and bone-equivalent slabs, as well as mean doses to several volumes of interest (VOI), have been re-calculated monthly using the available algorithms. Results: The computed doses vary slightly month-over-month. There have been more significant deviations following software upgrades, especially if the upgrade involved re-modeling of the beams. TG-100 guidance and the data presented here suggest an occurrence (O) of 2 depending on the frequency of re-commissioning the beams, severity (S) of 3, and detectability (D) of 2, giving an RPN of 12. Conclusion: Computerized treatment planning systems could pose a risk due to dosimetric errors and suboptimal treatment plans. The FMEA analysis presented here suggests that TPS QA should immediately follow software upgrades, but does not need to be performed every month.« less

  17. Biological activity of selenium: Revisited.

    PubMed

    Wrobel, Jagoda K; Power, Ronan; Toborek, Michal

    2016-02-01

    Selenium (Se) is an essential micronutrient that exerts multiple and complex effects on human health. Se is essential for human well-being largely due to its potent antioxidant, anti-inflammatory, and antiviral properties. The physiological functions of Se are carried out by selenoproteins, in which Se is specifically incorporated as the amino acid, selenocysteine. Importantly, both beneficial and toxic effects of Se have been reported suggesting that the mode of action of Se is strictly chemical form and concentration dependent. Additionally, there is a relatively narrow window between Se deficiency and toxicity and growing evidence suggests that Se health effects depend greatly on the baseline level of this micronutrient. Thus, Se supplementation is not an easy task and requires an individualized approach. It is essential that we continue to explore and better characterize Se containing compounds and mechanisms of action, which could be crucial for disease prevention and treatment. © 2015 International Union of Biochemistry and Molecular Biology.

  18. High-speed ultraviolet photometry of HD 60435

    NASA Technical Reports Server (NTRS)

    Taylor, M.; Nelson, M. J.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Percival, J. W.; Robinson, E. L.; Van Citters, G. W.

    1993-01-01

    We present the first high-speed ultraviolet photometry of an oscillating Ap star, HD 60435. After removing known orbital effects related to the Hubble Space Telescope, we confirm the presence of a strong pulsation period at a frequency of 123.70 cycles per day. In addition, we find significant amplitude modulation of this frequency that we suggest could be the result of beating of multiple periodicities. In this context, we suggest evidence for the presence of four additional frequencies at nu = 120.56, 126.55, 149.49, and 221.03 cycles per day. Three of these frequencies correspond well to frequencies detected in optical observations of HD 60435. The fourth, at 149.49 cycles per day, if real, is a potentially new pulsation mode that has not been detected in ground-based observations of this star. The amplitude of the 123 cycles per day pulsation is significantly larger in the ultraviolet than it is in the blue.

  19. Toward real-time quantum imaging with a single pixel camera

    DOE PAGES

    Lawrie, B. J.; Pooser, R. C.

    2013-03-19

    In this paper, we present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively pass macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. Finally, in low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imagingmore » with sensitivity below the photon shot noise limit.« less

  20. Microstructural stability of fine-grained fully lamellar XD TiAl alloys by step aging

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang; Maruyama, K.; Seo, D. Y.; Au, P.

    2005-05-01

    XD TiAl alloys (Ti-45 and 47Al-2Nb-2Mn+0.8 vol pct TiB2) (at. pct) were oil quenched to produce fine-grained fully lamellar (FGFL) structures, and aging treatments at different temperatures for different durations were carried out to stabilize the FGFL structures. Microstructural examinations show that the aging treatments cause phase transformation of α 2 to γ, resulting in stabilization of the lamellar structure, as indicated by a significant decrease in α 2 volume fraction. However, several degradation processes are also introduced. After aging, within lamellar colonies, the α 2 lamellae become finer due to dissolution, whereas most of the γ lamellae coarsen. The dissolution of α 2 involves longitudinal dissolution and lateral dissolution. In addition, at lamellar colony boundaries, lamellar termination migration, nucleation and growth of γ grains, and discontinuous coarsening occur. With the exception of longitudinal dissolution, all the other transformation modes are considered as degradation processes as they result in a reduction in α 2/ γ interfaces. Different phase transformation modes are present to varying degrees in the aged FGFL structures, depending on aging conditions and Al content. A multiple step aging reduces the drive force for phase transformation at high temperature by promoting phase transformation via longitudinal dissolution at low temperatures. As a result, this aging procedure effectively stabilizes the lamellar structure and suppresses other degradation processes. Therefore, the multiple step aging is suggested to be an optimal aging condition for stabilizing FGFL XD TiAl alloys.

  1. Brillouin Study of the Quantization of Acoustic Modes in Nanospheres

    NASA Astrophysics Data System (ADS)

    Kuok, M. H.; Lim, H. S.; Ng, S. C.; Liu, N. N.; Wang, Z. K.

    2003-06-01

    The vibrational modes in three-dimensional ordered arrays of unembedded SiO2 nanospheres have been studied by Brillouin light scattering. Multiple distinct Brillouin peaks are observed whose frequencies are found to be inversely proportional to the diameter (≈200 340 nm) of the nanospheres, in agreement with Lamb’s theory. This is the first Brillouin observation of acoustic mode quantization in a nanoparticle arising from spatial confinement. The distinct spectral peaks measured afford an unambiguous assignment of seven surface and inner acoustic modes. Interestingly, the relative intensities and polarization dependence of the Brillouin spectrum do not agree with the predictions made for Raman scattering.

  2. Brillouin study of the quantization of acoustic modes in nanospheres.

    PubMed

    Kuok, M H; Lim, H S; Ng, S C; Liu, N N; Wang, Z K

    2003-06-27

    The vibrational modes in three-dimensional ordered arrays of unembedded SiO2 nanospheres have been studied by Brillouin light scattering. Multiple distinct Brillouin peaks are observed whose frequencies are found to be inversely proportional to the diameter (approximately 200-340 nm) of the nanospheres, in agreement with Lamb's theory. This is the first Brillouin observation of acoustic mode quantization in a nanoparticle arising from spatial confinement. The distinct spectral peaks measured afford an unambiguous assignment of seven surface and inner acoustic modes. Interestingly, the relative intensities and polarization dependence of the Brillouin spectrum do not agree with the predictions made for Raman scattering.

  3. Hemispherical breathing mode speaker using a dielectric elastomer actuator.

    PubMed

    Hosoya, Naoki; Baba, Shun; Maeda, Shingo

    2015-10-01

    Although indoor acoustic characteristics should ideally be assessed by measuring the reverberation time using a point sound source, a regular polyhedron loudspeaker, which has multiple loudspeakers on a chassis, is typically used. However, such a configuration is not a point sound source if the size of the loudspeaker is large relative to the target sound field. This study investigates a small lightweight loudspeaker using a dielectric elastomer actuator vibrating in the breathing mode (the pulsating mode such as the expansion and contraction of a balloon). Acoustic testing with regard to repeatability, sound pressure, vibration mode profiles, and acoustic radiation patterns indicate that dielectric elastomer loudspeakers may be feasible.

  4. The guided-mode resonance biosensor: principles, technology, and implementation

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Lee, Kyu J.; Hemmati, Hafez; Ko, Yeong Hwan; Wenner, Brett R.; Allen, Jeffery W.; Allen, Monica S.; Gimlin, Susanne; Weidanz, Debra Wawro

    2018-02-01

    The guided-mode resonance (GMR) sensor operates with quasi-guided modes induced in periodic films. The resonance is enabled by 1D or 2D nanopatterns that are expeditiously fabricated. Optical sensors are needed in many fields including medical diagnostics, chemical analyses, and environmental monitoring. Inducing resonance in multiple modes enables extraction of complete bioreaction information including the biolayer thickness, biolayer refractive index, and any change in the refractive index in the background buffer solution. Thus, we refer to this version of the GMR sensor as the complete biosensor. We address the fundamentals, state of technological development, and implementation of this basic sensor modality.

  5. Quasilinear Line Broadened Model for Energetic Particle Transport

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2011-10-01

    We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles, . Implemention of a more realistic mode structure calculated by NOVAK code are also presented. This work is funded by DOE contract DE-AC02-09CH11466.

  6. Equalizer tap length requirement for mode group delay-compensated fiber link with weakly random mode coupling.

    PubMed

    Bai, Neng; Li, Guifang

    2014-02-24

    The equalizer tap length requirement is investigated analytically and numerically for differential modal group delay (DMGD) compensated fiber link with weakly random mode coupling. Each span of the DMGD compensated link comprises multiple pairs of fibers which have opposite signs of DMGD. The result reveals that under weak random mode coupling, the required tap length of the equalizer is proportional to modal group delay of a single DMGD compensated pair, instead of the total modal group delay (MGD) of the entire link. By using small DMGD compensation step sizes, the required tap length (RTL) can be potentially reduced by 2 orders of magnitude.

  7. Intelligent content fitting for digital publishing

    NASA Astrophysics Data System (ADS)

    Lin, Xiaofan

    2006-02-01

    One recurring problem in Variable Data Printing (VDP) is that the existing contents cannot satisfy the VDP task as-is. So there is a strong need for content fitting technologies to support high-value digital publishing applications, in which text and image are the two major types of contents. This paper presents meta-Autocrop framework for image fitting and TextFlex technology for text fitting. The meta-Autocrop framework supports multiple modes: fixed aspect-ratio mode, advice mode, and verification mode. The TextFlex technology supports non-rectangular text wrapping and paragraph-based line breaking. We also demonstrate how these content fitting technologies are utilized in the overall automated composition and layout system.

  8. Delay induced high order locking effects in semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Wishon, M. J.; Locquet, A.; Goulding, D.; Tykalewicz, B.; Huyet, G.; Viktorov, E. A.

    2017-11-01

    Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types-—a quantum dot based device and a quantum well based device—are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.

  9. Delay induced high order locking effects in semiconductor lasers.

    PubMed

    Kelleher, B; Wishon, M J; Locquet, A; Goulding, D; Tykalewicz, B; Huyet, G; Viktorov, E A

    2017-11-01

    Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types--a quantum dot based device and a quantum well based device-are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.

  10. Real-Time Adaptive Control of Flow-Induced Cavity Tones

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Cabell, Randolph H.; Cattafesta, Louis N.

    2004-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. The adaptive control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. The algorithm was also able t o maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are colocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible. In the control-algorithm development, the cavity dynamics are treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support this treatment.

  11. Probing protein flexibility reveals a mechanism for selective promiscuity

    PubMed Central

    Pabon, Nicolas A; Camacho, Carlos J

    2017-01-01

    Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789

  12. Concerted Dynamic Motions of an FABP4 Model and Its Ligands Revealed by Microsecond Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4–ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level. PMID:25231537

  13. Concerted dynamic motions of an FABP4 model and its ligands revealed by microsecond molecular dynamics simulations.

    PubMed

    Li, Yan; Li, Xiang; Dong, Zigang

    2014-10-14

    In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4-ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level.

  14. Method of multi-mode vibration control for the carbody of high-speed electric multiple unit trains

    NASA Astrophysics Data System (ADS)

    Gong, Dao; Zhou, Jinsong; Sun, Wenjing; Sun, Yu; Xia, Zhanghui

    2017-11-01

    A method of multi-mode vibration control for the carbody of high-speed electric multiple unit (EMU) trains by using the onboard and suspended equipments as dynamic vibration absorbers (DVAs) is proposed. The effect of the multi-mode vibration on the ride quality of a high-speed EMU train was studied, and the target modes of vibration control were determined. An equivalent mass identification method was used to determine the equivalent mass for the target modes at the device installation positions. To optimize the vibration acceleration response of the carbody, the natural frequencies and damping ratios of the lateral and vertical vibration were designed based on the theory of dynamic vibration absorption. In order to realize the optimized design values of the natural frequencies for the lateral and vertical vibrations simultaneously, a new type of vibration absorber was designed in which a belleville spring and conventional rubber parts are connected in parallel. This design utilizes the negative stiffness of the belleville spring. Results show that, as compared to rigid equipment connections, the proposed method effectively reduces the multi-mode vibration of a carbody in a high-speed EMU train, thereby achieving the control objectives. The ride quality in terms of the lateral and vertical vibration of the carbody is considerably improved. Moreover, the optimal value of the damping ratio is effective in dissipating the vibration energy, which reduces the vibration of both the carbody and the equipment.

