Sample records for suit ventilation loop

  1. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  2. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  3. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    NASA Technical Reports Server (NTRS)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  4. Crew Survivability After a Rapid Cabin Depressurization Event

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2012-01-01

    Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design-to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporarily incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder expectations to validate the functionality being imposed; (2) review/refinement of concept of operations to establish the potential triggers for such an event and define the response of the spacecraft and suit ventilation loop pressure control systems; and (3) assessment of system capabilities with respect to structural capability and pressure control.

  5. Utilizing a Suited Manikin Test Apparatus and Spacesuit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike

    2014-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  6. Design and Development of a Regenerative Blower for EVA Suit Ventilation

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.

    2011-01-01

    Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.

  7. Requirements and Sizing Investigation for Constellation Space Suit Portable Life Support System Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn

    2010-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  8. Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Rivera, Fatonia L.

    2010-01-01

    NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.

  9. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  10. Results of the Trace Contaminant Control Needs Evaluation and Sizing Study for Space Suit Life Support Development

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.

    2009-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for CSSE pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  11. Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; McCormick, John; Paul, Heather L.; Jennings, Mallory A.

    2012-01-01

    Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. The blower includes a custom-designed motor that has significantly improved its efficiency. We have measured the blower s head/flow performance and power consumption under conditions that simulate both the normal and buddy mode operating points. We have operated the blower for TBD hours and demonstrated safe operation in an oxygen test loop at prototypical pressures. We also demonstrated operation with simulated lunar dust.

  12. Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Paul, Heather L.; Jennings, Mallory A.

    2011-01-01

    Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in a future space suit Portable Life Support Systems (PLSS). The blower assembly includes a custom-designed motor that has significantly improved in efficiency during this development effort. The blower was tested at both nominal and buddy mode operating points and head/flow performance and power consumption were measured. The blower was operated for over 1000 hours to demonstrate safe operation in an oxygen test loop at prototypical pressures. In addition, the blower demonstrated operation with the introduction of simulated lunar dust.

  13. High Performance Mars Liquid Cooling and Ventilation Garment Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald; Whitlock, David; Conger, Bruce

    2015-01-01

    EVA space suit mobility in micro-gravity is enough of a challenge and in the gravity of Mars, improvements in mobility will enable the suited crew member to efficiently complete EVA objectives. The idea proposed is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area in order to free up the arms and legs by removing the liquid tubes currently used in the ISS EVA suit in the limbs. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased to provide the entire liquid cooling requirement and increase mobility by freeing up the arms and legs. Additional potential benefits of this approach include reduced LCVG mass, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development.

  14. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination with implications for the future development of other PLSS models in V-SUIT.

  15. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  16. Space Suit Portable Life Support System (PLSS) 2.0 Human-in-the-Loop (HITL) Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    The space suit Portable Life Support System (PLSS) 2.0 represents the second integrated prototype developed and tested to mature a design that uses advanced technologies to reduce consumables, improve robustness, and provide additional capabilities over the current state of the art. PLSS 2.0 was developed in 2012, with extensive functional evaluations and system performance testing through mid-2014. In late 2014, PLSS 2.0 was integrated with the Mark III space suit in an ambient laboratory environment to facilitate manned testing, designated PLSS 2.0 Human-in-the-Loop (HITL) testing, in which the PLSS prototype performed the primary life support functions, including suit pressure regulation, ventilation, carbon dioxide control, and cooling of the test subject and PLSS avionics. The intent of this testing was to obtain subjective test subject feedback regarding qualitative aspects of PLSS 2.0 performance such as thermal comfort, sounds, smells, and suit pressure fluctuations due to the cycling carbon dioxide removal system, as well as to collect PLSS performance data over a range of human metabolic rates from 500-3000 Btu/hr. Between October 27 and December 18, 2014, nineteen two-hour simulated EVA test points were conducted in which suited test subjects walked on a treadmill to achieve a target metabolic rate. Six test subjects simulated nominal and emergency EVA conditions with varied test parameters including metabolic rate profile, carbon dioxide removal control mode, cooling water temperature, and Liquid Cooling and Ventilation Garment (state of the art or prototype). The nineteen test points achieved more than 60 hours of test time, with 36 hours accounting for simulated EVA time. The PLSS 2.0 test article performed nominally throughout the test series, confirming design intentions for the advanced PLSS. Test subjects' subjective feedback provided valuable insight into thermal comfort and perceptions of suit pressure fluctuations that will influence future advanced PLSS design and testing strategies.

  17. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  18. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo

    2008-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  19. Development of a Fan for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff

    2010-01-01

    NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.

  20. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    PubMed

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  1. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, amanda; Paul, Heather L.

    2010-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA eliminates the consumable requirement related to the use of LiOH canisters and the mission duration limitations imposed by MetOx system. The concept minimizes the amount of consumable to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. Results indicate that sorbent regeneration can be accomplished by applying a 14 C temperature swing, while regenerating at 13 torr (well above the Martian atmospheric pressure), withstanding over 1,000 adsorption/regeneration cycles. This paper presents the latest results from these sorbent and system development efforts.

  2. ECLSS and Thermal Systems Integration Challenges Across the Constellation Architecture

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn

    2010-01-01

    As the Constellation Program completes its initial capability Preliminary Design Review milestone for the Initial Capability phase, systems engineering of the Environmental Control and Life Support (ECLS) and Thermal Systems for the various architecture elements has progressed from the requirements to design phase. As designs have matured for the Ares, Orion, Ground Systems, and Extravehicular (EVA) System, a number of integration challenges have arisen requiring analyses and trades, resulting in changes to the design and/or requirements. This paper will address some of the key integration issues and results, including the Orion-to-Ares shared compartment venting and purging, Orion-to-EVA suit loop integration issues with the suit system, Orion-to-ISS and Orion-to-Altair intermodule ventilation, and Orion and Ground Systems impacts from post-landing environments.

  3. High Performance Torso Cooling Garment

    NASA Technical Reports Server (NTRS)

    Conger, Bruce

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, reduced LCVG mass, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  4. High Performance Torso Cooling Garment

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Makinen, Janice

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  5. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  6. 19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION GARMENT (LCVG), SUIT GLOVES, WAIST INSERTS, UPPER AND LOWER ARMS (LEFT, FROM TOP TO BOTTOM), LOWER TORSO ASSEMBLIES (LTA) (MIDDLE RIGHT TO LOWER RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  7. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  8. Protective garment ventilation system

    NASA Technical Reports Server (NTRS)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  9. Design and Evaluation of a Ventilated Garment for Use in Temperatures up to 200°C

    PubMed Central

    Crockford, G. W.; Hellon, R. F.

    1964-01-01

    The protection of personnel against high air and radiant temperatures is a problem that has been confronting industry for many years now, and for many industrial situations it still has not been solved. The experiments reported here were intended to determine the most suitable form of insulation for a hot entry suit for use primarily in furnace wrecking where mean radiant temperatures of 200°C. are met and where heat-reflecting garments are unsuitable due to the rapid deterioration of the reflecting surface. From a preliminary consideration of the problem it was concluded that a ventilated garment was required and that conventional ventilated garments in which air is induced to flow parallel to the body surfaces (axial ventilation) are basically unsound in design as the air is not utilized for the transfer of heat in the most efficient manner. A new form of ventilation was therefore developed in which air flows out through a permeable suit (radial ventilation). This form of ventilation produces what is called dynamic insulation, and this method of insulation, when compared with two alternative methods on a physical model, was found to be very effective. The model experiments were confirmed by comparative trials of three ventilated suits each using one of three different forms of insulation thought to be suitable for use in heat-protective clothing. Physiological measurements made on the subjects and physical measurement made on the suits confirmed that dynamic insulation is the most suitable insulation for a hot entry suit for furnace wrecking. With the air flows used in these experiments, dynamic insulation had a thermal conductance one-fifth that of conventional static insulation, and sweat losses and oral temperature rises were reduced by one-third and one-half respectively. PMID:14180476

  10. Adaptive support ventilation: State of the art review

    PubMed Central

    Fernández, Jaime; Miguelena, Dayra; Mulett, Hernando; Godoy, Javier; Martinón-Torres, Federico

    2013-01-01

    Mechanical ventilation is one of the most commonly applied interventions in intensive care units. Despite its life-saving role, it can be a risky procedure for the patient if not applied appropriately. To decrease risks, new ventilator modes continue to be developed in an attempt to improve patient outcomes. Advances in ventilator modes include closed-loop systems that facilitate ventilator manipulation of variables based on measured respiratory parameters. Adaptive support ventilation (ASV) is a positive pressure mode of mechanical ventilation that is closed-loop controlled, and automatically adjust based on the patient's requirements. In order to deliver safe and appropriate patient care, clinicians need to achieve a thorough understanding of this mode, including its effects on underlying respiratory mechanics. This article will discuss ASV while emphasizing appropriate ventilator settings, their advantages and disadvantages, their particular effects on oxygenation and ventilation, and the monitoring priorities for clinicians. PMID:23833471

  11. Closed loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes.

    PubMed

    Arnal, Jean-Michel; Garnero, Aude; Novotni, Dominik; Corno, Gaëlle; Donati, Stéphane-Yannis; Demory, Didier; Quintana, Gabrielle; Ducros, Laurent; Laubscher, Thomas; Durand-Gasselin, Jacques

    2018-01-01

    There is an equipoise regarding closed-loop ventilation modes and the ability to reduce workload for providers. On one hand some settings are managed by the ventilator but on another hand the automatic mode introduces new settings for the user. This randomized controlled trial compared the number of manual ventilator setting changes between a full closed loop ventilation and oxygenation mode (INTELLiVENT-ASV®) and conventional ventilation modes (volume assist control and pressure support) in Intensive Care Unit (ICU) patients. The secondary endpoints were to compare the number of arterial blood gas analysis, the sedation dose and the user acceptance. Sixty subjects with an expected duration of mechanical ventilation of at least 48 hours were randomized to be ventilated using INTELLiVENT-ASV® or conventional modes with a protocolized weaning. All manual ventilator setting changes were recorded continuously from inclusion to successful extubation or death. Arterial blood gases were performed upon decision of the clinician in charge. User acceptance score was assessed for nurses and physicians once daily using a Likert Scale. The number of manual ventilator setting changes per 24 h-period per subject was lower in INTELLiVENT-ASV® as compared to conventional ventilation group (5 [4-7] versus 10 [7-17]) manuals settings per subject per day [P<0.001]). The number of arterial blood gas analysis and the sedation doses were not significantly different between the groups. Nurses and physicians reported that INTELLiVENT-ASV® was significantly easier to use as compared to conventional ventilation (P<0.001 for nurses and P<0.01 for physicians). For mechanically ventilated ICU patients, INTELLiVENT-ASV® significantly reduces the number of manual ventilator setting changes with the same number of arterial blood gas analysis and sedation dose, and is easier to use for the caregivers as compared to conventional ventilation modes.

  12. Evaluation of the Ventilated Flight Suit for OV-1 (Mohawk) Crews.

    DTIC Science & Technology

    the ’ greenhouse effect ’ increases the temperature in the cockpit to approximately 100F. These temperatures create undesirable operating conditions and decrease the overall crew efficiency. The ventilated flight suit system was evaluated by means of questionnaires and interviews of the commanders, aviators, and maintenance personnel to determine its operational

  13. A dual closed-loop control system for mechanical ventilation.

    PubMed

    Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael

    2004-04-01

    Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.

  14. ORION Environmental Control and Life Support Systems Suit Loop and Pressure Control Analysis

    NASA Technical Reports Server (NTRS)

    Eckhardt, Brad; Conger, Bruce; Stambaugh, Imelda C.

    2015-01-01

    Under NASA's ORION Multi-Purpose Crew Vehicle (MPCV) Environmental Control and Life Support System (ECLSS) Project at Johnson Space Center's (JSC), the Crew and Thermal Systems Division has developed performance models of the air system using Thermal Desktop/FloCAD. The Thermal Desktop model includes an Air Revitalization System (ARS Loop), a Suit Loop, a Cabin Loop, and Pressure Control System (PCS) for supplying make-up gas (N2 and O2) to the Cabin and Suit Loop. The ARS and PCS are designed to maintain air quality at acceptable O2, CO2 and humidity levels as well as internal pressures in the vehicle Cabin and during suited operations. This effort required development of a suite of Thermal Desktop Orion ECLSS models to address the need for various simulation capabilities regarding ECLSS performance. An initial highly detailed model of the ARS Loop was developed in order to simulate rapid pressure transients (water hammer effects) within the ARS Loop caused by events such as cycling of the Pressurized Swing Adsorption (PSA) Beds and required high temporal resolution (small time steps) in the model during simulation. A second ECLSS model was developed to simulate events which occur over longer periods of time (over 30 minutes) where O2, CO2 and humidity levels, as well as internal pressures needed to be monitored in the cabin and for suited operations. Stand-alone models of the PCS and the Negative Pressure relief Valve (NPRV) were developed to study thermal effects within the PCS during emergency scenarios (Cabin Leak) and cabin pressurization during vehicle re-entry into Earth's atmosphere. Results from the Orion ECLSS models were used during Orion Delta-PDR (July, 2014) to address Key Design Requirements (KDR's) for Suit Loop operations for multiple mission scenarios.

  15. Design and Development of a High Altitude Protective Assembly.

    DTIC Science & Technology

    CWU-3/P ANTIGRAVITY SUITS, CWU-12/P ANTIEXPOSURE SUITS, HAPA(HIGH ALTITUDE PROTECTIVE ASSEMBLIES), *HIGH ALTITUDE PROTECTIVE ASSEMBLIES, LPU-3/P LIFE PRESERVERS, MA-3 VENTILATION GARMENTS, PARACHUTE HARNESSES, PARTIAL PRESSURE SUITS.

  16. Efforts and Programs of the Department of Defense Relating to the Prevention, Mitigation, and Treatment of Blast Injuries

    DTIC Science & Technology

    2007-01-01

    Combat Critical Care Engineering: Evaluation of Closed Loop Control of Ventilation and Oxygen Flow During Resuscitation in the Compensatory and...Decompensatory Phases of Hemorrhagic Shock: This effort evaluated closed loop control of ventilation and oxygen flow during resuscitation in the...Cerebral Injury Volume, Cerebral Edema, Cerebral Blood Flow and Reactivity, and Histopathology in a Rat Model of Traumatic Brain Injury and Hemorrhagic

  17. Development Specification for the FN-323/324, Oxygen Ventilation Loop Fan Assembly

    NASA Technical Reports Server (NTRS)

    Ralston, Russell; Campbell, Colin

    2017-01-01

    This specification establishes the requirements for design, performance, safety, and manufacture of the FN-323/324, Oxygen Ventilation Loop Fan Assembly as part of the Advanced EMU (AEMU) Portable Life Support System (PLSS). Fan development for the advanced Portable Life Support System (PLSS) began in 2009 with the development of Fan 1.0. This fan was used in PLSS 2.0 for circulation of the ventilation loop gas. Fan 2.0 was delivered in 2015 and will be used in the PLSS 2.5 Live Loads test series. This fan used the same motor as Fan 1.0, but had a larger volute and impeller in hopes of achieving lower speeds. The next iteration of the advanced PLSS fan is the subject of the requirements contained within this document, and will be used with the PLSS 2.5 -302 configuration.

  18. Spool Valve for Switching Air Flows Between Two Beds

    NASA Technical Reports Server (NTRS)

    Dean, W. Clark

    2005-01-01

    U.S. Patent 6,142,151 describes a dual-bed ventilation system for a space suit, with emphasis on a multiport spool valve that switches air flows between two chemical beds that adsorb carbon dioxide and water vapor. The valve is used to alternately make the air flow through one bed while exposing the other bed to the outer-space environment to regenerate that bed through vacuum desorption of CO2 and H2O. Oxygen flowing from a supply tank is routed through a pair of periodically switched solenoid valves to drive the spool valve in a reciprocating motion. The spool valve equalizes the pressures of air in the beds and the volumes of air flowing into and out of the beds during the alternations between the adsorption and desorption phases, in such a manner that the volume of air that must be vented to outer space is half of what it would be in the absence of pressure equalization. Oxygen that has been used to actuate the spool valve in its reciprocating motion is released into the ventilation loop to replenish air lost to vacuum during the previous desorption phase of the operating cycle.

  19. The Orion Atmosphere Revitalization Technology in Manned Ambient Pressure Space Suit Testing

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System (ARS) for moderate duration missions of the Orion Multipurpose Crew Vehicle. The Orion ARS is designed to support not only open-cabin operations, tests of which have been reported in previous years at this conference, but also closed space suit-loop operations. A previous low-pressure suit loop test was performed with a human metabolic simulator, and humans wearing emergency masks were tested in a closed-loop configuration before that. In late 2011, simple tests were performed in a suit-loop configuration with human test subjects in prototype space suits with prototype umbilicals at ambient and two slightly above-ambient pressures. Trace contaminant filters and a prototype blower were also incorporated into the test rig. This paper discusses the performance of the ARS technology in that 2011 test configuration.

  20. Design and calibration of a high-frequency oscillatory ventilator.

    PubMed

    Simon, B A; Mitzner, W

    1991-02-01

    High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].

  1. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  2. Accidental entrapment of an endo-bronchial blocker tip by a surgical stapler during selective ventilation for lung lobectomy in a dog.

    PubMed

    Levionnois, Olivier L; Bergadano, Alessandra; Schatzmann, Urs

    2006-01-01

    To describe the use of an endobronchial blocker (EBB) and to perform selective ventilation during pulmonary lobe resection via thoracotomy in a dog and report its accidental stapling in the resection site. Clinical case report. One female dog with a suspected abscess or neoplasia of the right caudal pulmonary lobe. One-lung ventilation was performed using a wire-guided EBB to seal the contaminated parenchyma and facilitate surgical access. The affected lung parenchyma was resected and the resection site was closed with staples. Lobar resection was performed successfully, but the loop of the EBB guide wire was inadvertently entrapped in the staple line of the lobectomy. Staples were removed to release the wire loop, and the resulting air leak caused loss of ventilation control until the parenchyma was re-sealed. We recommend removing the wire guide associate with the EBB after successful lung separation to avoid accidents that could have life-threatening consequences if not recognized. One-lung ventilation is useful to isolate healthy parenchyma from diseased parenchyma during lobectomy. Anesthesiologists and surgeons need to be aware of the potential complications associated with use of EBB.

  3. Thermal Performance Testing of EMU and CSAFE Liquid Cooling Garments

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Hakam, Mark; Radford, Tamara

    2013-01-01

    Future exploration missions require the development of a new liquid cooling garment (LCG) that offers greater system reliability, is more comfortable, and maximizes thermal performance. To inform the development of a future LCG a thermal performance test was conducted to evaluate three factors: (1) the effect of the thermal comfort undergarment (TCU) on tactile and thermal comfort, (2) the comparable thermal performance of an CSAFE developed engineering evaluation unit (EEU) LCG, which uses a commercial-off-the-shelf (COTS) wicking garment as the base, and (3) the performance of a torso or upper body only LCG configuration to evaluate a proposed auxiliary loop configuration. To evaluate the thermal performance of each configuration a metabolic suit test was conducted, utilizing suited subjects to generate metabolic heat by walking on a treadmill at various speeds. Three (3) test subjects of similar height and weight produced a metabolic load for five tests by either resting (300-600 BTU/hr), walking at a slow pace (1200 BTU/hr), and walking at a brisk pace (2200 BTU/hr). During the test, data was collected that would allow us to track the heat transfer to the LCG and ventilation system to determine the thermal performance of the LCG configurations. Four different test configurations were tested, with one configuration tested twice. The test results show that the CSAFE EEU LCG and EMU LCG had comparable performance. The testing also showed that an auxiliary loop LCG, sized similarly to the shirt-only configuration, should provide adequate cooling for contingency scenarios. Finally, the testing showed the previous analysis that assumed a UA deterioration from the TCU was too conservative and the TCU may prove to be acceptable for future development with additional analysis and testing.

  4. Optimal ventilation of the anesthetized pediatric patient.

    PubMed

    Feldman, Jeffrey M

    2015-01-01

    Mechanical ventilation of the pediatric patient is challenging because small changes in delivered volume can be a significant fraction of the intended tidal volume. Anesthesia ventilators have traditionally been poorly suited to delivering small tidal volumes accurately, and pressure-controlled ventilation has become used commonly when caring for pediatric patients. Modern anesthesia ventilators are designed to deliver small volumes accurately to the patient's airway by compensating for the compliance of the breathing system and delivering tidal volume independent of fresh gas flow. These technology advances provide the opportunity to implement a lung-protective ventilation strategy in the operating room based upon control of tidal volume. This review will describe the capabilities of the modern anesthesia ventilator and the current understanding of lung-protective ventilation. An optimal approach to mechanical ventilation for the pediatric patient is described, emphasizing the importance of using bedside monitors to optimize the ventilation strategy for the individual patient.

  5. Preparing cytotoxic agents in an isolator.

    PubMed

    Favier, M; Hansel, S; Bressolle, F

    1993-11-01

    The design of an isolator and its use by an oncology satellite pharmacy for preparing cytotoxic drugs are described. The isolator (Iso Concept, Boulogne, France) is a totally enclosed ventilated biological-safety cabinet of class III polyvinyl chloride (PVC) with positive air pressure, a half-suit with a rotating seal, and attached neoprene gloves. There are three work-stations, one for the half-suit and two along one side of the isolator. The ventilation and air filtration system consists of one entry pipe with a full ventilation-filtration box fitted with one prefilter, one blower, one ball valve, one high-efficiency particulate air (HEPA) filter, one airtight nipple connected to an automatic sterilizer, alarms, and one exhaust pipe protected by a HEPA filter. The air lock consists of a rigid, transparent Plexiglas pass-through. The chamber is sterilized with heated compressed air mixed with 3.5% peracetic acid. Maintenance includes regular changing of gloves and HEPA filters; checking of the integrity of the PVC, half-suit, and gloves; and washing and decontamination procedures. Preparation of cytotoxics is planned in advance with prescription data and manufacturing sheets. In the half-suit, a pharmacy technician reads the label, supervises preparation of the sterile admixture, and writes a label. The operators on the side of the unit read the manufacturing sheet and prepare the dose identified by the label.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Helmet Exhalation Capture System (HECS) Sizing Evaluation for an Advanced Space Suit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Waguespack, Glenn M.; Paul, Thomas H.; Conger, Bruce C.

    2008-01-01

    As part of NASA s initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet and return gases pass over the astronaut s body to be extracted at the astronaut s wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline. The HECS configurations incorporate the use of full contact masks or non-contact masks to reduce flow requirements within the PLSS ventilation subsystem. The primary scope of this study was to compare the alternatives based on mass and volume considerations; however other design issues were also briefly investigated. This paper summarizes the results of this sizing analysis task.

  7. Physiological effects of a new racing suit for elite cross country skiers.

    PubMed

    Sperlich, B; Holmberg, H C

    2011-12-01

    The aim of this paper was to investigate the influence of the new cross country racing suit, designed for the Olympic Winter Games in Vancouver 2010, on cardio-respiratory, thermoregulatory and perceptual responses. Six elite cross country skiers (29±6 years, peak oxygen uptake 73.2±6.9 mL·min-1·kg-1) performed two exercise bouts wearing either the 2009 or the 2010 racing suit. Bouts consisted of incremental testing on roller skis (12 km·h-1 at 5° inclination; 11 km·h-1 at 6° inclination and 12 km·h-1at 8° inclination for six minutes). During increasing intensities, significantly lower values were found for oxygen uptake, minute ventilation, RER and heart rate when wearing the new suit compared to the old one (P<0.05; effect sizes: 0.21-4.00). Core temperature was lower with the new suit during steps 2 and 3 (P<0.05, effect size: 1.22-1.27). Also, mean skin temperature was lower during the last increment (P<0.05, effect size: 0.87). The new 2010 racing suit, developed specifically for the Olympic Winter Games in Vancouver 2010, demonstrated lower values for oxygen uptake, minute ventilation, heart rate, skin and core temperature, ratings of thermal and sweat sensation when compared to the 2009 racing suit.

  8. Modeling Of Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly For Prototype Design

    NASA Technical Reports Server (NTRS)

    Bower, Chad E.; Padilla, Sebastian A.; Iacomini, Christie S.; Paul, Heather L.

    2010-01-01

    This paper describes modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly: a sorbent bed, a sublimation (cooling) heat exchanger (SHX), and a condensing icing (warming) heat exchanger (CIHX). The primary function of the MTSA, removing carbon dioxide from a space suit Portable Life Support System (PLSS) ventilation loop, is performed via the sorbent bed. The CIHX is used to heat the sorbent bed for desorption and to remove moisture from the ventilation loop while the SHX is alternately employed to cool the sorbent bed via sublimation of a spray of water at low pressure to prepare the reconditioned bed for the next cycle. This paper describes subsystem heat a mass transfer modeling methodologies relevant to the description of the MTSA subassembly in Thermal Desktop and SINDA/FLUINT. Several areas of particular modeling interest are discussed. In the sorbent bed, capture of the translating carbon dioxide (CO2) front and associated local energy and mass balance in both adsorbing and desorbing modes is covered. The CIHX poses particular challenges for modeling in SINDA/FLUINT as accounting for solids states in fluid submodels are not a native capability. Methods for capturing phase change and latent heat of ice as well as the transport properties across a layer of low density accreted frost are developed. This extended modeling capacity is applicable to temperatures greater than 258 K. To extend applicability to the minimum device temperature of 235 K, a method for a mapped transformation of temperatures from below the limit temperatures to some value above is given along with descriptions for associated material property transformations and the resulting impacts to total heat and mass transfer. Similar considerations are given for the SHX along with functional relationships for areal sublimation rates as limited by flow mechanics in t1he outlet duct.

  9. Packing the PLSS

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory

    2011-01-01

    NASA Engineers design spacesuits for ultimate protection and functionality in the extreme environment of space. The spacesuit is often referred to as a "personal spacecraft" because it provides the astronaut with everything he or she needs to survive and work in space outside of the vehicle or habitat. The systems within the spacesuit include the pressure garment system (PGS), the Portable Life Support System (PLSS), and the power, avionics, and software (PAS) system. These elements are necessary to protect crewmembers and allow them to work effectively in the pressure and temperature extremes of space environments. Development of the spacesuit system is necessary to support future human extravehicular exploration activities to Lunar, Martian, microgravity, and possibly other space destinations. Although all the systems that makeup the space suit are important, the PLSS is one of the most complex. The PLSS provides the life support needed by the astronaut and consists of the oxygen (O2) subsystem, ventilation subsystem, and thermal control subsystem. Within each subsystem, there are many different components, a few of which are explained as follows. The oxygen tanks hold the oxygen that the crewmember uses to breath and pressurizes the suit. The primary oxygen tank is responsible during normal operations and the secondary oxygen tank kicks on in the case of an emergency. The Rapid Cycle Amine (RCA) canister is used to remove the carbon dioxide (CO2) and extra humidity in the crewmember's ventilation/breathing gas. The fan moves the oxygen around the suit. Suit Water Membrane Evaporator (SWME) is used within the thermal control loop to cool the water that is used to maintain a comfortable temperature for both the crew member and the other equipment inside the suit. Another component is the battery, which supplies the power needed to operate all these and the many other pieces. The battery is one of the biggest and heavies components within the PLSS. These are just a few of the components that encompass the PLSS. Each component has a weight and a certain volume that the NASA Engineers must take into account when building the PLSS, because the weight and volumes affect the crewmembers center of gravity (CG). [See the Notes Section for the link to an Apollo video that demonstrates the issues some of the crewmembers had picking up tools and dealing with center of gravity/tools on the surface of the Moon.] In this activity, students will simulate engineering design techniques that NASA Engineers and Designers are currently implementing to configuring the components within the PLSS. Through testing, students will consider the comfort, mobility, and center of gravity for their test subjects and how that changes after adjusting the placement of their simulated PLSS components.

  10. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  11. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  12. Preoperational test report, recirculation ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  13. Propellant Handler's Ensemble (PHE) Aka Self-Contained Atmospheric Protective Ensemble (SCAPE), Ventilator Improvement Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The overall objective for this project is to evaluate two candidate alternatives for the existing Propellant Handler's Ensemble (PHE) escape ventilator. The new candidate ventilators use newer technology with similar quantities of air at approximately half the weight of the current ventilator. Ventilators are typically used to ingress/egress a hazardous work area when hard line air is provided at the work area but the hose is not long enough to get the operator to and from the staging area to the work area. The intent of this test is to verify that the new ventilators perform as well as or better than the current ventilators in maintaining proper oxygen (O2) and carbon dioxide (CO2) levels in the PHE during a typical use for the rated time period (10 minutes). We will evaluate two new units comparing them to the existing unit. Subjects will wear the Category I version of the Propellant Handler's Ensemble with the rear suit pouch snapped.

  14. Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients.

    PubMed

    Voskrebenzev, Andreas; Gutberlet, Marcel; Klimeš, Filip; Kaireit, Till F; Schönfeld, Christian; Rotärmel, Alexander; Wacker, Frank; Vogel-Claussen, Jens

    2018-04-01

    In this feasibility study, a phase-resolved functional lung imaging postprocessing method for extraction of dynamic perfusion (Q) and ventilation (V) parameters using a conventional 1H lung MRI Fourier decomposition acquisition is introduced. Time series of coronal gradient-echo MR images with a temporal resolution of 288 to 324 ms of two healthy volunteers, one patient with chronic thromboembolic hypertension, one patient with cystic fibrosis, and one patient with chronic obstructive pulmonary disease were acquired at 1.5 T. Using a sine model to estimate cardiac and respiratory phases of each image, all images were sorted to reconstruct full cardiac and respiratory cycles. Time to peak (TTP), V/Q maps, and fractional ventilation flow-volume loops were calculated. For the volunteers, homogenous ventilation and perfusion TTP maps (V-TTP, Q-TTP) were obtained. The chronic thromboembolic hypertension patient showed increased perfusion TTP in hypoperfused regions in visual agreement with dynamic contrast-enhanced MRI, which improved postpulmonary endaterectomy surgery. Cystic fibrosis and chronic obstructive pulmonary disease patients showed a pattern of increased V-TTP and Q-TTP in regions of hypoventilation and decreased perfusion. Fractional ventilation flow-volume loops of the chronic obstructive pulmonary disease patient were smaller in comparison with the healthy volunteer, and showed regional differences in visual agreement with functional small airways disease and emphysema on CT. This study shows the feasibility of phase-resolved functional lung imaging to gain quantitative information regarding regional lung perfusion and ventilation without the need for ultrafast imaging, which will be advantageous for future clinical translation. Magn Reson Med 79:2306-2314, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. [Heat transfer analysis of liquid cooling garment used for extravehicular activity].

    PubMed

    Qiu, Y F; Yuan, X G; Mei, Z G; Jia, S G; Ouyang, H; Ren, Z S

    2001-10-01

    Brief description was given about the construction and function of the LCG (liquid cooling garment) used for EVA (extravehicular activity). The heat convection was analyzed between ventilating gas and LCG, the heat and mass transfer process was analyzed too, then a heat and mass transfer mathematical model of LCG was developed. Thermal physiological experimental study with human body wearing LVCG (liquid cooling and ventilation garment) used for EVA was carried out to verify this mathematical model. This study provided a basis for the design of liquid-cooling and ventilation system for the space suit.

  16. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  17. Fresh air indoors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  18. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2 and Heat Removal/Rejection in a Martian PLSS

    NASA Technical Reports Server (NTRS)

    Iacomini, Christine; Powers, Aaron; Bower, Chad; Straub-Lopez, Kathrine; Anderson, Grant; MacCallum, Taber; Paul, Heather L.

    2007-01-01

    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of carbon dioxide (CO2) in an environment with a CO2 partial pressure (ppCO2) of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the ventilation loop. Once fully loaded, the adsorbent is then warmed externally by the ventilation loop (300K), rejecting the captured CO2 to Mars ambient. Two beds are used to provide a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the ventilation loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available on Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments were conducted which lead to the selection and partial characterization of an appropriate adsorbent. The Molsiv Adsorbents 13X 8x12 (also known as NaX zeolite) successfully removed CO2 from a simulated ventilation loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design challenges as listed in the conclusions section of this paper.

  19. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey; Cox, Marlon

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated human metabolic loads. Another paper at this year s conference discusses similar testing with real human metabolic loads, including some closed-loop testing with emergency breathing masks. The Orion ARS is designed to also support extravehicular activity operations from a depressurized cabin. The next step in developmental testing at JSC was, therefore, to test this ARS technology in a typical closed space suit loop environment with low-pressure pure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure oxygen loop testing of a new Orion ARS technology, and was conducted with simulated human metabolic loads in December 2008. The test investigated pressure drops through two different styles of prototype suit umbilical connectors and general swing-bed performance with both umbilical configurations as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable atmospheric CO2 and moisture levels.

  20. Hardware-in-the-Loop Co-simulation of Distribution Grid for Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotger-Griful, Sergi; Chatzivasileiadis, Spyros; Jacobsen, Rune H.

    2016-06-20

    In modern power systems, co-simulation is proposed as an enabler for analyzing the interactions between disparate systems. This paper introduces the co-simulation platform Virtual Grid Integration Laboratory (VirGIL) including Hardware-in-the-Loop testing, and demonstrates its potential to assess demand response strategies. VirGIL is based on a modular architecture using the Functional Mock-up Interface industrial standard to integrate new simulators. VirGIL combines state-of-the-art simulators in power systems, communications, buildings, and control. In this work, VirGIL is extended with a Hardware-in-the-Loop component to control the ventilation system of a real 12-story building in Denmark. VirGIL capabilities are illustrated in three scenarios: load following,more » primary reserves and load following aggregation. Experimental results show that the system can track one minute changing signals and it can provide primary reserves for up-regulation. Furthermore, the potential of aggregating several ventilation systems is evaluated considering the impact at distribution grid level and the communications protocol effect.« less

  1. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  2. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation

    PubMed Central

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  3. 76 FR 40700 - Marine Mammals; File No. 15014-01

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... hereby given that Sea World, LLC, 9205 South Park Center Loop, Suite 400, Orlando, FL 32819 [Brad Andrews... Southwest Region, NMFS, 501 West Ocean Blvd., Suite 4200, Long Beach, CA 90802-4213; phone (562) 980-4001...

  4. 76 FR 42118 - Marine Mammals; File No. 15511

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... permit has been issued to SeaWorld, LLC., 9205 South Center Loop, Suite 400 Orlando, FL 32819, to import... Ocean Blvd., Suite 4200, Long Beach, CA 90802-4213; phone (562) 980-4001; fax (562) 980-4018; FOR...

  5. Reexamination of METMAN, Recommendations on Enhancement of LCVG, and Development of New Concepts for EMU Heat Sink

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1990-01-01

    METMAN is a 41-node transient metabolic computer code developed in 1970 and revised in 1989 by Lockheed Engineering and Sciences, Inc. This program relies on a mathematical model to predict the transient temperature distribution in a body influenced by metabolic heat generation and thermal interaction with the environment. A more complex 315-node model is also available that not only simulates the thermal response of a body exposed to a warm environment, but is also capable of describing the thermal response resulting from exposure to a cold environment. It is important to compare the two models for the prediction of the body's thermal response to metabolic heat generation and exposure to various environmental conditions. Discrepancies between the twi models may warrant an investigation of METMAN to ensure its validity for describing the body's thermal response in space environment. The Liquid Cooling and Ventilation Garment is a subsystem of the Extravehicular Mobility Unit (EMU). This garment, worn under the pressure suit, contains the liquid cooling tubing and gas ventilation manifolds; its purpose is to alleviate or reduce thermal stress resulting from metabolic heat generation. There is renewed interest in modifying this garment through identification of the locus of maximum heat transfer at body-liquid cooled tubing interface. The sublimator is a vital component of the Primary Life Support System (PLSS) in the EMU. It acts as a heat sink to remove heat and humidity from the gas ventilating circuit and the liquid cooling loop of the LCVG. The deficiency of the sublimator is that the ice, used as the heat sink, sublimates into space. There is an effort to minimize water losses in the feedwater circuit of the EMU. This requires developing new concepts to design an alternative heat sink system. Efforts are directed to review and verify the heat transfer formulation of the analytical model employed by METMAN. A conceptual investigation of regenerative non-venting heat-sink subsystem for the EMU is recommended.

  6. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S> ; Chullen, Cinda; Falconi, Eric A.

    2012-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .

  7. Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.

    2008-01-01

    Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.

  8. Increased ventilatory variability and complexity in patients with hyperventilation disorder.

    PubMed

    Bokov, Plamen; Fiamma, Marie-Noëlle; Chevalier-Bidaud, Brigitte; Chenivesse, Cécile; Straus, Christian; Similowski, Thomas; Delclaux, Christophe

    2016-05-15

    It has been hypothesized that hyperventilation disorders could be characterized by an abnormal ventilatory control leading to enhanced variability of resting ventilation. The variability of tidal volume (VT) often depicts a nonnormal distribution that can be described by the negative slope characterizing augmented breaths formed by the relationship between the probability density distribution of VT and VT on a log-log scale. The objectives of this study were to describe the variability of resting ventilation [coefficient of variation (CV) of VT and slope], the stability in respiratory control (loop, controller and plant gains characterizing ventilatory-chemoresponsiveness interactions) and the chaotic-like dynamics (embedding dimension, Kappa values characterizing complexity) of resting ventilation in patients with a well-defined dysfunctional breathing pattern characterized by air hunger and constantly decreased PaCO2 during a cardiopulmonary exercise test. Compared with 14 healthy subjects with similar anthropometrics, 23 patients with hyperventilation were characterized by increased variability of resting tidal ventilation (CV of VT median [interquartile]: 26% [19-35] vs. 36% [28-48], P = 0.020; slope: -6.63 [-7.65; -5.36] vs. -3.88 [-5.91; -2.66], P = 0.004) that was not related to increased chemical drive (loop gain: 0.051 [0.039-0.221] vs. 0.044 [0.012-0.087], P = 0.149) but that was related to an increased ventilatory complexity (Kappa values, P < 0.05). Plant gain was decreased in patients and correlated with complexity (with Kappa 5 - degree 5: Rho = -0.48, P = 0.006). In conclusion, well-defined patients suffering from hyperventilation disorder are characterized by increased variability of their resting ventilation due to increased ventilatory complexity with stable ventilatory-chemoresponsiveness interactions. Copyright © 2016 the American Physiological Society.

  9. Immediate ventilatory response to sudden changes in venous return in humans.

    PubMed Central

    Cummin, A R; Iyawe, V I; Jacobi, M S; Mehta, N; Patil, C P; Saunders, K B

    1986-01-01

    We changed venous return transiently by postural manoeuvres, and by lower body positive pressure, to see what happened simultaneously to ventilation. Cardiac output was measured by a Doppler technique. In seven subjects, after inflation of a pressure suit to 80 and 40 mmHg at 30 deg head-up tilt, both cardiac output and ventilation increased. Ventilation increased rapidly to a peak in the first 5 s, cardiac output more slowly to a steady state in about 20 s, at 80 mmHg inflation. After inflation to 80 mmHg in six subjects at 12.5 deg head-up and 30 deg head-down tilt, cardiac output did not change in the first, and fell in the second case. There were no significant changes in ventilation. On release of pressure there were transient increases in both cardiac output and ventilation, with ventilation lagging behind cardiac output, in contrast to (2) above. In five subjects, elevation of the legs at 30 deg head-up tilt caused a rise in both cardiac output and ventilation, but in two subjects neither occurred. In all seven subjects there was a transient increase in cardiac output and ventilation when the legs were lowered. Ventilation and cardiac output changes were approximately in phase. We were therefore unable to dissociate entirely increasing cardiac output from increasing ventilation. The relation between them was certainly not a simple proportional one. PMID:3612571

  10. Automatic control of pressure support for ventilator weaning in surgical intensive care patients.

    PubMed

    Schädler, Dirk; Engel, Christoph; Elke, Gunnar; Pulletz, Sven; Haake, Nils; Frerichs, Inéz; Zick, Günther; Scholz, Jens; Weiler, Norbert

    2012-03-15

    Despite its ability to reduce overall ventilation time, protocol-guided weaning from mechanical ventilation is not routinely used in daily clinical practice. Clinical implementation of weaning protocols could be facilitated by integration of knowledge-based, closed-loop controlled protocols into respirators. To determine whether automated weaning decreases overall ventilation time compared with weaning based on a standardized written protocol in an unselected surgical patient population. In this prospective controlled trial patients ventilated for longer than 9 hours were randomly allocated to receive either weaning with automatic control of pressure support ventilation (automated-weaning group) or weaning based on a standardized written protocol (control group) using the same ventilation mode. The primary end point of the study was overall ventilation time. Overall ventilation time (median [25th and 75th percentile]) did not significantly differ between the automated-weaning (31 [19-101] h; n = 150) and control groups (39 [20-118] h; n = 150; P = 0.178). Patients who underwent cardiac surgery (n = 132) exhibited significantly shorter overall ventilation times in the automated-weaning (24 [18-57] h) than in the control group (35 [20-93] h; P = 0.035). The automated-weaning group exhibited shorter ventilation times until the first spontaneous breathing trial (1 [0-15] vs. 9 [1-51] h; P = 0.001) and a trend toward fewer tracheostomies (17 vs. 28; P = 0.075). Overall ventilation times did not significantly differ between weaning using automatic control of pressure support ventilation and weaning based on a standardized written protocol. Patients after cardiac surgery may benefit from automated weaning. Implementation of additional control variables besides the level of pressure support may further improve automated-weaning systems. Clinical trial registered with www.clinicaltrials.gov (NCT 00445289).

  11. Tritium protective clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, T. P.; Easterly, C. E.

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and bettermore » communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions.« less

  12. Development Specification for the Portable Life Support System (PLSS) Thermal Loop Pump

    NASA Technical Reports Server (NTRS)

    Anchondo, Ian; Campbell, Colin

    2017-01-01

    The AEMU Thermal Loop Pump Development Specification establishes the requirements for design, performance, and testing of the Water Pump as part of the Thermal System of the Advanced Portable Life Support System (PLSS). It is envisioned that the Thermal Loop Pump is a positive displacement pump that provides a repeatable volume of flow against a given range of back-pressures provided by the various applications. The intention is to operate the pump at a fixed speed for the given application. The primary system is made up of two identical and redundant pumps of which only one is in operation at given time. The Auxiliary Loop Pump is an identical pump design to the primary pumps but is operated at half the flow rate. Inlet positive pressure to the pumps is provided by the upstream Flexible Supply Assembly (FSA-431 and FSA-531) which are physically located inside the suit volume and pressurized by suit pressure. An integrated relief valve, placed in parallel to the pump's inlet and outlet protects the pump and loop from over-pressurization. An integrated course filter is placed upstream of the pump's inlet to provide filtration and prevent potential debris from damaging the pump.

  13. Labeled line drawing of launch and entry suit identifies various components

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawings illustrate how a crewmember would be seated during space shuttle launch and entry in the mission specialist seat wearing the launch and entry suit (LES), a partial pressure suit. Front and profile drawings are labeled with numbers. The legend for the views includes: 1) Mission Specialist seat; 2) crewman; 3) helmet; 4) anti-exposure / counter pressure garment; 5) boots; 6) parachute harness; 7) parachute pack; 8) life raft with sea dye marker; 9) suit mounted oxygen (O2) manifold; 10) anti-gravity (anti-g) suit controller; 11) emergency O2 supply; 12) seawars; 13) ventilation fan; 14) orbiter O2 line; 15) headset interface unit (HIU); 16) communication (COMM) line to HIU; 17) flotation device. Crew escape system (CES) and LES was designed for STS-26, the return to flight mission, and subsequent missions.

  14. 75 FR 36064 - Marine Mammals; File No. 14186

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... World LLC, 9205 South Park Center Loop, Suite 400, Orlando, FL 32819 [Brad Andrews, Responsible Party...)713-2289; fax (301)713-0376; and Southwest Region, NMFS, 501 West Ocean Blvd., Suite 4200, Long Beach.... 14186 authorizes Sea World LLC to maintain up to six (6) non-releasable stranded Guadalupe fur seals...

  15. 75 FR 55307 - Marine Mammals; File No. 15014

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... World, LLC, 9205 South Park Center Loop, Suite 400, Orlando, FL 32819 [Brad Andrews, Responsible Party...)713-0376; and Southwest Region, NMFS, 501 West Ocean Blvd., Suite 4200, Long Beach, CA 90802-4213..., from the Kamogawa SeaWorld, Chiba, Japan to Sea World of California, had been submitted by the above...

  16. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  17. Cooling system for removing metabolic heat from an hermetically sealed spacesuit

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Vykukal, H. C.; Williams, B. A. (Inventor)

    1978-01-01

    An improved cooling and ventilating system is described for removing metabolic heat, waste gases and water vapor generated by a wearer of an hermetically sealed spacesuit. The cooling system was characterized by a body suit, having a first circuit for simultaneously establishing a cooling flow of water through the thorax and head sections of the body suit. Circulation patches were included mounted in the thorax section and head section of the body suit. A second circuit for discharing a flow of gas throughout the spacesuit and a disconnect unit for coupling the circuits with a life support system externally related to the spacesuit were provided.

  18. Design and verification of wide-band, simultaneous, multi-frequency, tuning circuits for large moment transmitter loops

    NASA Astrophysics Data System (ADS)

    Dvorak, Steven L.; Sternberg, Ben K.; Feng, Wanjie

    2017-03-01

    In this paper we discuss the design and verification of wide-band, multi-frequency, tuning circuits for large-moment Transmitter (TX) loops. Since these multi-frequency, tuned-TX loops allow for the simultaneous transmission of multiple frequencies at high-current levels, they are ideally suited for frequency-domain geophysical systems that collect data while moving, such as helicopter mounted systems. Furthermore, since multi-frequency tuners use the same TX loop for all frequencies, instead of using separate tuned-TX loops for each frequency, they allow for the use of larger moment TX loops. In this paper we discuss the design and simulation of one- and three-frequency tuned TX loops and then present measurement results for a three-frequency, tuned-TX loop.

  19. Rapid Cycling CO2 and H2O Removal System for EMU

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Cates, Matthew; Dubovik, Margarita; Gershanovich, Yevgenia; Paul, Heather; Thomas, Gretchen

    2006-01-01

    NASA's planned future missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the EMU is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The CO2 and humidity control unit in the existing PLSS design is relatively large, since it has to remove 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. (TDA) is developing a compact, regenerable sorbent-based system to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all duration-limiting elements in the life support system. This paper summarizes the results of the sorbent development and testing, and evaluation efforts. The results of a preliminary system analysis are also included, showing the size and volume reductions provided by the new system.

