Sample records for suitable building blocks

  1. Streambank Protection Guidelines,

    DTIC Science & Technology

    1983-10-01

    the types of rubble suitable for dumping on an eroding bank include broken pavement, bricks, building blocks , slag , and quarry waste. Large flat slabs...not provide any long-termn protection. blocks , and house brick. I rfbiae omrilgbo akt Completed gabion revetment made from prefabricated baskets...prevent pressure buildup that could cause revetment failure. BLOCKS . Precast cellular blocks can be ypi i .,, p no- , ,,, ,hag ,.,.,,,,t

  2. Design and synthesis of unnatural heparosan and chondroitin building blocks

    PubMed Central

    Bera, Smritilekha; Linhardt, Robert J.

    2011-01-01

    Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620

  3. Building an Understanding of Functions: A Series of Activities for Pre-Calculus

    ERIC Educational Resources Information Center

    Carducci, Olivia M.

    2008-01-01

    Building block toys can be used to illustrate various concepts connected with functions including graphs and rates of change of linear and exponential functions, piecewise functions, and composition of functions. Five brief activities suitable for a pre-calculus course are described.

  4. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers.

    PubMed

    Winnacker, Malte

    2018-05-14

    Pinenes - a group of monoterpenes containing a double bond - are very suitable renewable building blocks for a variety of sustainable polymers and materials. Their abundance from mainly non-edible parts of plants as well as the feasibility to isolate them render these compounds unique amongst the variety of biomass that is utilizable for novel materials. Accordingly, their use for the synthesis of biobased polymers has been investigated intensively, and strong progress has been made with this especially within the past 2-3 years. Direct cationic or radical polymerization via the double bonds as well as polymerization upon their further functionalization can afford a variety of sustainable polymers suitable for many applications, which is summarized in this article. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Data Policy Construction Set - Building Blocks from Childhood Constructions

    NASA Astrophysics Data System (ADS)

    Fleischer, Dirk; Paul-Stueve, Thilo; Jobmann, Alexandra; Farrenkopf, Stefan

    2016-04-01

    A complete construction set of building blocks usually comes with instructions and these instruction include building stages. The products of these building stages usually build from very general parts become highly specialized building parts for very unique features of the whole construction model. This sounds very much like the construction or organization of an interdisciplinary research project, institution or association, doesn't it! The creation process of an overarching data policy for a project group or institution is exactly the combination of individual interests with the common goal of a collaborative data policy and can be compared with the building stages of a construction set of building blocks and the building instructions. Keeping this in mind we created the data policy construction set of textual building blocks. This construction set is subdivided into several building stages or parts each containing multiple building blocks as text blocks. By combining building blocks of all subdivisions it is supposed to create a cascading data policy document. Cascading from the top level as a construction set provider for all further down existing levels such as project, themes, work packages or Universities, faculties, institutes down to the working level of working groups. The working groups are picking from the remaining building blocks in the provided construction set the suitable blocks for its working procedures to create a very specific policy from the available construction set provided by the top level community. Nevertheless, if a working group realized that there are missing building blocks or worse that there are missing building parts, then they have the chance to add the missing pieces to the construction set of direct an future use. This cascading approach enables project or institution wide application of the encoded rules from the textual level on access to data storage infrastructure. This structured approach is flexible enough to allow for the fact that interdisciplinary research projects always bring together very diverse amount of working habits, methods and requirements. All these need to be considered for the creation of the general document on data sharing and research data management. This approach focused on the recommendation of the RDA practical policy working group to implement practical policies derived from the textual level. Therefore it aims to move the data policy creation procedure and implementation towards the consortium or institutional formation with all the benefits of an existing data policy construction set already during the proposal creation and proposal review. Picking up the metaphor of real building blocks in context of data policies provides also the insight that existing building blocks and building parts can be reused as they are, but also can be redesigned with very little changes or a full overhaul.

  6. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.

    PubMed

    Song, Junyeob; Zhou, Wei

    2018-06-27

    Optical nanoantennas can concentrate light and enhance light-matter interactions in subwavelength domain, which is useful for photodetection, light emission, optical biosensing, and spectroscopy. However, conventional optical nanoantennas operating at a single wavelength band are not suitable for multiband applications. Here, we propose and exploit an out-of-plane plasmonic engineering strategy to design and create composite optical nanoantennas that can support multiple nanolocalized modes at different resonant wavelengths. These multiresonant composite nanoantennas are composed of vertically stacked building blocks of metal-insulator-metal loop nanoantennas. Studies of multiresonant composite nanoantennas demonstrate that the number of supported modes depends on the number of vertically stacked building blocks and the resonant wavelengths of individual modes are tunable by controlling the out-of-plane geometries of their building blocks. In addition, numerical studies show that the resonant wavelengths of individual modes in composite nanoantennas can deviate from the optical response of building blocks due to hybridization of magnetic modes in neighboring building blocks. Using Au nanohole arrays as deposition masks to fabricate arrays of multilayered composite nanoantennas, we experimentally demonstrate their multiresonant optical properties in good agreement with theory predictions. These studies show that out-of-plane engineered multiresonant composite nanoantennas can provide new opportunities for fundamental nanophotonics research and practical applications involving optical multiband operations, such as multiphoton process, broadband solar energy conversion, and wavelength-multiplexed optical system.

  7. Versatile plasmid-based expression systems for Gram-negative bacteria--General essentials exemplified with the bacterium Ralstonia eutropha H16.

    PubMed

    Gruber, Steffen; Schwab, Helmut; Koefinger, Petra

    2015-12-25

    The Gram-negative bacterium Escherichia coli is currently the most efficient and widely used prokaryotic host for recombinant protein and metabolite production. However, due to some limitations and to various interesting features of other Gram-negative bacteria efficient vector systems applicable to a broad range are desired. Basic building blocks for plasmid-based vectors include besides the need for a suitable selection marker in the first line a proper replication and maintenance system. In addition to these basic requirements, further elements are needed for Gram-negative bacteria beyond E. coli, such as Pseudomonas pudita, Ralstonia eutropha, Burkholderia glumae or Acinetobacter sp.. Established building blocks have to be adapted and new building blocks providing the desired functions need to be identified and exploited. This minireview addresses so far described and used genetic elements for broad host range replication, efficient plasmid maintenance, and conjugative plasmid transfer as well as expression elements and protein secretion signals. The industrially important bacterium R. eutropha H16 was chosen as a model organism to provide specific data on the effectivity and utility of building blocks based on such genetic elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Letter of intent for KM3NeT 2.0

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belhorma, B.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherkaoui El Moursli, R.; Cherubini, S.; Chiarusi, T.; Circella, M.; Classen, L.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amico, A.; De Bonis, G.; De Rosa, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Díaz García, A. F.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Drury, L.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; El Khayati, N.; Elsaesser, D.; Enzenhöfer, A.; Fassi, F.; Favali, P.; Fermani, P.; Ferrara, G.; Filippidis, C.; Frascadore, G.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijer, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M. Lindsey; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Margiotta, A.; Marinelli, A.; Mariş, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Navas, S.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Papaikonomou, A.; Papaleo, R.; Păvălaş, G. E.; Peek, H.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rapidis, P.; Razis, P.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Siotis, I.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Tézier, D.; Theraube, S.; Thompson, L.; Timmer, P.; Tönnis, C.; Trasatti, L.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Voulgaris, G.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zornoza, J. D.; Zúñiga, J.

    2016-08-01

    The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.

  9. The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading

    NASA Astrophysics Data System (ADS)

    Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila

    2017-08-01

    Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.

  10. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.

    PubMed

    Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A

    2018-01-09

    Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.

  11. 4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls.

    PubMed

    Dettori, Maria Antonietta; Fabbri, Davide; Pisano, Marina; Rozzo, Carla; Palmieri, Giuseppe; Dess, Alessandro; Dallocchio, Roberto; Delogu, Giovanna

    2015-02-01

    A small collection of eugenol- and curcumin-analog hydroxylated biphenyls was prepared by straightforward methods starting from natural 4-substituted-2-methoxyphenols and their antitumoral activity was evaluated in vitro . Two curcumin-biphenyl derivatives showed interesting growth inhibitory activities on different malignant melanoma cell lines with IC 50 ranging from 13 to 1 µM. Preliminary molecular modeling studies were carried out to evaluate conformations and dihedral angles suitable for antiproliferative activity in hydroxylated biphenyls bearing a side aliphatic chain.

  12. Exploiting three kinds of interface propensities to identify protein binding sites.

    PubMed

    Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan

    2009-08-01

    Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. In this study, we present a building block of proteins called order profiles to use the evolutionary information of the protein sequence frequency profiles and apply this building block to produce a class of propensities called order profile interface propensities. For comparisons, we revisit the usage of residue interface propensities and binary profile interface propensities for protein binding site prediction. Each kind of propensities combined with sequence profiles and accessible surface areas are inputted into SVM. When tested on four types of complexes (hetero-permanent complexes, hetero-transient complexes, homo-permanent complexes and homo-transient complexes), experimental results show that the order profile interface propensities are better than residue interface propensities and binary profile interface propensities. Therefore, order profile is a suitable profile-level building block of the protein sequences and can be widely used in many tasks of computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the protein remote homology detection.

  13. How Fast Does a Building Fall?

    ERIC Educational Resources Information Center

    Denny, Mark

    2010-01-01

    In this paper, the time required for a tower block to collapse is calculated. The tower collapses progressively, with one floor falling onto the floor below, causing it to fall. The rate of collapse is found to be not much slower than freefall. The calculation is an engaging and relevant application of Newton's laws, suitable for undergraduate…

  14. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.

    PubMed

    Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests.

  15. Electron-induced origins of prebiotic building blocks of sugars: mechanism of self-reactions of a methanol anion dimer

    NASA Astrophysics Data System (ADS)

    Karsili, Tolga N. V.; Fennimore, Mark A.; Matsika, Spiridoula

    The elementary synthesis of prebiotic molecules has attracted vast attention in recent years. Due to their rich surface chemistry and lack of suitable atmosphere, comets represent an important host for such synthesis, especially since they are routinely irradiated with short wavelength electromagnetic radiation and energetic cosmological electrons. Using high-level electronic structure theory, we present the details of the reactivity associated with the electron-impact induced prebiotic synthesis of ethylene glycol (a carbohydrate building block) from elementary methanol. The results suggest that the experimentally observed intermediates and fragment products can be viably formed by both neutral excited-state chemistry and by dissociative electron attachment - highlighting the importance of a theoretical mapping of the relevant potential energy surfaces that ultimately act as an important guide to the experimental results.

  16. Chiral thiazoline and thiazole building blocks for the synthesis of peptide-derived natural products.

    PubMed

    Just-Baringo, Xavier; Albericio, Fernando; Alvarez, Mercedes

    2014-01-01

    Thiazoline and thiazole heterocycles are privileged motifs found in numerous peptide-derived natural products of biological interest. During the last decades, the synthesis of optically pure building blocks has been addressed by numerous groups, which have developed a plethora of strategies to that end. Efficient and reliable methodologies that are compatible with the intricate and capricious architectures of natural products are a must to further develop their science. Structure confirmation, structure-activity relationship studies and industrial production are fields of paramount importance that require these robust methodologies in order to successfully bring natural products into the clinic. Today's chemist toolbox is assorted with many powerful methods for chiral thiazoline and thiazole synthesis. Ranging from biomimetic approaches to stereoselective alkylations, one is likely to find a suitable method for their needs.

  17. Chiral 1,2- and 1,3-diol-functionalized chromophores as Lego building blocks for coupled structures.

    PubMed

    Spange, Stefan; Hofmann, Katja; Walfort, Bernhard; Rüffer, Tobias; Lang, Heinrich

    2005-10-14

    Chiral nitroanilines containing 1,2- or 1,3-diol functionalities have been synthesized by nucleophilic aromatic substitution of fluoronitroanilines with 1-aminopropane-2,3-diols and 2-aminopropane-1,3-diol in the melt. X-ray structure analyses confirm retention of the configuration of the chiral center. The novel chromophores are suitable to link reversibly to various substituted arylboronic acids which allows the construction of new solvatochromic sensor molecules suitable to response to solvent and anion coordination by fluoride. The solvatochromism of the new compounds has been studied using the Kamlet-Taft LSE relationship.

  18. Hybrid Inorganic/Organic Photovoltaics: Translating Fundamental Nanostructure Research to Enhanced Solar Conversion Efficiency

    DTIC Science & Technology

    2010-03-18

    quantum dots composed of a photopolymerizable outer corona constituting methacrylate and an inner siloxane layer, with a view making them photo...nanostructures. The inherent properties of photopolymerizable QDs such as their stability, PL, and ease of solution processability, make them suitable...Thiophenes are important compounds that are used as building blocks in many chemical synthesis. The thiophene oligomers and thiophene-based

  19. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  20. Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis.

    PubMed

    Haikal, Rana R; Wang, Xia; Hassan, Youssef S; Parida, Manas R; Murali, Banavoth; Mohammed, Omar F; Pellechia, Perry J; Fontecave, Marc; Alkordi, Mohamed H

    2016-08-10

    A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multitopic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity toward hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited-state lifetime of the covalently immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.

  1. A polynomial-chaos-expansion-based building block approach for stochastic analysis of photonic circuits

    NASA Astrophysics Data System (ADS)

    Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea

    2018-02-01

    The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.

  2. Forensic intelligence framework. Part II: Study of the main generic building blocks and challenges through the examples of illicit drugs and false identity documents monitoring.

    PubMed

    Baechler, Simon; Morelato, Marie; Ribaux, Olivier; Beavis, Alison; Tahtouh, Mark; Kirkbride, K Paul; Esseiva, Pierre; Margot, Pierre; Roux, Claude

    2015-05-01

    The development of forensic intelligence relies on the expression of suitable models that better represent the contribution of forensic intelligence in relation to the criminal justice system, policing and security. Such models assist in comparing and evaluating methods and new technologies, provide transparency and foster the development of new applications. Interestingly, strong similarities between two separate projects focusing on specific forensic science areas were recently observed. These observations have led to the induction of a general model (Part I) that could guide the use of any forensic science case data in an intelligence perspective. The present article builds upon this general approach by focusing on decisional and organisational issues. The article investigates the comparison process and evaluation system that lay at the heart of the forensic intelligence framework, advocating scientific decision criteria and a structured but flexible and dynamic architecture. These building blocks are crucial and clearly lay within the expertise of forensic scientists. However, it is only part of the problem. Forensic intelligence includes other blocks with their respective interactions, decision points and tensions (e.g. regarding how to guide detection and how to integrate forensic information with other information). Formalising these blocks identifies many questions and potential answers. Addressing these questions is essential for the progress of the discipline. Such a process requires clarifying the role and place of the forensic scientist within the whole process and their relationship to other stakeholders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Quantum computing with incoherent resources and quantum jumps.

    PubMed

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  4. Modeling Manpower and Equipment Productivity in Tall Building Construction Projects

    NASA Astrophysics Data System (ADS)

    Mudumbai Krishnaswamy, Parthasarathy; Rajiah, Murugasan; Vasan, Ramya

    2017-12-01

    Tall building construction projects involve two critical resources of manpower and equipment. Their usage, however, widely varies due to several factors affecting their productivity. Currently, no systematic study for estimating and increasing their productivity is available. What is prevalent is the use of empirical data, experience of similar projects and assumptions. As tall building projects are here to stay and increase, to meet the emerging demands in ever shrinking urban spaces, it is imperative to explore ways and means of scientific productivity models for basic construction activities: concrete, reinforcement, formwork, block work and plastering for the input of specific resources in a mixed environment of manpower and equipment usage. Data pertaining to 72 tall building projects in India were collected and analyzed. Then, suitable productivity estimation models were developed using multiple linear regression analysis and validated using independent field data. It is hoped that the models developed in the study will be useful for quantity surveyors, cost engineers and project managers to estimate productivity of resources in tall building projects.

  5. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  6. Inequivalent coherent state representations in group field theory

    NASA Astrophysics Data System (ADS)

    Kegeles, Alexander; Oriti, Daniele; Tomlin, Casey

    2018-06-01

    In this paper we propose an algebraic formulation of group field theory and consider non-Fock representations based on coherent states. We show that we can construct representations with an infinite number of degrees of freedom on compact manifolds. We also show that these representations break translation symmetry. Since such representations can be regarded as quantum gravitational systems with an infinite number of fundamental pre-geometric building blocks, they may be more suitable for the description of effective geometrical phases of the theory.

  7. SRA Real Math Building Blocks PreK. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "SRA Real Math Building Blocks PreK" (also referred to as "Building Blocks for Math") is a supplemental mathematics curriculum designed to develop preschool children's early mathematical knowledge through various individual and small- and large-group activities. It uses "Building Blocks for Math PreK" software,…

  8. Digital Alchemy for Materials Design: Colloids and Beyond

    NASA Astrophysics Data System (ADS)

    van Anders, Greg; Klotsa, Daphne; Karas, Andrew; Dodd, Paul; Glotzer, Sharon

    Starting with the early alchemists, a holy grail of science has been to make desired materials by manipulating basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that connecting building-block attributes to bulk structure is both necessary for rationally engineering materials and difficult because building block attributes can be altered in many ways. We show how to exploit the malleability of colloidal nanoparticle ``elements'' to quantitatively link building-block attributes to bulk structure through a statistical thermodynamic framework we term ``digital alchemy''. We use this framework to optimize building blocks for a given target structure and to determine which building-block attributes are most important to control for self-assembly, through a set of novel thermodynamic response functions. We thereby establish direct links between the attributes of colloidal building blocks and the bulk structures they form. Moreover, our results give concrete solutions to the more general conceptual challenge of optimizing emergent behaviors in nature and can be applied to other types of matter.

  9. Nanostructured raspberry-like gelatin microspheres for local delivery of multiple biomolecules.

    PubMed

    Diba, Mani; Pape, Bram; Klymov, Alexey; Zhang, Yang; Song, Jiankang; Löwik, Dennis W P M; Seyednejad, Hajar; Leeuwenburgh, Sander C G

    2017-08-01

    Multicompartment particles, which are particles composed of smaller building units, have gained considerable interest during the past decade to facilitate simultaneous and differential delivery of several biomolecules in various applications. Supercritical carbon dioxide (CO 2 ) processing is an industrial technology widely used for large-scale synthesis and processing of materials. However, the application of this technology for production of multicompartment particles from colloidal particles has not yet been explored. Here, we report the formation of raspberry-like gelatin (RLG) microparticles composed of gelatin nanoparticles as colloidal building blocks through supercritical CO 2 processing. We show that these RLG microparticles exhibit a high stability upon dispersion in aqueous media without requiring chemical cross-linking. We further demonstrate that these microparticles are cytocompatible and facilitate differential release of two different model compounds. The strategy presented here can be utilized as a cost-effective route for production of various types of multicompartment particles using colloidal particles with suitable interparticle interactions. Multicompartment particles have gained considerable interest during the past decade to facilitate simultaneous and differential delivery of multiple biomolecules in various biomedical applications. Nevertheless, common methods employed for the production of such particles are often complex and only offer small-scale production. Here, we report the formation of raspberry-like gelatin (RLG) microparticles composed of gelatin nanoparticles as colloidal building blocks through supercritical CO 2 processing. We show that these microparticles are cytocompatible and facilitate differential release of two model compounds with different molecular sizes, promising successful applications in various biomedical areas. Summarizing, this paper presents a novel strategy that can be utilized as a cost-effective route for production of various types of multicompartment particles using a wide range of colloidal building blocks. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.

    PubMed

    Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M

    2011-10-01

    Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.

  11. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-07

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device.

  12. CFD: A Castle in the Sand?

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.

    2004-01-01

    The computational simulation community is not routinely publishing independently verifiable tests to accompany new models or algorithms. A survey reveals that only 22% of new models published are accompanied by tests suitable for independently verifying the new model. As the community develops larger codes with increased functionality, and hence increased complexity in terms of the number of building block components and their interactions, it becomes prohibitively expensive for each development group to derive the appropriate tests for each component. Therefore, the computational simulation community is building its collective castle on a very shaky foundation of components with unpublished and unrepeatable verification tests. The computational simulation community needs to begin publishing component level verification tests before the tide of complexity undermines its foundation.

  13. The Utilisation of Shredded PET as Aggregate Replacement for Interlocking Concrete Block

    NASA Astrophysics Data System (ADS)

    Mokhtar, M.; Kaamin, M.; Sahat, S.; Hamid, N. B.

    2018-03-01

    The consumption of plastic has grown substantially all over the world in recent years and this has created huge quantities of plastic-based waste. Plastic waste is now a serious environmental threat to the modern way of living, although steps were taken to reduce its consumption. This creates substantial garbage every day, which is much unhealthy. Plastic bottles such as Polyethylene terephthalate (PET) was use as the partially component in this making of interlocking blocks concrete. This project investigates the strength and workability of the interlocking block concrete by replacing course aggregate with % PET. The suitability of recycled plastics (PET) as course aggregate in interlocking block concrete and its advantages are discussed here. Moreover, there were more benefits when using interlocking block than using conventional block such as it easy for construction because they are aligning, easy to place, high speed stacking and they offer more resistance to shear and buildings would be even stronger. Based on the test perform, the failure parameter were discussed .From the compressive strength test result, it shows that the strength of concrete block decreased with increased of PET used. From the results, it shows that higher compressive strength was found with 5% natural course aggregate replaced with PET compared to other percentages.

  14. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    PubMed

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  15. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers.

    PubMed

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children's block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children's block building performance. Chinese preschoolers ( N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children's block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation.

  16. Low Temperature Performance of High-Speed Neural Network Circuits

    NASA Technical Reports Server (NTRS)

    Duong, T.; Tran, M.; Daud, T.; Thakoor, A.

    1995-01-01

    Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.

  17. Subwavelength hybrid terahertz waveguides.

    PubMed

    Nam, Sung Hyun; Taylor, Antoinette J; Efimov, Anatoly

    2009-12-07

    We introduce and present general properties of hybrid terahertz waveguides. Weakly confined Zenneck waves on a metal-dielectric interface at terahertz frequencies can be transformed to a strongly confined yet low-loss subwavelength mode through coupling with a photonic mode of a nearby high-index dielectric strip. We analyze confinement, attenuation, and dispersion properties of this mode. The proposed design is suitable for planar integration and allows easy fabrication on chip scale. The superior waveguiding properties at terahertz frequencies could enable the hybrid terahertz waveguides as building blocks for terahertz integrated circuits.

  18. Analog Building Blocks for Communications Modems.

    DTIC Science & Technology

    1977-01-01

    x*—*- A0-A039 82b ELECTRONIC COMMUNICATIONS INC ST PETERSBURG FLA F/6 9/5 ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS .(U) JAN 77 B BLACK...F33615-7<t-C-1120 UNCLASSIFIED AFAL-TR-76-29 NL ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS ELECTRONIC COMMUNICATIONS INC. A SUBSIDIARY OF...Idantltr Or Mac* numb*,; Avionics Building-Block modules Frequency Synthesize* Costas Demodulator Amplifier Modem Frequency Multiplier ’ -^ « TRACT

  19. Fault-tolerant computer study. [logic designs for building block circuits

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.; Avizienis, A. A.; Ercegovac, M. D.

    1981-01-01

    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed.

  20. Adolescent Boys' and Girls' Block Constructions Differ in Structural Balance: A Block-Building Characteristic Related to Math Achievement

    ERIC Educational Resources Information Center

    Casey, Beth M.; Pezaris, Elizabeth E.; Bassi, Julie

    2012-01-01

    Two studies were conducted on block building in adolescents, assessing middle school (Study 1) and high school students (Study 2). Students were asked to build something interesting with blocks. In both samples, the same pattern of gender differences were found; boys built taller structures than girls, and balanced a larger number of blocks on a…

  1. Aerial Imagery and LIDAR Data Fusion for Unambiguous Extraction of Adjacent Level-Buildings Footprints

    NASA Astrophysics Data System (ADS)

    Mola Ebrahimi, S.; Arefi, H.; Rasti Veis, H.

    2017-09-01

    Our paper aims to present a new approach to identify and extract building footprints using aerial images and LiDAR data. Employing an edge detector algorithm, our method first extracts the outer boundary of buildings, and then by taking advantage of Hough transform and extracting the boundary of connected buildings in a building block, it extracts building footprints located in each block. The proposed method first recognizes the predominant leading orientation of a building block using Hough transform, and then rotates the block according to the inverted complement of the dominant line's angle. Therefore the block poses horizontally. Afterwards, by use of another Hough transform, vertical lines, which might be the building boundaries of interest, are extracted and the final building footprints within a block are obtained. The proposed algorithm is implemented and tested on the urban area of Zeebruges, Belgium(IEEE Contest,2015). The areas of extracted footprints are compared to the corresponding areas in the reference data and mean error is equal to 7.43 m2. Besides, qualitative and quantitative evaluations suggest that the proposed algorithm leads to acceptable results in automated precise extraction of building footprints.

  2. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2013-12-18

    Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.

  3. Engineering the formation of secondary building blocks within hollow interiors.

    PubMed

    Li, Xiaobo; Liu, Xiao; Ma, Yi; Li, Mingrun; Zhao, Jiao; Xin, Hongchuan; Zhang, Lei; Yang, Yan; Li, Can; Yang, Qihua

    2012-03-15

    Secondary building blocks within the cavities of primary silica-architecture building blocks are successfully engineered. The immobilized surfactant directs the selective dissolution and reassembly of dissolved silicate species for the formation of secondary building blocks (hollow nanospheres/nanorods; see figure). Supported TiO(2) on nanostructures with multilevel interiors is shown to exhibit significantly enhanced activity in photocatalytic H(2) production. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    PubMed

    Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E

    2016-09-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers

    PubMed Central

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children’s block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children’s block building performance. Chinese preschoolers (N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children’s block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation. PMID:29441031

  6. The AC photovoltaic module is here!

    NASA Astrophysics Data System (ADS)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  7. Using the World Health Organization health system building blocks through survey of healthcare professionals to determine the performance of public healthcare facilities.

    PubMed

    Manyazewal, Tsegahun

    2017-01-01

    Acknowledging the health system strengthening agenda, the World Health Organization (WHO) has formulated a health systems framework that describes health systems in terms of six building blocks. This study aimed to determine the current status of the six WHO health system building blocks in public healthcare facilities in Ethiopia. A quantitative, cross-sectional study was conducted in five public hospitals in central Ethiopia which were in a post-reform period. A self-administered, structured questionnaire which covered the WHO's six health system building blocks was used to collect data on healthcare professionals who consented. Data was analyzed using IBM SPSS version 20. The overall performance of the public hospitals was 60% when weighed against the WHO building blocks which, in this procedure, needed a minimum of 80% score. For each building block, performance scores were: information 53%, health workforce 55%, medical products and technologies 58%, leadership and governance 61%, healthcare financing 62%, and service delivery 69%. There existed a significant difference in performance among the hospitals ( p  < .001). The study proved that the WHO's health system building blocks are useful for assessing the process of strengthening health systems in Ethiopia. The six blocks allow identifying different improvement opportunities in each one of the hospitals. There was no contradiction between the indicators of the WHO building blocks and the health sustainable development goal (SDG) objectives. However, such SDG objectives should not be a substitute for strategies to strengthen health systems.

  8. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosingmore » the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).« less

  9. The Building Blocks of Geology.

    ERIC Educational Resources Information Center

    Gibson, Betty O.

    2001-01-01

    Discusses teaching techniques for teaching about rocks, minerals, and the differences between them. Presents a model-building activity that uses plastic building blocks to build crystal and rock models. (YDS)

  10. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    NASA Astrophysics Data System (ADS)

    Martinenghi, E.; Di Sieno, L.; Contini, D.; Sanzaro, M.; Pifferi, A.; Dalla Mora, A.

    2016-07-01

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm2 together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  11. Functionalized Helical Building Blocks for Nanoelectronics.

    PubMed

    Khokhlov, Khrystofor; Schuster, Nathaniel J; Ng, Fay; Nuckolls, Colin

    2018-04-06

    Molecular building blocks are designed and created for the cis- and trans-dibrominated perylenediimides. The syntheses are simple and provide these useful materials on the gram scale. To demonstrate their synthetic versatility, these building blocks were used to create new dimeric perylenediimide helixes. Two of these helical dimers are twistacenes, and one is a helicene. Crucially, each possesses regiochemically defined functionality that allows the dimer helix to be elaborated into higher oligomers. It would be very difficult to prepare these helical PDI building blocks regioselectively without the methods described.