  15. Instrumenting an upland research catchment in Canterbury, New Zealand to study controls on variability of soil moisture, shallow groundwater and streamflow

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Srinivasan, Ms

    2015-04-01

    Hydrologists recognise the importance of vertical drainage and deep flow paths in runoff generation, even in headwater catchments. Both soil and groundwater stores are highly variable over multiple scales, and the distribution of water has a strong control on flow rates and timing. In this study, we instrumented an upland headwater catchment in New Zealand to measure the temporal and spatial variation in unsaturated and saturated-zone responses. In NZ, upland catchments are the source of much of the water used in lowland agriculture, but the hydrology of such catchments and their role in water partitioning, storage and transport is poorly understood. The study area is the Langs Gully catchment in the North Branch of the Waipara River, Canterbury: this catchment was chosen to be representative of the foothills environment, with lightly managed dryland pasture and native Matagouri shrub vegetation cover. Over a period of 16 months we measured continuous soil moisture at 32 locations and near-surface water table (< 2 m) at 14 locations, as well as measuring flow at 3 stream gauges. The distributed measurement sites were located to allow comparisons between North and South facing locations, near-stream versus hillslope locations, and convergent versus divergent hillslopes. We found that temporal variability is strongly controlled by the climatic seasonal cycle, for both soil moisture and water table, and for both the mean and extremes of their distributions. Groundwater is a larger water storage component than soil moisture, and the difference increases with catchment wetness. The spatial standard deviation of both soil moisture and groundwater is larger in winter than in summer. It peaks during rainfall events due to partial saturation of the catchment, and also rises in spring as different locations dry out at different rates. The most important controls on spatial variability are aspect and distance from stream. South-facing and near-stream locations have higher water tables and more, larger soil moisture wetting events. Typical hydrological models do not explicitly account for aspect, but our results suggest that it is an important factor in hillslope runoff generation. Co-measurement of soil moisture and water table level allowed us to identify interrelationships between the two. Locations where water tables peaked closest to the surface had consistently wetter soils and higher water tables. These wetter sites were the same across seasons. However, temporary patterns of strong soil moisture response to summer storms did not correspond to the wetter sites. Total catchment spatial variability is composed of multiple variability sources, and the dominant type is sensitive to those stores that are close to a threshold such as field capacity or saturation. Therefore, we classified spatial variability as 'summer mode' or 'winter mode'. In summer mode, variability is controlled by shallow processes e.g. interactions of water with soils and vegetation. In winter mode, variability is controlled by deeper processes e.g. groundwater movement and bypass flow. Double flow peaks observed during some events show the direct impact of groundwater variability on runoff generation. Our results suggest that emergent catchment behaviour depends on the combination of these multiple, time varying components of variability.

  16. Alpha-driven magnetohydrodynamics (MHD) and MHD-induced alpha loss in the Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z.; Nazikian, R.; Fu, G.Y.

    1997-02-01

    Alpha-driven toroidal Alfven eigenmodes (TAEs) are observed as predicted by theory in the post neutral beam phase in high central q (safety factor) deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR). The mode location, poloidal structure and the importance of q profile for TAE instability are discussed. So far no alpha particle loss due to these modes was detected due to the small mode amplitude. However, alpha loss induced by kinetic ballooning modes (KBMs) was observed in high confinement D-T discharges. Particle orbit simulation demonstrates that the wave-particle resonant interaction can explain the observed correlation between the increasemore » in alpha loss and appearance of multiple high-n (n {ge} 6, n is the toroidal mode number) modes.« less

  17. Association of birth defects with the mode of assisted reproductive technology in a Chinese data-linkage cohort.

    PubMed

    Yu, Hui-Ting; Yang, Qing; Sun, Xiao-Xi; Chen, Guo-Wu; Qian, Nai-Si; Cai, Ren-Zhi; Guo, Han-Bing; Wang, Chun-Fang

    2018-05-01

    To evaluate the impact of assisted reproductive technology (ART) on the offspring of Chinese population. Retrospective, data-linkage cohort. Not applicable. Live births resulting from ART or natural conception. None. Birth defects coded according to ICD-10. Births after ART were more likely to be female and multiple births, especially after intracytoplasmic sperm injection (ICSI). ART was associated with a significantly increased risk of birth defects, especially, among singleton births, a significantly increased risk in fresh-embryo cycles after in vitro fertilization (IVF) and frozen-embryo cycles after ICSI. Associations between ART and multiple defects, between ART and gastrointestinal malformation, genital organs malformation, and musculoskeletal malformation among singleton births, and between ART and cardiac septa malformation among multiple births were observed. This study suggests that ART increases the risk of birth defects. Subgroup analyses indicate higher risk for both fresh and frozen embryos, although nonsignificantly for frozen embryos after IVF and for fresh embryos were presented with low power. Larger sample size research is needed to clarify effects from fresh- or frozen-embryo cycles after IVF and ICSI. Copyright © 2018 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    NASA Astrophysics Data System (ADS)

    Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James

    2017-04-01

    Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of multiple STVOs that share common magnetic layers. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series' 50th anniversary celebrations in 2017. Paul Keatley was selected by the Editorial Board of J. Phys. D as an Emerging Leader.

  19. Multiple Intelligences, Motivations and Learning Experience Regarding Video-Assisted Subjects in a Rural University

    ERIC Educational Resources Information Center

    Hajhashemi, Karim; Caltabiano, Nerina; Anderson, Neil; Tabibzadeh, Seyed Asadollah

    2018-01-01

    This study investigates multiple intelligences in relation to online video experiences, age, gender, and mode of learning from a rural Australian university. The inter-relationships between learners' different intelligences and their motivations and learning experience with the supplementary online videos utilised in their subjects are…

  20. Characterizing mercury concentrations and flux dynamics in a coastal plain watershed using multiple models

    EPA Science Inventory

    The primary goal was to asess Hg cycling within a small coastal plain watershed (McTier Creek) using multiple watershed models with distinct mathematical frameworks that emphasize different system dynamics; a secondary goal was to identify current needs in watershed-scale Hg mode...

  1. Obtaining eigensolutions for multiple frequency ranges in a single NASTRAN execution

    NASA Technical Reports Server (NTRS)

    Pamidi, P. R.; Brown, W. K.

    1990-01-01

    A novel and general procedure for obtaining eigenvalues and eigenvectors for multiple frequency ranges in a single NASTRAN execution is presented. The scheme is applicable to normal modes analyzes employing the FEER and Inverse Power methods of eigenvalue extraction. The procedure is illustrated by examples.

  2. Advanced online control mode selection for gas turbine aircraft engines

    NASA Astrophysics Data System (ADS)

    Wiseman, Matthew William

    The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.

  3. Nonlinear behavior of solar gravity modes driven by He-3 in the core. I - Bifurcation analysis

    NASA Technical Reports Server (NTRS)

    Merryfield, William J.; Gough, Douglas; Toomre, Juri

    1990-01-01

    The nonlinear development of solar gravity modes driven by He-3 burning in the solar core is investigated by means of an idealized dynamical model. Possible outcomes that have been suggested in the literature include the triggering of subcritical direct convection, leading to core mixing, and the saturation of the excitation processes, leading to sustained finite-amplitude oscillations. The present simple model suggests that the latter is the more likely. The limiting amplitude of the oscillations is estimated, ignoring possible resonances with other gravity modes, to be of order 10 km/s at the solar surface. Such oscillations would be easily observable. That large-amplitude gravity modes have not been observed suggests either that these modes are not unstable in the present era or that they are limited to much smaller amplitudes by resonant coupling.

  4. Quantitative Phosphoproteomics Reveals SLP-76 Dependent Regulation of PAG and Src Family Kinases in T Cells

    PubMed Central

    Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J.; Salomon, Arthur R.

    2012-01-01

    The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway. PMID:23071622

  5. Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells.

    PubMed

    Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J; Salomon, Arthur R

    2012-01-01

    The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.

  6. Effects of practice on variability in an isochronous serial interval production task: asymptotical levels of tapping variability after training are similar to those of musicians.

    PubMed

    Madison, Guy; Karampela, Olympia; Ullén, Fredrik; Holm, Linus

    2013-05-01

    Timing permeates everyday activities such as walking, dancing and music, yet the effect of short-term practice in this ubiquitous activity is largely unknown. In two training experiments involving sessions spread across several days, we examined short-term practice effects on timing variability in a sequential interval production task. In Experiment 1, we varied the mode of response (e.g., drumstick and finger tapping) and the level of sensory feedback. In Experiment 2 we varied the interval in 18 levels ranging from 500 ms to 1624 ms. Both experiments showed a substantial decrease in variability within the first hour of practice, but little thereafter. This effect was similar across mode of response, amount of feedback, and interval duration, and was manifested as a reduction in both local variability (between neighboring intervals) and drift (fluctuation across multiple intervals). The results suggest mainly effects on motor implementation rather than on cognitive timing processes, and have methodological implications for timing studies that have not controlled for practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Prediction of S-wave velocity using complete ensemble empirical mode decomposition and neural networks

    NASA Astrophysics Data System (ADS)

    Gaci, Said; Hachay, Olga; Zaourar, Naima

    2017-04-01

    One of the key elements in hydrocarbon reservoirs characterization is the S-wave velocity (Vs). Since the traditional estimating methods often fail to accurately predict this physical parameter, a new approach that takes into account its non-stationary and non-linear properties is needed. In this view, a prediction model based on complete ensemble empirical mode decomposition (CEEMD) and a multiple layer perceptron artificial neural network (MLP ANN) is suggested to compute Vs from P-wave velocity (Vp). Using a fine-to-coarse reconstruction algorithm based on CEEMD, the Vp log data is decomposed into a high frequency (HF) component, a low frequency (LF) component and a trend component. Then, different combinations of these components are used as inputs of the MLP ANN algorithm for estimating Vs log. Applications on well logs taken from different geological settings illustrate that the predicted Vs values using MLP ANN with the combinations of HF, LF and trend in inputs are more accurate than those obtained with the traditional estimating methods. Keywords: S-wave velocity, CEEMD, multilayer perceptron neural networks.

  8. Optimising rigid motion compensation for small animal brain PET imaging

    NASA Astrophysics Data System (ADS)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  9. Global Surface Temperature Anomalies and Attribution

    NASA Astrophysics Data System (ADS)

    Pietrafesa, L. J.

    2017-12-01

    We study Non-Stationary, Non-Linear time series of global surface temperatures from 1850 to 2016, and via an empirical, mathematical methodology, we reveal the buried, internal modes of variability of planetary temperatures over the past 167 years, and find periods of cooling and warming, both in the ocean and the atmosphere over land, with multiple modes of variability; seasonal, annual, inter-annual, multi-year, decadal, multi-decadal, centennial and overall warming trends in the ocean, atmosphere and the combination therein. The oceanic rate of warming is less than two thirds of that of the atmosphere. While our findings on overall trends of fossil fuel burning and planetary temperatures are only visually correlative, by employing a mathematical methodology well known in ergonomics, this study causally links the upward rise in planetary surface temperature from the latter part of the 19th Century and into the 21st Century, to the contemporaneous upward rise in fossil fuel burning and suggests that if present fossil fuel burning is not curtailed there will be continued warming of the planet in the future.

  10. Auroral kilometric radiation: Wave modes, harmonic and source region electron density structures

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1984-01-01

    A change from extraordinary (X) mode to ordinary (0) mode dominance is observed in the auroral kilometric radiation (AKR) detected on ISIS 1 topside sounder ionograms as the source region plasma to gyrofrequency ratio fN/fH varies from 0.1 to 1.3. The X and 0 mode AKR, Z (the slow branch of the X mode) and whistler (W) mode are also observed. The Z mode is typically slightly less intense than the 0-mode. Thw W-mode is confined to frequencies less than fH/2, suggesting that it is the result of field aligned ducted signals reaching the satellite from a source at lower altitudes. Harmonic AKR bands are commonly observed and the 2nd harmonic appears to be due to propagating signals. The deduced (fN/fH) at the bottom of the AKR source region is always less than 0.4 and is typically less than 0.2 during the generation of X-mode AKR, but approaches 0.9 for 0-mode AKR. No large density enhancements were observed within AKR source region density cavities. It is suggested that the observed INTENSE AKR IS cyclotron X-mode radiation rather than plasma frequency 0-mode radiation.