  20. A Model for Developing Clinical Analytics Capacity: Closing the Loops on Outcomes to Optimize Quality.

    PubMed

    Eggert, Corinne; Moselle, Kenneth; Protti, Denis; Sanders, Dale

    2017-01-01

    Closed Loop Analytics© is receiving growing interest in healthcare as a term referring to information technology, local data and clinical analytics working together to generate evidence for improvement. The Closed Loop Analytics model consists of three loops corresponding to the decision-making levels of an organization and the associated data within each loop - Patients, Protocols, and Populations. The authors propose that each of these levels should utilize the same ecosystem of electronic health record (EHR) and enterprise data warehouse (EDW) enabled data, in a closed-loop fashion, with that data being repackaged and delivered to suit the analytic and decision support needs of each level, in support of better outcomes.

  1. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  2. Humidifier Development and Applicability to the Next Generation Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Conger, Bruce C.; Barnes, Bruce G.; Sompayrac, Robert G.; Paul, Heather L.

    2011-01-01

    A development effort at the NASA Johnson Space Center investigated technologies to determine whether a humidifier would be required in the Portable Life Support System (PLSS) envisioned for future exploration missions. The humidifier has been included in the baseline PLSS schematic since performance testing of the Rapid Cycle Amine (RCA) indicates that the RCA over-dries the ventilation gas stream. Performance tests of a developmental humidifier unit and commercial off-the-shelf (COTS) units were conducted in December 2009. Following these tests, NASA revisited the need for a humidifier via system analysis. Results of this investigation indicate that it is feasible to meet humidity requirements without the humidifier if other changes are made to the PLSS ventilation loop and the Liquid Cooling and Ventilation Garment (LCVG).

  3. Closed-loop control of propofol anaesthesia.

    PubMed

    Kenny, G N; Mantzaridis, H

    1999-08-01

    We describe the use of a closed-loop system to control depth of propofol anaesthesia automatically. We used the auditory evoked potential index (AEPindex) as the input signal of this system to validate it as a true measure of depth of anaesthesia. Auditory evoked potentials were acquired and processed in real time to provide the AEPindex. The AEPindex was used in a proportional integral (PI) controller to determine the target blood concentration of propofol required to induce and maintain general anaesthesia automatically. We studied 100 spontaneously breathing patients. The mean AEPindex before induction of anaesthesia was 73.5 (SD 17.6), during surgical anaesthesia 37.8 (4.5) and at recovery of consciousness 89.7 (17.9). Twenty-two patients required assisted ventilation before incision. After incision, ventilation was assisted in four of these 22 patients for more than 5 min. There was no incidence of intraoperative awareness and all patients were prepared to have the same anaesthetic in future. Movement interfering with surgery was minimal. Cardiovascular stability and overall control of anaesthesia were satisfactory.

  4. Ventilation loss and pressurization in the NASA launch/entry suit: Potential for heat stress

    NASA Technical Reports Server (NTRS)

    Kaufman, Jonathan W.; Dejneka, Katherine Y.; Askew, Gregory K.

    1989-01-01

    The potential of the NASA Launch/Entry Suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment was studied. The testing was designed to identify potential heat stress hazards if the LES were pressurized or if ventilation were lost. Conditions were designed to simulate an extreme pre-launch situation with chamber temperatures maintained at dry bulb temperature = 27.2 +/- 0.1 C, globe temperature = 27.3 +/- 0.1 C, and wet bulb temperature = 21.1 +/- 0.3 C. Two females and two males, 23 to 34 years of age, were employed in this study, with two subjects having exposures in all 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. Pressurized runs (Pr) were designed for 45 minutes, which all subjects also achieved. While some significant differences related to experimental conditions were noted in rectal and mean skin temperatures, evaporation rates, sweat rates, and heart rate, these differences were not thought to be physiologically significant. The results indicate that the LES garment, in either the Pr or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Space Shuttle cabin during launch or reentry.

  5. Assessment and monitoring of flow limitation and other parameters from flow/volume loops.

    PubMed

    Dueck, R

    2000-01-01

    Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise, thereby reducing airway diameter and inducing expiratory flow limitation.

  6. A New Method for Breath Capture Inside a Space Suit Helmet

    NASA Technical Reports Server (NTRS)

    Filburn, Tom; Dolder, Craig; Tufano, Brett; Paul, Heather L.

    2007-01-01

    This project investigates methods to capture an astronaut's exhaled carbon dioxide (CO2) before it becomes diluted with the high volumetric oxygen flow present within a space suit. Typical expired breath contains CO2 partial pressures (pCO2) in the range of 20-35 mm Hg. This research investigates methods to capture the concentrated CO2 gas stream prior to its dilution with the low pCO2 ventilation flow. Specifically this research is looking at potential designs for a collection cup for use inside the space suit helmet. The collection cup concept is not the same as a breathing mask typical of that worn by firefighters and pilots. It is well known that most members of the astronaut corps view a mask as a serious deficiency in any space suit helmet design. Instead, the collection cup is a non-contact device that will be designed using a detailed Computational Fluid Dynamic (CFD) analysis of the ventilation flow environment within the helmet. The CFD code, Fluent, provides modeling of the various gas species (CO2, water vapor, and oxygen (O2)) as they pass through a helmet. This same model will be used to numerically evaluate several different collection cup designs for this same CO2 segregation effort. A new test rig will be built to test the results of the CFD analyses and validate the collection cup designs. This paper outlines the initial results and future plans of this work.

  7. Thermal Performance Testing of EMU and OSS Liquid Cooling Garments

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Hakam, Mary

    2012-01-01

    A test was conducted to evaluate three factors influencing the thermal performance of liquid cooling garments (LCG): (1) the comparable thermal performance of an Oceaneering developed engineering evaluation unit (EEU) prototype LDG, (2) the effect of the thermal comfort undergarment (TCU), and (3) the performance of a torso or upper body only LCG configuration. To evaluate the thermal performance of each configuration a metabolic test was conducted, utilizing suited subjects to generate the metabolic heat. For this study three (3) test subjects of similar health and weight produced a metabolic load on the LDG configuration by either resting (300-600 BTU/hr), walking at a slow pace (1200 BRU/hr), and walking at a brisk pace (2200 BTU/hr), as outlined in Figure 1, the metabolic profile. During the test, oxygen consumption, heart rate, relative humidity, air flow, inlet and outlet air pressure, inlet and outlet air temperature, delta air temperature, water flow (100 lb/hr), inlet water temperature (64 F), delta water temperature, water pressure, core body temperature, skin temperature, and sweat loss data was recorded. Four different test configurations were tested, with one configuration tested twice, as outlined in Table 1. The test was conducted with the suit subjects wearing the Demonstrator Suit, pressurized to vent pressure (approximately 0.5 psig). The demonstrator suit has an integrated ventilation duct system and was used to create a relevant environment with a captured ventilation return, an integrated vent tree, and thermal insulation from the environment.

  8. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  9. Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.

    PubMed

    Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus

    We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.

  10. Modes of mechanical ventilation for the operating room.

    PubMed

    Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo

    2015-09-01

    Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h, laparoscopy in the Trendelenburg position and in patients with body mass index >35 kg/m(2). Large randomized trials are warranted to identify subgroups of patients and the type of surgery that can potentially benefit from specific ventilation modes or ventilation settings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Closing the loops in biomedical informatics from theory to daily practice.

    PubMed

    Gaudinat, A

    2009-01-01

    This article presents the 2009 selection of the best papers in the special section dedicated to biomedical informatics and cybernetics. Synopsis of the articles selected for the IMIA yearbook 2009 Five papers from international peer reviewed journals where selected for this section. Most of the papers have a strong practical orientation in clinical care. And this selection gives a good overview of what is done with "closing loop" approach, particularly during the year 2008. While quite mature for some clinical applications such as mechanical ventilation, it remains a challenge where rules for the decision system could be difficult to identify due to the number of variables. More complex systems with greater Artificial Intelligence approaches will certainly be the next trend for closed-loop applications.

  12. Expedition Seven Lu with EMU in Quest airlock

    NASA Image and Video Library

    2003-09-05

    ISS007-E-14470 (5 September 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs routine maintenance on an Extravehicular Mobility Unit (EMU) space suit in the Quest airlock on the International Space Station (ISS). The work represents a mid-term checkout and included emptying and refilling the suit’s water tank and loops, cycling relief valves, checking sensors and collecting data, a leak check and running the suit’s fan for two hours to lubricate it.

  13. Expedition Seven Lu with EMU in Quest airlock

    NASA Image and Video Library

    2003-09-05

    ISS007-E-14473 (5 September 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs routine maintenance on an Extravehicular Mobility Unit (EMU) space suit in the Quest airlock on the International Space Station (ISS). The work represents a mid-term checkout and included emptying and refilling the suit’s water tank and loops, cycling relief valves, checking sensors and collecting data, a leak check and running the suit’s fan for two hours to lubricate it.

  14. Expedition Seven Lu with EMU in Quest airlock

    NASA Image and Video Library

    2003-09-05

    ISS007-E-14469 (5 September 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs routine maintenance on an Extravehicular Mobility Unit (EMU) space suit in the Quest airlock on the International Space Station (ISS). The work represents a mid-term checkout and included emptying and refilling the suit’s water tank and loops, cycling relief valves, checking sensors and collecting data, a leak check and running the suit’s fan for two hours to lubricate it.

  15. Expedition Seven Lu with EMU in Quest airlock

    NASA Image and Video Library

    2003-09-05

    ISS007-E-14472 (5 September 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs routine maintenance on an Extravehicular Mobility Unit (EMU) space suit in the Quest airlock on the International Space Station (ISS). The work represents a mid-term checkout and included emptying and refilling the suit’s water tank and loops, cycling relief valves, checking sensors and collecting data, a leak check and running the suit’s fan for two hours to lubricate it.

  16. Astronaut John Glenn leaving crew quarters prior to launch

    NASA Image and Video Library

    1962-02-20

    S62-00222 (20 Feb. 1962) --- View of astronaut John H. Glenn Jr. and equipment specialist Joe Schmitt leaving crew quarters prior to Mercury-Atlas 6 (MA-6) mission. Glenn is in his pressure suit and is carrying the portable ventilation unit. Photo credit: NASA

  17. A method of evaluating efficiency during space-suited work in a neutral buoyancy environment

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.; West, Phillip; Newton, Frederick K.; Gilbert, John H.; Squires, William G.

    1991-01-01

    The purpose was to investigate efficiency as related to the work transmission and the metabolic cost of various extravehicular activity (EVA) tasks during simulated microgravity (whole body water immersion) using three space suits. Two new prototype space station suits, AX-5 and MKIII, are pressurized at 57.2 kPa and were tested concurrently with the operationally used 29.6 kPa shuttle suit. Four male astronauts were asked to perform a fatigue trial on four upper extremity exercises during which metabolic rate and work output were measured and efficiency was calculated in each suit. The activities were selected to simulate actual EVA tasks. The test article was an underwater dynamometry system to which the astronauts were secured by foot restraints. All metabolic data was acquired, calculated, and stored using a computerized indirect calorimetry system connected to the suit ventilation/gas supply control console. During the efficiency testing, steady state metabolic rate could be evaluated as well as work transmitted to the dynamometer. Mechanical efficiency could then be calculated for each astronaut in each suit performing each movement.

  18. A tracer study of ventilation in the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Postlethwaite, C. F.; Rohling, E. J.; Jenkins, W. J.; Walker, C. F.

    2005-06-01

    During the Circulation Research in East Asian Marginal Seas (CREAMS) summer cruises in 1999, a suite of samples was collected for tracer analysis. Oxygen isotopes combined with tritium-helium ventilation timescales and noble gas measurements give unique insights into the ventilation of water masses in the Japan/East Sea (JES). In particular, noble gases and oxygen isotopes are indicators of brine rejection, which may assist in explaining the recent changes observed in the ventilation of the JES. Oxygen isotope data presented here indicate that both thermally driven convection and brine rejection have played significant roles in deep-water formation but that brine rejection is unlikely to be a significant contributor at the moment. A 6-box ventilation model of the JES, calibrated with tritium and helium-3 measurements, performed better when a significant decrease of dense-water formation rates in the mid-1960s was incorporated. However, the model calculations suggest that Japan Sea Intermediate Water formation is still occurring. Subduction of sea-ice melt water may be a significant ventilation mechanism for this water mass, based on an argon saturation minimum at the recently ventilated salinity minimum in the northwestern sector of the JES. The salinity and oxygen isotope budgets imply a potential bottom-water formation rate of 3.97±0.89×10 12 m 3 yr -1 due to brine rejection, which could account for a time averaged fraction of between 25% and 35% of the ventilation of subsurface water formation in the JES.

  19. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    PubMed Central

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use. PMID:26312102

  20. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    PubMed

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.

  1. Astronaut John Glenn leaving crew quarters prior to launch

    NASA Image and Video Library

    1961-02-20

    S62-00330 (1962) --- Astronaut John H. Glenn Jr. (left), Dr. William Douglas, astronauts flight surgeon, and equipment specialist Joe Schmitt leave crew quarters prior to Mercury-Atlas 6 (MA-6) mission. Glenn is in his pressure suit and is carrying the portable ventilation unit. Photo credit: NASA

  2. Failure Analysis Results and Corrective Actions Implemented for the Extravehicular Mobility Unit 3011 Water in the Helmet Mishap

    NASA Technical Reports Server (NTRS)

    Steele, John; Metselaar, Carol; Peyton, Barbara; Rector, Tony; Rossato, Robert; Macias, Brian; Weigel, Dana; Holder, Don

    2015-01-01

    Water entered the Extravehicular Mobility Unit (EMU) helmet during extravehicular activity (EVA) no. 23 aboard the International Space Station on July 16, 2013, resulting in the termination of the EVA approximately 1 hour after it began. It was estimated that 1.5 liters of water had migrated up the ventilation loop into the helmet, adversely impacting the astronaut's hearing, vision, and verbal communication. Subsequent on-board testing and ground-based test, tear-down, and evaluation of the affected EMU hardware components determined that the proximate cause of the mishap was blockage of all water separator drum holes with a mixture of silica and silicates. The blockages caused a failure of the water separator degassing function, which resulted in EMU cooling water spilling into the ventilation loop, migrating around the circulating fan, and ultimately pushing into the helmet. The root cause of the failure was determined to be ground-processing shortcomings of the Airlock Cooling Loop Recovery (ALCLR) Ion Filter Beds, which led to various levels of contaminants being introduced into the filters before they left the ground. Those contaminants were thereafter introduced into the EMU hardware on-orbit during ALCLR scrubbing operations. This paper summarizes the failure analysis results along with identified process, hardware, and operational corrective actions that were implemented as a result of findings from this investigation.

  3. Failure Analysis Results and Corrective Actions Implemented for the EMU 3011 Water in the Helmet Mishap

    NASA Technical Reports Server (NTRS)

    Steele, John; Metselaar, Carol; Peyton, Barbara; Rector, Tony; Rossato, Robert; Macias, Brian; Weigel, Dana; Holder, Don

    2015-01-01

    During EVA (Extravehicular Activity) No. 23 aboard the ISS (International Space Station) on 07/16/2013 water entered the EMU (Extravehicular Mobility Unit) helmet resulting in the termination of the EVA (Extravehicular Activity) approximately 1-hour after it began. It was estimated that 1.5-L of water had migrated up the ventilation loop into the helmet, adversely impacting the astronauts hearing, vision and verbal communication. Subsequent on-board testing and ground-based TT and E (Test, Tear-down and Evaluation) of the affected EMU hardware components led to the determination that the proximate cause of the mishap was blockage of all water separator drum holes with a mixture of silica and silicates. The blockages caused a failure of the water separator function which resulted in EMU cooling water spilling into the ventilation loop, around the circulating fan, and ultimately pushing into the helmet. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Filter Beds which led to various levels of contaminants being introduced into the Filters before they left the ground. Those contaminants were thereafter introduced into the EMU hardware on-orbit during ALCLR scrubbing operations. This paper summarizes the failure analysis results along with identified process, hardware and operational corrective actions that were implemented as a result of findings from this investigation.

  4. Respiratory system loop gain in normal men and women measured with proportional-assist ventilation.

    PubMed

    Wellman, Andrew; Malhotra, Atul; Fogel, Robert B; Edwards, Jill K; Schory, Karen; White, David P

    2003-01-01

    We hypothesized that increased chemical control instability (CCI) in men could partially explain the male predominance in obstructive sleep apnea (OSA). CCI was assessed by sequentially increasing respiratory control system loop gain (LG) with proportional-assist ventilation (PAV) in 10 men (age 24-48 yr) and 9 women (age 22-36 yr) until periodic breathing or awakening occurred. Women were studied in both the follicular and luteal phases of the menstrual cycle. The amount by which PAV amplified LG was quantified from the tidal volume amplification factor [(VtAF) assisted tidal volume/unassisted tidal volume]. LG was calculated as the inverse of the VtAF occurring at the assist level immediately preceding the emergence of periodic breathing (when LG x VtAF = 1). Only 1 of 10 men and 2 of 9 women developed periodic breathing with PAV. The rest were resistant to periodic breathing despite moderately high levels of PAV amplification. We conclude that LG is low in the majority of normal men and women and that higher volume amplification factors are needed to determine whether gender differences exist in this low range.

  5. A Stratification Boomerang: Nonlinear Dependence of Deep Southern Ocean Ventilation on PCO2

    NASA Astrophysics Data System (ADS)

    Galbraith, E. D.; Merlis, T. M.

    2014-12-01

    Strong correlations between atmospheric CO2, Antarctic temperatures, and marine proxy records have hinted that ventilation of the deep Southern Ocean may have played a central role in the variations of CO2 over glacial-interglacial cycles. One proposition is that, in general, the Southern Ocean ventilates the deep more strongly under higher CO2, due to a change in winds and/or the dominance of thermal stratification in a warm ocean, which weakens ocean biological carbon storage. Here, we explore this idea with a suite of multi-millennial simulations using the GFDL CM2Mc global coupled model. The results are, indeed, consistent with increasing ventilation of the Southern Ocean as pCO2 increases above modern. However, they reveal a surprising twist under low pCO2: increased salinity of the Southern Ocean, due in part to weakening atmospheric moisture transport, actually increases ventilation rate of the deep ocean under low pCO2 as well. This implies that a nadir of Southern Ocean ventilation occurs at intermediate pCO2, which the model estimates as being close to that of the present-day. This is at odds with the interpretation that weak ventilation of the deep Southern Ocean was the unifying coupled mechanism for the glacial pCO2 cycles. Rather, it suggests that factors other than the ventilation rate of the deep Southern Ocean, such as iron fertilization, ecosystem changes, water mass distributions, and sea ice cover, were key players in the glacial-interglacial CO2 changes.

  6. Modified ACES Portable Life Support Integration, Design, and Testing for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kelly, Cody

    2014-01-01

    NASA's next generation of exploration missions provide a unique challenge to designers of EVA life support equipment, especially in a fiscally-constrained environment. In order to take the next steps of manned space exploration, NASA is currently evaluating the use of the Modified ACES (MACES) suit in conjunction with the Advanced Portable Life Support System (PLSS) currently under development. This paper will detail the analysis and integration of the PLSS thermal and ventilation subsystems into the MACES pressure garment, design of prototype hardware, and hardware-in-the-loop testing during the spring 2014 timeframe. Prototype hardware was designed with a minimal impact philosophy in order to mitigate design constraints becoming levied on either the advanced PLSS or MACES subsystems. Among challenges faced by engineers were incorporation of life support thermal water systems into the pressure garment cavity, operational concept definition between vehicle/portable life support system hardware, and structural attachment mechanisms while still enabling maximum EVA efficiency from a crew member's perspective. Analysis was completed in late summer 2013 to 'bound' hardware development, with iterative analysis cycles throughout the hardware development process. The design effort will cumulate in the first ever manned integration of NASA's advanced PLSS system with a pressure garment originally intended primarily for use in a contingency survival scenario.

  7. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  8. Protective isolation in single-bed rooms: studies in a modified hospital ward

    PubMed Central

    Ayliffe, G. A. J.; Collins, B. J.; Lowbury, E. J. L.; Wall, Mary

    1971-01-01

    Studies were made in a modified hospital ward containing 19 beds, 14 of them in the open ward, one in a window-ventilated side-room, two in rooms with partial-recirculation ventilators giving 7-10 air changes per hour, and two in self-contained isolation suites with plenum ventilation (20 air changes per hour), ultra-violet (UV) barriers at doorways and airlocks. Preliminary tests with aerosols of tracer bacteria showed that few bacteria entered the plenum or recirculation-ventilated rooms. Bacteria released inside mechanically ventilated cubicles escaped into the corridor, but this transfer was reduced by the presence of an airlock. UV barriers at the entrance to the airlock and the cubicle reduced the transfer of bacteria from cubicle to corridor. During a period of 4 years while the ward was in use for surgical and gynaecological patients, the incidence of post-operative sepsis and colonization of wounds by multiple-resistant Staphylococcus aureus was lower (though not significantly lower) in the plenum-ventilated rooms than in the open ward, the recirculator-ventilated cubicles and the window-ventilated cubicles. Nasal acquisition of multiple-resistant Staph. aureus was significantly less common in the plenum-ventilated than in the recirculator-ventilated cubicles and in the other areas. Mean counts of bacteria on settle-plates were significantly lower in the plenum-ventilated cubicles than in the other areas; mean settle-plate counts in the recirculator-ventilated cubicles were significantly lower than in the open ward and in the window-ventilated side-room; similar results were shown by slit-sampling of air. Mean settle-plate counts were significantly lower in all areas when the ward was occupied by female patients. Staph. aureus was rarely carried by air from plenum-ventilated or other cubicles to the open ward, or from the open ward to the cubicles; though staphylococci were transferred from one floor area to another, they did not appear to be redispersed into the air in sufficient numbers to infect the patients. Ultra-violet irradiation caused a significant reduction in the total and staphylococcal counts from the floors of airlocks, and a significant reduction of total counts in the air. PMID:5289715

  9. Automated respiratory cycles selection is highly specific and improves respiratory mechanics analysis.

    PubMed

    Rigo, Vincent; Graas, Estelle; Rigo, Jacques

    2012-07-01

    Selected optimal respiratory cycles should allow calculation of respiratory mechanic parameters focusing on patient-ventilator interaction. New computer software automatically selecting optimal breaths and respiratory mechanics derived from those cycles are evaluated. Retrospective study. University level III neonatal intensive care unit. Ten mins synchronized intermittent mandatory ventilation and assist/control ventilation recordings from ten newborns. The ventilator provided respiratory mechanic data (ventilator respiratory cycles) every 10 secs. Pressure, flow, and volume waves and pressure-volume, pressure-flow, and volume-flow loops were reconstructed from continuous pressure-volume recordings. Visual assessment determined assisted leak-free optimal respiratory cycles (selected respiratory cycles). New software graded the quality of cycles (automated respiratory cycles). Respiratory mechanic values were derived from both sets of optimal cycles. We evaluated quality selection and compared mean values and their variability according to ventilatory mode and respiratory mechanic provenance. To assess discriminating power, all 45 "t" values obtained from interpatient comparisons were compared for each respiratory mechanic parameter. A total of 11,724 breaths are evaluated. Automated respiratory cycle/selected respiratory cycle selections agreement is high: 88% of maximal κ with linear weighting. Specificity and positive predictive values are 0.98 and 0.96, respectively. Averaged values are similar between automated respiratory cycle and ventilator respiratory cycle. C20/C alone is markedly decreased in automated respiratory cycle (1.27 ± 0.37 vs. 1.81 ± 0.67). Tidal volume apparent similarity disappears in assist/control: automated respiratory cycle tidal volume (4.8 ± 1.0 mL/kg) is significantly lower than for ventilator respiratory cycle (5.6 ± 1.8 mL/kg). Coefficients of variation decrease for all automated respiratory cycle parameters in all infants. "t" values from ventilator respiratory cycle data are two to three times higher than ventilator respiratory cycles. Automated selection is highly specific. Automated respiratory cycle reflects most the interaction of both ventilator and patient. Improving discriminating power of ventilator monitoring will likely help in assessing disease status and following trends. Averaged parameters derived from automated respiratory cycles are more precise and could be displayed by ventilators to improve real-time fine tuning of ventilator settings.

  10. [A design of simple ventilator control system based on LabVIEW].

    PubMed

    Pei, Baoqing; Xu, Shengwei; Li, Hui; Li, Deyu; Pei, Yidong; He, Haixing

    2011-01-01

    This paper designed a ventilator control system to control proportional valves and motors. It used LabVIEW to control the object mentioned above and design ,validate, evaluate arithmetic, and establish hardware in loop platform. There are two system' s hierarchies. The high layer was used to run non-real time program and the low layer was used to run real time program. The two layers communicated through TCP/IP net. The program can be divided into several modules, which can be expanded and maintained easily. And the harvest in the prototype designing can be seamlessly used to embedded products. From all above, this system was useful in employing OEM products.

  11. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  12. System Design Verification for Closed Loop Control of Oxygenation With Concentrator Integration.

    PubMed

    Gangidine, Matthew M; Blakeman, Thomas C; Branson, Richard D; Johannigman, Jay A

    2016-05-01

    Addition of an oxygen concentrator into a control loop furthers previous work in autonomous control of oxygenation. Software integrates concentrator and ventilator function from a single control point, ensuring maximum efficiency by placing a pulse of oxygen at the beginning of the breath. We sought to verify this system. In a test lung, fraction of inspired oxygen (FIO2) levels and additional data were monitored. Tests were run across a range of clinically relevant ventilator settings in volume control mode, for both continuous flow and pulse dose flow oxygenation. Results showed the oxygen concentrator could maintain maximum pulse output (192 mL) up to 16 breaths per minute. Functionality was verified across ranges of tidal volumes and respiratory rates, with and without positive end-expiratory pressure, in continuous flow and pulse dose modes. For a representative test at respiratory rate 16 breaths per minute, tidal volume 550 mL, without positive end-expiratory pressure, pulse dose oxygenation delivered peak FIO2 of 76.83 ± 1.41%, and continuous flow 47.81 ± 0.08%; pulse dose flow provided a higher FIO2 at all tested setting combinations compared to continuous flow (p < 0.001). These tests verify a system that provides closed loop control of oxygenation while integrating time-coordinated pulse-doses from an oxygen concentrator. This allows the most efficient use of resources in austere environments. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  13. The use of an extended ventilation tube as a countermeasure for EVA-associated upper extremity medical issues

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Hoffman, R. B.; Buckland, D. A.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Strauss, S.; Novak, J.; Gernhardt, M. L.

    Introduction: Onycholysis due to repetitive activity in the space suit glove during Neutral Buoyancy Laboratory (NBL) training and during spaceflight extravehicular activity (EVA) is a common observation. Moisture accumulates in gloves during EVA task performance and may contribute to the development of pain and damage to the fingernails experienced by many astronauts. The study evaluated the use of a long ventilation tube to determine if improved gas circulation into the hand area could reduce hand moisture and thereby decrease the associated symptoms. Methods: The current Extravehicular Mobility Unit (EMU) was configured with a ventilation tube that extended down a single arm of the crew member (E) and compared with the unventilated arm (C). Skin surface moisture was measured on both hands immediately after glove removal and a questionnaire administered to determine subjective measures. Astronauts ( n=6) were examined pre- and post-run. Results: There were consistent trends in the reduction of relative hydration ratios at dorsum ( C=3.34, E=2.11) and first ring finger joint ( C=2.46, E=1.96) when the ventilation tube was employed. Ventilation appeared more effective on the left versus the right hand, implying an interaction with hand anthropometry and glove fit. Symptom score was lower on the hand that had the long ventilation tube relative to the control hand in 2/6 EVA crew members. Conclusions: Increased ventilation to the hand was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in one-third of the subjects. Improved design in the ventilation capability of EVA spacesuits is expected to improve efficiency of air flow distribution.

  14. ASTRONAUT GLENN - MERCURY-ATLAS (MA)-6 FLIGHT - HANGAR "S" - CAPE

    NASA Image and Video Library

    1962-02-20

    S62-00379 (20 Feb. 1962) --- View of astronaut John H. Glenn Jr., Dr. William Douglas, astronauts' flight surgeon, and equipment specialist Joe Schmitt leaving Operations and Checkout Building prior to the Mercury-Atlas 6 (MA-6) mission. Glenn is in his pressure suit and is carrying the portable ventilation unit. Photo credit: NASA

  15. Chlorofluorocarbon (CFC) Limitation in Heating, Ventilating and Air Conditioning (HVAC) Systems

    DTIC Science & Technology

    1991-08-21

    SMLEF 1 ALEXANDRIA, VA 22332-2300 GUNTER AFB, AL 36114-3643 CMDR, ATLANTIC DIVISION/CODE 04A4 1 AFRCE-SAC/DEE INAVAL FACILITIES ENGINEERING COMMAND... SCIENCES USAF RGN CIVIL ENGR - WESTERN 1201 L STREET NW, SUITE 400 REGION/RO 1 WASHINGTON, DC 20005 630 SANSOME ST, ROOM 1316 SAN FRANCISCO, CA 94111-7

  16. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    PubMed

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-06-01

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet; Cencer, Daniel

    2015-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for long-duration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  18. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet

    2014-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for longduration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  19. Natural ventilation for the prevention of airborne contagion.

    PubMed

    Escombe, A Roderick; Oeser, Clarissa C; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Pan, William; Martínez, Carlos; Chacaltana, Jesus; Rodríguez, Richard; Moore, David A J; Friedland, Jon S; Evans, Carlton A

    2007-02-01

    Institutional transmission of airborne infections such as tuberculosis (TB) is an important public health problem, especially in resource-limited settings where protective measures such as negative-pressure isolation rooms are difficult to implement. Natural ventilation may offer a low-cost alternative. Our objective was to investigate the rates, determinants, and effects of natural ventilation in health care settings. The study was carried out in eight hospitals in Lima, Peru; five were hospitals of "old-fashioned" design built pre-1950, and three of "modern" design, built 1970-1990. In these hospitals 70 naturally ventilated clinical rooms where infectious patients are likely to be encountered were studied. These included respiratory isolation rooms, TB wards, respiratory wards, general medical wards, outpatient consulting rooms, waiting rooms, and emergency departments. These rooms were compared with 12 mechanically ventilated negative-pressure respiratory isolation rooms built post-2000. Ventilation was measured using a carbon dioxide tracer gas technique in 368 experiments. Architectural and environmental variables were measured. For each experiment, infection risk was estimated for TB exposure using the Wells-Riley model of airborne infection. We found that opening windows and doors provided median ventilation of 28 air changes/hour (ACH), more than double that of mechanically ventilated negative-pressure rooms ventilated at the 12 ACH recommended for high-risk areas, and 18 times that with windows and doors closed (p < 0.001). Facilities built more than 50 years ago, characterised by large windows and high ceilings, had greater ventilation than modern naturally ventilated rooms (40 versus 17 ACH; p < 0.001). Even within the lowest quartile of wind speeds, natural ventilation exceeded mechanical (p < 0.001). The Wells-Riley airborne infection model predicted that in mechanically ventilated rooms 39% of susceptible individuals would become infected following 24 h of exposure to untreated TB patients of infectiousness characterised in a well-documented outbreak. This infection rate compared with 33% in modern and 11% in pre-1950 naturally ventilated facilities with windows and doors open. Opening windows and doors maximises natural ventilation so that the risk of airborne contagion is much lower than with costly, maintenance-requiring mechanical ventilation systems. Old-fashioned clinical areas with high ceilings and large windows provide greatest protection. Natural ventilation costs little and is maintenance free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion.

  20. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  1. Evaluation of pollutant source strengths and control strategies in an innovative residential high-rise building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    Describes a study undertaken to assess the indoor air quality in the Clos St-Andre, a 78-unit residential complex in downtown Montreal, through the implementation of a monitoring protocol in three of the building`s suites; and to examine the relationships between mechanical ventilation, material emissions, occupant lifestyle, and indoor air pollutant concentrations. The monitoring protocol consisted of tracer gas, air exchange testing, material emission testing, airtightness testing, and the monitoring of air temperature, relative humidity, carbon dioxide, carbon monoxide, formaldehyde, and total volatile organic carbon in the suites. Trends in pollutant concentrations over time in the post-construction period are noted.

  2. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report by Lawrence Berkeley National Laboratory identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two meetings and provided input and feedback to early drafts ofmore » this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most U.S. locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.« less

  3. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two web-based meetings and provided input and feedback to early drafts of this document. The mostmore » fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most US locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.« less

  4. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  5. Simplifications for hydronic system models in modelica

    DOE PAGES

    Jorissen, F.; Wetter, M.; Helsen, L.

    2018-01-12

    Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less

  6. LOOPREF: A Fluid Code for the Simulation of Coronal Loops

    NASA Technical Reports Server (NTRS)

    deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel

    1998-01-01

    This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.

  7. diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data.

    PubMed

    Lareau, Caleb A; Aryee, Martin J; Berger, Bonnie

    2018-02-15

    The 3D architecture of DNA within the nucleus is a key determinant of interactions between genes, regulatory elements, and transcriptional machinery. As a result, differences in DNA looping structure are associated with variation in gene expression and cell state. To systematically assess changes in DNA looping architecture between samples, we introduce diffloop, an R/Bioconductor package that provides a suite of functions for the quality control, statistical testing, annotation, and visualization of DNA loops. We demonstrate this functionality by detecting differences between ENCODE ChIA-PET samples and relate looping to variability in epigenetic state. Diffloop is implemented as an R/Bioconductor package available at https://bioconductor.org/packages/release/bioc/html/diffloop.html. aryee.martin@mgh.harvard.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Engineer. The Professional Bulletin of Army Engineers. Volume 44. January-April 2014

    DTIC Science & Technology

    2014-04-01

    Building 3201,Suite 2661,Fort Leonard Wood ,MO,65473-8702 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES...and the Maneuver Support Center of Excellence G-37 Publications, Fort Leonard Wood , Missouri. Periodicals postage is paid at Fort Leonard Wood and...manuscript to Engineer Professional Bulletin, 14010 MSCoE Loop, Building 3201, Suite 2661, Fort Leonard Wood , MO 65473-8702. Due to the limited space per

  9. Development of a Rapid Cycling CO2 and H2O Removal Sorbent

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Paul, Heather L.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store eight hours worth of carbon dioxide (CO2). If the sorbent regeneration can be carried out during the Extravehicular Activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all CO2 and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration including long duration exploration missions requiring regenerable technologies and possibly the Crew Exploration Vehicle (CEV) spacecraft. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date.

  10. Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

    NASA Technical Reports Server (NTRS)

    Papale, William; Paul, Heather; Thomas, Gretchen

    2006-01-01

    Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system. Advancements in solid amine technology employed in a pressure swing adsorption system have led to the possibility of combining both the CO2 and humidity control requirements into a single, lightweight device. Because the pressure swing adsorption system is regenerated to space vacuum or by an inert purge stream, the duration of an EVA mission may be extended significantly over currently employed technologies, while markedly reducing the overall subsystem weight compared to the combined weight of the condensing heat exchanger and current regenerative CO2 removal technology. This paper will provide and overview of ongoing development efforts evaluating the subsystem size required to manage anticipated metabolic CO2 and water vapor generation rates in a spacesuit environment.

  11. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  12. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  13. RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design

    PubMed Central

    Huang, Po-Ssu; Ban, Yih-En Andrew; Richter, Florian; Andre, Ingemar; Vernon, Robert; Schief, William R.; Baker, David

    2011-01-01

    We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling. PMID:21909381

  14. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    PubMed

    Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2014-01-01

    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model can be used for simulation of closed-loop control of breathing under different conditions including respiratory disorders.

  15. A new look at ocean ventilation time scales and their uncertainties

    NASA Astrophysics Data System (ADS)

    Fine, Rana A.; Peacock, Synte; Maltrud, Mathew E.; Bryan, Frank O.

    2017-05-01

    A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on time scales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from nonstationarity of the atmospheric transient when there is mixing. These add to tracer age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to reinterpret observed temporal trends in tracer-derived ventilation time scales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26-27.2 σθ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend—perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be.

  16. A new look at ocean ventilation time scales and their uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, Rana A.; Peacock, Synte; Maltrud, Mathew E.

    A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on time scales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from nonstationarity of the atmospheric transient when there is mixing. These add to tracermore » age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to reinterpret observed temporal trends in tracer-derived ventilation time scales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26–27.2 σ θ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend—perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be.« less

  17. A new look at ocean ventilation time scales and their uncertainties

    DOE PAGES

    Fine, Rana A.; Peacock, Synte; Maltrud, Mathew E.; ...

    2017-03-17

    A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on time scales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from nonstationarity of the atmospheric transient when there is mixing. These add to tracermore » age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to reinterpret observed temporal trends in tracer-derived ventilation time scales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26–27.2 σ θ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend—perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be.« less

  18. Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Watts, Carly

    2011-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.

  19. Testing and Results of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    McMillin, Summer; Broerman, Craig; Swickrath, Mike; Anderson, Molly

    2010-01-01

    A principal concern for extravehicular activity (EVA) space suits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing re-generable beds has been developed by Hamilton Sundstrand. The application of solid-amine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with non-regenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA is the first RCA unit implementing radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrate the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or subambient atmosphere.

  20. Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis

    2008-01-01

    With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit portable life support systems (PLSS). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops (MPFLs) is discussed.

  1. Automated Control of Endotracheal Tube Cuff Pressure during Simulated Flight

    DTIC Science & Technology

    2016-06-21

    accomplished in the intensive care unit (ICU) with stand-alone devices as well as those integral to a ventilator [13,14]. We hypothesized that closed loop ... Administration approved automatic cuff pressure adjustment devices (Intellicuff, Hamilton Medical , Reno, NV; Pyton, ARM Medical , Bristol, CT; Cuff Sentry, Outcome...711th Human Performance Wing U.S. Air Force School of Aerospace Medicine Int’l Expeditionary Educ & Training Dept Air Force Expeditionary Medical

  2. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  3. Design and Assembly of an Integrated Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Paul, Heather L.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Ice Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously each the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU to the future flight unit are considered.

  4. Design and Assembly of an Integrated Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Bower, Chad E.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Icing Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU and the future flight unit are considered.

  5. Rescue Shuttle Flight Re-Entry: Controlling Astronaut Thermal Exposure

    NASA Technical Reports Server (NTRS)

    Gillis, David B.; Hamilton, Douglas; Ilcus, Stana; Stepaniak, Phil; Polk, J. D.; Son, Chang; Bue, Grant

    2008-01-01

    A rescue mission for the STS-125 Hubble Telescope Repair Mission requires reentry from space with 11 crew members aboard, exceeding past cabin thermal load experience and risking crew thermal stress potentially causing cognitive performance and physiological decrements. The space shuttle crew cabin air revitalization system (ARS) was designed to support a nominal crew complement of 4 to 7 crew and 10 persons in emergencies, all in a shirt-sleeve environment. Subsequent to the addition of full pressure suits with individual cooling units, the ARS cannot maintain a stable temperature in the crew cabin during reentry thermal loads. Bulk cabin thermal models, used for rescue mission planning and analysis of crew cabin air, were unable to accurately represent crew workstation values of air flow, carbon dioxide, and heat content for the middeck. Crew temperature models suggested significantly elevated core temperatures. Planning for an STS-400 potential rescue of seven stranded crew utilized computational fluid dynamics (CFD) models to demonstrate inhomogeneous cabin thermal properties and improve analysis compared to bulk models. In the absence of monitoring of crew temperature, heart rate, metabolic rate and incomplete engineering data on the performance of the integrated cooling garment/cooling unit (ICG/CU) at cabin temperatures above 75 degrees F, related systems & models were reevaluated and tests conducted with humans in the loop. Changes to the cabin ventilation, ICU placement, crew reentry suit-donning procedures, Orbiter Program wave-off policy and post-landing power down and crew extraction were adopted. A second CFD and core temperature model incorporated the proposed changes and confirmed satisfactory cabin temperature, improved air distribution, and estimated core temperatures within safe limits. CONCLUSIONS: These changes in equipment, in-flight and post-landing procedures, and policy were implemented for the STS-400 rescue shuttle & will be implemented in any future rescue flights from the International Space Station of stranded shuttle crews.

  6. Controlling 212Bi to 212Pb activity concentration ratio in thoron chambers.

    PubMed

    He, Zhengzhong; Xiao, Detao; Lv, Lidan; Zhou, Qingzhi; Shan, Jian; Qiu, Shoukang; Wu, Xijun

    2017-11-01

    It is necessary to establish a reference atmosphere in a thoron chamber containing various ratios of 212 Bi to 212 Pb activity concentrations (C( 212 Bi)/C( 212 Pb)) to simulate typical environmental conditions (e.g., indoor or underground atmospheres). In this study, a novel method was developed for establishing and controlling C( 212 Bi)/C( 212 Pb) in a thoron chamber system based on an aging chamber and air recirculation loops which alter the ventilation rate. The effects of main factors on the C( 212 Bi)/C( 212 Pb) were explored, and a steady-state theoretical model was derived to calculate the ratio. The results show that the C( 212 Bi)/C( 212 Pb) inside the chamber is mainly dependent on ventilation rate. Ratios ranging from 0.33 to 0.83 are available under various ventilation. The stability coefficient of the ratios is better than 7%. The experimental results are close to the theoretical calculated results, which indicates that the model can serve as a guideline for the quantitative control of C( 212 Bi)/C( 212 Pb). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chemical protective clothing; a study into the ability of staff to perform lifesaving procedures

    PubMed Central

    Coates, M.; Jundi, A.; James, M.

    2000-01-01

    Objective—To investigate the ability of medical and nursing staff to perform certain tasks while wearing a chemical protection suit with a respirator. Tasks chosen were those that would be required before decontamination. Methods—Ten experienced accident and emergency doctors (middle grade and consultants) and 10 nurses were asked to perform certain tasks that were judged to be life saving, relevant to triage, or necessary to confirm death, on an advanced life support manikin, while wearing a TST-Sweden chemical protection suit. The operators were objectively assessed by one of the authors for achieving each task, then asked to make a subjective assessment of the difficulty experienced. Results—Medical staff were asked to ventilate the manikin using a bag-valve-mask, intubate within 30 seconds, apply monitor electrodes and cables and check cardiac rhythm, apply gel pads and defibrillate safely, and finally, fold the cruciform triage card to show "RED", and attach it to the manikin. All the doctors completed these tasks, except for one, who could only intubate the manikin after several attempts. Nursing staff were asked to open and apply an oxygen mask, adjust oxygen flow, size and insert an oropharyngeal airway, ventilate the manikin using a bag-valve-mask, apply a pressure bandage to a limb, and fold the cruciform triage card to show "YELLOW", and attach it to the manikin. All the nurses completed these tasks. Operators reported varying degrees of difficulty, the most difficult tasks were those requiring fine movements or delicate control. Generally, operators found the butyl rubber gloves cumbersome. Communication difficulties were frequently reported. Although only intubation was formally timed, tasks were perceived to take longer. Some operators found the suits too warm and uncomfortable. Conclusion—Should the need arise, the TST-Sweden chemical protection suits would enable experienced doctors and nurses to perform lifesaving measures effectively, without significant impairment to their skills. Tasks would be easier to accomplish with better fitting gloves. PMID:10718233

  8. Comparison of different coil positions for ventilation monitoring with contact-less magnetic impedance measurements

    NASA Astrophysics Data System (ADS)

    Cordes, A.; Pollig, D.; Leonhardt, S.

    2010-04-01

    For monitoring the health status of individuals, proper monitoring of ventilation is desirable. Therefore, a continuous measurement technique is an advantage for many patients since it allows personal home care scenarios. As an example, monitoring of elderly people at home could enable them to live in their familiar environment on their own with the safety of a continuous monitoring. Therefore, a measurement technique without the restriction of mobility is required. Since it is possible to monitor ventilation with magnetic impedance measurements without conductive contact, this technique is well suited for the mentioned scenario. Integrated in a chair, a person's health state could be monitored in many situations, e.g. during meals, while watching TV or reading a book. In this paper, we compare different positions of coil arrays for a magnetic impedance measurement system integrated in a chair in order to monitor ventilation continuously. For limiting the costs and technical complexity of the magnetic impedance measurement system, we have a focus on coil configurations with one RF channel. To limit the needed space and thickness of the array in the backrest, planar gradiometer coil setups are investigated. All measurements will be performed with a new developed portable magnetic impedance measurement system and a standard office chair.

  9. Optimal ventilator strategies for trauma-related ARDS.

    PubMed

    Goatly, Giles; Guidozzi, N; Khan, M

    2018-03-29

    Acute respiratory distress syndrome (ARDS) was first described in the 1960s and has become a major area of research due to the mortality and morbidity associated with it. ARDS is currently defined using the Berlin Consensus; however, this is not wholly applicable for trauma-related ARDS. A systematic review of the literature was undertaken using the Preferred Reporting for Systematic Reviews and Meta Analyses methodology. The Ovid Medline, Web of Science and PubMed online databases were interrogated for papers published between 1 January 1995 and 31 December 2017. The literature search yielded a total of 64 papers that fulfilled the search criteria. Despite decades of dedicated research into different treatment modalities, ARDS continues to carry a high burden of mortality. The ARDS definitions laid out in the Berlin consensus are not entirely suited to trauma. While trauma-related ARDS represents a small portion of the available research, the evidence continues to favour low tidal volume ventilation as the benchmark for current practice. Positive end expiratory ventilation and airway pressure release ventilation in trauma cohorts may be beneficial; however, the evidence to date does not show this. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. 21st Century HVAC System for Future Naval Surface Combatants - Concept Development Report

    DTIC Science & Technology

    2007-09-01

    application of permanent magnet motors to ventilation fans3. The study emphasized reducing the motor size, incorporating variable speed operation to reduce...Incorporation of permanent magnet motors and variable speed is also feasible. Permanent magnet motor technology is ideally suited for variable...family incorporates high speed permanent magnet motors and further fan blade design improvements. The fan diameters will be reduced, substantially, at the

  11. Modeling the internal dynamics of energy and mass transfer in an imperfectly mixed ventilated airspace.

    PubMed

    Janssens, K; Van Brecht, A; Zerihun Desta, T; Boonen, C; Berckmans, D

    2004-06-01

    The present paper outlines a modeling approach, which has been developed to model the internal dynamics of heat and moisture transfer in an imperfectly mixed ventilated airspace. The modeling approach, which combines the classical heat and moisture balance differential equations with the use of experimental time-series data, provides a physically meaningful description of the process and is very useful for model-based control purposes. The paper illustrates how the modeling approach has been applied to a ventilated laboratory test room with internal heat and moisture production. The results are evaluated and some valuable suggestions for future research are forwarded. The modeling approach outlined in this study provides an ideal form for advanced model-based control system design. The relatively low number of parameters makes it well suited for model-based control purposes, as a limited number of identification experiments is sufficient to determine these parameters. The model concept provides information about the air quality and airflow pattern in an arbitrary building. By using this model as a simulation tool, the indoor air quality and airflow pattern can be optimized.