  12. The 10 building blocks of high-performing primary care.

    PubMed

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements-engaged leadership, data-driven improvement, empanelment, and team-based care-that assist the implementation of the other 6 building blocks-patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement.

  13. Two innovative solutions based on fibre concrete blocks designed for building substructure

    NASA Astrophysics Data System (ADS)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  14. Development of Test Article Building Block (TABB) for deployable platform systems

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Barbour, R. T.

    1984-01-01

    The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.

  15. Efficient Risk Determination of Risk of Road Blocking by Means of MMS and Data of Buildings and Their Surrounding

    NASA Astrophysics Data System (ADS)

    Nose, Kazuhito; Hatake, Shuhei

    2016-06-01

    Massive earthquake named "Tonankai Massive earthquake" is predicted to occur in the near future and is feared to cause severe damage in Kinki District . "Hanshin-Awaji Massive Earthquake" in 1995 destroyed most of the buildings constructed before 1981 and not complying with the latest earthquake resistance standards. Collapsed buildings blocked roads, obstructed evacuation, rescue and firefighting operations and inflicted further damages.To alleviate the damages, it is important to predict the points where collapsed buildings are likely block the roads and to take precautions in advance. But big cities have an expanse of urban areas with densely-distributed buildings, and it requires time and cost to check each and every building whether or not it will block the road. In order to reduce blocked roads when a disaster strikes, we made a study and confirmed that the risk of road blocking can be determined easily by means of the latest technologies of survey and geographical information.

  16. A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis.

    PubMed

    Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan

    2008-12-01

    Protein remote homology detection and fold recognition are central problems in bioinformatics. Currently, discriminative methods based on support vector machine (SVM) are the most effective and accurate methods for solving these problems. A key step to improve the performance of the SVM-based methods is to find a suitable representation of protein sequences. In this paper, a novel building block of proteins called Top-n-grams is presented, which contains the evolutionary information extracted from the protein sequence frequency profiles. The protein sequence frequency profiles are calculated from the multiple sequence alignments outputted by PSI-BLAST and converted into Top-n-grams. The protein sequences are transformed into fixed-dimension feature vectors by the occurrence times of each Top-n-gram. The training vectors are evaluated by SVM to train classifiers which are then used to classify the test protein sequences. We demonstrate that the prediction performance of remote homology detection and fold recognition can be improved by combining Top-n-grams and latent semantic analysis (LSA), which is an efficient feature extraction technique from natural language processing. When tested on superfamily and fold benchmarks, the method combining Top-n-grams and LSA gives significantly better results compared to related methods. The method based on Top-n-grams significantly outperforms the methods based on many other building blocks including N-grams, patterns, motifs and binary profiles. Therefore, Top-n-gram is a good building block of the protein sequences and can be widely used in many tasks of the computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the prediction of protein binding sites.

  17. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  18. The Purpose-Like Nature of Life

    NASA Astrophysics Data System (ADS)

    Radu, Popa

    According to Jeffrey Tze-Fei Wong (2002): A living system is one capable of reproduction and evolution, with a fundamental logic that demands an incessant search for performance with respect to its building blocks and arrangement of these building blocks. The search will end only when perfection or near perfection is reached. Without this built-in search, living systems could not have achieved the level of complexity and excellence to deserve the designation of life." The reader must understand that a distinction exists between how the common language defines purpose and what the theory of early life means by it. In Dexter's dictionary the word purpose' is anthropocentrically associated to performing an action with a conscious (deliberate) aim, intention and/or design. Yet life displays elaborate and suitable features that resemble the results of a purpose-like action (Szathmáry 2002). In fact any material-energetic order has the potential for a tendency' (or purposefulness') directed in the opposite sense to entropy (Valenzuela 2002). Because the purposefulness' of their function is such a vigorous and typical property of living organisms (Korzeniewski 2001, Szathmáry 2002), the search for a theory of life is more productive if it focuses on the best explanation for life (Bedau 1998).

  19. Nanobiotechnology with S-layer proteins as building blocks.

    PubMed

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva M; Pum, Dietmar; Horejs, Christine M; Tscheliessnig, Rupert; Ilk, Nicola

    2011-01-01

    One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The Development of Spatial Skills through Interventions Involving Block Building Activities

    ERIC Educational Resources Information Center

    Casey, Beth M.; Andrews, Nicole; Schindler, Holly; Kersh, Joanne E.; Samper, Alexandra; Copley, Juanita

    2008-01-01

    This study investigated the use of block-building interventions to develop spatial-reasoning skills in kindergartners. Two intervention conditions and a control condition were included to determine, first, whether the block building activities themselves benefited children's spatial skills, and secondly, whether a story context further improved…

  1. Solar Power Satellite (SPS) solid-state antenna power combiner

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A low loss power-combining microstrip antenna suitable for solid state solar power satellite (SPS) application was developed. A unique approach for performing both the combining and radiating function in a single cavity-type circuit was verified, representing substantial refinements over previous demonstration models in terms of detailed geometry to obtain good matching and adequate bandwidth at the design frequency. The combiner circuit was designed, built, and tested and the overall results support the view that the solid state power-combining antenna approach is a viable candidate for a solid state SPS antenna building block.

  2. Matterwave interferometric velocimetry of cold Rb atoms

    NASA Astrophysics Data System (ADS)

    Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim

    2018-03-01

    We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 ?K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.

  3. Matterwave interferometric velocimetry of cold Rb atoms

    NASA Astrophysics Data System (ADS)

    Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim

    2018-02-01

    We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 $\\mu$K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.

  4. Water-soluble cationic conjugated polymers: response to electron-rich bioanalytes.

    PubMed

    Rochat, Sébastien; Swager, Timothy M

    2013-11-27

    We report the concise synthesis of a symmetrical monomer that provides a head-to-head pyridine building block for the preparation of cationic conjugated polymers. The obtained poly(pyridinium-phenylene) polymers display appealing properties such as high electron affinity, charge-transport upon n-doping, and optical response to electron-donating analytes. A simple assay for the optical detection of low micromolar amounts of a variety of analytes in aqueous solution was developed. In particular, caffeine could be measured at a 25 μM detection limit. The reported polymers are also suitable for layer-by-layer film formation.

  5. Organic-based molecular switches for molecular electronics.

    PubMed

    Fuentes, Noelia; Martín-Lasanta, Ana; Alvarez de Cienfuegos, Luis; Ribagorda, Maria; Parra, Andres; Cuerva, Juan M

    2011-10-05

    In a general sense, molecular electronics (ME) is the branch of nanotechnology which studies the application of molecular building blocks for the fabrication of electronic components. Among the different types of molecules, organic compounds have been revealed as promising candidates for ME, due to the easy access, great structural diversity and suitable electronic and mechanical properties. Thanks to these useful capabilities, organic molecules have been used to emulate electronic devices at the nanoscopic scale. In this feature article, we present the diverse strategies used to develop organic switches towards ME with special attention to non-volatile systems.

  6. On Convergence Acceleration Techniques for Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A discussion of convergence acceleration techniques as they relate to computational fluid dynamics problems on unstructured meshes is given. Rather than providing a detailed description of particular methods, the various different building blocks of current solution techniques are discussed and examples of solution strategies using one or several of these ideas are given. Issues relating to unstructured grid CFD problems are given additional consideration, including suitability of algorithms to current hardware trends, memory and cpu tradeoffs, treatment of non-linearities, and the development of efficient strategies for handling anisotropy-induced stiffness. The outlook for future potential improvements is also discussed.

  7. Optical Control of Internal Electric Fields in Band Gap-Graded InGaN Nanowires

    NASA Astrophysics Data System (ADS)

    Erhard, N.; Sarwar, A. T. M. Golam; Yang, F.; McComb, D. W.; Myers, R. C.; Holleitner, A. W.

    2015-01-01

    InGaN nanowires are suitable building blocks for many future optoelectronic devices. We show that a linear grading of the indium content along the nanowire axis from GaN to InN introduces an internal electric field evoking a photocurrent. Consistent with quantitative band structure simulations we observe a sign change in the measured photocurrent as a function of photon flux. This negative differential photocurrent opens the path to a new type of nanowire-based photodetector. We demonstrate that the photocurrent response of the nanowires is as fast as 1.5 ps.

  8. Block copolymer systems: from single chain to self-assembled nanostructures.

    PubMed

    Giacomelli, Cristiano; Schmidt, Vanessa; Aissou, Karim; Borsali, Redouane

    2010-10-19

    Recent advances in the field of macromolecular engineering applied to the fabrication of nanostructured materials using block copolymer chains as elementary building blocks are described in this feature article. By highlighting some of our work in the area and accounting for the contribution of other groups, we discuss the relationship between the physical-chemical properties of copolymer chains and the characteristics of nano-objects originating from their self-assembly in solution and in bulk, with emphasis on convenient strategies that allow for the control of composition, functionality, and topology at different levels of sophistication. In the case of micellar nanoparticles in solution, in particular, we present approaches leading to morphology selection via macromolecular architectural design, the functionalization of external solvent-philic shells with biomolecules (polysaccharides and proteins), and the maximization of micelle loading capacity by the suitable choice of solvent-phobic polymer segments. The fabrication of nanomaterials mediated by thin block copolymer films is also discussed. In this case, we emphasize the development of novel polymer chain manipulation strategies that ultimately allow for the preparation of precisely positioned nanodomains with a reduced number of defects via block-selective chemical reactivity. The challenges facing the soft matter community, the urgent demand to convert huge public and private investments into consumer products, and future possible directions in the field are also considered herein.

  9. A Lower-Cost High-Resolution LYSO Detector Development for Positron Emission Mammography (PEM)

    PubMed Central

    Ramirez, Rocio A.; Zhang, Yuxuan; Liu, Shitao; Li, Hongdi; Baghaei, Hossain; An, Shaohui; Wang, Chao; Jan, Meei-Ling; Wong, Wai-Hoi

    2010-01-01

    In photomultiplier-quadrant-sharing (PQS) geometry for positron emission tomography applications, each PMT is shared by four blocks and each detector block is optically coupled to four round PMTs. Although this design reduces the cost of high-resolution PET systems, when the camera consists of detector panels that are made up of square blocks, half of the PMT’s sensitive window remains unused at the detector panel edge. Our goal was to develop a LYSO detector panel which minimizes the unused portion of the PMTs for a low-cost, high-resolution, and high-sensitivity positron emission mammography (PEM) camera. We modified the PQS design by using elongated blocks at panel edges and square blocks in the inner area. For elongated blocks, symmetric and asymmetrical reflector patterns were developed and PQS and PMT-half-sharing (PHS) arrangements were implemented in order to obtain a suitable decoding. The packing fraction was 96.3% for asymmetric block and 95.5% for symmetric block. Both of the blocks have excellent decoding capability with all crystals clearly identified, 156 for asymmetric and 144 for symmetric and peak-to-valley ratio of 3.0 and 2.3 respectively. The average energy resolution was 14.2% for the asymmetric block and 13.1% for the symmetric block. Using a modified PQS geometry and asymmetric block design, we reduced the unused PMT region at detector panel edges, thereby increased the field-of-view and the overall detection sensitivity and minimized the undetected breast region near the chest wall. This detector design and using regular round PMT allowed building a lower-cost, high-resolution and high-sensitivity PEM camera. PMID:20485510

  10. Incorporating GIS building data and census housing statistics for sub-block-level population estimation

    USGS Publications Warehouse

    Wu, S.-S.; Wang, L.; Qiu, X.

    2008-01-01

    This article presents a deterministic model for sub-block-level population estimation based on the total building volumes derived from geographic information system (GIS) building data and three census block-level housing statistics. To assess the model, we generated artificial blocks by aggregating census block areas and calculating the respective housing statistics. We then applied the model to estimate populations for sub-artificial-block areas and assessed the estimates with census populations of the areas. Our analyses indicate that the average percent error of population estimation for sub-artificial-block areas is comparable to those for sub-census-block areas of the same size relative to associated blocks. The smaller the sub-block-level areas, the higher the population estimation errors. For example, the average percent error for residential areas is approximately 0.11 percent for 100 percent block areas and 35 percent for 5 percent block areas.

  11. Integrated and holistic suitability assessment of recycling options for masonry rubble

    NASA Astrophysics Data System (ADS)

    Herbst, T.; Rübner, K.; Meng, B.

    2012-04-01

    Our industrial society depends on continuous mining and consumption of raw materials and energy. Besides, the building sector causes one of the largest material streams in Germany. On the one hand, the building sector is connected with a high need in material and energetic resources as well as financial expenditures. On the other hand, nearly 50 % of the volume of waste arises from the building industry. During the last years, the limitation of natural resources, increasing negative environmental consequences as well as rising prices and shortages of dump space have led to a change in thinking in the building and waste industry to a closed substance cycle waste management. In consideration of the production figures of the main kinds of masonry units (clay bricks, sand-lime bricks, autoclaved aerated concrete brick, concrete blocks), a not unimportant quantity of masonry rubble (including gypsum plaster boards, renders, mortars and mineral insulating materials) of more than 20 million tons per year is generated in the medium term. With regard to a sustainable closed substance cycle waste management, these rest masses have to be recycled if possible. Processed aggregates made from masonry rubble can be recycled in the production of new masonry units under certain conditions. Even carefully deconstructed masonry units can once more re-used as masonry units, particularly in the area of the preservation of monuments and historical buildings. In addition, masonry rubble in different processing qualities is applied in earth and road construction, horticulture and scenery construction as well as concrete production. The choice of the most suitable recycling option causes technical, economical and ecological questions. At present, a methodology for a comprehensive suitability assessment with a passable scope of work does not exist. Basic structured and structuring information on the recycling of masonry rubble is absent up to now. This as well as the economic and technical constraints lead to a subordinated utilization on a rather low application level (downcycling). However, masonry rubble should also be recycled on a higher level (upcycling) in the future. For this purpose, an integrated and holistic but also practically oriented methodology for the suitability assessment of different recycling applications for masonry rubble is developed for a PhD currently. The suitability assessment includes the simultaneous evaluation of technical, economical and ecological aspects. Therefore, all recycling phases (demolition, processing, re-use) and the main kinds of masonry units (sorted or mixed) with their specific properties have to be considered.

  12. Building Blocks: Enmeshing Technology and Creativity with Artistic Pedagogical Technologies

    ERIC Educational Resources Information Center

    Janzen, Katherine J.; Perry, Beth; Edwards, Margaret

    2017-01-01

    Using the analogy of children's building blocks, the reader is guided through the results of a research study that explored the use of three Artistic Pedagogical Technologies (APTs). "Building blocks" was the major theme that emerged from the data. Sub-themes included developing community, enhancing creativity, and risk taking. The…

  13. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. Electronic supplementary information (ESI) available: SEM, and TEM images. See DOI: 10.1039/c2nr30743j

  14. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werpy, Todd A.; Holladay, John E.; White, James F.

    2004-11-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, themore » report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.« less

  15. Treatment of toxic metal aqueous solutions: encapsulation in a phosphate-calcium aluminate matrix.

    PubMed

    Fernández, J M; Navarro-Blasco, I; Duran, A; Sirera, R; Alvarez, J I

    2014-07-01

    Polyphosphate-modified calcium aluminate cement matrices were prepared by using aqueous solutions polluted with toxic metals as mixing water to obtain waste-containing solid blocks with improved management and disposal. Synthetically contaminated waters containing either Pb or Cu or Zn were incorporated into phosphoaluminate cement mortars and the effects of the metal's presence on setting time and mechanical performance were assessed. Sorption and leaching tests were also executed and both retention and release patterns were investigated. For all three metals, high uptake capacities as well as percentages of retention larger than 99.9% were measured. Both Pb and Cu were seen to be largely compatible with this cementitious matrix, rendering the obtained blocks suitable for landfilling or for building purposes. However, Zn spoilt the compressive strength values because of its reaction with hydrogen phosphate anions, hindering the development of the binding matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Intercultural Communication Activities in the Classroom: Turning Stumbling Blocks into Building Blocks.

    ERIC Educational Resources Information Center

    Dillon, Randy K.

    This paper explores behavior patterns that inhibit effective communication in everyday, educational, and business cross-cultural settings. Opportunities to change these inhibiting patterns, metaphorically referred to as "stumbling blocks," into building blocks or tools for successful intercultural understandings are discussed in the…

  17. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    ERIC Educational Resources Information Center

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  18. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinenghi, E., E-mail: edoardo.martinenghi@polimi.it; Di Sieno, L.; Contini, D.

    2016-07-15

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm{sup 2} together with themore » suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).« less

  19. Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology.

    PubMed

    Steinmetz, N F; Lin, T; Lomonossoff, G P; Johnson, J E

    2009-01-01

    A quintessential tenet of nanotechnology is the self-assembly of nanometer-sized components into devices. Biological macromolecular systems such as viral particles were found to be suitable building blocks for nanotechnology for several reasons: viral capsids are extremely robust and can be produced in large quantities with ease, the particles self-assemble into monodisperse particles with a high degree of symmetry and polyvalency, they have the propensity to form arrays, and they offer programmability through genetic and chemical engineering. Here, we review the recent advances in engineering the icosahedral plant virus Cowpea mosaic virus (CPMV) for applications in nano-medicine and -technology. In the first part, we will discuss how the combined knowledge of the structure of CPMV at atomic resolution and the use of chimeric virus technology led to the generation of CPMV particles with short antigenic peptides for potential use as vaccine candidates. The second part focuses on the chemical addressability of CPMV. Strategies to chemically attach functional molecules at designed positions on the exterior surface of the viral particle are described. Biochemical conjugation methods led to the fabrication of electronically conducting CPMV particles and networks. In addition, functional proteins for targeted delivery to mammalian cells were successfully attached to CPMV. In the third part, we focus on the utilization of CPMV as a building block for the generation of 2D and 3D arrays. Overall, the potential applications of viral nanobuilding blocks are manifold and range from nanoelectronics to biomedical applications.

  20. The Building Blocks of Life Move from Ground to Tree to Animal and Back to Ground

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.

    2015-12-01

    I generally use combinations of big words to describe my science, such as biogeochemistry, ecosystem ecology, nutrient cycling, stoichiometry, tropical deforestation, land-use change, agricultural intensification, eutrophication, greenhouse gas emissions, and sustainable development. I didn't expect to use any of these words, but I was surprised that I couldn't use some others that seem simple enough to me, such as farm, plant, soil, and forest. I landed on "building blocks" as my metaphor for the forms of carbon, nitrogen, phosphorus, and other elements that I study as they cycle through and among ecosystems. I study what makes trees and other kinds of life grow. We all know that they need the sun and that they take up water from the ground, but what else do trees need from the ground? What do animals that eat leaves and wood get from the trees? Just as we need building blocks to grow our bodies, trees and animals also need building blocks for growing their bodies. Trees get part of their building blocks from the ground and animals get theirs from what they eat. When animals poop and when leaves fall, some of their building blocks return to the ground. When they die, their building blocks also go back to the ground. I also study what happens to the ground, the water, and the air when we cut down trees, kill or shoo away the animals, and make fields to grow our food. Can we grow enough food and still keep the ground, water, and air clean? I think the answer is yes, but it will take better understanding of how all of those building blocks fit together and move around, from ground to tree to animal and back to ground.

  1. Building Curriculum during Block Play

    ERIC Educational Resources Information Center

    Andrews, Nicole

    2015-01-01

    Blocks are not just for play! In this article, Nicole Andrews describes observing the interactions of three young boys enthusiastically engaged in the kindergarten block center of their classroom, using blocks in a building project that displayed their ability to use critical thinking skills, physics exploration, and the development of language…

  2. The 10 Building Blocks of High-Performing Primary Care

    PubMed Central

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements—engaged leadership, data-driven improvement, empanelment, and team-based care—that assist the implementation of the other 6 building blocks—patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement. PMID:24615313

  3. An Oral DNA Vaccine Encoding Endoglin Eradicates Breast Tumors by Blocking Their Blood Supply

    DTIC Science & Technology

    2006-05-01

    W81XWH-04-1-0489 TITLE: An Oral DNA Vaccine Encoding Endoglin Eradicates Breast Tumors by Blocking Their Blood Supply PRINCIPAL...Encoding Endoglin Eradicates Breast Tumors by Blocking Their Blood Supply 5b. GRANT NUMBER W81XWH-04-1-0489 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...blocking renewal of blood vessel growth in the tumor bed, have been proposed as suitable antitumor strategies. Endoglin (CD105) is a suitable

  4. Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings

    NASA Astrophysics Data System (ADS)

    Venkrbec, Václav; Nováková, Iveta; Henková, Svatava

    2017-10-01

    Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.

  5. INFERENCE BUILDING BLOCKS

    DTIC Science & Technology

    2018-02-15

    address the problem that probabilistic inference algorithms are diÿcult and tedious to implement, by expressing them in terms of a small number of...building blocks, which are automatic transformations on probabilistic programs. On one hand, our curation of these building blocks reflects the way human...reasoning with low-level computational optimization, so the speed and accuracy of the generated solvers are competitive with state-of-the-art systems. 15

  6. 1. John C. Garner, Jr., Photographer 1967 PRINCIPAL (NORTH) SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. John C. Garner, Jr., Photographer 1967 PRINCIPAL (NORTH) SIDE, FROM NORTHWEST. THE RIGHT END OF THE BLOCK IS THE E.S. WOOD BUILDING; THE BUILDING WITH A FIRE ESCAPE IS THE ROSENFIELD BUILDING; THE T.W. HOUSE BUILDING IS TO THE LEFT OF THE PRECEDING BUILDING; JOHN BERLOCHER BUILDING IS AT THE LEFT END OF THE BLOCK. - Strand Historic District, Wood-Rosenfield-House-Berlocher Buildings, 2213-2223 Strand, Galveston, Galveston County, TX

  7. On the numerical treatment of nonlinear source terms in reaction-convection equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    The objectives of this paper are to investigate how various numerical treatments of the nonlinear source term in a model reaction-convection equation can affect the stability of steady-state numerical solutions and to show under what conditions the conventional linearized analysis breaks down. The underlying goal is to provide part of the basic building blocks toward the ultimate goal of constructing suitable numerical schemes for hypersonic reacting flows, combustions and certain turbulence models in compressible Navier-Stokes computations. It can be shown that nonlinear analysis uncovers much of the nonlinear phenomena which linearized analysis is not capable of predicting in a model reaction-convection equation.

  8. Time-resolved fluorescence spectroscopy for chemical sensors

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Lippitsch, Max E.

    1996-07-01

    A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.

  9. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  10. A Library of Rad Hard Mixed-Voltage/Mixed-Signal Building Blocks for Integration of Avionics Systems for Deep Space

    NASA Technical Reports Server (NTRS)

    Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.

    2001-01-01

    To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.

  11. Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries.

    PubMed

    Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L

    2018-06-07

    Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.

  12. Top Value Added Chemicals from Biomass - Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2004-08-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.

  13. Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werpy, T.; Petersen, G.

    2004-08-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.

  14. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    PubMed

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  15. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    PubMed Central

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  16. Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling reaction

    PubMed Central

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-01-01

    The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233

  17. COMPRESSOR BUILDING, TRA626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COMPRESSOR BUILDING, TRA-626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING HOUSED COMPRESSORS FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENTS. MTR-626-IDO-2S, 3/1952. INL INDEX NO. 531-0626-00-396-110535, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Reuse of textile effluent treatment plant sludge in building materials.

    PubMed

    Balasubramanian, J; Sabumon, P C; Lazar, John U; Ilangovan, R

    2006-01-01

    This study examines the potential reuse of textile effluent treatment plant (ETP) sludge in building materials. The physico-chemical and engineering properties of a composite textile sludge sample from the southern part of India have been studied. The tests were conducted as per Bureau of Indian Standards (BIS) specification codes to evaluate the suitability of the sludge for structural and non-structural application by partial replacement of up to 30% of cement. The cement-sludge samples failed to meet the required strength for structural applications. The strength and other properties met the Bureau of Indian Standards for non-structural materials such as flooring tiles, solid and pavement blocks, and bricks. Results generally meet most ASTM standards for non-structural materials, except that the sludge-amended bricks do not meet the Grade NW brick standard. It is concluded that the substitution of textile ETP sludge for cement, up to a maximum of 30%, may be possible in the manufacturing of non-structural building materials. Detailed leachability and economic feasibility studies need to be carried out as the next step of research.

  19. Encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework.

    PubMed

    Zhang, Huabin; Lin, Ping; Chen, Erxia; Tan, Yanxi; Wen, Tian; Aldalbahi, Ali; Alshehri, Saad M; Yamauchi, Yusuke; Du, Shaowu; Zhang, Jian

    2015-03-23

    The first example of an inorganic-organic composite framework with an interpenetrated diamondoid inorganic building block, featuring unique {InNa}n helices and {In12 Na16 } nano-rings, has been constructed and structurally characterized. This framework also represents a unique example of encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 23. The Stroud Building beard the 'Temme Springs' advertisement. Westfacing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. The Stroud Building beard the 'Temme Springs' advertisement. West-facing windows of the entire block are protected from the afternoon sun by awnings. The north-facing windows of the second-story restaurant were later blocked by an adjacent two-story building. Circa 1914. Credit PPL. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  1. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  2. Building Blocks for Sustainable Communities: Assistance from Grantees

    EPA Pesticide Factsheets

    EPA awarded Building Blocks for Sustainable Communities grants to four nonprofit organizations with extensive expertise in community sustainability. These organizations deliver technical assistance to communities.

  3. Block Play and Mathematics Learning in Preschool: The Effects of Building Complexity, Peer and Teacher Interactions in the Block Area, and Replica Play Materials

    ERIC Educational Resources Information Center

    Trawick-Smith, Jeffrey; Swaminathan, Sudha; Baton, Brooke; Danieluk, Courtney; Marsh, Samantha; Szarwacki, Monika

    2017-01-01

    Block play has been included in early childhood classrooms for over a century, yet few studies have examined its effects on learning. Several previous investigations indicate that the complexity of block building is associated with math ability, but these studies were often conducted in adult-guided, laboratory settings. In the present…

  4. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities. PMID:18341334

  5. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    PubMed

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  6. Big Questions: The Ultimate Building Blocks of Matter

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.

  7. Building Blocks for Personal Brands

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    In this article, the author discusses the four essential building blocks for personal brands: (1) name; (2) message; (3) channels; and (4) bridges. However, outstanding building materials can only take a person so far. The author emphasizes that vision, determination, faith, a sense of humor, and humility are also required.

  8. Shaping Crystal-Crystal Phase Transitions

    NASA Astrophysics Data System (ADS)

    Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon

    Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.

  9. Automate Your Physical Plant Using the Building Block Approach.

    ERIC Educational Resources Information Center

    Michaelson, Matt

    1998-01-01

    Illustrates how Mount Saint Vincent University (Halifax), by upgrading the control and monitoring of one building or section of the school at a time, could produce savings in energy and operating costs and improve the environment. Explains a gradual, "building block" approach to facility automation that provides flexibility without a…

  10. Building Numbers from Primes

    ERIC Educational Resources Information Center

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  11. 2. OBLIQUE VIEW LOOKING NORTHWEST FROM 21ST STREET VIADUCT TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OBLIQUE VIEW LOOKING NORTHWEST FROM 21ST STREET VIADUCT TOWARDS 2000 BLOCK OF MORRIS AVENUE WITH HEAVIEST CORNER ON EARTH BUILDINGS (TOP LEFT) AND COMER BUILDING (TOP RIGHT) - Morris Avenue Warehouse District, 2000-2400 blocks of Morris Avenue & 2100-2500 blocks of First Avenue, North, Birmingham, Jefferson County, AL

  12. Automated electrochemical assembly of the protected potential TMG-chitotriomycin precursor based on rational optimization of the carbohydrate building block.

    PubMed

    Nokami, Toshiki; Isoda, Yuta; Sasaki, Norihiko; Takaiso, Aki; Hayase, Shuichi; Itoh, Toshiyuki; Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-ichi

    2015-03-20

    The anomeric arylthio group and the hydroxyl-protecting groups of thioglycosides were optimized to construct carbohydrate building blocks for automated electrochemical solution-phase synthesis of oligoglucosamines having 1,4-β-glycosidic linkages. The optimization study included density functional theory calculations, measurements of the oxidation potentials, and the trial synthesis of the chitotriose trisaccharide. The automated synthesis of the protected potential N,N,N-trimethyl-d-glucosaminylchitotriomycin precursor was accomplished by using the optimized building block.