  11. Scheduling optimization of design stream line for production research and development projects

    NASA Astrophysics Data System (ADS)

    Liu, Qinming; Geng, Xiuli; Dong, Ming; Lv, Wenyuan; Ye, Chunming

    2017-05-01

    In a development project, efficient design stream line scheduling is difficult and important owing to large design imprecision and the differences in the skills and skill levels of employees. The relative skill levels of employees are denoted as fuzzy numbers. Multiple execution modes are generated by scheduling different employees for design tasks. An optimization model of a design stream line scheduling problem is proposed with the constraints of multiple executive modes, multi-skilled employees and precedence. The model considers the parallel design of multiple projects, different skills of employees, flexible multi-skilled employees and resource constraints. The objective function is to minimize the duration and tardiness of the project. Moreover, a two-dimensional particle swarm algorithm is used to find the optimal solution. To illustrate the validity of the proposed method, a case is examined in this article, and the results support the feasibility and effectiveness of the proposed model and algorithm.

  12. Influence of multiple ion species on low-frequency electromagnetic wave instabilities. [in solar wind

    NASA Technical Reports Server (NTRS)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1989-01-01

    The effect of multiple (singly ionized) coexisting newborn ion species on the stability of low-frequency electromagnetic waves was investigated using a plasma model in which solar wind magnetoplasma is made up of isotropic Maxwellian electron and proton populations with a common number density of 4.95/cu cm and temperatures equal to 17.2 eV and 6.9 eV, respectively. It is shown that the effect of multiple ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. If the ion masses are disparate, each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species. If the masses of newborn ions are similar, they can strongly catalyze wave growth of fluidlike nonresonant modes, but bring about weak growth enhancements in cyclotron resonant instabilities.

  13. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS 2

    DOE PAGES

    Huang, Shengxi; Liang, Liangbo; Ling, Xi; ...

    2016-02-21

    A variety of van der Waals homo- and hetero- structures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. Twisted bilayer transition metal dichalcogenides offer a great platform for developing a precise understanding of the structure/property relationship. Here, we study the low-frequency interlayer shear and breathing Raman modes (<50 cm-1) in twisted bilayer MoS 2 by Raman spectroscopy and first-principles modeling. Twisting introduces both rotational and translational shifts and significantly alters the interlayer stacking and coupling, leading to notable frequency andmore » intensity changes of low-frequency modes. The frequency variation can be up to 8 cm-1 and the intensity can vary by a factor of ~5 for twisting near 0 and 60 , where the stacking is a mixture of multiple high-symmetry stacking patterns and is thus especially sensitive to twisting. Moreover, for twisting angles between 20 and 40 , the interlayer coupling is nearly constant since the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Interestingly, unlike the breathing mode, the shear mode is extremely sensitive to twisting: it disappears between 20 and 40 as its frequency drops to almost zero due to the stacking-induced mismatch. Note that for some samples, multiple breathing mode peaks appear, indicating non-uniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling, showing negligible changes upon twisting. Our research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2, and potentially other two-dimensional materials and heterostructures.« less

  14. Intrinsic brain abnormalities in young healthy adults with childhood trauma: A resting-state functional magnetic resonance imaging study of regional homogeneity and functional connectivity.

    PubMed

    Lu, Shaojia; Gao, Weijia; Wei, Zhaoguo; Wang, Dandan; Hu, Shaohua; Huang, Manli; Xu, Yi; Li, Lingjiang

    2017-06-01

    Childhood trauma confers great risk for the development of multiple psychiatric disorders; however, the neural basis for this association is still unknown. The present resting-state functional magnetic resonance imaging study aimed to detect the effects of childhood trauma on brain function in a group of young healthy adults. In total, 24 healthy individuals with childhood trauma and 24 age- and sex-matched adults without childhood trauma were recruited. Each participant underwent resting-state functional magnetic resonance imaging scanning. Intra-regional brain activity was evaluated by regional homogeneity method and compared between groups. Areas with altered regional homogeneity were further selected as seeds in subsequent functional connectivity analysis. Statistical analyses were performed by setting current depression and anxiety as covariates. Adults with childhood trauma showed decreased regional homogeneity in bilateral superior temporal gyrus and insula, and the right inferior parietal lobule, as well as increased regional homogeneity in the right cerebellum and left middle temporal gyrus. Regional homogeneity values in the left middle temporal gyrus, right insula and right cerebellum were correlated with childhood trauma severity. In addition, individuals with childhood trauma also exhibited altered default mode network, cerebellum-default mode network and insula-default mode network connectivity when the left middle temporal gyrus, right cerebellum and right insula were selected as seed area, respectively. The present outcomes suggest that childhood trauma is associated with disturbed intrinsic brain function, especially the default mode network, in adults even without psychiatric diagnoses, which may mediate the relationship between childhood trauma and psychiatric disorders in later life.

  15. Pyroxene thermometry of rhyolite lavas of the Bruneau-Jarbidge eruptive center, Central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Cathey, Henrietta E.; Nash, Barbara P.

    2009-11-01

    The Bruneau-Jarbidge eruptive center of the central Snake River Plain in southern Idaho, USA produced multiple rhyolite lava flows with volumes of <10 km 3 to 200 km 3 each from ~11.2 to 8.1 Ma, most of which follow its climactic phase of large-volume explosive volcanism, represented by the Cougar Point Tuff, from 12.7 to 10.5 Ma. These lavas represent the waning stages of silicic volcanism at a major eruptive center of the Yellowstone hotspot track. Here we provide pyroxene compositions and thermometry results from several lavas that demonstrate that the demise of the silicic volcanic system was characterized by sustained, high pre-eruptive magma temperatures (mostly ≥950 °C) prior to the onset of exclusively basaltic volcanism at the eruptive center. Pyroxenes display a variety of textures in single samples, including solitary euhedral crystals as well as glomerocrysts, crystal clots and annealed microgranular inclusions of pyroxene ± magnetite ± plagioclase. Pigeonite and augite crystals are unzoned, and there are no detectable differences in major and minor element compositions according to textural variety — mineral compositions in the microgranular inclusions and crystal clots are identical to those of phenocrysts in the host lavas. In contrast to members of the preceding Cougar Point Tuff that host polymodal glass and mineral populations, pyroxene compositions in each of the lavas are characterized by single rather than multiple discrete compositional modes. Collectively, the lavas reproduce and extend the range of Fe-Mg pyroxene compositional modes observed in the Cougar Point Tuff to more Mg-rich varieties. The compositionally homogeneous populations of pyroxene in each of the lavas, as well as the lack of core-to-rim zonation in individual crystals suggest that individual eruptions each were fed by compositionally homogeneous magma reservoirs, and similarities with the Cougar Point Tuff suggest consanguinity of such reservoirs to those that supplied the polymodal Cougar Point Tuff. Pyroxene thermometry results obtained using QUILF equilibria yield pre-eruptive magma temperatures of 905 to 980 °C, and individual modes consistently record higher Ca content and higher temperatures than pyroxenes with equivalent Fe-Mg ratios in the preceding Cougar Point Tuff. As is the case with the Cougar Point Tuff, evidence for up-temperature zonation within single crystals that would be consistent with recycling of sub- or near-solidus material from antecedent magma reservoirs by rapid reheating is extremely rare. Also, the absence of intra-crystal zonation, particularly at crystal rims, is not easily reconciled with cannibalization of caldera fill that subsided into pre-eruptive reservoirs. The textural, compositional and thermometric results rather are consistent with minor re-equilibration to higher temperatures of the unerupted crystalline residue from the explosive phase of volcanism, or perhaps with newly generated magmas from source materials very similar to those for the Cougar Point Tuff. Collectively, the data suggest that most of the pyroxene compositional diversity that is represented by the tuffs and lavas was produced early in the history of the eruptive center and that compositions across this range were preserved or duplicated through much of its lifetime. Mineral compositions and thermometry of the multiple lavas suggest that unerupted magmas residual to the explosive phase of volcanism may have been stored at sustained, high temperatures subsequent to the explosive phase of volcanism. If so, such persistent high temperatures and large eruptive magma volumes likewise require an abundant and persistent supply of basalt magmas to the lower and/or mid-crust, consistent with the tectonic setting of a continental hotspot.

  16. Nonlinear coupled mode approach for modeling counterpropagating solitons in the presence of disorder-induced multiple scattering in photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Mann, Nishan; Hughes, Stephen

    2018-02-01

    We present the analytical and numerical details behind our recently published article [Phys. Rev. Lett. 118, 253901 (2017), 10.1103/PhysRevLett.118.253901], describing the impact of disorder-induced multiple scattering on counterpropagating solitons in photonic crystal waveguides. Unlike current nonlinear approaches using the coupled mode formalism, we account for the effects of intraunit cell multiple scattering. To solve the resulting system of coupled semilinear partial differential equations, we introduce a modified Crank-Nicolson-type norm-preserving implicit finite difference scheme inspired by the transfer matrix method. We provide estimates of the numerical dispersion characteristics of our scheme so that optimal step sizes can be chosen to either minimize numerical dispersion or to mimic the exact dispersion. We then show numerical results of a fundamental soliton propagating in the presence of multiple scattering to demonstrate that choosing a subunit cell spatial step size is critical in accurately capturing the effects of multiple scattering, and illustrate the stochastic nature of disorder by simulating soliton propagation in various instances of disordered photonic crystal waveguides. Our approach is easily extended to include a wide range of optical nonlinearities and is applicable to various photonic nanostructures where power propagation is bidirectional, either by choice, or as a result of multiple scattering.

  17. Comparison of response patterns in different survey designs: a longitudinal panel with mixed-mode and online-only design.

    PubMed

    Rübsamen, Nicole; Akmatov, Manas K; Castell, Stefanie; Karch, André; Mikolajczyk, Rafael T

    2017-01-01

    Increasing availability of the Internet allows using only online data collection for more epidemiological studies. We compare response patterns in a population-based health survey using two survey designs: mixed-mode (choice between paper-and-pencil and online questionnaires) and online-only design (without choice). We used data from a longitudinal panel, the Hygiene and Behaviour Infectious Diseases Study (HaBIDS), conducted in 2014/2015 in four regions in Lower Saxony, Germany. Individuals were recruited using address-based probability sampling. In two regions, individuals could choose between paper-and-pencil and online questionnaires. In the other two regions, individuals were offered online-only participation. We compared sociodemographic characteristics of respondents who filled in all panel questionnaires between the mixed-mode group (n = 1110) and the online-only group (n = 482). Using 134 items, we performed multinomial logistic regression to compare responses between survey designs in terms of type (missing, "do not know" or valid response) and ordinal regression to compare responses in terms of content. We applied the false discovery rates (FDR) to control for multiple testing and investigated effects of adjusting for sociodemographic characteristic. For validation of the differential response patterns between mixed-mode and online-only, we compared the response patterns between paper and online mode among the respondents in the mixed-mode group in one region (n = 786). Respondents in the online-only group were older than those in the mixed-mode group, but both groups did not differ regarding sex or education. Type of response did not differ between the online-only and the mixed-mode group. Survey design was associated with different content of response in 18 of the 134 investigated items; which decreased to 11 after adjusting for sociodemographic variables. In the validation within the mixed-mode, only two of those were among the 11 significantly different items. The probability of observing by chance the same two or more significant differences in this setting was 22%. We found similar response patterns in both survey designs with only few items being answered differently, likely attributable to chance. Our study supports the equivalence of the compared survey designs and suggests that, in the studied setting, using online-only design does not cause strong distortion of the results.

  18. Intersection of argumentation and the use of multiple representations in the context of socioscientific issues

    NASA Astrophysics Data System (ADS)

    Namdar, Bahadir; Shen, Ji

    2016-05-01

    Using multiple representations and argumentation are two fundamental processes in science. With the advancements of information communication technologies, these two processes are blended more so than ever before. However, little is known about how these two processes interact with each other in student learning. Hence, we conducted a design-based study in order to distill the relationship between these two processes. Specifically, we designed a learning unit on nuclear energy and implemented it with a group of preservice middle school teachers. The participants used a web-based knowledge organization platform that incorporated three representational modes: textual, concept map, and pictorial. The participants organized their knowledge on nuclear energy by searching, sorting, clustering information through the use of these representational modes and argued about the nuclear energy issue. We found that the use of multiple representations and argumentation interacted with each other in a complex way. Based on our findings, we argue that the complexity can be unfolded in two aspects: (a) the use of multiple representations mediates argumentation in different forms and for different purposes; (b) the type of argumentation that leads to refinement of the use of multiple representations is often non-mediated and drawn from personal experience.