  12. Evaluation of a liquid cooling garment as a component of the Launch and Entry Suit (LES)

    NASA Technical Reports Server (NTRS)

    Waligora, J.; Charles, J.; Fritsch, I.; Fortney, S.; Siconolfi, S.; Pepper, L.; Bagian, L.; Kumar, V.

    1994-01-01

    The LES is a partial pressure suit and a component of the shuttle life support system used during launch and reentry. The LES relies on gas ventilation with cabin air to provide cooling. There are conditions during nominal launch and reentry, landing, and post-landing phases when cabin temperature is elevated. Under these conditions, gas cooling may result in some discomfort and some decrement in orthostatic tolerance. There are emergency conditions involving loss of cabin ECS capability that would challenge crew thermal tolerance. The results of a series of tests are presented. These tests were conducted to assess the effectiveness of a liquid-cooled garment in alleviating thermal discomfort, orthostatic intolerance, and thermal intolerance during simulated mission phases.

  13. NASA Tech Briefs, December 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics include: Microwave Kinetic Inductance Detector With; Selective Polarization Coupling; Flexible Microstrip Circuits for; Superconducting Electronics; CFD Extraction Tool for TecPlot From DPLR Solutions; RECOVIR Software for Identifying Viruses; Enhanced Contact Graph Routing (ECGR) MACHETE Simulation Model; Orbital Debris Engineering Model (ORDEM) v.3; Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation; Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response; Hermetic Seal Designs for Sample Return Sample Tubes; Silicon Alignment Pins: An Easy Way To Realize a Wafer-to-Wafer Alignment; Positive-Buoyancy Rover for Under Ice Mobility; Electric Machine With Boosted Inductance to Stabilize Current Control; International Space Station-Based Electromagnetic Launcher for Space Science Payloads; Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems; Data Quality Screening Service.

  14. Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results

    NASA Technical Reports Server (NTRS)

    Watts, Carly A.; Vogel, Matt

    2012-01-01

    A multi-year effort has been carried out at the Johnson Space Center to develop an advanced EVA PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off-the-shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). PLSS 1.0 was tested from June 17th through September 30th, 2011. Testing accumulated 233 hours over 45 days, while executing 119 test points. An additional 164 hours of operational time were accrued during the test series, bringing the total operational time for PLSS 1.0 testing to 397 hours. Specific PLSS 1.0 test objectives assessed during this testing include: (1) Confirming prototype components perform in a system level test as they have performed during component level testing, (2) Identifying unexpected system-level interactions (3) Operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions (4) Simulating nominal transient EVA operational scenarios (5) Simulating contingency EVA operational scenarios (6) Further evaluating prototype technology development components Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected. Documented anomalies and observations include: (1) Ventilation loop fan controller issues at high fan speeds (near 70,000 rpm, whereas the fan speed during nominal operations would be closer to 35,000 rpm) (2) RCA performance at boundary conditions, including carbon dioxide and water vapor saturation events, as well as reduced vacuum quality (3) SWME valve anomalies (4 documented cases where the SWME failed to respond to a control signal or physically jammed, preventing SWME control) (4) Reduction of SWME hollow fiber hydrophobicity and significant reduction of the SWME degassing capability after significant accumulated test time.

  15. Respiratory diagnostic possibilities during closed circuit anesthesia.

    PubMed

    Verkaaik, A P; Erdmann, W

    1990-01-01

    An automatic feed back controlled totally closed circuit system (Physioflex) has been developed for quantitative practice of inhalation anesthesia and ventilation. In the circuit system the gas is moved unidirectionally around by a blower at 70 l/min. In the system four membrane chambers are integrated for ventilation. Besides end-expiratory feed back control of inhalation anesthetics, and inspiratory closed loop control of oxygen, the system offers on-line registration of flow, volume and respiratory pressures as well as a capnogram and oxygen consumption. Alveolar ventilation and static compliance can easily be derived. On-line registration of oxygen consumption has proven to be of value for determination of any impairment of tissue oxygen supply when the oxygen delivery has dropped to critical values. Obstruction of the upper or lower airways are immediately detected and differentiated. Disregulations of metabolism, e.g. in malignant hyperthermia, are seen in a pre-crisis phase (increase of oxygen consumption and of CO2 production), and therapy can be started extremely early and before a disastrous condition has developed. Registration of compliance is only one of the continuously available parameters that guarantee a better and adequate control of lung function (e.g. atalectasis is early detected). The newly developed sophisticated anesthesia device enlarges tremendously the monitoring and respiratory diagnostic possibilities of artificial ventilation, gives new insights in the (patho)physiology and detects disturbances of respiratory parameters and metabolism in an early stage.

  16. A Simple “Blood-Saving Bundle” Reduces Diagnostic Blood Loss and the Transfusion Rate in Mechanically Ventilated Patients

    PubMed Central

    Riessen, Reimer; Behmenburg, Melanie; Blumenstock, Gunnar; Guenon, Doris; Enkel, Sigrid; Schäfer, Richard; Haap, Michael

    2015-01-01

    Introduction Aim of this study was to reduce blood loss caused by diagnostic blood sampling and to minimize the development of anemia in a high-risk group of mechanically ventilated medical intensive care patients. We therefore implemented a “blood-saving bundle” (BSB) combining a closed-loop arterial blood sampling system, smaller sampling tubes, reduced frequency of blood drawings, and reduced sample numbers. Methods The study included all patients from our medical ICU who were ventilated for more than 72 hours. Exclusion criteria were: acute or chronic anemia on admission, bleeding episode(s) during the ICU stay, or end-of-life therapy. The BSB was introduced in 2009 with training and educational support. Patients treated in 2008, before the introduction of the BSB, served as a control group (n = 41, 617 observation days), and were compared with patients treated in 2010 after the introduction of the BSB (BSB group, n = 50, 559 observation days). Primary endpoints were blood loss per day, and development of anemia. Secondary endpoints were numbers of blood transfusions, number of days on mechanical ventilation, and length of the ICU stay. Results Mean blood loss per ICU day was decreased from 43.3 ml (95% CI: 41.2 to 45.3 ml) in the controls to 15.0 ml (14.3 to 15.7 ml) in the BSB group (P < 0.001). The introduction of a closed-loop arterial blood sampling system was the major contributor to this effect. Mean hemoglobin concentrations showed no significant differences in both groups during the ICU stay. Hemoglobin values <9 g/dl, however, were recorded in 21.2% of observation days in the controls versus 15.4% in the BSB group (P = 0.01). Units of transfused red blood cells per 100 observation days decreased from 7 to 2.3 (P < 0.001). The mean number of ventilation days was 7.1 days (6.1 to 8.3 days) in the controls and 7.5 days (6.6 to 8.5 days) in the BSB group (P = NS). In total, patients in the BSB group stayed in ICU for a mean of 9.9 days (8.6 to 11.3 days), compared to a mean ICU stay of 13.0 days (10.9 to 15.4 days) in the control group (P = 0.014). Due to the longitudinal study design, however, we cannot exclude uncontrolled confounders affecting the transfusion frequency and mean ICU stay. Conclusion Our BSB could be easily implemented and was able to reduce diagnostic blood loss. PMID:26421920

  17. 75 FR 69633 - Marine Mammals; File No. 15206

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... the Vancouver Aquarium Marine Science Center, British Columbia, Canada to Sea World of Texas, had been... Administration (NOAA), Commerce. ACTION: Notice; issuance of permit. SUMMARY: Notice is hereby given that Sea World, LLC, 9205 South Park Center Loop, Suite 400, Orlando, FL 32819 [Brad Andrews, Responsible Party...

  18. Pathogenesis of Central and Complex Sleep Apnoea

    PubMed Central

    Orr, Jeremy E.; Malhotra, Atul; Sands, Scott A.

    2016-01-01

    Central sleep apnoea (CSA)—the temporary absence or diminution of ventilator effort during sleep—is seen in a variety of forms including periodic breathing in infancy and healthy adults at altitude and Cheyne-Stokes respiration in heart failure. In most circumstances, the cyclic absence of effort is paradoxically a consequence of hypersensitive ventilatory chemoreflex responses to oppose changes in airflow, i.e. elevated loop gain, leading to overshoot/undershoot ventilatory oscillations. Considerable evidence illustrates overlap between CSA and obstructive sleep apnoea (OSA), including elevated loop gain in patients with OSA and the presence of pharyngeal narrowing during central apnoeas. Indeed, treatment of OSA, whether via CPAP, tracheostomy, or oral appliances, can reveal CSA, an occurrence referred to as complex sleep apnoea. Factors influencing loop gain include increased chemosensitivity (increased controller gain), reduced damping of blood gas levels (increased plant gain) and increased lung to chemoreceptor circulatory delay. Sleep-wake transitions and pharyngeal dilator muscle responses effectively raise the controller gain and therefore also contribute to total loop gain and overall instability. In some circumstances, for example apnoea of infancy and central congenital hypoventilation syndrome, central apnoeas are the consequence of ventilatory depression and defective ventilatory responses, i.e. low loop gain. The efficacy of available treatments for CSA can be explained in terms of their effects on loop gain, e.g. CPAP improves lung volume (plant gain), stimulants reduce the alveolar-inspired PCO2 difference, supplemental oxygen lowers chemosensitivity. Understanding the magnitude of loop gain and the mechanisms contributing to instability may facilitate personalised interventions for CSA. PMID:27797160

  19. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    PubMed

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  20. Application unit for the administration of contrast gases for pulmonary magnetic resonance imaging: optimization of ventilation distribution for (3) He-MRI.

    PubMed

    Güldner, M; Becker, St; Wolf, U; Düber, C; Friesenecker, A; Gast, K K; Heil, W; Hoffmann, C; Karpuk, S; Otten, E W; Rivoire, J; Salhi, Z; Scholz, A; Schreiber, L M; Terekhov, M

    2015-09-01

    MRI of lung airspaces using gases with MR-active nuclei ((3) He, (129) Xe, and (19) F) is an important area of research in pulmonary imaging. The volume-controlled administration of gas mixtures is important for obtaining quantitative information from MR images. State-of-the-art gas administration using plastic bags (PBs) does not allow for a precise determination of both the volume and timing of a (3) He bolus. A novel application unit (AU) was built according to the requirements of the German medical devices law. Integrated spirometers enable the monitoring of the inhaled gas flow. The device is particularly suited for hyperpolarized (HP) gases (e.g., storage and administration with minimal HP losses). The setup was tested in a clinical trial (n = 10 healthy volunteers) according to the German medicinal products law using static and dynamic ventilation HP-(3) He MRI. The required specifications for the AU were successfully realized. Compared to PB-administration, better reproducibility of gas intrapulmonary distribution was observed when using the AU for both static and dynamic ventilation imaging. The new AU meets the special requirements for HP gases, which are storage and administration with minimal losses. Our data suggest that gas AU-administration is superior to manual modes for determining the key parameters of dynamic ventilation measurements. © 2014 Wiley Periodicals, Inc.

  1. Integrating Human Factors into Crew Exploration Vehicle (CEV) Design

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina; Baggerman, Susan; Campbell, Paul

    2007-01-01

    The purpose of this design process is to apply Human Engineering (HE) requirements and guidelines to hardware/software and to provide HE design, analysis and evaluation of crew interfaces. The topics include: 1) Background/Purpose; 2) HE Activities; 3) CASE STUDY: Net Habitable Volume (NHV) Study; 4) CASE STUDY: Human Modeling Approach; 5) CASE STUDY: Human Modeling Results; 6) CASE STUDY: Human Modeling Conclusions; 7) CASE STUDY: Human-in-the-Loop Evaluation Approach; 8) CASE STUDY: Unsuited Evaluation Results; 9) CASE STUDY: Suited Evaluation Results; 10) CASE STUDY: Human-in-the-Loop Evaluation Conclusions; 11) Near-Term Plan; and 12) In Conclusion

  2. Hearing loss among high-risk newborns admitted to a tertiary Neonatal Intensive Care Unit.

    PubMed

    Khairy, May Ahmed; Abuelhamed, Walaa Alsharany; Ahmed, Radwa Sayed; El Fouly, Hedayet El Sayed; Elhawary, Ismail Mohamed

    2018-07-01

    The aim of this work is to identify the most significant risk factors for hearing impairment in high risk neonates hospitalized at our Neonatal Intensive Care Unit (NICU) and to assess the sensitivity of hearing screening tests. This study involved 260 neonates admitted to a tertiary NICU; they were classified into two groups; 150 preterm and 110 full terms with risk factors for hearing loss. The hearing screening tests performed were transient evoked otoacoustic emissions (TEOAEs) and the automated auditory brainstem response (AABR). Forty-eight preterm neonates (32%) and 30 full term neonates (27.3%) had pathological AABR. In preterm group, mechanical ventilation more than five days, sepsis, usage of aminoglycosides, loop diuretics, vancomycin alone or in combination with aminoglycosides and prolonged duration of admission were considered risk factors of hearing affection whereas in full term group mechanical ventilation more than five days was the risk factor of hearing affection (p<.05). The prevalence of hearing loss is highest among high risk neonates and TEOAE and AABR were found to be reliable screening tools. Use of ototoxic drugs and mechanical ventilation for more than five days were significant risk factors for hearing loss in our study population.

  3. Fault Management Metrics

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  4. Evaluation of three automatic oxygen therapy control algorithms on ventilated low birth weight neonates.

    PubMed

    Morozoff, Edmund P; Smyth, John A

    2009-01-01

    Neonates with under developed lungs often require oxygen therapy. During the course of oxygen therapy, elevated levels of blood oxygenation, hyperoxemia, must be avoided or the risk of chronic lung disease or retinal damage is increased. Low levels of blood oxygen, hypoxemia, may lead to permanent brain tissue damage and, in some cases, mortality. A closed loop controller that automatically administers oxygen therapy using 3 algorithms - state machine, adaptive model, and proportional integral derivative (PID) - is applied to 7 ventilated low birth weight neonates and compared to manual oxygen therapy. All 3 automatic control algorithms demonstrated their ability to improve manual oxygen therapy by increasing periods of normoxemia and reducing the need for manual FiO(2) adjustments. Of the three control algorithms, the adaptive model showed the best performance with 0.25 manual adjustments per hour and 73% time spent within target +/- 3% SpO(2).

  5. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  6. EMU Suit Performance Simulation

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based on individual anthropometry

  7. Aerophagia and anesthesia: an unusual cause of ventilatory insufficiency in a neonate.

    PubMed

    Lalwani, Kirk

    2005-10-01

    We describe a healthy neonate with abdominal distention, inadequate ventilation, and delayed extubation during anesthesia for minor surgery. Following rectal decompression and successful extubation, extreme abdominal distention recurred postoperatively after ingestion of clear fluids. We elicited a history of frequent and excessive flatus from the parents, and abdominal radiography revealed distended loops of small bowel with small lung volumes suggestive of aerophagia. The differential diagnosis of aerophagia is reviewed, the anesthetic implications discussed, and relevant literature pertaining to this condition summarized.

  8. Mid-depth sedimentary oxygenation variation in the western Pacific since the last glacial period: geochemical evidence from the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Zou, J. J.; Shi, X.; Zhu, A.

    2017-12-01

    In this study, we investigate a suite of sediment geochemical proxies (total organic carbon and carbonate contents, carbon to nitrogen ratio, aluminum and redox-sensitive elements) to reconstruct the history of sedimentary oxygenation in the northern Okinawa Trough (OT) over the last 50 thousand years (ka). Our data support the presence of oxygen-deficient deep waters during the late deglacial and Preboreal phases (15‒9.5 ka), but oxygenated water column during the Heinrich Stadial 1 (HS1) and the Last Glacial Maximum (LGM). In contrast, increased sedimentary oxygenations are evident during the late glacial period and since 8.5 ka. Fluctuations of sedimentary oxygenation were widespread and apparently coherent over the entire North Pacific basin, reflecting broad effects of North Pacific Intermediate Water (NPIW) ventilation and export productivity. Intensified Kuroshio, however, improved the sedimentary oxygenation since 8.5 ka. We found the correspondence between changes in deglacial sedimentary oxygenation in the OT and Atlantic Meridional Overturning Circulation through the NPIW ventilation. The mechanism behind Atlantic-Pacific ventilation seesaw seems to be attributed to the perturbation of sea ice formation in high latitude North Pacific through atmospheric teleconnection.

  9. An observer-based compensator for distributed delays

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    This paper presents an algorithm for compensating delays that are distributed between the sensor(s), controller and actuator(s) within a control loop. This observer-based algorithm is specially suited to compensation of network-induced delays in integrated communication and control systems. The robustness of the algorithm relative to plant model uncertainties has been examined.

  10. A Comparative Data-Based Modeling Study on Respiratory CO2 Gas Exchange during Mechanical Ventilation

    PubMed Central

    Kim, Chang-Sei; Ansermino, J. Mark; Hahn, Jin-Oh

    2016-01-01

    The goal of this study is to derive a minimally complex but credible model of respiratory CO2 gas exchange that may be used in systematic design and pilot testing of closed-loop end-tidal CO2 controllers in mechanical ventilation. We first derived a candidate model that captures the essential mechanisms involved in the respiratory CO2 gas exchange process. Then, we simplified the candidate model to derive two lower-order candidate models. We compared these candidate models for predictive capability and reliability using experimental data collected from 25 pediatric subjects undergoing dynamically varying mechanical ventilation during surgical procedures. A two-compartment model equipped with transport delay to account for CO2 delivery between the lungs and the tissues showed modest but statistically significant improvement in predictive capability over the same model without transport delay. Aggregating the lungs and the tissues into a single compartment further degraded the predictive fidelity of the model. In addition, the model equipped with transport delay demonstrated superior reliability to the one without transport delay. Further, the respiratory parameters derived from the model equipped with transport delay, but not the one without transport delay, were physiologically plausible. The results suggest that gas transport between the lungs and the tissues must be taken into account to accurately reproduce the respiratory CO2 gas exchange process under conditions of wide-ranging and dynamically varying mechanical ventilation conditions. PMID:26870728

  11. Efforts to Reduce International Space Station Crew Maintenance Time in the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    NASA Technical Reports Server (NTRS)

    Etter,David; Rector, Tony; Boyle, robert; Zande, Chris Vande

    2012-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.

  12. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  13. A multiloop generalization of the circle criterion for stability margin analysis

    NASA Technical Reports Server (NTRS)

    Safonov, M. G.; Athans, M.

    1979-01-01

    In order to provide a theoretical tool suited for characterizing the stability margins of multiloop feedback systems, multiloop input-output stability results generalizing the circle stability criterion are considered. Generalized conic sectors with 'centers' and 'radii' determined by linear dynamical operators are employed to specify the stability margins as a frequency dependent convex set of modeling errors (including nonlinearities, gain variations and phase variations) which the system must be able to tolerate in each feedback loop without instability. The resulting stability criterion gives sufficient conditions for closed loop stability in the presence of frequency dependent modeling errors, even when the modeling errors occur simultaneously in all loops. The stability conditions yield an easily interpreted scalar measure of the amount by which a multiloop system exceeds, or falls short of, its stability margin specifications.

  14. Adaptive Inner-Loop Rover Control

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.

    2006-01-01

    Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.

  15. Apparatus for Sizing and Rewinding Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Wilson, M. L.; Stanfield, C. E.

    1986-01-01

    Equipment ideally suited for research and development of new sizing solutions. Designed expecially for applying thermoplastic sizing solutions to graphite tow consisting of 3,000 to 12,000 filaments per tow, but accommodates other solutions, filament counts, and materials other than graphite. Closed system containing highly volatile methylene chloride vapors. Also ventilation system directly over resin reservoir. Concept used to apply sizing compounds on fiber tows or yarn-type reinforcement materials used in composite technology. Sizing solutions consist of compounds compatible with thermosets as well as thermoplastics.

  16. Embedded Relative Navigation Sensor Fusion Algorithms for Autonomous Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon K.; Betts, Kevin M.; McDuffie, James H.; Dreas, Christine B.

    2008-01-01

    bd Systems (a subsidiary of SAIC) has developed a suite of embedded relative navigation sensor fusion algorithms to enable NASA autonomous rendezvous and docking (AR&D) missions. Translational and rotational Extended Kalman Filters (EKFs) were developed for integrating measurements based on the vehicles' orbital mechanics and high-fidelity sensor error models and provide a solution with increased accuracy and robustness relative to any single relative navigation sensor. The filters were tested tinough stand-alone covariance analysis, closed-loop testing with a high-fidelity multi-body orbital simulation, and hardware-in-the-loop (HWIL) testing in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL).

  17. Portable Life Support System 2.5 Fan Design and Development

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2016-01-01

    NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.

  18. Management of the Post-Shuttle Extravehicular Mobility Unit (EMU) Water Circuits

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Etter, David; Rector, Tony; Hill, Terry; Wells, Kevin

    2011-01-01

    The EMU incorporates two separate water circuits for the rejection of metabolic heat from the astronaut and the cooling of electrical components. The first (the Transport Water Loop) circulates in a semi-closed-loop manner and absorbs heat into a Liquid Coolant and Ventilation Garment (LCVG) warn by the astronaut. The second (the Feed Water Loop) provides water to a cooling device (Sublimator) with a porous plate, and that water subsequently sublimates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. Efforts are underway to streamline the use of a water processing kit (ALCLR) that is being used to periodically clean and disinfect the Transport Loop Water. Those efforts include a fine tuning of the duty cycle based on a review of prior performance data as well as an assessment of a fixed installation of this kit into the EMU backpack or within on-orbit EMU interface hardware. Furthermore, testing is being conducted to ensure compatibility between the International Space Station (ISS) Water Processor Assembly (WPA) effluent and the EMU Sublimator as a prelude to using the WPA effluent as influent to the EMU Feed Water loop. This work is undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  19. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  20. Management of the Post-Shuttle Extravehicular Mobility Unit (EMU) Water Circuits

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Etter, David; Rector, Tony; Hill, Terry; Wells, Kevin

    2012-01-01

    The EMU incorporates two separate water circuits for the rejection of metabolic heat from the astronaut and the cooling of electrical components. The first (the Transport Water Loop) circulates in a semi-closed-loop manner and absorbs heat into a Liquid Coolant and Ventilation Garment (LCVG) worn by the astronaut. The second (the Feed-water Loop) provides water to a cooling device (Sublimator) with a porous plate, and that water subsequently sublimates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. Efforts are underway to streamline the use of a water processing kit (ALCLR) that is being used to periodically clean and disinfect the Transport Loop Water. Those efforts include a fine tuning of the duty cycle based on a review of prior performance data as well as an assessment of a fixed installation of this kit into the EMU backpack, within on-orbit EMU interface hardware or as a stand-alone unit. Furthermore, testing is being conducted to ensure compatibility between the International Space Station (ISS) Water Processor Assembly (WPA) effluent and the EMU Sublimator as a prelude to using the WPA effluent as influent to the EMU Feed Water loop. This work is undertaken to reduce the crewtime and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a 6-year service life.

  1. In-depth survey report: control technology assessment of unit operations employed in oral-contraceptive tablet-making operations at Ortho Pharmaceutical Corporation, Raritan, New Jersey, June 13-17, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastas, M.Y.; Caplan, P.E.; Froehlich, P.A.

    An on-site visit was made to the Ortho Pharmaceutical Corporation (OPC), Raritan, New Jersey to evaluate methods of controlling exposure to hazardous materials during the manufacturing of medications. OPC produced oral-contraceptive tablets containing norethindrone (NOR), mestranol, and ethynylestradiol (EE). Ventilation was an important engineering control at this site. Other engineering controls included the isolation of work procedures and automation of work practices for weighing ingredients, granulation of substances, tableting, and packaging. Area samples were taken for air monitoring of steroid concentration levels in each manufacturing area. Access to the work areas was only through the locker rooms. Samples taken inmore » the locker rooms revealed no detectable contaminant levels. Workers performing high risk activities wore air supplied vinyl suits and disposable rubber gloves. The vinyl suits had overshoes attached. For moderate risk activities the workers wore a disposable suit, rubber gloves and shoe covers. Appropriate respirators were provided. Workers in low risk activities wore disposable rubber gloves and appropriate respirators. Sampling indicated that processing workers experienced breathing-zone levels outside their vinyl suits of 16.40 and 0.36 micrograms/cubic meter of NOR and EE, respectively.« less

  2. Compact Multi-Gas Monitor for Life Support Systems Control in Space: Evaluation Under Realistic Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Chullen, Cinda; Mendoza, Edgar

    2014-01-01

    Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, pressure range from 3.5 to 14.7 psi, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under liquid water saturation. This paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a spacesuit portable Life support system and the analytical characterization of the optical sensors interrogated by the novel optoelectronic system. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the spacesuit, which may interfere with gas sensor readings. The paper also presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in spacesuits. The studies were conducted with the spacecraft maximum allowable concentrations for those trace gases and the calculated 8-hr. concentrations resulting from having no trace contaminant control system in the ventilation loop. Finally, a profile of temperature, pressure, humidity, and gas composition for a typical EVA mission has been defined, and the performance of sensors operated repeatedly under simulated EVA mission conditions has been studied.

  3. Development of a Rapid Cycling CO(sub 2) and H(sub 2)O Removal Sorbent

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Alptekin, Goekhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Gershanovich, Yevgenia

    2007-01-01

    The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. The progress of regenerable CO2 and humidity control is leading us towards the use of a rapid cycling amine system. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all carbon dioxide and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration such as the Orion spacecraft and other longer duration exploration missions requiring regenerable technologies. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date. The results of a preliminary system analysis are also included, showing the size and volume reductions for PLSS provided by the new system.

  4. Metal hydride heat pump engineering demonstration and evaluation model

    NASA Technical Reports Server (NTRS)

    Lynch, Franklin E.

    1993-01-01

    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).

  5. Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce

    2012-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.

  6. Meeting the Challenge: A 1986 History of the Naval Surface Weapons Center

    DTIC Science & Technology

    1987-05-29

    8217GClK JACK lMUITRIUXER DIG Iot I ---, , SUpFt S COMPUTER ’ HEL DE Osi cOeiTROLPRiOCESSO HIGM SPEED ATA BUS OM SWR AU VAGKTtC BIBS11 Closed-Loop...appear. HVAC designers think it can determine if closures need to be installed on ventilation inlets to prevent the ingress of exhaust gases from...and fuze timing errors. If the fuze could be caused to actuate based on target position rather than a predicted time of flight, these errors could be

  7. Applying Computer Models to Realize Closed-Loop Neonatal Oxygen Therapy.

    PubMed

    Morozoff, Edmund; Smyth, John A; Saif, Mehrdad

    2017-01-01

    Within the context of automating neonatal oxygen therapy, this article describes the transformation of an idea verified by a computer model into a device actuated by a computer model. Computer modeling of an entire neonatal oxygen therapy system can facilitate the development of closed-loop control algorithms by providing a verification platform and speeding up algorithm development. In this article, we present a method of mathematically modeling the system's components: the oxygen transport within the patient, the oxygen blender, the controller, and the pulse oximeter. Furthermore, within the constraints of engineering a product, an idealized model of the neonatal oxygen transport component may be integrated effectively into the control algorithm of a device, referred to as the adaptive model. Manual and closed-loop oxygen therapy performance were defined in this article by 3 criteria in the following order of importance: percent duration of SpO2 spent in normoxemia (target SpO2 ± 2.5%), hypoxemia (less than normoxemia), and hyperoxemia (more than normoxemia); number of 60-second periods <85% SpO2 and >95% SpO2; and number of manual adjustments. Results from a clinical evaluation that compared the performance of 3 closed-loop control algorithms (state machine, proportional-integral-differential, and adaptive model) with manual oxygen therapy on 7 low-birth-weight ventilated preterm babies, are presented. Compared with manual therapy, all closed-loop control algorithms significantly increased the patients' duration in normoxemia and reduced hyperoxemia (P < 0.05). The number of manual adjustments was also significantly reduced by all of the closed-loop control algorithms (P < 0.05). Although the performance of the 3 control algorithms was equivalent, it is suggested that the adaptive model, with its ease of use, may have the best utility.

  8. Closed-Loop Neuromodulation Systems: Next-Generation Treatments for Psychiatric Illness

    PubMed Central

    Lo, Meng-Chen; Widge, Alik S.

    2017-01-01

    Despite deep brain stimulation’s positive early results in psychiatric disorders, well-designed clinical trials have yielded inconsistent clinical outcomes. One path to more reliable benefit is closed-loop therapy: stimulation that is automatically adjusted by a device or algorithm in response to changes in the patient’s electrical brain activity. These interventions may provide more precise and patient-specific treatments. In this article, we first introduce the available closed-loop neuromodulation platforms, which have shown clinical efficacy in epilepsy and strong early results in movement disorders. We discuss the strengths and limitations of these devices in the context of psychiatric illness. We then describe emerging technologies to address these limitations, including pre-clinical developments such as wireless deep neurostimulation and genetically targeted neuromodulation. Finally, we discuss ongoing challenges and limitations for closed-loop psychiatric brain stimulation development, most notably the difficulty of identifying meaningful biomarkers for titration. We consider this in the recently-released Research Domain Criteria (RDoC) framework and describe how neuromodulation and RDoC are jointly very well suited to address the problem of treatment-resistant illness. PMID:28523978

  9. Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Hongsheng

    This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.

  10. Book of Abstracts from the MORS Symposium (62nd) Held in Colorado Springs, Colorado

    DTIC Science & Technology

    1994-06-01

    34Med poin detector roles, wil be addressed. Abstract amt available. Dr. Willim Christiansen Louis Douingusa, Randall Parish, Fernando, Pens, Susan...Costs: Air Force Methodology Army Reserve Component Inventory Projection Daniel L. Leighton Herb Shukiar SRA Corporation RAND 1777 NE Loop 410, Suite...35, 52 Chevalier, William J ...................... 80 Behymer, Maj Bill ..................... 53 Christiansen , William

  11. Small Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Sweterlitsch, Jeffrey

    2011-01-01

    A principle concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has long been evaluated for use in this application and several programs are evaluating it for use in both a cabin as well as space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of small scale SA9T testing that was performed over a variety of test conditions and with a variety of trace contaminants. Testing evaluated the ability of SA9T media to sufficiently remove CO2 and H2O after exposure to a fully saturated trace contaminant at ambient conditions. Testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures during cyclic operation with a constant inlet contaminant load. In addition, testing evaluated the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream.

  12. A dihydropyridine receptor alpha1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor.

    PubMed

    Cui, Yanfang; Tae, Han-Shen; Norris, Nicole C; Karunasekara, Yamuna; Pouliquin, Pierre; Board, Philip G; Dulhunty, Angela F; Casarotto, Marco G

    2009-03-01

    The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.

  13. All India Difficult Airway Association 2016 guidelines for the management of unanticipated difficult tracheal intubation in adults.

    PubMed

    Myatra, Sheila Nainan; Shah, Amit; Kundra, Pankaj; Patwa, Apeksh; Ramkumar, Venkateswaran; Divatia, Jigeeshu Vasishtha; Raveendra, Ubaradka S; Shetty, Sumalatha Radhakrishna; Ahmed, Syed Moied; Doctor, Jeson Rajan; Pawar, Dilip K; Ramesh, Singaravelu; Das, Sabyasachi; Garg, Rakesh

    2016-12-01

    The All India Difficult Airway Association (AIDAA) guidelines for management of the unanticipated difficult airway in adults provide a structured, stepwise approach to manage unanticipated difficulty during tracheal intubation in adults. They have been developed based on the available evidence; wherever robust evidence was lacking, or to suit the needs and situation in India, recommendations were arrived at by consensus opinion of airway experts, incorporating the responses to a questionnaire sent to members of the AIDAA and the Indian Society of Anaesthesiologists. We recommend optimum pre-oxygenation and nasal insufflation of 15 L/min oxygen during apnoea in all patients, and calling for help if the initial attempt at intubation is unsuccessful. Transnasal humidified rapid insufflations of oxygen at 70 L/min (transnasal humidified rapid insufflation ventilatory exchange) should be used when available. We recommend no more than three attempts at tracheal intubation and two attempts at supraglottic airway device (SAD) insertion if intubation fails, provided oxygen saturation remains ≥ 95%. Intubation should be confirmed by capnography. Blind tracheal intubation through the SAD is not recommended. If SAD insertion fails, one final attempt at mask ventilation should be tried after ensuring neuromuscular blockade using the optimal technique for mask ventilation. Failure to intubate the trachea as well as an inability to ventilate the lungs by face mask and SAD constitutes 'complete ventilation failure', and emergency cricothyroidotomy should be performed. Patient counselling, documentation and standard reporting of the airway difficulty using a 'difficult airway alert form' must be done. In addition, the AIDAA provides suggestions for the contents of a difficult airway cart.

  14. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory; Quinn, Gregory; Strange, Jeremy

    2012-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.

  15. Hollow Fiber Ground Evaporator Unit Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus

    2010-01-01

    A candidate technology for 1-atmosphere suited heat rejection was developed and tested at NASA Johnson Space Center. The concept is to use a collection of microporous hydrophobic tubes potted between inlet and outlet headers with water as coolant. A pump provides flow between headers through the tubes which are subjected to fan driven cross flow of relatively dry air. The forced ventilation would sweep out the water vapor from the evaporation of the coolant rejecting heat from the coolant stream. The hollow fibers are obtained commercially (X50-215 Celgard) which are arranged in a sheet containing 5 fibers per linear inch. Two engineering development units were produced that vary the fold direction of the fiber sheets relative to the ventilation. These units were tested at inlet water temperatures ranging from 20 deg C to 30 deg C, coolant flow rates ranging from 10 to 90 kg/hr, and at three fan speeds. These results were used to size a system that could reject heat at a rate of 340 W.

  16. Attrition Rate of Oxygen Carriers in Chemical Looping Combustion Systems

    NASA Astrophysics Data System (ADS)

    Feilen, Harry Martin

    This project developed an evaluation methodology for determining, accurately and rapidly, the attrition resistance of oxygen carrier materials used in chemical looping technologies. Existing test protocols, to evaluate attrition resistance of granular materials, are conducted under non-reactive and ambient temperature conditions. They do not accurately reflect the actual behavior under the unique process conditions of chemical looping, including high temperatures and cyclic operation between oxidizing and reducing atmospheres. This project developed a test method and equipment that represented a significant improvement over existing protocols. Experimental results obtained from this project have shown that hematite exhibits different modes of attrition, including both due to mechanical stresses and due to structural changes in the particles due to chemical reaction at high temperature. The test methodology has also proven effective in providing reactivity changes of the material with continued use, a property, which in addition to attrition, determines material life. Consumption/replacement cost due to attrition or loss of reactivity is a critical factor in the economic application of the chemical looping technology. This test method will allow rapid evaluation of a wide range of materials that are best suited for this technology. The most important anticipated public benefit of this project is the acceleration of the development of chemical looping technology for lowering greenhouse gas emissions from fossil fuel combustion.

  17. Abrupt Deglacial Changes in Subarctic Pacific Ventilation: Intermediate and Deep Water Ventilation, Oxygen Fluctuations, and the relation to carbon cycle dynamics

    NASA Astrophysics Data System (ADS)

    Lembke-Jene, L.; Tiedemann, R.; Gong, X.; Max, L.; Zou, J.; Shi, X.; Lohmann, G.

    2016-12-01

    The modern subarctic Pacific halocline prevents the formation of deepwater masses andonly mid-depth waters are ventilated by North Pacific Intermediate Water (NPIW). During the last glacial, isolation of the deep North Pacific ids thought to have been more pronounced, combined with a better ventilated and expanded NPIW. This glacial deep to intermediate separation, together with upper ocean stratification, has principal implications for the deep ocean storage of carbon, as well as the mid-depth provision of nutrients by NPIW to the lower-latitude thermocline and the Pacific subarctic gyre. To date, conflicting evidence persists how the North Pacific biological and physical carbon pump reorganized during millennial-scale glacial and deglacial changes over the past 50 ka, limiting our understanding of carbon pool dynamics between Pacific ocean and the atmosphere. We present proxydata and paleoclimate modelling evidence for rapid intermediate and deep ocean nutrient and ventilation changes based on a sediment core collection with good temporal and spatial resolution from the Okhotsk Sea, Bering Sea, and the open subarctic North Pacific. High sedimentation rates (20-200 cm/ka) enable us to decipher rapid climatic changes on millennial time scales through MIS 2-3 and with a higher, up to inter-decadal, resolution during the last glacial termination. Paired AMS radiocarbon planktic-benthic ages help us to constrain water mass age changes, while multi-species foraminiferal stable isotope and redox-sensitive elemental time series provide information on past oxygenation and nutrient dynamics. We found evidence for a weaker chemical separation between intermediate and deep water during the glacial than previously thought, with rapid alternations between major NPIW ventilation areas in marginal seas, in particular during Heinrich stadials and the termination. We provide new information about the deglacial mid-depth subarctic Pacific de-oxygenation timing, extent and forcing. Finally, we discuss evidence for the spatial characteristics and causes of observed physical and chemical intermediate and deep ocean changes, based on results from a suite of paleoclimate modelling experiments using the COSMOS Earth System Model, and the high-resolution (eddy-permitting) sea ice - ocean model AWI-FESOM.

  18. Do the components of heat and moisture exchanger filters affect their humidifying efficacy and the incidence of nosocomial pneumonia?

    PubMed

    Thomachot, L; Vialet, R; Arnaud, S; Barberon, B; Michel-Nguyen, A; Martin, C

    1999-05-01

    To compare the efficiency of two heat and moisture exchange filters (HMEFs) of different compositions of the humidifying capacity and the rate of bronchial colonization and ventilator-associated pneumonia in patients in the intensive care unit (ICU). Prospective, randomized study. ICU of a university hospital. All patients who required mechanical ventilation for 24 hrs or more during the study period. At admission to the ICU, patients were randomly assigned to one of two groups. In one group, the patients were ventilated with Humid-Vent Filter Light HMEF. The condensation surface was made of paper impregnated with CaCl2. The filter membrane was made of polypropylene. In the other group, the patients were ventilated with the Clear ThermAl HMEF (Intersurgical, France). The condensation surface was made of plastic foam impregnated with AlCl2. The filter membrane was made of two polymer fibers (modacrylic and polypropylene). In both groups, HMEFs were changed daily. Seventy-seven patients were ventilated for 19+/-7 days with the Humid-Vent Filter Light HMEF and 63 patients for 17+/-6 days with the Clear ThermAl HMEF. Patients ventilated with the Humid-Vent Filter Light underwent 8.7+/-3.7 tracheal aspirations and 1.2+/-2.0 instillations per day and those with the Clear ThermAl, 8.2+/-3.9 and 1.5+/-2.4 per day, respectively (NS). The abundance of tracheal secretions and the presence of blood and viscosity, as evaluated by semiquantitative scales, were similar in both groups. One episode of tracheal tube occlusion was observed with the Humid-Vent Filter Light HMEF and none with the other HMEF (NS). Tracheal colonization was observed at a rate of 91% with the Humid-Vent Filter Light and 97% with the Clear ThermAl (NS). The rate of ventilator-associated pneumonia was similar in both groups (35%). Bacteria responsible for tracheal colonization and pneumonia were similar in both groups. Despite differences in their components, the two HMEFs that were tested achieved similar performances in terms of humidification and heating of inspired gases. Only one episode of endotracheal tube occlusion was detected, and very few patients (three in each group) had to be switched to an active heated humidifier. No difference was observed either in the rate of tracheal colonization or of ventilator-associated pneumonia. These data show that the Humid-Vent Filter Light and the Clear ThermAl HMEFs are suited for use with ICU patients.

  19. Smart accelerometer

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J., Jr.

    1992-02-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  20. Smart accelerometer

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J., Jr.

    1994-05-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  1. Fuel System Durability--U.S. Coast Guard

    DTIC Science & Technology

    2008-05-01

    bypass rates at the rated operating condition to finalize the test loop design. Preliminary calculations suggest that because of the anticipated low...The other option was to allow greater speed variability and operate as close to full-rack as possible. 24 Wear Scar Approx. Activated Area...Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302

  2. Smart accelerometer. [vibration damage detection

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  3. A technique to depress desflurane vapor pressure.

    PubMed

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  4. Pulmonary gas exchange is not impaired 24 h after extravehicular activity.

    PubMed

    Prisk, G Kim; Fine, Janelle M; Cooper, Trevor K; West, John B

    2005-12-01

    Extravehicular activity (EVA) during spaceflight involves a significant decompression stress. Previous studies have shown an increase in the inhomogeneity of ventilation-perfusion ratio (VA/Q) after some underwater dives, presumably through the embolic effects of venous gas microemboli in the lung. Ground-based chamber studies simulating EVA have shown that venous gas microemboli occur in a large percentage of the subjects undergoing decompression, despite the use of prebreathe protocols to reduce dissolved N(2) in the tissues. We studied eight crewmembers (7 male, 1 female) of the International Space Station who performed 15 EVAs (initial cabin pressure 748 mmHg, final suit pressure either approximately 295 or approximately 220 mmHg depending on the suit used) and who followed the denitrogenation procedures approved for EVA from the International Space Station. The intrabreath VA/Q slope was calculated from the alveolar Po(2) and Pco(2) in a prolonged exhalation maneuver on the day after EVA and compared with measurements made in microgravity on days well separated from the EVA. There were no significant changes in intrabreath VA/Q slope as a result of EVA, although there was a slight increase in metabolic rate and ventilation (approximately 9%) on the day after EVA. Vital capacity and other measures of pulmonary function were largely unaltered by EVA. Because measurements could only be performed on the day after EVA because of logistical constraints, we were unable to determine an acute effect of EVA on VA/Q inequality. The results suggest that current denitrogenation protocols do not result in any major lasting alteration to gas exchange in the lung.

  5. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  6. Chapter 3 innovations in the en route care of combat casualties.

    PubMed

    Hatzfeld, Jennifer J; Dukes, Susan; Bridges, Elizabeth

    2014-01-01

    The en route care environment is dynamic and requires constant innovation to ensure appropriate nursing care for combat casualties. Building on experiences in Iraq and Afghanistan, there have been tremendous innovations in the process of transporting patients, including the movement of patients with spinal injuries. Advances have also been made in pain management and noninvasive monitoring, particularly for trauma and surgical patients requiring close monitoring of their hemodynamic and perfusion status. In addition to institutionalizing these innovations, future efforts are needed to eliminate secondary insults to patients with traumatic brain injuries and technologies to provide closed-loop sedation and ventilation.

  7. Enhanced Passive Cooling for Waterless-Power Production Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Salvador B.

    2016-06-14

    Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant,more » integrated energy systems are highly suitable for small grids, rural areas, and arid regions.« less

  8. Plasmoids as magnetic flux ropes. [in geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Moldwin, Mark B.; Hughes, W. J.

    1991-01-01

    A magnetic flux rope model is developed and used to determine whether the principal axis analysis (PAA) of magnetometer signatures from a single satellite pass is sufficient to obtain the magnetic topology of plasmoids. The model is also used to determine if plasmoid observations are best explained by the flux rope, closed loop, or large-amplitude wave picture. It was found that the principal axis directions is highly dependent on the satellite trajectory through the structure and, therefore, the PAA of magnetometer data from a single satellite pass is insufficient to differentiate between magnetic closed loop and flux rope models. Results also indicate that the flux rope model of plasmoid formation is well suited to unify the observations of various magnetic structures observed by ISEE 3.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterton, Mike

    The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system somore » the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.« less

  10. Developing and Validating Practical Eye Metrics for the Sense-Assess-Augment Framework

    DTIC Science & Technology

    2015-09-29

    Sense-Assess-Augment ( SAA ) Framework. To better close the loop between the human and machine teammates AFRL’s Human Performance Wing and Human...Sense-Assess-Augment ( SAA ) framework, which is designed to sense a suite of physiological signals from the operator, use these signals to assess the...to use psychophysiological measures to improve human-machine teamwork (such as Biocybernetics or Augmented Cognition) the AFRL- SAA research program

  11. Bench-Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Sweterlitsch, Jeff

    2011-01-01

    A principal concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has been evaluated for use in this application and several programs are evaluating it for use in both cabin and space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of bench-scale SA9T testing that was performed under a variety of test conditions and with several different trace contaminants. Tests were conducted to determine if the capacity of the SA9T media to sufficiently remove CO2 and H2O is compromised after exposure to a fully saturated trace contaminant at ambient conditions. Tests also were conducted to evaluate the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream. In addition, testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures (29.6 KPa/4.3 psia) during cyclic operation with a constant inlet contaminant load.

  12. Exit Presentation

    NASA Technical Reports Server (NTRS)

    Melone, Kate

    2016-01-01

    Skills Acquired: Tensile Testing: Prepare materials and setting up the tensile tests; Collect and interpret (messy) data. Outgassing Testing: Understand TML (Total Mass Loss) and CVCM (Collected Volatile Condensable Material); Collaboration with other NASA centers. Z2 (NASA's Prototype Space Suit Development) Support: Hands on building mockups of components; Analyze data; Work with others, understanding what both parties need in order to make a run successful. LCVG (Liquid Cooling and Ventilation Garment) Flush and Purge Console: Both formal design and design review process; How to determine which components to use - flow calculations, pressure ratings, size, etc.; Hazard Analysis; How to make design tradeoffs.

  13. Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem

    NASA Astrophysics Data System (ADS)

    Webb, William

    2013-04-01

    Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!