  13. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    PubMed Central

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-ichi

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block. PMID:28684973

  14. Strategies for Controlled Placement of Nanoscale Building Blocks

    PubMed Central

    2007-01-01

    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185

  15. Trinary Encoder, Decoder, Multiplexer and Demultiplexer Using Savart Plate and Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Ghosh, Amal K.; Singha Roy, Souradip; Mandal, Sudipta; Basuray, Amitabha

    Optoelectronic processors have already been developed with the strong potentiality of optics in information and data processing. Encoder, Decoder, Multiplexers and Demultiplexers are the most important components in modern system designs and in communications. We have implemented the same using trinary logic gates with signed magnitude defined as Modified Trinary Number (MTN). The Spatial Light Modulator (SLM) based optoelectronic circuit is suitable for high speed data processing and communications using photon as carrier. We also presented here a possible method of implementing the same using light with photon as carrier of information. The importance of the method is that all the basic gates needed may be fabricated based on basic building block.

  16. Catenanes: Fifty Years of Molecular Links

    PubMed Central

    Gil-Ramírez, Guzmán; Leigh, David A; Stephens, Alexander J

    2015-01-01

    Half a century after Schill and Lüttringhaus carried out the first directed synthesis of a [2]catenane, a plethora of strategies now exist for the construction of molecular Hopf links (singly interlocked rings), the simplest type of catenane. The precision and effectiveness with which suitable templates and/or noncovalent interactions can arrange building blocks has also enabled the synthesis of intricate and often beautiful higher order interlocked systems, including Solomon links, Borromean rings, and a Star of David catenane. This Review outlines the diverse strategies that exist for synthesizing catenanes in the 21st century and examines their emerging applications and the challenges that still exist for the synthesis of more complex topologies. PMID:25951013

  17. Inquiring Minds

    Science.gov Websites

    and leptons seem to be the fundamental building blocks - but perhaps there is something even smaller properties of the fundamental building blocks of our universe, there are untold mysteries still to solve

  18. Measuring health systems strength and its impact: experiences from the African Health Initiative.

    PubMed

    Sherr, Kenneth; Fernandes, Quinhas; Kanté, Almamy M; Bawah, Ayaga; Condo, Jeanine; Mutale, Wilbroad

    2017-12-21

    Health systems are essential platforms for accessible, quality health services, and population health improvements. Global health initiatives have dramatically increased health resources; however, funding to strengthen health systems has not increased commensurately, partially due to concerns about health system complexity and evidence gaps demonstrating health outcome improvements. In 2009, the African Health Initiative of the Doris Duke Charitable Foundation began supporting Population Health Implementation and Training Partnership projects in five sub-Saharan African countries (Ghana, Mozambique, Rwanda, Tanzania, and Zambia) to catalyze significant advances in strengthening health systems. This manuscript reflects on the experience of establishing an evaluation framework to measure health systems strength, and associate measures with health outcomes, as part of this Initiative. Using the World Health Organization's health systems building block framework, the Partnerships present novel approaches to measure health systems building blocks and summarize data across and within building blocks to facilitate analytic procedures. Three Partnerships developed summary measures spanning the building blocks using principal component analysis (Ghana and Tanzania) or the balanced scorecard (Zambia). Other Partnerships developed summary measures to simplify multiple indicators within individual building blocks, including health information systems (Mozambique), and service delivery (Rwanda). At the end of the project intervention period, one to two key informants from each Partnership's leadership team were asked to list - in rank order - the importance of the six building blocks in relation to their intervention. Though there were differences across Partnerships, service delivery and information systems were reported to be the most common focus of interventions, followed by health workforce and leadership and governance. Medical products, vaccines and technologies, and health financing, were the building blocks reported to be of lower focus. The African Health Initiative experience furthers the science of evaluation for health systems strengthening, highlighting areas for further methodological development - including the development of valid, feasible measures sensitive to interventions in multiple contexts (particularly in leadership and governance) and describing interactions across building blocks; in developing summary statistics to facilitate testing intervention effects on health systems and associations with health status; and designing appropriate analytic models for complex, multi-level open health systems.

  19. Systems thinking in practice: the current status of the six WHO building blocks for health system strengthening in three BHOMA intervention districts of Zambia: a baseline qualitative study.

    PubMed

    Mutale, Wilbroad; Bond, Virginia; Mwanamwenge, Margaret Tembo; Mlewa, Susan; Balabanova, Dina; Spicer, Neil; Ayles, Helen

    2013-08-01

    The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia's MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity to hold health workers accountable for the drugs and services. The study has shown that building block specific weaknesses had cross cutting effect in other health system building blocks. These linkages emphasised the need to use system wide approaches in assessing the performance of health system strengthening interventions.

  20. Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    2016-01-01

    How much energy could be generated if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models--one for small buildings and one for medium and large buildings--and populate them with geographicmore » variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.« less

  1. Rooftop Solar Photovoltaic Technical Potential in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    2016-01-01

    How much energy could we generate if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models -- one for small buildings and one for medium and large buildings -- andmore » populate them with geographic variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.« less

  2. Progress towards broadband Raman quantum memory in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Hrushevskyi, Taras; Smith, Benjamin; Leblanc, Lindsay

    2017-04-01

    Optical quantum memories are building blocks for quantum information technologies. Efficient and long-lived storage in combination with high-speed (broadband) operation are key features required for practical applications. While the realization has been a great challenge, Raman memory in Bose-Einstein condensates (BECs) is a promising approach, due to negligible decoherence from diffusion and collisions that leads to seconds-scale memory times, high efficiency due to large atomic density, the possibility for atom-chip integration with micro photonics, and the suitability of the far off-resonant Raman approach with storage of broadband photons (over GHz) [5]. Here we report our progress towards Raman memory in a BEC. We describe our apparatus recently built for producing BEC with 87Rb atoms, and present the observation of nearly pure BEC with 5x105 atoms at 40 nK. After showing our initial characterizations, we discuss the suitability of our system for Raman-based light storage in our BEC.

  3. Rapid and annealing-free self-assembly of DNA building blocks for 3D hydrogel chaperoned by cationic comb-type copolymers.

    PubMed

    Zhang, Zheng; Wu, Yuyang; Yu, Feng; Niu, Chaoqun; Du, Zhi; Chen, Yong; Du, Jie

    2017-10-01

    The construction and self-assembly of DNA building blocks are the foundation of bottom-up development of three-dimensional DNA nanostructures or hydrogels. However, most self-assembly from DNA components is impeded by the mishybridized intermediates or the thermodynamic instability. To enable rapid production of complicated DNA objects with high yields no need for annealing process, herein different DNA building blocks (Y-shaped, L- and L'-shaped units) were assembled in presence of a cationic comb-type copolymer, poly (L-lysine)-graft-dextran (PLL-g-Dex), under physiological conditions. The results demonstrated that PLL-g-Dex not only significantly promoted the self-assembly of DNA blocks with high efficiency, but also stabilized the assembled multi-level structures especially for promoting the complicated 3D DNA hydrogel formation. This study develops a novel strategy for rapid and high-yield production of DNA hydrogel even derived from instable building blocks at relatively low DNA concentrations, which would endow DNA nanotechnology for more practical applications.

  4. An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition

    NASA Astrophysics Data System (ADS)

    Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni

    2010-08-01

    This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).

  5. 15. WEST SIDE OF 1900 BLOCK, PACIFIC AVE. FROM RIGHT; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. WEST SIDE OF 1900 BLOCK, PACIFIC AVE. FROM RIGHT; 1920-22 PACIFIC AVE., WIEGAL COMPANY CANDY FACTORY (1904); 1924-26 PACIFIC AVE., CAMPBELL BUILDING (DAVIS BUILDING) (1890); 1928-30 PACIFIC AVE., REESE-CRANDALL & REDMAN BUILDING, (1890); 1932-36 PACIFIC AVE., MC DONALD & SMITH BUILDING (1890); 1938-48 PACIFIC AVE., F.S. HARMON COMPANY WAREHOUSE (1908), DESIGNED BY CARL AUGUST DARMER. - Union Depot Area Study, Tacoma, Pierce County, WA

  6. Application of soil block without burning process and calcium silicate panels as building wall in mountainous area

    NASA Astrophysics Data System (ADS)

    Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary

    2017-11-01

    Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.

  7. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.

  8. How Crossover Speeds up Building Block Assembly in Genetic Algorithms.

    PubMed

    Sudholt, Dirk

    2017-01-01

    We reinvestigate a fundamental question: How effective is crossover in genetic algorithms in combining building blocks of good solutions? Although this has been discussed controversially for decades, we are still lacking a rigorous and intuitive answer. We provide such answers for royal road functions and OneMax, where every bit is a building block. For the latter, we show that using crossover makes every ([Formula: see text]+[Formula: see text]) genetic algorithm at least twice as fast as the fastest evolutionary algorithm using only standard bit mutation, up to small-order terms and for moderate [Formula: see text] and [Formula: see text]. Crossover is beneficial because it can capitalize on mutations that have both beneficial and disruptive effects on building blocks: crossover is able to repair the disruptive effects of mutation in later generations. Compared to mutation-based evolutionary algorithms, this makes multibit mutations more useful. Introducing crossover changes the optimal mutation rate on OneMax from [Formula: see text] to [Formula: see text]. This holds both for uniform crossover and k-point crossover. Experiments and statistical tests confirm that our findings apply to a broad class of building block functions.

  9. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    PubMed

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  10. Single molecule magnets from magnetic building blocks

    NASA Astrophysics Data System (ADS)

    Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.

    2013-03-01

    We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.

  11. Embeddable Reconfigurable Neuroprocessors

    NASA Technical Reports Server (NTRS)

    Daud, Taher; Duong, Tuan; Langenbacher, Harry; Tran, Mua; Thakoor, Anil

    1993-01-01

    Reconfigurable and cascadable building block neural network chips, fabricated using analog VLSI design tools, are interfaced to a PC. The building block chip designs, the cascadability and the hardware-in-the-loop supervised learning aspects of these chips are described.

  12. Tops as building blocks for G 2 manifolds

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.

    2017-10-01

    A large number of examples of compact G 2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.

  13. Origami-inspired building block and parametric design for mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo

    2016-08-01

    An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.

  14. Large space erectable structures - building block structures study

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Skoumal, D. E.; Straayer, J. W.

    1977-01-01

    A modular planar truss structure and a long slender boom concept identified as building block approaches to construction of large spacecraft configurations are described. The concepts are compatible in weight and volume goals with the Space Transportation System, use standard structural units, and represent high on-orbit productivity in terms of structural area or beam length. Results of structural trade studies involving static and dynamic analyses of a single module and rigid body deployment analyses to assess kinetics and kinematics of automatic deployment of the building block modules are presented.

  15. Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution

    DOE PAGES

    Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; ...

    2015-05-15

    The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less

  16. View of the southwest guard tower, cell blocks seven and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the southwest guard tower, cell blocks seven and eight, administration building west tower, and Fairmount Avenue, looking from the administration building facing west - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  17. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction.

    PubMed

    Woerly, Eric M; Roy, Jahnabi; Burke, Martin D

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  18. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction

    NASA Astrophysics Data System (ADS)

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  19. Expanding the biomass derived chemical space

    PubMed Central

    Brun, Nicolas; Hesemann, Peter

    2017-01-01

    Biorefinery aims at the conversion of biomass and renewable feedstocks into fuels and platform chemicals, in analogy to conventional oil refinery. In the past years, the scientific community has defined a number of primary building blocks that can be obtained by direct biomass decomposition. However, the large potential of this “renewable chemical space” to contribute to the generation of value added bio-active compounds and materials still remains unexplored. In general, biomass derived building blocks feature a diverse range of chemical functionalities. In order to be integrated into value-added compounds, they require additional functionalization and/or covalent modification thereby generating secondary building blocks. The latter can be thus regarded as functional components of bio-active molecules or materials and represent an expansion of the renewable chemical space. This perspective highlights the most recent developments and opportunities for the synthesis of secondary biomass derived building blocks and their application to the preparation of value added products. PMID:28959397

  20. High-Rise Buildings versus Outdoor Thermal Environment in Chongqing

    PubMed Central

    Lu, Jun; Chen, Jin-hua; Tang, Ying; Feng, Yuan; Wang, Jin-sha

    2007-01-01

    This paper gives a brief description of the over quick urbanization since Chongqing, one of the biggest cities in China, has been a municipality directly under the Central Government in 1997, excessive development and exceeding increase of high-rise buildings because of its special geographical position which finally leads to the worsening of the urban outdoor thermal environment. Then, this paper makes a bright balance to the field measurement and simulated results of the wind speed field, temperature field of one multifunctional high-rise building in Chongqing university located in the city center, and the contrasted results validate the correctness of CFD in the outdoor thermal environmental simulation, expose the disadvantages of high-rise buildings on the aspects of blocking the wind field, decreasing wind speed which results in accumulation of the air-conditioning heat revolving around and periscian region where sunshine can not rip into. Finally, in order to improve the urban outdoor thermal environment near the high-rise buildings especially for the angle of natural ventilation, this paper simulates the wind environment in different architectural compositions and architectural layouts by CFD, and the simulated results show that freestyle and tower buildings which can guarantee the wind speed and take the air-conditioning heat away are much suitable and reasonable for the special Chongqing geography. These conclusions can also be used as a reference in other mountain cities, especially for the one with a great number of populations. PMID:28903222

  1. A VLSI decomposition of the deBruijn graph

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Mceliece, R.; Pollara, F.

    1990-01-01

    A new Viterbi decoder for convolutional codes with constraint lengths up to 15, called the Big Viterbi Decoder, is under development for the Deep Space Network. It will be demonstrated by decoding data from the Galileo spacecraft, which has a rate 1/4, constraint-length 15 convolutional encoder on board. Here, the mathematical theory underlying the design of the very-large-scale-integrated (VLSI) chips that are being used to build this decoder is explained. The deBruijn graph B sub n describes the topology of a fully parallel, rate 1/v, constraint length n+2 Viterbi decoder, and it is shown that B sub n can be built by appropriately wiring together (i.e., connecting together with extra edges) many isomorphic copies of a fixed graph called a B sub n building block. The efficiency of such a building block is defined as the fraction of the edges in B sub n that are present in the copies of the building block. It is shown, among other things, that for any alpha less than 1, there exists a graph G which is a B sub n building block of efficiency greater than alpha for all sufficiently large n. These results are illustrated by describing a special hierarchical family of deBruijn building blocks, which has led to the design of the gate-array chips being used in the Big Viterbi Decoder.

  2. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  3. Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.

    PubMed

    Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin

    2014-01-21

    A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.

  4. Systems thinking in practice: the current status of the six WHO building blocks for health system strengthening in three BHOMA intervention districts of Zambia: a baseline qualitative study

    PubMed Central

    2013-01-01

    Background The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia’s MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. Methods A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. Results The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity to hold health workers accountable for the drugs and services. Conclusion The study has shown that building block specific weaknesses had cross cutting effect in other health system building blocks. These linkages emphasised the need to use system wide approaches in assessing the performance of health system strengthening interventions. PMID:23902601

  5. Dendronized Metal Nanoparticles-Self-Organizing Building Blocks for the Design of New Functional Materials

    DTIC Science & Technology

    2016-04-01

    characterization has just started.       The hybrids that we have synthesized are based on plasmonic gold and  silver   nanoparticles  (NPs) but  the concept  is...AFRL-AFOSR-UK-TR-2016-0010 Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials Bertrand...2015 4. TITLE AND SUBTITLE Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials 5a. CONTRACT

  6. A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks.

    PubMed

    Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He

    2014-01-13

    A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Three dimensional Origami-based metamaterial

    NASA Astrophysics Data System (ADS)

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan; High Performance Materials; Structures Labratory Team

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson's ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.

  8. Design techniques for low-voltage analog integrated circuits

    NASA Astrophysics Data System (ADS)

    Rakús, Matej; Stopjaková, Viera; Arbet, Daniel

    2017-08-01

    In this paper, a review and analysis of different design techniques for (ultra) low-voltage integrated circuits (IC) are performed. This analysis shows that the most suitable design methods for low-voltage analog IC design in a standard CMOS process include techniques using bulk-driven MOS transistors, dynamic threshold MOS transistors and MOS transistors operating in weak or moderate inversion regions. The main advantage of such techniques is that there is no need for any modification of standard CMOS structure or process. Basic circuit building blocks like differential amplifiers or current mirrors designed using these approaches are able to operate with the power supply voltage of 600 mV (or even lower), which is the key feature towards integrated systems for modern portable applications.

  9. Dynamic peptide libraries for the discovery of supramolecular nanomaterials

    NASA Astrophysics Data System (ADS)

    Pappas, Charalampos G.; Shafi, Ramim; Sasselli, Ivan R.; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V.

    2016-11-01

    Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.

  10. Dynamic peptide libraries for the discovery of supramolecular nanomaterials.

    PubMed

    Pappas, Charalampos G; Shafi, Ramim; Sasselli, Ivan R; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V

    2016-11-01

    Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.

  11. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1991-01-01

    We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.

  12. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  13. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  14. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  15. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  16. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  17. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  18. Hydration effects on the electronic properties of eumelanin building blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assis Oliveira, Leonardo Bruno; Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO; Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in themore » electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.« less

  19. Hydration effects on the electronic properties of eumelanin building blocks.

    PubMed

    Assis Oliveira, Leonardo Bruno; L Fonseca, Tertius; Costa Cabral, Benedito J; Coutinho, Kaline; Canuto, Sylvio

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  20. Hydration effects on the electronic properties of eumelanin building blocks

    NASA Astrophysics Data System (ADS)

    Assis Oliveira, Leonardo Bruno; L. Fonseca, Tertius; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio

    2016-08-01

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  1. Movement planning reflects skill level and age changes in toddlers

    PubMed Central

    Chen, Yu-ping; Keen, Rachel; Rosander, Kerstin; von Hofsten, Claes

    2010-01-01

    Kinematic measures of children’s reaching were found to reflect stable differences in skill level for planning for future actions. Thirty-five toddlers (18–21 months) were engaged in building block towers (precise task) and in placing blocks into an open container (imprecise task). Sixteen children were re-tested on the same tasks a year later. Longer deceleration as the hand approached the block for pickup was found in the tower task compared to the imprecise task, indicating planning for the second movement. More skillful toddlers who could build high towers had a longer deceleration phase when placing blocks on the tower than toddlers who built low towers. Kinematic differences between the groups remained a year later when all children could build high towers. PMID:21077868

  2. Real World of Industrial Chemistry: Ethylene: The Organic Chemical Industry's Most Important Building Block.

    ERIC Educational Resources Information Center

    Fernelius, W. Conrad, Ed.; And Others

    1979-01-01

    The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)

  3. Two integrator loop quadrature oscillators: A review.

    PubMed

    Soliman, Ahmed M

    2013-01-01

    A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper.

  4. Building Blocks of Psychology: on Remaking the Unkept Promises of Early Schools.

    PubMed

    Gozli, Davood G; Deng, Wei Sophia

    2018-03-01

    The appeal and popularity of "building blocks", i.e., simple and dissociable elements of behavior and experience, persists in psychological research. We begin our assessment of this research strategy with an historical review of structuralism (as espoused by E. B. Titchener) and behaviorism (espoused by J. B. Watson and B. F. Skinner), two movements that held the assumption in their attempts to provide a systematic and unified discipline. We point out the ways in which the elementism of the two schools selected, framed, and excluded topics of study. After the historical review, we turn to contemporary literature and highlight the persistence of research into building blocks and the associated framing and exclusions in psychological research. The assumption that complex categories of human psychology can be understood in terms of their elementary components and simplest forms seems indefensible. In specific cases, therefore, reliance on the assumption requires justification. Finally, we review alternative strategies that bypass the commitment to building blocks.

  5. Toward Generalization of Iterative Small Molecule Synthesis

    PubMed Central

    Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.

    2018-01-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152

  6. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Serna, Naroa; Sánchez-García, Laura; Roldán, Mónica; Sánchez-Chardi, Alejandro; Mangues, Ramón; Villaverde, Antonio; Vázquez, Esther

    2017-12-01

    The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.

  7. Building Quality Report Cards for Geriatric Care in The Netherlands: Using Concept Mapping to Identify the Appropriate "Building Blocks" from the Consumer's Perspective

    ERIC Educational Resources Information Center

    Groenewoud, A. Stef; van Exel, N. Job A.; Berg, Marc; Huijsman, Robbert

    2008-01-01

    Purpose: This article reports on a study to identify "building blocks" for quality report cards for geriatric care. Its aim is to present (a) the results of the study and (b) the innovative step-by-step approach that was developed to arrive at these results. Design and Methods: We used Concept Mapping/Structured Conceptualization to…

  8. Building blocks for subleading helicity operators

    DOE PAGES

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-24

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks canmore » be assembled.« less

  9. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties

    NASA Astrophysics Data System (ADS)

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan

    2017-04-01

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.

  10. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties

    PubMed Central

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan

    2017-01-01

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments. PMID:28387345

  11. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks.

    PubMed

    Schindler, Corinna S; Carreira, Erick M

    2009-11-01

    This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).

  12. Recent advances in synthesis of bacterial rare sugar building blocks and their applications.

    PubMed

    Emmadi, Madhu; Kulkarni, Suvarn S

    2014-07-01

    Covering: 1964 to 2013. Bacteria have unusual glycans on their surfaces which distinguish them from the host cells. These unique structures offer avenues for targeting bacteria with specific therapeutics and vaccine. However, these rare sugars are not accessible in acceptable purity and amounts by isolation from natural sources. Thus, procurement of orthogonally protected rare sugar building blocks through efficient chemical synthesis is regarded as a crucial step towards the development of glycoconjugate vaccines. This Highlight focuses on recent advances in the synthesis of the bacterial deoxy amino hexopyranoside building blocks and their application in constructing various biologically important bacterial O-glycans.

  13. Incorporation of bitumen and calcium silicate in cement and lime stabilized soil blocks

    NASA Astrophysics Data System (ADS)

    Kwan, W. H.; Cheah, C. B.; Ramli, M.; Al-Sakkaf, Y. K.

    2017-04-01

    Providing affordable housing is the most critical problem in many of the developing countries. Using earth materials in building construction is one of the feasible methods to address this issue and it can be a way towards sustainable construction as well. However, the published information on the stabilized soil blocks is limited. Therefore, the present study is conducted to examine the characterization of the soils and engineering properties of the stabilized soil blocks. Four types of stabilizer were used in the study, namely; cement, slaked lime, bitumen emulsion and calcium silicate. Cement and slaked lime were added at different percentages in the range of 5% to 15%, with interval of 2.5%. The percentage was determined based on weight of soil. Meanwhile, bitumen emulsion and calcium silicate were incorporated at various percentages together with 10% of cement. Dosage of bitumen emulsion is in the range of 2% to 10% at interval of 2% while calcium silicate was incorporated at 0.50%, 0.75%, 1.00%, 1.25%, 1.50% and 2.00%. Results show that cement is the most viable stabilizer for the soil block among all stabilizers in this study. The bulk density, optimum moisture content and compressive strengths were increased with the increasing cement content. The most suitable cement content was 10% added at moisture content of 12%. Lime, bitumen and calcium contents were recommended at 5.0%, 6.0% and 1.25%, respectively.

  14. Ae2Sb2X4F2 (Ae = Sr, Ba): new members of the homologous series Ae2M(1+n)X(3+n)F2 designed from rock salt and fluorite 2D building blocks.

    PubMed

    Kabbour, Houria; Cario, Laurent

    2006-03-20

    We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.

  15. Total synthesis of a CD-ring: side-chain building block for preparing 17-epi-calcitriol derivatives from the Hajos-Parrish dione.

    PubMed

    Michalak, Karol; Wicha, Jerzy

    2011-08-19

    An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.

  16. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    PubMed

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Amyloid-like self-assembly of peptide sequences from the adenovirus fiber shaft: insights from molecular dynamics simulations.

    PubMed

    Tamamis, Phanourios; Kasotakis, Emmanouil; Mitraki, Anna; Archontis, Georgios

    2009-11-26

    The self-assembly of peptides and proteins into nanostructures is related to the fundamental problems of protein folding and misfolding and has potential applications in medicine, materials science and nanotechnology. Natural peptides, corresponding to sequence repeats from self-assembling proteins, may constitute elementary building blocks of such nanostructures. In this work, we study by implicit-solvent replica-exchange simulations the self-assembly of two amyloidogenic sequences derived from the naturally occurring fiber shaft of the adenovirus, the octapeptide NSGAITIG (asparagine-serine-glycine-alanine-isoleucine-threonine-isoleucine-glycine) and its hexapeptide counterpart, GAITIG. In accordance with their amyloidogenic capacity, both peptides form readily intermolecular beta-sheets, stabilized by extensive main- and side-chain contacts involving the C-terminal moieties (segments 3-8 and 2-6, respectively). The structural and energetic properties of these sheets are analyzed extensively. The N-terminal residues Asn1 and Ser2 of the octapeptide remain disordered in the sheets, suggesting that these residues are exposed at the exterior of the fibrils and accessible. On the basis of insight provided by the simulations, cysteine residues were recently substituted at positions 1 and 2 of NSGAITIG; the newly designed peptides maintain their amyloidogenic properties and can bind to silver, gold and platinum nanoparticles [Kasotakis et al. Biopolymers 2009, 92, 164-172]. Computational investigation can identify suitable positions for rational modification of peptide building blocks, aiming at the fabrication of novel biomaterials.

  18. Tight-binding chains with off-diagonal disorder: Bands of extended electronic states induced by minimal quasi-one-dimensionality

    NASA Astrophysics Data System (ADS)

    Nandy, Atanu; Pal, Biplab; Chakrabarti, Arunava

    2016-08-01

    It is shown that an entire class of off-diagonally disordered linear lattices composed of two basic building blocks and described within a tight-binding model can be tailored to generate absolutely continuous energy bands. It can be achieved if linear atomic clusters of an appropriate size are side-coupled to a suitable subset of sites in the backbone, and if the nearest-neighbor hopping integrals, in the backbone and in the side-coupled cluster, bear a certain ratio. We work out the precise relationship between the number of atoms in one of the building blocks in the backbone and that in the side attachment. In addition, we also evaluate the definite correlation between the numerical values of the hopping integrals at different subsections of the chain, that can convert an otherwise point spectrum (or a singular continuous one for deterministically disordered lattices) with exponentially (or power law) localized eigenfunctions to an absolutely continuous spectrum comprising one or more bands (subbands) populated by extended, totally transparent eigenstates. The results, which are analytically exact, put forward a non-trivial variation of the Anderson localization (Anderson P. W., Phys. Rev., 109 (1958) 1492), pointing towards its unusual sensitivity to the numerical values of the system parameters and, go well beyond the other related models such as the Random Dimer Model (RDM) (Dunlap D. H. et al., Phys. Rev. Lett., 65 (1990) 88).

  19. Scenario-Led Habitat Modelling of Land Use Change Impacts on Key Species

    PubMed Central

    Geary, Matthew; Fielding, Alan H.; McGowan, Philip J. K.; Marsden, Stuart J.

    2015-01-01

    Accurate predictions of the impacts of future land use change on species of conservation concern can help to inform policy-makers and improve conservation measures. If predictions are spatially explicit, predicted consequences of likely land use changes could be accessible to land managers at a scale relevant to their working landscape. We introduce a method, based on open source software, which integrates habitat suitability modelling with scenario-building, and illustrate its use by investigating the effects of alternative land use change scenarios on landscape suitability for black grouse Tetrao tetrix. Expert opinion was used to construct five near-future (twenty years) scenarios for the 800 km2 study site in upland Scotland. For each scenario, the cover of different land use types was altered by 5–30% from 20 random starting locations and changes in habitat suitability assessed by projecting a MaxEnt suitability model onto each simulated landscape. A scenario converting grazed land to moorland and open forestry was the most beneficial for black grouse, and ‘increased grazing’ (the opposite conversion) the most detrimental. Positioning of new landscape blocks was shown to be important in some situations. Increasing the area of open-canopy forestry caused a proportional decrease in suitability, but suitability gains for the ‘reduced grazing’ scenario were nonlinear. ‘Scenario-led’ landscape simulation models can be applied in assessments of the impacts of land use change both on individual species and also on diversity and community measures, or ecosystem services. A next step would be to include landscape configuration more explicitly in the simulation models, both to make them more realistic, and to examine the effects of habitat placement more thoroughly. In this example, the recommended policy would be incentives on grazing reduction to benefit black grouse. PMID:26569604

  20. Alq3 nanorods: promising building blocks for optical devices.

    PubMed

    Chen, Wei; Peng, Qing; Li, Yadong

    2008-07-17

    Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Forecasting Maintenance Shortcomings of a Planned Equipment Density Listing in Support of Expeditionary Missions

    DTIC Science & Technology

    2017-06-01

    importantly, it examines the methodology used to build the class IX block embarked on ship prior to deployment. The class IX block is defined as a repository...compared to historical data to evaluate model and simulation outputs. This thesis provides recommendations on improving the methodology implemented in...improving the level of organic support available to deployed units. More importantly, it examines the methodology used to build the class IX block

  2. π-Extended Isoindigo-Based Derivative: A Promising Electron-Deficient Building Block for Polymer Semiconductors.