  19. Grindr, Scruff, and on the Hunt: Predictors of Condomless Anal Sex, Internet Use, and Mobile Application Use Among Men Who Have Sex With Men.

    PubMed

    Whitfield, Darren L; Kattari, Shanna K; Walls, N Eugene; Al-Tayyib, Alia

    2017-05-01

    In 2016, gay, bisexual, and other men who have sex with men (MSM) comprise more than half of all new HIV diagnoses in the United States, with the primary mode of infection being condomless anal sex (CAS). While studies report an association between use of Internet-based social networking sites and increased CAS, the research on the relationship between cell phone mobile applications (e.g., Grindr, Scruff, Jack'd) and CAS is much less developed. The present study examines whether the manner in which gay, bisexual, and other MSM find sexual partners predicts an increase in likelihood of engaging in CAS in an urban, noncoastal U.S. city. Conducting a secondary data analysis of the 2011 National HIV Behavioral Surveillance survey for Denver ( N = 546), the authors performed binary logistic regression analyses to assess the models that predict how MSM find sexual partners, and the odds of engaging in CAS. While the results suggest that age and race are associated with the mode of finding sexual partners, using the Internet or a mobile app to find sexual partners was not predictive of CAS ( Z Wald = .41, p = .52; Z Wald = .80, p = .37). In terms of HIV prevention, these findings suggest a need for intervention to address HIV prevention on multiple levels (e.g., individual, group, community).

  20. Brain system for mental orientation in space, time, and person

    PubMed Central

    Peer, Michael; Salomon, Roy; Goldberg, Ilan; Blanke, Olaf; Arzy, Shahar

    2015-01-01

    Orientation is a fundamental mental function that processes the relations between the behaving self to space (places), time (events), and person (people). Behavioral and neuroimaging studies have hinted at interrelations between processing of these three domains. To unravel the neurocognitive basis of orientation, we used high-resolution 7T functional MRI as 16 subjects compared their subjective distance to different places, events, or people. Analysis at the individual-subject level revealed cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex. Comparison of orientation domains revealed a consistent order of cortical activity inside the precuneus and inferior parietal lobes, with space orientation activating posterior regions, followed anteriorly by person and then time. Core regions at the precuneus and inferior parietal lobe were activated for multiple orientation domains, suggesting also common processing for orientation across domains. The medial prefrontal cortex showed a posterior activation for time and anterior for person. Finally, the default-mode network, identified in a separate resting-state scan, was active for all orientation domains and overlapped mostly with person-orientation regions. These findings suggest that mental orientation in space, time, and person is managed by a specific brain system with a highly ordered internal organization, closely related to the default-mode network. PMID:26283353

  1. Grindr, Scruff, and on the Hunt: Predictors of Condomless Anal Sex, Internet Use, and Mobile Application Use Among Men Who Have Sex With Men

    PubMed Central

    Whitfield, Darren L.; Kattari, Shanna K.; Walls, N. Eugene; Al-Tayyib, Alia

    2017-01-01

    In 2016, gay, bisexual, and other men who have sex with men (MSM) comprise more than half of all new HIV diagnoses in the United States, with the primary mode of infection being condomless anal sex (CAS). While studies report an association between use of Internet-based social networking sites and increased CAS, the research on the relationship between cell phone mobile applications (e.g., Grindr, Scruff, Jack’d) and CAS is much less developed. The present study examines whether the manner in which gay, bisexual, and other MSM find sexual partners predicts an increase in likelihood of engaging in CAS in an urban, noncoastal U.S. city. Conducting a secondary data analysis of the 2011 National HIV Behavioral Surveillance survey for Denver (N = 546), the authors performed binary logistic regression analyses to assess the models that predict how MSM find sexual partners, and the odds of engaging in CAS. While the results suggest that age and race are associated with the mode of finding sexual partners, using the Internet or a mobile app to find sexual partners was not predictive of CAS (ZWald = .41, p = .52; ZWald = .80, p = .37). In terms of HIV prevention, these findings suggest a need for intervention to address HIV prevention on multiple levels (e.g., individual, group, community). PMID:28134002

  2. Cross-Species Coherence in Effects and Modes of Action in Support of Causality Determinations in the U.S. Environmental Protection Agency’s Integrated Science Assessment for Lead

    EPA Science Inventory

    The peer-reviewed literature on the health and ecological effects of lead (Pb) indicates common effects and underlying modes of action across multiple organisms for several endpoints. Based on such observations, the United States Environmental Protection Agency (EPA) applied a cr...

  3. A Further Comparison of Manual Signing, Picture Exchange, and Speech-Generating Devices as Communication Modes for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    van der Meer, Larah; Sutherland, Dean; O'Reilly, Mark F.; Lancioni, Giulio E.; Sigafoos, Jeff

    2012-01-01

    We compared acquisition of, and preference for, manual signing (MS), picture exchange (PE), and speech-generating devices (SGDs) in four children with autism spectrum disorders (ASD). Intervention was introduced across participants in a non-concurrent multiple-baseline design and acquisition of the three communication modes was compared in an…

  4. Fly-scan ptychography

    DOE PAGES

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; ...

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. Thus, this approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  5. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Technical Reports Server (NTRS)

    Miles, R. N.

    1992-01-01

    This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.

  6. A Versatile Integrated Ambient Ionization Source Platform.

    PubMed

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-30

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. Graphical abstract ᅟ.

  7. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGES

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less

  8. A Versatile Integrated Ambient Ionization Source Platform

    NASA Astrophysics Data System (ADS)

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-01

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.

  9. An Adaptive OFDMA-Based MAC Protocol for Underwater Acoustic Wireless Sensor Networks

    PubMed Central

    Khalil, Issa M.; Gadallah, Yasser; Hayajneh, Mohammad; Khreishah, Abdallah

    2012-01-01

    Underwater acoustic wireless sensor networks (UAWSNs) have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA)-based Media Access Control (MAC) protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA)-based MAC protocols. PMID:23012517

  10. An adaptive OFDMA-based MAC protocol for underwater acoustic wireless sensor networks.

    PubMed

    Khalil, Issa M; Gadallah, Yasser; Hayajneh, Mohammad; Khreishah, Abdallah

    2012-01-01

    Underwater acoustic wireless sensor networks (UAWSNs) have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA)-based Media Access Control (MAC) protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA)-based MAC protocols.

  11. Multi-pulse operation of a dissipative soliton fibre laser based on nonlinear polarisation rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H L; Wang, X L; Zhou, P

    We report an experimental observation of multiple dissipative soliton (DS) operation states in an all-normal-dispersion passively mode-locked Yb-doped fibre laser, including DS bound and oscillating states. In the bound state, multiple DSs up to 11 can coexist in the cavity. In the oscillating state, the DSs' movements are not purely random and three typical states are generalised and illustrated. A single-pulse mode-locked state is established at a high pump power by carefully adjusting the polarisation controllers. The broad spectrum indicates that it may be noise-like pulses, which can serve as a pump to generate a supercontinuum. (control of laser radiationmore » parameters)« less

  12. Experimental Study of Flexible Plate Vibration Control by Using Two-Loop Sliding Mode Control Strategy

    NASA Astrophysics Data System (ADS)

    Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping

    2017-08-01

    It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.

  13. Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.

    2018-03-01

    We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.

  14. Phase-locking of magnetic islands diagnosed by ECE-imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, Benjamin; Grierson, Brian A.; Muscatello, Christopher M.

    2014-08-13

    Millimeter-wave imaging diagnostics identify phase-locking and the satisfaction of 3-wave coupling selection criteria amongst multiple magnetic island chains by providing a localized, internal measurement of the 2D power spectral density, S(ω, k pol). In high-confinement tokamak discharges, these interactions impact both plasma rotation and tearing stability. Here, nonlinear coupling amongst neoclassical tearing modes (NTMs) of different n-number, with islands not satisfying the poloidal mode number selection criterion {m, m ', m - m ' }, contributes to a reduction in core rotation and flow shear in the vicinity of the modes.

  15. Theories and Modes

    ERIC Educational Resources Information Center

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  16. Local functional connectivity suggests functional immaturity in children with attention-deficit/hyperactivity disorder.

    PubMed

    Marcos-Vidal, Luis; Martínez-García, Magdalena; Pretus, Clara; Garcia-Garcia, David; Martínez, Kenia; Janssen, Joost; Vilarroya, Oscar; Castellanos, Francisco X; Desco, Manuel; Sepulcre, Jorge; Carmona, Susanna

    2018-06-01

    Previous studies have associated Attention-Deficit/Hyperactivity Disorder (ADHD) with a maturational lag of brain functional networks. Functional connectivity of the human brain changes from primarily local to more distant connectivity patterns during typical development. Under the maturational lag hypothesis, we expect children with ADHD to exhibit increased local connectivity and decreased distant connectivity compared with neurotypically developing (ND) children. We applied a graph-theory method to compute local and distant connectivity levels and cross-sectionally compared them in a sample of 120 children with ADHD and 120 age-matched ND children (age range = 7-17 years). In addition, we measured if potential group differences in local and distant connectivity were stable across the age range considered. Finally, we assessed the clinical relevance of observed group differences by correlating the connectivity levels and ADHD symptoms severity separately for each group. Children with ADHD exhibited more local connectivity than age-matched ND children in multiple brain regions, mainly overlapping with default mode, fronto-parietal and ventral attentional functional networks (p < .05- threshold free-cluster enhancement-family-wise error). We detected an atypical developmental pattern of local connectivity in somatomotor regions, that is, decreases with age in ND children, and increases with age in children with ADHD. Furthermore, local connectivity within somatomotor areas correlated positively with clinical severity of ADHD symptoms, both in ADHD and ND children. Results suggest an immature functional state of multiple brain networks in children with ADHD. Whereas the ADHD diagnosis is associated with the integrity of the system comprising the fronto-parietal, default mode and ventral attentional networks, the severity of clinical symptoms is related to atypical functional connectivity within somatomotor areas. Additionally, our findings are in line with the view of ADHD as a disorder of deviated maturational trajectories, mainly affecting somatomotor areas, rather than delays that normalize with age. © 2018 Wiley Periodicals, Inc.

  17. Depolarized haze of nano-porous AAO film via porosity and aspect control

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Wei; Lin, Yung-Hsiang; Cheng, Chih-Hsien; Lin, Gong-Ru

    2018-01-01

    Multiple scattering induced haze and depolarization effects of nano-porous AAO films controlled by detuning the porosity and aspect ratio of the nano holes are investigated. The nano-porous AAO film with its porosity increasing from 12.6% to 19.3% enhances the scattering of the incident laser beam with its maximal scattering angle enlarged from 5° to 8° under TM-mode incidence and from 6° to 10° under TE-mode incidence. Because of multiple scattering within the porous holes of the AAO, the depolarization on the reflected beam by transferring its electric field from horizontal to the vertical such that the polarization ratio is degraded with a randomized haze. The porosity of AAO surface broadens from 12.6% to 19.3% when increasing the bias voltage from 40 to 60 V during the second-step of the electro-chemical anodization process, which essentially adjusts the polarization ratio under TM-mode and TE-mode incidences raise from 0.31 to 0.35 and from 0.32 to 0.48, respectively. The depolarized haze of the nano-porous AAO film is correlated with its porosity and aspect ratio controlled by the pore size and etched depth of the AAO. Under TM-mode incidence, the simulated polarization ratio increases from 0.35 to 0.38, which correlates well with experimental results. In contrast, the experiment result slightly deviates from the theoretical prediction as the TE-mode field interacts more surface area than the TM-mode field does. Such a nano-porous AAO exhibits tunable depolarized haze via the control porosity and aspect ratio, which is particularly suitable to serve as the catalytic buffer for synthesizing the hydrophobic and hazed solar energy converters.

  18. Reproductive periodicity and steroid hormone profiles in the sex-changing coral-reef fish, Plectropomus leopardus

    NASA Astrophysics Data System (ADS)

    Frisch, A. J.; McCormick, M. I.; Pankhurst, N. W.