  14. Oxygen cost of exercise hyperpnoea is greater in women compared with men

    PubMed Central

    Dominelli, Paolo B; Render, Jacqueline N; Molgat-Seon, Yannick; Foster, Glen E; Romer, Lee M; Sheel, A William

    2015-01-01

    We compared the oxygen cost of breathing () in healthy men and women over a wide range of exercise ventilations (). Eighteen subjects (nine women) completed 4 days of testing. First, a step-wise maximal cycle exercise test was completed for the assessment of spontaneous breathing patterns. Next, subjects were familiarized with the voluntary hyperpnoea protocol used to estimate . During the final two visits, subjects mimicked multiple times (four to six) the breathing patterns associated with five or six different exercise stages. Each trial lasted 5 min, and on-line pressure–volume and flow–volume loops were superimposed on target loops obtained during exercise to replicate the work of breathing accurately. At ∼55 l min−1 , was significantly greater in women. At maximal ventilation, the absolute was not different (P > 0.05) between the sexes, but represented a significantly greater fraction of whole-body in women (13.8 ± 1.5 vs. 9.4 ± 1.1% ). During heavy exercise at 92 and 100% , the unit cost of was +0.7 and +1.1 ml O2 l−1 greater in women (P < 0.05). At , men and women who developed expiratory flow limitation had a significantly greater than those who did not (435 ± 44 vs. 331 ± 30 ml O2 min−1). In conclusion, women have a greater for a given , and this represents a greater fraction of whole-body . The greater in women may have implications for the integrated physiological response to exercise. PMID:25652549

  15. Space Suit CO2 Washout During Intravehicular Activity

    NASA Technical Reports Server (NTRS)

    Augustine, Phillip M.; Navarro, Moses; Conger, Bruce; Sargusingh, Miriam M.

    2010-01-01

    Space suit carbon dioxide (CO2) washout refers to the removal of CO2 gas from the oral-nasal area of a suited astronaut's (or crewmember's) helmet using the suit's ventilation system. Inadequate washout of gases can result in diminished mental/cognitive abilities as well as headaches and light headedness. In addition to general discomfort, these ailments can impair an astronaut s ability to perform mission-critical tasks ranging from flying the space vehicle to performing lunar extravehicular activities (EVAs). During design development for NASA s Constellation Program (CxP), conflicting requirements arose between the volume of air flow that the new Orion manned space vehicle is allocated to provide to the suited crewmember and the amount of air required to achieve CO2 washout in a space suit. Historically, space suits receive 6.0 actual cubic feet per minute (acfm) of air flow, which has adequately washed out CO2 for EVAs. For CxP, the Orion vehicle will provide 4.5 acfm of air flow to the suit. A group of subject matter experts (SM Es) among the EVA Systems community came to an early consensus that 4.5 acfm may be acceptable for low metabolic rate activities. However, this value appears very risky for high metabolic rates, hence the need for further analysis and testing. An analysis was performed to validate the 4.5 acfm value and to determine if adequate CO2 washout can be achieved with the new suit helmet design concepts. The analysis included computational fluid dynamic (CFD) modeling cases, which modeled the air flow and breathing characteristics of a human wearing suit helmets. Helmet testing was performed at the National Institute of Occupational Safety and Health (NIOSH) in Pittsburgh, Pennsylvania, to provide a gross-level validation of the CFD models. Although there was not a direct data correlation between the helmet testing and the CFD modeling, the testing data showed trends that are very similar to the CFD modeling. Overall, the analysis yielded results that were better than anticipated, with a few unexpected findings that could not easily be explained. Results indicate that 4.5 acfm is acceptable for CO2 washout and helmet design. This paper summarizes the results of this CO2 washout study.

  16. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.

    2008-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions to performance such as hydraulic diameter, heat exchanger effectiveness, ventilation gas mass flow rate and surface roughness. Using this tool, four test articles were designed and manufactured to map to a full MTSA subassembly (the adsorbent bed, the sublimation heat exchanger for cooling and the condensing ice heat exchanger for warming). The design mapping considered impacts due to CIHX geometry as well as subassembly impacts such as thermal mass and thermal resistance through the adsorbent bed. The test articles were tested at simulated PLSS ventilation loop temperature, moisture content and subambient pressure. Ice accumulation and melting were observed. Data and test observations were analyzed to identify drivers of the condensing ice heat exchanger performance. This paper will discuss the analytical models, the test article designs, and testing procedures. Testing issues will be discussed to better describe data and share lessons learned. Data analysis and subsequent conclusions will be presented.

  17. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of the Advanced Crew Escape Suit (ACES), and the Exploration Z-suit. For this mission, the pressure garment that was selected is the Modified ACES (MACES) with EVA enhancements. Life support options that were considered included short closed-loop umbilicals, long open-loop umbilicals, the currently in-use ISS EMU Portable Life Support System (PLSS), and the currently in development Exploration PLSS. For this mission, the life support option that was selected is the Exploration PLSS. The greatest risk in the proposed architecture is viewed to be the comfort and mobility of the baseline MACES and the delicate balance between adding more mobility features while not compromising landing safety. Feasibility testing was accomplished in low fidelity analogs and in the JSC Neutral Buoyancy Laboratory (NBL) to validate the concept before a final recommendation on the architecture was made. The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work and further definition of the remaining kits will be conducted in government fiscal year 14.

  18. Comparison of two reconfigurable N×N interconnects for a recurrent neural network

    NASA Astrophysics Data System (ADS)

    Berger, Christoph; Collings, Neil; Pourzand, Ali R.; Volkel, Reinnard

    1996-11-01

    Two different methods of pattern replication (conventional and interlaced fan-out) have been investigated and experimentally tested in a reconfigurable 5X5 optical interconnect. Similar alignment problems due to imaging errors (field curvature) were observed in both systems. We conclude that of the two methods the interlaced fan-out is better suited to avoid these imaging errors, to reduce system size and to implement an optical feedback loop.

  19. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  20. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations.

    PubMed

    Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H

    2018-05-28

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  1. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations

    NASA Astrophysics Data System (ADS)

    Grzetic, Douglas J.; Delaney, Kris T.; Fredrickson, Glenn H.

    2018-05-01

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ ˜ ) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor S (k ) and the dielectric function ɛ ^ (k ) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters BAA, BAB, and BBB, which then determine χ ˜ . The one-loop theory not only enables the quantitative prediction of χ ˜ but also provides useful insight into the dependence of χ ˜ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ɛ ^ (k ) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ ˜ N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  2. [Stress test at 44 °C and 80 % of humidity and usefulness of ice suit].

    PubMed

    González-Hidalgo, Germán; Sánchez-Flores, Hafid; López-Castellanos, Guillermo

    2011-01-01

    to compare the fatigue in a stress test at high temperature and humidity in eight healthy volunteers. the time of pedaling on the ergometer cycle was measured to know the exercise's efficiency at 30 km/h until the volunteers presented exhaustion or their heart frequency increased to > 160 beats/min. A basal test in the tunnel's ventilation of the Naica mine at 37.5°C and 40 % humidity was done. We repeated the stress test at the entrance of the cave, where temperature was 44°C and 80 % humidity. We compared using the protector equipment with ice and cold air breathing suit. the stress test al 44°C and 80 % humidity with the protector suit was interrupted in 75 % of participants because of an increase in the heart frequency (> 160 per minute) The exercise time was duplicated in 62 % and was increased in 100% of the participants with an average increase of 2.25 times and a rank of (1.12-3.3). Using the statistical Wilcoxon test the differences between the times of stress test with and without equipment at 44°C and 80 % humidity had a Z of 2.52 and a p of .012 was done.

  3. Congestive heart failure and central sleep apnea.

    PubMed

    Sands, Scott A; Owens, Robert L

    2015-07-01

    Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Congestive Heart Failure and Central Sleep Apnea.

    PubMed

    Sands, Scott A; Owens, Robert L

    2016-03-01

    Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The Utility of a Small Pressurized Rover with Suit Ports for Lunar Exploration: A Geologist's Perspective

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Bleacher, Jacob E.; Garry, W. Brent; Love, Stanley G.; Young, Kelsey E.

    2017-01-01

    Rover trade study: As summarized recently, mission simulations at Black Point Lava Flow (Arizona) that included realistic extravehicular activity (EVA) tasking, accurate traverse timelines, and an in-loop science CAPCOM (or SciCOM) showed that a small pressurized rover (SPR) was a better mobility asset than an unpressurized rover (UPR). Traverses within the SPR were easier on crew than spending an entire day in a spacesuit, enhancing crew productivity at each station. The SPR, named Lunar Electric Rover (LER), and sometimes called the Space Exploration Vehicle (SEV), could also provide shelter during a suit malfunction, radiation event, or medical emergency that might occur on the Moon. Intravehicular activity (IVA) capabilities: From within the vehicle, crew could describe and photo-document distant features during drives between stations, as well as in the near-field, directly in front of the LER, providing an ability to begin EVA planning on approach to each outcrop prior to egress. The vehicle can rotate 360º without any lateral movement, providing views in all directions. It has high-visibility windows, a ForeCam, AftCam, port and starboard cameras, docking cameras, and a GigaPan camera. EVA capabilities: To reduce timeline, mass, and volumetric overhead, rapid egress and ingress were envisioned, replacing an airlock with lower cabin pressure than on the International Space Station and suit ports on the aft cabin wall [2]. When needed for closer inspection and sample collecting, crew could egress in about 10 minutes through suit ports. Crew use SuitCams for additional photo-documentation, transmit mobile observations verbally, and collect surface materials. Typical simulations involved 3 to 4 EVA stations/day and 2 to 3 hr/day of boots on the ground. This allowed crew to explore a far larger territory, with more complex geological and in situ resource utilization (ISRU) features, than would a single, longer-duration EVA at one location, while also minimizing crew time in a spacesuit. Additionally, the vehicle could be driven with crew locked into the suit ports. This approach could involve a driver in the cockpit with a suited crewmember in a suit port, or the vehicle could be driven from the aft deck with both crewmembers in their suit ports. This approach was used when distances between stops were short enough that vehicle ingress and egress were less efficient than remaining in the suits and driving. Utility of suit ports: The advantages of suit ports were clearly demonstrated in those field-based trade studies. To illustrate those advantages further, consider the consequences of a SPR without suit ports at the Apollo 17 landing site. At that site, the crew's second EVA was an approximately 18 km loop conducted in a UPR, called the Lunar Roving Vehicle (LRV), in 7 hr 36 min 56 s. The traverse was composed of 5 formal stations, plus 8 additional LRV stations where crew made brief scientific stops. In a scenario involving a SPR without suit ports, crew would go EVA through an airlock and probably be limited to a single EVA per day. In that case, crew could drive the SPR 9 km from the landing site to station 2, go EVA, and complete station 2 tasks. However, to conduct station 3 tasks, the crew would then need to walk approximately 3 km to station 3, while ground control in Houston tele-robotically drives the LER to station 3. A walk of approximately 3 km is possible, as that is what the Apollo 14 crew did before LRVs were deployed, but it is a lengthy and potentially grueling EVA. Assuming crew completes station 3 tasks, they would likely need to re-enter the SPR, ending the day's EVA, and return to the landing site. They would not be able to walk the additional distances to stations 4 and 5 (the latter being about 6 km from station 3). Thus, crew in an SPR without suit ports would require two days to accomplish the same tasks Apollo 17 crew completed in a single day. If a future crew is involved in long duration traverses on the lunar surface, the deployment of a vehicle with suit ports would probably be a better solution.

  6. Comparing two heat and moisture exchangers, one hydrophobic and one hygroscopic, on humidifying efficacy and the rate of nosocomial pneumonia.

    PubMed

    Thomachot, L; Viviand, X; Arnaud, S; Boisson, C; Martin, C D

    1998-11-01

    Many heat and moisture exchangers with filter (HMEF) have been developed. In-house data from companies provide some information about their performances; unfortunately, to our knowledge, no comparative evaluation in clinical conditions has been undertaken of these newer products. The aim of this study was to compare the efficiency of two HMEFs, one hydrophobic and one hygroscopic, on humidifying capacity and the rate of bronchial colonization and ventilator-associated pneumonia in ICU patients. Prospective, randomized study. ICU of a university hospital. All patients who required mechanical ventilation for > or = 24 h during the study period. On admission to the ICU, patients were randomly assigned to one of two groups. In one group, the patients were ventilated with a hygroscopic device (Humid-Vent Filter Light HMEF; Gibeck; Upplands Vaesby, Sweden). The condensation surface was made of paper (Microwell) impregnated with CaCl2. The filter membrane was made of polypropylene. In the other group, the patients were ventilated with a hydrophobic device (Pall BB100 HMEF). The condensation surface was made of a hydrophobic resin with a hydrophylic layer. The filter membrane was made of ceramic fibers. In both groups, HMEFs were changed daily. Both groups of patients were similar for the tested characteristics, including parameters of mechanical ventilation. Sixty-six patients were ventilated for 11.7+/-11 days with the Humid-Vent Filter Light HMEF and 70 patients for 12.2+/-12 days with the Pall BB 100. Patients ventilated with the Humid-Vent Filter Light underwent 6.0+/-3.0 tracheal aspirations and 1.7+/-2.0 instillations per day, and those with the Pall BB 100, 6.0+/-3.0 and 1.6+/-2.0 per day, respectively (not significant [NS]). Abundance of tracheal secretions, presence of blood, and viscosity, evaluated by semiquantitative scales, were similar in both groups. No difference in the rate of atelectasis was observed between the two groups (7.5% and 7.1%, NS). One episode of tracheal tube occlusion was observed with the Humid-Vent Filter Light HMEF, and one with the other HMEF (NS). One patient in each group (NS) was switched to an active heated humidifier because of very tenacious bronchial secretions despite repeated instillations. Tracheal colonization was observed at a rate of 67% with the Humid-Vent Filter Light and 58% with the Pall BB 100 (NS). A small, but NS difference was observed in the rate of ventilator-associated pneumonia: Humid-Vent Filter Light, 32% (27.1 per 1000 ventilator days); and Pall BB 100, 37% (30.4 per 1000 ventilator days). Bacteria responsible for tracheal colonization and pneumonia were similar in both groups. Three patients in each group died from their nosocomial pneumonia. Despite differences in their components, the two HMEFs tested achieved similar performances in terms of humidification and heating of inspired gases. Only one episode of endotracheal tube occlusion was detected and very few patients (one in each group) had to be switched to an active heated humidifier. No difference was observed either in the rate of tracheal colonization or of ventilator-associated pneumonia. These data show that the hygroscopic HME (Humid-Vent Filter Light) and the hydrophobic HME (Pall BB 100) are suited for use in ICU patients.

  7. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration.

    PubMed

    Duda, Kevin R; Vasquez, Rebecca A; Middleton, Akil J; Hansberry, Mitchell L; Newman, Dava J; Jacobs, Shane E; West, John J

    2015-01-01

    The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a "viscous resistance" during movements against a specified direction of "down"-initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from "down" initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  8. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  9. Development of selective solar absorbers on the basis of aluminum roll-bond heat exchangers

    NASA Astrophysics Data System (ADS)

    Moeller, M.

    1981-11-01

    A deposition technique comparable to two-stage anodizing and especially suited for solar absorber panels, using roll-bond Al 99.5 and AlMnZr alloys as a substrate, was developed. The coating is of the nickel structure filter type and provides average solar absorptivity values of 94% and thermal emission values of 14%. The setup of a production plant capable of coating surfaces up to 2 sq m is described as well as the development of corrosion resistent hermetically sealed collectors. By means of an appropriate surface treatment the same corrosion resistance was achieved for absorbers mounted in ventilated collectors.

  10. STS-57 MS2 Sherlock dons EMU upper torso with technicians' help at JSC's WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock, wearing the liquid cooling and ventilation garment (LCVG) and an extravehicular mobility unit (EMU) lower torso, squats under the EMU upper torso and prepares to raise her arms into the sleeves. Technicians stand on either side of Sherlock and are ready to assist her in donning the upper torso. When fully suited the platform Sherlock is on will be lowered into the 25 foot deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the underwater simulation, Sherlock will practice extravehicular activity (EVA) procedures.

  11. Soldier/Hardware-in-the-loop Simulation-based Combat Vehicle Duty Cycle Measurement: Duty Cycle Experiment 2

    DTIC Science & Technology

    2007-01-24

    Marc Compere , Ph.D.2 Jarrett Goodell3 Science Application International Corporation 14901 Olde Towne Parkway, Suite 200 1Marietta, GA 30068...ELEMENT NUMBER 6. AUTHOR(S) Mark Brudnak; Mike Pozolo; Victor Paul; Syed Mohammad; Dale Holtz; Wilford Smith; Marc Compere ; Jarrett Goodell; Todd...City, MI, June 2006. 3. Marc Compere , M.; Jarrett Goodell, J.; Simon, M; Smith, W.; Brudnak, M, “Robust Control Techniques Enabling Duty Cycle

  12. Kähler-driven tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David

    2012-11-01

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kähler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in "pseudosmooth" tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kähler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and "pseudosmooth") regimes.

  13. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx

    PubMed Central

    Ferretti, Natascha Milesi; Galler, Michael A.; Bushby, Steven T.

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site. PMID:29167584

  14. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    PubMed

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  15. Development of the ISS EMU Dashboard Software

    NASA Technical Reports Server (NTRS)

    Bernard, Craig; Hill, Terry R.

    2011-01-01

    The EMU (Extra-Vehicular Mobility Unit) Dashboard was developed at NASA s Johnson Space Center to aid in real-time mission support for the ISS (International Space Station) and Shuttle EMU space suit by time synchronizing down-linked video, space suit data and audio from the mission control audio loops. Once the input streams are synchronized and recorded, the data can be replayed almost instantly and has proven invaluable in understanding in-flight hardware anomalies and playing back information conveyed by the crew to missions control and the back room support. This paper will walk through the development from an engineer s idea brought to life by an intern to real time mission support and how this tool is evolving today and its challenges to support EVAs (Extra-Vehicular Activities) and human exploration in the 21st century.

  16. Similarity Metrics for Closed Loop Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.

    2008-01-01

    To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.

  17. Alternative approaches to treatment of Central Sleep Apnea.

    PubMed

    Thomas, Robert Joseph

    2014-03-01

    Divergent approaches to treatment of hypocapnic central sleep apnea syndromes reflect the difficulties in taming a hyperactive respiratory chemoreflex. As both sleep fragmentation and a narrow CO 2 reserve or increased loop gain drive the disease, sedatives (to induce longer periods of stable non-rapid eye movement (NREM) sleep and reduce the destabilizing effects of arousals in NREM sleep) and CO 2 -based stabilization approaches are logical. Adaptive ventilation reduces mean hyperventilation yet can induce ventilator-patient dyssynchrony, while enhanced expiratory rebreathing space (EERS, dead space during positive pressure therapy) and CO 2 manipulation directly stabilize respiratory control by moving CO 2 above the apnea threshold. Carbonic anhydrase inhibition can provide further adjunctive benefits. Provent and Winx may be less likely to trigger central apneas or periodic breathing in those with a narrow CO 2 reserve. An oral appliance can meaningfully reduce positive pressure requirements and thus enable treatment of complex apnea. Novel pharmacological approaches may target mediators of carotid body glomus cell excitation, such as the balance between gas neurotransmitters. In complex apnea patients, single mode therapy is not always successful, and multi-modality therapy might need to be considered. Phenotyping of sleep apnea beyond conventional scoring approaches is the key to optimal management.

  18. Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using co2 assessment

    NASA Astrophysics Data System (ADS)

    Peyraube, Nicolas; Lastennet, Roland; Villanueva, Jessica Denila; Houillon, Nicolas; Malaurent, Philippe; Denis, Alain

    2017-08-01

    Cussac cave was investigated to assess the cave air temperature variations and to understand its ventilation regime. This cave is located in an active karst system in the south west part of France. It has a single entrance and is considered as a cold air trap. In this study, air mass exchanges were probed. Measurements of temperature and Pco2 with a 30-min frequency were made in several locations close to the cave entrance. Speed of the air flow was also measured at the door of cave entrance. Results show that cave air Pco2 varies from 0.18 to 3.33 %. This cave appears to be a CO2 source with a net mass of 2319 tons blown in 2009. Carbon-stable isotope of CO2 (13Cco2) ranges from -20.6 ‰ in cold season to -23.8 ‰ in warm season. Cave air is interpreted as a result of a mix between external air and an isotopically depleted air, coming from the rock environment. The isotopic value of the light member varies through time, from -23.9 to -22.5 ‰. Furthermore, this study ascertains that the cave never stops in communicating with the external air. The ventilation regime is identified. (1) In cold season, the cave inhales at night and blows a little at the warmest hours. However, in warm season, (2) cave blows at night, but (3) during the day, a convection loop takes place in the entrance area and prevents the external air from entering the cave, confirming the cold air trap.

  19. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  20. Fast, Low-Power, Hysteretic Level-Detector Circuit

    NASA Technical Reports Server (NTRS)

    Arditti, Mordechai

    1993-01-01

    Circuit for detection of preset levels of voltage or current intended to replace standard fast voltage comparator. Hysteretic analog/digital level detector operates at unusually low power with little sacrifice of speed. Comprises low-power analog circuit and complementary metal oxide/semiconductor (CMOS) digital circuit connected in overall closed feedback loop to decrease rise and fall times, provide hysteresis, and trip-level control. Contains multiple subloops combining linear and digital feedback. Levels of sensed signals and hysteresis level easily adjusted by selection of components to suit specific application.

  1. An Integrated Tool Suite for En Route Radar Controllers in NextGen

    NASA Technical Reports Server (NTRS)

    Mercer, Joey; Prevot, Thomas; Brasil, Connie; Mainini, Matthew; Kupfer, Michael; Smtih, Nancy

    2010-01-01

    This paper describes recent human-in-the-loop research in the Airspace Operations Laboratory at the NASA Ames Research Center focusing on en route air traffic management with advanced trajectory planning tools and increased levels of human-automation cooperation. The decision support tools were exercised in a simulation of seven contiguous high-altitude sectors. Preliminary data suggests the controllers were able to manage higher amounts of traffic as compared to today, while maintaining acceptable levels of workload.

  2. Bacterial dispersion in relation to operating room clothing.

    PubMed Central

    Whyte, W.; Vesley, D.; Hodgson, R.

    1976-01-01

    The effect of operating clothing on the dispersal of bacterial particles from the wearers was studied in a dispersal chamber. A comparison was made of six gowns as well as four types of trousers. The gowns were of three basic types, namely a conventional cotton type, disposable types made of non-woven fabric and those of the total-body exhaust system (Charnley type). The dispersal chamber could simulate conditions as expected both in down-flow unidirectional ultra-clean systems and in a conventional turbulent plenum-ventilated system. It was found that the disposable gowns would reduce the dispersal rate by about 30% in the simulated conventionally ventilated system and about 65% in the laminar flow system. The total-body exhaust system (Charnley) would reduce the count by 10-fold in the conventional ventilated system and by 66-fold in the laminar-flow system. The poor performance of the gowns in conventionally ventilated systems was caused by the dispersal of bacterial particles from underneath the gown (about 80%). This was not reduced by the disposable gown and only partially by the Charnley type. This small drop would be further decreased in a conventionally ventilated operating-room as only scrubbed staff would wear the gown. In order to overcome this poor performance in conventionally ventilated operating-rooms impervious trousers would be required. Four types were studied and it was demonstrated that those made either from Ventile or non-woven fabric would reduce the bacterial dispersion fourfold. As these tests had been carried out in an artificial environment checks were carried out in the unidirectional-flow operating-room during total-hip arthroplasty. This was done by comparing conventional cotton gowns with non-woven gowns and total-body exhaust gowns. The results showed good correlation between the operating room and the chamber with the non-woven fabric gown but the total-body exhaust system did not perform as well in the operating room (12-fold compared to 66-fold) the difference being possibly due to the contribution from the patient. However, as this comparison was that which would be most open to influence from other variables confidence could be placed on the chamber test results. Values were also obtained for the total number of bacterial particles dispersed by persons during a standard exercise wearing different clothing. This count was dependent on the clothing worn but a median count of between 1000 and 1500 bacterial particles/min. would be expected when conventional clothing was worn, with a range of between 300 and 19,000. This count could be reduced to about 100/min. if a total-body exhaust suit was worn (range 30-400). PMID:778258

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, Richard D.; Hones, Holger E.

    The RAJA Performance Suite is designed to evaluate performance of the RAJA performance portability library on a wide variety of important high performance computing (HPC) algorithmic lulmels. These kernels assess compiler optimizations and various parallel programming model backends accessible through RAJA, such as OpenMP, CUDA, etc. The Initial version of the suite contains 25 computational kernels, each of which appears in 6 variants: Baseline SequcntiaJ, RAJA SequentiaJ, Baseline OpenMP, RAJA OpenMP, Baseline CUDA, RAJA CUDA. All variants of each kernel perform essentially the same mathematical operations and the loop body code for each kernel is identical across all variants. Theremore » are a few kernels, such as those that contain reduction operations, that require CUDA-specific coding for their CUDA variants. ActuaJ computer instructions executed and how they run in parallel differs depending on the parallel programming model backend used and which optimizations are perfonned by the compiler used to build the Perfonnance Suite executable. The Suite will be used primarily by RAJA developers to perform regular assessments of RAJA performance across a range of hardware platforms and compilers as RAJA features are being developed. It will also be used by LLNL hardware and software vendor panners for new defining requirements for future computing platform procurements and acceptance testing. In particular, the RAJA Performance Suite will be used for compiler acceptance testing of the upcoming CORAUSierra machine {initial LLNL delivery expected in late-2017/early 2018) and the CORAL-2 procurement. The Suite will aJso be used to generate concise source code reproducers of compiler and runtime issues we uncover so that we may provide them to relevant vendors to be fixed.« less

  4. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration

    PubMed Central

    Duda, Kevin R.; Vasquez, Rebecca A.; Middleton, Akil J.; Hansberry, Mitchell L.; Newman, Dava J.; Jacobs, Shane E.; West, John J.

    2015-01-01

    The “Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration” is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a “viscous resistance” during movements against a specified direction of “down”—initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from “down” initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation. PMID:25914631

  5. Varying execution discipline to increase performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, P.L.; Maccabe, A.B.

    1993-12-22

    This research investigates the relationship between execution discipline and performance. The hypothesis has two parts: 1. Different execution disciplines exhibit different performance for different computations, and 2. These differences can be effectively predicted by heuristics. A machine model is developed that can vary its execution discipline. That is, the model can execute a given program using either the control-driven, data-driven or demand-driven execution discipline. This model is referred to as a ``variable-execution-discipline`` machine. The instruction set for the model is the Program Dependence Web (PDW). The first part of the hypothesis will be tested by simulating the execution of themore » machine model on a suite of computations, based on the Livermore Fortran Kernel (LFK) Test (a.k.a. the Livermore Loops), using all three execution disciplines. Heuristics are developed to predict relative performance. These heuristics predict (a) the execution time under each discipline for one iteration of each loop and (b) the number of iterations taken by that loop; then the heuristics use those predictions to develop a prediction for the execution of the entire loop. Similar calculations are performed for branch statements. The second part of the hypothesis will be tested by comparing the results of the simulated execution with the predictions produced by the heuristics. If the hypothesis is supported, then the door is open for the development of machines that can vary execution discipline to increase performance.« less

  6. New approach to reducing water consumption in commercial kitchen hood

    NASA Astrophysics Data System (ADS)

    Asmuin, N.; Pairan, M. R.

    2017-09-01

    Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. The modern commercial kitchen hood ventilation system was adopted with the water mist nozzle technology as an additional tool to increase the filtration efficiency. However, low level of filtration effectiveness and high water consumption were the major problems among the Commercial Kitchen Ventilation expert. Therefore, this study aims to develop a new mist spray technology to replacing the conventional KSJB nozzle (KSJB is a nozzle’s name). At the same time, an appropriate recommended location to install the nozzle in kitchen hood system was suggested. An extensive simulation works were carried out to observe the spray characteristics, ANSYS (FLUENT) was used for simulation wise. In the case of nozzle studies, nozzles were tested at 1 bar pressure of water and air. In comparison with conventional nozzles configuration, this new approach suggested nozzle configuration was reduce up to 50% of water consumption, which by adopted 3 numbers of nozzles instead of 6 numbers of nozzles in the commercial kitchen hood system. Therefore, this nozzle will be used in industry for their benefits of water consumption, filtration efficiency and reduced the safety limitations.

  7. Ventilation Loss in the NASA Space Shuttle Crew Protective Garments: Potential for Heat Stress

    NASA Technical Reports Server (NTRS)

    Askew, Gregory K.; Kaufman, Jonathan W.

    1991-01-01

    The potential of the National Aeronautics and Space Administration (NASA) S1035 Launch/Entry suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment has been studied. The testing was designed to determine if the NASA S1035 poses a greater threat of inducing heat stress than the NASA S1032. Conditions were designed to simulate an extreme prelaunch situation, with chamber temperatures maintained at dry bulb temperature 27.2 +/- 0.1 C, globe temperature - 27.3 +/- 0.1 C, and wet bulb temperature 21.1 +/- 0.3 C. Four males, aged 28-48, were employed in this study, with three subjects having exposures in all four conditions and the fourth subject exposed to 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. No significant differences related to experimental conditions were noted in rectal temperatures, heart rates or sweat rates. The results indicate that the S1032 and S1035 garments, in either the V or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Shuttle cabin during launch or re-entry.

  8. Organic-rich sediments in ventilated deep-sea environments: Relationship to climate, sea level, and trophic changes

    NASA Astrophysics Data System (ADS)

    Bertrand, P.; Pedersen, T. F.; Schneider, R.; Shimmield, G.; Lallier-Verges, E.; Disnar, J. R.; Massias, D.; Villanueva, J.; Tribovillard, N.; Huc, A. Y.; Giraud, X.; Pierre, C.; VéNec-Peyré, M.-T.

    2003-02-01

    Sediments on the Namibian Margin in the SE Atlantic between water depths of ˜1000 and ˜3600 m are highly enriched in hydrocarbon-prone organic matter. Such sedimentation has occurred for more than 2 million years and is geographically distributed over hundreds of kilometers along the margin, so that the sediments of this region contain a huge concentrated stock of organic carbon. It is shown here that most of the variability in organic content is due to relative dilution by buried carbonates. This reflects both export productivity and diagenetic dissolution, not differences in either water column or bottom water anoxia and related enhanced preservation of organic matter. These observations offer a new mechanism for the formation of potential source rocks in a well-ventilated open ocean, in this case the South Atlantic. The organic richness is discussed in terms of a suite of probable controls including local wind-driven productivity (upwelling), trophic conditions, transfer efficiency, diagenetic processes, and climate-related sea level and deep circulation. The probability of past occurrences of such organic-rich facies in equivalent oceanographic settings at the edge of large oceanic basins should be carefully considered in deep offshore exploration.

  9. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  10. Applications of Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu

    2009-01-01

    Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'

  11. Vertex centralities in input-output networks reveal the structure of modern economies

    NASA Astrophysics Data System (ADS)

    Blöchl, Florian; Theis, Fabian J.; Vega-Redondo, Fernando; Fisher, Eric O.'N.

    2011-04-01

    Input-output tables describe the flows of goods and services between the sectors of an economy. These tables can be interpreted as weighted directed networks. At the usual level of aggregation, they contain nodes with strong self-loops and are almost completely connected. We derive two measures of node centrality that are well suited for such networks. Both are based on random walks and have interpretations as the propagation of supply shocks through the economy. Random walk centrality reveals the vertices most immediately affected by a shock. Counting betweenness identifies the nodes where a shock lingers longest. The two measures differ in how they treat self-loops. We apply both to data from a wide set of countries and uncover salient characteristics of the structures of these national economies. We further validate our indices by clustering according to sectors’ centralities. This analysis reveals geographical proximity and similar developmental status.

  12. [INVITED] Evaluation of process observation features for laser metal welding

    NASA Astrophysics Data System (ADS)

    Tenner, Felix; Klämpfl, Florian; Nagulin, Konstantin Yu.; Schmidt, Michael

    2016-06-01

    In the present study we show how fast the fluid dynamics change when changing the laser power for different feed rates during laser metal welding. By the use of two high-speed cameras and a data acquisition system we conclude how fast we have to image the process to measure the fluid dynamics with a very high certainty. Our experiments show that not all process features which can be measured during laser welding do represent the process behavior similarly well. Despite the good visibility of the vapor plume the monitoring of its movement is less suitable as an input signal for a closed-loop control. The features measured inside the keyhole show a good correlation with changes of process parameters. Due to its low noise, the area of the keyhole opening is well suited as an input signal for a closed-loop control of the process.

  13. Safety of interventional rigid bronchoscopy using intravenous anesthesia and spontaneous assisted ventilation. A prospective study.

    PubMed

    Perrin, G; Colt, H G; Martin, C; Mak, M A; Dumon, J F; Gouin, F

    1992-11-01

    To investigate the safety of total intravenous anesthesia and spontaneous assisted ventilation during interventional rigid bronchoscopy (IRB). Prospective, noncomparative study. A university hospital thoracic endoscopy and laser center. Eighty-three patients underwent a total of 124 procedures (including Nd:Yag laser therapy, stent insertions, transbronchial biopsies/bronchoalveolar lavages (TBB/BALs) in transplant patients and others). Results of preanesthesia consultation, endoscopic and anesthesia intervention, perioperative complications, and time spent in recovery room were recorded prospectively. Respiratory complications occurred in 22 procedures (18 percent) and included severe intraoperative or postoperative oxyhemoglobin desaturations (19 cases), bronchospasms/laryngospasms (two cases), and one recurrent pneumothorax. These complications were mostly related to the endobronchial surgical procedure. Respiratory complications occurred more frequently in patients with American Society of Anesthesiologists (ASA) 3 and 4 status (p < 0.005) and in patients with a karnofsky Performance Scale (KPS) below 70 (p < 0.05). No cardiac complications were noted, although 13 patients had significant underlying heart disease. Propofol was used in 121 procedures. Etomidate was used 15 times for induction and three times for both induction and maintenance in patients with ASA status 4 or low blood pressure before induction. Total intravenous anesthesia and spontaneous assisted ventilation is a well-suited technique for IRB. Severe hypoxemia, however, may occur in approximately 15 percent of patients. This complication is usually related to the procedure itself and is easy to reverse. Propofol is well tolerated in the majority of patients but it must be used with care in patients with poor functional or cardiovascular status.

  14. Modeling Constellation Virtual Missions Using the Vdot(Trademark) Process Management Tool

    NASA Technical Reports Server (NTRS)

    Hardy, Roger; ONeil, Daniel; Sturken, Ian; Nix, Michael; Yanez, Damian

    2011-01-01

    The authors have identified a software tool suite that will support NASA's Virtual Mission (VM) effort. This is accomplished by transforming a spreadsheet database of mission events, task inputs and outputs, timelines, and organizations into process visualization tools and a Vdot process management model that includes embedded analysis software as well as requirements and information related to data manipulation and transfer. This paper describes the progress to date, and the application of the Virtual Mission to not only Constellation but to other architectures, and the pertinence to other aerospace applications. Vdot s intuitive visual interface brings VMs to life by turning static, paper-based processes into active, electronic processes that can be deployed, executed, managed, verified, and continuously improved. A VM can be executed using a computer-based, human-in-the-loop, real-time format, under the direction and control of the NASA VM Manager. Engineers in the various disciplines will not have to be Vdot-proficient but rather can fill out on-line, Excel-type databases with the mission information discussed above. The author s tool suite converts this database into several process visualization tools for review and into Microsoft Project, which can be imported directly into Vdot. Many tools can be embedded directly into Vdot, and when the necessary data/information is received from a preceding task, the analysis can be initiated automatically. Other NASA analysis tools are too complex for this process but Vdot automatically notifies the tool user that the data has been received and analysis can begin. The VM can be simulated from end-to-end using the author s tool suite. The planned approach for the Vdot-based process simulation is to generate the process model from a database; other advantages of this semi-automated approach are the participants can be geographically remote and after refining the process models via the human-in-the-loop simulation, the system can evolve into a process management server for the actual process.

  15. Development of a Compact, Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    van Boeyen, Roger; Reeh, Jonathan; Trevino, Luis

    2009-01-01

    A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.

  16. Simulating Humans as Integral Parts of Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine

    2006-01-01

    The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.

  17. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    PubMed Central

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2014-01-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252

  18. A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.

    PubMed

    Palladino, A; Fiengo, G; Lanzo, D

    2012-01-01

    In-vehicle driving tests for evaluating the performance and diagnostic functionalities of engine control systems are often time consuming, expensive, and not reproducible. Using a hardware-in-the-loop (HIL) simulation approach, new control strategies and diagnostic functions on a controller area network (CAN) line can be easily tested in real time, in order to reduce the effort and the cost of the testing phase. Nowadays, spark ignition engines are controlled by an electronic control unit (ECU) with a large number of embedded sensors and actuators. In order to meet the rising demand of lower emissions and fuel consumption, an increasing number of control functions are added into such a unit. This work aims at presenting a portable electronic environment system, suited for HIL simulations, in order to test the engine control software and the diagnostic functionality on a CAN line, respectively, through non-regression and diagnostic tests. The performances of the proposed electronic device, called a micro hardware-in-the-loop system, are presented through the testing of the engine management system software of a 1.6 l Fiat gasoline engine with variable valve actuation for the ECU development version. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Integrand reduction for two-loop scattering amplitudes through multivariate polynomial division

    NASA Astrophysics Data System (ADS)

    Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano

    2013-04-01

    We describe the application of a novel approach for the reduction of scattering amplitudes, based on multivariate polynomial division, which we have recently presented. This technique yields the complete integrand decomposition for arbitrary amplitudes, regardless of the number of loops. It allows for the determination of the residue at any multiparticle cut, whose knowledge is a mandatory prerequisite for applying the integrand-reduction procedure. By using the division modulo Gröbner basis, we can derive a simple integrand recurrence relation that generates the multiparticle pole decomposition for integrands of arbitrary multiloop amplitudes. We apply the new reduction algorithm to the two-loop planar and nonplanar diagrams contributing to the five-point scattering amplitudes in N=4 super Yang-Mills and N=8 supergravity in four dimensions, whose numerator functions contain up to rank-two terms in the integration momenta. We determine all polynomial residues parametrizing the cuts of the corresponding topologies and subtopologies. We obtain the integral basis for the decomposition of each diagram from the polynomial form of the residues. Our approach is well suited for a seminumerical implementation, and its general mathematical properties provide an effective algorithm for the generalization of the integrand-reduction method to all orders in perturbation theory.

  20. Multivariable Techniques for High-Speed Research Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  1. Deadzones, Dying Eddies, and the Loop Current: Stability, Ventilation, and Heat Content from Buoyancy Glider Observations in the Northwest Gulf of Mexico in Spring and Summer 2015

    NASA Astrophysics Data System (ADS)

    DiMarco, S. F.; Knap, A. H.; Wang, Z.; Walpert, J.; Dreger, K.

    2016-02-01

    The northwestern Gulf of Mexico is host to a myriad of physical and biochemical processes, which govern the exchange and transport of material and volume between the coastal and offshore environments. We report on five G2 Slocum glider deployments in the northwestern Gulf during the spring and summer of 2015. The gliders were deployed in shallow (20 m) and deep (greater than 1000 m) water for a total of about 200 days. During this time, the gliders encountered a variety of environmental conditions that impact the circulation, biology, chemistry of the shelf and slope. The shallow gliders encountered coastal waters influenced by extensive flooding in terrestrial Texas that vertically stratified the water-column and was coincident with sub-pycnocline low dissolved oxygen concentration, at times below the hypoxic threshold of 2 mg/L, and elevated CDOM concentrations. These gliders also reveal high spatial variability with bottom boundary oxygen and biomass scales on the order of a few kilometers. The deep gliders were tasked to investigate shelf/slope exchange at two locations 94W and 91W. The western glider encountered a mature mesoscale circulation eddy that was actively weakening. The eastern glider simultaneously encountered a freshly separated Loop Current eddy. The vertical structure of hydrographic and dissolved oxygen parameters shows significant and distinguishable variability in each feature. The vertical structure of both features show significant departures from that which is expected based on sea surface height determined from satellite altimetry. Additionally, glider observations are compared to operational high-resolution regional numerical model output. These observations emphasize the importance of direct observations over satellite-derived products for applications that include upper ocean heat content for hurricane intensification and vertical mixing and ventilation of the oceanic interior.

  2. System Modeling of Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly for Prototype Design

    NASA Technical Reports Server (NTRS)

    Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.

    2009-01-01

    This paper describes modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly: the sorbent bed, a sublimation (cooling) heat exchanger (SHX), and a condensing icing (warming) heat exchanger (CIHX). The primary function of the MTSA, removing carbon dioxide from a ventilation loop, is performed via the sorbent bed. The CIHX is used to heat the sorbent bed for desorption and to remove moisture from the ventilation loop while the SHX is alternately employed to cool the sorbent bed via sublimation of a spray of water at low pressure to prepare the reconditioned bed for the next cycle. This paper describes a system level model of the MTSA as developed in Thermal Desktop and SINDA/FLUINT including assumptions on geometry and physical phenomena, modeling methodology and relevant pa ra mete rizatio ns. Several areas of particular modeling interest are discussed. In the sorbent bed, capture of the translating CO2 saturation front and associated local energy and mass balance in both adsorbing and desorbing modes is covered. The CIHX poses particular challenges for modeling in SINDA/FLUINT as accounting for solids states in fluid submodels are not a native capability. Methods for capturing phase change and latent heat of ice as well as the transport properties across a layer of low density accreted frost are developed. This extended modeling capacity is applicable to temperatures greater than 258 K. To extend applicability to the minimum device temperature of 235 K, a method for a mapped transformation of temperatures from below the limit temperatures to some value above is given along with descriptions for associated material property transformations and the resulting impacts to total heat and mass transfer. Similar considerations are shown for the SHX along with assumptions for flow mechanics and resulting model methods for sublimation in a flow.

  3. Optimizing the Four-Index Integral Transform Using Data Movement Lower Bounds Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Rastello, Fabrice; Kowalski, Karol

    The four-index integral transform is a fundamental and computationally demanding calculation used in many computational chemistry suites such as NWChem. It transforms a four-dimensional tensor from an atomic basis to a molecular basis. This transformation is most efficiently implemented as a sequence of four tensor contractions that each contract a four-dimensional tensor with a two-dimensional transformation matrix. Differing degrees of permutation symmetry in the intermediate and final tensors in the sequence of contractions cause intermediate tensors to be much larger than the final tensor and limit the number of electronic states in the modeled systems. Loop fusion, in conjunction withmore » tiling, can be very effective in reducing the total space requirement, as well as data movement. However, the large number of possible choices for loop fusion and tiling, and data/computation distribution across a parallel system, make it challenging to develop an optimized parallel implementation for the four-index integral transform. We develop a novel approach to address this problem, using lower bounds modeling of data movement complexity. We establish relationships between available aggregate physical memory in a parallel computer system and ineffective fusion configurations, enabling their pruning and consequent identification of effective choices and a characterization of optimality criteria. This work has resulted in the development of a significantly improved implementation of the four-index transform that enables higher performance and the ability to model larger electronic systems than the current implementation in the NWChem quantum chemistry software suite.« less

  4. Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Vos, Gordon; Whitmore, Mihriban

    2008-01-01

    The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement.

  5. Comparison of three distinct clean air suits to decrease the bacterial load in the operating room: an observational study.

    PubMed

    Kasina, Piotr; Tammelin, Ann; Blomfeldt, Anne-Marie; Ljungqvist, Bengt; Reinmüller, Berit; Ottosson, Carin

    2016-01-01

    Lowering air-borne bacteria counts in the operating room is essential in prevention of surgical site infections in orthopaedic joint replacement surgery. This is mainly achieved by decreasing bacteria counts through dilution, with appropriate ventilation and by limiting the bacteria carrying skin particles, predominantly shed by the personnel. The aim of this study was to investigate if a single use polypropylene clothing system or a reusable polyester clothing system could offer similar air quality in the operating room as a mobile laminar airflow device-assisted reusable cotton/polyester clothing system. Prospective observational study design, comparing the performance of three Clean Air Suits by measuring Colony Forming Units (CFU)/m(3) of air during elective hip and knee arthroplasties, performed at a large university-affiliated hospital. The amount of CFU/m(3) of air was measured during 37 operations of which 13 were performed with staff dressed in scrub suits made of a reusable mixed material (69 % cotton, 30 % polyester, 1 % carbon fibre) accompanied by two mobile laminar airflow units. During 24 procedures no mobile laminar airflow units were used, 13 with staff using a reusable olefin fabric clothing (woven polypropylene) and 11 with staff dressed in single-use suits (non-woven spunbonded polypropylene). Air from the operating field was sampled through a filter, by a Sartorius MD8, and bacterial colonies were counted after incubation. There were 6-8 measurements from each procedure, in total 244 measurements. Statistical analysis was performed by Mann-Whitney U-test. The single-use polypropylene suit reduced the amount of CFU/m(3) to a significantly lower level than both other clothing systems. Single-use polypropylene clothing systems can replace mobile laminar airflow unit-assisted reusable mixed material-clothing systems. Measurements in standardized laboratory settings can only serve as guidelines as environments in real operation settings present a much more difficult challenge.

  6. Flexible Metal-Fabric Radiators

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia; Nguyen, Hai D.; Ruemmele, Warren; Andish, Kambiz K.; McCalley, Sean

    2005-01-01

    Flexible metal-fabric radiators have been considered as alternative means of dissipating excess heat from spacecraft and space suits. The radiators also may be useful in such special terrestrial applications as rejecting heat from space-suit-like protective suits worn in hot work environments. In addition to flexibility and consequent ease of deployment and installation on objects of varying sizes and shapes, the main advantages of these radiators over conventional rigid radiators are that they weigh less and occupy less volume for a given amount of cooling capacity. A radiator of this type includes conventional stainless-steel tubes carrying a coolant fluid. The main radiating component consists of a fabric of interwoven aluminum-foil strips bonded to the tubes by use of a proprietary process. The strip/tube bonds are strong and highly thermally conductive. Coolant is fed to and from the tubes via flexible stainless-steel manifolds designed to accommodate flexing of, and minimize bending forces on, the fabric. The manifolds are sized to minimize pressure drops and distribute the flow of coolant evenly to all the tubes. The tubes and manifolds are configured in two independent flow loops for operational flexibility and protective redundancy.

  7. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.