    PubMed

    Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi

    2017-11-22

    The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.

  3. Determining Possible Building Blocks of the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; OBrien, K. M.

    2004-01-01

    One of the fundamental questions concerning planetary formation is exactly what material did the planets form from? All the planets in our solar system are believed to have formed out of material from the solar nebula. Chondritic meteorites appear to sample this primitive material. Chondritic meteorites are generally classified into 13 major groups, which have a variety of compositions. Detailed studies of possible building blocks of the terrestrial planets require samples that can be used to estimate the bulk chemistry of these bodies. This study will focus on trying to determine possible building blocks of Earth and Mars since samples of these two planets can be studied in detail in the laboratory.

  4. LipidII: Just Another Brick in the Wall?

    PubMed Central

    Scheffers, Dirk-Jan; Tol, Menno B.

    2015-01-01

    Nearly all bacteria contain a peptidoglycan cell wall. The peptidoglycan precursor molecule is LipidII, containing the basic peptidoglycan building block attached to a lipid. Although the suitability of LipidII as an antibacterial target has long been recognized, progress on elucidating the role(s) of LipidII in bacterial cell biology has been slow. The focus of this review is on exciting new developments, both with respect to antibacterials targeting LipidII as well as the emerging role of LipidII in organizing the membrane and cell wall synthesis. It appears that on both sides of the membrane, LipidII plays crucial roles in organizing cytoskeletal proteins and peptidoglycan synthesis machineries. Finally, the recent discovery of no less than three different categories of LipidII flippases will be discussed. PMID:26679002

  5. Computational Intelligence Techniques for Tactile Sensing Systems

    PubMed Central

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-01-01

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646

  6. Computational intelligence techniques for tactile sensing systems.

    PubMed

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-06-19

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  7. Spatial organization of multi-enzyme biocatalytic cascades.

    PubMed

    Quin, M B; Wallin, K K; Zhang, G; Schmidt-Dannert, C

    2017-05-23

    Industrial biocatalysis is an economically attractive option for the production of valuable chemicals. Our repertoire of cheap building blocks and commodity target molecules is vastly enhanced by multi-enzyme biocatalytic cascades. In order to achieve suitable titers in complex novel biocatalytic schemes, spatial organization may become necessary to overcome barriers caused by slow or inhibited enzymes as well as instability of biocatalysts. A number of spatial organization strategies are currently available, which could be integrated in the design of complex cascades. These include fusion proteins, immobilization on solid supports, multi-dimensional scaffolding, and encapsulation within vessels. This review article highlights recent advances in cascade biocatalysis, discusses the role of spatial organization in reaction kinetics, and presents some of the currently employed strategies for spatial organization of multi-enzyme cascades.

  8. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    NASA Astrophysics Data System (ADS)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  9. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.

    1995-12-31

    The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalystsmore » for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.« less

  10. LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants

    PubMed Central

    Lind, Kara R.; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil. PMID:24963716

  11. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    PubMed

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  12. Building Blocks and Cognitive Building Blocks: Playing to Know the World Mathematically

    ERIC Educational Resources Information Center

    Sarama, Julie; Clements, Douglas H.

    2009-01-01

    The authors explore how children's play can support the development of the foundations of mathematics learning and how adults can support children's representation of--and thus the "mathematization" of--their play. The authors review research about the amount and nature of mathematics found in the free play of children. They briefly…

  13. Trainer's Guide to Building Blocks for Teaching Preschoolers with Special Needs [CD-ROM

    ERIC Educational Resources Information Center

    Joseph, Gail E.; Sandall, Susan R.; Schwartz, Ilene S.

    2010-01-01

    An essential teaching companion for instructors of pre-K educators, this convenient CD-ROM is a vivid blueprint for effective inclusive education using the popular "Building Blocks" approach. Following the structure of the bestselling textbook, this comprehensive guide helps teacher educators provide effective instruction on the three types of…

  14. 1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING 0520 WEST OF FIRING CONTOL BLOCK HOUSE (BLDG. 0545), BETWEEN SLED TRACK AND CAMERA ACCESS ROAD. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA

  15. Building an Early Childhood Parent-Teacher Resource Center.

    ERIC Educational Resources Information Center

    Holloway, Mary A.

    This manual is a guidebook to the development of the Project Enlightenment Parent-Teacher Resource Center and serves as a reference for the replication of this type of center in other communities. The manual consists of three chapters that are conceptualized as building blocks, because they are sequential, incremental, and independent. Block A…

  16. Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2007-01-01

    This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…

  17. PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. University Education in Ontario: Shared Goals & Building Blocks.

    ERIC Educational Resources Information Center

    Council of Ontario Universities, Toronto.

    This brochure suggests five goals that are likely to be shared by the people of Ontario, their government, and the province's publicly funded universities for a strong university system, and identifies the building blocks and resource-related commitments that would enable Ontario universities to achieve these goals. The goals are: (1) all…

  19. Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.

    PubMed

    Borkar, Santosh Ramdas; Aidhen, Indrapal Singh

    2017-04-18

    Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.

  20. Patterning nonisometric origami in nematic elastomer sheets

    NASA Astrophysics Data System (ADS)

    Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik

    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.

  1. Structure of clusters and building blocks in amylopectin from African rice accessions.

    PubMed

    Gayin, Joseph; Abdel-Aal, El-Sayed M; Marcone, Massimo; Manful, John; Bertoft, Eric

    2016-09-05

    Enzymatic hydrolysis in combination with gel-permeation and anion-exchange chromatography techniques were employed to characterise the composition of clusters and building blocks of amylopectin from two African rice (Oryza glaberrima) accessions-IRGC 103759 and TOG 12440. The samples were compared with one Asian rice (Oryza sativa) sample (cv WITA 4) and one O. sativa×O. glaberrima cross (NERICA 4). The average DP of clusters from the African rice accessions (ARAs) was marginally larger (DP=83) than in WITA 4 (DP=81). However, regarding average number of chains, clusters from the ARAs represented both the smallest and largest clusters. Overall, the result suggested that the structure of clusters in TOG 12440 was dense with short chains and high degree of branching, whereas the situation was the opposite in NERICA 4. IRGC 103759 and WITA 4 possessed clusters with intermediate characteristics. The commonest type of building blocks in all samples was group 2 (single branched dextrins) representing 40.3-49.4% of the blocks, while groups 3-6 were found in successively lower numbers. The average number of building blocks in the clusters was significantly larger in NERICA 4 (5.8) and WITA 4 (5.7) than in IRGC 103759 and TOG 12440 (5.1 and 5.3, respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).

    PubMed

    Yu, Hongtao; Brock, Stephanie L

    2008-08-01

    We demonstrate the effect of differently shaped CdSe nanoscale building blocks (dots, rods, branched nanoparticles, and hyperbranched nanoparticles) on the morphologies, surface characteristics, and optical properties of resultant porous CdSe nanostructured aerogels. Monolithic CdSe aerogels were produced by controlled oxidative removal of surface thiolate ligands from differently shaped CdSe nanoparticles to yield a wet gel, followed by CO(2) supercritical drying. The X-ray diffraction data show that the resultant CdSe aerogels maintain the crystalline phase of the building blocks without significant grain growth. However, the transmission electron microscopy images indicate that the morphology of CdSe aerogels changes from a colloid-type morphology to a polymer-type morphology when the building block changes from dot to rod or the branched nanoparticle. The morphology of the CdSe aerogel assembled from hyperbranched nanoparticles appears to be intermediate between the colloid-type and the polymer-type. Nitrogen physisorption measurements suggest that the surface areas and porosity are a direct function of the shape of the primary building blocks, with aerogels formed from rods or branched particles exhibiting the greatest surface areas (>200 m(2)/g) and those prepared from hyperbranched nanoparticles exhibiting the least (<100 m(2)/g). Band gap measurements and photoluminescence studies show that the as-prepared CdSe aerogels retain to a large extent the intrinsic quantum confinement of the differently shaped building blocks, despite being connected into a 3D network.

  3. 32 CFR 644.134 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... buildings, including land incidental thereto, suitable for the general use of Government agencies, including...) Special-purpose space is space in buildings, including land incidental thereto, wholly or predominantly utilized for the special purposes of an agency, and not generally suitable for general-purpose use...

  4. Effective Light Directed Assembly of Building Blocks with Microscale Control.

    PubMed

    Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung

    2017-06-01

    Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. SynTrack: DNA Assembly Workflow Management (SynTrack) v2.0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MENG, XIANWEI; SIMIRENKO, LISA

    2016-12-01

    SynTrack is a dynamic, workflow-driven data management system that tracks the DNA build process: Management of the hierarchical relationships of the DNA fragments; Monitoring of process tasks for the assembly of multiple DNA fragments into final constructs; Creations of vendor order forms with selectable building blocks. Organizing plate layouts barcodes for vendor/pcr/fusion/chewback/bioassay/glycerol/master plate maps (default/condensed); Creating or updating Pre-Assembly/Assembly process workflows with selected building blocks; Generating Echo pooling instructions based on plate maps; Tracking of building block orders, received and final assembled for delivering; Bulk updating of colony or PCR amplification information, fusion PCR and chewback results; Updating with QA/QCmore » outcome with .csv & .xlsx template files; Re-work assembly workflow enabled before and after sequencing validation; and Tracking of plate/well data changes and status updates and reporting of master plate status with QC outcomes.« less

  6. Building Trades. Block II. Foundations.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Twelve informational lessons and eleven manipulative lessons are provided on foundations as applied to the building trades. Informational lessons cover land measurements; blueprint reading; level instruments; building and site planning; building site preparation; laying out building lines; soil preparation and special evacuation; concrete forms;…

  7. The Building Blocks of Digital Media Literacy: Socio-Material Participation and the Production of Media Knowledge

    ERIC Educational Resources Information Center

    Dezuanni, Michael

    2015-01-01

    This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…

  8. Plumbing Specialist II & III, 3-22. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a course description, course chart, plan of instruction, lesson plans, study guides, and workbooks for use in training plumbing specialists II and III. Covered in the course blocks are building waste systems and exterior and interior supply systems. Course block II, on building waste…

  9. Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2017-01-01

    A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…

  10. Functionalized coronenes: synthesis, solid structure, and properties.

    PubMed

    Wu, Di; Zhang, Hua; Liang, Jinhua; Ge, Haojie; Chi, Chunyan; Wu, Jishan; Liu, Sheng Hua; Yin, Jun

    2012-12-21

    The construction of coronenes using simple building blocks is a challenging task. In this work, triphenylene was used as a building block to construct functionalized coronenes, and their solid structures and optoelectronic properties were investigated. The single crystal structures showed that coronenes have different packing motifs. Their good solubility and photostability make them potential solution-processable candidates for organic devices.

  11. The Development of Logico-Mathematical Knowledge in a Block-Building Activity at Ages 1-4

    ERIC Educational Resources Information Center

    Kamii, Constance; Miyakawa, Yoko; Kato, Yasuhiko

    2004-01-01

    To study the developmental interrelationships among various aspects of logico-mathematical knowledge, 80 one- to 4-year-olds were individually asked to build "something tall" with 20 blocks. Percentages of new and significant behaviors increased with age and were analyzed in terms of the development of logico-mathematical relationships. It was…

  12. Building Blocks of Contemporary HRD Research: A Citation Analysis on Human Resource Development Quarterly between 2007 and 2013

    ERIC Educational Resources Information Center

    Mehdiabadi, Amir Hedayati; Seo, Gaeun; Huang, Wenhao David; Han, Seung-hyun Caleb

    2017-01-01

    Human resource development is known to encapsulate a collection of social science disciplines including communications, psychology, and economics. Since these and other similar areas are the cornerstones of HRD, the changing nature of HRD demands constant reflections on the value and building blocks of contemporary HRD inquiries. This article…

  13. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates.

    PubMed

    Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian

    2017-07-21

    The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comprehensive assessment of the efficiency of high-rise construction projects in the form of urban blocks

    NASA Astrophysics Data System (ADS)

    Orlov, Alexandr; Chubarkina, Irina

    2018-03-01

    The paper is dedicated to main modern trends in the area of high-rise construction. The classification of buildings and structures by height is given. Functional distribution by the height of buildings is presented. A review of positive and negative aspects of high-rise construction from the economic point of view is given. On the basis of the data obtained, it is proposed to build up residential microdistricts in the form of urban blocks. A plan of microdistricts development is presented. It takes into account urban blocks and includes their main characteristics. An economic and mathematical model was developed to carry out a comprehensive assessment of the effectiveness of high-rise construction projects.

  15. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. An Ap-Structure with Finslerian Flavor I:. the Principal Idea

    NASA Astrophysics Data System (ADS)

    Wanas, M. I.

    A geometric structure (FAP-structure), having both absolute parallelism and Finsler properties, is constructed. The building blocks of this structure are assumed to be functions of position and direction. A nonlinear connection emerges naturally and is defined in terms of the building blocks of the structure. Two linear connections, one of Berwald type and the other of the Cartan type, are defined using the nonlinear connection of the FAP. Both linear connections are nonsymmetric and consequently admit torsion. A metric tensor is defined in terms of the building blocks of the structure. The condition for this metric to be a Finslerian one is obtained. Also, the condition for an FAP-space to be an AP-one is given.

  17. Blockbusters: Ideas for the Block Center.

    ERIC Educational Resources Information Center

    Adams, Polly K.; Nesmith, Jaynie

    1996-01-01

    Goals of block building in early childhood classrooms focus on physical, social, cognitive, and emotional development. Reports survey results of the value teachers place on block play. Offers illustrations of task cards to use with blocks in math, language arts, social studies, and science. Discusses guidelines and suggests idea cards and sentence…

  18. Piedramuelle Limestone in the building heritage of Oviedo, Spain, and adjacent towns.

    NASA Astrophysics Data System (ADS)

    Cardenes Van den Eynde, Victor; Mateos, Felix Javier; Valdeon, Luis; Rojo, Araceli

    2017-04-01

    The Piedramuelle limestone has a very important representation in the building heritage of Oviedo, historical capital of Asturias (Spain) and surrounding towns. This argillaceous limestone has been quarried since the High Middle Ages until the beginning of the XX century. The main mineralogical components are carbonates (mainly calcite and sometimes ankerite, 70-90%), quartz (5-15%), terrigenous minerals (6-15%) and iron oxides (<5%). Two different facies, with different constructive uses, can be clearly distinguished depending on the grain size: fine-grained facies and coarse-grained facies. The fine-grained facies has color ranging from red to yellow, slightly higher content in carbonates, higher terrigenous components and a micro crystalline texture. The coarse-grained facies is mainly yellow, with detrital clastic texture. The open porosity is higher for the coarse-grained facies (16-20%), while for the fine-grained facies it ranges between 5 and 15%. The fine-grained facies is more vulnerable to weathering than the coarse-grained one, and it is used in the building heritage mainly for ornamental details, while the coarse-grained one is found in the bigger blocks and ashlars of the buildings. Some of the buildings constructed with Piedramuelle limestone are the Cathedral, the Old University and the Palaces from the XVII and XVIII centuries. The ambiance and historical architecture of Oviedo and adjacent towns is closely linked with the textures and colors of this stone. Nowadays, the Piedramuelle limestone is not exploited anymore, being the quarries exhausted. This represents an issue from a conservation point of view, since there is not a suitable stone for replacement. In order to preserve and maintain the building heritage of these towns, it is very important to prospect and protect the remaining outcrops still able to supply this characteristic stone.

  19. Statistical analysis of atmospheric turbulence about a simulated block building

    NASA Technical Reports Server (NTRS)

    Steely, S. L., Jr.

    1981-01-01

    An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.

  20. Forest Edge Regrowth Typologies in Southern Sweden-Relationship to Environmental Characteristics and Implications for Management.

    PubMed

    Wiström, Björn; Busse Nielsen, Anders

    2017-07-01

    After two major storms, the Swedish Transport Administration was granted permission in 2008 to expand the railroad corridor from 10 to 20 m from the rail banks, and to clear the forest edges in the expanded area. In order to evaluate the possibilities for managers to promote and control the species composition of the woody regrowth so that a forest edge with a graded profile develops over time, this study mapped the woody regrowth and environmental variables at 78 random sites along the 610-km railroad between Stockholm and Malmö four growing seasons after the clearing was implemented. Through different clustering approaches, dominant tree species to be controlled and future building block species for management were identified. Using multivariate regression trees, the most decisive environmental variables were identified and used to develop a regrowth typology and to calculate species indicator values. Five regrowth types and ten indicator species were identified along the environmental gradients of soil moisture, soil fertility, and altitude. Six tree species dominated the regrowth across the regrowth types, but clustering showed that if these were controlled by selective thinning, lower tree and shrub species were generally present so they could form the "building blocks" for development of a graded edge. We concluded that selective thinning targeted at controlling a few dominant tree species, here named Functional Species Control, is a simple and easily implemented management concept to promote a wide range of suitable species, because it does not require field staff with specialist taxonomic knowledge.

  1. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    PubMed

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R

    2016-03-15

    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. "Looking through the Eyes of the Learner": Implementation of Building Blocks for Student Engagement

    ERIC Educational Resources Information Center

    D'Annolfo, Suzanne Cordier; Schumann, Jeffrey A.

    2012-01-01

    The Building Blocks for Student Engagement (BBSE) protocol was designed to provide a consistent framework of common language and a visual point of reference shared among students, teachers and school leaders to keep a laser-like focus on the instructional core and student engagement. Grounded in brain-based learning and implemented in urban,…

  3. Oligomers and Polymers Based on Pentacene Building Blocks

    PubMed Central

    Lehnherr, Dan; Tykwinski, Rik R.

    2010-01-01

    Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  4. Public Opinion on Youth, Crime and Race: A Guide for Advocates. Building Blocks for Youth.

    ERIC Educational Resources Information Center

    Soler, Mark

    This guide summarizes public opinion research on youth and juvenile justice issues from the Building Blocks for Youth focus groups and various national polls. Overall, the public is less fearful about crime than in the past but believes juvenile crime is increasing. There is serious public concern about the effectiveness of the juvenile justice…

  5. C–H arylation of unsubstituted furan and thiophene with acceptor bromides: access to donor–acceptor–donor-type building blocks for organic electronics.

    PubMed

    Matsidik, Rukiya; Martin, Johannes; Schmidt, Simon; Obermayer, Johannes; Lombeck, Florian; Nübling, Fritz; Komber, Hartmut; Fazzi, Daniele; Sommer, Michael

    2015-01-16

    Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N′-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor–acceptor–donor building blocks to be further used for the preparation of a variety of conjugated materials.

  6. A “fullerene-carbon nanotube” structure with tunable mechanical properties

    NASA Astrophysics Data System (ADS)

    Ji, W. M.; Zhang, L. W.; Liew, K. M.

    2018-03-01

    Carbon-based nanostructures have drawn tremendous research interest and become promising building blocks for the new generation of smart sensors and devices. Utilizing a bottom-up strategy, the chemical interconnecting sp 3 covalent bond between carbon building blocks is an efficient way to enhance its Young's modulus and ductility. The formation of sp 3 covalent bond, however, inevitably degrades its ultimate tensile strength caused by stress concentration at the junction. By performing a molecular dynamics simulation of tensile deformation for a fullerene-carbon nanotube (FCNT) structure, we propose a tunable strategy in which fullerenes with various angle energy absorption capacities are utilized as building blocks to tune their ductile behavior, while still maintaining a good ultimate tensile strength of the carbon building blocks. A higher ultimate tensile strength is revealed with the reduction of stress concentration at the junction. A brittle-to-ductile transition during the tensile deformation is detected through the structural modification. The development of ductile behavior is attributed to the improvement of energy propagation ability during the fracture initiation, in which the released energy from bonds fracture is mitigated properly, leading to the further development of mechanical properties.

  7. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.

    PubMed

    Schneider, G; Lee, M L; Stahl, M; Schneider, P

    2000-07-01

    An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.

  8. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  9. Vinblastine and diethylstilboestrol tested in the in vitro mammalian cell micronucleus test (MNvit) at Swansea University UK in support of OECD draft Test Guideline 487.

    PubMed

    Johnson, George E; Jenkins, Gareth J; Thomas, Adam D; Doak, Shareen H

    2010-10-29

    The known aneugens vinblastine and diethylstilboestrol (DES) were tested in the in vitro micronucleus assay, with and without cytokinesis block in Chinese hamster CHO cells, at the laboratories of Swansea University, Swansea, UK. These experiments were carried out to determine the suitability of the cell death and cytostasis measures used in the assay, as recommended in the draft OECD Test Guideline 487, 2007. Both compounds were positive in the assay without cytokinesis block at concentrations giving approximately 50% or less cell death and cytostasis, using relative population doublings and relative increase in cell counts. Moreover, both compounds were positive in the assay with cytokinesis block at concentrations giving approximately 50% cell death and cytostasis, using replicative index. Vinblastine was also positive for mitotic slippage, causing micronuclei in mononucleate cells with cytokinesis block. Relative population doublings and relative increase in cell counts were appropriate measures of cell death and cytostasis for the non-cytokinesis block in vitro micronucleus assay. In the cytokinesis blocked micronucleus assay, replicative index and cytokinesis block proliferation index were suitable cell death and cytostasis measures. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    PubMed Central

    Pollock, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are on large tracts of privately-owned timber land. Thus, although there are a large number of areas that could be suitable for relocation and restoration using beavers, current land use patterns may substantially limit feasibility in these areas. PMID:29489853

  11. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    USGS Publications Warehouse

    Dittbrenner, Benjamin J.; Pollack, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are on large tracts of privately-owned timber land. Thus, although there are a large number of areas that could be suitable for relocation and restoration using beavers, current land use patterns may substantially limit feasibility in these areas.

  12. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation.

    PubMed

    Dittbrenner, Benjamin J; Pollock, Michael M; Schilling, Jason W; Olden, Julian D; Lawler, Joshua J; Torgersen, Christian E

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors-information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are on large tracts of privately-owned timber land. Thus, although there are a large number of areas that could be suitable for relocation and restoration using beavers, current land use patterns may substantially limit feasibility in these areas.

  13. 13. A southeastward view of buildings #3 (on the right), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. A southeastward view of buildings #3 (on the right), building #5 ( to the immediate left of building #3), and buildings #6-B (low building on the far left) and #6 ( to the immediate rear of #6-B). - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  14. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy

    PubMed Central

    2018-01-01

    Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958

  15. Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation.

    PubMed

    Arabi, K; Sawan, M A

    1999-06-01

    An advanced stimulator for neuromuscular stimulation of spinal cord injured patients has been developed. The stimulator is externally controlled and powered by a single encoded radio frequency carrier and has four independently controlled bipolar stimulation channels. It offers a wide range of reprogrammability and flexibility, and can be used in many neuromuscular electrical stimulation applications. The implant system is adaptable to patient's needs and to future developments in stimulation algorithms by reprogramming the stimulator. The stimulator is capable of generating a wide range of stimulation waveforms and stimulation patterns and therefore is very suitable for selective nerve stimulation techniques. The reliability of the implant has been increased by using a forward error detection and correction communication protocol and by designing the chip for structural testability based on scan test approach. Implemented testability scheme makes it possible to verify the complete functionality of the implant before and after implantation. The stimulators architecture is designed to be modular and therefore its different blocks can be reused as standard building blocks in the design and implementation of other neuromuscular prostheses. Design for low-power techniques have also been employed to reduce power consumption of the electronic circuitry.

  16. 1. Historic American Buildings Survey E. W. Russell, Photographer, October ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey E. W. Russell, Photographer, October 17, 1935 51-69 Government St. BLOCK OF BUILDINGS ON GOVERNMENT ST. (S. SIDE) BETWEEN WATER AND ROYAL STREETS - 51-69 Government Street (Commercial Building), Mobile, Mobile County, AL

  17. A new testing station about full-scale testing for rockfall protection systems

    NASA Astrophysics Data System (ADS)

    Bost, Marion; Dubois, Laurent; Rocher-Lacoste, Frédéric

    2010-05-01

    Rock blocks which detach from slopes overhanging urban areas, roads, railways and other infrastructures create one of the most frequent hazards in mountainous areas. Some of protection systems against rockfalls are designed to mitigate the effects of a foreseen movement by intercepting and stopping falling rock blocks. Despite the worldwide application of this kind of protections, the global behaviour of such a system has been poorly investigated, for the time being, and only at a reduced scale. The behaviour of these protection systems at real scale has been widely extrapolated, however these theories have still not been investigated by performing relating test at scale 1. The French Public Work Laboratory (LCPC) has decided to build a new testing station to work on that topic. This new testing station located in French Alps is able to drop heavy loads (up to 20 tons) from the top of a cliff down to structural systems in order to test their resistance to big shocks and study their dynamical behaviour at this high energy level. As the fall height can reach near 70m, the impact velocity can actually reach 35 metres per second and the energy released during the impact can be as large as 13 500 kilojoules. The experimental area at the bottom of the cliff which can be impacted by a block is 12 metres wide. This allows to test not only rockfall protection systems at scale 1 but also some parts of building structures too. To avoid damaging test-structure during a block drop due to dynamical effects, the dropping hook was designed with a special system. This one consists of a reversed mass which can be adapted to the dropped block and dropped together with the block. Moreover, it is very important to pay attention on repeatability of results concerning new devices for experiments. Whatever fall height the impact point is hit so with a precision of 50 centimetres. Such an experimental facility needs to be equipped with a relevant instrumentation. High capacity stress sensors, accelerometers and high speed cameras are available for experiments. They have been chosen for their capacity to work with an important length of cables. The monitoring with these experimental devices is performed at a high sample frequency suitable and for a very short load like an impact. A radio controlled system allows triggering monitoring and dropping at the same time. Due to bounce risk with the dropped block the safety of personal is ensured by strict operating rules. An observation platform has been located on an embankment along the test-site in order to follow experiments without risk. Two years were necessary for the test-site construction and its equipment. First tests on rockfall nets fences were performed at the end of 2009.

  18. Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Neil P.; Sheffler, William; Sawaya, Michael R.

    2015-09-17

    We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method canmore » be used to design a wide variety of self-assembling protein nanomaterials.« less

  19. Expressivism, Relativism, and the Analytic Equivalence Test

    PubMed Central

    Frápolli, Maria J.; Villanueva, Neftalí

    2015-01-01

    The purpose of this paper is to show that, pace (Field, 2009), MacFarlane’s assessment relativism and expressivism should be sharply distinguished. We do so by arguing that relativism and expressivism exemplify two very different approaches to context-dependence. Relativism, on the one hand, shares with other contemporary approaches a bottom–up, building block, model, while expressivism is part of a different tradition, one that might include Lewis’ epistemic contextualism and Frege’s content individuation, with which it shares an organic model to deal with context-dependence. The building-block model and the organic model, and thus relativism and expressivism, are set apart with the aid of a particular test: only the building-block model is compatible with the idea that there might be analytically equivalent, and yet different, propositions. PMID:26635690

  20. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.

    PubMed

    Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei

    2017-03-13

    A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.

  1. Mission building blocks for outer solar system exploration.

    NASA Technical Reports Server (NTRS)

    Herman, D.; Tarver, P.; Moore, J.

    1973-01-01

    Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.

  2. The Kids' Empathic Development Scale (KEDS): a multi-dimensional measure of empathy in primary school-aged children.

    PubMed

    Reid, Corinne; Davis, Helen; Horlin, Chiara; Anderson, Mike; Baughman, Natalie; Campbell, Catherine

    2013-06-01

    Empathy is an essential building block for successful interpersonal relationships. Atypical empathic development is implicated in a range of developmental psychopathologies. However, assessment of empathy in children is constrained by a lack of suitable measurement instruments. This article outlines the development of the Kids' Empathic Development Scale (KEDS) designed to assess some of the core affective, cognitive and behavioural components of empathy concurrently. The KEDS assesses responses to picture scenarios depicting a range of individual and interpersonal situations differing in social complexity. Results from 220 children indicate the KEDS measures three related but distinct aspects of empathy that are also related to existing measures of empathy and cognitive development. Scores on the KEDS show age and some gender-related differences in the expected direction. © 2012 The British Psychological Society.