    2007-03-01

    The reproductive biology of coral trout, Plectropomus leopardus, from the Great Barrier Reef (Australia) was investigated by correlating gonadal condition with plasma levels of gonadal steroids. Female fish were found to be regressed from mid-summer to early spring, after which rapid and cyclical increases in gonado-somatic index ( I G), maximum oocyte diameter (MOD) and plasma concentrations of estradiol-17β and testosterone were detected. Male fish, in contrast, commenced recrudescence slightly earlier in winter and responded with less dramatic increases in both I G and plasma concentrations of testosterone and 11-ketotestosterone. The mode of oocyte development was multiple group-synchronous, and cyclical fluctuations in reproductive parameters ( I G, MOD and gonadal steroid concentrations) were synchronized with new-moon lunar phases. It is likely, therefore, that individual P. leopardus have the capacity to spawn on multiple occasions, with lunar periodicity. However, evidence suggests that early bouts of reproduction may be more important in terms of reproductive investment than subsequent bouts later in the same season. It is concluded that patterns of gametogenesis and steroidogenesis in P. leopardus are similar to the patterns displayed by other tropical groupers, suggesting that management regimes and propagation protocols developed for these fishes may also be appropriate for use with P. leopardus.

  19. High-Power Microwave Transmission and Mode Conversion Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less

  20. Are eikonal quasinormal modes linked to the unstable circular null geodesics?

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Stuchlík, Z.

    2017-08-01

    In Cardoso et al. [6] it was claimed that quasinormal modes which any stationary, spherically symmetric and asymptotically flat black hole emits in the eikonal regime are determined by the parameters of the circular null geodesic: the real and imaginary parts of the quasinormal mode are multiples of the frequency and instability timescale of the circular null geodesics respectively. We shall consider asymptotically flat black hole in the Einstein-Lovelock theory, find analytical expressions for gravitational quasinormal modes in the eikonal regime and analyze the null geodesics. Comparison of the both phenomena shows that the expected link between the null geodesics and quasinormal modes is violated in the Einstein-Lovelock theory. Nevertheless, the correspondence exists for a number of other cases and here we formulate its actual limits.

  1. Comparative Transcriptional Analysis of Asexual and Sexual Morphs Reveals Possible Mechanisms in Reproductive Polyphenism of the Cotton Aphid

    PubMed Central

    Jiang, Feng; Guo, Wei; Zhou, Shu-Tang

    2014-01-01

    Aphids, the destructive insect pests in the agriculture, horticulture and forestry, are capable of reproducing asexually and sexually upon environmental change. However, the molecular basis of aphid reproductive mode switch remains an enigma. Here we report a comparative analysis of differential gene expression profiling among parthenogenetic females, gynoparae and sexual females of the cotton aphid Aphis gossypii, using the RNA-seq approach with next-generation sequencing platforms, followed by RT-qPCR. At the cutoff criteria of fold change ≥2 and P<0.01, we identified 741 up- and 879 down-regulated genes in gynoparae versus parthenogenetic females, 2,101 up- and 2,210 down-regulated genes in sexual females compared to gynoparae, and 1,614 up- and 2,238 down-regulated genes in sexual females relative to parthenogenetic females. Gene ontology category and KEGG pathway analysis suggest the involvement of differentially expressed genes in multiple cellular signaling pathways into the reproductive mode transition, including phototransduction, cuticle composition, progesterone-mediated oocyte maturation and endocrine regulation. This study forms a basis for deciphering the molecular mechanisms underlying the shift from asexual to sexual reproduction in the cotton aphid. It also provides valuable resources for future studies on this host-alternating aphid species, and the insight into the understanding of reproductive mode plasticity in different aphid species. PMID:24915491

  2. Discovery of DPP IV inhibitors by pharmacophore modeling and QSAR analysis followed by in silico screening.

    PubMed

    Al-Masri, Ihab M; Mohammad, Mohammad K; Taha, Mutasem O

    2008-11-01

    Dipeptidyl peptidase IV (DPP IV) deactivates the natural hypoglycemic incretin hormones. Inhibition of this enzyme should restore glucose homeostasis in diabetic patients making it an attractive target for the development of new antidiabetic drugs. With this in mind, the pharmacophoric space of DPP IV was explored using a set of 358 known inhibitors. Thereafter, genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of pharmacophoric models and physicochemical descriptors that yield selfconsistent and predictive quantitative structure-activity relationships (QSAR) (r(2) (287)=0.74, F-statistic=44.5, r(2) (BS)=0.74, r(2) (LOO)=0.69, r(2) (PRESS) against 71 external testing inhibitors=0.51). Two orthogonal pharmacophores (of cross-correlation r(2)=0.23) emerged in the QSAR equation suggesting the existence of at least two distinct binding modes accessible to ligands within the DPP IV binding pocket. Docking experiments supported the binding modes suggested by QSAR/pharmacophore analyses. The validity of the QSAR equation and the associated pharmacophore models were established by the identification of new low-micromolar anti-DPP IV leads retrieved by in silico screening. One of our interesting potent anti-DPP IV hits is the fluoroquinolone gemifloxacin (IC(50)=1.12 muM). The fact that gemifloxacin was recently reported to potently inhibit the prodiabetic target glycogen synthase kinase 3beta (GSK-3beta) suggests that gemifloxacin is an excellent lead for the development of novel dual antidiabetic inhibitors against DPP IV and GSK-3beta.

  3. The nonlinear interaction of convection modes in a box of a saturated porous medium

    NASA Astrophysics Data System (ADS)

    Florio, Brendan J.; Bassom, Andrew P.; Fowkes, Neville; Judd, Kevin; Stemler, Thomas

    2015-05-01

    A plethora of convection modes may occur within a confined box of porous medium when the associated dimensionless Rayleigh number R is above some critical value dependent on the geometry. In many cases the crucial Rayleigh number Rc for onset is different for each mode, and in practice the mode with the lowest associated Rc is likely to be the dominant one. For particular sizes of box, however, it is possible for multiple modes (typically three) to share a common Rc. For box shapes close to these special geometries the modes interact and compete nonlinearly near the onset of convection. Here this mechanism is explored and it is shown that generically the dynamics of the competition takes on one of two possible structures. A specific example of each is described, while the general properties of the system enables us to compare our results with some previous calculations for particular box dimensions.

  4. Programmable multimode quantum networks

    PubMed Central

    Armstrong, Seiji; Morizur, Jean-François; Janousek, Jiri; Hage, Boris; Treps, Nicolas; Lam, Ping Koy; Bachor, Hans-A.

    2012-01-01

    Entanglement between large numbers of quantum modes is the quintessential resource for future technologies such as the quantum internet. Conventionally, the generation of multimode entanglement in optics requires complex layouts of beamsplitters and phase shifters in order to transform the input modes into entangled modes. Here we report the highly versatile and efficient generation of various multimode entangled states with the ability to switch between different linear optics networks in real time. By defining our modes to be combinations of different spatial regions of one beam, we may use just one pair of multi-pixel detectors in order to measure multiple entangled modes. We programme virtual networks that are fully equivalent to the physical linear optics networks they are emulating. We present results for N=2 up to N=8 entangled modes here, including N=2, 3, 4 cluster states. Our approach introduces the highly sought after attributes of flexibility and scalability to multimode entanglement. PMID:22929783

  5. Multipole surface plasmons in metallic nanohole arrays

    NASA Astrophysics Data System (ADS)

    Nishida, Munehiro; Hatakenaka, Noriyuki; Kadoya, Yutaka

    2015-06-01

    The quasibound electromagnetic modes for the arrays of nanoholes perforated in thin gold film are analyzed both numerically by the rigorous coupled wave analysis (RCWA) method and semianalytically by the coupled mode method. It is shown that when the size of the nanohole occupies a large portion of the unit cell, the surface plasmon polaritons (SPPs) at both sides of the film are combined by the higher order waveguide modes of the holes to produce multipole surface plasmons: coupled surface plasmon modes with multipole texture on the elec-tric field distributions. Further, it is revealed that the multipole texture either enhances or suppresses the couplings between SPPs depending on their diffraction orders and also causes band inversion and reconstruction in the coupled SPP band structure. Due to the multipole nature of the quasibound modes, multiple dark modes coexist to produce a variety of Fano resonance structures on the transmission and reflection spectra.

  6. High levels of multiple infections, recombination and horizontal transmission of Wolbachia in the Andricus mukaigawae (Hymenoptera; Cynipidae) communities.

    PubMed

    Yang, Xiao-Hui; Zhu, Dao-Hong; Liu, Zhiwei; Zhao, Ling; Su, Cheng-Yuan

    2013-01-01

    Wolbachia are maternally inherited endosymbiotic bacteria of arthropods and nematodes. In arthropods, they manipulate the reproduction of their hosts to facilitate their own spread in host populations, causing cytoplasmic incompatibility, parthenogenesis induction, feminization of genetic males and male-killing. In this study, we investigated Wolbachia infection and studied wsp (Wolbachia surface protein) sequences in three wasp species associated with the unisexual galls of A. mukaigawae with the aim of determining the transmission mode and the reason for multiple infections of Wolbachia. Frequency of Wolbachia infected populations for A. mukaigawae, Synergus japonicus (inquiline), and Torymus sp. (parasitoid) was 75%, 100%, and 100%, respectively. Multiple Wolbachia infections were detected in A. mukaigawae and S. japonicus, with 5 and 8 Wolbachia strains, respectively. The two host species shared 5 Wolbachia strains and were infected by identical strains in several locations, indicating horizontal transmission of Wolbachia. The transmission potentially takes place through gall tissues, which the larvae of both wasps feed on. Furthermore, three recombination events of Wolbachia were observed: the strains W8, W2 and W6 apparently have derived from W3 and W5a, W6 and W7, W4 and W9, respectively. W8 and W2 and their respective parental strains were detected in S. japonicus. W6 was detected with only one parent (W4) in S. japonicus; W9 was detected in Torymus sp., suggesting horizontal transmission between hosts and parasitoids. In conclusion, our research supports earlier studies that horizontal transmission of Wolbachia, a symbiont of the Rickettsiales order, may be plant-mediated or take place between hosts and parasitoids. Our research provides novel molecular evidence for multiple recombination events of Wolbachia in gall wasp communities. We suggest that genomic recombination and potential plant-mediated horizontal transmission may be attributable to the high levels of multiple Wolbachia infections observed in A. mukaigawae and S. japonicus.

  7. FLEXAN (version 2.0) user's guide

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.

    1989-01-01

    The FLEXAN (Flexible Animation) computer program, Version 2.0 is described. FLEXAN animates 3-D wireframe structural dynamics on the Evans and Sutherland PS300 graphics workstation with a VAX/VMS host computer. Animation options include: unconstrained vibrational modes, mode time histories (multiple modes), delta time histories (modal and/or nonmodal deformations), color time histories (elements of the structure change colors through time), and rotational time histories (parts of the structure rotate through time). Concurrent color, mode, delta, and rotation, time history animations are supported. FLEXAN does not model structures or calculate the dynamics of structures; it only animates data from other computer programs. FLEXAN was developed to aid in the study of the structural dynamics of spacecraft.

  8. Multi-Mode Excitation and Data Reduction for Fatigue Crack Characterization in Conducting Plates

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Fulton, J. P.; Clendenin, C. G.

    1992-01-01

    Advances in the technique of fatigue crack characterization by resonant modal analysis have been achieved through a new excitation mechanism and data reduction of multiple resonance modes. A non-contacting electromagnetic device is used to apply a time varying Lorentz force to thin conducting sheets. The frequency and direction of the Lorentz force are such that resonance modes are generated in the test sample. By comparing the change in frequency between distinct resonant modes of a sample, detecting and sizing of fatigue cracks are achieved and frequency shifts caused by boundary condition changes can be discriminated against. Finite element modeling has been performed to verify experimental results.

  9. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, Eric P.

    1994-01-01

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.

  10. Pedagogic Strategies Supporting the Use of Synchronous Audiographic Conferencing: A Review of the Literature

    ERIC Educational Resources Information Center

    de Freitas, Sara; Neumann, Tim

    2009-01-01

    Synchronous audiographic conferencing (SAC) refers to a combination of technologies for real-time communication and interaction using multiple media and modes. With an increasing institutional uptake of SAC, users require an understanding of the complex interrelations of multiple media in learning scenarios in order to support pedagogic-driven…

  11. Guidelines on ergonomic aspects of control rooms

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.; Bocast, A. K.; Stewart, L. J.