  8. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype was delivered to NASA in 2006 and was notated as RCA 1.0 and sized for the extravehicular activity (EVA). The new RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two- bed design employs a chemisorption process whereby the beds alternate between adsorbtion and desorbsion. This process provides for an efficient operation of the RCA so that while one bed is in adsorb (uptake) mode, the other is in the desorb (regeneration) mode. The RCA has now progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overreview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each.

  9. PLSS 2.5 Fan Design and Development

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2015-01-01

    NASA is building a high fidelity prototype of an advanced portable life support system (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge in order to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, is driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement have been identified with the existing fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5.

  10. Early sepsis, obstructive jaundice and right-sided diaphragmatic hernia in the newborn.

    PubMed

    García-Muñoz, F; Santana, C; Reyes, D; Wiehoff, A; López-Pinto, J M; García-Alix, A

    2001-01-01

    A male newborn was admitted to our Unit because of early sepsis and shock. He required antimicrobial therapy and mechanical ventilation and initially did well, although he exhibited jaundice and cholestasis. During the second week he deteriorated, with radiological opacification of the right hemithorax and pleural effusion, and did poorly in spite of antibiotical therapy and drainage of the effusion. In the third week, the X-ray suggested some bowel loops in the right hemithorax. A right-sided diaphragmatic hernia was confirmed by a CT-scan, and surgery was performed with good outcome. The association of delayed-onset right-sided CDH following early sepsis and obstructive jaundice has not been published before, and illustrates a scarcely known form of presentation of this condition.

  11. PLSS Scale Demonstration of MTSA Temperature Swing Adsorption Bed Concept for CO2 Removal/Rejection

    NASA Technical Reports Server (NTRS)

    Iacomini, Christine S.; Powers, Aaron; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated temperature swing adsorption (MTSA) incorporated into a portable life support system (PLSS) is being explored as a viable means of removing and rejecting carbon dioxide (CO2) from an astronaut s ventilation loop. Sorbent pellets used in previous work are inherently difficult to quickly heat and cool. Further, their use in packed beds create large undesirable pressure drop. Thus work has been done to assess the application and performance of aluminum foam wash coated with a layer of sorbent. A to-scale sorbent bed, as envisioned studying use by a Martian PLSS, was designed, built, and tested. Performance of the assembly in regards to CO2 adsorption and pressure drop were assessed and the results are presented.

  12. Multiscale integral analysis of a HT leakage in a fusion nuclear power plant

    NASA Astrophysics Data System (ADS)

    Velarde, M.; Fradera, J.; Perlado, J. M.; Zamora, I.; Martínez-Saban, E.; Colomer, C.; Briani, P.

    2016-05-01

    The present work presents an example of the application of an integral methodology based on a multiscale analysis that covers the whole tritium cycle within a nuclear fusion power plant, from a micro scale, analyzing key components where tritium is leaked through permeation, to a macro scale, considering its atmospheric transport. A leakage from the Nuclear Power Plants, (NPP) primary to the secondary side of a heat exchanger (HEX) is considered for the present example. Both primary and secondary loop coolants are assumed to be He. Leakage is placed inside the HEX, leaking tritium in elementary tritium (HT) form to the secondary loop where it permeates through the piping structural material to the exterior. The Heating Ventilation and Air Conditioning (HVAC) system removes the leaked tritium towards the NPP exhaust. The HEX is modelled with system codes and coupled to Computational Fluid Dynamic (CFD) to account for tritium dispersion inside the nuclear power plants buildings and in site environment. Finally, tritium dispersion is calculated with an atmospheric transport code and a dosimetry analysis is carried out. Results show how the implemented methodology is capable of assessing the impact of tritium from the microscale to the atmospheric scale including the dosimetric aspect.

  13. Energy efficient model based algorithm for control of building HVAC systems.

    PubMed

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Real-time Electrophysiology: Using Closed-loop Protocols to Probe Neuronal Dynamics and Beyond

    PubMed Central

    Linaro, Daniele; Couto, João; Giugliano, Michele

    2015-01-01

    Experimental neuroscience is witnessing an increased interest in the development and application of novel and often complex, closed-loop protocols, where the stimulus applied depends in real-time on the response of the system. Recent applications range from the implementation of virtual reality systems for studying motor responses both in mice1 and in zebrafish2, to control of seizures following cortical stroke using optogenetics3. A key advantage of closed-loop techniques resides in the capability of probing higher dimensional properties that are not directly accessible or that depend on multiple variables, such as neuronal excitability4 and reliability, while at the same time maximizing the experimental throughput. In this contribution and in the context of cellular electrophysiology, we describe how to apply a variety of closed-loop protocols to the study of the response properties of pyramidal cortical neurons, recorded intracellularly with the patch clamp technique in acute brain slices from the somatosensory cortex of juvenile rats. As no commercially available or open source software provides all the features required for efficiently performing the experiments described here, a new software toolbox called LCG5 was developed, whose modular structure maximizes reuse of computer code and facilitates the implementation of novel experimental paradigms. Stimulation waveforms are specified using a compact meta-description and full experimental protocols are described in text-based configuration files. Additionally, LCG has a command-line interface that is suited for repetition of trials and automation of experimental protocols. PMID:26132434

  15. Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas

    2018-04-01

    An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.

  16. Alternative approaches to treatment of Central Sleep Apnea

    PubMed Central

    2013-01-01

    Synopsis Divergent approaches to treatment of hypocapnic central sleep apnea syndromes reflect the difficulties in taming a hyperactive respiratory chemoreflex. As both sleep fragmentation and a narrow CO2 reserve or increased loop gain drive the disease, sedatives (to induce longer periods of stable non-rapid eye movement (NREM) sleep and reduce the destabilizing effects of arousals in NREM sleep) and CO2-based stabilization approaches are logical. Adaptive ventilation reduces mean hyperventilation yet can induce ventilator-patient dyssynchrony, while enhanced expiratory rebreathing space (EERS, dead space during positive pressure therapy) and CO2 manipulation directly stabilize respiratory control by moving CO2 above the apnea threshold. Carbonic anhydrase inhibition can provide further adjunctive benefits. Provent and Winx may be less likely to trigger central apneas or periodic breathing in those with a narrow CO2 reserve. An oral appliance can meaningfully reduce positive pressure requirements and thus enable treatment of complex apnea. Novel pharmacological approaches may target mediators of carotid body glomus cell excitation, such as the balance between gas neurotransmitters. In complex apnea patients, single mode therapy is not always successful, and multi-modality therapy might need to be considered. Phenotyping of sleep apnea beyond conventional scoring approaches is the key to optimal management. PMID:24772053

  17. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits.

    PubMed

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S J; Frith, Chris D

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H 2 15 O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system.

  18. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

    PubMed Central

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S. J.; Frith, Chris D.

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system. PMID:28567009

  19. Comparative Ergonomic Evaluation of Spacesuit and Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    England, Scott; Cowley, Matthew; Benson, Elizabeth; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2012-01-01

    With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first comparing suited subjects performance with their unsuited performance, and then applying the results to the entire range of the population. The use of a transparent space vehicle mockup enabled the collection of large amounts of data during human-in-the-loop testing. Mobility data revealed that most of the tested spacesuits had sufficient ranges of motion for the selected tasks to be performed successfully. A suited subject's inability to perform a task most often stemmed from a combination of poor field of view in a seated position, poor dexterity of the pressurized gloves, or from suit/vehicle interface issues. Seat ingress and egress testing showed that problems with anthropometric accommodation did not exclusively occur with the largest or smallest subjects, but also with specific combinations of measurements that led to narrower seat ingress/egress clearance.

  20. Proposed Schematics for an Advanced Development Lunar Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Chullen, Cinda; Barnes, Bruce; Leavitt, Greg

    2010-01-01

    The latest development of the NASA space suit is an integrated assembly made up of primarily a Pressure Garment System (PGS) and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen (O2) subsystem, a ventilation subsystem, and a thermal subsystem. This paper baselines a detailed schematic of the PLSS to provide a basis for current and future PLSS development efforts. Both context diagrams and detailed schematics describe the hardware components and overall functions for all three of the PLSS subsystems. The various modes of operations for the PLSS are also presented. A comparison of the proposed PLSS to the Apollo and Shuttle PLSS designs is presented, highlighting several anticipated improvements over the historical PLSS architectures.

  1. MS Grunsfeld and Linnehan on middeck after EVA 1

    NASA Image and Video Library

    2002-03-04

    STS109-349-027 (4 March 2002) --- Astronauts John M. Grunsfeld and Richard M. Linnehan, STS-109 payload commander and mission specialist, respectively, wearing the liquid cooling and ventilation garment that complements the Extravehicular Mobility Unit (EMU) space suit, are photographed on the mid deck of the Space Shuttle Columbia after the mission’s first session of extravehicular activity (EVA). The EVA-1 team replaced one of the telescope’s two second-generation solar arrays, which is also known as SA2, and a Diode Box Assembly. The solar array was replaced with a new, third-generation solar array, which is called SA3. The space walkers also did some prep work for STS-109’s other space walks.

  2. Improving survival after tissue vaporization (Ebullism)

    NASA Technical Reports Server (NTRS)

    Stegmann, Barbara J.; Pilmanis, Andrew A.; Derion, Toniann

    1992-01-01

    Exposure of unprotected humans to altitudes above 63,000 ft results in ebullism. Ebullism occurs when the vapor pressure of tissues is less than the ambient pressure and the tissues spontaneously 'boil'. This may result in rapid unconsciousness, cardiac vaporlock, pulmonary collapse, cerebral anoxia, and sometimes even death. Potential places for this include EVA accidents in space, aircraft experiencing rapid decompression at high altitudes with cabin or pressure suit failure, and accidents during pressure suit training exercises. The pathophysiology of ebullism was studied in the 40's to 60's using animal models. There is one report of a prolonged, unprotected human exposure and several anecdotal of unprotected short term exposures to near vacuum. In addition to pulmonary and neurologic concerns, unprotected exposure of the head may result in freezing of the corneal surface of the eye. Surface eye freezing may impair vision and significantly impact mission completion. At this time, little data are available on the effectiveness of conventional treatment protocols, such as hyperbaric oxygen, for ebullism induced injuries. Research is needed to assess the efficacy of other adjunctive therapies such as high frequency ventilation and cerebral protective drugs that are still under development.

  3. Software Tools for Developing and Simulating the NASA LaRC CMF Motion Base

    NASA Technical Reports Server (NTRS)

    Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    The NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base has provided many design and analysis challenges. In the process of addressing these challenges, a comprehensive suite of software tools was developed. The software tools development began with a detailed MATLAB/Simulink model of the motion base which was used primarily for safety loads prediction, design of the closed loop compensator and development of the motion base safety systems1. A Simulink model of the digital control law, from which a portion of the embedded code is directly generated, was later added to this model to form a closed loop system model. Concurrently, software that runs on a PC was created to display and record motion base parameters. It includes a user interface for controlling time history displays, strip chart displays, data storage, and initializing of function generators used during motion base testing. Finally, a software tool was developed for kinematic analysis and prediction of mechanical clearances for the motion system. These tools work together in an integrated package to support normal operations of the motion base, simulate the end to end operation of the motion base system providing facilities for software-in-the-loop testing, mechanical geometry and sensor data visualizations, and function generator setup and evaluation.

  4. Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

    PubMed

    Agrawal, Deepak K; Tang, Xun; Westbrook, Alexandra; Marshall, Ryan; Maxwell, Colin S; Lucks, Julius; Noireaux, Vincent; Beisel, Chase L; Dunlop, Mary J; Franco, Elisa

    2018-05-08

    Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.

  5. Risk Reduction and Measures of Injury for EVA Associated Upper Extremity Medical Issues: Extended Vent Tube Study

    NASA Technical Reports Server (NTRS)

    Jones, Jeffrey A.; Hoffman, Ronald B.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Gernhardt, M. L.

    2007-01-01

    During Neutral Buoyancy Lab (NBL) training sessions, a large amount of moisture accumulates in the EVA gloves. The glove design restricts the extension of the EVA suit s ventilation/cooling system to the hand. Subungual redness and fingernail pain develops for many astronauts following their NBL training sessions with subsequent oncholysis occurring over succeeding weeks. Various attempts have been made to reduce or avoid this problem. The causal role of moisture has yet to be defined. Methods: To determine the contribution that moisture plays in the injury to the fingers and fingernails during EVA training operations in NBL, the current Extravehicular Mobility Unit (EMU), with a Portable Life Support System (PLSS) was configured with a ventilation tube that extended down a single arm of the crewmember during the test and compared with the unventilated contralateral arm; with the ventilated hand serving as the experimental condition (E) and the opposite arm as the control (C). A cross-over design was used with opposite handedness for the vent tube on a subsequent NBL training run. Moisture content measures were conducted at six points on each hand with three types of moisture meters. A questionnaire was administered to determine subjective thermal hand discomfort, skin moisture perception, and hand and nail discomfort. Photographs and video were recorded. Measures were applied to six astronauts pre- and post-run in the NBL. Results: The consistent trends in relative hydration ratios at the dorsum, from 3.34 for C to 2.11 for E, and first ring finger joint locations, from 2.46 for C to 1.96 for E, indicated the extended vent tube promoted skin drying. The experimental treatment appeared to be more effective on the left hand versus the right hand, implying an interaction with hand anthropometry and glove fit. Video analyses differentiated fine and gross motor training tasks during runs and will be discussed. Conclusions: This potential countermeasure was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in two of six subjects. Improved design in the ventilation pattern of such a countermeasure is expected to improve the countermeasure s efficiency.

  6. Advanced Space Suit PLSS 2.0 Cooling Loop Evaluation and PLSS 2.5 Recommendations

    NASA Technical Reports Server (NTRS)

    Steele, John; Quinn, Greg; Campbell, Colin; Makinen, Janice; Watts, Carly; Westheimer, David

    2016-01-01

    From 2012 to 2015 The NASA/JSC AdvSS (Advanced Space Suit) PLSS (Portable Life Support Subsystem) team, with support from UTC Aerospace Systems, performed the build-up, packaging and testing of PLSS 2.0. One aspect of that testing was the evaluation of the long-term health of the water cooling circuit and the interfacing components. Periodic and end-of-test water, residue and hardware analyses provided valuable information on the status of the water cooling circuit, and the approaches that would be necessary to enhance water cooling circuit health in the future. The evaluated data has been consolidated, interpreted and woven into an action plan for the maintenance of water cooling circuit health for the planned FY (fiscal year) 2016 through FY 2018 PLSS 2.5 testing. This paper provides an overview of the PLSS 2.0 water cooling circuit findings and the associated steps to be taken in that regard for the PLSS 2.5.

  7. Advanced Space Suit PLSS 2.0 Cooling Loop Evaluation and PLSS 2.5 Recommendations

    NASA Technical Reports Server (NTRS)

    Steele, John; Quinn, Greg; Campbell, Colin; Makinen, Janice; Watts, Carly; Westheimer, Dave

    2016-01-01

    From 2012 to 2015 The NASA/JSC AdvSS (Advanced Space Suit) PLSS (Primary Life Support Subsystem) team, with support from UTC Aerospace Systems, performed the build-up, packaging and testing of PLSS 2.0. A key aspect of that testing was the evaluation of the long-term health of the water cooling circuit and the interfacing components. Intermittent and end-of-test water, residue and hardware analyses provided valuable information on the status of the water cooling circuit, and the approaches that would be necessary to enhance water cooling circuit health in the future. The evaluated data has been consolidated, interpreted and woven into an action plan for the maintenance of water cooling circuit health for the planned FY (fiscal year) 2016 through FY 2018 PLSS 2.5 testing. This paper provides an overview of the PLSS 2.0 water cooling circuit findings and the associated steps to be taken in that regard for the PLSS 2.5 testing.

  8. The Modern Integrated Anaesthesia Workstation

    PubMed Central

    Patil, Vijaya P; Shetmahajan, Madhavi G; Divatia, Jigeeshu V

    2013-01-01

    Over the years, the conventional anaesthesia machine has evolved into an advanced carestation. The new machines use advanced electronics, software and technology to offer extensive capabilities for ventilation, monitoring, inhaled agent delivery, low-flow anaesthesia and closed-loop anaesthesia. They offer integrated monitoring and recording facilities and seamless integration with anaesthesia information systems. It is possible to deliver tidal volumes accurately and eliminate several hazards associated with the low pressure system and oxygen flush. Appropriate use can result in enhanced safety and ergonomy of anaesthetic delivery and monitoring. However, these workstations have brought in a new set of limitations and potential drawbacks. There are differences in technology and operational principles amongst the new workstations. Understand the principles of operation of these workstations and have a thorough knowledge of the operating manual of the individual machines. PMID:24249877

  9. Impacts of an Ammonia Leak on the Cabin Atmosphere of the International Space Station

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.; Sweterlitsch, Jeff J.; Son, Chang H.; Perry, Jay L.

    2011-01-01

    Toxic chemical release into the cabin atmosphere is one of the three major emergency scenarios identified on the International Space Station (ISS). The release of anhydrous ammonia, the coolant used in the U.S. On-orbit Segment (USOS) External Active Thermal Control Subsystem (EATCS), into the ISS cabin atmosphere is one of the most serious toxic chemical release cases identified on board ISS. The USOS Thermal Control System (TCS) includes an Internal Thermal Control Subsystem (ITCS) water loop and an EATCS ammonia loop that transfer heat at the interface heat exchanger (IFHX). Failure modes exist that could cause a breach within the IFHX. This breach would result in high pressure ammonia from the EATCS flowing into the lower pressure ITCS water loop. As the pressure builds in the ITCS loop, it is likely that the gas trap, which has the lowest maximum design pressure within the ITCS, would burst and cause ammonia to enter the ISS atmosphere. It is crucial to first characterize the release of ammonia into the ISS atmosphere in order to develop methods to properly mitigate the environmental risk. This paper will document the methods used to characterize an ammonia leak into the ISS cabin atmosphere. A mathematical model of the leak was first developed in order to define the flow of ammonia into the ISS cabin atmosphere based on a series of IFHX rupture cases. Computational Fluid Dynamics (CFD) methods were then used to model the dispersion of the ammonia throughout the ISS cabin and determine localized effects and ventilation effects on the dispersion of ammonia. Lastly, the capabilities of the current on-orbit systems to remove ammonia were reviewed and scrubbing rates of the ISS systems were defined based on the ammonia release models. With this full characterization of the release of ammonia from the USOS TCS, an appropriate mitigation strategy that includes crew and system emergency response procedures, personal protection equipment use, and atmosphere monitoring and scrubbing hardware can be established.

  10. Impacts of an Ammonia Leak on the Cabin Atmosphere of the International Space Station

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.; Sweterlitsch, Jeffrey J.; Son, Chang H.; Perry Jay L.

    2012-01-01

    Toxic chemical release into the cabin atmosphere is one of the three major emergency scenarios identified on the International Space Station (ISS). The release of anhydrous ammonia, the coolant used in the U.S. On-orbit Segment (USOS) External Active Thermal Control Subsystem (EATCS), into the ISS cabin atmosphere is one of the most serious toxic chemical release cases identified on board ISS. The USOS Thermal Control System (TCS) includes an Internal Thermal Control Subsystem (ITCS) water loop and an EATCS ammonia loop that transfer heat at the interface heat exchanger (IFHX). Failure modes exist that could cause a breach within the IFHX. This breach would result in high pressure ammonia from the EATCS flowing into the lower pressure ITCS water loop. As the pressure builds in the ITCS loop, it is likely that the gas trap, which has the lowest maximum design pressure within the ITCS, would burst and cause ammonia to enter the ISS atmosphere. It is crucial to first characterize the release of ammonia into the ISS atmosphere in order to develop methods to properly mitigate the environmental risk. This paper will document the methods used to characterize an ammonia leak into the ISS cabin atmosphere. A mathematical model of the leak was first developed in order to define the flow of ammonia into the ISS cabin atmosphere based on a series of IFHX rupture cases. Computational Fluid Dynamics (CFD) methods were then used to model the dispersion of the ammonia throughout the ISS cabin and determine localized effects and ventilation effects on the dispersion of ammonia. Lastly, the capabilities of the current on-orbit systems to remove ammonia were reviewed and scrubbing rates of the ISS systems were defined based on the ammonia release models. With this full characterization of the release of ammonia from the USOS TCS, an appropriate mitigation strategy that includes crew and system emergency response procedures, personal protection equipment use, and atmosphere monitoring and scrubbing hardware can be established.

  11. A model for technology assessment as applied to closed loop infusion systems. Technology Assessment Task Force of the Society of Critical Care Medicine.

    PubMed

    Jastremski, M; Jastremski, C; Shepherd, M; Friedman, V; Porembka, D; Smith, R; Gonzales, E; Swedlow, D; Belzberg, H; Crass, R

    1995-10-01

    To test a model for the assessment of critical care technology on closed loop infusion control, a technology that is in its early stages of development and testing on human subjects. A computer-assisted search of the English language literature and reviews of the gathered data by experts in the field of closed loop infusion control systems. Studies relating to closed loop infusion control that addressed one or more of the questions contained in our technology assessment template were analyzed. Study design was not a factor in article selection. However, the lack of well-designed clinical outcome studies was an important factor in determining our conclusions. A focus person summarized the data from the selected studies that related to each of the assessment questions. The preliminary data summary developed by the focus person was further analyzed and refined by the task force. Experts in closed loop systems were then added to the group to review the summary provided by the task force. These experts' comments were considered by the task force and this final consensus report was developed. Closed loop system control is a technological concept that may be applicable to several aspects of critical care practice. This is a technology in the early stages of evolution and much more research and data are needed before its introduction into usual clinical practice. Furthermore, each specific application and each device for each application (e.g., nitroprusside infusion, ventilator adjustment), although based on the same technological concept, are sufficiently different in terms of hardware and computer algorithms to require independent validation studies. Closed loop infusion systems may have a role in critical care practice. However, for most applications, further development is required to move this technology from the innovation phase to the point where it can be evaluated so that its role in critical car practice can be defined. Each application of closed loop infusion systems must be independently validated by appropriately designed research studies. Users should be provided with the clinical parameters driving each closed loop system so that they can ensure that it agrees with their opinion of acceptable medical practice. Clinical researchers and leaders in industry should collaborate to perform the scientifically valid, outcome-based research that is necessary to evaluate the effect of this new technology. The original model we developed for technology assessment required the addition of several more questions to produce a complete analysis of an emerging technology. An emerging technology should be systematically assessed (using a model such as the model developed by the Society of Critical Care Medicine), before its introduction into clinical practice in order to provide a focus for human outcome validation trials and to minimize the possibility of widespread use of an unproven technology.

  12. Adherence of Escherichia coli O157:H7 to epithelial cells in vitro and in pig gut loops is affected by bacterial culture conditions

    PubMed Central

    Yin, Xianhua; Feng, Yanni; Wheatcroft, Roger; Chambers, James; Gong, Joshua; Gyles, Carlton L.

    2011-01-01

    The objectives of this study were to determine the effect of bacterial culture conditions on adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 in vivo to pig enterocytes and to compare the results with adherence in vitro to cultured HEp-2 and IPEC-J2 cells. Growth of O157:H7 in MacConkey broth (MB) resulted in almost no adherence to both HEp-2 and IPEC-J2 cells; prior exposure of the bacteria to pH 2.5 reduced adherence. There was greater adherence by bacteria from static cultures than by those from shaken cultures and by bacteria cultured in brain–heart infusion (BHI) plus NaHCO3 (BHIN) than by bacteria cultured in BHI. In contrast, in pig ileal loops, bacteria cultured in MB adhered well to enterocytes, and prior exposure to pH 2.5 had no effect on adherence. Among several media tested for their effect on bacterial adherence in the pig intestine, MB and BHIN proved to be the best. Bacterial adherence was dose-dependent and was more extensive in the ileum than in the colon. This study demonstrated that there are remarkable differences between culture conditions that promote adherence of an EHEC O157:H7 strain in vitro and in vivo, that culture conditions profoundly affect adherence to epithelial cells in vitro and in vivo, and that pig ileal loops are better suited to adherence studies than are colon loops. PMID:21731177

  13. The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering.

    PubMed

    Weigand, Annika; Beier, Justus P; Arkudas, Andreas; Al-Abboodi, Majida; Polykandriotis, Elias; Horch, Raymund E; Boos, Anja M

    2016-11-02

    A functional blood vessel network is a prerequisite for the survival and growth of almost all tissues and organs in the human body. Moreover, in pathological situations such as cancer, vascularization plays a leading role in disease progression. Consequently, there is a strong need for a standardized and well-characterized in vivo model in order to elucidate the mechanisms of neovascularization and develop different vascularization approaches for tissue engineering and regenerative medicine. We describe a microsurgical approach for a small animal model for induction of a vascular axis consisting of a vein and artery that are anastomosed to an arteriovenous (AV) loop. The AV loop is transferred to an enclosed implantation chamber to create an isolated microenvironment in vivo, which is connected to the living organism only by means of the vascular axis. Using 3D imaging (MRI, micro-CT) and immunohistology, the growing vasculature can be visualized over time. By implanting different cells, growth factors and matrices, their function in blood vessel network formation can be analyzed without any disturbing influences from the surroundings in a well controllable environment. In addition to angiogenesis and antiangiogenesis studies, the AV loop model is also perfectly suited for engineering vascularized tissues. After a certain prevascularization time, the generated tissues can be transplanted into the defect site and microsurgically connected to the local vessels, thereby ensuring immediate blood supply and integration of the engineered tissue. By varying the matrices, cells, growth factors and chamber architecture, it is possible to generate various tissues, which can then be tailored to the individual patient's needs.

  14. PLSS 2.5 Fan Design and Development

    NASA Technical Reports Server (NTRS)

    Converse, David; Carra, Michael; Quinn, Gregory; Chullen, Cinda

    2015-01-01

    NASA is building a high fidelity prototype of an advanced portable life support system (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge in order to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, is driven by a centrifugal fan developed using specifications from over five years ago. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement have been identified with the existing fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0. It uses the same basic non-metallic can around the motor, but with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 loop. This allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds. Development of the fan also considered a shrouded impeller design that allows larger clearances for greater oxygen safety and better performance.

  15. Single-use surgical clothing system for reduction of airborne bacteria in the operating room.

    PubMed

    Tammelin, A; Ljungqvist, B; Reinmüller, B

    2013-07-01

    It is desirable to maintain a low bacterial count in the operating room air to prevent surgical site infection. This can be achieved by ventilation or by all staff in the operating room wearing clothes made from low-permeable material (i.e. clean air suits). We investigated whether there was a difference in protective efficacy between a single-use clothing system made of polypropylene and a reusable clothing system made of a mixed material (cotton/polyester) by testing both in a dispersal chamber and during surgical procedures. Counts of colony-forming units (cfu)/m(3) air were significantly lower when using the single-use clothing system in both settings. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables.

    PubMed

    Wang, Wen; Yao, Lining; Cheng, Chin-Yi; Zhang, Teng; Atsumi, Hiroshi; Wang, Luda; Wang, Guanyun; Anilionyte, Oksana; Steiner, Helene; Ou, Jifei; Zhou, Kang; Wawrousek, Chris; Petrecca, Katherine; Belcher, Angela M; Karnik, Rohit; Zhao, Xuanhe; Wang, Daniel I C; Ishii, Hiroshi

    2017-05-01

    Cells' biomechanical responses to external stimuli have been intensively studied but rarely implemented into devices that interact with the human body. We demonstrate that the hygroscopic and biofluorescent behaviors of living cells can be engineered to design biohybrid wearables, which give multifunctional responsiveness to human sweat. By depositing genetically tractable microbes on a humidity-inert material to form a heterogeneous multilayered structure, we obtained biohybrid films that can reversibly change shape and biofluorescence intensity within a few seconds in response to environmental humidity gradients. Experimental characterization and mechanical modeling of the film were performed to guide the design of a wearable running suit and a fluorescent shoe prototype with bio-flaps that dynamically modulates ventilation in synergy with the body's need for cooling.

  17. Solar Tutorial and Annotation Resource (STAR)

    NASA Astrophysics Data System (ADS)

    Showalter, C.; Rex, R.; Hurlburt, N. E.; Zita, E. J.

    2009-12-01

    We have written a software suite designed to facilitate solar data analysis by scientists, students, and the public, anticipating enormous datasets from future instruments. Our “STAR" suite includes an interactive learning section explaining 15 classes of solar events. Users learn software tools that exploit humans’ superior ability (over computers) to identify many events. Annotation tools include time slice generation to quantify loop oscillations, the interpolation of event shapes using natural cubic splines (for loops, sigmoids, and filaments) and closed cubic splines (for coronal holes). Learning these tools in an environment where examples are provided prepares new users to comfortably utilize annotation software with new data. Upon completion of our tutorial, users are presented with media of various solar events and asked to identify and annotate the images, to test their mastery of the system. Goals of the project include public input into the data analysis of very large datasets from future solar satellites, and increased public interest and knowledge about the Sun. In 2010, the Solar Dynamics Observatory (SDO) will be launched into orbit. SDO’s advancements in solar telescope technology will generate a terabyte per day of high-quality data, requiring innovation in data management. While major projects develop automated feature recognition software, so that computers can complete much of the initial event tagging and analysis, still, that software cannot annotate features such as sigmoids, coronal magnetic loops, coronal dimming, etc., due to large amounts of data concentrated in relatively small areas. Previously, solar physicists manually annotated these features, but with the imminent influx of data it is unrealistic to expect specialized researchers to examine every image that computers cannot fully process. A new approach is needed to efficiently process these data. Providing analysis tools and data access to students and the public have proven efficient in similar astrophysical projects (e.g. the “Galaxy Zoo.”) For “crowdsourcing” to be effective for solar research, the public needs knowledge and skills to recognize and annotate key events on the Sun. Our tutorial can provide this training, with over 200 images and 18 movies showing examples of active regions, coronal dimmings, coronal holes, coronal jets, coronal waves, emerging flux, sigmoids, coronal magnetic loops, filaments, filament eruption, flares, loop oscillation, plage, surges, and sunspots. Annotation tools are provided for many of these events. Many features of the tutorial, such as mouse-over definitions and interactive annotation examples, are designed to assist people without previous experience in solar physics. After completing the tutorial, the user is presented with an interactive quiz: a series of movies and images to identify and annotate. The tutorial teaches the user, with feedback on correct and incorrect answers, until the user develops appropriate confidence and skill. This prepares users to annotate new data, based on their experience with event recognition and annotation tools. Trained users can contribute significantly to our data analysis tasks, even as our training tool contributes to public science literacy and interest in solar physics.

  18. Spacesuit and Space Vehicle Comparative Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    England, Scott; Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2011-01-01

    With the advent of the latest manned spaceflight objectives, a series of prototype launch and reentry spacesuit architectures were evaluated for eventual down selection by NASA based on the performance of a set of designated tasks. A consolidated approach was taken to testing, concurrently collecting suit mobility data, seat-suit-vehicle interface clearances and movement strategies within the volume of a Multi-Purpose Crew Vehicle mockup. To achieve the objectives of the test, a requirement was set forth to maintain high mockup fidelity while using advanced motion capture technologies. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The mockup was constructed such that it could be dimensionally validated rapidly with the motion capture system. This paper will describe the method used to create a motion capture compatible space vehicle mockup, the consolidated approach for evaluating spacesuits in action, as well as the various methods for generating hardware requirements for an entire population from the resulting complex data set using a limited number of test subjects. Kinematics, hardware clearance, suited anthropometry, and subjective feedback data were recorded on fifteen unsuited and five suited subjects. Unsuited subjects were selected chiefly by anthropometry, in an attempt to find subjects who fell within predefined criteria for medium male, large male and small female subjects. The suited subjects were selected as a subset of the unsuited subjects and tested in both unpressurized and pressurized conditions. Since the prototype spacesuits were fabricated in a single size to accommodate an approximately average sized male, the findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first performing population analysis through a comparison of suited subjects performance to their unsuited performance and then applying the results to the entire range of population. The use of a transparent space vehicle mockup enabled the collection of large amounts of data during human-in-the-loop testing. Mobility data revealed that most of the tested spacesuits had sufficient ranges of motion for tasks to be performed successfully. A failed tasked by a suited subject most often stemmed from a combination of poor field of view while seated and poor dexterity of the gloves when pressurized or from suit/vehicle interface issues. Seat ingress/egress testing showed that problems with anthropometric accommodation does not exclusively occur with the largest or smallest subjects, but rather specific combinations of measurements that lead to narrower seat ingress/egress clearance.

  19. A Closed-Loop Hardware Simulation of Decentralized Satellite Formation Control

    NASA Technical Reports Server (NTRS)

    Ebimuma, Takuji; Lightsey, E. Glenn; Baur, Frank (Technical Monitor)

    2002-01-01

    In recent years, there has been significant interest in the use of formation flying spacecraft for a variety of earth and space science missions. Formation flying may provide smaller and cheaper satellites that, working together, have more capability than larger and more expensive satellites. Several decentralized architectures have been proposed for autonomous establishment and maintenance of satellite formations. In such architectures, each satellite cooperatively maintains the shape of the formation without a central supervisor, and processing only local measurement information. The Global Positioning System (GPS) sensors are ideally suited to provide such local position and velocity measurements to the individual satellites. An investigation of the feasibility of a decentralized approach to satellite formation flying was originally presented by Carpenter. He extended a decentralized linear-quadratic-Gaussian (LQG) framework proposed by Speyer in a fashion similar to an extended Kalman filter (EKE) which processed GPS position fix solutions. The new decentralized LQG architecture was demonstrated in a numerical simulation for a realistic scenario that is similar to missions that have been proposed by NASA and the U.S. Air Force. Another decentralized architecture was proposed by Park et al. using carrier differential-phase GPS (CDGPS). Recently, Busse et al demonstrated the decentralized CDGPS architecture in a hardware-in-the-loop simulation on the Formation Flying TestBed (FFTB) at Goddard Space Flight Center (GSFC), which features two Spirent Cox 16 channel GPS signal generator. Although representing a step forward by utilizing GPS signal simulators for a spacecraft formation flying simulation, only an open-loop performance, in which no maneuvers were executed based on the real-time state estimates, was considered. In this research, hardware experimentation has been extended to include closed-loop integrated guidance and navigation of multiple spacecraft formations using GPS receivers and real-time vehicle telemetry. A hardware closed-loop simulation has been performed using the decentralized LQG architecture proposed by Carpenter in the GPS test facility at the Center for Space Research (CSR). This is the first presentation using this type of hardware for demonstration of closed-loop spacecraft formation flying.

  20. Shallow groundwater investigation using time-domain electromagnetic (TEM) method at Itay El-Baroud, Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Shaaban, H.; El-Qady, G.; Al-Sayed, E.; Ghazala, H.; Taha, A. I.

    2016-12-01

    The Nile Delta is one of the oldest known ancient delta, largest and most important depositional complex in the Mediterranean sedimentary basin. Furthermore, it is a unique site in Egypt that is suitable for accumulation and preservation of the Quaternary sediments. In this work we applied time-domain electromagnetic (TEM) method to investigate the Quaternary sediments sequence as well as detecting the groundwater aquifer in the area of study. A suite of 232 TEM sounding at 43 stations were carried out using a ;SIROTEM MK-3; time-domain electromagnetic system. A simple coincident loop configuration, in which the same loop transmits and receives signals, was employed with loop side length of 25 m. The 1-D modeling technique was applied to estimate the depth and the apparent resistivity of the interpreted geoelectrical data. Based on the interpretation of the acquired geophysical data, four geoelectric cross-sections were constructed. These sections show that the Upper Quaternary sequence consists of three geoelectric layers. The Holocene Nile mud is separated into two layers: the agricultural root zone (Layer 1) and thick water saturated mud (Layer 2). The Upper Pleistocene sandy aquifer (Layer 3) is very complicated non-linear boundary. This aquifer is the most important unit since it is considered as the main water bearing unit in the study area.

  1. An expert system to perform on-line controller restructuring for abrupt model changes

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    1990-01-01

    Work in progress on an expert system used to reconfigure and tune airframe/engine control systems on-line in real time in response to battle damage or structural failures is presented. The closed loop system is monitored constantly for changes in structure and performance, the detection of which prompts the expert system to choose and apply a particular control restructuring algorithm based on the type and severity of the damage. Each algorithm is designed to handle specific types of failures and each is applicable only in certain situations. The expert system uses information about the system model to identify the failure and to select the technique best suited to compensate for it. A depth-first search is used to find a solution. Once a new controller is designed and implemented it must be tuned to recover the original closed-loop handling qualities and responsiveness from the degraded system. Ideally, the pilot should not be able to tell the difference between the original and redesigned systems. The key is that the system must have inherent redundancy so that degraded or missing capabilities can be restored by creative use of alternate functionalities. With enough redundancy in the control system, minor battle damage affecting individual control surfaces or actuators, compressor efficiency, etc., can be compensated for such that the closed-loop performance in not noticeably altered. The work is applied to a Black Hawk/T700 system.

  2. Real-time display of flow-pressure-volume loops.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Brain versus lung: hierarchy of feedback loops in single-ventricle patients with superior cavopulmonary connection.

    PubMed

    Fogel, Mark A; Durning, Suzanne; Wernovsky, Gil; Pollock, Avrum N; Gaynor, J William; Nicolson, Susan

    2004-09-14

    CO2 vasodilates and O2 vasoconstricts the cerebral vascular bed; the opposite is true in the lungs. When the brain and lungs are connected exclusively in series, which feedback loop predominates is unknown. The circulation of the superior cavopulmonary connection (SCPC) provides a unique physiology to answer this question. To determine cerebral and pulmonary blood flow and to establish the hierarchy of cerebral and pulmonary feedback mechanisms, 12 intubated, ventilated, single-ventricle patients in SCPC physiology (age 2.2+/-0.5 years) underwent magnetic resonance imaging velocity mapping of their jugular veins and aorta in room air, hypercarbia, and 100% O2. Flows in these vessels and arterial blood gases were measured. With 22+/-6 torr CO2 (Pco2) increased from 40 to 63 mm Hg, P<0.01), flow to the brain and lungs increased (1.5 to 2.7 L/min per m2, P=0.0003), Po2 improved (48 to 60 mm Hg, P=0.0004), and cardiac index increased (4.3 to 5.4 L/min per m2, P=0.0003). The increased cardiac index accounted for the increased cerebral and pulmonary blood flow (R=0.73, P=0.02) and cerebral O2 transport increased by 80% (P=0.0005) while preserving body O2 delivery. Hyperoxia did not change cerebral and pulmonary blood flow; Po2 increased 94% (P=0.01). The cerebral CO2 feedback loop predominates over the pulmonary one when they directly compete with each other. CO2 has a major impact on flow distribution whereas O2 has little impact. Increased CO2 improves cerebral oxygenation in SCPC patients. This may provide a clue in determining neurological sequelae in SC physiology and may influence timing of Fontan completion.

  4. Continuous infusion or bolus injection of loop diuretics for patients admitted for severe acute heart failure: is one strategy better than the other?

    PubMed

    Caetano, Francisca; Mota, Paula; Almeida, Inês; Fernandes, Andreia; Botelho, Ana; Leitão Marques, António

    2015-02-01

    Intravenous loop diuretics are an essential part of acute heart failure management; however, data to guide their use is sparse. Our aim was to compare continuous intravenous infusion of loop diuretics with intravenous bolus administration in terms of efficacy and adverse events in patients admitted with severe acute heart failure. Over a period of three years, 110 patients were admitted to our cardiac intensive care unit with acute heart failure. Clinical, laboratory and prognostic parameters were compared according to the diuretic strategy used and mortality and readmission for acute heart failure during follow-up were analyzed. Previous medical history was similar in the two groups. At admission, the continuous infusion group met criteria for worse prognosis: lower systolic blood pressure (p=0.011), more severe renal injury (p=0.008), lower left ventricular ejection fraction (p=0.016) and higher incidence of restrictive pattern of diastolic dysfunction (p=0.032). They were more often treated with vasopressors (p=0.003), inotropes (p=0.010), renal support therapy (p=0.003) and non-invasive ventilation (p<0.001). They had longer hospitalizations (p=0.014) and a higher incidence of cardiorenal syndrome (p=0.009); however, at discharge, there were no differences in renal function between the groups. In-hospital mortality was similar, and during follow-up there were no differences in mortality or readmission for acute heart failure. Continuous infusion was preferred in patients presenting with worse clinical status, in whom renal dysfunction was transiently worse. However, in-hospital mortality and creatinine at discharge were similar. Continuous infusion thus appears to counteract the initial dire prognosis of more unstable patients. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  5. An open-loop controlled active lung simulator for preterm infants.

    PubMed

    Cecchini, Stefano; Schena, Emiliano; Silvestri, Sergio

    2011-01-01

    We describe the underlying theory, design and experimental evaluation of an electromechanical analogue infant lung to simulate spontaneous breathing patterns of preterm infants. The aim of this work is to test the possibility to obtain breathing patterns of preterm infants by taking into consideration the air compressibility. Respiratory volume function represents the actuation pattern, and pulmonary pressure and flow-rate waveforms are mathematically obtained through the application of the perfect gas and adiabatic laws. The mathematical model reduces the simulation interval into a step shorter than 1 ms, allowing to consider an entire respiratory act as composed of a large number of almost instantaneous adiabatic transformations. The device consists of a spherical chamber where the air is compressed by four cylinder-pistons, moved by stepper motors, and flows through a fluid-dynamic resistance, which also works as flow-rate sensor. Specifically designed software generates the actuators motion, based on the desired ventilation parameters, without controlling the gas pneumatic parameters with a closed-loop. The system is able to simulate tidal volumes from 3 to 8 ml, breathing frequencies from 60 to 120 bpm and functional residual capacities from 25 to 80 ml. The simulated waveforms appear very close to the measured ones. Percentage differences on the tidal volume waveform vary from 7% for the tidal volume of 3 ml, down to 2.2-3.5% for tidal volumes in the range of 4-7 ml, and 1.3% for the tidal volume equal to 8 ml in the whole breathing frequency and functional residual capacity ranges. The open-loop electromechanical simulator shows that gas compressibility can be theoretically assessed in the typical pneumatic variable range of preterm infant respiratory mechanics. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Respiratory research networks in Europe and beyond: aims, achievements and aspirations for the 21st century

    PubMed Central

    Zampieri, Fernando; Povoa, Pedro; Ranzani, Otavio; Bos, Lieuwe D.; Aliberti, Stefano; Torres, Antoni

    2017-01-01

    Healthcare-associated infection, such as intensive care unit (ICU)-related respiratory infections, remain the most frequently encountered morbidity of ICU admission, prolonging hospital stay and increasing mortality rates. The epidemiology of ICU-related respiratory infections, particularly nonventilated ICU-associated pneumonia and ventilator-associated tracheobronchitis, appears to be quite different among different countries. European countries have different prevalence, patterns and mechanism of resistance, as well as different treatments chosen by different attending physicians. The classical clinical research process in respiratory infections consists of the following loop: 1) identification of knowledge gaps; 2) systematic review and search for adequate answers; 3) generation of study hypotheses; 4) design of study protocols; 5) collection clinical data; 6) analysis and interpretation of the results; and 7) implementation of the results in clinical practice. PMID:28894481

  7. Vestibular and Visual Contribution to Fish Behavior Under Microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.

    Vestibular and visual information are two major factors fish use for controlling their posture under 1 G conditions. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for several different strains of Medaka fish (Oryzias latipes). There existed a clear strain-difference in the behavioral response of the fish under microgravity: Some strains looped, while other strains did not loop at all. However, even the latter strains looped under microgravity conditions when kept in complete darkness, suggesting the contribution of visual information to the posture control under microgravity. In the laboratory, eyesight (visual acuity) was checked for each strain, using a rotating striped-drum apparatus. The results also showed a strain-difference, which gave a clue to the different degree of adaptability to microgravity among different strains. Beside loopings, some fish exhibited rolling movement around their body axis. Tracing each fish during and between parabolas, it was shown that to which side each fish rolls was determined specifically to each individual fish, and not to each strain. Thus, rolling direction is not genetically determined. This may support the otolith asymmetry hypothesis. Fish of a mutant strain (ha strain, having homozygous recessive of one gene ha) have some malfunction in otolith-vestibular system, and their behavior showed they are not dependent on gravity. Morphological abnormalities of their ear vesicles during the embryonic and baby stages were noted. Their eyesight and dorsal light responses were also studied. Progress in the project of establishing a new strain which has good eyesight and, at the same time, being deficient in otolith-vestibular system was reported. Crosses between the strain of good eyesight and ha strain were made, and to some extent, F2 fish have already shown such characteristics suited for living under microgravity conditions

  8. Prevalence and test characteristics of national health safety network ventilator-associated events.

    PubMed

    Lilly, Craig M; Landry, Karen E; Sood, Rahul N; Dunnington, Cheryl H; Ellison, Richard T; Bagley, Peter H; Baker, Stephen P; Cody, Shawn; Irwin, Richard S

    2014-09-01

    The primary aim of the study was to measure the test characteristics of the National Health Safety Network ventilator-associated event/ventilator-associated condition constructs for detecting ventilator-associated pneumonia. Its secondary aims were to report the clinical features of patients with National Health Safety Network ventilator-associated event/ventilator-associated condition, measure costs of surveillance, and its susceptibility to manipulation. Prospective cohort study. Two inpatient campuses of an academic medical center. Eight thousand four hundred eight mechanically ventilated adults discharged from an ICU. None. The National Health Safety Network ventilator-associated event/ventilator-associated condition constructs detected less than a third of ventilator-associated pneumonia cases with a sensitivity of 0.325 and a positive predictive value of 0.07. Most National Health Safety Network ventilator-associated event/ventilator-associated condition cases (93%) did not have ventilator-associated pneumonia or other hospital-acquired complications; 71% met the definition for acute respiratory distress syndrome. Similarly, most patients with National Health Safety Network probable ventilator-associated pneumonia did not have ventilator-associated pneumonia because radiographic criteria were not met. National Health Safety Network ventilator-associated event/ventilator-associated condition rates were reduced 93% by an unsophisticated manipulation of ventilator management protocols. The National Health Safety Network ventilator-associated event/ventilator-associated condition constructs failed to detect many patients who had ventilator-associated pneumonia, detected many cases that did not have a hospital complication, and were susceptible to manipulation. National Health Safety Network ventilator-associated event/ventilator-associated condition surveillance did not perform as well as ventilator-associated pneumonia surveillance and had several undesirable characteristics.

  9. Analysis of an all-digital maximum likelihood carrier phase and clock timing synchronizer for eight phase-shift keying modulation

    NASA Astrophysics Data System (ADS)

    Degaudenzi, Riccardo; Vanghi, Vieri

    1994-02-01

    In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.