  3. Optical LDPC decoders for beyond 100 Gbits/s optical transmission.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2009-05-01

    We present an optical low-density parity-check (LDPC) decoder suitable for implementation above 100 Gbits/s, which provides large coding gains when based on large-girth LDPC codes. We show that a basic building block, the probabilities multiplier circuit, can be implemented using a Mach-Zehnder interferometer, and we propose corresponding probabilistic-domain sum-product algorithm (SPA). We perform simulations of a fully parallel implementation employing girth-10 LDPC codes and proposed SPA. The girth-10 LDPC(24015,19212) code of the rate of 0.8 outperforms the BCH(128,113)xBCH(256,239) turbo-product code of the rate of 0.82 by 0.91 dB (for binary phase-shift keying at 100 Gbits/s and a bit error rate of 10(-9)), and provides a net effective coding gain of 10.09 dB.

  4. A rapid parallelization of cone-beam projection and back-projection operator based on texture fetching interpolation

    NASA Astrophysics Data System (ADS)

    Xie, Lizhe; Hu, Yining; Chen, Yang; Shi, Luyao

    2015-03-01

    Projection and back-projection are the most computational consuming parts in Computed Tomography (CT) reconstruction. Parallelization strategies using GPU computing techniques have been introduced. We in this paper present a new parallelization scheme for both projection and back-projection. The proposed method is based on CUDA technology carried out by NVIDIA Corporation. Instead of build complex model, we aimed on optimizing the existing algorithm and make it suitable for CUDA implementation so as to gain fast computation speed. Besides making use of texture fetching operation which helps gain faster interpolation speed, we fixed sampling numbers in the computation of projection, to ensure the synchronization of blocks and threads, thus prevents the latency caused by inconsistent computation complexity. Experiment results have proven the computational efficiency and imaging quality of the proposed method.

  5. Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes.

    PubMed

    López-Andarias, Javier; López, Juan Luis; Atienza, Carmen; Brunetti, Fulvio G; Romero-Nieto, Carlos; Guldi, Dirk M; Martín, Nazario

    2014-04-29

    The construction of ordered single-wall carbon nanotube soft-materials at the nanoscale is currently an important challenge in science. Here we use single-wall carbon nanotubes as a tool to gain control over the crystalline ordering of three-dimensional bulk materials composed of suitably functionalized molecular building blocks. We prepare p-type nanofibres from tripeptide and pentapeptide-containing small molecules, which are covalently connected to both carboxylic and electron-donating 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene termini. Adding small amounts of single-wall carbon nanotubes to the so-prepared p-nanofibres together with the externally controlled self assembly by charge screening by means of Ca(2+) results in new and stable single-wall carbon nanotube-based supramolecular gels featuring remarkably long-range internal order.

  6. 2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  7. Block Play: Practical Suggestions for Common Dilemmas

    ERIC Educational Resources Information Center

    Tunks, Karyn Wellhousen

    2009-01-01

    Learning materials and teaching methods used in early childhood classrooms have fluctuated greatly over the past century. However, one learning tool has stood the test of time: Wood building blocks, often called unit blocks, continue to be a source of pleasure and learning for young children at play. Wood blocks have the unique capacity to engage…

  8. 77 FR 47861 - Federal Property Suitable as Facilities To Assist the Homeless

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... Notice to identify Federal buildings and other real property that HUD has reviewed for suitability for... landholding agencies regarding unutilized and underutilized buildings and real property controlled by such... landholding agencies at the following addresses: COE: Mr. Scott Whiteford, Army Corps of Engineers, Real...

  9. Habitability of the Shallow Subsurface on Mars: Clues from the Meteorites

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Clemett, Simon; Gibson, Everett K.

    2004-01-01

    The properties that define habitability are commonly understood to include the following: Presence of water. Temperature range allowing some or all of the water to be liquid. A suitable physical volume or space permitting metabolism and growth. Presence of organic compounds or the building blocks to make them. Presence of an energy source suitable for utilization by living organisms. Interpretations of Mars Viking, Surveyor, and Odyssey orbital images have built a strong case that Mars had surface water during its past geological history. Neutron spectrometer data from Mars Odyssey show that poleward of about 60 degrees North and 60 degrees south, significant hydrogen, likely as ice or permafrost, is present in at least the upper meter or so of the martian regolith and crust and that similar high hydrogen areas exist, even near the equator. Here we present a summary of independent data from the Mars meteorites showing that liquid water was present for at least some of the time in the upper few meters or tens of meters as early as 3.9 billion years (Ga), and was present at intervals and at various locations throughout most of Mars history.

  10. Integrated circuits and logic operations based on single-layer MoS2.

    PubMed

    Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras

    2011-12-27

    Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced.

  11. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascherl, Laura; Sick, Torben; Margraf, Johannes

    Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guidedmore » the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.« less

  12. Emergent mechanics of biological structures

    PubMed Central

    Dumont, Sophie; Prakash, Manu

    2014-01-01

    Mechanical force organizes life at all scales, from molecules to cells and tissues. Although we have made remarkable progress unraveling the mechanics of life's individual building blocks, our understanding of how they give rise to the mechanics of larger-scale biological structures is still poor. Unlike the engineered macroscopic structures that we commonly build, biological structures are dynamic and self-organize: they sculpt themselves and change their own architecture, and they have structural building blocks that generate force and constantly come on and off. A description of such structures defies current traditional mechanical frameworks. It requires approaches that account for active force-generating parts and for the formation of spatial and temporal patterns utilizing a diverse array of building blocks. In this Perspective, we term this framework “emergent mechanics.” Through examples at molecular, cellular, and tissue scales, we highlight challenges and opportunities in quantitatively understanding the emergent mechanics of biological structures and the need for new conceptual frameworks and experimental tools on the way ahead. PMID:25368421

  13. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Ascherl, Laura; Sick, Torben; Margraf, Johannes T.; Lapidus, Saul H.; Calik, Mona; Hettstedt, Christina; Karaghiosoff, Konstantin; Döblinger, Markus; Clark, Timothy; Chapman, Karena W.; Auras, Florian; Bein, Thomas

    2016-04-01

    Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guided the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.

  14. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.

    PubMed

    Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio

    2018-02-01

    Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Influence of Building Block Play on Mathematics Achievement and Logical and Divergent Thinking in Italian Primary School Mathematics Classes

    ERIC Educational Resources Information Center

    Pirrone, Concetta; Tienken, Christopher H.; Pagano, Tatiana; Di Nuovo, Santo

    2018-01-01

    In an experimental study to explain the effect of structured Building Block Play with LEGO™ bricks on 6-year-old student mathematics achievement and in the areas of logical thinking, divergent thinking, nonverbal reasoning, and mental imagery, students in the experimental group scored significantly higher (p = 0.05) in mathematics achievement and…

  16. Novel single photon sources for new generation of quantum communications

    DTIC Science & Technology

    2017-06-13

    be used as building blocks for quantum cryptography and quantum key distribution There were numerous important achievements for the projects in the...single photon sources that will be used as build- ing blocks for quantum cryptography and quantum key distribution There were numerous im- portant...and enable absolutely secured information transfer between distant nodes – key prerequisite for quantum cryptography . Experiment: the experimental

  17. Building Blocks for Transport-Class Hybrid and Turboelectric Vehicles

    NASA Technical Reports Server (NTRS)

    Jankovsky, Amy; Bowman, Cheryl; Jansen, Ralph

    2016-01-01

    NASA has been investing in research efforts to define potential vehicles that use hybrid and turboelectric propulsion to enable savings in fuel burn and carbon usage. This paper overviews the fundamental building blocks that have been derived from those studies and details what key performance parameters have been defined, what key ground and flight tests need to occur, and highlights progress toward each.

  18. 2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures

    NASA Image and Video Library

    2016-06-16

    Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.

  19. Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels.

    PubMed

    Ma, Chunxin; Li, Tiefeng; Zhao, Qian; Yang, Xuxu; Wu, Jingjun; Luo, Yingwu; Xie, Tao

    2014-08-27

    Inspired by the assembly of Lego toys, hydrogel building blocks with heterogeneous responsiveness are assembled utilizing macroscopic supramolecular recognition as the adhesion force. The Lego hydrogel provides 3D transformation upon pH variation. After disassembly of the building blocks by changing the oxidation state, they can be re-assembled into a completely new shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Damage of modern building materials by microscopic fungi].

    PubMed

    Chuenko, A I; Karpenko, Iu V

    2011-01-01

    Resistance of three materials, produced on the basis of concrete compounds to the action of microscopic fungi, isolated from damaged living buildings, has been first investigated. It has been shown that samples of froth-block and thermoeffective block had low fungal resistance, in contrast to samples of cellular polystyrene concrete, which were resistant to fungal action, that can be associated with peculiarities of their component composition.

  1. Building Blocks for Father Involvement: Building Block 1--Appreciating How Fathers Give Children a Head Start

    ERIC Educational Resources Information Center

    US Department of Health and Human Services, Head Start Bureau, 2004

    2004-01-01

    Nearly 30 years ago, leading child psychologist Michael E. Lamb reminded us that fathers are the "forgotten contributors to child development." Since then, much work has been done to explore the ways fathers uniquely contribute to the healthy development of their children. Scholars now know that boys and girls who grow up with an involved father,…

  2. Highly crystalline covalent organic frameworks from flexible building blocks.

    PubMed

    Xu, Liqian; Ding, San-Yuan; Liu, Junmin; Sun, Junliang; Wang, Wei; Zheng, Qi-Yu

    2016-03-28

    Two novel 2D covalent organic frameworks (TPT-COF-1 and TPT-COF-2) were synthesized from the flexible 2,4,6-triaryloxy-1,3,5-triazine building blocks on a gram scale, which show high crystallinity and large surface area. The controllable formation of highly ordered frameworks is mainly attributed to the self-assembly Piedfort unit of 2,4,6-triaryloxy-1,3,5-triazine.

  3. Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F-POSS): Building Blocks for Low Surface Energy Materials

    DTIC Science & Technology

    2010-10-21

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F...long chain fluorinated alkyl groups ranging from 6-12 carbon atoms in length. Herein, a disilanol perfluoroalkyl polyhedral oligomeric...FUNCTIONAL PERFLUOROALKYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (F-POSS): BUILDING BLOCKS FOR LOW SURFACE ENERGY MATERIA LS Sean M Rami,.e:, Yvonne Dia

  4. Expansion and improvements of the FORMA system for response and load analysis. Volume 1: Programming manual

    NASA Technical Reports Server (NTRS)

    Wohlen, R. L.

    1976-01-01

    Techniques are presented for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis). FORMA is a library of subroutines coded in FORTRAN 4 for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.

  5. Dual-mode MOS SOI nanoscale transistor serving as a building block for optical communication between blocks

    NASA Astrophysics Data System (ADS)

    Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-02-01

    We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.

  6. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds

    DOE PAGES

    Rios, Orlando; Chen, Jihua; Li, Yuzhan; ...

    2016-06-01

    Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. Lastly, all three functionalmore » building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively.« less

  7. General synthesis of inorganic single-walled nanotubes

    PubMed Central

    Ni, Bing; Liu, Huiling; Wang, Peng-peng; He, Jie; Wang, Xun

    2015-01-01

    The single-walled nanotube (SWNT) is an interesting nanostructure for fundamental research and potential applications. However, very few inorganic SWNTs are available to date due to the lack of efficient fabrication methods. Here we synthesize four types of SWNT: sulfide; hydroxide; phosphate; and polyoxometalate. Each type of SWNT possesses essentially uniform diameters. Detailed studies illustrate that the formation of SWNTs is initiated by the self-coiling of the corresponding ultrathin nanostructure embryo/building blocks on the base of weak interactions between them, which is not limited to specific compounds or crystal structures. The interactions between building blocks can be modulated by varying the solvents used, thus multi-walled tubes can also be obtained. Our results reveal that the generalized synthesis of inorganic SWNTs can be achieved by the self-coiling of ultrathin building blocks under the proper weak interactions. PMID:26510862

  8. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    NASA Astrophysics Data System (ADS)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  9. 7. Historic American Buildings Survey Verlin Berry, Photographer November 10, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey Verlin Berry, Photographer November 10, 1977 FIRST FLOOR, VIEW OF PRESSED TIN CEILING WITH WOOD BLOCKING AT CROWN MOLDING - 111 West First Street (Commercial Building), Mishawaka, St. Joseph County, IN

  10. Main-chain supramolecular block copolymers.

    PubMed

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  11. GENERAL VIEW OF TYPE HB54s (BUILDINGS T1088 TO T1093) & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF TYPE HB-54s (BUILDINGS T-1088 TO T-1093) & CONVERTED TYPE HB-54S (BUILDINGS T-1094 TO T-1096), LOOKING SOUTHWEST; BUILDING T-1088 AT LEFT, BUILDING T-1096 AT RIGHT - Fort McCoy, Building No. T-1096, South side of South Ninth Avenue, Block 10, Sparta, Monroe County, WI

  12. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.

    PubMed

    Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua

    2015-08-12

    Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An easy access to 2-Amino-5,6-dihydro-3H-pyrimidin-4-one building blocks: the reaction under conventional and microwave conditions.

    PubMed

    Ostras, Konstantin S; Gorobets, Nikolay Yu; Desenko, Sergey M; Musatov, Vladimir I

    2006-08-01

    A new one-stage fast multicomponent synthesis of title compounds leads to products in 21-55% isolated yields under both conventional and microwave conditions. The primary amino group in the building blocks can be easily acylated by various usual electophilic agents that can be utilized in the synthesis of diverse heterocylic compounds libraries.

  14. [Spatial distribution characteristics of urban potential population in Shenyang City based on QuickBird image and GIS].

    PubMed

    Li, Jun-Ying; Hu, Yuan-Man; Chen, Wei; Liu, Miao; Hu, Jian-Bo; Zhong, Qiao-Lin; Lu, Ning

    2012-06-01

    Population is the most active factor affecting city development. To understand the distribution characteristics of urban population is of significance for making city policy decisions and for optimizing the layout of various urban infrastructures. In this paper, the information of the residential buildings in Shenyang urban area was extracted from the QuickBird remote sensing images, and the spatial distribution characteristics of the population within the Third-Ring Road of the City were analyzed, according to the social and economic statistics data. In 2010, the population density in different types of residential buildings within the Third-Ring Road of the City decreased in the order of high-storey block, mixed block, mixed garden, old multi-storey building, high-storey garden, multi-storey block, multi-storey garden, villa block, shanty, and villa garden. The vacancy rate of the buildings within the Third-Ring Road was more than 30%, meaning that the real estate market was seriously overstocked. Among the five Districts of Shenyang City, Shenhe District had the highest potential population density, while Tiexi District and Dadong District had a lower one. The gravity center of the City and its five Districts was also analyzed, which could provide basic information for locating commercial facilities and planning city infrastructure.

  15. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency

    PubMed Central

    Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy

    2015-01-01

    Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W−1 due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications. PMID:26066737

  16. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency.

    PubMed

    Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy

    2015-06-11

    Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W(-1) due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications.

  17. Intrinsic Folding Proclivities in Cyclic β-Peptide Building Blocks: Configuration and Heteroatom Effects Analyzed by Conformer-Selective Spectroscopy and Quantum Chemistry.

    PubMed

    Alauddin, Mohammad; Gloaguen, Eric; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel; Zehnacker-Rentien, Anne; Declerck, Valérie; Aitken, David J

    2015-11-09

    This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic β-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    NASA Astrophysics Data System (ADS)

    Zobin, V. M.; Cruz-Bravo, A. A.; Ventura-Ramírez, F.

    2010-06-01

    A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM) for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM) intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.

  19. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 4: Detailed data. Part 2: Program plans and common support needs (a study of the commonality of space vehicle applications to future national needs

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The methodology of alternate world future scenarios is utilized for selecting a plausible, though not advocated, set of future scenarios each of which results in a program plan appropriate for the respective environment. Each such program plan gives rise to different building block and technology requirements, which are analyzed for common need between the NASA and the DoD for each of the alternate world scenarios. An essentially invariant set of system, building block, and technology development plans is presented at the conclusion, intended to allow protection of most of the options for system concepts regardless of what the actual future world environment turns out to be. Thus, building block and technology needs are derived which support: (1) each specific world scenario; (2) all the world scenarios identified in this study; or (3) generalized scenarios applicable to almost any future environment. The output included in this volume consists of the building blocks, i.e.: transportation vehicles, orbital support vehicles, and orbital support facilities; the technology required to support the program plans; identification of their features which could support the DoD and NASA in common; and a complete discussion of the planning methodology.

  20. Making Your Own Hollow Blocks. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    The procedures needed to make hollow blocks from palay hull, sawdust, soil, or sand are outlined in this module. Also outlined are the procedures needed to construct the wooden molds used to make the blocks. The hollow blocks can be used in building a one story house where the roof does not rest on the hollow block wall, an additional room to the…

  1. A molecular quantum spin network controlled by a single qubit.

    PubMed

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  2. Production of sludge-incorporated paver blocks for efficient waste management.

    PubMed

    Velumani, P; Senthilkumar, S

    2018-06-01

    Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries. Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.

  3. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83%. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7%. Results showed that vegetation cover and water features have been extracted completely (100%) and about 71% of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  4. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83 %. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7 %. Results showed that vegetation cover and water features have been extracted completely (100 %) and about 71 % of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  5. 17. A southward view of buildings #6B and #6 in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. A southward view of buildings #6-B and #6 in the left background and buildings #5 (center) and #3 (right of center). - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  6. Rockfall vulnerability assessment for masonry buildings

    NASA Astrophysics Data System (ADS)

    Mavrouli, Olga

    2015-04-01

    The methodologies for the quantitative risk assessment vary in function of the application scale and the available data. For fragmental rockfalls, risk calculation requires data for the expected damage of the exposed elements due to potential rock block impacts with a range of trajectories, magnitudes and intensities. Although the procedures for the quantification of the rock block characteristics in terms of magnitude-frequency relationships are well established, there are few methodologies for the calculation of the vulnerability, and these are usually empirical or judgmental. The response of buildings to rock block impacts using analytical methods has been mainly realised so far for reinforced concrete buildings, and some fragility curves have been calculated with the results, indicating the potential damage for a range of rock block characteristics. Masonry buildings, as a common structural typology in mountainous areas, are in many cases impacted by rock blocks during rockfalls. Their response presents some peculiarities in comparison with reinforced-concrete structures given the non-homogeneity and variability of the compound materials (blocks and mortar), their orthotropy, low strength in tension, the statically indeterminate load-bearing system and the non-monolithic connections. To this purpose, analytical procedures which are specifically adapted to masonry structures should be used for the evaluation of the expected damage due to rock impacts. In this contribution we discuss the application of the analytical approach for the assessment of the expected damage in rockfall prone areas and the simulation assumptions that can be made concerning the materials, geometry, loading and the relevant simplifications. The amount of uncertainties introduced during their analytical simulation is high due to the dispersion of the data for material mechanical properties and the construction techniques and quality and thus a probabilistic assessment is suggested. The random nature of the rockfall as far as it concerns the magnitude and the intensity of the rock blocks can also be introduced using parametric analyses.

  7. PBF Reactor Building (PER620). After lowering reactor vessel onto blocks, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). After lowering reactor vessel onto blocks, it is rolled on logs into PBF. Metal framework under vessel is handling device. Various penetrations in reactor bottom were for instrumentation, poison injection, drains. Large one, below center "manhole" was for primary coolant. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-736 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. 11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL BLOCK 'A' (SOLITARY CONFINEMENT CELL BLOCK), TYPICAL SOLITARY CONFINEMENT CELL. THE CELL SHOWN IN CENTER OF PHOTO, HAS A 2-1/2' THICK STEEL DOOR. THE CELL SHOWN IN THE LEFT OF PHOTO, HAS A 3/4' DIAMETER IRON GRILLE DOOR. - U.S. Naval Base, Pearl Harbor, Brig, Neville Way near Ninth Street at Marine Barracks, Pearl City, Honolulu County, HI

  9. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  10. Effector-Triggered Self-Replication in Coupled Subsystems.

    PubMed

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Laboratory testing of a building envelope segment based on cellular concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2016-07-01

    Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.

  12. Synthesis of Triamino Acid Building Blocks with Different Lipophilicities

    PubMed Central

    Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger

    2015-01-01

    To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040

  13. Salt-Free Strategy for the Insertion of CO2 into C-H Bonds: Catalytic Hydroxymethylation of Alkynes.

    PubMed

    Wendling, Timo; Risto, Eugen; Krause, Thilo; Gooßen, Lukas J

    2018-04-20

    A copper(I) catalyst enables the insertion of carbon dioxide into alkyne C-H bonds by using a suitable organic base with which hydrogenation of the resulting carboxylate salt with regeneration of the base becomes thermodynamically feasible. In the presence of catalytic copper(I) chloride/4,7-diphenyl-1,10-phenanthroline, polymer-bound triphenylphosphine, and 2,2,6,6-tetramethylpiperidine as the base, terminal alkynes undergo carboxylation at 15 bar CO 2 and room temperature. After filtration, the ammonium alkynecarboxylate can be hydrogenated to the primary alcohol and water at a rhodium/molybdenum catalyst, regenerating the amine base. This demonstrates the feasibility of a salt-free overall process, in which carbon dioxide serves as a C1 building block in a C-H functionalization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Real-time multimedia communications in medical emergency - the CONCERTO project solution.

    PubMed

    Martini, Maria G; Iacobelli, Lorenzo; Bergeron, Cyril; Hewage, Chaminda T; Panza, Gianmarco; Piri, Esa; Vehkapera, Janne; Amon, Peter; Mazzotti, Matteo; Savino, Ketty; Bokor, Laszlo

    2015-01-01

    The management of medical emergency, in particular cardiac emergency, requests prompt intervention and the possibility to communicate in real time from the emergency area / ambulance to the hospital as much diagnostic information as possible about the patient. This would enable a prompt emergency diagnosis and operation and the possibility to prepare the appropriate actions in the suitable hospital department. To address this scenario, the CONCERTO European project proposed a wireless communication system based on a novel cross-layer architecture, including the integration of building blocks for medical media content fusion, delivery and access. This paper describes the proposed system architecture, outlining the developed components and mechanisms, and the evaluation of the proposed system, carried out in a hospital with the support of medical staff. The technical results and the feedback received highlight the impact of the CONCERTO approach in the healthcare domain, in particular in enabling a prompt and reliable diagnosis in challenging medical emergency scenarios.

  15. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  16. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    PubMed Central

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-01-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition. PMID:23698018

  17. Design of lateral heterostructure from arsenene and antimonene

    NASA Astrophysics Data System (ADS)

    Sun, Qilong; Dai, Ying; Ma, Yandong; Yin, Na; Wei, Wei; Yu, Lin; Huang, Baibiao

    2016-09-01

    Lateral heterostructures fabricated by two-dimensional building blocks have opened up exciting realms in material science and device physics. Identifying suitable materials for creating such heterostructures is urgently needed for the next-generation devices. Here, we demonstrate a novel type of seamless lateral heterostructures with excellent stabilities formed within pristine arsenene and antimonene. We find that these heterostructures could possess direct and reduced energy gaps without any modulations. Moreover, the highly coveted type-II alignment and the high carrier mobility are also identified, marking the enhanced quantum efficiency. The tensile strain can result in efficient bandgap engineering. Besides, the proposed critical condition for favored direct energy gaps would have a guiding significance on the subsequent works. Generally, our predictions not only introduce new vitality into lateral heterostructures, enriching available candidate materials in this field, but also highlight the potential of these lateral heterostructures as appealing materials for future devices.

  18. Molecular nanomagnets with switchable coupling for quantum simulation

    DOE PAGES

    Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...

    2014-12-11

    Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less

  19. Computational design of a self-assembling symmetrical β-propeller protein.

    PubMed

    Voet, Arnout R D; Noguchi, Hiroki; Addy, Christine; Simoncini, David; Terada, Daiki; Unzai, Satoru; Park, Sam-Yong; Zhang, Kam Y J; Tame, Jeremy R H

    2014-10-21

    The modular structure of many protein families, such as β-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical β-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2-10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry.

  20. Implementation of Kane's Method for a Spacecraft Composed of Multiple Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.

    2013-01-01

    Equations of motion are derived for a general spacecraft composed of rigid bodies connected via rotary (spherical or gimballed) joints in a tree topology. Several supporting concepts are developed in depth. Basis dyads aid in the transition from basis-free vector equations to component-wise equations. Joint partials allow abstraction of 1-DOF, 2-DOF, 3-DOF gimballed and spherical rotational joints to a common notation. The basic building block consisting of an "inner" body and an "outer" body connected by a joint enables efficient organization of arbitrary tree structures. Kane's equation is recast in a form which facilitates systematic assembly of large systems of equations, and exposes a relationship of Kane's equation to Newton and Euler's equations which is obscured by the usual presentation. The resulting system of dynamic equations is of minimum dimension, and is suitable for numerical solution by computer. Implementation is ·discussed, and illustrative simulation results are presented.

  1. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.

    PubMed

    Jurak, Edita; Kabel, Mirjam A; Gruppen, Harry

    2014-01-30

    Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore, different extracts of compost samples were prepared with water, 1M and 4M alkali and analyzed. At the beginning of composting, 34% and after 16 days of mycelium growth 27% of dry matter was carbohydrates. Carbohydrate composition analysis showed that mainly cellulose and poorly substituted xylan chains with similar amounts and ratios of xylan building blocks were present in all phases studied. Nevertheless, xylan solubility increased 20% over the period of mycelium growth indicating partial degradation of xylan backbone. Apparently, degradation of carbohydrates occurred over the process studied by both bacteria and fungi, mainly having an effect on xylan-chain length and solubility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    PubMed

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Hierarchical Macro-meso-microporous ZSM-5 Zeolite Hollow Fibers With Highly Efficient Catalytic Cracking Capability

    PubMed Central

    Liu, Jia; Jiang, Guiyuan; Liu, Ying; Di, Jiancheng; Wang, Yajun; Zhao, Zhen; Sun, Qianyao; Xu, Chunming; Gao, Jinsen; Duan, Aijun; Liu, Jian; Wei, Yuechang; Zhao, Yong; Jiang, Lei

    2014-01-01

    Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions. PMID:25450726

  4. IIIV/Si Nanoscale Lasers and Their Integration with Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Bondarenko, Olesya

    The rapidly evolving global information infrastructure requires ever faster data transfer within computer networks and stations. Integrated chip scale photonics can pave the way to accelerated signal manipulation and boost bandwidth capacity of optical interconnects in a compact and ergonomic arrangement. A key building block for integrated photonic circuits is an on-chip laser. In this dissertation we explore ways to reduce the physical footprint of semiconductor lasers and make them suitable for high density integration on silicon, a standard material platform for today's integrated circuits. We demonstrated the first room temperature metalo-dielectric nanolaser, sub-wavelength in all three dimensions. Next, we demonstrated a nanolaser on silicon, showing the feasibility of its integration with this platform. We also designed and realized an ultracompact feedback laser with edge-emitting structure, amenable for in-plane coupling with a standard silicon waveguide. Finally, we discuss the challenges and propose solutions for improvement of the device performance and practicality.

  5. An efficient synthesis of the constrained peptidomimetic 2-oxo-3-(N-9-fluorenyloxycarbonylamino)-1-azabicyclo[4.3.0]nonane-9-carboxylic acid from pyroglutamic acid.

    PubMed

    Mandal, Pijus Kumar; Kaluarachchi, Kumar K; Ogrin, Douglas; Bott, Simon G; McMurray, John S

    2005-11-25

    [reaction: see text] Azabicyclo[X.Y.0]alkane amino acids are rigid dipeptide mimetics that are useful tools for structure-activity studies in peptide-based drug discovery. Herein, we report an efficient synthesis of three diastereomers of 9-tert-butoxycarbonyl-2-oxo-3-(N-tert-butoxycarbonylamino)-1-azabicyclo[4.3.0]nonane (3S,6S,9S, 3S,6R,9R, and 3S,6R,9S). Methyl N-Boc-pyroglutamate is cleaved with vinylmagnesium bromide to produce an acyclic gamma-vinyl ketone. Michael addition of N-diphenylmethyleneglycine tert-butyl ester produces the N-Boc-delta-oxo-alpha,omega-diaminoazelate intermediate, which, on hydrogenloysis, gives the fused ring system. Acidolytic deprotection followed by Fmoc-protection provided building blocks suitable for solid-phase synthesis.