    1983-01-01

    The anthropometry, workstation design, and environmental design of control rooms are outlined. The automated interface and VDTs and displays and various modes of communication between the system and the human operator using VDTs are discussed. The man in the loop is examined, the single controller single task framework and multiple controller multiple tasks issues are considered.

  12. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.

    PubMed

    Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H

    2016-11-22

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.

  13. Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators

    PubMed Central

    Lee, Ki Young; Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2017-01-01

    We propose a free-space electro-optic transmission modulator based on multiple p-n-junction semiconductor subwavelength gratings. The proposed device operates with a high-Q guided-mode resonance undergoing electro-optic resonance shift due to direct electrical control. Using rigorous electrical and optical modeling methods, we theoretically demonstrate a modulation depth of 84%, on-state efficiency 85%, and on-off extinction ratio of 19 dB at 1,550 nm wavelength under electrical control signals within a favorably low bias voltage range from −4 V to +1 V. This functionality operates in the transmission mode and sustainable in the high-speed operation regime up to a 10-GHz-scale modulation bandwidth in principle. The theoretical performance prediction is remarkably advantageous over plasmonic tunable metasurfaces in the power-efficiency and absolute modulation-depth aspects. Therefore, further experimental study is of great interest for creating practical-level metasurface components in various application areas. PMID:28417962

  14. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface

    PubMed Central

    Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.

    2016-01-01

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053

  15. Using Monte Carlo Ray tracing to Understand the Vibrational Response of UN as Measured by Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, J. Y. Y.; Aczel, A. A.; Abernathy, D. L.; Nagler, S. E.; Buyers, W. J. L.; Granroth, G. E.

    2014-03-01

    Recently neutron spectroscopy measurements, using the ARCS and SEQUOIA time-of-flight chopper spectrometers, observed an extended series of equally spaced modes in UN that are well described by quantum harmonic oscillator behavior of the N atoms. Additional contributions to the scattering are also observed. Monte Carlo ray tracing simulations with various sample kernels have allowed us to distinguish between the response from the N oscillator scattering, contributions that arise from the U partial phonon density of states (PDOS), and all forms of multiple scattering. These simulations confirm that multiple scattering contributes an ~ Q -independent background to the spectrum at the oscillator mode positions. All three of the aforementioned contributions are necessary to accurately model the experimental data. These simulations were also used to compare the T dependence of the oscillator modes in SEQUOIA data to that predicted by the binary solid model. This work was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  16. Analysis and Design of Bridgeless Switched Mode Power Supply for Computers

    NASA Astrophysics Data System (ADS)

    Singh, S.; Bhuvaneswari, G.; Singh, B.

    2014-09-01

    Switched mode power supplies (SMPSs) used in computers need multiple isolated and stiffly regulated output dc voltages with different current ratings. These isolated multiple output dc voltages are obtained by using a multi-winding high frequency transformer (HFT). A half-bridge dc-dc converter is used here for obtaining different isolated and well regulated dc voltages. In the front end, non-isolated Single Ended Primary Inductance Converters (SEPICs) are added to improve the power quality in terms of low input current harmonics and high power factor (PF). Two non-isolated SEPICs are connected in a way to completely eliminate the need of single-phase diode-bridge rectifier at the front end. Output dc voltages at both the non-isolated and isolated stages are controlled and regulated separately for power quality improvement. A voltage mode control approach is used in the non-isolated SEPIC stage for simple and effective control whereas average current control is used in the second isolated stage.

  17. A boundary condition for layer to level ocean model interaction

    NASA Astrophysics Data System (ADS)

    Mask, A.; O'Brien, J.; Preller, R.

    2003-04-01

    A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.

  18. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating.

    PubMed

    Groby, J-P; Duclos, A; Dazel, O; Boeckx, L; Lauriks, W

    2011-05-01

    The acoustic properties of a periodic rigid frame porous layer with multiple irregularities in the rigid backing and embedded rigid circular inclusions are investigated theoretically and numerically. The theoretical representation of the sound field in the structure is obtained using a combination of multipole method that accounts for the periodic inclusions and multi-modal method that accounts for the multiple irregularities of the rigid backing. The theoretical model is validated against a finite element method. The predictions show that the acoustic response of this structure exhibits quasi-total, high absorption peaks at low frequencies which are below the frequency of the quarter-wavelength resonance typical for a flat homogeneous porous layer backed by a rigid plate. This result is explained by excitation of additional modes in the porous layer and by a complex interaction between various acoustic modes. These modes relate to the resonances associated with the presence of a profiled rigid backing and rigid inclusions in the porous layer.

  19. Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology

    PubMed Central

    Hsin, Kun-Yi; Ghosh, Samik; Kitano, Hiroaki

    2013-01-01

    Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational prediction approach that combines two elaborately built machine learning systems and multiple molecular docking tools to assess binding potentials of a test compound against proteins involved in a complex molecular network. One of the two machine learning systems is a re-scoring function to evaluate binding modes generated by docking tools. The second is a binding mode selection function to identify the most predictive binding mode. Results from a series of benchmark validations and a case study show that this approach surpasses the prediction reliability of other techniques and that it also identifies either primary or off-targets of kinase inhibitors. Integrating this approach with molecular network maps makes it possible to address drug safety issues by comprehensively investigating network-dependent effects of a drug or drug candidate. PMID:24391846

  20. Entanglement enhancement in multimode integrated circuits

    NASA Astrophysics Data System (ADS)

    Léger, Zacharie M.; Brodutch, Aharon; Helmy, Amr S.

    2018-06-01

    The faithful distribution of entanglement in continuous-variable systems is essential to many quantum information protocols. As such, entanglement distillation and enhancement schemes are a cornerstone of many applications. The photon subtraction scheme offers enhancement with a relatively simple setup and has been studied in various scenarios. Motivated by recent advances in integrated optics, particularly the ability to build stable multimode interferometers with squeezed input states, a multimodal extension to the enhancement via photon subtraction protocol is studied. States generated with multiple squeezed input states, rather than a single input source, are shown to be more sensitive to the enhancement protocol, leading to increased entanglement at the output. Numerical results show the gain in entanglement is not monotonic with the number of modes or the degree of squeezing in the additional modes. Consequently, the advantage due to having multiple squeezed input states can be maximized when the number of modes is still relatively small (e.g., four). The requirement for additional squeezing is within the current realm of implementation, making this scheme achievable with present technologies.

  1. Label-free, single-object sensing with a microring resonator: FDTD simulation.

    PubMed

    Nguyen, Dan T; Norwood, Robert A

    2013-01-14

    Label-free, single-object sensing with a microring resonator is investigated numerically using the finite difference time-domain (FDTD) method. A pulse with ultra-wide bandwidth that spans over several resonant modes of the ring and of the sensing object is used for simulation, enabling a single-shot simulation of the microring sensing. The FDTD simulation not only can describe the circulation of the light in a whispering-gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important factors of the sensing system, such as scattering and radiation losses. The FDTD results show that the simulation can yield a resonant shift of the WGM cavity modes. Furthermore, it can also extract eigenmodes of the sensing object, and therefore information from deep inside the object. The simulation method is not only suitable for a single object (single molecule, nano-, micro-scale particle) but can be extended to the problem of multiple objects as well.

  2. Application of Multiple Imputation for Missing Values in Three-Way Three-Mode Multi-Environment Trial Data

    PubMed Central

    Tian, Ting; McLachlan, Geoffrey J.; Dieters, Mark J.; Basford, Kaye E.

    2015-01-01

    It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances. PMID:26689369

  3. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    PubMed

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  4. Application of Multiple Imputation for Missing Values in Three-Way Three-Mode Multi-Environment Trial Data.

    PubMed

    Tian, Ting; McLachlan, Geoffrey J; Dieters, Mark J; Basford, Kaye E

    2015-01-01

    It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances.

  5. Objective consensus from decision trees.

    PubMed

    Putora, Paul Martin; Panje, Cedric M; Papachristofilou, Alexandros; Dal Pra, Alan; Hundsberger, Thomas; Plasswilm, Ludwig

    2014-12-05

    Consensus-based approaches provide an alternative to evidence-based decision making, especially in situations where high-level evidence is limited. Our aim was to demonstrate a novel source of information, objective consensus based on recommendations in decision tree format from multiple sources. Based on nine sample recommendations in decision tree format a representative analysis was performed. The most common (mode) recommendations for each eventuality (each permutation of parameters) were determined. The same procedure was applied to real clinical recommendations for primary radiotherapy for prostate cancer. Data was collected from 16 radiation oncology centres, converted into decision tree format and analyzed in order to determine the objective consensus. Based on information from multiple sources in decision tree format, treatment recommendations can be assessed for every parameter combination. An objective consensus can be determined by means of mode recommendations without compromise or confrontation among the parties. In the clinical example involving prostate cancer therapy, three parameters were used with two cut-off values each (Gleason score, PSA, T-stage) resulting in a total of 27 possible combinations per decision tree. Despite significant variations among the recommendations, a mode recommendation could be found for specific combinations of parameters. Recommendations represented as decision trees can serve as a basis for objective consensus among multiple parties.

  6. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    PubMed

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  7. a Search for Nucleon Decay with Multiple Muon Decays

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas James

    A search was made for nucleon decays which result in multiple delayed muon decays using the HPW (Harvard -Purdue-Wisconsin) water Cerenkov detector. The HPW detector consists of 680 metric tons of purified water instrumented with 704 five-inch photomultiplier tubes. The phototubes are situated on a volume array with a lattice spacing of approximately one meter, and the inside walls of the detector are lined with mirrors. This combination of mirrors and a volume array of phototubes gives the HPW detector a low trigger energy threshold and a high muon decay detection efficiency. The detector is surrounded by wire chambers to provide an active shield, and is located at a depth of 1500 meters-of-water-equivalent in the Silver King Mine in Park City, Utah. The entire HPW data set, consisting of 17.2 million events collec- ted during 282 live days between May 1983 and October 1984, was analyzed. No contained events with multiple muon decays were found in a 180 ton fiducial volume. This is consistent with the background rate from neutrino interactions, which is expected to be 0.7 (+OR-) 0.2 events. The calculated lower lifetime limit for the decay mode p (--->) (mu)('+)(mu)('+)(mu)('-) is: (tau)/B.R. = 1 x 10('31) years (90% C.L.). Limits are calculated for ten other proton decay modes and five bound neutron decay modes, most of which are around 4 x 10('30) years (90% C.L.). No previous studies have reported results from direct searches for eight of these modes.

  8. Users manual for program SSFREQ intermediate mode stability curves: Developed for use on a PC computer

    NASA Technical Reports Server (NTRS)

    Armstrong, Wilbur C.

    1992-01-01

    The piping in a liquid rocket can assume complex configurations due to multiple tanks, multiple engines, and structures that must be piped around. The capability to handle some of these complex configurations have been incorporated into the SSFREQ code. The capability to modify the input on line has been implemented. The configurations allowed include multiple tanks, multiple engines, the splitting of a pipe into equal segments going to different (or the same) engines. This program will handle the following type elements: straight pipes, bends, inline accumulators, tuned stub accumulators, Helmholtz resonators, parallel resonators, pumps, split pipes, multiple tanks, and multiple engines.

  9. System and method for optimal load and source scheduling in context aware homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Pradeep; Foslien Graber, Wendy; Mangsuli, Purnaprajna R.

    A controller for controlling energy consumption in a home includes a constraints engine to define variables for multiple appliances in the home corresponding to various home modes and persona of an occupant of the home. A modeling engine models multiple paths of energy utilization of the multiple appliances to place the home into a desired state from a current context. An optimal scheduler receives the multiple paths of energy utilization and generates a schedule as a function of the multiple paths and a selected persona to place the home in a desired state.

  10. Modes and emergent time scales of embayed beach dynamics

    NASA Astrophysics Data System (ADS)

    Ratliff, Katherine M.; Murray, A. Brad

    2014-10-01

    In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.