  10. Atmosphere Resource Recovery and Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Howard, David

    2015-01-01

    Atmosphere Resource Recovery and Environmental Monitoring (ARREM) is a project focused on evolving existing and maturing emerging 'closed loop' atmosphere revitalization (AR) life support systems that produce clean, breathable air for crewmembers, and developing a suite of low mass, low power environmental monitors to detect and measure air- and waterborne constituents and contaminants. The objective is to improve reliability and efficiency, reduce mass and volume, and increase recovery of oxygen from carbon dioxide created by human metabolism from 43% to greater than 90%. The technology developments under ARREM are vital to extending human space missions from low-Earth orbit like the International Space Station to destinations deeper into space such as Mars where dependency on Earth for resupply of maintenance items and critical life support elements such as water and oxygen is not possible. The primary goal of the ARREM project is to demonstrate that systems meet the more stringent performance parameters for deep space exploration and are compatible with other systems within closed loop life support through a series of integrated tests performed in an environmental test chamber capable of simulating human metabolic activities and measuring systems outputs.

  11. The C-terminal priming domain is strongly associated with the main body of bacteriophage ϕ6 RNA-dependent RNA polymerase.

    PubMed

    Sarin, L Peter; Wright, Sam; Chen, Qing; Degerth, Linda H; Stuart, David I; Grimes, Jonathan M; Bamford, Dennis H; Poranen, Minna M

    2012-10-10

    Double-stranded RNA viruses encode a single protein species containing RNA-dependent RNA polymerase (RdRP) motifs. This protein is responsible for RNA transcription and replication. The architecture of viral RdRPs resembles that of a cupped right hand with fingers, palm and thumb domains. Those using de novo initiation have a flexible structural elaboration that constitutes the priming platform. Here we investigate the properties of the C-terminal priming domain of bacteriophage ϕ6 to get insights into the role of an extended loop connecting this domain to the main body of the polymerase. Proteolyzed ϕ6 RdRP that possesses a nick in the hinge region of this loop was better suited for de novo initiation. The clipped C-terminus remained associated with the main body of the polymerase via the anchor helix. The structurally flexible hinge region appeared to be involved in the control of priming platform movement. Moreover, we detected abortive initiation products for a bacteriophage RdRP. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. RF Single Electron Transistor Readout Amplifiers for Superconducting Astronomical Detectors for X-Ray to Sub-mm Wavelengths

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl

    2000-01-01

    We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.

  13. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  14. Investigation of multiferroic behavior on flakes-like BiFeO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikh, Javed R.; Gaikwad, Vishwajit M.; Acharya, Smita A., E-mail: saha275@yahoo.com

    2016-05-23

    In present work, multiferroic BiFeO{sub 3} was synthesized by hydrothermal route. The rhombohedral structure was confirmed X-ray diffraction pattern and data fitted with Reitveld refinement using Full-Prof software suite. SEM micrograph shows flake like morphology. Frequency and temperature dependence of dielectric constant and dielectric loss were studied and detected enhancement in dielectric constant. The magnetic measurement indicates antiferromagnetic nature of BFO. P-E curve shows ferroelectic hysteresis loop with remanent polarization (2Pr) 0.3518 µC/cm{sup 2}. The dielectric anomaly observed near T{sub N} can be assigned to magnetoelectric coupling which is useful in device application.

  15. MEMS deformable mirror for wavefront correction of large telescopes

    NASA Astrophysics Data System (ADS)

    Manhart, Sigmund; Vdovin, Gleb; Collings, Neil; Sodnik, Zoran; Nikolov, Susanne; Hupfer, Werner

    2017-11-01

    A 50 mm diameter membrane mirror was designed and manufactured at TU Delft. It is made from bulk silicon by micromachining - a technology primarily used for micro-electromechanical systems (MEMS). The mirror unit is equipped with 39 actuator electrodes and can be electrostatically deformed to correct wavefront errors in optical imaging systems. Performance tests on the deformable mirror were carried out at Astrium GmbH using a breadboard setup with a wavefront sensor and a closed-loop control system. It was found that the deformable membrane mirror is well suited for correction of low order wavefront errors as they must be expected in lightweighted space telescopes.

  16. Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration

    DOE PAGES

    Bowling, D. R.; Egan, J. E.; Hall, S. J.; ...

    2015-08-31

    Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ 13C) of CO 2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO 2 and δ 13C of CO 2 in the soil efflux, the soil gasmore » profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ 13C of the soil efflux (δ R) or the CO 2 produced by biological activity in the soil (δ J). Following rain, soil efflux increased significantly, but δ R and δ J did not change. Temporal variation in the δ 13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ 13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO 2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ 13C of the soil efflux relative to δ 13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.« less

  17. SponTaneous Respiration using IntraVEnous anaesthesia and Hi-flow nasal oxygen (STRIVE Hi) maintains oxygenation and airway patency during management of the obstructed airway: an observational study.

    PubMed

    Booth, A W G; Vidhani, K; Lee, P K; Thomsett, C-M

    2017-03-01

    High-flow nasal oxygen (HFNO) has been shown to benefit oxygenation, ventilation and upper airway patency in a range of clinical scenarios, however its use in spontaneously breathing patients during general anaesthesia has not been described. Spontaneous respiration using i.v. anaesthesia is the primary technique used at our institution for tubeless airway surgery. We hypothesized that the addition of HFNO would increase our margin of safety, particularly during management of an obstructed airway. A retrospective observational study was conducted using a SponTaneous Respiration using IntraVEnous anaesthesia and High-flow nasal oxygen (STRIVE Hi) technique to manage 30 adult patients undergoing elective laryngotracheal surgery. Twenty-six patients (87%) presented with significant airway and/or respiratory compromise (16 were stridulous, 10 were dyspnoeic). No episodes of apnoea or complete airway obstruction occurred during the induction of anaesthesia using STRIVE Hi. The median [IQR (range)] lowest oxygen saturation during the induction period was 100 [99–100 (97–100)] %. The median [IQR (range)] overall duration of spontaneous ventilation was 44 [40–49.5 (18–100)] min. The median [IQR (range)] end-tidal carbon dioxide (ETCO2) level at the end of the spontaneous ventilation period was 6.8 [6.4–7.1 (4.8–8.9)] kPa. The mean rate of increase in ETCO2 was 0.03 kPa min−1. STRIVE Hi succeeded in preserving adequate oxygen saturation, end-tidal carbon dioxide and airway patency. We suggest that the upper and lower airway benefits attributed to HFNO, are ideally suited to a spontaneous respiration induction, increasing its margin of safety. STRIVE Hi is a modern alternative to the traditional inhalation induction. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia.

  18. Anaesthesia ventilators.

    PubMed

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  19. Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.

    PubMed

    Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte

    2014-09-01

    Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P < .001), but it was not related to the patient profile, the ventilatory mode, or the type of ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.

  20. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems.

    PubMed

    Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa

    2018-01-01

    Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.

  1. A new system for understanding modes of mechanical ventilation.

    PubMed

    Chatburn, R L; Primiano, F P

    2001-06-01

    Numerous ventilation modes and ventilation options have become available as new mechanical ventilators have reached the market. Ventilator manufacturers have no standardized terminology for ventilator modes and ventilation options, and ventilator operator's manuals do not help the clinician compare the modes of ventilators from different manufacturers. This article proposes a standardized system for classifying ventilation modes, based on general engineering principles and a small set of explicit definitions. Though there may be resistance by ventilator manufacturers to a standardized system of ventilation terminology, clinicians and health care equipment purchasers should adopt such a system in the interest of clear communication--the lack of which prevents clinicians from fully understanding the therapies they administer and could compromise the quality of patient care.

  2. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems

    PubMed Central

    Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien

    2018-01-01

    Background Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. Methods The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. Results The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Conclusions Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. Trial registration ClinicalTrials.gov PRS / NCT03359148 PMID:29547638

  3. Initial mechanical ventilator settings and lung protective ventilation in the ED.

    PubMed

    Wilcox, Susan R; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey; Seigel, Todd A

    2016-08-01

    Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Determination of the intersegmental plane using the slip-knot method

    PubMed Central

    Endoh, Makoto; Kato, Hirohisa; Suzuki, Jun; Watarai, Hikaru; Hamada, Akira; Suzuki, Katsuyuki; Nakahashi, Kenta; Sadahiro, Mitsuaki

    2018-01-01

    Background Visualization of intersegmental planes in the lung is desirable for precise anatomical lung segmentectomy. We developed the slip-knot method for creating inflation-deflation lines. This study aimed to assess relevant data for thoracoscopic segmentectomy performed using this method. Methods In the slip-knot method, the objective segmental bronchus is looped with a monofilament thread. One end of the thread is then pulled during temporary bilateral ventilation, causing the knot to slip toward the bronchus. Thereafter, bronchial ligation is tightened to block the outflow of segmental air, ensuring that the segment remains expanded while the other reserved segments collapse on resumption of unilateral ventilation. Data from 221 patients who underwent thoracoscopic pulmonary segmentectomy between 2010 and 2016 were analyzed. Results A total of 147 patients (67%) were indicated for the slip-knot method, and 74 cases (33%) were non-adaptive cases. Ninety six percent of 147 cases were well adapted to the slip-knot method, which allowed us to obtain good inflation-deflation line images to determine the intersegmental plane. The mean operative time was 171±51 min (range, 71–367 min). The mean duration of chest tube insertion was 1.5±1.2 days (range, 1–7 days). Three cases (2.0%) had prolonged air-leakage and one (0.7%) case had readmission for late air-leakage. Conclusions Our method enables determination of anatomical intersegmental planes using only one monofilament thread, thus facilitating thoracoscopic pulmonary anatomical segmentectomy. PMID:29785297

  5. Are we fully utilizing the functionalities of modern operating room ventilators?

    PubMed

    Liu, Shujie; Kacmarek, Robert M; Oto, Jun

    2017-12-01

    The modern operating room ventilators have become very sophisticated and many of their features are comparable with those of an ICU ventilator. To fully utilize the functionality of modern operating room ventilators, it is important for clinicians to understand in depth the working principle of these ventilators and their functionalities. Piston ventilators have the advantages of delivering accurate tidal volume and certain flow compensation functions. Turbine ventilators have great ability of flow compensation. Ventilation modes are mainly volume-based or pressure-based. Pressure-based ventilation modes provide better leak compensation than volume-based. The integration of advanced flow generation systems and ventilation modes of the modern operating room ventilators enables clinicians to provide both invasive and noninvasive ventilation in perioperative settings. Ventilator waveforms can be used for intraoperative neuromonitoring during cervical spine surgery. The increase in number of new features of modern operating room ventilators clearly creates the opportunity for clinicians to optimize ventilatory care. However, improving the quality of ventilator care relies on a complete understanding and correct use of these new features. VIDEO ABSTRACT: http://links.lww.com/COAN/A47.

  6. Molecular dynamics simulations reveal the allosteric effect of F1174C resistance mutation to ceritinib in ALK-associated lung cancer.

    PubMed

    Ni, Zhong; Wang, Xiting; Zhang, Tianchen; Jin, Rong Zhong

    2016-12-01

    Anaplastic lymphoma kinase (ALK) has become as an important target for the treatment of various human cancers, especially non-small-cell lung cancer. A mutation, F1174C, suited in the C-terminal helix αC of ALK and distal from the small-molecule inhibitor ceritinib bound to the ATP-binding site, causes the emergence of drug resistance to ceritinib. However, the detailed mechanism for the allosteric effect of F1174C resistance mutation to ceritinib remains unclear. Here, molecular dynamics (MD) simulations and binding free energy calculations [Molecular Mechanics/Generalized Born Surface Area (MM/GBSA)] were carried out to explore the advent of drug resistance mutation in ALK. MD simulations observed that the exquisite aromatic-aromatic network formed by residues F1098, F1174, F1245, and F1271 in the wild-type ALK-ceritinib complex was disrupted by the F1174C mutation. The resulting mutation allosterically affected the conformational dynamic of P-loop and caused the upward movement of the P-loop from the ATP-binding site, thereby weakening the interaction between ceritinib and the P-loop. The subsequent MM/GBSA binding free energy calculations and decomposition analysis of binding free energy validated this prediction. This study provides mechanistic insight into the allosteric effect of F1174C resistance mutation to ceritinib in ALK and is expected to contribute to design the next-generation of ALK inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Biosignature Suite from Cave Pool Precipitates, Cottonwood Cave, New Mexico

    NASA Astrophysics Data System (ADS)

    Melim, L. A.; Liescheidt, R.; Northup, D. E.; Spilde, M. N.; Boston, P. J.; Queen, J. M.

    2009-11-01

    Calcite cave pool precipitates often display a variety of potential biosignatures from the macroscopic to the submicroscopic. A fossil cave pool in Cottonwood Cave, New Mexico, exhibits older stalactites and stalagmites that are completely coated in brown, laminated calcitic crust that extends down as pool fingers and u-loops. The pool fingers and u-loops are mainly micrite to clotted micrite, some recrystallized to microspar, with some isopachous spar layers. Micrite, particularly clotted micrite, is usually interpreted by carbonate workers as microbial in origin. Scanning electron microscopy examination of etched pool fingers, u-loops, and the brown crust revealed abundant calcified microbial filaments and biofilm. Energy dispersive X-ray analysis showed that these features have excess carbon, above that found in pure calcite. Independent carbon analysis indicated that these same samples contain up to 0.2% organic carbon. Since pool fingers hang down but form underwater, we hypothesize they are biogenic with hanging microbial filaments or biofilm acting as nuclei for calcite precipitation. Because of the abundance of micrite and fossil filaments, we further hypothesize that these pendant features formed during a period of plentiful nutrients and active hydrological activity when the pool was literally dripping with microbial slime. Although each of these lines of evidence could be interpreted in other ways, their combined weight strongly suggests the cave pool precipitates in Cottonwood Cave are biogenic. These investigations can be used to help inform extraterrestrial life-detection studies.

  8. A biosignature suite from cave pool precipitates, Cottonwood Cave, New Mexico.

    PubMed

    Melim, L A; Liescheidt, R; Northup, D E; Spilde, M N; Boston, P J; Queen, J M

    2009-11-01

    Calcite cave pool precipitates often display a variety of potential biosignatures from the macroscopic to the submicroscopic. A fossil cave pool in Cottonwood Cave, New Mexico, exhibits older stalactites and stalagmites that are completely coated in brown, laminated calcitic crust that extends down as pool fingers and u-loops. The pool fingers and u-loops are mainly micrite to clotted micrite, some recrystallized to microspar, with some isopachous spar layers. Micrite, particularly clotted micrite, is usually interpreted by carbonate workers as microbial in origin. Scanning electron microscopy examination of etched pool fingers, u-loops, and the brown crust revealed abundant calcified microbial filaments and biofilm. Energy dispersive X-ray analysis showed that these features have excess carbon, above that found in pure calcite. Independent carbon analysis indicated that these same samples contain up to 0.2% organic carbon. Since pool fingers hang down but form underwater, we hypothesize they are biogenic with hanging microbial filaments or biofilm acting as nuclei for calcite precipitation. Because of the abundance of micrite and fossil filaments, we further hypothesize that these pendant features formed during a period of plentiful nutrients and active hydrological activity when the pool was literally dripping with microbial slime. Although each of these lines of evidence could be interpreted in other ways, their combined weight strongly suggests the cave pool precipitates in Cottonwood Cave are biogenic. These investigations can be used to help inform extraterrestrial life-detection studies.

  9. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration

    PubMed Central

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.

    2016-01-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  10. A randomised crossover comparison of mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation by surf lifeguards in a manikin.

    PubMed

    Adelborg, K; Bjørnshave, K; Mortensen, M B; Espeseth, E; Wolff, A; Løfgren, B

    2014-07-01

    Thirty surf lifeguards (mean (SD) age: 25.1 (4.8) years; 21 male, 9 female) were randomly assigned to perform 2 × 3 min of cardiopulmonary resuscitation on a manikin using mouth-to-face-shield ventilation (AMBU LifeKey) and mouth-to-pocket-mask ventilation (Laerdal Pocket Mask). Interruptions in chest compressions, effective ventilation (visible chest rise) ratio, tidal volume and inspiratory time were recorded. Interruptions in chest compressions per cycle were increased with mouth-to-face-shield ventilation (mean (SD) 8.6 (1.7) s) compared with mouth-to-pocket-mask ventilation (6.9 (1.2) s, p < 0.0001). The proportion of effective ventilations was less using mouth-to-face-shield ventilation (199/242 (82%)) compared with mouth-to-pocket-mask ventilation (239/240 (100%), p = 0.0002). Tidal volume was lower using mouth-to-face-shield ventilation (mean (SD) 0.36 (0.20) l) compared with mouth-to-pocket-mask ventilation (0.45 (0.20) l, p = 0.006). No differences in inspiratory times were observed between mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation. In conclusion, mouth-to-face-shield ventilation increases interruptions in chest compressions, reduces the proportion of effective ventilations and decreases delivered tidal volumes compared with mouth-to-pocket-mask ventilation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  11. Biomedical Support of U.S. Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Dervay, J. P.; Gillis, D.; McMann, H. J.; Thomas, K. S.

    2007-01-01

    The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic rates of 1000 BTU/hr and peaks of up to 2200 BTU/hr. Mobility was further augmented with the Lunar Roving Vehicle. The Apollo extravehicular mobility unit (EMU) was made up of over 15 components, ranging from a biomedical belt for capturing and transmitting biomedical data, urine and fecal containment systems, a liquid cooling garment, communications cap, a modular portable life support system (PLSS), a boot system, thermal overgloves, and a bubble helmet with eye protection. Apollo lunar astronauts performed successful EVAs on the lunar surface from a 5 psia (34.4 kPa) 100% oxygen environment in the Lunar Lander. A maximum of three EVAs were performed on any mission. For Skylab a modified A7LB suit, used for Apollo 15, was selected. The Skylab astronaut life support assembly (ALSA) provided umbilical support through the life support umbilical (LSU) and used open loop oxygen flow, rather than closed-loop as in Apollo missions. Thermal control was provided by liquid water circulated by spacecraft pumps and electrical power also was provided from the spacecraft via the umbilical. The cabin atmosphere of 5 psia (34.4 kPa), 70% oxygen, provided a normoxic atmosphere and because of the very low nitrogen partial pressures, no special protocols were required to protect against decompression sickness (DCS) as was the case with the Apollo spacecraft with a 5 psi, 100% oxygen environment.

  12. [Neurally adjusted ventilatory assist (NAVA). A new mode of assisted mechanical ventilation].

    PubMed

    Moerer, O; Barwing, J; Quintel, M

    2008-10-01

    The aim of mechanical ventilation is to assure gas exchange while efficiently unloading the respiratory muscles and mechanical ventilation is an integral part of the care of patients with acute respiratory failure. Modern lung protective strategies of mechanical ventilation include low-tidal-volume ventilation and the continuation of spontaneous breathing which has been shown to be beneficial in reducing atelectasis and improving oxygenation. Poor patient-ventilator interaction is a major issue during conventional assisted ventilation. Neurally adjusted ventilator assist (NAVA) is a new mode of mechanical ventilation that uses the electrical activity of the diaphragm (EAdi) to control the ventilator. First experimental studies showed an improved patient-ventilator synchrony and an efficient unloading of the respiratory muscles. Future clinical studies will have to show that NAVA is of clinical advantage when compared to conventional modes of assisted mechanical ventilation. This review characterizes NAVA according to current publications on this topic.

  13. Rationale and study design for an individualized perioperative open lung ventilatory strategy (iPROVE): study protocol for a randomized controlled trial.

    PubMed

    Ferrando, Carlos; Soro, Marina; Canet, Jaume; Unzueta, Ma Carmen; Suárez, Fernando; Librero, Julián; Peiró, Salvador; Llombart, Alicia; Delgado, Carlos; León, Irene; Rovira, Lucas; Ramasco, Fernando; Granell, Manuel; Aldecoa, César; Diaz, Oscar; Balust, Jaume; Garutti, Ignacio; de la Matta, Manuel; Pensado, Alberto; Gonzalez, Rafael; Durán, M Eugenia; Gallego, Lucia; Del Valle, Santiago García; Redondo, Francisco J; Diaz, Pedro; Pestaña, David; Rodríguez, Aurelio; Aguirre, Javier; García, Jose M; García, Javier; Espinosa, Elena; Charco, Pedro; Navarro, Jose; Rodríguez, Clara; Tusman, Gerardo; Belda, Francisco Javier

    2015-04-27

    Postoperative pulmonary and non-pulmonary complications are common problems that increase morbidity and mortality in surgical patients, even though the incidence has decreased with the increased use of protective lung ventilation strategies. Previous trials have focused on standard strategies in the intraoperative or postoperative period, but without personalizing these strategies to suit the needs of each individual patient and without considering both these periods as a global perioperative lung-protective approach. The trial presented here aims at comparing postoperative complications when using an individualized ventilatory management strategy in the intraoperative and immediate postoperative periods with those when using a standard protective ventilation strategy in patients scheduled for major abdominal surgery. This is a comparative, prospective, multicenter, randomized, and controlled, four-arm trial that will include 1012 patients with an intermediate or high risk for postoperative pulmonary complications. The patients will be divided into four groups: (1) individualized perioperative group: intra- and postoperative individualized strategy; (2) intraoperative individualized strategy + postoperative continuous positive airway pressure (CPAP); (3) intraoperative standard ventilation + postoperative CPAP; (4) intra- and postoperative standard strategy (conventional strategy). The primary outcome is a composite analysis of postoperative complications. The Individualized Perioperative Open-lung Ventilatory Strategy (iPROVE) is the first multicenter, randomized, and controlled trial to investigate whether an individualized perioperative approach prevents postoperative pulmonary complications. Registered on 5 June 2014 with identification no. NCT02158923 .

  14. Antibiotic therapy in ventilator-associated tracheobronchitis: a literature review.

    PubMed

    Alves, Abel Eduardo; Pereira, José Manuel

    2018-03-01

    The concept of ventilator-associated tracheobronchitis is controversial; its definition is not unanimously accepted and often overlaps with ventilator-associated pneumonia. Ventilator-associated tracheobronchitis has an incidence similar to that of ventilator-associated pneumonia, with a high prevalence of isolated multiresistant agents, resulting in an increase in the time of mechanical ventilation and hospitalization but without an impact on mortality. The performance of quantitative cultures may allow better diagnostic definition of tracheobronchitis associated with mechanical ventilation, possibly avoiding the overdiagnosis of this condition. One of the major difficulties in differentiating between ventilator-associated tracheobronchitis and ventilator-associated pneumonia is the exclusion of a pulmonary infiltrate by chest radiography; thoracic computed tomography, thoracic ultrasonography, or invasive specimen collection may also be required. The institution of systemic antibiotic therapy does not improve the clinical impact of ventilator-associated tracheobronchitis, particularly in reducing time of mechanical ventilation, hospitalization or mortality, despite the possible reduced progression to ventilator-associated pneumonia. However, there are doubts regarding the methodology used. Thus, considering the high prevalence of tracheobronchitis associated with mechanical ventilation, routine treatment of this condition would result in high antibiotic usage without clear benefits. However, we suggest the institution of antibiotic therapy in patients with tracheobronchitis associated with mechanical ventilation and septic shock and/or worsening of oxygenation, and other auxiliary diagnostic tests should be simultaneously performed to exclude ventilator-associated pneumonia. This review provides a better understanding of the differentiation between tracheobronchitis associated with mechanical ventilation and pneumonia associated with mechanical ventilation, which can significantly decrease the use of antibiotics in critically ventilated patients.

  15. Tracheostomy and invasive mechanical ventilation in amyotrophic lateral sclerosis: decision-making factors and survival analysis.

    PubMed

    Kimura, Fumiharu

    2016-04-28

    Invasive and/or non-invasive mechanical ventilation are most important options of respiratory management in amyotrophic lateral sclerosis. We evaluated the frequency, clinical characteristics, decision-making factors about ventilation and survival analysis of 190 people with amyotrophic lateral sclerosis patients from 1990 until 2013. Thirty-one percentage of patients underwent tracheostomy invasive ventilation with the rate increasing more than the past 20 years. The ratio of tracheostomy invasive ventilation in patients >65 years old was significantly increased after 2000 (25%) as compared to before (10%). After 2010, the standard use of non-invasive ventilation showed a tendency to reduce the frequency of tracheostomy invasive ventilation. Mechanical ventilation prolonged median survival (75 months in tracheostomy invasive ventilation, 43 months in non-invasive ventilation vs natural course, 32 months). The life-extending effects by tracheostomy invasive ventilation were longer in younger patients ≤65 years old at the time of ventilation support than in older patients. Presence of partners and care at home were associated with better survival. Following factors related to the decision to perform tracheostomy invasive ventilation: patients ≤65 years old: greater use of non-invasive ventilation: presence of a spouse: faster tracheostomy: higher progression rate; and preserved motor functions. No patients who underwent tracheostomy invasive ventilation died from a decision to withdraw mechanical ventilation. The present study provides factors related to decision-making process and survival after tracheostomy and help clinicians and family members to expand the knowledge about ventilation.

  16. The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid (DAA) Systems

    NASA Technical Reports Server (NTRS)

    Abramson, Michael; Refai, Mohamad; Santiago, Confesor

    2017-01-01

    The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is "generic" in that it makes no assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Accordingly, GRACE is well suited to research applications where alerting and guidance is a central feature and requirements are fluid involving a wide range of aviation technologies. GRACE has been used at NASA in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.

  17. Evaluating Fault Management Operations Concepts for Next-Generation Spacecraft: What Eye Movements Tell Us

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Ravinder, Ujwala; McCann, Robert S.; Beutter, Brent; Spirkovska, Lily

    2009-01-01

    Performance enhancements associated with selected forms of automation were quantified in a recent human-in-the-loop evaluation of two candidate operational concepts for fault management on next-generation spacecraft. The baseline concept, called Elsie, featured a full-suite of "soft" fault management interfaces. However, operators were forced to diagnose malfunctions with minimal assistance from the standalone caution and warning system. The other concept, called Besi, incorporated a more capable C&W system with an automated fault diagnosis capability. Results from analyses of participants' eye movements indicate that the greatest empirical benefit of the automation stemmed from eliminating the need for text processing on cluttered, text-rich displays.

  18. Epidemiology of Noninvasive Ventilation in Pediatric Cardiac ICUs.

    PubMed

    Romans, Ryan A; Schwartz, Steven M; Costello, John M; Chanani, Nikhil K; Prodhan, Parthak; Gazit, Avihu Z; Smith, Andrew H; Cooper, David S; Alten, Jeffrey; Mistry, Kshitij P; Zhang, Wenying; Donohue, Janet E; Gaies, Michael

    2017-10-01

    To describe the epidemiology of noninvasive ventilation therapy for patients admitted to pediatric cardiac ICUs and to assess practice variation across hospitals. Retrospective cohort study using prospectively collected clinical registry data. Pediatric Cardiac Critical Care Consortium clinical registry. Patients admitted to cardiac ICUs at PC4 hospitals. None. We analyzed all cardiac ICU encounters that included any respiratory support from October 2013 to December 2015. Noninvasive ventilation therapy included high flow nasal cannula and positive airway pressure support. We compared patient and, when relevant, perioperative characteristics of those receiving noninvasive ventilation to all others. Subgroup analysis was performed on neonates and infants undergoing major cardiovascular surgery. To examine duration of respiratory support, we created a casemix-adjustment model and calculated adjusted mean durations of total respiratory support (mechanical ventilation + noninvasive ventilation), mechanical ventilation, and noninvasive ventilation. We compared adjusted duration of support across hospitals. The cohort included 8,940 encounters from 15 hospitals: 3,950 (44%) received noninvasive ventilation and 72% were neonates and infants. Medical encounters were more likely to include noninvasive ventilation than surgical. In surgical neonates and infants, 2,032 (55%) received postoperative noninvasive ventilation. Neonates, extracardiac anomalies, single ventricle, procedure complexity, preoperative respiratory support, mechanical ventilation duration, and postoperative disease severity were associated with noninvasive ventilation therapy (p < 0.001 for all). Across hospitals, noninvasive ventilation use ranged from 32% to 65%, and adjusted mean noninvasive ventilation duration ranged from 1 to 4 days (3-d observed mean). Duration of total adjusted respiratory support was more strongly correlated with duration of mechanical ventilation compared with noninvasive ventilation (Pearson r = 0.93 vs 0.71, respectively). Noninvasive ventilation use is common in cardiac ICUs, especially in patients admitted for medical conditions, infants, and those undergoing high complexity surgery. We observed wide variation in noninvasive ventilation use across hospitals, though the primary driver of total respiratory support time seems to be duration of mechanical ventilation.

  19. EnergyPlus™

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Originally developed in 1999, an updated version 8.8.0 with bug fixes was released on September 30th, 2017. EnergyPlus™ is a whole building energy simulation program that engineers, architects, and researchers use to model both energy consumption—for heating, cooling, ventilation, lighting and plug and process loads—and water use in buildings. EnergyPlus is a console-based program that reads input and writes output to text files. It ships with a number of utilities including IDF-Editor for creating input files using a simple spreadsheet-like interface, EP-Launch for managing input and output files and performing batch simulations, and EP-Compare for graphically comparing the results ofmore » two or more simulations. Several comprehensive graphical interfaces for EnergyPlus are also available. DOE does most of its work with EnergyPlus using the OpenStudio® software development kit and suite of applications. DOE releases major updates to EnergyPlus twice annually.« less

  20. Emergency operations program is an excellent platform to deal with in-hospital operation disaster.

    PubMed

    Rogers, Frederick B; McCune, William; Jammula, Shreya; Gross, Brian W; Bradburn, Eric H; Riley, Deborah K; Manning, Jeffrey

    2017-01-01

    Described herein is the utilization of the hospital's Emergency Operations Plan and incident command structure to mitigate damage caused by the sudden loss of the heating, ventilation, and air conditioning system within the entire operating room suite. The ability to ameliorate a devastating situation that occurred during working hours at a busy Level II trauma center can be ascribed to the dedication of the leadership and clinical teams working seamlessly together. Their concerted efforts were augmented by adherence to an established protocol that had been thoroughly substantiated and practiced during numerous training simulations. This resulted in successful and timely resolution of an internal crisis that crippled the surgical capabilities of the sole trauma center in the county. After thorough investigation and identification of the issues that contributed to the malfunction, redundancies were built into the system to ensure that a similar incident did not occur again.

  1. Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air Pollution Exposures in Rural Households

    PubMed Central

    Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Johnson, Michael; Litton, Charles D.; Lam, Nicholas L.; Pennise, David; Smith, Kirk R.

    2017-01-01

    Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley—in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions—has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO2-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them. PMID:28812989

  2. Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air Pollution Exposures in Rural Households.

    PubMed

    Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Hill, L Drew; Johnson, Michael; Litton, Charles D; Lam, Nicholas L; Pennise, David; Smith, Kirk R

    2017-08-16

    Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley-in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions-has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO₂-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them.

  3. Interactive simulation system for artificial ventilation on the internet: virtual ventilator.

    PubMed

    Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki

    2004-12-01

    To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web application that demonstrated the respiratory mechanics and the basic theory of ventilation mode.

  4. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu; Koo, Phillip J.; Castillo, Richard

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based modelmore » were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed on a regional level. Our study presents an important step for the integration of 4DCT-ventilation into thoracic clinical practice.« less

  5. Impact of Room Ventilation Rates on Mouse Cage Ventilation and Microenvironment.

    PubMed

    Reeb, Carolyn K.; Jones, Robert B.; Bearg, David W.; Bedigian, Hendrick; Paigen, Beverly

    1997-01-01

    To assess the impact of room ventilation on animal cage microenvironment, intracage ventilation rate, temperature, humidity, and concentrations of carbon dioxide and ammonia were monitored in nonpressurized, bonnet-topped mouse cages. Cages on the top, middle, and bottom rows of a mouse rack were monitored at room ventilation rates of 0, 5, 10, and 20 air changes/h (ACH). Ventilation inside the animal cage increased somewhat from 12.8 to 18.9 ACH as room ventilation rate in- creased from 0 to 20 ACH, but the differences were not statistically significant, and most of the increase occurred in cages in the top row nearest to the fresh air supply. Cages containing mice had ventilation rate between 10 and 15 ACH even when room ventilation was reduced to 0 ACH; this ventilation is a result of the thermal heat load of the mice. After 6 days of soiled bedding, intracage ammonia concentration was c 3 ppm at all room ventilation rates and was not affected by increasing room ventilation. Temperature inside cages did not change with increasing ventilation. Humidity inside cages significantly decreased with increasing ventilation, from 55% relative humidity at 5 ACH to 36% relative humidity at 20 ACH. Carbon dioxide concentration decreased from 2,500 ppm to 1,900 ppm when ventilation rate increased from 5 ACH to 10 ACH, but no further significant decrease was observed at 20 ACH. In conclusion, increasing the room ventilation rate higher than 5 ACH did not result in significant improvements in the cage microenvironment.

  6. Variable mechanical ventilation

    PubMed Central

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini Jr., Luiz Alberto; Friedman, Gilberto

    2017-01-01

    Objective To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Methods Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". Results A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Conclusion Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation. PMID:28444076

  7. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    PubMed Central

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency of recruitment maneuvers to help ameloriate ventilator-induced lung injury. PMID:29112971

  8. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space...

  9. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space...

  10. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space...

  11. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space...

  12. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space...

  13. A regulator for pressure-controlled total-liquid ventilation.

    PubMed

    Robert, Raymond; Micheau, Philippe; Avoine, Olivier; Beaudry, Benoit; Beaulieu, Alexandre; Walti, Hervé

    2010-09-01

    Total-liquid ventilation (TLV) is an innovative experimental method of mechanical-assisted ventilation in which lungs are totally filled and then ventilated with a tidal volume of perfluorochemical liquid by using a dedicated liquid ventilator. Such a novel medical device must resemble other conventional ventilators: it must be able to conduct controlled-pressure ventilation. The objective was to design a robust controller to perform pressure-regulated expiratory flow and to implement it on our latest liquid-ventilator prototype (Inolivent-4). Numerical simulations, in vitro experiments, and in vivo experiments in five healthy term newborn lambs have demonstrated that it was efficient to generate expiratory flows while avoiding collapses. Moreover, the in vivo results have demonstrated that our liquid ventilator can maintain adequate gas exchange, normal acid-base equilibrium, and achieve greater minute ventilation, better oxygenation and CO2 extraction, while nearing flow limits. Hence, it is our suggestion to perform pressure-controlled ventilation during expiration with minute ventilation equal or superior to 140 mL x min(-1) x kg(-1) in order to ensure PaCO2 below 55 mmHg. From a clinician's point of view, pressure-controlled ventilation greatly simplifies the use of the liquid ventilator, which will certainly facilitate its introduction in intensive care units for clinical applications.

  14. [Anesthesia ventilators].

    PubMed

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand-alone mechanical ventilators modified to allow the administration of inhalational anaesthetic agents.

  15. Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep

    PubMed Central

    Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.

    2016-01-01

    Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321

  16. Rapid authentication of the precious herb saffron by loop-mediated isothermal amplification (LAMP) based on internal transcribed spacer 2 (ITS2) sequence

    PubMed Central

    Zhao, Mingming; Shi, Yuhua; Wu, Lan; Guo, Licheng; Liu, Wei; Xiong, Chao; Yan, Song; Sun, Wei; Chen, Shilin

    2016-01-01

    Saffron is one of the most expensive species of Chinese herbs and has been subjected to various types of adulteration because of its high price and limited production. The present study introduces a loop-mediated isothermal amplification (LAMP) technique for the differentiation of saffron from its adulterants. This novel technique is sensitive, efficient and simple. Six specific LAMP primers were designed on the basis of the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA of Crocus sativus. All LAMP amplifications were performed successfully, and visual detection occurred within 60 min at isothermal conditions of 65 °C. The results indicated that the LAMP primers are accurate and highly specific for the discrimination of saffron from its adulterants. In particular, 10 fg of genomic DNA was determined to be the limit for template accuracy of LAMP in saffron. Thus, the proposed novel, simple, and sensitive LAMP assay is well suited for immediate on-site discrimination of herbal materials. Based on the study, a practical standard operating procedure (SOP) for utilizing the LAMP protocol for herbal authentication is provided. PMID:27146605

  17. Positive affective processes underlie positive health behaviour change.

    PubMed

    Van Cappellen, Patty; Rice, Elise L; Catalino, Lahnna I; Fredrickson, Barbara L

    2018-01-01

    Positive health behaviours such as physical activity can prevent or reverse many chronic conditions, yet a majority of people fall short of leading a healthy lifestyle. Recent discoveries in affective science point to promising approaches to circumvent barriers to lifestyle change. Here, we present a new theoretical framework that integrates scientific knowledge about positive affect with that on implicit processes. The upward spiral theory of lifestyle change explains how positive affect can facilitate long-term adherence to positive health behaviours. The inner loop of this spiral model identifies nonconscious motives as a central mechanism of behavioural maintenance. Positive affect experienced during health behaviours increases incentive salience for cues associated with those behaviours, which in turn, implicitly guides attention and the everyday decisions to repeat those behaviours. The outer loop represents the evidence-backed claim, based on Fredrickson's broaden-and-build theory, that positive affect builds a suite of endogenous resources, which may in turn amplify the positive affect experienced during positive health behaviours and strengthen the nonconscious motives. We offer published and preliminary evidence in favour of the theory, contrast it to other dominant theories of health behaviour change, and highlight attendant implications for interventions that merit testing.

  18. Rapid authentication of the precious herb saffron by loop-mediated isothermal amplification (LAMP) based on internal transcribed spacer 2 (ITS2) sequence.

    PubMed

    Zhao, Mingming; Shi, Yuhua; Wu, Lan; Guo, Licheng; Liu, Wei; Xiong, Chao; Yan, Song; Sun, Wei; Chen, Shilin

    2016-05-05

    Saffron is one of the most expensive species of Chinese herbs and has been subjected to various types of adulteration because of its high price and limited production. The present study introduces a loop-mediated isothermal amplification (LAMP) technique for the differentiation of saffron from its adulterants. This novel technique is sensitive, efficient and simple. Six specific LAMP primers were designed on the basis of the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA of Crocus sativus. All LAMP amplifications were performed successfully, and visual detection occurred within 60 min at isothermal conditions of 65 °C. The results indicated that the LAMP primers are accurate and highly specific for the discrimination of saffron from its adulterants. In particular, 10 fg of genomic DNA was determined to be the limit for template accuracy of LAMP in saffron. Thus, the proposed novel, simple, and sensitive LAMP assay is well suited for immediate on-site discrimination of herbal materials. Based on the study, a practical standard operating procedure (SOP) for utilizing the LAMP protocol for herbal authentication is provided.

  19. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.

    PubMed

    Jagannathan, Sarangapani; He, Pingan

    2008-12-01

    In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.

  20. Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin

    2015-01-01

    A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.

  1. Ventilation practices in the neonatal intensive care unit: a cross-sectional study.

    PubMed

    van Kaam, Anton H; Rimensberger, Peter C; Borensztajn, Dorine; De Jaegere, Anne P

    2010-11-01

    To assess current ventilation practices in newborn infants. We conducted a 2-point cross-sectional study in 173 European neonatal intensive care units, including 535 infants (mean gestational age 28 weeks and birth weight 1024 g). Patient characteristics, ventilator settings, and measurements were collected bedside from endotracheally ventilated infants. A total of 457 (85%) patients were conventionally ventilated. Time cycled pressure-limited ventilation was used in 59% of these patients, most often combined with synchronized intermittent mandatory ventilation (51%). Newer conventional ventilation modes like volume targeted and pressure support ventilation were used in, respectively, 9% and 7% of the patients. The mean tidal volume, measured in 84% of the conventionally ventilated patients, was 5.7 ± 2.3 ml/kg. The mean positive end-expiratory pressure was 4.5 ± 1.1 cmH(2)O and rarely exceeded 7 cmH(2)O. Time cycled pressure-limited ventilation is the most commonly used mode in neonatal ventilation. Tidal volumes are usually targeted between 4 to 7 mL/kg and positive end-expiratory pressure between 4 to 6 cmH(2)O. Newer ventilation modes are only used in a minority of patients. Copyright © 2010 Mosby, Inc. All rights reserved.

  2. Differential lung ventilation via tracheostomy using two endotracheal tubes in an infant: a case report.

    PubMed

    Demirkol, Demet; Ataman, Yasemin; Gündoğdu, Gökhan

    2017-09-08

    This case report presents differential lung ventilation in an infant. The aim is to define an alternative technique for performing differential lung ventilation in children. To the best of our knowledge, this is the first report of this kind. A 4.2-kg, 2.5-month-old Asian boy was referred to our facility with refractory hypoxemia and hypercarbia due to asymmetric lung disease with atelectasis of the left lung and hyperinflation of the right lung. He was unresponsive to conventional ventilator strategies; different ventilator settings were required. To perform differential lung ventilation, two separate single-lumen endotracheal tubes were inserted into the main bronchus of each lung by tracheotomy; the tracheal tubes were attached to discrete ventilators. The left lung was ventilated with a lung salvage strategy using high-frequency oscillatory ventilation, and the right lung was ventilated with a lung-protective strategy using pressure-regulated volume control mode. Differential lung ventilation was performed successfully with this technique without complications. Differential lung ventilation may be a lifesaving procedure in select patients who have asymmetric lung disease. Inserting two single-lumen endotracheal tubes via tracheotomy for differential lung ventilation can be an effective and safe alternative method.

  3. Effect of one-lung ventilation on end-tidal carbon dioxide during cardiopulmonary resuscitation in a pig model of cardiac arrest.

    PubMed

    Ryu, Dong Hyun; Jung, Yong Hun; Jeung, Kyung Woon; Lee, Byung Kook; Jeong, Young Won; Yun, Jong Geun; Lee, Dong Hun; Lee, Sung Min; Heo, Tag; Min, Yong Il

    2018-01-01

    Unrecognized endobronchial intubation frequently occurs after emergency intubation. However, no study has evaluated the effect of one-lung ventilation on end-tidal carbon dioxide (ETCO2) during cardiopulmonary resuscitation (CPR). We compared the hemodynamic parameters, blood gases, and ETCO2 during one-lung ventilation with those during conventional two-lung ventilation in a pig model of CPR, to determine the effect of the former on ETCO2. A randomized crossover study was conducted in 12 pigs intubated with double-lumen endobronchial tube to achieve lung separation. During CPR, the animals underwent three 5-min ventilation trials based on a randomized crossover design: left-lung, right-lung, or two-lung ventilation. Arterial blood gases were measured at the end of each ventilation trial. Ventilation was provided using the same tidal volume throughout the ventilation trials. Comparison using generalized linear mixed model revealed no significant group effects with respect to aortic pressure, coronary perfusion pressure, and carotid blood flow; however, significant group effect in terms of ETCO2 was found (P < 0.001). In the post hoc analyses, ETCO2 was lower during the right-lung ventilation than during the two-lung (P = 0.006) or left-lung ventilation (P < 0.001). However, no difference in ETCO2 was detected between the left-lung and two-lung ventilations. The partial pressure of arterial carbon dioxide (PaCO2), partial pressure of arterial oxygen (PaO2), and oxygen saturation (SaO2) differed among the three types of ventilation (P = 0.003, P = 0.001, and P = 0.001, respectively). The post hoc analyses revealed a higher PaCO2, lower PaO2, and lower SaO2 during right-lung ventilation than during two-lung or left-lung ventilation. However, the levels of these blood gases did not differ between the left-lung and two-lung ventilations. In a pig model of CPR, ETCO2 was significantly lower during right-lung ventilation than during two-lung ventilation. However, interestingly, ETCO2 during left-lung ventilation was comparable to that during two-lung ventilation.

  4. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit

    PubMed Central

    Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2016-01-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg−1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg−1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg−1 predicted body weight and 7.9(±1.8) ml kg−1 predicted body weight for pressure-controlled ventilation (P < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level. PMID:28979556

  5. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit.

    PubMed

    Newell, Christopher P; Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2017-05-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg -1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg -1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg -1 predicted body weight and 7.9(±1.8) ml kg -1 predicted body weight for pressure-controlled ventilation ( P  < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level.

  6. Clinical challenges in mechanical ventilation.

    PubMed

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Improved oxygenation 24 hours after transition to airway pressure release ventilation or high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome*.

    PubMed

    Yehya, Nadir; Topjian, Alexis A; Thomas, Neal J; Friess, Stuart H

    2014-05-01

    Children with an immunocompromised condition and requiring invasive mechanical ventilation have high risk of death. Such patients are commonly transitioned to rescue modes of nonconventional ventilation, including airway pressure release ventilation and high-frequency oscillatory ventilation, for acute respiratory distress syndrome refractory to conventional ventilation. Our aim was to describe our experience with airway pressure release ventilation and high-frequency oscillatory ventilation in children with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation and to identify factors associated with survival. Retrospective cohort study. Tertiary care, university-affiliated PICU. Sixty pediatric patients with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation. None. Demographic data, ventilator settings, arterial blood gases, oxygenation index, and PaO(2)/FIO(2) were recorded before transition to either mode of nonconventional ventilation and at predetermined intervals after transition for up to 5 days. Mortality in the entire cohort was 63% and did not differ between patients transitioned to airway pressure release ventilation and high-frequency oscillatory ventilation. For both airway pressure release ventilation and high-frequency oscillatory ventilation, improvements in oxygenation index and PaO(2)/FIO(2) at 24 hours expressed as a fraction of pretransition values (oxygenation index(24)/oxygenation index(pre) and PaO(2)/FIO(224)/PaO(2)/FIO(2pre)) reliably discriminated nonsurvivors from survivors, with receiver operating characteristic areas under the curves between 0.89 and 0.95 (p for all curves < 0.001). Sensitivity-specificity analysis suggested that less than 15% reduction in oxygenation index (90% sensitive, 75% specific) or less than 90% increase in PaO(2)/FIO(2) (80% sensitive, 94% specific) 24 hours after transition to airway pressure release ventilation were the optimal cutoffs to identify nonsurvivors. The comparable values 24 hours after transition to high-frequency oscillatory ventilation were less than 5% reduction in oxygenation index (100% sensitive, 83% specific) or less than 80% increase in PaO(2)/FIO(2) (91% sensitive, 89% specific) to identify nonsurvivors. In this single-center retrospective study of pediatric patients with an immunocompromised condition and acute respiratory distress syndrome failing conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation, improved oxygenation at 24 hours expressed as PaO(2)/FIO(224)/PaO(2)/FIO(2pre) or oxygenation index(24)/oxygenation indexpre reliably discriminates nonsurvivors from survivors. These findings should be prospectively verified.