  6. Versatile microwave-driven trapped ion spin system for quantum information processing

    PubMed Central

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof

    2016-01-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233

  7. Highly Functionalized 1,2–Diamino Compounds through Reductive Amination of Amino Acid-Derived β–Keto Esters

    PubMed Central

    Pérez-Faginas, Paula; Aranda, M. Teresa; García-López, M. Teresa; Infantes, Lourdes; Fernández-Carvajal, Asia; González-Ros, José Manuel; Ferrer-Montiel, Antonio; González-Muñiz, Rosario

    2013-01-01

    1,2-Diamine derivatives are valuable building blocks to heterocyclic compounds and important precursors of biologically relevant compounds. In this respect, amino acid-derived β–keto esters are a suitable starting point for the synthesis of β,γ–diamino ester derivatives through a two-step reductive amination procedure with either simple amines or α–amino esters. AcOH and NaBH3CN are the additive and reducing agents of choice. The stereoselectivity of the reaction is still an issue, due to the slow imine-enamine equilibria through which the reaction occurs, affording mixtures of diastereoisomers that can be chromatographically separated. Transformation of the β,γ–diamino esters into pyrrolidinone derivatives allows the configuration assignment of the linear compounds, and constitutes an example of their potential application in the generation of molecular diversity. PMID:23308167

  8. Evaluation of a Texaco gasification/endash/combined-cycle plant with Kraftwerk Union gas turbines: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, J.T.; Chu, L.A.

    The modular nature of gasification-combined-cycle (GCC) plants is known to facilitate capacity addition in increments (phased construction) that may match more closely with the anticipated growth in electrical load. Because the gas turbines are the primary building blocks of a phased GCC plant, utility planners are investigating in more detail prospective gas turbines of current and advanced designs developed by several manufacturers. This report summarizes the results of the evaluation of a GCC power plant based on the Kraftwerk Union Model V84.2 gas turbines of the current design now offered for the US market. The design of the Model V84.2more » machine, a scaled-down version of Kraftwerk Union's 50 Hz Model V94 machine, incorporates features suitable for burning gases, such as coal-derived synthesis gas. 14 figs., 42 tabs.« less

  9. Self-Assembly of New Arene-Ruthenium Rectangles Containing Triptycene Building Block and Their Application in Fluorescent Detection of Nitro Aromatics

    PubMed Central

    Dubey, Abhishek; Mishra, Anurag; Min, Jin Wook; Lee, Min Hyung; Kim, Hyunuk; Stang, Peter J.; Chi, Ki-Whan

    2014-01-01

    A suite of two new tetraruthenium metallarectangles 5 and 6 have been obtained from [2 + 2] self-assemblies between dipyridylethynyltriptycene 2 and one of the two dinuclear arene ruthenium clips, [Ru2 (μ-η4-OO∩OO) (η6-p-cymene)2][OTf]2 ; (OO∩OO = oxalate 3; 6,11-dihydroxy-5,12-naphthacenedionato (dotq) 4; OTf = triflate). These molecular rectangles are fully characterized by 1H NMR spectroscopy, electrospray mass spectrometry. A single crystal of 6 was suitable for X-ray diffraction structural characterization. These new metallarectangles showed fluorescence behavior in solution, have been examined for emission quenching effects with various aromatic compounds, and show high quenching selectivity and sensitivity towards nitroaromatics, particularly picric acid and trinitrotoluene. Excited-state charge transfer from the rectangles to nitro aromatic substrates can be used to develop selective fluorescent sensors for nitro aromatics. PMID:26321767

  10. Error-correction coding for digital communications

    NASA Astrophysics Data System (ADS)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  11. Analog-to-digital clinical data collection on networked workstations with graphic user interface.

    PubMed

    Lunt, D

    1991-02-01

    An innovative respiratory examination system has been developed that combines physiological response measurement, real-time graphic displays, user-driven operating sequences, and networked file archiving and review into a scientific research and clinical diagnosis tool. This newly constructed computer network is being used to enhance the research center's ability to perform patient pulmonary function examinations. Respiratory data are simultaneously acquired and graphically presented during patient breathing maneuvers and rapidly transformed into graphic and numeric reports, suitable for statistical analysis or database access. The environment consists of the hardware (Macintosh computer, MacADIOS converters, analog amplifiers), the software (HyperCard v2.0, HyperTalk, XCMDs), and the network (AppleTalk, fileservers, printers) as building blocks for data acquisition, analysis, editing, and storage. System operation modules include: Calibration, Examination, Reports, On-line Help Library, Graphic/Data Editing, and Network Storage.

  12. Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins.

    PubMed

    Assen, Ayalew H; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant M; Xue, Dong-Xu; Jiang, Hao; Eddaoudi, Mohamed

    2015-11-23

    Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y(3+) and Tb(3+)) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Well-balanced high-order solver for blood flow in networks of vessels with variable properties.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2013-12-01

    We present a well-balanced, high-order non-linear numerical scheme for solving a hyperbolic system that models one-dimensional flow in blood vessels with variable mechanical and geometrical properties along their length. Using a suitable set of test problems with exact solution, we rigorously assess the performance of the scheme. In particular, we assess the well-balanced property and the effective order of accuracy through an empirical convergence rate study. Schemes of up to fifth order of accuracy in both space and time are implemented and assessed. The numerical methodology is then extended to realistic networks of elastic vessels and is validated against published state-of-the-art numerical solutions and experimental measurements. It is envisaged that the present scheme will constitute the building block for a closed, global model for the human circulation system involving arteries, veins, capillaries and cerebrospinal fluid. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Tandem Repeat Proteins Inspired By Squid Ring Teeth

    NASA Astrophysics Data System (ADS)

    Pena-Francesch, Abdon

    Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides that allow for a fine control of the sequence and network morphology. The results provided in this work establish a clear dependence between the repetitive building blocks, the network morphology, and the properties of squid-inspired repetitive protein materials. Increasing the number of tandem repeat units in SRT-inspired proteins led to more effective protein networks with superior properties. Through increasing tandem repetition and optimization of network morphology, highly efficient protein materials capable of withstanding deformations up to 400% of their original length, with MPa-GPa modulus, high energy absorption (50 MJ m-3), peak proton conductivity of 3.7 mS cm-1 (at pH 7, highest reported to date for biological materials), and peak thermal conductivity of 1.4 W m-1 K -1 (which exceeds that of most polymer materials) were developed. These findings introduce new design rules in the engineering of proteins based on tandem repetition and morphology control, and provide a novel framework for tailoring and optimizing the properties of protein-based materials.

  15. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    PubMed

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational spectroscopy, to ascertain features about the constituent superatomic building blocks, such as the charge of the cluster cores, by analysis of bond distances from the SCXRD data. The combination of atomic precision and intercluster interactions in these SACs produces novel collective properties, including tunable electrical transport, crystalline thermal conductivity, and ferromagnetism. In addition, we have developed a synthetic strategy to insert redox-active guests into the superstructure of SACs via single-crystal-to-single-crystal intercalation. This intercalation process allows us to tune the optical and electrical transport properties of the superatomic crystal host. These properties are explored using a host of techniques, including Raman spectroscopy, SQUID magnetometry, electrical transport measurements, electronic absorption spectroscopy, differential scanning calorimetry, and frequency-domain thermoreflectance. Superatomic crystals have proven to be both robust and tunable, representing a new method of materials design and architecture. This Account demonstrates how precisely controlling the structure and properties of nanoscale building blocks is key in developing the next generation of functional materials; several examples are discussed and detailed herein.

  16. Building a Case for Blocks as Kindergarten Mathematics Learning Tools

    ERIC Educational Resources Information Center

    Kinzer, Cathy; Gerhardt, Kacie; Coca, Nicole

    2016-01-01

    Kindergarteners need access to blocks as thinking tools to develop, model, test, and articulate their mathematical ideas. In the current educational landscape, resources such as blocks are being pushed to the side and being replaced by procedural worksheets and academic "seat time" in order to address standards. Mathematics research…

  17. Revisit Pattern Blocks to Develop Rational Number Sense

    ERIC Educational Resources Information Center

    Champion, Joe; Wheeler, Ann

    2014-01-01

    Pattern blocks are inexpensive wooden, foam, or plastic manipulatives developed in the 1960s to help students build an understanding of shapes, proportions, equivalence, and fractions (EDC 1968). The colorful collection of basic shapes in classic pattern block kits affords opportunities for amazing puzzle-like problem-solving tasks and for…

  18. Dynamical Approach Study of Spurious Numerics in Nonlinear Computations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.

  19. Two new hybrid molybdenum arsenate derivative constructed from [As2Mo6O26]6- building: Synthesis, structural characterization and photocatalysis property

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Luo, Xuan; Duan, Yuanling; Huang, Yanping; Zhang, Nanxi; Zhao, Liyan; Wu, Jie

    2017-08-01

    Two new inorganic-organic hybrid materials [Cu(enMe)2]2{(As2Mo6O26) [Cu(enMe)2]}·4H2O (1) and [As2Mo6(OH)2O24][Cu(H2O)2(phen)]2 (2) (enMe = 1,2'-propanediamine, phen = 1,10'-phenanthroline) based on [As2Mo6O26]6- building blocks, denoted as [As2Mo6], have been obtained by hydrothermal methods. 1 shows a 1-D straight chain structure constructed form [As2Mo6] building blocks and [Cu(enMe)2] complexes, and then extended to 3-D supramolecular network by lattice water via hydrogen bonds interactions. 2 exhibits a new 1-D covalent ribbon with large rectangular grids formed from [As2Mo6] building blocks connected by [Cu(H2O)2(phen)] complexes, then extended into 3-D supramolecular network via hydrogen bonds and π···π interactions. In additional, the photocatalytic activity for methylene blue degradation under visible-light irradiation of 2 was investigated.

  20. Assessment of Seismic Damage on The Exist Buildings Using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Pınar, USTA; Nihat, MOROVA; EVCİ, Ahmet; ERGÜN, Serap

    2018-01-01

    Earthquake as a natural disaster could damage the lives of many people and buildings all over the world. These is micvulnerability of the buildings needs to be evaluated. Accurate evaluation of damage sustained by buildings during natural disaster events is critical to determine the buildings safety and their suitability for future occupancy. The earthquake is one of the disasters that structures face the most. There fore, there is a need to evaluate seismic damage and vulnerability of the buildings to protect them. These days fuzzy systems have been widely used in different fields of science because of its simpli city and efficiency. Fuzzy logic provides a suitable framework for reasoning, deduction, and decision making in fuzzy conditions. In this paper, studies on earthquake hazard evaluation of buildings by fuzzy logic modeling concepts in the literature have been investigated and evaluated, as a whole.

  1. Self-assembly: Misfits unite

    NASA Astrophysics Data System (ADS)

    Grason, Gregory M.

    2017-12-01

    The spontaneous assembly of particulate or molecular 'building blocks' into larger architectures underlies structure formation in many biological and synthetic materials. Shape frustration of ill-fitting blocks holds a surprising key to more regular assemblies.

  2. Door in west wall of the center block, positioned near ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Door in west wall of the center block, positioned near the detached kitchen/bake house building. - Lazaretto Quarantine Station, Wanamaker Avenue and East Second Street, Essington, Delaware County, PA

  3. A crown-like heterometallic unit as the building block for a 3D In-Ge-S framework.

    PubMed

    Han, Xiaohui; Wang, Zhenqing; Xu, Jin; Liu, Dan; Wang, Cheng

    2015-12-14

    Supertetrahedral clusters are the most common building blocks in constructing Group 13/14/16 microporous metal chalcogenide materials while other types of clusters are yet scarcely explored. Herein, a new crown-like building unit [In3Ge3S16] has been obtained. The units assemble into a 3D framework [C6H14NO]4[In6Ge3S17]·1.5H2O (1) via a dual-connection mode and a SrSi2 (srs)-type topology could be achieved by treating each unit as a tri-connected node.

  4. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1993-01-01

    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.

  5. VLSI architecture for a Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor)

    1992-01-01

    A basic single-chip building block for a Reed-Solomon (RS) decoder system is partitioned into a plurality of sections, the first of which consists of a plurality of syndrome subcells each of which contains identical standard-basis finite-field multipliers that are programmable between 10 and 8 bit operation. A desired number of basic building blocks may be assembled to provide a RS decoder of any syndrome subcell size that is programmable between 10 and 8 bit operation.

  6. Exploring endoperoxides as a new entry for the synthesis of branched azasugars

    PubMed Central

    Domeyer, Svenja; Bjerregaard, Mark; Johansson, Henrik

    2017-01-01

    A new class of nitrogen-containing endoperoxides were synthesised by a photochemical [4 + 2]-cycloaddition between a diene and singlet oxygen. The endoperoxides were dihydroxylated and protected to provide a series of endoperoxide building blocks for organic synthesis, with potential use as precursors for the synthesis of branched azasugars. Preliminary exploration of the chemistry of these building blocks provided access to a variety of derivatives including tetrahydrofurans, epoxides and protected amino-tetraols. PMID:28487758

  7. Cascaded VLSI neural network architecture for on-line learning

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P. (Inventor); Duong, Tuan A. (Inventor); Daud, Taher (Inventor)

    1992-01-01

    High-speed, analog, fully-parallel, and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A computation intensive feature classification application was demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as an application specific coprocessor for solving real world problems at extremely high data rates.

  8. Spontaneous self-assembly of a giant spherical metal-oxide Keplerate: addition of one building block induces "immediate" formation of the complementary one from a constitutional dynamic library.

    PubMed

    Schäffer, Christian; Todea, Ana Maria; Gouzerh, Pierre; Müller, Achim

    2012-01-11

    The addition of dinuclear {Mo(2)} units to a dynamic library containing molybdates results in the spontaneous self-assembly of a giant spherical metal-oxide species of the type {(Mo)Mo(5)}(12){Mo(2)}(30) while the required pentagonal {(Mo)Mo(5)} building blocks are "immediately" formed. This journal is © The Royal Society of Chemistry 2012

  9. Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid.

    PubMed

    Zhang, Ying; Zhan, Tian-Guang; Zhou, Tian-You; Qi, Qiao-Yan; Xu, Xiao-Na; Zhao, Xin

    2016-06-18

    A two-dimensional (2D) supramolecular organic framework (SOF) has been constructed through the co-assembly of a triphenylamine-based building block and cucurbit[8]uril (CB[8]). Fluorescence turn-on of the non-emissive building block was observed upon the formation of the 2D SOF, which displayed highly selective and sensitive recognition of picric acid over a variety of nitroaromatics.

  10. Cascaded VLSI neural network architecture for on-line learning

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Daud, Taher (Inventor); Thakoor, Anilkumar P. (Inventor)

    1995-01-01

    High-speed, analog, fully-parallel and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware-compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A comparison-intensive feature classification application has been demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as application-specific-coprocessors for solving real-world problems at extremely high data rates.

  11. Building blocks for the development of an interface for high-throughput thin layer chromatography/ambient mass spectrometric analysis: a green methodology.

    PubMed

    Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie

    2012-07-17

    Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.

  12. Mussel-inspired nano-building block assemblies for mimicking extracellular matrix microenvironments with multiple functions.

    PubMed

    Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping

    2017-08-03

    The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe 3 O 4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.

  13. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  14. Single-trabecula building block for large-scale finite element models of cancellous bone.

    PubMed

    Dagan, D; Be'ery, M; Gefen, A

    2004-07-01

    Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) 'building-block' of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of approximately 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of approximately 30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.

  15. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  16. GIS based evaluation of crop suitability for agricultural sustainability around Kolaghat thermal power plant, India.

    PubMed

    Adak, Subhas; Adhikari, Kalyan; Brahmachari, Koushik

    2016-09-01

    Fly ash exhaust from Kolaghat thermal power plant, West Bengal, India,?? affects the areas within the radius of 3 - 4 km. Land information system indicated that surface texture within 4 km was silty loam and clay content increased with increase of distance. Soil pH was alkaline (7.58-8.01) in affected circles, whereas soil was acidic (5.95-6.41) in rest of block. Organic carbon (OC) is roving from 0.36 to 0.64% in the nearer circles which is lesser from others. The present Crop suitability analysis revealed that 96.98 % area was suitable (S1) for maize, sesame, jute, whereas these were cultivated in less than 1% of land. Flowers are the best suitable (S1) in 88.9 % but it was grown in 6.02 % area.? The present rice area within 4 km of KTPP is showing moderately suitable (S2) and S1 for the rest. Wheat is moderately suitable (S2) in the almost all the circles.? Cultivation of vegetable crops is limited in the affected circles while the highly suitable (S1) comprises 67.49 % for the remaining areas though it covered only 6.01 % of the block.? This evaluation precisely improves more than 300% from the earlier cropping intensity of 177.95 %. Suitability based land use allocation serves as stepping stone to promote agricultural sustainability. Geographic information system (GIS) model has been developed to assess site specific crop suitability for sustainable agricultural planning.

  17. Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles.

    PubMed

    Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina

    2015-03-24

    The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.

  18. ETR BUILDING, TRA642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR BUILDING, TRA-642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ETR BUILDING (HIGH ROOF LINE); ELECTRICAL BUILDING (ONE-STORY, MADE OF PUMICE BLOCKS), TRA-648; AND HEAT EXCHANGER BUILDING (WITH BUILDING NUMBERS), TRA-644. NOTE PROJECTION OF ELECTRICAL BUILDING AT LEFT EDGE OF VIEW. CAMERA FACES NORTH. INL NEGATIVE NO. HD46-37-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles

    PubMed Central

    Lunn, David J.; Gould, Oliver E. C.; Whittell, George R.; Armstrong, Daniel P.; Mineart, Kenneth P.; Winnik, Mitchell A.; Spontak, Richard J.; Pringle, Paul G.; Manners, Ian

    2016-01-01

    Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale. PMID:27538877

  20. Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai

    2015-12-01

    Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets. Electronic supplementary information (ESI) available: Additional experimental information, and SEM images of Cu EPD films. See DOI: 10.1039/c5nr06599b

  1. Streambank Protection Guidelines for Landowners and Local Governments,

    DTIC Science & Technology

    1983-10-01

    building blocks , slag , and quarry waste. UNCHE SON / / Large flat slabs should be broken up into /smaller pieces. Garbage, vegetation, scrap lumber...concrete blocks , and house brick. but will not provide any long-term protection. Preabrfirated commercial gabion basket. Completed gabion revetment made...prevent pressure buildup that could cause revetment failure. BLOCKS . Precast cellular blocks can be *,-’e : Typi.tal sa.d- e, .t bag r ’etment

  2. 44. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE COMPANY FACTORY AND WAREHOUSE AND DUBUQUE SEED COMPANY WAREHOUSE IN BACKGROUND. VIEW TO SOUTHWEST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA

  3. 43. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE COMPANY FACTORY AND WAREHOUSE AND DUBUQUE SEED COMPANY WAREHOUSE IN BACKGROUND. VIEW TO SOUTHWEST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA

  4. 42. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE COMPANY FACTORY AND WAREHOUSE AND DUBUQUE SEED COMPANY WAREHOUSE IN BACKGROUND. VIEW TO SOUTHWEST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA

  5. 12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  6. Photogrammetric Recording and Reconstruction of Town Scale Models - the Case of the Plan-Relief of Strasbourg

    NASA Astrophysics Data System (ADS)

    Macher, H.; Grussenmeyer, P.; Landes, T.; Halin, G.; Chevrier, C.; Huyghe, O.

    2017-08-01

    The French collection of Plan-Reliefs, scale models of fortified towns, constitutes a precious testimony of the history of France. The aim of the URBANIA project is the valorisation and the diffusion of this Heritage through the creation of virtual models. The town scale model of Strasbourg at 1/600 currently exhibited in the Historical Museum of Strasbourg was selected as a case study. In this paper, the photogrammetric recording of this scale model is first presented. The acquisition protocol as well as the data post-processing are detailed. Then, the modelling of the city and more specially building blocks is investigated. Based on point clouds of the scale model, the extraction of roof elements is considered. It deals first with the segmentation of the point cloud into building blocks. Then, for each block, points belonging to roofs are identified and the extraction of chimney point clouds as well as roof ridges and roof planes is performed. Finally, the 3D parametric modelling of the building blocks is studied by considering roof polygons and polylines describing chimneys as input. In a future works section, the semantically enrichment and the potential usage scenarios of the scale model are envisaged.

  7. School's Out, Let's Eat: FRAC's Guide to Using the Child and Adult Care Food Program (CACFP) to Expand Afterschool Opportunities for Children. The Building Blocks Project. Promoting Education and Child Development with Nutrition Resources.

    ERIC Educational Resources Information Center

    Wierwille, Jennifer; Parker, Lynn; Henchy, Geraldine; Driscoll, Christin M.; Tingling-Clemmons, Michele

    The provision of quality before- and after-school child care is a major challenge facing educators. This guide from the Food Research and Action Center's Building Blocks Project provides information to providers of before and after school programs on using the federal Child and Adult Care Food Program (CACFP) to provide snacks and meals. Following…

  8. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.

    PubMed

    Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay

    2016-01-26

    A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds.

    PubMed

    Hari, Durga Prasad; Waser, Jerome

    2017-06-28

    Enantioselective catalytic methods allowing the addition of both a nucleophile and an electrophile onto diazo compounds give a fast access into important building blocks. Herein, we report the highly enantioselective oxyalkynylation of diazo compounds using ethynylbenziodoxol-(on)e reagents and a simple copper bisoxazoline catalyst. The obtained α-benzoyloxy propargylic esters are useful building blocks, which are difficult to synthesize in enantiopure form using other methods. The obtained products could be efficiently transformed into vicinal diols and α-hydroxy propargylic esters without loss in enantiopurity.

  10. Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.

    PubMed

    van der Meulen, Machteld I; Petkov, Nikolay; Morris, Michael A; Kazakova, Olga; Han, Xinhai; Wang, Kang L; Jacob, Ajey P; Holmes, Justin D

    2009-01-01

    Magnetically doped Si and Ge nanowires have potential application in future nanowire spin-based devices. Here, we report a supercritical fluid method for producing single crystalline Mn-doped Ge nanowires with a Mn-doping concentration of between 0.5-1.0 atomic % that display ferromagnetism above 300 K and a superior performance with respect to the hole mobility of around 340 cm(2)/Vs, demonstrating the potential of using these nanowires as building blocks for electronic devices.

  11. Application and research of block caving in Pulang copper mine

    NASA Astrophysics Data System (ADS)

    Ge, Qifa; Fan, Wenlu; Zhu, Weigen; Chen, Xiaowei

    2018-01-01

    The application of block caving in mines shows significant advantages in large scale, low cost and high efficiency, thus block caving is worth promoting in the mines that meets the requirement of natural caving. Due to large scale of production and low ore grade in Pulang copper mine in China, comprehensive analysis and research were conducted on rock mechanics, mining sequence, undercutting and stability of bottom structure in terms of raising mine benefit and maximizing the recovery mineral resources. Finally this study summarizes that block caving is completely suitable for Pulang copper mine.

  12. [Regional nerve block in facial surgery].

    PubMed

    Gramkow, Christina; Sørensen, Jesper

    2008-02-11

    Regional nerve blocking techniques offer a suitable alternative to local infiltration anaesthesia for facial soft tissue-surgery. Moreover, they present several advantages over general anaesthesia, including smoother recovery, fewer side effects, residual analgesia into the postoperative period, earlier discharge from the recovery room and reduced costs. The branches of the trigeminal nerve and the sensory nerves originating from the upper cervical plexus can be targeted at several anatomical locations. We summarize current knowledge on facial nerve block techniques and recommend ten nerve blocks providing efficient anaesthesia for the entire head and upper-neck region.

  13. 4. Historic American Buildings Survey Nathaniel R. Ewan, Photographer January ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey Nathaniel R. Ewan, Photographer January 6, 1939 INTERIOR - END CARRIAGE 'BLOCK AND DOGS' - McMurtry's Saw Mill, Hardscrabble Road, Basking Ridge, Somerset County, NJ

  14. Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER SENGLER, 1964 CROSS SECTION AND ORIGINAL JACKSON BOULEVARD ELEVATION - Monadnock Block, 53 West Jackson Boulevard, Chicago, Cook County, IL

  15. Modular Assembly of Hierarchically Structured Polymers

    NASA Astrophysics Data System (ADS)

    Leophairatana, Porakrit

    The synthesis of macromolecules with complex yet highly controlled molecular architectures has attracted significant attention in the past few decades due to the growing demand for specialty polymers that possess novel properties. Despite recent efforts, current synthetic routes lack the ability to control several important architectural variables while maintaining low polydispersity index. This dissertation explores a new synthetic scheme for the modular assembly of hierarchically structured polymers (MAHP) that allows virtually any complex polymer to be assembled from a few basic molecular building blocks using a single common coupling chemistry. Complex polymer structures can be assembled from a molecular toolkit consisting of (1) copper-catalyzed azide-alkyne cycloaddition (CuAAC), (2) linear heterobifunctional macromonomers, (3) a branching heterotrifunctional molecule, (4) a protection/deprotection strategy, (5) "click" functional solid substrates, and (6) functional and responsive polymers. This work addresses the different challenges that emerged during the development of this synthetic scheme, and presents strategies to overcome those challenges. Chapter 3 investigates the alkyne-alkyne (i.e. Glaser) coupling side reactions associated with the atom transfer radical polymerization (ATRP) synthesis of alkyne-functional macromonomers, as well as with the CuAAC reaction of alkyne functional building blocks. In typical ATRP synthesis of unprotected alkyne functional polymers, Glaser coupling reactions can significantly compromise the polymer functionality and undermine the success of subsequent click reactions in which the polymers are used. Two strategies are reported that effectively eliminate these coupling reactions: (1) maintaining low temperature post-ATRP upon exposure to air, followed by immediate removal of copper catalyst; and (2) adding excess reducing agents post-ATRP, which prevents the oxidation of Cu(I) catalyst required by the Glaser coupling mechanism. Post-ATRP Glaser coupling was also influenced by the ATRP synthesis ligand used. The order of ligand activity for catalyzing Glaser coupling was: linear bidentate > tridentate > tetradentate. Glaser coupling can also occur for alkynes held under CuAAC reaction conditions but again can be eliminated by adding appropriate reducing agents. With the strategy presented in Chapter 3, alkyne-terminated polymers of high-functionality were produced without the need for alkyne protecting groups. These "click" functional building blocks were employed to investigate the overall efficiency of the CuAAC "click" coupling reactions between alkyne- and azide-terminated macromonomers as discussed in Chapter 4. Quantitative convolution modeling of the entire molecular weight distribution post-CuAAC indicates a CuAAC efficiency of about 94% and an azide substitution efficiency of >99%. However, incomplete functionality of the azide-terminated macromonomer (˜92%) proves to be the largest factor compromising the overall efficacy of the coupling reactions, and is attributed primarily to the loss of bromine functionality during synthesis by ATRP. To address this issue, we discuss in Chapter 6 the development of a new set of molecular building blocks consisting of alkyne functional substrates and heterobifunctional degradable linkers that allow the growth and subsequent detachment of polymers from the solid substrate. Complex polymeric structures are created by progressive cycles of CuAAC and deprotection reactions that add building blocks to the growing polymer chain ends. We demonstrate that these building blocks were completely stable under both CuAAC and deprotection reaction conditions. Since the desired product is covalently bound to the solid surface, the unreacted monomers/macromonomers and by-products (i.e. non-functional building blocks) can be easily separated from the product via removal of the polymer-tethered solid substrate in one step. Chapter 5 discusses how MAHP was employed to prepare a variety of hierarchically structured polymers and copolymers with controlled branching architectures. alpha-azido,o-TIPS-alkyne-heterobifunctional and heterotrifunctional building blocks were first prepared via ATRP and organic synthesis. Preliminary NMR and SEC studies demonstrated that these building blocks all satisfied the criteria necessary for MAHP: (1) the TIPS protecting group is stable during ATRP and CuAAC, (2) the "click" functionality is completely regenerated during the deprotection step, and (3) the CuAAC reaction of branching macromonomers is quantitative (>94%). To demonstrate the concept, poly(n-butyl acrylate)-b-dipolystyrene- b-dipoly(tert-butyl acrylate) penta-block branching copolymacromer was prepared via MAHP and quantitively characterized with SEC and NMR. (Abstract shortened by ProQuest.).