  11. Excitation of Non-Axisymmetric g-MOde Oscillations by Corotation Resonance in Thin Relativistic Disks

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2002-02-01

    Various modes of oscillations are trapped in the inner region of geometrically thin relativistic disks. Among these oscillations, non-axisymmetric g-mode oscillations have been less studied compared with other modes of oscillations. The modes are, however, interesting since a corotation resonance appears in the trapped region. We mathematically examine whether the modes can be excited by the effects of the corotation resonance. This examination is made under an assumption that the inner and outer Lindblad radii are sufficiently separated in the opposite directions from the corotation radius. The results of analyses suggest that the waves are excited by the corotation resonance. The presence of the excitation suggests that the non-axisymmetric trapped g-mode oscillations are one of possible candidates for the quasi-periodic oscillations of a few hundred to kHz observed in some X-ray sources.

  12. Disconnections kinks and competing modes in shear-coupled grain boundary migration

    NASA Astrophysics Data System (ADS)

    Combe, N.; Mompiou, F.; Legros, M.

    2016-01-01

    The response of small-grained metals to mechanical stress is investigated by a theoretical study of the elementary mechanisms occurring during the shear-coupled migration of grain boundaries (GB). Investigating a model Σ 17 (410 ) GB in a copper bicrystal, both <110 > and <100 > GB migration modes are studied focusing on both the structural and energetic characteristics. The minimum energy paths of these shear-coupled GB migrations are computed using the nudge elastic band method. For both modes, the GB migration occurs through the nucleation and motion of disconnections. However, the atomic mechanisms of both modes qualitatively differ: While the <110 > mode presents no metastable state, the <100 > mode shows multiple metastable states, some of them evidencing some kinks along the disconnection lines. Disconnection kinks nucleation and motion activation energies are evaluated. Besides, the activation energies of the <100 > mode are smaller than those of the <110 > one except for very high stresses. These results significantly improve our knowledge of the GB migration mechanisms and the conditions under which they occur.

  13. An integrated parity-time symmetric wavelength-tunable single-mode microring laser

    PubMed Central

    Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping

    2017-01-01

    Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784

  14. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    PubMed

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  15. An integrated parity-time symmetric wavelength-tunable single-mode microring laser.

    PubMed

    Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping

    2017-05-12

    Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.

  16. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies

    PubMed Central

    Malm, Christer; Nyberg, Pernilla; Engström, Marianne; Sjödin, Bertil; Lenkei, Rodica; Ekblom, Björn; Lundberg, Ingrid

    2000-01-01

    A role of the immune system in muscular adaptation to physical exercise has been suggested but data from controlled human studies are scarce. The present study investigated immunological events in human blood and skeletal muscle by immunohistochemistry and flow cytometry after eccentric cycling exercise and multiple biopsies. Immunohistochemical detection of neutrophil- (CD11b, CD15), macrophage- (CD163), satellite cell- (CD56) and IL-1β-specific antigens increased similarly in human skeletal muscle after eccentric cycling exercise together with multiple muscle biopsies, or multiple biopsies only. Changes in immunological variables in blood and muscle were related, and monocytes and natural killer (NK) cells appeared to have governing functions over immunological events in human skeletal muscle. Delayed onset muscle soreness, serum creatine kinase activity and C-reactive protein concentration were not related to leukocyte infiltration in human skeletal muscle. Eccentric cycling and/or muscle biopsies did not result in T cell infiltration in human skeletal muscle. Modes of stress other than eccentric cycling should therefore be evaluated as a myositis model in human. Based on results from the present study, and in the light of previously published data, it appears plausible that muscular adaptation to physical exercise occurs without preceding muscle inflammation. Nevertheless, leukocytes seem important for repair, regeneration and adaptation of human skeletal muscle. PMID:11080266

  17. Multi-resonant plasmonic nanodome arrays for label-free biosensing applications

    NASA Astrophysics Data System (ADS)

    Choi, Charles J.; Semancik, Steve

    2013-08-01

    The characteristics and utility of plasmonic nanodome arrays capable of supporting multiple resonance modes are described. A low-cost, large-area replica molding process is used to produce, on flexible plastic substrates, two-dimensional periodic arrays of cylinders that are subsequently coated with SiO2 and Ag thin films to form dome-shaped structures, with 14 nm spacing between the features, in a precise and reproducible fashion. Three distinct optical resonance modes, a grating diffraction mode and two localized surface plasmon resonance (LSPR) modes, are observed experimentally and confirmed by finite-difference-time-domain (FDTD) modeling which is used to calculate the electromagnetic field distribution of each resonance around the nanodome array structure. Each optical mode is characterized by measuring sensitivity to bulk refractive index changes and to surface effects, which are examined using stacked polyelectrolyte layers. The utility of the plasmonic nanodome array as a functional interface for biosensing applications is demonstrated by performing a bioassay to measure the binding affinity constant between protein A and human immunoglobulin G (IgG) as a model system. The nanoreplica molding process presented in this work allows for simple, inexpensive, high-throughput fabrication of nanoscale plasmonic structures over a large surface area (120 × 120 mm2) without the requirement for high resolution lithography or additional processes such as etching or liftoff. The availability of multiple resonant modes, each with different optical properties, allows the nanodome array surface to address a wide range of biosensing problems with various target analytes of different sizes and configurations.

  18. Millimeter wave radar system on a rotating platform for combined search and track functionality with SAR imaging

    NASA Astrophysics Data System (ADS)

    Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter

    2014-10-01

    Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, Mahmoud A., E-mail: mmahmoud@gatech.edu

    The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. Themore » calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.« less

  20. Fused-fiber-based 3-dB mode insensitive power splitters for few-mode optical fiber networks

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Huang, Xiaoshan; Wang, Jianping

    2017-11-01

    We propose a 3-dB mode insensitive power splitter (MIPS) capable of broadcasting and combining optical signals. It is fabricated with two identical few-mode fibers (FMFs) by a heating and pulling technique. The mode-dependent power transfer characteristic as a function of pulling length is investigated. For exploiting its application, we experimentally demonstrate both FMF-based transmissive and reflective star couplers consisting of multiple 3-dB mode insensitive power splitters, which perform broadcasting and routing signals in few-mode optical fiber networks such as mode-division multiplexing (MDM) local area networks using star topology. For experimental demonstration, optical on-off keying signals at 10 Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. Measured bit error ratio results show reasonable power penalties. It is found that a reflective star coupler in MDM networks can reduce half of the total amount of required fibers comparing to that of a transmissive star coupler. This MIPS is more efficient, more reliable, more flexible, and more cost-effective for future expansion and application in few-mode optical fiber networks.

  1. Acceptance of Cloud Services in Face-to-Face Computer-Supported Collaborative Learning: A Comparison between Single-User Mode and Multi-User Mode

    ERIC Educational Resources Information Center

    Wang, Chia-Sui; Huang, Yong-Ming

    2016-01-01

    Face-to-face computer-supported collaborative learning (CSCL) was used extensively to facilitate learning in classrooms. Cloud services not only allow a single user to edit a document, but they also enable multiple users to simultaneously edit a shared document. However, few researchers have compared student acceptance of such services in…

  2. Using Multiple Youth Programming Delivery Modes to Drive the Development of Social Capital in 4-H Participants

    ERIC Educational Resources Information Center

    Kinsey, Sharon

    2013-01-01

    This article focuses on how 4-H youth participants are building social capital, or connections among individuals and community members, through their 4-H experiences. These experiences can be seen through the lens of such 4-H delivery modes as the traditional 4-H club, after-school programs, and school enrichment programs. In addition, other…

  3. Modeling of mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Shaulov, Gary

    This thesis presents the results of analytical and numerical simulations of mode-locked fiber lasers and their components: multiple quantum well saturable absorbers and nonlinear optical loop mirrors. Due to the growing interest in fiber lasers as a compact source of ultrashort pulses there is a need to develop a full understanding of the advantages and limitations of the different mode-locked techniques. The mode-locked fiber laser study performed in this thesis can be used to optimize the design and performance of mode-locked fiber laser systems. A group at Air Force Research Laboratory reported a fiber laser mode-locked by multiple quantum well (MQW) saturable absorber with stable pulses generated as short as 2 ps [21]. The laser cavity incorporates a chirped fiber Bragg grating as a dispersion element; our analysis showed that the laser operates in the soliton regime. Soliton perturbation theory was applied and conditions for stable pulse operation were investigated. Properties of MQW saturable absorbers and their effect on cavity dynamics were studied and the cases of fast and slow saturable absorbers were considered. Analytical and numerical results are in a good agreement with experimental data. In the case of the laser cavity with a regular fiber Bragg grating, the properties of MQW saturable absorbers dominate the cavity dynamics. It was shown that despite the lack of a soliton shaping mechanism, there is a regime in parameter space where stable or quasi-stable solitary waves solutions can exist. Further a novel technique of fiber laser mode-locking by nonlinear polarization rotation was proposed. Polarization rotation of vector solitons was simulated in a birefringent nonlinear optical loop mirror (NOLM) and the switching characteristics of this device was studied. It was shown that saturable absorber-like action of NOLM allows mode-locked operation of the two fiber laser designs. Laser cavity designs were proposed: figure-eight-type and sigma-type cavity.

  4. Changes over time in population level transport satisfaction and mode of travel: A 13 year repeat cross-sectional study, UK.

    PubMed

    Olsen, Jonathan R; Macdonald, Laura; Ellaway, Anne

    2017-09-01

    The aim of the study was to examine changes over time in satisfaction with usual transport mode, explore individual and area level characteristics as mediators in the likelihood of transport satisfaction, and whether any changes in transport satisfaction varied by these factors over time. Adults from West Central Scotland, United Kingdom, who participated at both waves of the repeat cross-sectional 'Transport, Health and Well-being Study' conducted in 1997 (n=2735) and 2010 (n=2024) were assessed. Individuals completed a detailed postal questionnaire at both time points including self-rated satisfaction with usual transport mode (using a seven point scale subsequently dichotomised to a binary outcome of satisfied (1-2) and other (3-7)). Participants reported usual transport mode for travel to various destinations. A multilevel logistic regression model was used and individuals were nested within areas (c. 4000 population). At the 2010 sweep, two thirds (n=1345) of individuals were satisfied with their transport choice. Those with fair/poor health were less satisfied with their usual transport compared to those in better health (Odds Ratio (OR) 0.49, p<0.001). Access to a car was associated with overall transport satisfaction (OR 2.63, p<0.001) and the effect of deprivation on transport satisfaction was mitigated when adjusted by household car access. Transport satisfaction increased more from 1997 to 2010 for retired individuals compared to those in employment (OR 1.40, p=0.032), and for those who travelled by public transport (OR 2.39, p=0.005) and using multiple modes (OR 2.19, p<0.001) compared to those who travelled by car. The proportion of those who travelled using public transport, active modes or by multiple mode increased journey satisfaction over time at a greater rate than those who travelled by car, highlighting that continued efforts should be made to promote these more active transport modes which have potential to impact on health.

  5. Quantitative assessment of scatter correction techniques incorporated in next generation dual-source computed tomography

    NASA Astrophysics Data System (ADS)

    Mobberley, Sean David

    Accurate, cross-scanner assessment of in-vivo air density used to quantitatively assess amount and distribution of emphysema in COPD subjects has remained elusive. Hounsfield units (HU) within tracheal air can be considerably more positive than -1000 HU. With the advent of new dual-source scanners which employ dedicated scatter correction techniques, it is of interest to evaluate how the quantitative measures of lung density compare between dual-source and single-source scan modes. This study has sought to characterize in-vivo and phantom-based air metrics using dual-energy computed tomography technology where the nature of the technology has required adjustments to scatter correction. Anesthetized ovine (N=6), swine (N=13: more human-like rib cage shape), lung phantom and a thoracic phantom were studied using a dual-source MDCT scanner (Siemens Definition Flash. Multiple dual-source dual-energy (DSDE) and single-source (SS) scans taken at different energy levels and scan settings were acquired for direct quantitative comparison. Density histograms were evaluated for the lung, tracheal, water and blood segments. Image data were obtained at 80, 100, 120, and 140 kVp in the SS mode (B35f kernel) and at 80, 100, 140, and 140-Sn (tin filtered) kVp in the DSDE mode (B35f and D30f kernels), in addition to variations in dose, rotation time, and pitch. To minimize the effect of cross-scatter, the phantom scans in the DSDE mode was obtained by reducing the tube current of one of the tubes to its minimum (near zero) value. When using image data obtained in the DSDE mode, the median HU values in the tracheal regions of all animals and the phantom were consistently closer to -1000 HU regardless of reconstruction kernel (chapters 3 and 4). Similarly, HU values of water and blood were consistently closer to their nominal values of 0 HU and 55 HU respectively. When using image data obtained in the SS mode the air CT numbers demonstrated a consistent positive shift of up to 35 HU with respect to the nominal -1000 HU value. In vivo data demonstrated considerable variability in tracheal, influenced by local anatomy with SS mode scanning while tracheal air was more consistent with DSDE imaging. Scatter effects in the lung parenchyma differed from adjacent tracheal measures. In summary, data suggest that enhanced scatter correction serves to provide more accurate CT lung density measures sought to quantitatively assess the presence and distribution of emphysema in COPD subjects. Data further suggest that CT images, acquired without adequate scatter correction, cannot be corrected by linear algorithms given the variability in tracheal air HU values and the independent scatter effects on lung parenchyma.