  8. Machine characterization and benchmark performance prediction

    NASA Technical Reports Server (NTRS)

    Saavedra-Barrera, Rafael H.

    1988-01-01

    From runs of standard benchmarks or benchmark suites, it is not possible to characterize the machine nor to predict the run time of other benchmarks which have not been run. A new approach to benchmarking and machine characterization is reported. The creation and use of a machine analyzer is described, which measures the performance of a given machine on FORTRAN source language constructs. The machine analyzer yields a set of parameters which characterize the machine and spotlight its strong and weak points. Also described is a program analyzer, which analyzes FORTRAN programs and determines the frequency of execution of each of the same set of source language operations. It is then shown that by combining a machine characterization and a program characterization, we are able to predict with good accuracy the run time of a given benchmark on a given machine. Characterizations are provided for the Cray-X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, Convex C-1, VAX 8600, VAX 11/785, VAX 11/780, SUN 3/50, and IBM RT-PC/125, and for the following benchmark programs or suites: Los Alamos (BMK8A1), Baskett, Linpack, Livermore Loops, Madelbrot Set, NAS Kernels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes.

  9. Thermal Performance Testing of EMU and CSAFE Liquid Cooling Gannents

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Meginnis, Ian; Hakam, Mary; Radford, Tamara

    2013-01-01

    Future exploration missions require the development of a new liquid cooling garment (LCG) to support the next generation extravehicular activity (EVA) suit system. The new LCG must offer greater system reliability, optimal thermal performance as required by mission directive, and meet other design requirements including improved tactile comfort. To advance the development of a future LCG, a thermal performance test was conducted to evaluate: (1) the comparable thermal performance of the EMU LCG and the CSAFE developed engineering evaluation unit (EEU) LCG, (2) the effect of the thermal comfort undergarment (TCU) on the EMU LCG tactile and thermal comfort, and (3) the performance of a torso or upper body only LCG shirt to evaluate a proposed auxiliary loop. To evaluate the thermal performance of each configuration, a metabolic test was conducted using the Demonstrator Spacesuit to create a relevant test environment. Three (3) male test subjects of similar height and weight walked on a treadmill at various speeds to produce three different metabolic loads - resting (300-600 BTU/hr), walking at a slow pace (1200 BTU/hr), and walking at a brisk pace (2200 BTU/hr). Each subject participated in five tests - two wearing the CSAFE full LCG, one wearing the EMU LCG without TCUs, one wearing the EMU LCG with TCUs, and one with the CSAFE shirt-only. During the test, performance data for the breathing air and cooling water systems and subject specific data was collected to define the thermal performance of the configurations. The test results show that the CSAFE EEU LCG and EMU LCG with TCU had comparable performance. The testing also showed that an auxiliary loop LCG, sized similarly to the shirt-only configuration, should provide adequate cooling for contingency scenarios. Finally, the testing showed that the TCU did not significantly hinder LCG heat transfer, and may prove to be acceptable for future suit use with additional analysis and testing.

  10. GENERAL VIEW SHOWING VENTILATOR NUMBER NINE. THIS VENTILATOR IS SLIGHTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW SHOWING VENTILATOR NUMBER NINE. THIS VENTILATOR IS SLIGHTLY MORE ORNATE THAN WAS GENERALLY USED BECAUSE OF ITS LOCATION - Old Croton Aqueduct, Ventilator Number 9, Spring & Everett Streets, Ossining, Westchester County, NY

  11. Clinical Validation of 4-Dimensional Computed Tomography Ventilation With Pulmonary Function Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Douglas; Schubert, Leah; Diot, Quentin

    Purpose: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Methods and Materials: Ninety-eight lung cancer patients withmore » pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change–based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Results: Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Conclusions: Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating that 4DCT-ventilation provides a reliable assessment of lung function. Four-dimensional CT ventilation enables exciting opportunities to assess lung function and create functional avoidance radiation therapy plans. The present work provides supporting evidence for the integration of 4DCT-ventilation into clinical trials.« less

  12. SU-F-J-219: Predicting Ventilation Change Due to Radiation Therapy: Dependency On Pre-RT Ventilation and Effort Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Ventilation change caused by radiation therapy (RT) can be predicted using four-dimensional computed tomography (4DCT) and image registration. This study tested the dependency of predicted post-RT ventilation on effort correction and pre-RT lung function. Methods: Pre-RT and 3 month post-RT 4DCT images were obtained for 13 patients. The 4DCT images were used to create ventilation maps using a deformable image registration based Jacobian expansion calculation. The post-RT ventilation maps were predicted in four different ways using the dose delivered, pre-RT ventilation, and effort correction. The pre-RT ventilation and effort correction were toggled to determine dependency. The four different predictedmore » ventilation maps were compared to the post-RT ventilation map calculated from image registration to establish the best prediction method. Gamma pass rates were used to compare the different maps with the criteria of 2mm distance-to-agreement and 6% ventilation difference. Paired t-tests of gamma pass rates were used to determine significant differences between the maps. Additional gamma pass rates were calculated using only voxels receiving over 20 Gy. Results: The predicted post-RT ventilation maps were in agreement with the actual post-RT maps in the following percentage of voxels averaged over all subjects: 71% with pre-RT ventilation and effort correction, 69% with no pre-RT ventilation and effort correction, 60% with pre-RT ventilation and no effort correction, and 58% with no pre-RT ventilation and no effort correction. When analyzing only voxels receiving over 20 Gy, the gamma pass rates were respectively 74%, 69%, 65%, and 55%. The prediction including both pre- RT ventilation and effort correction was the only prediction with significant improvement over using no prediction (p<0.02). Conclusion: Post-RT ventilation is best predicted using both pre-RT ventilation and effort correction. This is the only prediction that provided a significant improvement on agreement. Research support from NIH grants CA166119 and CA166703, a gift from Roger Koch, and a Pilot Grant from University of Iowa Carver College of Medicine.« less

  13. Adaptive support ventilation may deliver unwanted respiratory rate-tidal volume combinations in patients with acute lung injury ventilated according to an open lung concept.

    PubMed

    Dongelmans, Dave A; Paulus, Frederique; Veelo, Denise P; Binnekade, Jan M; Vroom, Margreeth B; Schultz, Marcus J

    2011-05-01

    With adaptive support ventilation, respiratory rate and tidal volume (V(T)) are a function of the Otis least work of breathing formula. We hypothesized that adaptive support ventilation in an open lung ventilator strategy would deliver higher V(T)s to patients with acute lung injury. Patients with acute lung injury were ventilated according to a local guideline advising the use of lower V(T) (6-8 ml/kg predicted body weight), high concentrations of positive end-expiratory pressure, and recruitment maneuvers. Ventilation parameters were recorded when the ventilator was switched to adaptive support ventilation, and after recruitment maneuvers. If V(T) increased more than 8 ml/kg predicted body weight, airway pressure was limited to correct for the rise of V(T). Ten patients with a mean (±SD) Pao(2)/Fio(2) of 171 ± 86 mmHg were included. After a switch from pressure-controlled ventilation to adaptive support ventilation, respiratory rate declined (from 31 ± 5 to 21 ± 6 breaths/min; difference = 10 breaths/min, 95% CI 3-17 breaths/min, P = 0.008) and V(T) increased (from 6.5 ± 0.8 to 9.0 ± 1.6 ml/kg predicted body weight; difference = 2.5 ml, 95% CI 0.4-4.6 ml/kg predicted body weight, P = 0.02). Pressure limitation corrected for the rise of V(T), but minute ventilation declined, forcing the user to switch back to pressure-controlled ventilation. Adaptive support ventilation, compared with pressure-controlled ventilation in an open lung strategy setting, delivers a lower respiratory rate-higher V(T) combination. Pressure limitation does correct for the rise of V(T), but leads to a decline in minute ventilation.

  14. Analysis of radon reduction and ventilation systems in uranium mines in China.

    PubMed

    Hu, Peng-hua; Li, Xian-jie

    2012-09-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  15. 1. GENERAL VIEW SHOWING VENTILATOR NO. 9. THIS VENTILATOR IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW SHOWING VENTILATOR NO. 9. THIS VENTILATOR IS SLIGHTLY MORE ORNATE THAN WAS GENERALLY USED BECAUSE OF ITS LOCATION. - Old Croton Aqueduct, Ventilator Number 9, Spring & Everett Streets, Ossining, Westchester County, NY

  16. The matter power spectrum in redshift space using effective field theory

    NASA Astrophysics Data System (ADS)

    Fonseca de la Bella, Lucía; Regan, Donough; Seery, David; Hotchkiss, Shaun

    2017-11-01

    The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k lesssim 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k lesssim 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the l = 0 mode up to ~ 5%, and for the l = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the l=0 mode gives a firm upper limit of k ≈ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the l=0 mode, but can induce deviations as large as 2% for the l=2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.

  17. 46 CFR 32.60-20 - Pumprooms on tank vessels carrying Grade A, B, C, D and/or E liquid cargo-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Ventilation from the weather deck shall be provided. Power supply ventilation may be fitted in lieu of natural... not exceed 500 °F. (b) Ventilation for pumprooms on tank vessels the construction or conversion of... with power ventilation. Pumprooms equipped with power ventilation shall have the ventilation outlets...

  18. Effect of flashlight guidance on manual ventilation performance in cardiopulmonary resuscitation: A randomized controlled simulation study.

    PubMed

    Kim, Ji Hoon; Beom, Jin Ho; You, Je Sung; Cho, Junho; Min, In Kyung; Chung, Hyun Soo

    2018-01-01

    Several auditory-based feedback devices have been developed to improve the quality of ventilation performance during cardiopulmonary resuscitation (CPR), but their effectiveness has not been proven in actual CPR situations. In the present study, we investigated the effectiveness of visual flashlight guidance in maintaining high-quality ventilation performance. We conducted a simulation-based, randomized, parallel trial including 121 senior medical students. All participants were randomized to perform ventilation during 2 minutes of CPR with or without flashlight guidance. For each participant, we measured mean ventilation rate as a primary outcome and ventilation volume, inspiration velocity, and ventilation interval as secondary outcomes using a computerized device system. Mean ventilation rate did not significantly differ between flashlight guidance and control groups (P = 0.159), but participants in the flashlight guidance group exhibited significantly less variation in ventilation rate than participants in the control group (P<0.001). Ventilation interval was also more regular among participants in the flashlight guidance group. Our results demonstrate that flashlight guidance is effective in maintaining a constant ventilation rate and interval. If confirmed by further studies in clinical practice, flashlight guidance could be expected to improve the quality of ventilation performed during CPR.

  19. Effects of Multiple Ventilation Courses and Duration of Mechanical Ventilation on Respiratory Outcomes in Extremely Low-Birth-Weight Infants.

    PubMed

    Jensen, Erik A; DeMauro, Sara B; Kornhauser, Michael; Aghai, Zubair H; Greenspan, Jay S; Dysart, Kevin C

    2015-11-01

    Extubation failure is common in extremely preterm infants. The current paucity of data on the adverse long-term respiratory outcomes associated with reinitiation of mechanical ventilation prevents assessment of the risks and benefits of a trial of extubation in this population. To evaluate whether exposure to multiple courses of mechanical ventilation increases the risk of adverse respiratory outcomes before and after adjustment for the cumulative duration of mechanical ventilation. We performed a retrospective cohort study of extremely low-birth-weight (ELBW; birth weight <1000 g) infants born from January 1, 2006, through December 31, 2012, who were receiving mechanical ventilation. Analysis was conducted between November 2014 and February 2015. Data were obtained from the Alere Neonatal Database. The primary study exposures were the cumulative duration of mechanical ventilation and the number of ventilation courses. The primary outcome was bronchopulmonary dysplasia (BPD) among survivors. Secondary outcomes were death, use of supplemental oxygen at discharge, and tracheostomy. We identified 3343 ELBW infants, of whom 2867 (85.8%) survived to discharge. Among the survivors, 1695 (59.1%) were diagnosed as having BPD, 856 (29.9%) received supplemental oxygen at discharge, and 31 (1.1%) underwent tracheostomy. Exposure to a greater number of mechanical ventilation courses was associated with a progressive increase in the risk of BPD and use of supplemental oxygen at discharge. Compared with a single ventilation course, the adjusted odds ratios for BPD ranged from 1.88 (95% CI, 1.54-2.31) among infants with 2 ventilation courses to 3.81 (95% CI, 2.88-5.04) among those with 4 or more courses. After adjustment for the cumulative duration of mechanical ventilation, the odds of BPD were only increased among infants exposed to 4 or more ventilation courses (adjusted odds ratio, 1.44; 95% CI, 1.04-2.01). The number of ventilation courses was not associated with increased risk of supplemental oxygen use at discharge after adjustment for the length of ventilation. A greater number of ventilation courses did not increase the risk of tracheostomy. Among ELBW infants, a longer cumulative duration of mechanical ventilation largely accounts for the increased risk of chronic respiratory morbidity associated with reinitiation of mechanical ventilation. These results support attempts of extubation in ELBW infants receiving mechanical ventilation on low ventilator settings, even when success is not guaranteed.

  20. Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.

    PubMed

    Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François

    2016-12-01

    Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.

  1. Association Between Noninvasive Ventilation and Mortality Among Older Patients With Pneumonia

    PubMed Central

    Valley, Thomas S.; Walkey, Allan J.; Lindenauer, Peter K.; Wiener, Renda Soylemez; Cooke, Colin R.

    2016-01-01

    Objective Despite increasing use, evidence is mixed as to the appropriate use of noninvasive ventilation in patients with pneumonia. We aimed to determine the relationship between receipt of noninvasive ventilation and outcomes for patients with pneumonia in a real-world setting. Design, Setting, Patients We performed a retrospective cohort study of Medicare beneficiaries (aged > 64 yr) admitted to 2,757 acute-care hospitals in the United States with pneumonia, who received mechanical ventilation from 2010 to 2011. Exposures Noninvasive ventilation versus invasive mechanical ventilation. Measurement and Main Results The primary outcome was 30-day mortality with Medicare reimbursement as a secondary outcome. To account for unmeasured confounding associated with noninvasive ventilation use, an instrumental variable was used—the differential distance to a high noninvasive ventilation use hospital. All models were adjusted for patient and hospital characteristics to account for measured differences between groups. Among 65,747 Medicare beneficiaries with pneumonia who required mechanical ventilation, 12,480 (19%) received noninvasive ventilation. Patients receiving noninvasive ventilation were more likely to be older, male, white, rural-dwelling, have fewer comorbidities, and were less likely to be acutely ill as measured by organ failures. Results of the instrumental variable analysis suggested that, among marginal patients, receipt of noninvasive ventilation was not significantly associated with differences in 30-day mortality when compared with invasive mechanical ventilation (54% vs 55%; p = 0.92; 95% CI of absolute difference, –13.8 to 12.4) but was associated with significantly lower Medicare spending ($18,433 vs $27,051; p = 0.02). Conclusions Among Medicare beneficiaries hospitalized with pneumonia who received mechanical ventilation, noninvasive ventilation use was not associated with a real-world mortality benefit. Given the wide CIs, however, substantial harm associated with noninvasive ventilation could not be excluded. The use of noninvasive ventilation for patients with pneumonia should be cautioned, but targeted enrollment of marginal patients with pneumonia could enrich future randomized trials. PMID:27749319

  2. The effect of helium on ventilator performance: study of five ventilators and a bedside Pitot tube spirometer.

    PubMed

    Oppenheim-Eden, A; Cohen, Y; Weissman, C; Pizov, R

    2001-08-01

    To assess in vitro the performance of five mechanical ventilators-Siemens 300 and 900C (Siemens-Elma; Solna, Sweden), Puritan Bennett 7200 (Nellcor Puritan Bennett; Pleasanton, CA), Evita 4 (Dragerwerk; Lubeck, Germany), and Bear 1000 (Bear Medical Systems; Riverside CA)-and a bedside sidestream spirometer (Datex CS3 Respiratory Module; Datex-Ohmeda; Helsinki, Finland) during ventilation with helium-oxygen mixtures. In vitro study. ICUs of two university-affiliated hospitals. Each ventilator was connected to 100% helium through compressed air inlets and then tested at three to six different tidal volume (VT) settings using various helium-oxygen concentrations (fraction of inspired oxygen [FIO(2)] of 0.2 to 1.0). FIO(2) and VT were measured with the Datex CS3 spirometer, and VT was validated with a water-displacement spirometer. The Puritan Bennett 7200 ventilator did not function with helium. With the other four ventilators, delivered FIO(2) was lower than the set FIO(2). For the Siemens 300 and 900C ventilators, this difference could be explained by the lack of 21% oxygen when helium was connected to the air supply port, while for the other two ventilators, a nonlinear relation was found. The VT of the Siemens 300 ventilator was independent of helium concentration, while for the other three ventilators, delivered VT was greater than the set VT and was dependent on helium concentration. During ventilation with 80% helium and 20% oxygen, VT increased to 125% of set VT for the Siemens 900C ventilator, and more than doubled for the Evita 4 and Bear 1000 ventilators. Under the same conditions, the Datex CS3 spirometer underestimated the delivered VT by about 33%. At present, no mechanical ventilator is calibrated for use with helium. This investigation offers correction factors for four ventilators for ventilation with helium.

  3. Optical mapping system with real-time control capability.

    PubMed

    Iravanian, Shahriar; Christini, David J

    2007-10-01

    Real-time, closed-loop intervention is an emerging experiment-control method that promises to provide invaluable new insight into cardiac electrophysiology. One example is the investigation of closed-loop feedback control of cardiac activity (e.g., alternans) as a possible method of preventing arrhythmia onset. To date, such methods have been investigated only in vitro using microelectrode systems, which are hindered by poor spatial resolution and are not well suited for atrial or ventricular tissue preparations. We have developed a system that uses optical mapping techniques and an electrical stimulator as the sensory and effector arms, respectively, of a closed-loop, real-time control system. The system consists of a 2,048 x 1 pixel line-scan charge-coupled device camera that records optical signals from the tissue. Custom-image processing and control software, which is implemented on top of a hard real-time operation system (RTAI Linux), process the data and make control decisions with a deterministic delay of <1 ms. The system is tested in two ways: 1) it is used to control, in real time, simulated optical signals of electrical alternans; and 2) it uses precisely timed, feedback-controlled initiation of antitachycardia pacing to terminate reentrant arrhythmias in an arterially perfused swine right ventricle stained with voltage-sensitive fluorescent dye 4{beta-[2-(di-n-butylamino)-6-napathy]vinyl}pyridinium (di-4-ANEPPS). Thus real-time control of cardiac activity using optical mapping techniques is feasible. Such a system is attractive because it offers greater measurement resolution than the electrode-based systems with which real-time control has been used previously.

  4. Proximity Operations for Space Situational Awareness Spacecraft Rendezvous and Maneuvering using Numerical Simulations and Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Carrico, T.; Langster, T.; Carrico, J.; Alfano, S.; Loucks, M.; Vallado, D.

    The authors present several spacecraft rendezvous and close proximity maneuvering techniques modeled with a high-precision numerical integrator using full force models and closed loop control with a Fuzzy Logic intelligent controller to command the engines. The authors document and compare the maneuvers, fuel use, and other parameters. This paper presents an innovative application of an existing capability to design, simulate and analyze proximity maneuvers; already in use for operational satellites performing other maneuvers. The system has been extended to demonstrate the capability to develop closed loop control laws to maneuver spacecraft in close proximity to another, including stand-off, docking, lunar landing and other operations applicable to space situational awareness, space based surveillance, and operational satellite modeling. The fully integrated end-to-end trajectory ephemerides are available from the authors in electronic ASCII text by request. The benefits of this system include: A realistic physics-based simulation for the development and validation of control laws A collaborative engineering environment for the design, development and tuning of spacecraft law parameters, sizing actuators (i.e., rocket engines), and sensor suite selection. An accurate simulation and visualization to communicate the complexity, criticality, and risk of spacecraft operations. A precise mathematical environment for research and development of future spacecraft maneuvering engineering tasks, operational planning and forensic analysis. A closed loop, knowledge-based control example for proximity operations. This proximity operations modeling and simulation environment will provide a valuable adjunct to programs in military space control, space situational awareness and civil space exploration engineering and decision making processes.

  5. Cardiorespiratory action of opioid/tachykinin agonist peptide hybrid in anaesthetized rats: Transduction pathways.

    PubMed

    Wojciechowski, Piotr; Szereda-Przestaszewska, Małgorzata; Lipkowski, Andrzej Wojciech

    2017-09-05

    AWL3106 composed of opioid (dermorphin) and tachykinin (substance P 7-11 ) pharmacophores is a new compound with high analgesic potency and markedly reduced ability to induce tolerance and dependence. The present study aimed to determine the respiratory and cardiovascular responses evoked by this peptide in urethane-chloralose anaesthetized, spontaneously breathing rats in the presence or absence of vagal connection. Intravenous injection of AWL3106 at a dose of 0.3μmol/kg in intact rats resulted in apnoea lasting 5.1 ± 0.7s. Breathing that followed was of diminished frequency (F) and augmented tidal volume (V T ) with no significant impact on minute ventilation. AWL3106-challenge induced biphasic fall in arterial blood pressure with no effect on heart rate. Midcervical and supranodosal sectioning the vagal nerves prevented the occurrence of the apnoea and abrogated the post-AWL3106 reduction in F but failed to eliminate the increase in V T . Hypotensive response appeared to be less profound following supranodose vagotomy. NaloxoneHCl abolished solely the occurrence of apnoea. However additional blockade of tachykinin NK 1 receptors with SR140333 was required to abolish V T increase, deceleration of breathing and to markedly suppress AWL3106-induced hypotension. The present study shows that extravagally controlled stimulation of V T maintains fairly regular ventilation by levelling the bradypnoeic effects. Although the peptide showed no cardiac effects, hypotension occurring beyond the vagal loop may limit future therapeutic benefits of this chimeric compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bench performance of ventilators during simulated paediatric ventilation.

    PubMed

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  7. Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalsky, Joseph J.; Kutchenreiter, Mark; Long, Charles N.

    Ventilators are used to keep the domes of pyranometers clean and dry, but they affect the nighttime offset as well. This paper examines different ventilation strategies. For the several commercial single-black-detector pyranometers with ventilators examined here, high flow rate (50 CFM and higher), 12 VDC fans lower the offsets, lower the scatter, and improve the predictability of the offsets during the night compared with lower flow rate 35 CFM, 120 VAC fans operated in the same ventilator housings. Black-and-white pyranometers sometimes show improvement with DC ventilation, but in some cases DC ventilation makes the offsets slightly worse. Since the offsetsmore » for these black-and-white pyranometers are always small, usually no more than 1 Wm -2, whether AC or DC ventilated, changing their ventilation to higher CFM DC ventilation is not imperative. Future work should include all major manufacturers of pyranometers and unventilated, as well as, ventilated pyranometers. Lastly, an important outcome of future research will be to clarify under what circumstances nighttime data can be used to predict daytime offsets.« less

  8. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Walker, Iain

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less

  9. Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation

    DOE PAGES

    Michalsky, Joseph J.; Kutchenreiter, Mark; Long, Charles N.

    2017-06-20

    Ventilators are used to keep the domes of pyranometers clean and dry, but they affect the nighttime offset as well. This paper examines different ventilation strategies. For the several commercial single-black-detector pyranometers with ventilators examined here, high flow rate (50 CFM and higher), 12 VDC fans lower the offsets, lower the scatter, and improve the predictability of the offsets during the night compared with lower flow rate 35 CFM, 120 VAC fans operated in the same ventilator housings. Black-and-white pyranometers sometimes show improvement with DC ventilation, but in some cases DC ventilation makes the offsets slightly worse. Since the offsetsmore » for these black-and-white pyranometers are always small, usually no more than 1 Wm -2, whether AC or DC ventilated, changing their ventilation to higher CFM DC ventilation is not imperative. Future work should include all major manufacturers of pyranometers and unventilated, as well as, ventilated pyranometers. Lastly, an important outcome of future research will be to clarify under what circumstances nighttime data can be used to predict daytime offsets.« less

  10. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.

    PubMed

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-11-18

    Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies.

  11. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings

    PubMed Central

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-01-01

    Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. Conclusions: The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies. PMID:26593933

  12. Using domiciliary non-invasive ventilator data downloads to inform clinical decision-making to optimise ventilation delivery and patient compliance

    PubMed Central

    Mansell, Stephanie K; Cutts, Steven; Hackney, Isobel; Wood, Martin J; Hawksworth, Kevin; Creer, Dean D; Kilbride, Cherry; Mandal, Swapna

    2018-01-01

    Introduction Ventilation parameter data from patients receiving home mechanical ventilation can be collected via secure data cards and modem technology. This can then be reviewed by clinicians and ventilator prescriptions adjusted. Typically available measures include tidal volume (VT), leak, respiratory rate, minute ventilation, patient triggered breaths, achieved pressures and patient compliance. This study aimed to assess the potential impact of ventilator data downloads on management of patients requiring home non-invasive ventilation (NIV). Methods A longitudinal within-group design with repeated measurements was used. Baseline ventilator data were downloaded, reviewed and adjustments made to optimise ventilation. Leak, VT and compliance data were collected for comparison at the first review and 3–7 weeks later. Ventilator data were monitored and amended remotely via a modem by a consultant physiotherapist between the first review and second appointment. Results Analysis of data from 52 patients showed increased patient compliance (% days used >4 hours) from 90% to 96% (p=0.007), increased usage from 6.53 to 6.94 hours (p=0.211) and a change in VT(9.4 vs 8.7 mL/kg/ideal body weight, p=0.022). There was no change in leak following review of NIV prescriptions (mean (SD): 43 (23.4) L/min vs 45 (19.9)L/min, p=0.272). Conclusion Ventilator data downloads, via early remote assessment, can help optimise patient ventilation through identification of modifiable factors, in particular interface leak and ventilator prescriptions. However, a prospective study is required to assess whether using ventilator data downloads provides value in terms of patient outcomes and cost-effectiveness. The presented data will help to inform the design of such a study. PMID:29531743

  13. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators

    PubMed Central

    Thille, Arnaud W.; Lyazidi, Aissam; Richard, Jean-Christophe M.; Galia, Fabrice; Brochard, Laurent

    2009-01-01

    Objective To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators regarding trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements and expiratory resistance. Design and Setting Bench study at a research laboratory in a university hospital. Material Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O, Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering-delay from 42 ms to 88 ms for all conditions averaged (P<.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor with five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient’s effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a 2000 bench comparison. Conclusion Technical performances of trigger function, pressurization capacity and expiratory resistance vary considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately. PMID:19352622

  14. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.

    PubMed

    Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K

    2014-03-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.

  15. Academic Emergency Medicine Physicians' Knowledge of Mechanical Ventilation.

    PubMed

    Wilcox, Susan R; Strout, Tania D; Schneider, Jeffrey I; Mitchell, Patricia M; Smith, Jessica; Lutfy-Clayton, Lucienne; Marcolini, Evie G; Aydin, Ani; Seigel, Todd A; Richards, Jeremy B

    2016-05-01

    Although emergency physicians frequently intubate patients, management of mechanical ventilation has not been emphasized in emergency medicine (EM) education or clinical practice. The objective of this study was to quantify EM attendings' education, experience, and knowledge regarding mechanical ventilation in the emergency department. We developed a survey of academic EM attendings' educational experiences with ventilators and a knowledge assessment tool with nine clinical questions. EM attendings at key teaching hospitals for seven EM residency training programs in the northeastern United States were invited to participate in this survey study. We performed correlation and regression analyses to evaluate the relationship between attendings' scores on the assessment instrument and their training, education, and comfort with ventilation. Of 394 EM attendings surveyed, 211 responded (53.6%). Of respondents, 74.5% reported receiving three or fewer hours of ventilation-related education from EM sources over the past year and 98 (46%) reported receiving between 0-1 hour of education. The overall correct response rate for the assessment tool was 73.4%, with a standard deviation of 19.9. The factors associated with a higher score were completion of an EM residency, prior emphasis on mechanical ventilation during one's own residency, working in a setting where an emergency physician bears primary responsibility for ventilator management, and level of comfort with managing ventilated patients. Physicians' comfort was associated with the frequency of ventilator changes and EM management of ventilation, as well as hours of education. EM attendings report caring for mechanically ventilated patients frequently, but most receive fewer than three educational hours a year on mechanical ventilation, and nearly half receive 0-1 hour. Physicians' performance on an assessment tool for mechanical ventilation is most strongly correlated with their self-reported comfort with mechanical ventilation.

  16. Effects of types of ventilation system on indoor particle concentrations in residential buildings.

    PubMed

    Park, J S; Jee, N-Y; Jeong, J-W

    2014-12-01

    The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. FiO2 delivered by a turbine portable ventilator with an oxygen concentrator in an Austere environment.

    PubMed

    Bordes, Julien; Erwan d'Aranda; Savoie, Pierre-Henry; Montcriol, Ambroise; Goutorbe, Philippe; Kaiser, Eric

    2014-09-01

    Management of critically ill patients in austere environments is a logistic challenge. Availability of oxygen cylinders for the mechanically ventilated patient may be difficult in such a context. A solution is to use a ventilator able to function with an oxygen concentrator. We tested the SeQual Integra™ (SeQual, San Diego, CA) 10-OM oxygen concentrator paired with the Pulmonetic System(®) LTV 1000 ventilator (Pulmonetic Systems, Minneapolis, MN) and evaluated the delivered fraction of inspired oxygen (FiO2) across a range of minute volumes and combinations of ventilator settings. Two LTV 1000 ventilators were tested. The ventilators were attached to a test lung and FiO2 was measured by a gas analyzer. Continuous-flow oxygen was generated by the OC from 0.5 L/min to 10 L/min and injected into the oxygen inlet port of the LTV 1000. Several combinations of ventilator settings were evaluated to determine the factors affecting the delivered FiO2. The LTV 1000 ventilator is a turbine ventilator that is able to deliver high FiO2 when functioning with an oxygen concentrator. However, modifications of the ventilator settings such as increase in minute ventilation affect delivered FiO2 even if oxygen flow is constant on the oxygen concentrator. The ability of an oxygen concentrator to deliver high FiO2 when used with a turbine ventilator makes this method of oxygen delivery a viable alternative to cylinders in austere environments when used with a turbine ventilator. However, FiO2 has to be monitored continuously because delivered FiO2 decreases when minute ventilation is increased. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators.

    PubMed

    Thille, Arnaud W; Lyazidi, Aissam; Richard, Jean-Christophe M; Galia, Fabrice; Brochard, Laurent

    2009-08-01

    To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators in terms of trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements, and expiratory resistance. Bench study at a research laboratory in a university hospital. Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O). Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering delays from 42 to 88 ms for all conditions averaged (P < 0.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor for five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient's effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a bench comparison in 2000. Technical performance of trigger function, pressurization capacity, and expiratory resistance differs considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately.

  19. The comfort of breathing: a study with volunteers assessing the influence of various modes of assisted ventilation.

    PubMed

    Russell, W C; Greer, J R

    2000-11-01

    To assess the subjective feeling of comfort of healthy volunteers breathing on various modes of ventilation used in intensive care. A randomized, prospective, double-blinded, crossover trial using volunteers. An intensive care unit (ICU) in a teaching hospital. We compared, by using healthy volunteers, the subjective feeling of comfort of three modes of ventilation used during the weaning phase of critical illness. We used healthy volunteers to avoid other distracting influences of intensive care that may confound the primary feeling of comfort. The modes we compared were synchronized intermittent mandatory ventilation, assisted spontaneous breathing, and biphasic positive airway pressure. The imposed ventilation was comparable with 50% of the volunteers' normal respiratory effort. The volunteers breathed via a mouthpiece through a ventilator circuit, and the modes of ventilation were introduced in a randomized manner. We measured visual analog scores for comfort for the three modes of ventilation and collected a ranking order and open-ended comments. We demonstrated that at the level of support we imposed, assisted spontaneous breathing was the most comfortable mode of ventilation and that synchronized intermittent mandatory ventilation was the most uncomfortable. These results were strongly supported by both the ranking scale and comments of the volunteers. Assisted spontaneous breathing was the most comfortable mode of ventilation because the pattern was primarily determined by the volunteer. Synchronized intermittent mandatory ventilation was the most uncomfortable because the ventilatory pattern was imposed on the volunteers, leading to ventilator-volunteer dyssynchrony. We also conclude there is wide individual variation in the subjective feeling of comfort. Whereas the mode of ventilation in ICUs is based primarily on the physiologic needs of the patient, the feeling of comfort may be considered when choosing an appropriate mode of ventilation during the weaning phase of critical illness.

  20. Oxidative lung injury correlates with one-lung ventilation time during pulmonary lobectomy: a study of exhaled breath condensate and blood.

    PubMed

    García-de-la-Asunción, José; García-del-Olmo, Eva; Perez-Griera, Jaume; Martí, Francisco; Galan, Genaro; Morcillo, Alfonso; Wins, Richard; Guijarro, Ricardo; Arnau, Antonio; Sarriá, Benjamín; García-Raimundo, Miguel; Belda, Javier

    2015-09-01

    During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the duration of one-lung ventilation. During lung lobectomy, the operated lung is collapsed and oxidative injury occurs, with the levels of markers of oxidative stress increasing simultaneously in exhaled breath condensate and blood during one-lung ventilation. These increases were larger after resuming two-lung ventilation. Increases immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation were directly correlated with the duration of one-lung ventilation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  1. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less

  2. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...

  3. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  4. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  5. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  6. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  7. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  8. 30 CFR 75.333 - Ventilation controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ventilation controls. 75.333 Section 75.333... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.333 Ventilation controls. (a) For... ventilation control devices constructed after November 15, 1992, shall be built and maintained— (1) Between...

  9. 30 CFR 75.333 - Ventilation controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ventilation controls. 75.333 Section 75.333... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.333 Ventilation controls. (a) For... ventilation control devices constructed after November 15, 1992, shall be built and maintained— (1) Between...

  10. 33 CFR 183.620 - Natural ventilation system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...

  11. 33 CFR 183.620 - Natural ventilation system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...

  12. The coal-fired gas turbine locomotive - A new look

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  13. Computation of magnetic suspension of maglev systems using dynamic circuit theory

    NASA Technical Reports Server (NTRS)

    He, J. L.; Rote, D. M.; Coffey, H. T.

    1992-01-01

    Dynamic circuit theory is applied to several magnetic suspensions associated with maglev systems. These suspension systems are the loop-shaped coil guideway, the figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway. Mathematical models, which can be used for the development of computer codes, are provided for each of these suspension systems. The differences and similarities of the models in using dynamic circuit theory are discussed in the paper. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many electrodynamic suspension system design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper.

  14. Design of an auto change mechanism and intelligent gripper for the space station

    NASA Technical Reports Server (NTRS)

    Dehoff, Paul H.; Naik, Dipak P.

    1989-01-01

    Robot gripping of objects in space is inherently demanding and dangerous and nowhere is this more clearly reflected than in the design of the robot gripper. An object which escapes the gripper in a micro g environment is launched not dropped. To prevent this, the gripper must have sensors and signal processing to determine that the object is properly grasped, e.g., grip points and gripping forces and, if not, to provide information to the robot to enable closed loop corrections to be made. The sensors and sensor strategies employed in the NASA/GSFC Split-Rail Parallel Gripper are described. Objectives and requirements are given followed by the design of the sensor suite, sensor fusion techniques and supporting algorithms.

  15. Closed-Loop Multitarget Optimization for Discovery of New Emulsion Polymerization Recipes

    PubMed Central

    2015-01-01

    Self-optimization of chemical reactions enables faster optimization of reaction conditions or discovery of molecules with required target properties. The technology of self-optimization has been expanded to discovery of new process recipes for manufacture of complex functional products. A new machine-learning algorithm, specifically designed for multiobjective target optimization with an explicit aim to minimize the number of “expensive” experiments, guides the discovery process. This “black-box” approach assumes no a priori knowledge of chemical system and hence particularly suited to rapid development of processes to manufacture specialist low-volume, high-value products. The approach was demonstrated in discovery of process recipes for a semibatch emulsion copolymerization, targeting a specific particle size and full conversion. PMID:26435638

  16. A population management system for improving colorectal cancer screening in a primary care setting.

    PubMed

    Wu, Charlotte A; Mulder, Amara L; Zai, Adrian H; Hu, Yuanshan; Costa, Manuela; Tishler, Lori Wiviott; Saltzman, John R; Ellner, Andrew L; Bitton, Asaf

    2016-06-01

    Provision of colorectal cancer (CRC) screening in primary care is suboptimal; failure to observe screening guidelines poses unnecessary risks to patients and doctors. Implement a population management system for CRC screening; evaluate impact on compliance with evidence-based guidelines. A quasi-experimental, prospective quality improvement study design using pre-post-analyses with concurrent controls. Six suites within an academic primary care practice. 5320 adults eligible for CRC screening treated by 70 doctors. In three intervention suites, doctors reviewed real-time rosters of patients due for CRC screening and chose practice delegate outreach or default reminder letter. Delegates tracked overdue patients, made outreach calls, facilitated test ordering, obtained records and documented patient deferral, exclusion or decline. In three control suites, doctors followed usual preventive care practices. CRC screening compliance (including documented decline, deferral or exclusion) and CRC screening completion rates over 5 months. At baseline, there was no significant difference in CRC screening compliance (I: 80.4% and C: 79.6%, P = 0.439) and CRC screening completion rates (I: 78.3% and C: 77.3%, P = 0.398) between intervention and control groups. Post-intervention, compliance rates (I: 88.1% and C: 80.5%, P < 0.01) and completion rates (I: 81.0% and C: 78.1%, P < 0.05) were significantly higher in the intervention group. A population management system using closed-loop communication may improve CRC screening compliance and completion rates within academic primary care practices. Team-based care using well-designed IT systems can enable sharing of patient care responsibilities and improve patient outcomes. © 2015 John Wiley & Sons, Ltd.

  17. [Bellows or bag? Testing 10 ventilators and some medical history comments].

    PubMed

    Kötter, K P; Maleck, W H; Altmannsberger, S; Herchet, J; Petroianu, G A

    1998-01-01

    We compared a new bellows ventilator (Kendall Cardiovent) with two other bellows (Dräger Resutator 63, Tagg Breathsaver) and seven bag or ball ventilators (Aerodyne Hope, Ambu Mark 3, Ambu Silicon, Dräger Resutator 2000, Laerdal Resu, Mercury CPR, Weinmann Combibag). Tidal volumes were measured with two Laerdal Recording Resusci Annies, one lying on the floor, one in a bed. Twelve participants performed mask ventilation with all ten devices on both manikins for two minutes, trying to achieve tidal volumes of between 0.8 and 1.21 as recommended by the AHA. The last ten ventilations each on the graphic strips were analysed for volume. The participants scored handling of the devices on a 6-point scale (1 = very good, 6 = insufficient). The results of the Cardiovent were compared to those of the other devices by rank sum test (percentage of correct ventilations) and sign test (subjective handling). The Cardiovent provided exact ventilation with 95% of ventilations) on the floor and 78% of ventilations in bed in the recommended range. However, the percentage of correct ventilations with the Cardiovent was not significantly different to the other devices except for a lower percentage of correct ventilations with the Combibag in the in bed setting. Concerning subjective handling, the Cardiovent was significantly superior to several ball ventilators.

  18. Temperature of gas delivered from ventilators.

    PubMed

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  19. A Chemical-Biological-Radio-Nuclear (CBRN) Filter can be Added to the Air-Outflow Port of a Ventilator to Protect a Home Ventilated Patient From Inhalation of Toxic Industrial Compounds.

    PubMed

    Be'eri, Eliezer; Owen, Simon; Beeri, Maurit; Millis, Scott R; Eisenkraft, Arik

    2018-02-21

    Chemical-biological-radio-nuclear (CBRN) gas masks are the standard means for protecting the general population from inhalation of toxic industrial compounds (TICs), for example after industrial accidents or terrorist attacks. However, such gas masks would not protect patients on home mechanical ventilation, as ventilator airflow would bypass the CBRN filter. We therefore evaluated in vivo the safety of adding a standard-issue CBRN filter to the air-outflow port of a home ventilator, as a method for providing TIC protection to such patients. Eight adult patients were included in the study. All had been on stable, chronic ventilation via a tracheostomy for at least 3 months before the study. Each patient was ventilated for a period of 1 hour with a standard-issue CBRN filter canister attached to the air-outflow port of their ventilator. Physiological and airflow measurements were made before, during, and after using the filter, and the patients reported their subjective sensation of ventilation continuously during the trial. For all patients, and throughout the entire study, no deterioration in any of the measured physiological parameters and no changes in measured airflow parameters were detected. All patients felt no subjective difference in the sensation of ventilation with the CBRN filter canister in situ, as compared with ventilation without it. This was true even for those patients who were breathing spontaneously and thus activating the ventilator's trigger/sensitivity function. No technical malfunctions of the ventilators occurred after addition of the CBRN filter canister to the air-outflow ports of the ventilators. A CBRN filter canister can be added to the air-outflow port of chronically ventilated patients, without causing an objective or subjective deterioration in the quality of the patients' mechanical ventilation. (Disaster Med Public Health Preparedness. 2018;page 1 of 5).

  20. Variability in usual care mechanical ventilation for pediatric acute lung injury: the potential benefit of a lung protective computer protocol.

    PubMed

    Khemani, Robinder G; Sward, Katherine; Morris, Alan; Dean, J Michael; Newth, Christopher J L

    2011-11-01

    Although pediatric intensivists claim to embrace lung protective ventilation for acute lung injury (ALI), ventilator management is variable. We describe ventilator changes clinicians made for children with hypoxemic respiratory failure, and evaluate the potential acceptability of a pediatric ventilation protocol. This was a retrospective cohort study performed in a tertiary care pediatric intensive care unit (PICU). The study period was from January 2000 to July 2007. We included mechanically ventilated children with PaO(2)/FiO(2) (P/F) ratio less than 300. We assessed variability in ventilator management by evaluating actual changes to ventilator settings after an arterial blood gas (ABG). We evaluated the potential acceptability of a pediatric mechanical ventilation protocol we adapted from National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) Acute Respiratory Distress Syndrome (ARDS) Network protocols by comparing actual practice changes in ventilator settings to changes that would have been recommended by the protocol. A total of 2,719 ABGs from 402 patients were associated with 6,017 ventilator settings. Clinicians infrequently decreased FiO(2), even when the PaO(2) was high (>68 mmHg). The protocol would have recommended more positive end expiratory pressure (PEEP) than was used in actual practice 42% of the time in the mid PaO(2) range (55-68 mmHg) and 67% of the time in the low PaO(2) range (<55 mmHg). Clinicians often made no change to either peak inspiratory pressure (PIP) or ventilator rate (VR) when the protocol would have recommended a change, even when the pH was greater than 7.45 with PIP at least 35 cmH(2)O. There may be lost opportunities to minimize potentially injurious ventilator settings for children with ALI. A reproducible pediatric mechanical ventilation protocol could prompt clinicians to make ventilator changes that are consistent with lung protective ventilation.

  1. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: Standards. 154.1205... Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a) Each exhaust type mechanical ventilation system required under § 154.1200 (a) must have ducts for...

  2. 21 CFR 868.5975 - Ventilator tubing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a patient...

  3. Ventilation and ventilators.

    PubMed

    Hayes, B

    1982-01-01

    The history of ventilation is reviewed briefly and recent developments in techniques of ventilation are discussed. Operating features of ventilators have changed in the past few years, partly as the result of clinical progress; yet, technology appears to have outstripped the clinician's ability to harness it most effectively. Clinical discipline and training of medical staff in the use of ventilators could be improved. The future is promising if clinician and designer can work together closely. Ergonomics of ventilators and their controls and the provision of alarms need special attention. Microprocessors are likely to feature prominently in the next generation of designs.

  4. Elective ventilation for organ donation: law, policy and public ethics.

    PubMed

    Coggon, John

    2013-03-01

    This paper examines questions concerning elective ventilation, contextualised within English law and policy. It presents the general debate with reference both to the Exeter Protocol on elective ventilation, and the considerable developments in legal principle since the time that that protocol was declared to be unlawful. I distinguish different aspects of what might be labelled elective ventilation policies under the following four headings: 'basic elective ventilation'; 'epistemically complex elective ventilation'; 'practically complex elective ventilation'; and 'epistemically and practically complex elective ventilation'. I give a legal analysis of each. In concluding remarks on their potential practical viability, I emphasise the importance not just of ascertaining the legal and ethical acceptability of these and other forms of elective ventilation, but also of assessing their professional and political acceptability. This importance relates both to the successful implementation of the individual practices, and to guarding against possible harmful effects in the wider efforts to increase the rates of posthumous organ donation.

  5. [The incidence and risk factors of ventilator-associated pneumonia in patients with severe traumatic brain injury].

    PubMed

    Marjanović, Vesna; Novak, Vesna; Velicković, Ljubinka; Marjanović, Goran

    2011-01-01

    Patients with severe traumatic brain injury are at a risk of developing ventilator-associated pneumonia. The aim of this study was to describe the incidence, etiology, risk factors for development of ventilator-associated pneumonia and outcome in patients with severe traumatic brain injury. A retrospective study was done in 72 patients with severe traumatic brain injury, who required mechanical ventilation for more than 48 hours. Ventilator-associated pneumonia was found in 31 of 72 (43.06%) patients with severe traumatic brain injury. The risk factors for ventilator-associated pneumonia were: prolonged mechanical ventilation (12.42 vs 4.34 days, p < 0.001), longer stay at intensive care unit (17 vs 5 days, p < 0.001) and chest injury (51.61 vs 19.51%, p < 0.009) compared to patients without ventilator-associated pneumonia. The mortality rate in the patients with ventilator-associated pneumonia was higher (38.71 vs 21.95%, p = 0.12). The development of ventilator-associated pneumonia in patients with severe traumatic brain injury led to the increased morbidity due to the prolonged mechanical ventilation, longer stay at intensive care unit and chest injury, but had no effect on mortality.