  16. Development of volume deposition on cast iron by additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.

    2016-11-10

    ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition techniquemore » to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.« less

  17. Where are lifesaving automated external defibrillators located and how hard is it to find them in a large urban city?

    PubMed Central

    Leung, Alison C.; Asch, David A.; Lozada, Kirkland N.; Saynisch, Olivia B.; Asch, Jeremy M.; Becker, Nora; Griffis, Heather M.; Shofer, Frances; Hershey, John C.; Hill, Shawndra; Branas, Charles C.; Nichol, Graham; Becker, Lance B.; Merchant, Raina M.

    2013-01-01

    Objectives Automated external defibrillators (AEDs) are lifesaving, but little is known about where they are located or how to find them. We sought to locate AEDs in high employment areas of Philadelphia and characterize the process of door-to-door surveying to identify these devices. Methods Block groups representing approximately the top 3rd of total primary jobs in Philadelphia were identified using the US Census Local Employment Dynamics database. All buildings within these block groups were surveyed during regular working hours over six weeks during July-August 2011. Buildings were characterized as publically accessible or inaccessible. For accessible buildings, address, location type, and AED presence were collected. Total devices, location description and prior use were gathered in locations with AEDs. Process information (total people contacted, survey duration) was collected for all buildings. Results Of 1420 buildings in 17 block groups, 949 (67%) were accessible, but most 834 (88%) did not have an AED. 283 AEDs were reported in 115 buildings (12%). 81 (29%) were validated through visualization and 68 (24%) through photo because employees often refused access. In buildings with AEDs, several employees (median 2; range 1–8) were contacted to ascertain information, which required several minutes (mean 4; range 1–55). Conclusions Door-to-door surveying is a feasible, but time-consuming method for identifying AEDs in high employment areas. Few buildings reported having AEDs and few permitted visualization, which raises concerns about AED access. To improve cardiac arrest outcomes, efforts are needed to improve the availability of AEDs, awareness of their location and access to them. PMID:23357702

  18. Where are lifesaving automated external defibrillators located and how hard is it to find them in a large urban city?

    PubMed

    Leung, Alison C; Asch, David A; Lozada, Kirkland N; Saynisch, Olivia B; Asch, Jeremy M; Becker, Nora; Griffis, Heather M; Shofer, Frances; Hershey, John C; Hill, Shawndra; Branas, Charles C; Nichol, Graham; Becker, Lance B; Merchant, Raina M

    2013-07-01

    Automated external defibrillators (AEDs) are lifesaving, but little is known about where they are located or how to find them. We sought to locate AEDs in high employment areas of Philadelphia and characterize the process of door-to-door surveying to identify these devices. Block groups representing approximately the top 3rd of total primary jobs in Philadelphia were identified using the US Census Local Employment Dynamics database. All buildings within these block groups were surveyed during regular working hours over six weeks during July-August 2011. Buildings were characterized as publically accessible or inaccessible. For accessible buildings, address, location type, and AED presence were collected. Total devices, location description and prior use were gathered in locations with AEDs. Process information (total people contacted, survey duration) was collected for all buildings. Of 1420 buildings in 17 block groups, 949 (67%) were accessible, but most 834 (88%) did not have an AED. 283 AEDs were reported in 115 buildings (12%). 81 (29%) were validated through visualization and 68 (24%) through photo because employees often refused access. In buildings with AEDs, several employees (median 2; range 1-8) were contacted to ascertain information, which required several minutes (mean 4; range 1-55). Door-to-door surveying is a feasible, but time-consuming method for identifying AEDs in high employment areas. Few buildings reported having AEDs and few permitted visualization, which raises concerns about AED access. To improve cardiac arrest outcomes, efforts are needed to improve the availability of AEDs, awareness of their location and access to them. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Properties of Clay for Ceramics with Rock Waste for Production Structural Block by Pressing and Firing

    NASA Astrophysics Data System (ADS)

    Cerqueira, N. A.; Choe, D.; Alexandre, J.; Azevedo, A. R. G.; Xavier, C. G.; Souza, V. B.

    Building work requires optimization of materials and labor, so that the execution of its subsystems contribute to the quality, reduce costs, decrease waste in buildings, productivity, practicality and especially agility. Thus, the fitting blocks can contribute in this direction. This work therefore consists of physical characterization (determination of fitness levels, grain size and bulk density), chemical (EDX) and thermal (DTA and TGA) sample clay Campos dos Goytacazes-RJ and waste rock ornamental Cachoeiro de Itapemirim-ES, to verify potential for producing red ceramic blocks, pressed and burned, male and female type. The output of block will be with different pe rcentages of incorporation of residues of ornamental rocks (0%, 5% and 10%). With the results obtained, it was found that the raw materials under consideration has the potential for application in the production of ceramic articles.

  20. Assessment of Rooftop Area in Austin Energy's Service Territory Suitable for PV Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiese, Steven M.

    The objective of this project was to create a model for assessing the amount of rooftop area on commercial, industrial, institutional, and governmental buildings in Austin Energy's service area suitable for solar electric energy development and, based on this model, determine the potential installed capacity and annual energy production from solar electric installations on the rooftops of these buildings. Key questions addressed by this project were: 1.What is the aggregate rooftop area, rooftop area suitable for PV project development, and potential for PV capacity and energy production from rooftop solar photovoltaic systems on key building types in Austin Energy's servicemore » area? 2.How do the potential capacity and annual energy production from rooftop solar electric systems compare with Austin Energy's current capacity and annual energy requirements?« less

  1. Evaluation of Sunshine Duration around a Building in an Urban Area

    NASA Astrophysics Data System (ADS)

    Kang, J. E.; Kim, J.

    2017-12-01

    In this study, sunshine duration around a building in a building-congested district in Busan, Korea was analyzed using a numerical model. This model considers sunshine duration blocking caused by topography and buildings and it is properly applicable to evaluation of sunshine duration environment in urban areas. The 2 km Í 2 km area where the building with 45-m height was located at the center was selected as a target area. We selected the target period from December 21 to December 23, 2015, considering the winter solstice (December 22, 2015) when it is expected to have the largest effect of sunshine blocking due to buildings. We validated the calculated solar altitude and azimuth angles against those provided by Korea astronomy and space science institute (KASI) and the calculated results gave very good agreement with those provided by KASI. Topography and buildings used as the input data of the model were constructed using a geographic information system (GIS) data. In order to analyze, in detail, the change in sunshine duration caused by the construction of the building, the sunshine duration on the roof and walls (eastern, western, southern, northern side) were investigated before and after the construction.

  2. Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Lin; Bode, Jeffrey W.

    2014-10-01

    Microbial fermentation can rapidly provide potent compounds that can be easily screened for biological activity, and the active components can be isolated. Its success in drug discovery has inspired extensive efforts to modulate and control the products. In this Article, we document a ‘synthetic fermentation’ of bioactive, unnatural peptides ‘grown’ from small building blocks in water using amide-forming ligations. No organisms, enzymes or reagents are needed. The sequences, structures and compositions of the products can be modulated by adjusting the building blocks and conditions. No specialized knowledge of organic chemistry or handling of toxic material is required to produce complex organic molecules. The ‘fermentations’ can be conducted in arrays and screened for biological activity without isolation or workup. As a proof-of-concept, about 6,000 unnatural peptides were produced from just 23 building blocks, from which a hepatitis C virus NS3/4A protease inhibitor with a half-maximum inhibitory concentration of 1.0 μM was identified and characterized.

  3. A triaxial supramolecular weave

    NASA Astrophysics Data System (ADS)

    Lewandowska, Urszula; Zajaczkowski, Wojciech; Corra, Stefano; Tanabe, Junki; Borrmann, Ruediger; Benetti, Edmondo M.; Stappert, Sebastian; Watanabe, Kohei; Ochs, Nellie A. K.; Schaeublin, Robin; Li, Chen; Yashima, Eiji; Pisula, Wojciech; Müllen, Klaus; Wennemers, Helma

    2017-11-01

    Despite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist—these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads. Each thread is formed by the self-assembly of a building block comprising a rigid oligoproline segment with two perylene-monoimide chromophores spaced at 18 Å. Upon π stacking of the chromophores, threads form that feature alternating up- and down-facing voids at regular distances. These voids accommodate incoming building blocks and establish crossing points through CH-π interactions on further assembly of the threads into a triaxial woven superstructure. The resulting micrometre-scale supramolecular weave proved to be more robust than non-woven self-assemblies of the same building block. The uniform hexagonal pores of the interwoven network were able to host iridium nanoparticles, which may be of interest for practical applications.

  4. Morphology-Controlled Synthesis and Metalation of Porphyrin Nanoparticles with Enhanced Photocatalytic Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiefei; Zhong, Yong; Wang, Liang

    The design and engineering of the size, shape, and chemistry of photoactive building blocks enables the fabrication of functional nanoparticles for applications in light harvesting, photocatalytic synthesis, water splitting, phototherapy, and photodegradation. Here, we report the synthesis of such nanoparticles through a surfactant-assisted interfacial self-assembly process using optically active porphyrin as a functional building block. The self-assembly process relies on specific interactions such as π–π stacking and metalation (metal atoms and ligand coordination) between individual porphyrin building blocks. Depending on the kinetic conditions and type of surfactants, resulting structures exhibit well-defined one- to three-dimensional morphologies such as nanowires, nanooctahedra, andmore » hierarchically ordered internal architectures. Specifically, electron microscopy and X-ray diffraction results indicate that these nanoparticles exhibit stable single-crystalline and nanoporous frameworks. In conclusion, due to the hierarchical ordering of the porphyrins, the nanoparticles exhibit collective optical properties resulted from coupling of molecular porphyrins and photocatalytic activities such as photodegradation of methyl orange (MO) pollutants and hydrogen production.« less

  5. Plasmid Vectors and Molecular Building Blocks for the Development of Genetic Manipulation Tools for Trypanosoma cruzi

    PubMed Central

    Bouvier, León A.; Cámara, María de los Milagros; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.

    2013-01-01

    The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted. PMID:24205392

  6. Robust excitons inhabit soft supramolecular nanotubes

    PubMed Central

    Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.

    2014-01-01

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336

  7. Biomimetic, Strong, Tough, and Self-Healing Composites Using Universal Sealant-Loaded, Porous Building Blocks.

    PubMed

    Hwang, Sung Hoon; Miller, Joseph B; Shahsavari, Rouzbeh

    2017-10-25

    Many natural materials, such as nacre and dentin, exhibit multifunctional mechanical properties via structural interplay between compliant and stiff constituents arranged in a particular architecture. Herein, we present, for the first time, the bottom-up synthesis and design of strong, tough, and self-healing composite using simple but universal spherical building blocks. Our composite system is composed of calcium silicate porous nanoparticles with unprecedented monodispersity over particle size, particle shape, and pore size, which facilitate effective loading and unloading with organic sealants, resulting in 258% and 307% increases in the indentation hardness and elastic modulus of the compacted composite. Furthermore, heating the damaged composite triggers the controlled release of the nanoconfined sealant into the surrounding area, enabling moderate recovery in strength and toughness. This work paves the path towards fabricating a novel class of biomimetic composites using low-cost spherical building blocks, potentially impacting bone-tissue engineering, insulation, refractory and constructions materials, and ceramic matrix composites.

  8. Morphology-Controlled Synthesis and Metalation of Porphyrin Nanoparticles with Enhanced Photocatalytic Performance

    DOE PAGES

    Wang, Jiefei; Zhong, Yong; Wang, Liang; ...

    2016-09-12

    The design and engineering of the size, shape, and chemistry of photoactive building blocks enables the fabrication of functional nanoparticles for applications in light harvesting, photocatalytic synthesis, water splitting, phototherapy, and photodegradation. Here, we report the synthesis of such nanoparticles through a surfactant-assisted interfacial self-assembly process using optically active porphyrin as a functional building block. The self-assembly process relies on specific interactions such as π–π stacking and metalation (metal atoms and ligand coordination) between individual porphyrin building blocks. Depending on the kinetic conditions and type of surfactants, resulting structures exhibit well-defined one- to three-dimensional morphologies such as nanowires, nanooctahedra, andmore » hierarchically ordered internal architectures. Specifically, electron microscopy and X-ray diffraction results indicate that these nanoparticles exhibit stable single-crystalline and nanoporous frameworks. In conclusion, due to the hierarchical ordering of the porphyrins, the nanoparticles exhibit collective optical properties resulted from coupling of molecular porphyrins and photocatalytic activities such as photodegradation of methyl orange (MO) pollutants and hydrogen production.« less

  9. Templated Assembly of a Functional Ordered Protein Macromolecular Framework from P22 Virus-like Particles.

    PubMed

    McCoy, Kimberly; Uchida, Masaki; Lee, Byeongdu; Douglas, Trevor

    2018-04-24

    Bottom-up construction of mesoscale materials using biologically derived nanoscale building blocks enables engineering of desired physical properties using green production methods. Virus-like particles (VLPs) are exceptional building blocks due to their monodispersed sizes, geometric shapes, production ease, proteinaceous composition, and our ability to independently functionalize the interior and exterior interfaces. Here a VLP, derived from bacteriophage P22, is used as a building block for the fabrication of a protein macromolecular framework (PMF), a tightly linked 3D network of functional protein cages that exhibit long-range order and catalytic activity. Assembly of PMFs was electrostatically templated, using amine-terminated dendrimers, then locked into place with a ditopic cementing protein that binds to P22. Long-range order is preserved on removal of the dendrimer, leaving a framework material composed completely of protein. Encapsulation of β-glucosidase enzymes inside of P22 VLPs results in formation of stable, condensed-phase materials with high local concentration of enzymes generating catalytically active PMFs.

  10. Designed synthesis of double-stage two-dimensional covalent organic frameworks

    PubMed Central

    Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin

    2015-01-01

    Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays. PMID:26456081

  11. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    PubMed

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  12. Recurrence of 49-base decamers, nonomers, and octamers within mouse C mu gene of Ig heavy chain and its primordial building block.

    PubMed Central

    Yazaki, A; Ohno, S

    1983-01-01

    Within the published 2,168-base-long mouse C mu gene of Ig heavy chain consisting of four coding and four noncoding segments, 2 base decamers, 8 nonomers, and 39 octamers recurred. Recurring base heptamers (about 100) and hexamers (about 350) were simply too numerous to merit individual identification. In spite of extensive overlaps between these recurring base decamers to hexamers, they occupied nearly the entire length of mouse Ig C mu gene. As with other genes of the beta-sheet-forming beta 2-microglobulin family, the Ig C mu gene (flanking and intervening noncoding sequences included) is not a unique sequence but rather it is degenerate repeats of the 45-base-long primordial building-block sequence uniquely its own. This primordial building block must originally have specified the 15-amino-acid-residue-long primordial arm of beta-sheet-forming loops, the characteristics of the beta 2-microglobulin family of polypeptides. PMID:6403948

  13. Exploring the building blocks of social cognition: spontaneous agency perception and visual perspective taking in autism.

    PubMed

    Zwickel, Jan; White, Sarah J; Coniston, Devorah; Senju, Atsushi; Frith, Uta

    2011-10-01

    Individuals with autism spectrum disorders have highly characteristic impairments in social interaction and this is true also for those with high functioning autism or Asperger syndrome (AS). These social cognitive impairments are far from global and it seems likely that some of the building blocks of social cognition are intact. In our first experiment, we investigated whether high functioning adults who also had a diagnosis of AS would be similar to control participants in terms of their eye movements when watching animated triangles in short movies that normally evoke mentalizing. They were. Our second experiment using the same movies, tested whether both groups would spontaneously adopt the visuo-spatial perspective of a triangle protagonist. They did. At the same time autistic participants differed in their verbal accounts of the story line underlying the movies, confirming their specific difficulties in on-line mentalizing. In spite of this difficulty, two basic building blocks of social cognition appear to be intact: spontaneous agency perception and spontaneous visual perspective taking.

  14. Fuel-Mediated Transient Clustering of Colloidal Building Blocks.

    PubMed

    van Ravensteijn, Bas G P; Hendriksen, Wouter E; Eelkema, Rienk; van Esch, Jan H; Kegel, Willem K

    2017-07-26

    Fuel-driven assembly operates under the continuous influx of energy and results in superstructures that exist out of equilibrium. Such dissipative processes provide a route toward structures and transient behavior unreachable by conventional equilibrium self-assembly. Although perfected in biological systems like microtubules, this class of assembly is only sparsely used in synthetic or colloidal analogues. Here, we present a novel colloidal system that shows transient clustering driven by a chemical fuel. Addition of fuel causes an increase in hydrophobicity of the building blocks by actively removing surface charges, thereby driving their aggregation. Depletion of fuel causes reappearance of the charged moieties and leads to disassembly of the formed clusters. This reassures that the system returns to its initial, equilibrium state. By taking advantage of the cyclic nature of our system, we show that clustering can be induced several times by simple injection of new fuel. The fuel-mediated assembly of colloidal building blocks presented here opens new avenues to the complex landscape of nonequilibrium colloidal structures, guided by biological design principles.

  15. Appendices for the Space Applications program, 1974

    NASA Technical Reports Server (NTRS)

    1974-01-01

    To achieve truly low cost system design with direct evolution for inorbit shuttle resupply, a modular building block approach has been adopted. The heart of the modular building block concept lies in the ability to use a common set of nonoptimized subsystems in such a way that a wide variety of missions can be flown with no detrimental impact on performance. By standardizing the mechanical configurations and electrical interfaces of the subsystem modules, and by designing each of them to be structurally and thermally independent entities, it is possible to cluster these building blocks or modules about an instrument system so as to adequately perform the mission without the need for subsystem redevelopments for each mission. This system concept offers the following capabilities: (1) the ability to launch and orbit the observatory by either the Delta, the Titan, or the space shuttle. (2) the ability to completely reconfigure the spacecraft subsystems for different launch vehicles, and (3) the ability to perform in-orbit resupply and/or emergency retrieval of the observatory.

  16. Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly.

    PubMed

    Ju, Guannan; Cheng, Mengjiao; Guo, Fengli; Zhang, Qian; Shi, Feng

    2018-05-30

    Macroscopic supramolecular assembly (MSA) is a recent progress in supramolecular chemistry to associate visible building blocks through non-covalent interactions in a multivalent manner. Although various substrates (e. g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are still lacking and urgently in demand. Here we design three model systems with varied modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic-modulus-dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials applicable for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one magnitude higher strength than that of rigid substrates (2.5 MPa). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material.

    PubMed

    Loeffler, Felix F; Foertsch, Tobias C; Popov, Roman; Mattes, Daniela S; Schlageter, Martin; Sedlmayr, Martyna; Ridder, Barbara; Dang, Florian-Xuan; von Bojničić-Kninski, Clemens; Weber, Laura K; Fischer, Andrea; Greifenstein, Juliane; Bykovskaya, Valentina; Buliev, Ivan; Bischoff, F Ralf; Hahn, Lothar; Meier, Michael A R; Bräse, Stefan; Powell, Annie K; Balaban, Teodor Silviu; Breitling, Frank; Nesterov-Mueller, Alexander

    2016-06-14

    Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).

  18. Designed synthesis of double-stage two-dimensional covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin

    2015-10-01

    Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays.

  19. Low-cost SI-POF analogue TIA and equaliser

    NASA Astrophysics Data System (ADS)

    Lope, Ignacio; García del Pozo, Jose Maria; Mateo, Javier; Urdangarín, Julen; Celma, Santiago

    2012-11-01

    This article proposes the two first blocks of an analogue front-end suitable for plastic optical fibre systems suitable for the standard IEEE 1394. These blocks consist of a preamplifier followed by an equaliser which employs low-cost commercial components and are designed with two different bipolar technologies. With a supply voltage of 3.3 V, the front-end consumes 396 mW. The total gain is 70 dBΩ and it operates at up to 800 Mb/s. At this bit rate, with fibre lengths of up to 30 m, the circuit has a BER ≤ 10-12 and a maximum jitter of 170 psrms.

  20. Correlating the magic numbers of inorganic nanomolecular assemblies with a {Pd84} molecular-ring Rosetta Stone

    PubMed Central

    Xu, Feng; Miras, Haralampos N.; Scullion, Rachel A.; Long, De-Liang; Thiel, Johannes; Cronin, Leroy

    2012-01-01

    Molecular self-assembly has often been suggested as the ultimate route for the bottom-up construction of building blocks atom-by-atom for functional nanotechnology, yet structural design or prediction of nanomolecular assemblies is still far from reach. Whereas nature uses complex machinery such as the ribosome, chemists use painstakingly engineered step-by-step approaches to build complex molecules but the size and complexity of such molecules, not to mention the accessible yields, can be limited. Herein we present the discovery of a palladium oxometalate {Pd84}-ring cluster 3.3 nm in diameter; [Pd84O42(OAc)28(PO4)42]70- ({Pd84} ≡ {Pd12}7) that is formed in water just by mixing two reagents at room temperature, giving crystals of the compound in just a few days. The structure of the {Pd84}-ring has sevenfold symmetry, comprises 196 building blocks, and we also show, using mass spectrometry, that a large library of other related nanostructures is present in solution. Finally, by analysis of the symmetry and the building block library that construct the {Pd84} we show that the correlation of the symmetry, subunit number, and overall cluster nuclearity can be used as a “Rosetta Stone” to rationalize the “magic numbers” defining a number of other systems. This is because the discovery of {Pd84} allows the relationship between seemingly unrelated families of molecular inorganic nanosystems to be decoded from the overall cluster magic-number nuclearity, to the symmetry and building blocks that define such structures allowing the prediction of other members of these nanocluster families. PMID:22753516

  1. Hydrophilic interaction chromatography-multiple reaction monitoring mass spectrometry method for basic building block analysis of low molecular weight heparins prepared through nitrous acid depolymerization.

    PubMed

    Sun, Xiaojun; Guo, Zhimou; Yu, Mengqi; Lin, Chao; Sheng, Anran; Wang, Zhiyu; Linhardt, Robert J; Chi, Lianli

    2017-01-06

    Low molecular weight heparins (LMWHs) are important anticoagulant drugs that are prepared through depolymerization of unfractionated heparin. Based on the types of processing reactions and the structures of the products, LMWHs can be divided into different classifications. Enoxaparin is prepared by benzyl esterification and alkaline depolymerization, while dalteparin and nadroparin are prepared through nitrous acid depolymerization followed by borohydride reduction. Compositional analysis of their basic building blocks is an effective way to provide structural information on heparin and LMWHs. However, most current compositional analysis methods have been limited to heparin and enoxaparin. A sensitive and comprehensive approach is needed for detailed investigation of the structure of LMWHs prepared through nitrous acid depolymerization, especially their characteristic saturated non-reducing end (NRE) and 2,5-anhydro-d-mannitol reducing end (RE). A maltose modified hydrophilic interaction column offers improved separation of complicated mixtures of acidic disaccharides and oligosaccharides. A total of 36 basic building blocks were unambiguously identified by high-resolution tandem mass spectrometry (MS). Multiple reaction monitoring (MRM) MS/MS quantification was developed and validated in the analysis of dalteparin and nadroparin samples. Each group of building blocks revealed different aspects of the properties of LMWHs, such as functional motifs required for anticoagulant activity, the structure of heparin starting materials, cleavage sites in the depolymerization reaction, and undesired structural modifications resulting from side reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modular and Orthogonal Synthesis of Hybrid Polymers and Networks

    PubMed Central

    Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao

    2015-01-01

    Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255

  3. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures

    NASA Astrophysics Data System (ADS)

    Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A.; Park, Jiwoong

    2017-10-01

    High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides--which represent one- and three-atom-thick two-dimensional building blocks, respectively--have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.

  4. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures.

    PubMed

    Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A; Park, Jiwoong

    2017-10-12

    High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides-which represent one- and three-atom-thick two-dimensional building blocks, respectively-have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.

  5. To Know, or Not to Know - Why it is Important to Understand Both What we Know, and What We Don't Know, When Studying Our Air and Sky

    NASA Astrophysics Data System (ADS)

    Brown-Steiner, B.

    2017-12-01

    I study the air and the sky, which can get really, really confusing. When you cup your hands and catch some air, you are holding many hundreds of hundreds of hundreds (do this about ten more times) of really tiny building blocks that keep hitting (and changing) one another every second of every day. We need some of these tiny building blocks to live and breathe, but there are many tiny building blocks that can hurt us - or even kill us. Right now, the way we live - how we make power, how we make food, how we get from place to place - adds a lot of bad building blocks to our air and our sky, and is changing our world in ways we do not really understand. As we learn more about the air and the sky, we get better at knowing how things are changing, but it is also really important to think about the things we do not know, and the things we do not understand. I study our air and our sky by thinking hard not only about the things that we know, but also about the things we do not know, and I try to use what I learn to help us make more sense out of the really confusing stuff. I want to share some of what I have learned with you.

  6. Mononuclear, trinuclear, and hetero-trinuclear supramolecular complexes containing a new tri-sulfonate ligand and cobalt(II)/copper(II)-(1,10-phenanthroline) 2 building blocks

    NASA Astrophysics Data System (ADS)

    Yu, Yunfang; Wei, Yongqin; Broer, Ria; Sa, Rongjian; Wu, Kechen

    2008-03-01

    Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen) 2(H 2O)(HTST)]·2H 2O ( 1), [Co 3(phen) 6(H 2O) 2(TST) 2]·7H 2O ( 2), and [Co 2Cu(phen) 6(H 2O) 2(TST) 2]·10H 2O ( 3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H 3TST) with the M2+ ( M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). Complex 1 contains a cis-Co(II)(phen) 2 building block and an HTST as monodentate ligand; complex 2 consists of two TST as bidentate ligands connecting one trans- and two cis-Co(II)(phen) 2 building blocks; complex 3 is formed by replacing the trans-Co(II)(phen) 2 in 2 with a trans-Cu(II)(phen) 2, which is the first reported hetero-trinuclear supramolecular complex containing both the Co(II)(phen) 2 and Cu(II)(phen) 2 as building blocks. The study shows the flexible multifunctional self-assembly capability of the H 3TST ligands presenting in these supramolecular complexes through coordinative, H-bonding and even π- π stacking interactions. The photoluminescent optical properties of these complexes are also investigated and discussed as well as the second-order nonlinear optical properties of 1.

  7. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    NASA Technical Reports Server (NTRS)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  8. Renaissance architecture for Ground Data Systems

    NASA Technical Reports Server (NTRS)

    Perkins, Dorothy C.; Zeigenfuss, Lawrence B.

    1994-01-01

    The Mission Operations and Data Systems Directorate (MO&DSD) has embarked on a new approach for developing and operating Ground Data Systems (GDS) for flight mission support. This approach is driven by the goals of minimizing cost and maximizing customer satisfaction. Achievement of these goals is realized through the use of a standard set of capabilities which can be modified to meet specific user needs. This approach, which is called the Renaissance architecture, stresses the engineering of integrated systems, based upon workstation/local area network (LAN)/fileserver technology and reusable hardware and software components called 'building blocks.' These building blocks are integrated with mission specific capabilities to build the GDS for each individual mission. The building block approach is key to the reduction of development costs and schedules. Also, the Renaissance approach allows the integration of GDS functions that were previously provided via separate multi-mission facilities. With the Renaissance architecture, the GDS can be developed by the MO&DSD or all, or part, of the GDS can be operated by the user at their facility. Flexibility in operation configuration allows both selection of a cost-effective operations approach and the capability for customizing operations to user needs. Thus the focus of the MO&DSD is shifted from operating systems that we have built to building systems and, optionally, operations as separate services. Renaissance is actually a continuous process. Both the building blocks and the system architecture will evolve as user needs and technology change. Providing GDS on a per user basis enables this continuous refinement of the development process and product and allows the MO&DSD to remain a customer-focused organization. This paper will present the activities and results of the MO&DSD initial efforts toward the establishment of the Renaissance approach for the development of GDS, with a particular focus on both the technical and process implications posed by Renaissance to the MO&DSD.

  9. Hierarchical Design of Tissue Regenerative Constructs.

    PubMed

    Rose, Jonas C; De Laporte, Laura

    2018-03-01

    The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genetics Home Reference: phenylketonuria

    MedlinePlus

    ... that increases the levels of a substance called phenylalanine in the blood. Phenylalanine is a building block of proteins ( an amino ... some artificial sweeteners. If PKU is not treated, phenylalanine can build up to harmful levels in the ...

  11. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors.