  6. Advanced specialty fiber designs for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a deviation from circular fiber outer shape may be an effective method to mitigate HOM loss reduction from coherent reflection from fiber outer boundary. In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. We will show that all-solid photonic bandgap fibers with effective mode area of 920microm2 can be made with excellent higher order mode suppression. We then demonstrate a 50microm-core-diameter Yb-doped all-solid photonic bandgap fiber laser. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. It is well known that incorporation of additional smaller cores in the cladding can be used to resonantly out-couple higher-order modes from a main core to suppress higher-order-mode propagation in the main core. Using a novel design with multiple coupled smaller cores in the cladding, we further scaled up the mode area and have successfully demonstrated a single-mode photonic bandgap fiber with record effective mode area of 2650microm2. Detailed numeric studies have been conducted for multiple cladding designs. For the optimal designs, the simulated minimum higher-order-mode losses are well over two orders of magnitudes higher than that of fundamental mode when expressed in dBs. We have also experimentally validated one of the designs. M 2<1.08 across the transmission band was demonstrated. Lowering quantum defect heating is another approach to mitigate mode instability. Highly-efficient high-power fiber lasers operating at wavelength below 1020nm are critical for tandem-pumping in >10kW fiber lasers to provide high pump brightness and low thermal loading. Using an ytterbium-doped-phosphosilicate double-clad leakage-channel fiber with 50microm core and 420microm cladding, we have achieved 70% optical-to-optical efficiency at 1018nm. The much larger cladding than those in previous reports demonstrates the much lower required pump brightness, a key for efficient kW operation. The demonstrated 1018nm fiber laser has ASE suppression of 41dB. This is higher than previous reports and further demonstrates the advantages of the fiber used. Limiting factors to efficiency are also systematically studied.

  7. Didactical suggestion for a Dynamic Hybrid Intelligent e-Learning Environment (DHILE) applying the PENTHA ID Model

    NASA Astrophysics Data System (ADS)

    dall'Acqua, Luisa

    2011-08-01

    The teleology of our research is to propose a solution to the request of "innovative, creative teaching", proposing a methodology to educate creative Students in a society characterized by multiple reference points and hyper dynamic knowledge, continuously subject to reviews and discussions. We apply a multi-prospective Instructional Design Model (PENTHA ID Model), defined and developed by our research group, which adopts a hybrid pedagogical approach, consisting of elements of didactical connectivism intertwined with aspects of social constructivism and enactivism. The contribution proposes an e-course structure and approach, applying the theoretical design principles of the above mentioned ID Model, describing methods, techniques, technologies and assessment criteria for the definition of lesson modes in an e-course.

  8. Linear stability analysis of scramjet unstart

    NASA Astrophysics Data System (ADS)

    Jang, Ik; Nichols, Joseph; Moin, Parviz

    2015-11-01

    We investigate the bifurcation structure of unstart and restart events in a dual-mode scramjet using the Reynolds-averaged Navier-Stokes equations. The scramjet of interest (HyShot II, Laurence et al., AIAA2011-2310) operates at a free-stream Mach number of approximately 8, and the length of the combustor chamber is 300mm. A heat-release model is applied to mimic the combustion process. Pseudo-arclength continuation with Newton-Raphson iteration is used to calculate multiple solution branches. Stability analysis based on linearized dynamics about the solution curves reveals a metric that optimally forewarns unstart. By combining direct and adjoint eigenmodes, structural sensitivity analysis suggests strategies for unstart mitigation, including changing the isolator length. This work is supported by DOE/NNSA and AFOSR.

  9. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    NASA Technical Reports Server (NTRS)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  10. Introduction to the Solid State Based Interior Lighting System for ISS

    NASA Technical Reports Server (NTRS)

    Maida, James C.

    2014-01-01

    Solid state lighting assembly (SSLA) were designed to replace general luminaire assembly (GLA) for both general interior illumination and improved circadian rhythm through melatonin control using multiple spectrums. To accomplish these goals, the light is design to operate in 3 modes with 3 distinct spectrum. The different spectrum provide control of the blue portion of the light which impacts melatonin production in humans which impacts sleep. General mode is a 4500K "neutral" light spectrum intended to the be the default mode of operation for day to day operations. Pre-sleep mode is a 2700K "warm" light spectrum intended to be used by the crew at the end of the work day. Phase-shift mode is a 6500K "cool" light spectrum intended to be used for altering the crew's sleep patterns.

  11. Coherence area profiling in multi-spatial-mode squeezed states

    DOE PAGES

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less

  12. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.

    PubMed

    Hung, Yun-Ting; Huang, Chen-Bin; Huang, Jer-Shing

    2012-08-27

    To enable multiple functions of plasmonic nanocircuits, it is of key importance to control the propagation properties and the modal distribution of the guided optical modes such that their impedance matches to that of nearby quantum systems and desired light-matter interaction can be achieved. Here, we present efficient mode converters for manipulating guided modes on a plasmonic two-wire transmission line. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. Instead of pure optical interference, strong near-field coupling of surface plasmons results in great momentum splitting and modal profile variation. We theoretically demonstrate control over nanoantenna radiation and discuss the possibility to enhance nanoscale light-matter interaction. The proposed converter may find applications in surface plasmon amplification, index sensing and enhanced nanoscale spectroscopy.

  13. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal)

    PubMed Central

    Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John

    2017-01-01

    Background Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. Methodology/Principal findings WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Conclusions/Significance Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control. PMID:28742096

  14. Coexistence of multiple bifurcation modes in memristive diode-bridge-based canonical Chua's circuit

    NASA Astrophysics Data System (ADS)

    Bao, Bocheng; Xu, Li; Wu, Zhimin; Chen, Mo; Wu, Huagan

    2018-07-01

    Based on a memristive diode bridge cascaded with series resistor and inductor filter, a modified memristive canonical Chua's circuit is presented in this paper. With the modelling of the memristive circuit, a normalised system model is built. Stability analyses of the equilibrium points are performed and bifurcation behaviours are investigated by numerical simulations and hardware experiments. Most extraordinary in the memristive circuit is that within a parameter region, coexisting phenomenon of multiple bifurcation modes is emerged under six sets of different initial values, resulting in the coexistence of four sets of topologically different and disconnected attractors. These coexisting attractors are easily captured by repeatedly switching on and off the circuit power supplies, which well verify the numerical simulations.

  15. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser.

    PubMed

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-19

    Dual-comb lasers simultaneously generating asynchronous ultrashort pulses could be an intriguing alternative to the current dual-laser comb source. When generated through a common light path, the low common-mode noises and good coherence between the pulse trains could be realized. Here we demonstrate the completely common-path, unidirectional dual-comb lasing using a carbon nanotube saturable absorber with additional pulse narrowing and broadening mechanisms. The interactions between multiple soliton formation mechanisms result in bifurcation into unusual two-pulse states with pulses of four-fold bandwidth difference and tens-of-Hz repetition rate difference. Coherence between the pulses is verified by the asynchronous cross-sampling and dual-comb spectroscopy measurements.

  16. Using input command pre-shaping to suppress multiple mode vibration

    NASA Technical Reports Server (NTRS)

    Hyde, James M.; Seering, Warren P.

    1990-01-01

    Spacecraft, space-borne robotic systems, and manufacturing equipment often utilize lightweight materials and configurations that give rise to vibration problems. Prior research has led to the development of input command pre-shapers that can significantly reduce residual vibration. These shapers exhibit marked insensitivity to errors in natural frequency estimates and can be combined to minimize vibration at more than one frequency. This paper presents a method for the development of multiple mode input shapers which are simpler to implement than previous designs and produce smaller system response delays. The new technique involves the solution of a group of simultaneous non-linear impulse constraint equations. The resulting shapers were tested on a model of MACE, an MIT/NASA experimental flexible structure.

  17. Dynamic modal estimation using instrumental variables

    NASA Technical Reports Server (NTRS)

    Salzwedel, H.

    1980-01-01

    A method to determine the modes of dynamical systems is described. The inputs and outputs of a system are Fourier transformed and averaged to reduce the error level. An instrumental variable method that estimates modal parameters from multiple correlations between responses of single input, multiple output systems is applied to estimate aircraft, spacecraft, and off-shore platform modal parameters.

  18. Design of Multiple Bolted Connections for Laminated Veneer Lumber

    Treesearch

    Borjen Yeh; Douglas Rammer; Jeff Linville

    2014-01-01

    The design of multiple bolted connections in accordance with Appendix E of the National Design Specification for Wood Construction (NDS) has incorporated provisions for evaluating localized member failure modes of row and group tear-out when the connections are closely spaced. Originally based on structural glued laminated timber (glulam) members made with all L1...

  19. Multiple ligand-binding modes in bacterial R67 dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Alonso, Hernán; Gillies, Malcolm B.; Cummins, Peter L.; Bliznyuk, Andrey A.; Gready, Jill E.

    2005-03-01

    R67 dihydrofolate reductase (DHFR), a bacterial plasmid-encoded enzyme associated with resistance to the drug trimethoprim, shows neither sequence nor structural homology with the chromosomal DHFR. It presents a highly symmetrical toroidal structure, where four identical monomers contribute to the unique central active-site pore. Two reactants (dihydrofolate, DHF), two cofactors (NADPH) or one of each (R67•DHF•NADPH) can be found simultaneously within the active site, the last one being the reactive ternary complex. As the positioning of the ligands has proven elusive to empirical determination, we addressed the problem from a theoretical perspective. Several potential structures of the ternary complex were generated using the docking programs AutoDock and FlexX. The variability among the final poses, many of which conformed to experimental data, prompted us to perform a comparative scoring analysis and molecular dynamics simulations to assess the stability of the complexes. Analysis of ligand-ligand and ligand-protein interactions along the 4 ns trajectories of eight different structures allowed us to identify important inter-ligand contacts and key protein residues. Our results, combined with published empirical data, clearly suggest that multipe binding modes of the ligands are possible within R67 DHFR. While the pterin ring of DHF and the nicotinamide ring of NADPH assume a stacked endo-conformation at the centre of the pore, probably assisted by V66, Q67 and I68, the tails of the molecules extend towards opposite ends of the cavity, adopting multiple configurations in a solvent rich-environment where hydrogen-bond interactions with K32 and Y69 may play important roles.

  20. Processing mode during repetitive thinking in socially anxious individuals: evidence for a maladaptive experiential mode.

    PubMed

    Wong, Quincy J J; Moulds, Michelle L

    2012-12-01

    Evidence from the depression literature suggests that an analytical processing mode adopted during repetitive thinking leads to maladaptive outcomes relative to an experiential processing mode. To date, in socially anxious individuals, the impact of processing mode during repetitive thinking related to an actual social-evaluative situation has not been investigated. We thus tested whether an analytical processing mode would be maladaptive relative to an experiential processing mode during anticipatory processing and post-event rumination. High and low socially anxious participants were induced to engage in either an analytical or experiential processing mode during: (a) anticipatory processing before performing a speech (Experiment 1; N = 94), or (b) post-event rumination after performing a speech (Experiment 2; N = 74). Mood, cognition, and behavioural measures were employed to examine the effects of processing mode. For high socially anxious participants, the modes had a similar effect on self-reported anxiety during both anticipatory processing and post-event rumination. Unexpectedly, relative to the analytical mode, the experiential mode led to stronger high standard and conditional beliefs during anticipatory processing, and stronger unconditional beliefs during post-event rumination. These experiments are the first to investigate processing mode during anticipatory processing and post-event rumination. Hence, these results are novel and will need to be replicated. These findings suggest that an experiential processing mode is maladaptive relative to an analytical processing mode during repetitive thinking characteristic of socially anxious individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.

Top