  6. A polyurethane cuffed endotracheal tube is associated with decreased rates of ventilator-associated pneumonia.

    PubMed

    Miller, Melissa A; Arndt, Jennifer L; Konkle, Mark A; Chenoweth, Carol E; Iwashyna, Theodore J; Flaherty, Kevin R; Hyzy, Robert C

    2011-06-01

    The aim of this study was to determine whether the use of a polyurethane-cuffed endotracheal tube would result in a decrease in ventilator-associated pneumonia rate. We replaced conventional endotracheal tube with a polyurethane-cuff endotracheal tube (Microcuff, Kimberly-Clark Corporation, Rosewell, Ga) in all adult mechanically ventilated patients throughout our large academic hospital from July 2007 to June 2008. We retrospectively compared the rates of ventilator-associated pneumonia before, during, and after the intervention year by interrupted time-series analysis. Ventilator-associated pneumonia rates decreased from 5.3 per 1000 ventilator days before the use of the polyurethane-cuffed endotracheal tube to 2.8 per 1000 ventilator days during the intervention year (P = .0138). During the first 3 months after return to conventional tubes, the rate of ventilator-associated pneumonia was 3.5/1000 ventilator days. Use of the polyurethane-cuffed endotracheal tube was associated with an incidence risk ratio of ventilator-associated pneumonia of 0.572 (95% confidence interval, 0.340-0.963). In statistical regression analysis controlling for other possible alterations in the hospital environment, as measured by rate of tracheostomy-ventilator-associated pneumonia, the incidence risk ratio of ventilator-associated pneumonia in patients intubated with polyurethane-cuffed endotracheal tube was 0.565 (P = .032; 95% confidence interval, 0.335-0.953). Use of a polyurethane-cuffed endotracheal tube was associated with a significant decrease in the rate of ventilator-associated pneumonia in our study. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Prone versus supine position in mechanically ventilated children: a pilot study.

    PubMed

    Sawhney, Ashu; Kumar, Nirmal; Sreenivas, Vishnubhatla; Gupta, Sangeeta; Tyagi, Vineet; Puliyel, Jacob M

    2005-05-01

    It is known that mechanically ventilated patients in the prone position have improved oxygenation compared with those supine. We did a prospective, randomized, controlled trial to evaluate the effect of prone position during mechanical ventilation, on survival in critically ill children. Forty-two children needing mechanical ventilation for various illnesses were randomized to receive initial ventilation for four hours prone or supine by drawing lots. Initial severity of illness and blood gases in all children were noted. In a crossover design, after the initial four hours the children were turned over and ventilated in the alternate posture for an hour. Oxygenation parameters and mean airway pressures were noted at one hour, four hours, and five hours. Mortality, duration of ventilation, and the above parameters were compared in the two groups. Initial PRISM scores were similar in the two groups. Mortality in the prone group was less than in the supine group. The odds ratio of mortality was 0.20 (95% CI 0.05-0.75). Duration of ventilation was similar in the two groups. The oxygenation index was significantly lower in the prone group at one, four, and five hours after onset of ventilation. Prone position in the first few hours of ventilation significantly improves gas exchange and oxygenation, reduces the mean airway pressures required to ventilate children, and may cause significant improvement in survival. Our study protocol allowed ventilator settings to be changed as needed during ventilation.

  8. The effect of electromagnetic interference from mobile communication on the performance of intensive care ventilators.

    PubMed

    Jones, R P; Conway, D H

    2005-08-01

    Electromagnetic interference produced by wireless communication can affect medical devices and hospital policies exist to address this risk. During the transfer of ventilated patients, these policies may be compromised by essential communication between base and receiving hospitals. Local wireless networks (e.g. Bluetooth) may reduce the 'spaghetti syndrome' of wires and cables seen on intensive care units, but also generate electromagnetic interference. The aim of this study was to investigate these effects on displayed and actual ventilator performance. Five ventilators were tested: Drager Oxylog 2000, BREAS LTV-1000, Respironics BiPAP VISION, Puritan Bennett 7200 and 840. Electromagnetic interference was generated by three devices: Simoco 8020 radio handset, Nokia 7210 and Nokia 6230 mobile phone, Nokia 6230 communicating via Bluetooth with a Palm Tungsten T Personal Digital Assistant. We followed the American National Standard Recommended Practice for On-Site, Ad Hoc Testing (ANSI C63) for electromagnetic interference. We used a ventilator tester, to simulate healthy adult lungs and measure ventilator performance. The communication device under test was moved in towards each ventilator from a distance of 1 m in six axes. Alarms or error codes on the ventilator were recorded, as was ventilator performance. All ventilators tested, except for the Respironics VISION, showed a display error when subjected to electromagnetic interference from the Nokia phones and Simoco radio. Ventilator performance was only affected by the radio which caused the Puritan Bennett 840 to stop functioning completely. The transfer ventilators' performance were not affected by radio or mobile phone, although the mobile phone did trigger a low-power alarm. Effects on intensive care ventilators included display reset, with the ventilator restoring normal display function within 2 s, and low-power/low-pressure alarms. Bluetooth transmission had no effect on the function of all the ventilators tested. In a clinical setting, high-power-output devices such as a two-way radio may cause significant interference in ventilator function. Medium-power-output devices such as mobile phones may cause minor alarm triggers. Low-power-output devices such as Bluetooth appear to cause no interference with ventilator function.

  9. TU-G-BRA-04: Changes in Regional Lung Function Measured by 4D-CT Ventilation Imaging for Thoracic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Y; Kadoya, N; Kabus, S

    Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients whomore » showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows the known effects of radiotherapy on lung function: radiation-induced ventilation reduction and ventilation increase caused by tumor regression, providing validation for 4D-CT ventilation imaging. This study was supported in part by a National Lung Cancer Partnership Young Investigator Research grant.« less

  10. Pilot Intervention Study of Household Ventilation and Fine Particulate Matter Concentrations in a Low-Income Urban Area, Dhaka, Bangladesh.

    PubMed

    Weaver, Anne M; Parveen, Shahana; Goswami, Doli; Crabtree-Ide, Christina; Rudra, Carole; Yu, Jihnhee; Mu, Lina; Fry, Alicia M; Sharmin, Iffat; Luby, Stephen P; Ram, Pavani K

    2017-08-01

    Fine particulate matter (PM 2.5 ) is a risk factor for pneumonia; ventilation may be protective. We tested behavioral and structural ventilation interventions on indoor PM 2.5 in Dhaka, Bangladesh. We recruited 59 good ventilation (window or door in ≥ 3 walls) and 29 poor ventilation (no window, one door) homes. We monitored baseline indoor and outdoor PM 2.5 for 48 hours. We asked all participants to increase ventilation behavior, including opening windows and doors, and operating fans. Where permitted, we installed windows in nine poor ventilation homes, then repeated PM 2.5 monitoring. We estimated effects using linear mixed-effects models and conducted qualitative interviews regarding motivators and barriers to ventilation. Compared with poor ventilation homes, good ventilation homes were larger, their residents wealthier and less likely to use biomass fuel. In multivariable linear mixed-effects models, ventilation structures and opening a door or window were inversely associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Outdoor air pollution was positively associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Few homes accepted window installation, due to landlord refusal and fear of theft. Motivators for ventilation behavior included cooling of the home and sunlight; barriers included rain, outdoor odors or noise, theft risk, mosquito entry, and, for fan use, perceptions of wasting electricity or unavailability of electricity. We concluded that ventilation may reduce indoor PM 2.5 concentrations but, there are barriers to increasing ventilation and, in areas with high ambient PM 2.5 concentrations, indoor concentrations may remain above recommended levels.

  11. Duration of Mechanical Ventilation in the Emergency Department.

    PubMed

    Angotti, Lauren B; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey D; Seigel, Todd A; Al Ashry, Haitham S; Wilcox, Susan R

    2017-08-01

    Due to hospital crowding, mechanically ventilated patients are increasingly spending hours boarding in emergency departments (ED) before intensive care unit (ICU) admission. This study aims to evaluate the association between time ventilated in the ED and in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay (LOS). This was a multi-center, prospective, observational study of patients ventilated in the ED, conducted at three academic Level I Trauma Centers from July 2011 to March 2013. All consecutive adult patients on invasive mechanical ventilation were eligible for enrollment. We performed a Cox regression to assess for a mortality effect for mechanically ventilated patients with each hour of increasing LOS in the ED and multivariable regression analyses to assess for independently significant contributors to in-hospital mortality. Our primary outcome was in-hospital mortality, with secondary outcomes of ventilator days, ICU LOS and hospital LOS. We further commented on use of lung protective ventilation and frequency of ventilator changes made in this cohort. We enrolled 535 patients, of whom 525 met all inclusion criteria. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Using iterated Cox regression, a mortality effect occurred at ED time of mechanical ventilation > 7 hours, and the longer ED stay was also associated with a longer total duration of intubation. However, adjusted multivariable regression analysis demonstrated only older age and admission to the neurosciences ICU as independently associated with increased mortality. Of interest, only 23.8% of patients ventilated in the ED for over seven hours had changes made to their ventilator. In a prospective observational study of patients mechanically ventilated in the ED, there was a significant mortality benefit to expedited transfer of patients into an appropriate ICU setting.

  12. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury.

    PubMed

    Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R

    2014-01-01

    The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.

  13. Limiting ventilator-induced lung injury through individual electronic medical record surveillance.

    PubMed

    Herasevich, Vitaly; Tsapenko, Mykola; Kojicic, Marija; Ahmed, Adil; Kashyap, Rachul; Venkata, Chakradhar; Shahjehan, Khurram; Thakur, Sweta J; Pickering, Brian W; Zhang, Jiajie; Hubmayr, Rolf D; Gajic, Ognjen

    2011-01-01

    To improve the safety of ventilator care and decrease the risk of ventilator-induced lung injury, we designed and tested an electronic algorithm that incorporates patient characteristics and ventilator settings, allowing near-real-time notification of bedside providers about potentially injurious ventilator settings. Electronic medical records of consecutive patients who received invasive ventilation were screened in three Mayo Clinic Rochester intensive care units. The computer system alerted bedside providers via the text paging notification about potentially injurious ventilator settings. Alert criteria included a Pao2/Fio2 ratio of <300 mm Hg, free text search for the words "edema" or "bilateral + infiltrates" on the chest radiograph report, a tidal volume of >8 mL/kg predicted body weight (based on patient gender and height), a plateau pressure of >30 cm H2O, and a peak airway pressure of >35 cm H2O. Respiratory therapists answered a brief online satisfaction survey. Ventilator-induced lung injury risk was compared before and after the introduction of ventilator-induced lung injury alert. The prevalence of acute lung injury was 42% (n = 490) among 1,159 patients receiving >24 hrs of invasive ventilation. The system sent 111 alerts for 80 patients, with a positive predictive value of 59%. The exposure to potentially injurious ventilation decreased after the intervention from 40.6 ± 74.6 hrs to 26.9 ± 77.3 hrs (p = .004). Electronic medical record surveillance of mechanically ventilated patients accurately detects potentially injurious ventilator settings and is able to influence bedside practice at moderate costs. Its implementation is associated with decreased patient exposure to potentially injurious mechanical ventilation settings.

  14. Winter ventilation rates at primary schools: comparison between Portugal and Finland.

    PubMed

    Canha, N; Almeida, S M; Freitas, M C; Täubel, M; Hänninen, O

    2013-01-01

    This study focused on examination of ventilation rates in classrooms with two different types of ventilation systems: natural and mechanical. Carbon dioxide (CO2) measurements were conducted in primary schools of Portugal characterized by natural ventilation and compared to Finland where mechanical ventilation is the norm. The winter period was selected since this season exerts a great influence in naturally ventilated classrooms, where opening of windows and doors occurs due to outdoor atmospheric conditions. The ventilation rates were calculated by monitoring CO2 concentrations generated by the occupants (used as a tracer gas) and application of the buildup phase method. A comparison between both countries' results was conducted with respect to ventilation rates and how these levels corresponded to national regulatory standards. Finnish primary schools (n = 2) registered a mean ventilation rate of 13.3 L/s per person, which is higher than the recommended ventilation standards. However, the Finnish classroom that presented the lowest ventilation rate (7.2 L/s per person) displayed short-term CO2 levels above 1200 ppm, which is the threshold limit value (TLV) recommended by national guidelines. The Portuguese classrooms (n = 2) showed low ventilation rates with mean values of 2.4 L/s per person, which is markedly lower than the minimum recommended value of 7 L/s per person as defined by ASHRAE and 20% less than the REHVA minimum of 3 L/s per person. Carbon dioxide levels of 1000 ppm, close to the TLV of 1200 ppm, were also reached in both Portuguese classrooms studied. The situation in Portugal indicates a potentially serious indoor air quality problem and strengthens the need for intervention to improve ventilation rates in naturally ventilated classrooms.

  15. Inhibition of forkhead boxO-specific transcription prevents mechanical ventilation-induced diaphragm dysfunction.

    PubMed

    Smuder, Ashley J; Sollanek, Kurt J; Min, Kisuk; Nelson, W Bradley; Powers, Scott K

    2015-05-01

    Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. University research laboratory. Young adult female Sprague-Dawley rats. Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.

  16. Ventilation of the Subtropical North Atlantic: Locations and Times of Last Ventilation Estimated Using Tracer Constraints From GEOTRACES Section GA03

    NASA Astrophysics Data System (ADS)

    Holzer, Mark; Smethie, William M.; Ting, Yu-Heng

    2018-04-01

    The ventilation of the subtropical North Atlantic along GEOTRACES section GA03 is quantified in terms of where and how long ago water was last in the mixed layer. Measurements of T, S, PO4∗, CFC-11, CFC-12, SF6, and estimates of prebomb 14C are deconvolved for the boundary propagator G using a maximum-entropy approach. From G, we calculate the fractions of water last ventilated in specified surface regions Ωw. We estimate that (56 ± 13)% of the water deeper than 1,000 m was ventilated in northern high latitudes, (15 ± 5)% in the Mediterranean, and (27 ± 12)% in the Southern Ocean. Below the thermocline and outside the deep western boundary current, mean ages of Ωw-ventilated water exceed a century. Consequently, memory of where last ventilation occurred tends to get lost and the deep mean-age patterns of Ωw-ventilated water are broadly similar for all Ωw. The mean ventilation ages, averaged over the section with Ωw-fraction weights, are roughly 200 years for all deep water masses except for water last ventilated south of the Antarctic divergence, which is about twice as old. The uncertainties in the section-mean profiles of the Ωw fractions and their mean ages are ˜50% and ˜20%, respectively. The Ωw fractions have vertically diffuse overlapping patterns suggesting significant diapycnal mixing, consistent with century-scale mean ages. We quantify the seasonal cycle of ventilation and find that in both hemispheres peak ventilation occurs during late winter and early spring, but Northern Hemisphere ventilated deep waters have a more pronounced seasonal cycle with nearly zero summertime ventilation.

  17. AT1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction

    PubMed Central

    Kwon, Oh Sung; Smuder, Ashley J.; Wiggs, Michael P.; Hall, Stephanie E.; Sollanek, Kurt J.; Morton, Aaron B.; Talbert, Erin E.; Toklu, Hale Z.; Tumer, Nihal

    2015-01-01

    Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the development of ventilator-induced diaphragm weakness, the signaling pathway(s) that trigger oxidant production remain unknown. However, recent evidence reveals that increased plasma levels of angiotensin II (ANG II) result in oxidative stress and atrophy in limb skeletal muscles. Using a well-established animal model of mechanical ventilation, we tested the hypothesis that increased circulating levels of ANG II are required for both ventilator-induced diaphragmatic oxidative stress and diaphragm weakness. Cause and effect was determined by administering an angiotensin-converting enzyme inhibitor (enalapril) to prevent ventilator-induced increases in plasma ANG II levels, and the ANG II type 1 receptor antagonist (losartan) was provided to prevent the activation of ANG II type 1 receptors. Enalapril prevented the increase in plasma ANG II levels but did not protect against ventilator-induced diaphragmatic oxidative stress or diaphragm weakness. In contrast, losartan attenuated both ventilator-induced oxidative stress and diaphragm weakness. These findings indicate that circulating ANG II is not essential for the development of ventilator-induced diaphragm weakness but that activation of ANG II type 1 receptors appears to be a requirement for ventilator-induced diaphragm weakness. Importantly, these experiments provide the first evidence that the Food and Drug Administration-approved drug losartan may have clinical benefits to protect against ventilator-induced diaphragm weakness in humans. PMID:26359481

  18. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation.

    PubMed

    Cortjens, Bart; Royakkers, Annick A N M; Determann, Rogier M; van Suijlen, Jeroen D E; Kamphuis, Stephan S; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W; Spronk, Peter E; Schultz, Marcus J; Bouman, Catherine S C

    2012-06-01

    Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. To determine whether ventilator settings in critically ill patients without acute lung injury (ALI) at onset of mechanical ventilation affect the development of AKI. Secondary analysis of a randomized controlled trial (N = 150), comparing conventional tidal volume (V(T), 10 mL/kg) with low tidal volume (V(T), 6 mL/kg) mechanical ventilation in critically ill patients without ALI at randomization. During the first 5 days of mechanical ventilation, the RIFLE class was determined daily, whereas neutrophil gelatinase-associated lipocalin and cystatin C levels were measured in plasma collected on days 0, 2, and 4. Eighty-six patients had no AKI at inclusion, and 18 patients (21%) subsequently developed AKI, but without significant difference between ventilation strategies. (Cumulative hazard, 0.26 vs 0.23; P = .88.) The courses of neutrophil gelatinase-associated lipocalin and cystatin C plasma levels did not differ significantly between randomization groups. In the present study in critically patients without ALI at onset of mechanical ventilation, lower tidal volume ventilation did not reduce the development or worsening of AKI compared with conventional tidal volume ventilation. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Natural ventilation of buildings: opposing wind and buoyancy

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Hunt, Gary

    1998-11-01

    The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.

  20. Night ventilation control strategies in office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaojun; Yi, Lingli; Gao, Fusheng

    2009-10-15

    In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factorsmore » influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)« less

  1. Bio-Contamination Control for Spacesuit Garments - A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Korona, Adam; Orndoff, Evelyn; Ott, Mark; Poritz, Darwin

    2010-01-01

    This paper outlines a preliminary study to review, test, and improve upon the current state of spacesuit bio-contamination control. The study includes an evaluation of current and advanced suit materials, ground and on-orbit cleaning methods, and microbial test and analysis methods. The first aspect of this study was to identify potential anti-microbial textiles and cleaning agents, and to review current microbial test methods. The anti-microbial cleaning agent and textile market survey included a review of current commercial-off-the-shelf (COTS) products that could potentially be used as future space flight hardware. This review included replacements for any of the softgood layers that may become contaminated during an extravehicular activity (EVA), including the pressure bladder, liquid cooling garment, and ancillary comfort undergarment. After a series of COTS anti-microbial textiles and clean ing agents were identified, a series of four tests were conducted: (1) a stacked configuration test that was conducted in order to review how bio-contamination would propagate through the various suit layers, (2) a individual materials test that evaluated how well each softgood layer either promoted or repressed growth, (3) a cleaning agent test that evaluated the efficacy on each of the baseline bladders, and (4) an evaluation of various COTS anti-microbial textiles. All antimicrobial COTS materials tested appeared to control bacteria colony forming unit (CFU) growth better than the Thermal Comfort Undergarment (TCU) and ACES Liquid Cooling Garment (LCG)/EMU Liquid Cooling Ventilation Garment (LCVG) materials currently in use. However, a comparison of fungi CFU growth in COTS to current suit materials appeared to vary per material. All cleaning agents tested in this study appeared to inhibit the level of bacteria and fungi growth to acceptable levels for short duration tests. While several trends can be obtained from the current analysis, a series of test improvements are described for future microbial testing.

  2. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  3. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  4. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  5. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  6. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  7. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  8. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  9. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  10. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  11. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  12. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  13. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  14. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  15. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  16. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  17. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  18. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  19. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  20. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  1. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  2. Investigation of turbine ventilator performance after added wind cup for room exhaust air applications

    NASA Astrophysics Data System (ADS)

    Harun, D.; Zulfadhli; Akhyar, H.

    2018-05-01

    The turbine ventilator is a wind turbine with a vertical axis that has a combined function of the wind turbine and a suction fan. In this study, the turbine ventilator modified by adding a wind cup on the top (cap) turbine ventilator. The purpose of this experiment is to investigated the effect of the addition of wind cup on the turbine ventilator. Turbine ventilator used is type v30 and wind cup with diameter 77 mm. The experiment was conducted using a triangular pentagon model space chamber which was cut off to place the ventilator turbine ventilation cup with a volume of 0.983 m3 (equivalent to 1 mm3). The results of this study indicate that at an average wind speed of 1.8 m/s, the rotation of the turbine produced without a wind cup is 60.6 rpm while with the addition of a wind cup in the turbine ventilator is 69 rpm. The average increase of rotation turbine after added win cup is 8.4 rpm and the efficiency improvement of turbine ventilator is 1.7 %.

  3. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    NASA Astrophysics Data System (ADS)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  4. Conservative fluid management prevents age-associated ventilator induced mortality.

    PubMed

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    PubMed

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Invasive Mechanical Ventilation and Mortality in Pediatric Hematopoietic Stem Cell Transplantation: A Multicenter Study.

    PubMed

    Rowan, Courtney M; Gertz, Shira J; McArthur, Jennifer; Fitzgerald, Julie C; Nitu, Mara E; Loomis, Ashley; Hsing, Deyin D; Duncan, Christine N; Mahadeo, Kris M; Smith, Lincoln S; Moffet, Jerelyn; Hall, Mark W; Pinos, Emily L; Cheifetz, Ira M; Tamburro, Robert F

    2016-04-01

    To establish the current respiratory practice patterns in pediatric hematopoietic stem cell transplant patients and investigate their associations with mortality across multiple centers. Retrospective cohort between 2009 and 2014. Twelve children's hospitals in the United States. Two hundred twenty-two pediatric allogeneic hematopoietic stem cell transplant recipients with acute respiratory failure using invasive mechanical ventilation. None. PICU mortality of our cohort was 60.4%. Mortality at 180 days post PICU discharge was 74%. Length of PICU stay prior to initiation of invasive mechanical ventilation was significantly lower in survivors, and the odds of mortality increased for longer length of PICU stay prior to intubation. A total of 91 patients (41%) received noninvasive ventilation at some point during their PICU stay prior to intubation. Noninvasive ventilation use preintubation was associated with increased mortality (odds ratio, 2.1; 95% CI, 1.2-3.6; p = 0.010). Patients ventilated longer than 15 days had higher odds of death (odds ratio, 2.4; 95% CI, 1.3-4.2; p = 0.004). Almost 40% of patients (n = 85) were placed on high-frequency oscillatory ventilation with a mortality of 76.5% (odds ratio, 3.3; 95% CI, 1.7-6.5; p = 0.0004). Of the 20 patients who survived high-frequency oscillatory ventilation, 18 were placed on high-frequency oscillatory ventilation no later than the third day of invasive mechanical ventilation. In this subset of 85 patients, transition to high-frequency oscillatory ventilation within 2 days of the start of invasive mechanical ventilation resulted in a 76% decrease in the odds of death compared with those who transitioned to high-frequency oscillatory ventilation later in the invasive mechanical ventilation course. This study suggests that perhaps earlier more aggressive critical care interventions in the pediatric hematopoietic stem cell transplant patient with respiratory failure requiring invasive mechanical ventilation may offer an opportunity to improve outcomes.

  7. Conservative Fluid Management Prevents Age-Associated Ventilator Induced Mortality

    PubMed Central

    Herbert, Joseph A.; Valentine, Michael S.; Saravanan, Nivi; Schneck, Matthew B.; Pidaparti, Ramana; Fowler, Alpha A.; Reynolds, Angela M.; Heise, Rebecca L.

    2017-01-01

    Background Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hosptial mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. Methods 2 month old and 20 month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4 hours with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. Results At 4hrs, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1hr in advanced age HVT subjects. In 4hr ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Conclusion Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. PMID:27188767

  8. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    PubMed

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  9. Efficacy of an expanded ventilator bundle for the reduction of ventilator-associated pneumonia in the medical intensive care unit.

    PubMed

    Blamoun, John; Alfakir, Maria; Rella, Marie E; Wojcik, Janice M; Solis, Roberto A; Anees Khan, M; DeBari, Vincent A

    2009-03-01

    The ventilator bundle (VB) includes a group of clinical maneuvers (head-of-bed elevation, "sedation vacation," deep vein thrombosis prophylaxis, and peptic ulcer disease prophylaxis) to improve outcomes in patients undergoing mechanical ventilation. We modified the standard VB in our medical intensive care unit to include a group of respiratory therapist-driven protocols and, postimplementation, observed a statistically significant (P = .0006) reduction in ventilator-associated pneumonia (VAP), from a median of 14.1 cases/10(3) ventilator-days (interquartile range [IQR] = 12.1 to 20.6) to 0 cases/10(3) ventilator-days (IQR = 0 to 1.1).

  10. Nasal mask ventilation is better than face mask ventilation in edentulous patients.

    PubMed

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively evaluated. After induction of anesthesia and administration of neuromuscular blocker, lungs were ventilated with a standard anatomical face mask of appropriate size, using a volume controlled anesthesia ventilator with tidal volume set at 10 ml/kg. In case of inadequate ventilation, the mask position was adjusted to achieve best-fit. Inspired and expired tidal volumes were measured. Thereafter, the face mask was replaced by a nasal mask and after achieving best-fit, the inspired and expired tidal volumes were recorded. The difference in expired tidal volumes and airway pressures at best-fit with the use of the two masks and number of patients with inadequate ventilation with use of the masks were statistically analyzed. A total of 79 edentulous patients were recruited for the study. The difference in expiratory tidal volumes with the use of the two masks at best-fit was statistically significant (P = 0.0017). Despite the best-fit mask placement, adequacy of ventilation could not be achieved in 24.1% patients during face mask ventilation, and 12.7% patients during nasal mask ventilation and the difference was statistically significant. Nasal mask ventilation is more efficient than standard face mask ventilation in edentulous patients.

  11. Mechanical Ventilation in Acute Hypoxemic Respiratory Failure: A Review of New Strategies for the Practicing Hospitalist

    PubMed Central

    Wilson, Jennifer G.; Matthay, Michael A.

    2014-01-01

    BACKGROUND The goal of mechanical ventilation in acute hypoxemic respiratory failure is to support adequate gas exchange without harming the lungs. How patients are mechanically ventilated can significantly impact their ultimate outcomes. METHODS This review focuses on emerging evidence regarding strategies for mechanical ventilation in patients with acute hypoxemic respiratory failure including: low tidal volume ventilation in the acute respiratory distress syndrome (ARDS), novel ventilator modes as alternatives to low tidal volume ventilation, adjunctive strategies that may enhance recovery in ARDS, the use of lung-protective strategies in patients without ARDS, rescue therapies in refractory hypoxemia, and an evidence-based approach to weaning from mechanical ventilation. RESULTS Once a patient is intubated and mechanically ventilated, low tidal volume ventilation remains the best strategy in ARDS. Adjunctive therapies in ARDS include a conservative fluid management strategy, as well as neuromuscular blockade and prone positioning in moderate-to-severe disease. There is also emerging evidence that a lung-protective strategy may benefit non-ARDS patients. For patients with refractory hypoxemia, extracorporeal membrane oxygenation should be considered. Once the patient demonstrates signs of recovery, the best approach to liberation from mechanical ventilation involves daily spontaneous breathing trials and protocolized assessment of readiness for extubation. CONCLUSIONS Prompt recognition of ARDS and use of lung-protective ventilation, as well as evidence-based adjunctive therapies, remain the cornerstones of caring for patients with acute hypoxemic respiratory failure. In the absence of contraindications, it is reasonable to consider lung-protective ventilation in non-ARDS patients as well, though the evidence supporting this practice is less conclusive. PMID:24733692

  12. High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.

    PubMed

    Frank, James A; Pittet, Jean-Francois; Lee, Hyon; Godzich, Micaela; Matthay, Michael A

    2003-05-01

    Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.

  13. The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation.

    PubMed

    Guler, Hasan; Ata, Fikret

    2014-09-01

    The aim of this article is to develop a knowledge-based therapy for management of rats with respiratory distress. A mechanical ventilator was designed to achieve this aim. The designed ventilator is called an intelligent mechanical ventilator since fuzzy logic was used to control the pneumatic equipment according to the rat's status. LabVIEW software was used to control all equipments in the ventilator prototype and to monitor respiratory variables in the experiment. The designed ventilator can be controlled both manually and by fuzzy logic. Eight female Wistar-Albino rats were used to test the designed ventilator and to show the effectiveness of fuzzy control over manual control on pressure control ventilation mode. The anesthetized rats were first ventilated for 20 min manually. After that time, they were ventilated for 20 min by fuzzy logic. Student's t-test for p < 0.05 was applied to the measured minimum, maximum and mean peak inspiration pressures to analyze the obtained results. The results show that there is no statistical difference in the rat's lung parameters before and after the experiments. It can be said that the designed ventilator and developed knowledge-based therapy support artificial respiration of living things successfully. © IMechE 2014.

  14. Application of mid-frequency ventilation in an animal model of lung injury: a pilot study.

    PubMed

    Mireles-Cabodevila, Eduardo; Chatburn, Robert L; Thurman, Tracy L; Zabala, Luis M; Holt, Shirley J; Swearingen, Christopher J; Heulitt, Mark J

    2014-11-01

    Mid-frequency ventilation (MFV) is a mode of pressure control ventilation based on an optimal targeting scheme that maximizes alveolar ventilation and minimizes tidal volume (VT). This study was designed to compare the effects of conventional mechanical ventilation using a lung-protective strategy with MFV in a porcine model of lung injury. Our hypothesis was that MFV can maximize ventilation at higher frequencies without adverse consequences. We compared ventilation and hemodynamic outcomes between conventional ventilation and MFV. This was a prospective study of 6 live Yorkshire pigs (10 ± 0.5 kg). The animals were subjected to lung injury induced by saline lavage and injurious conventional mechanical ventilation. Baseline conventional pressure control continuous mandatory ventilation was applied with V(T) = 6 mL/kg and PEEP determined using a decremental PEEP trial. A manual decision support algorithm was used to implement MFV using the same conventional ventilator. We measured P(aCO2), P(aO2), end-tidal carbon dioxide, cardiac output, arterial and venous blood oxygen saturation, pulmonary and systemic vascular pressures, and lactic acid. The MFV algorithm produced the same minute ventilation as conventional ventilation but with lower V(T) (-1 ± 0.7 mL/kg) and higher frequency (32.1 ± 6.8 vs 55.7 ± 15.8 breaths/min, P < .002). There were no differences between conventional ventilation and MFV for mean airway pressures (16.1 ± 1.3 vs 16.4 ± 2 cm H2O, P = .75) even when auto-PEEP was higher (0.6 ± 0.9 vs 2.4 ± 1.1 cm H2O, P = .02). There were no significant differences in any hemodynamic measurements, although heart rate was higher during MFV. In this pilot study, we demonstrate that MFV allows the use of higher breathing frequencies and lower V(T) than conventional ventilation to maximize alveolar ventilation. We describe the ventilatory or hemodynamic effects of MFV. We also demonstrate that the application of a decision support algorithm to manage MFV is feasible. Copyright © 2014 by Daedalus Enterprises.

  15. Nonlinear optimal control policies for buoyancy-driven flows in the built environment

    NASA Astrophysics Data System (ADS)

    Nabi, Saleh; Grover, Piyush; Caulfield, Colm

    2017-11-01

    We consider optimal control of turbulent buoyancy-driven flows in the built environment, focusing on a model test case of displacement ventilation with a time-varying heat source. The flow is modeled using the unsteady Reynolds-averaged equations (URANS). To understand the stratification dynamics better, we derive a low-order partial-mixing ODE model extending the buoyancy-driven emptying filling box problem to the case of where both the heat source and the (controlled) inlet flow are time-varying. In the limit of a single step-change in the heat source strength, our model is consistent with that of Bower et al.. Our model considers the dynamics of both `filling' and `intruding' added layers due to a time-varying source and inlet flow. A nonlinear direct-adjoint-looping optimal control formulation yields time-varying values of temperature and velocity of the inlet flow that lead to `optimal' time-averaged temperature relative to appropriate objective functionals in a region of interest.

  16. Characterization of metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    NASA Technical Reports Server (NTRS)

    Kast, Timothy P.; Nacheff-Benedict, Maurena S.; Chang, Craig H.; Cusick, Robert J.

    1990-01-01

    Characterization of the performance of a silver-oxide-based absorbent in terms of its ability to remove both gaseous CO2 and water vapor in an astronaut portable life support systems (PLSS) is discussed. Attention is focused on regeneration of the absorbent from the carbonite state of the oxide state, preconditioning of the absorbent using a humidified gas stream, and absorption breakthrough testing. Based on the results of bench-scale experiments, a test plan is carried out to further characterize the silver-oxide-based absorbent on a larger scale; it calls for examination of the absorbent in both an adiabatic packed bed and a near-isothermal cooled bed configuration. It is demonstrated that the tested absorbent can be utilized in a way that removes substantial amounts of CO2 and water vapor during an 8-hour extravehicular activity mission, and that applying the absorbent to PLSS applications can simplify the ventilation loop.

  17. 46 CFR 32.55-5 - Ventilation of tank vessels constructed between November 10, 1936, and July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... actuated gas ejectors or blowers or ventilators fitted with heads for natural ventilation, will be approved... 46 Shipping 1 2010-10-01 2010-10-01 false Ventilation of tank vessels constructed between November... HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting...

  18. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  19. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  20. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  1. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  2. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  3. Intraoperative mechanical ventilation for the pediatric patient.

    PubMed

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    PubMed

    Dellaca', Raffaele L; Veneroni, Chiara; Farre', Ramon

    2017-06-01

    This review addresses how the combination of physiology, medicine and engineering principles contributed to the development and advancement of mechanical ventilation, emphasising the most urgent needs for improvement and the most promising directions of future development. Several aspects of mechanical ventilation are introduced, highlighting on one side the importance of interdisciplinary research for further development and, on the other, the importance of training physicians sufficiently on the technological aspects of modern devices to exploit properly the great complexity and potentials of this treatment. To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice.To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients.To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment.To better understand and classify ventilation modes.To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms.

  5. [Cases and duration of mechanical ventilation in German hospitals : An analysis of DRG incentives and developments in respiratory medicine].

    PubMed

    Biermann, A; Geissler, A

    2016-09-01

    Diagnosis-related groups (DRGs) have been used to reimburse hospitals services in Germany since 2003/04. Like any other reimbursement system, DRGs offer specific incentives for hospitals that may lead to unintended consequences for patients. In the German context, specific procedures and their documentation are suspected to be primarily performed to increase hospital revenues. Mechanical ventilation of patients and particularly the duration of ventilation, which is an important variable for the DRG-classification, are often discussed to be among these procedures. The aim of this study was to examine incentives created by the German DRG-based payment system with regard to mechanical ventilation and to identify factors that explain the considerable increase of mechanically ventilated patients in recent years. Moreover, the assumption that hospitals perform mechanical ventilation in order to gain economic benefits was examined. In order to gain insights on the development of the number of mechanically ventilated patients, patient-level data provided by the German Federal Statistical Office and the German Institute for the Hospital Remuneration System were analyzed. The type of performed ventilation, the total number of ventilation hours, the age distribution, mortality and the DRG distribution for mechanical ventilation were calculated, using methods of descriptive and inferential statistics. Furthermore, changes in DRG-definitions and changes in respiratory medicine were compared for the years 2005-2012. Since the introduction of the DRG-based payment system in Germany, the hours of ventilation and the number of mechanically ventilated patients have substantially increased, while mortality has decreased. During the same period there has been a switch to less invasive ventilation methods. The age distribution has shifted to higher age-groups. A ventilation duration determined by DRG definitions could not be found. Due to advances in respiratory medicine, new ventilation methods have been introduced that are less prone to complications. This development has simultaneously improved survival rates. There was no evidence supporting the assumption that the duration of mechanical ventilation is influenced by the time intervals relevant for DRG grouping. However, presumably operational routines such as staff availability within early and late shifts of the hospital have a significant impact on the termination of mechanical ventilation.

  6. Higher levels of spontaneous breathing reduce lung injury in experimental moderate acute respiratory distress syndrome.

    PubMed

    Carvalho, Nadja C; Güldner, Andreas; Beda, Alessandro; Rentzsch, Ines; Uhlig, Christopher; Dittrich, Susanne; Spieth, Peter M; Wiedemann, Bärbel; Kasper, Michael; Koch, Thea; Richter, Torsten; Rocco, Patricia R; Pelosi, Paolo; de Abreu, Marcelo Gama

    2014-11-01

    To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. Multiple-arm randomized experimental study. University hospital research facility. Thirty-six juvenile pigs. Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p < 0.05), and decreased the level of tumor necrosis factor-α in ventral lung tissue (median [interquartile range], 17.7 pg/mg [8.4-19.8] vs 34.5 pg/mg [29.9-42.7]; p < 0.05). Biphasic positive airway pressure/airway pressure release ventilation more than 0-30% and more than 30-60% showed a less consistent pattern of improvement in lung function, inflammation, and damage compared with biphasic positive airway pressure/airway pressure release ventilation more than 60%. In this model of moderate acute respiratory distress syndrome in pigs, biphasic positive airway pressure/airway pressure release ventilation with levels of spontaneous breath higher than usually seen in clinical practice, that is, more than 30% of total minute ventilation, reduced lung injury with improved respiratory function, as compared with protective controlled mechanical ventilation.

  7. Summary of human responses to ventilation.

    PubMed

    Seppänen, O A; Fisk, W J

    2004-01-01

    It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and residential buildings. The review shows that ventilation has various positive impacts on health and productivity of building occupants. Ventilation reduces the prevalence of airborne infectious diseases and thus the number of sick leave days. In office environment a ventilation rate up to 20-25 L/s per person seem to decrease the prevalence of SBS-symptoms. Air conditioning systems may increase the prevalence of SBS-symptoms relative to natural ventilation if not clean. In residential buildings the air change rate in cold climates should not be below app. 0.5 ach. Ventilation systems may cause pressure differences over the building envelope and bring harmful pollutants indoors.

  8. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study.

    PubMed

    Needham, Dale M; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J

    2012-04-05

    To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Prospective cohort study. 13 intensive care units at four hospitals in Baltimore, Maryland, USA. 485 consecutive mechanically ventilated patients with acute lung injury. Two year survival after onset of acute lung injury. 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Clinicaltrials.gov NCT00300248.

  9. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey.

    PubMed

    Marhong, Jonathan D; Telesnicki, Teagan; Munshi, Laveena; Del Sorbo, Lorenzo; Detsky, Michael; Fan, Eddy

    2014-07-01

    In patients with severe, acute respiratory failure undergoing venovenous extracorporeal membrane oxygenation (VV-ECMO), the optimal strategy for mechanical ventilation is unclear. Our objective was to describe ventilation practices used in centers registered with the Extracorporeal Life Support Organization (ELSO). We conducted an international cross-sectional survey of medical directors and ECMO program coordinators from all ELSO-registered centers. The survey was distributed using a commercial website that collected information on center characteristics, the presence of a mechanical ventilator protocol, ventilator settings, and weaning practices. E-mails were sent out to medical directors or coordinators at each ELSO center and their responses were pooled for analysis. We analyzed 141 (50%) individual responses from the 283 centers contacted across 28 countries. Only 27% of centers reported having an explicit mechanical ventilation protocol for ECMO patients. The majority of these centers (77%) reported "lung rest" to be the primary goal of mechanical ventilation, whereas 9% reported "lung recruitment" to be their ventilation strategy. A tidal volume of 6 ml/kg or less was targeted by 76% of respondents, and 58% targeted a positive end-expiratory pressure of 6-10 cm H2O while ventilating patients on VV-ECMO. Centers prioritized weaning VV-ECMO before mechanical ventilation. Although ventilation practices in patients supported by VV-ECMO vary across ELSO centers internationally, the majority of centers used a strategy that targeted lung-protective thresholds and prioritized weaning VV-ECMO over mechanical ventilation.

  10. Ventilation via Cut Nasotracheal Tube During General Anesthesia

    PubMed Central

    Asahi, Yoshinao; Omichi, Shiro; Adachi, Seita; Kagamiuchi, Hajime; Kotani, Junichiro

    2013-01-01

    Many patients with disabilities need recurrent dental treatment under general anesthesia because of high caries prevalence and the nature of dental treatment. We evaluated the use of a nasal device as a possible substitute for flexible laryngeal mask airway to reduce the risk of unexpected failure accompanying intubation; we succeeded in ventilating the lungs with a cut nasotracheal tube (CNT) with its tip placed in the pharynx. We hypothesized that this technique would be useful during dental treatment under general anesthesia and investigated its usefulness as part of a minimally invasive technique. A prospective study was designed using general anesthesia in 37 dental patients with disabilities such as intellectual impairment, autism, and cerebral palsy. CNT ventilation was compared with mask ventilation with the patient in 3 positions: the neck in flexion, horizontal position, and in extension. The effect of mouth gags was also recorded during CNT ventilation. The percentages of cases with effective ventilation were similar for the 2 techniques in the neck extension and horizontal positions (89.2–97.3%). However, CNT ventilation was significantly more effective than mask ventilation in the neck flexion position (94.6 vs 45.9%; P < .0001). Mouth gags slightly reduced the rate of effective ventilation in the neck flexion position. Most dental treatments involving minor oral surgeries were performed using mouth gags during CNT ventilation. CNT ventilation was shown to be superior to mask ventilation and is useful during dental treatment under general anesthesia. PMID:23506278

  11. Daytime Mouthpiece for Continuous Noninvasive Ventilation in Individuals With Amyotrophic Lateral Sclerosis.

    PubMed

    Bédard, Marie-Eve; McKim, Douglas A

    2016-10-01

    Noninvasive ventilation (NIV) is commonly used to provide ventilatory support for individuals with amyotrophic lateral sclerosis (ALS). Once 24-h ventilation is required, the decision between invasive tracheostomy ventilation and palliation is often faced. This study describes the use and outcomes of daytime mouthpiece ventilation added to nighttime mask ventilation for continuous NIV in subjects with ALS as an effective alternative. This was a retrospective study of 39 subjects with ALS using daytime mouthpiece ventilation over a 17-y period. Thirty-one subjects were successful with mouthpiece ventilation, 2 were excluded, 2 stopped because of lack of motivation, and 4 with bulbar subscores of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (b-ALSFRS-R) between 0 and 3 physically failed to use it consistently. No subject in the successful group had a b-ALSFRS-R score of <6. Thirty of the successful subjects were able to generate a maximum insufflation capacity - vital capacity difference with lung volume recruitment. The median (range) survival to tracheostomy or death from initiation of nocturnal NIV and mouthpiece ventilation were 648 (176-2,188) and 286 (41-1,769) d, respectively. Peak cough flow with lung-volume recruitment >180 L/min at initiation of mouthpiece ventilation was associated with a longer survival (637 ± 468 vs 240 ± 158 d (P = .01). Mouthpiece ventilation provides effective ventilation and prolonged survival for individuals with ALS requiring full-time ventilatory support and maintaining adequate bulbar function. Copyright © 2016 by Daedalus Enterprises.

  12. [Lung protective ventilation. Ventilatory modes and ventilator parameters].

    PubMed

    Schädler, Dirk; Weiler, Norbert

    2008-06-01

    Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.

  13. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    PubMed

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  14. High-Frequency Percussive Ventilation Revisited

    DTIC Science & Technology

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  15. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain; Tang, Yihuan

    2014-06-01

    Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, andmore » their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.« less

  16. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study.

    PubMed

    Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto

    2014-01-01

    Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.

  17. A complete audit cycle to assess adherence to a lung protective ventilation strategy.

    PubMed

    Joynes, Emma; Dalay, Satinder; Patel, Jaimin M; Fayek, Samia

    2014-11-01

    There is clear evidence for the use of a protective ventilation protocol in patients with acute respiratory distress syndrome (ARDS). There is evidence to suggest that protective ventilation is beneficial in patients at risk of ARDS. A protective ventilation strategy was implemented on our intensive care unit in critical care patients who required mechanical ventilation for over 48 h, with and at risk for ARDS. A complete audit cycle was performed over 13 months to assess compliance with a safe ventilation protocol in intensive care. The ARDS network mechanical ventilation protocol was used as the standard for our protective ventilation strategy. This recommends ventilation with a tidal volume (V t) of 6 ml/kg of ideal body weight (IBW) and plateau airway pressure of ≤30 cm H2O. The initial audit failed to meet this standard with V t's of 9.5 ml/kg of IBW. Following the implementation of a ventilation strategy and an educational program, we demonstrate a significant improvement in practice with V t's of 6.6 ml/kg of IBW in the re-audit. This highlights the importance of simple interventions and continuous education in maintaining high standards of care.

  18. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    PubMed

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  19. Adherence to the items in a bundle for the prevention of ventilator-associated pneumonia.

    PubMed

    Sachetti, Amanda; Rech, Viviane; Dias, Alexandre Simões; Fontana, Caroline; Barbosa, Gilberto da Luz; Schlichting, Dionara

    2014-01-01

    To assess adherence to a ventilator care bundle in an intensive care unit and to determine the impact of adherence on the rates of ventilator-associated pneumonia. A total of 198 beds were assessed for 60 days using a checklist that consisted of the following items: bed head elevation to 30 to 45º; position of the humidifier filter; lack of fluid in the ventilator circuit; oral hygiene; cuff pressure; and physical therapy. Next, an educational lecture was delivered, and 235 beds were assessed for the following 60 days. Data were also collected on the incidence of ventilator-acquired pneumonia. Adherence to the following ventilator care bundle items increased: bed head elevation from 18.7% to 34.5%; lack of fluid in the ventilator circuit from 55.6% to 72.8%; oral hygiene from 48.5% to 77.8%; and cuff pressure from 29.8% to 51.5%. The incidence of ventilator-associated pneumonia was statistically similar before and after intervention (p=0.389). The educational intervention performed in this study increased the adherence to the ventilator care bundle, but the incidence of ventilator-associated pneumonia did not decrease in the small sample that was assessed.

  20. Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France.

    PubMed

    Canha, N; Mandin, C; Ramalho, O; Wyart, G; Ribéron, J; Dassonville, C; Hänninen, O; Almeida, S M; Derbez, M

    2016-06-01

    The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2 ), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non-heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Top