    PubMed

    Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen

    2012-10-22

    Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Deblocking of mobile stereo video

    NASA Astrophysics Data System (ADS)

    Azzari, Lucio; Gotchev, Atanas; Egiazarian, Karen

    2012-02-01

    Most of candidate methods for compression of mobile stereo video apply block-transform based compression based on the H-264 standard with quantization of transform coefficients driven by quantization parameter (QP). The compression ratio and the resulting bit rate are directly determined by the QP level and high compression is achieved for the price of visually noticeable blocking artifacts. Previous studies on perceived quality of mobile stereo video have revealed that blocking artifacts are the most annoying and most influential in the acceptance/rejection of mobile stereo video and can even completely cancel the 3D effect and the corresponding quality added value. In this work, we address the problem of deblocking of mobile stereo video. We modify a powerful non-local transform-domain collaborative filtering method originally developed for denoising of images and video. The method employs grouping of similar block patches residing in spatial and temporal vicinity of a reference block in filtering them collaboratively in a suitable transform domain. We study the most suitable way of finding similar patches in both channels of stereo video and suggest a hybrid four-dimensional transform to process the collected synchronized (stereo) volumes of grouped blocks. The results benefit from the additional correlation available between the left and right channel of the stereo video. Furthermore, addition sharpening is applied through an embedded alpha-rooting in transform domain, which improve the visual appearance of the deblocked frames.

  13. Holographic entanglement and Poincaré blocks in three-dimensional flat space

    NASA Astrophysics Data System (ADS)

    Hijano, Eliot; Rabideau, Charles

    2018-05-01

    We propose a covariant prescription to compute holographic entanglement entropy and Poincaré blocks (Global BMS blocks) in the context of three-dimensional Einstein gravity in flat space. We first present a prescription based on worldline methods in the probe limit, inspired by recent analog calculations in AdS/CFT. Building on this construction, we propose a full extrapolate dictionary and use it to compute holographic correlators and blocks away from the probe limit.

  14. Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m 2 ofmore » suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft 2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.« less

  15. Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling

    DOE PAGES

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; ...

    2018-01-05

    We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m 2 ofmore » suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft 2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.« less

  16. Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling

    NASA Astrophysics Data System (ADS)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; Phillips, Caleb; Elmore, Ryan

    2018-02-01

    We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m2 of suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.

  17. Strategies to integrate patient and family education into patient care redesign.

    PubMed

    Yingling, L; Trocino, L

    1997-05-01

    This article discusses five strategies to effectively integrate patient and family education into patient care redesign. The strategies include building the plan, building a shared mission and vision, building involvement, building collaboration through initiatives, and building accountability. Each strategy or "building block" is vital to the resulting structure of patient and family education. Effective results of the strategies are discussed as milestones. The process must be ongoing to ensure continuous improvement in quality patient care outcomes, consumer satisfaction and cost-effectiveness.

  18. 8. Historic view of the building: 'Warren Street from State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic view of the building: 'Warren Street from State Street' ca. 1890. Courtesy of the Trenton Free Public Library. This shows the building before the True American's renovations of 1893. It is the three-story buildings, flanked by lower ones in the middle of the block. At the time of the photograph, the brick exterior was painted a light color and dark-colored louvered shutters flanked all the upper story windows. - 14 North Warren Street (Commercial Building), True American Building, Trenton, Mercer County, NJ

  19. 16. A southward view of buildings #6B, #6, #6A, #7, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. A southward view of buildings #6-B, #6, #6-A, #7, #8-A, and #8. The water tower is situated directly behind building #8. To the right ia the eastern wall of the five-storied building #5. In the center background is part of the north face of building #9. All structures to the north of building #9 are to be demolished. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  20. Review of the Application of Green Building and Energy Saving Technology

    NASA Astrophysics Data System (ADS)

    Tong, Zhineng

    2017-12-01

    The use of energy-saving technologies in green buildings should run through the entire process of building design, construction and use, enabling green energy-saving technologies to maximize their effectiveness in construction. Realize the sustainable development of green building, reduce energy consumption, reduce people’s interference with the natural environment, suitable for people living in “green” building.

  1. 1. EXTERIOR VIEW OF BUILDING 25A (COLD CHAMBER), LOOKING NORTHEAST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF BUILDING 25A (COLD CHAMBER), LOOKING NORTHEAST, WITH WIND TUNNEL IN BACKGROUND (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  2. Building Our Children's Future: An Interdisciplinary Curriculum for Grades K-12.

    ERIC Educational Resources Information Center

    Mumma, Tracy; Gant, Shaun; Stone, Laura Armstrong; Harnish, Chris; Fowle, Abigail

    This interdisciplinary curriculum provides students with the opportunity to learn about the connection between natural resources and buildings while practicing skills in language arts, math, science, social studies, and visual arts. The learning activities are divided by topic into 15 Building Blocks (units). These units cover such topics as…

  3. The Master Clock Building at USNO Infrastructure

    DTIC Science & Technology

    2008-12-01

    type finish on top of about 3.5 inches of foam insulation. This along with cinder block, fiber glass insulation, and 5/8-inch-X drywall provides a...keep the building on temperature. The outside surface of the building is an “Exterior Finish Insulation Systems” (EFIS). This is made up of a stucco

  4. LPT. Elevations of low power test building (TAN640 and 641). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Elevations of low power test building (TAN-640 and -641). West and south elevations show stepped shield wall. South and east elevations show pumice block passageway on south side. Reactor cell walls are concrete. One-story parts are pumice block. Metal rollup doors. Ralph M. Parsons 1229-12 ANP/GE-7-640-A-2. November 1956. Approved by INEEL Classification Office for public release. INEEL index code no. 038-0640-00-693-107275 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. A building block for hardware belief networks.

    PubMed

    Behin-Aein, Behtash; Diep, Vinh; Datta, Supriyo

    2016-07-21

    Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models.

  6. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.

    PubMed

    Jin, Hyo-Eon; Lee, Seung-Wuk

    2018-01-01

    M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.

  7. A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities.

    PubMed

    Shi, Lei; Tuzer, T Umut; Fenollosa, Roberto; Meseguer, Francisco

    2012-11-20

    A new dielectric metamaterial building block based on high refractive index silicon spherical nanocavities with Mie resonances appearing in the near infrared optical region is prepared and characterized. It is demonstrated both experimentally and theoretically that a single silicon nanocavity supports well-defined and robust magnetic resonances, even in a liquid medium environment, at wavelength values up to six times larger than the cavity radius. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thiophene-based covalent organic frameworks

    PubMed Central

    Bertrand, Guillaume H. V.; Michaelis, Vladimir K.; Ong, Ta-Chung; Griffin, Robert G.; Dincă, Mircea

    2013-01-01

    We report the synthesis and characterization of covalent organic frameworks (COFs) incorporating thiophene-based building blocks. We show that these are amenable to reticular synthesis, and that bent ditopic monomers, such as 2,5-thiophenediboronic acid, are defect-prone building blocks that are susceptible to synthetic variations during COF synthesis. The synthesis and characterization of an unusual charge transfer complex between thieno[3,2-b]thiophene-2,5-diboronic acid and tetracyanoquinodimethane enabled by the unique COF architecture is also presented. Together, these results delineate important synthetic advances toward the implementation of COFs in electronic devices. PMID:23479656

  9. 7. Historic American Buildings Survey, August, 1966 EXTERIOR STAIR TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey, August, 1966 EXTERIOR STAIR TO SECOND FLOOR, SHOWING PASSAGE BETWEEN MAIN BLOCK AND REAR ELL. - Andrews-Taylor House, State Route 43, Farm Road 2862 Vicinity, Karnack, Harrison County, TX

  10. ASBESTOS RELEASE DURING BUILDING DEMOLITION ACTIVITIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory (RREL) monitored block-wide building demolition and debris disposal activities at Santa Cruz and Watsonsville, California following the 1989 earthquake; an implosion demolition of a 26-story bu...

  11. CALUTRON

    DOEpatents

    Lofgren, E.J.

    1960-01-19

    An ion source suitable for use with isotope separators of the calutron class is described in which ion bombardment of source structural members is minimized to lessen deterioration. A hollow conducting block defines an arc chamber which has an ion exit opening in the form of a slot in one wall of the block. A charged electrode spaced from the opening applies an electrical field for withdrawing ions from within the block. To establish a field configuration whereby the impingement of ions on the walls of the block is reduced, the wall edges which define the slot opening are bevelled to converge in the direction of efflux of the ions.

  12. Preschoolers' Thinking during Block Play

    ERIC Educational Resources Information Center

    Piccolo, Diana L.; Test, Joan

    2010-01-01

    Children build foundations for mathematical thinking in early play and exploration. During the preschool years, children enjoy exploring mathematical concepts--such as patterns, shape, spatial relationships, and measurement--leading them to spontaneously engage in mathematical thinking during play. Block play is one common example that engages…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The final design, performance analysis, and economic analysis of a solar hot water system for curing concrete blocks at the new Rotoclave block fabricating plant being built by the York Building Products Co. Inc. at Harrisburg, Pa. are presented. The system will use AAI Corporation's 24/1 concentrating collectors. (WHK)

  14. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments

    NASA Astrophysics Data System (ADS)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.

    2017-09-01

    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  15. Comparison of heat exchanger and solar block wall in a swine nursery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D.D.; Friday, W.H.; Thieme, R.H.

    1984-01-01

    A pig nursery building was divided into two equal rooms, one with a heat exchanger and one with a solar block wall. The average air inlet temperatures were 16.4/sup 0/C in the heat exchanger room and 11.9/sup 0/C in the solar heated room. Supplemental heating costs were 67% higher in the solar block wall room.

  16. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  17. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  18. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  19. Worldwide studies on aircraft disinsection at "blocks away".

    PubMed

    Sullivan, W N; Pal, R; Wright, J W; Azurin, J C; Okamoto, R; McGuire, J U; Waters, R M

    1972-01-01

    During 1971 worldwide experiments on the disinsection of passenger cabins at "blocks away" (as the aircraft starts taxiing for take-off) were conducted in several types of jet aircraft. A procedure was developed whereby the high capacity Boeing 747 could be disinsected by four stewardesses in less than 1 minute. The favourable results of these and previous trials indicate that this method is suitable as a standard procedure for aircraft disinsection for international quarantine purposes.The biological effectiveness against resistant and non-resistant mosquitos of a 2% concentration of a pyrethroid, resmethrin, in Freon 11+Freon 12 (1:1) (without kerosine) and a favourable passenger response make it suitable as a standard formulation for aircraft disinsection.

  20. A truly Lego®-like modular microfluidics platform

    NASA Astrophysics Data System (ADS)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-03-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos® and why Legos® inspire many existing modular microfluidics platforms. In this paper, a truly Lego®-like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail.

  1. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions

    PubMed Central

    Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian

    2015-01-01

    Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527

  2. Composability-Centered Convolutional Neural Network Pruning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xipeng; Guan, Hui; Lim, Seung-Hwan

    This work studies the composability of the building blocks ofstructural CNN models (e.g., GoogleLeNet and Residual Networks) in thecontext of network pruning. We empirically validate that a networkcomposed of pre-trained building blocks (e.g. residual blocks andInception modules) not only gives a better initial setting fortraining, but also allows the training process to converge at asignificantly higher accuracy in much less time. Based on thatinsight, we propose a {\\em composability-centered} design for CNNnetwork pruning. Experiments show that this new scheme shortens theconfiguration process in CNN network pruning by up to 186.8X forResNet-50 and up to 30.2X for Inception-V3, and meanwhile, themore » modelsit finds that meet the accuracy requirement are significantly morecompact than those found by default schemes.« less

  3. Perspectives of the KM3NeT project

    NASA Astrophysics Data System (ADS)

    Margiotta, A.; KM3NeT Collaboration

    2016-10-01

    KM3NeT is a large distributed research infrastructure that comprises a network of deep-sea neutrino telescopes in the Mediterranean Sea with user ports for Earth and Sea sciences. The main objectives of KM3NeT are the discovery and subsequent observation of high-energy neutrino sources in the Universe (ARCA) and the determination of the mass hierarchy of neutrinos (ORCA). Technically, the network of telescopes will consist of building blocks of 115 vertical detection units anchored at the seabed and connected to shore via a deep sea electro-optical cable. Each detection unit carries 18 optical modules equipped with 31 3; photomultipliers. Two configurations for the building blocks are defined to optimally detect neutrinos in different ranges of energy. The modular technical design of the KM3NeT telescope allows for a progressive implementation and for data taking even with an incomplete detector. The first phase of implementation has started. The next phase foresees the installation of three building blocks: two building blocks, for a total instrumented volume of 1 km3 (ARCA), at the KM3NeT-It site, at a depth of 3500 m, about 100 km offshore Capo Passero, Sicily. The main scientific goals of the ARCA detector is the exploration of the neutrino sky with unprecedented resolution, searching for neutrinos coming from defined sources or sky regions, like the Galactic Plane. It will also look for diffuse high energy neutrino fluxes following the indication provided by the IceCube signal. The third building block, with a more compact distribution of the optical modules, will be deployed at the KM3NeT-Fr site, 40 km offshore Toulon at a depth of 2500 m (ORCA). The main objective of ORCA is studying the neutrino mass-hierarchy problem and exploring the low energy region of the spectrum. The status of the first phase of the KM3NeT implementation is described and a survey of the physics potentiality of the telescope is given in this contribution, with particular emphasis on the high energy studies.

  4. Building blocks for social accountability: a conceptual framework to guide medical schools.

    PubMed

    Preston, Robyn; Larkins, Sarah; Taylor, Judy; Judd, Jenni

    2016-08-26

    This paper presents a conceptual framework developed from empirical evidence, to guide medical schools aspiring towards greater social accountability. Using a multiple case study approach, seventy-five staff, students, health sector representatives and community members, associated with four medical schools, participated in semi-structured interviews. Two schools were in Australia and two were in the Philippines. These schools were selected because they were aspiring to be socially accountable. Data was collected through on-site visits, field notes and a documentary review. Abductive analysis involved both deductive and inductive iterative theming of the data both within and across cases. The conceptual framework for socially accountable medical education was built from analyzing the internal and external factors influencing the selected medical schools. These factors became the building blocks that might be necessary to assist movement to social accountability. The strongest factor was the demands of the local workforce situation leading to innovative educational programs established with or without government support. The values and professional experiences of leaders, staff and health sector representatives, influenced whether the organizational culture of a school was conducive to social accountability. The wider institutional environment and policies of their universities affected this culture and the resourcing of programs. Membership of a coalition of socially accountable medical schools created a community of learning and legitimized local practice. Communities may not have recognized their own importance but they were fundamental for socially accountable practices. The bedrock of social accountability, that is, the foundation for all building blocks, is shared values and aspirations congruent with social accountability. These values and aspirations are both a philosophical understanding for innovation and a practical application at the health systems and education levels. While many of these building blocks are similar to those conceptualized in social accountability theory, this conceptual framework is informed by what happens in practice - empirical evidence rather than prescriptions. Consequently it is valuable in that it puts some theoretical thinking around everyday practice in specific contexts; addressing a gap in the medical education literature. The building blocks framework includes guidelines for social accountable practice that can be applied at policy, school and individual levels.

  5. Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER SENGLER, 1964 ELEVATION, PLAN AND SECTION OF TYPICAL BAY SHOWING SECOND, THIRD, FIFTEENTH AND SIXTEENTH FLOORS - Monadnock Block, 53 West Jackson Boulevard, Chicago, Cook County, IL

  6. 5. Within building #5, the forming of chain from wire, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Within building #5, the forming of chain from wire, as well as other operations, was powered by such belt-driven wheels and shafts. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  7. 626628 North Eutaw Street (Commercial Building), 626628 North Eutaw Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    626-628 North Eutaw Street (Commercial Building), 626-628 North Eutaw Street & 400-412 Druid Hill Avenue on a block bounded by North Eutaw Street, George Street, Jaspar Street, & Druid Hill Avenue, Baltimore, Independent City, MD

  8. Wood as a sustainable building material

    Treesearch

    Robert H. Falk

    2009-01-01

    Few building materials possess the environmental benefits of wood. It is not only the most widely used building material in the United States but also one with characteristics that make it suitable for a wide range of applications. Efficient, durable, and useful wood products produced from trees range from a minimally processed log at a log-home building site to a...

  9. Empty Tissue Boxes: Considering Poverty in Diversity Discourse

    ERIC Educational Resources Information Center

    Cuthrell, Kristen; Ledford, Carolyn; Stapleton, Joy

    2007-01-01

    A preservice teacher doing her internship overhears some of her students asking a classmate why he regularly takes home empty tissue boxes. The boy replies that he builds cities and bridges with his empty boxes. His classmates then ask why he does not just build a city with Legos or building blocks. The preservice teacher listens intently as the…

  10. Building Blocks for Building Skills: An Inventory of Adult Learning Models and Innovations

    ERIC Educational Resources Information Center

    Klein-Collins, Rebecca

    2006-01-01

    The skills of the workforce are an important contributor to the economic vitality of any region, leading economic developers to consider how to connect their efforts to workforce development and help to build the skills of adults generally. This report, produced for the U.S. Department of Labor's Workforce Innovation in Regional Economic…

  11. Combining techniques for screening and evaluating interaction terms on high-dimensional time-to-event data.

    PubMed

    Sariyar, Murat; Hoffmann, Isabell; Binder, Harald

    2014-02-26

    Molecular data, e.g. arising from microarray technology, is often used for predicting survival probabilities of patients. For multivariate risk prediction models on such high-dimensional data, there are established techniques that combine parameter estimation and variable selection. One big challenge is to incorporate interactions into such prediction models. In this feasibility study, we present building blocks for evaluating and incorporating interactions terms in high-dimensional time-to-event settings, especially for settings in which it is computationally too expensive to check all possible interactions. We use a boosting technique for estimation of effects and the following building blocks for pre-selecting interactions: (1) resampling, (2) random forests and (3) orthogonalization as a data pre-processing step. In a simulation study, the strategy that uses all building blocks is able to detect true main effects and interactions with high sensitivity in different kinds of scenarios. The main challenge are interactions composed of variables that do not represent main effects, but our findings are also promising in this regard. Results on real world data illustrate that effect sizes of interactions frequently may not be large enough to improve prediction performance, even though the interactions are potentially of biological relevance. Screening interactions through random forests is feasible and useful, when one is interested in finding relevant two-way interactions. The other building blocks also contribute considerably to an enhanced pre-selection of interactions. We determined the limits of interaction detection in terms of necessary effect sizes. Our study emphasizes the importance of making full use of existing methods in addition to establishing new ones.

  12. Metabolomics analysis: Finding out metabolic building blocks

    PubMed Central

    2017-01-01

    In this paper we propose a new methodology for the analysis of metabolic networks. We use the notion of strongly connected components of a graph, called in this context metabolic building blocks. Every strongly connected component is contracted to a single node in such a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a considerably reduced number of nodes. The property of being a directed acyclic graph brings out a background graph topology that reveals the connectivity of the metabolic network, as well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for the discovery of functional metabolic relations. Our methodology has been applied to the glycolysis and the purine metabolic pathways for all organisms in the KEGG database, although it is general enough to work on any database. As expected, using the metabolic DAGs formalism, a considerable reduction on the size of the metabolic networks has been obtained, specially in the case of the purine pathway due to its relative larger size. As a proof of concept, from the information captured by a metabolic DAG and its corresponding metabolic building blocks, we obtain the core of the glycolysis pathway and the core of the purine metabolism pathway and detect some essential metabolic building blocks that reveal the key reactions in both pathways. Finally, the application of our methodology to the glycolysis pathway and the purine metabolism pathway reproduce the tree of life for the whole set of the organisms represented in the KEGG database which supports the utility of this research. PMID:28493998

  13. 49 CFR 387.301 - Surety bond, certificate of insurance, or other securities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in bulk. Cement, building blocks. Charcoal. Chemical fertilizer. Cinder blocks. Cinders, coal. Coal. Coke. Commercial fertilizer. Concrete materials and added mixtures. Corn cobs. Cottonseed hulls... nitrate of soda. Anhydrous ammonia—used as a fertilizer only. Ashes, wood or coal. Bituminous concrete...

  14. Towards electrical spin injection into LaAlO3-SrTiO3.

    PubMed

    Bibes, M; Reyren, N; Lesne, E; George, J-M; Deranlot, C; Collin, S; Barthélémy, A; Jaffrès, H

    2012-10-28

    Future spintronics devices will be built from elemental blocks allowing the electrical injection, propagation, manipulation and detection of spin-based information. Owing to their remarkable multi-functional and strongly correlated character, oxide materials already provide such building blocks for charge-based devices such as ferroelectric field-effect transistors (FETs), as well as for spin-based two-terminal devices such as magnetic tunnel junctions, with giant responses in both cases. Until now, the lack of suitable channel materials and the uncertainty of spin-injection conditions in these compounds had however prevented the exploration of similar giant responses in oxide-based lateral spin transport structures. In this paper, we discuss the potential of oxide-based spin FETs and report magnetotransport data that suggest electrical spin injection into the LaAlO(3)-SrTiO(3) interface system. In a local, three-terminal measurement scheme, we analyse the voltage variation associated with the precession of the injected spin accumulation driven by perpendicular or longitudinal magnetic fields (Hanle and 'inverted' Hanle effects). The spin accumulation signal appears to be much larger than expected, probably owing to amplification effects by resonant tunnelling through localized states in the LaAlO(3). We give perspectives on how to achieve direct spin injection with increased detection efficiency, as well on the implementation of efficient top gating schemes for spin manipulation.

  15. Building Condition and Suitability Evaluation Manual.

    ERIC Educational Resources Information Center

    MGT of America, Inc., Tallahassee, FL.

    This educational facility evaluation manual contains the overall building condition rating form and the supporting check sheets which have been field tested in several states and, where appropriate, modified for use in the Idaho School Facilities Needs Assessment. The exterior building condition form examines the foundation, structure, walls,…

  16. Applications of Alginate-Based Bioinks in 3D Bioprinting.

    PubMed

    Axpe, Eneko; Oyen, Michelle L

    2016-11-25

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine.

  17. Silicon carbide semiconductor device fabrication and characterization

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Das, K.

    1990-01-01

    A number of basic building blocks i.e., rectifying and ohmic contacts, implanted junctions, MOS capacitors, pnpn diodes and devices, such as, MESFETs on both alpha and beta SiC films were fabricated and characterized. Gold forms a rectifying contact on beta SiC. Since Au contacts degrade at high temperatures, these are not considered to be suitable for high temperature device applications. However, it was possible to utilize Au contact diodes for electrically characterizing SiC films. Preliminary work indicates that sputtered Pt or Pt/Si contacts on beta SiC films are someways superior to Au contacts. Sputtered Pt layers on alpha SiC films form excellent rectifying contacts, whereas Ni layers following anneal at approximately 1050 C provide an ohmic contact. It has demonstrated that ion implantation of Al in substrates held at 550 C can be successfully employed for the fabrication of rectifying junction diodes. Feasibility of fabricating pnpn diodes and platinum gated MESFETs on alpha SiC films was also demonstrated.

  18. Production of fumaric acid by immobilized Rhizopus arrhizus RH 7-13-9# on loofah fiber in a stirred-tank reactor.

    PubMed

    Liu, Huan; Zhao, Shijie; Jin, Yuhan; Yue, Xuemin; Deng, Li; Wang, Fang; Tan, Tianwei

    2017-11-01

    Fumaric acid is an important building-block chemical. The production of fumaric acid by fermentation is possible. Loofah fiber is a natural, biodegradable, renewable polymer material with highly sophisticated and pore structure. This work investigated a new immobilization method using loofah fiber as carrier to produce fumaric acid in a stirred-tank reactor. Compared with other carriers, loofah fiber was proven to be efficiently and successfully used in the reactor. After the optimization process, 20g addition of loofah fiber and 400rpm agitation speed were chosen as the most suitable process conditions. 30.3g/L fumaric acid in the broth as well as 19.16g fumaric acid in the precipitation of solid was achieved, while the yield from glucose reached 0.211g/g. Three batches of fermentation using the same loofah fiber carrier were conducted successfully, which meant it provided a new method to produce fumaric acid in a stirred-tank reactor. Copyright © 2017. Published by Elsevier Ltd.

  19. Stabilization of Si_60 Cage Structure: The Agony and the Ecstasy

    NASA Astrophysics Data System (ADS)

    Kawazoe, Y.; Sun, Q.; Wang, Q.; Rao, B. K.; Jena, P.

    2003-03-01

    The unique role of silicon in the micro-electronics industry has motivated many researchers to find ways to stabilize Si_60 with fullerene structure. In spite of numerous experimental attempts, synthesis of a theoretically predicted C_60-supported Si_60 cluster (C_60@Si_60) has not been possible. Using a state-of-the-art theoretical method, we provide the first answer for this long-standing contradiction between the experimental observation and the theoretical prediction. The flaws in earlier theoretical works are pointed out, and Si_60 is shown to be unstable in the fullerene structure either on its own or when supported on a C_60 fullerene (C_60@Si_60). On the other hand, we show that Si_60 cage can be stabilized by using magic clusters such as Al_12X (X = Si, Ge, Sn, Pb) as endohedral units, which have been identified in recent experiment as stable clusters and as suitable building blocks for cluster-assembled materials.

  20. Ionic liquid-induced aggregate formation and their applications.

    PubMed

    Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni

    2018-06-01

    In the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair. It is also found that various biomolecules can also interact with SAILs to construct biologically important supramolecular assemblies. The very latest addition to this combination of ion pairs is the dye molecules having a long hydrophobic chain part along with a hydrophilic ionic head group. Thus, dye/surfactant or dye/SAIL pair also produces different assemblies through electrostatic, hydrophobic, and π-π stacking interactions. Vesicles are one of the important self-assemblies which mimic cellular membranes, and thus have biological application as a drug carrier. Moreover, vesicles can act as a suitable microreactor for nanoparticle synthesis.

  1. Leguminose green juice as an efficient nutrient for l(+)-lactic acid production.

    PubMed

    Dietz, Donna; Schneider, Roland; Papendiek, Franka; Venus, Joachim

    2016-10-20

    Lactic acid is one of the most important building blocks for the production of bioplastic. Many investigations have been conducted to reduce the lactic acid production costs. In this work, the focus was put on the application of legume pressed juice or green juice as nutrient source. The pressed juice was utilized directly without prior pre-treatment and sterilization. Using two different alfalfa green juices and a clover green juice from two different harvest years as sole nutrients, non-sterile fermentations were performed at 52°C and pH 6.0 with a thermotolerant strain Bacillus coagulans AT107. The results showed that alfalfa green juices generally were more suitable for high lactic acid production than clover green juices, presumably due to the higher nitrogen content. A final titer of 98.8g/L after 30h with l(+)-lactic acid purity of >99% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Thermo-active polymer nanocomposites: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Winter, A. Douglas; Larios, Eduardo; Jaye, Cherno; Fischer, Daniel A.; Omastová, Mária; Campo, Eva M.

    2014-09-01

    Photo- and thermo-mechanical actuation behaviour in specific polymer-carbon nanotube composites has been observed in recent years and studied at the macroscale. These systems may prove to be suitable components for a wide range of applications, from MOEMs and nanotechnology to neuroscience and tissue engineering. Absence of a unified model for actuation behaviour at a molecular level is hindering development of such smart materials. We observed thermomechanical actuation of ethylene-vinyl acetate | carbon nanotube composites through in situ near-edge X-ray absorption fine structure spectroscopy to correlate spectral trends with macroscopic observations. This paper presents spectra of composites and constituents at room temperature to identify resonances in a building block model, followed by spectra acquired during thermo-actuation. Effects of strain-induced filler alignment are also addressed. Spectral resonances associated with C=C and C=O groups underwent synchronised intensity variations during excitation, and were used to propose a conformational model of actuation based on carbon nanotube torsion. Future actuation studies on other active polymer nanocomposites will verify the universality of the proposed model.

  3. An ultra low-power CMOS automatic action potential detector.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad

    2009-08-01

    We present a low-power complementary metal-oxide semiconductor (CMOS) analog integrated biopotential detector intended for neural recording in wireless multichannel implants. The proposed detector can achieve accurate automatic discrimination of action potential (APs) from the background activity by means of an energy-based preprocessor and a linear delay element. This strategy improves detected waveforms integrity and prompts for better performance in neural prostheses. The delay element is implemented with a low-power continuous-time filter using a ninth-order equiripple allpass transfer function. All circuit building blocks use subthreshold OTAs employing dedicated circuit techniques for achieving ultra low-power and high dynamic range. The proposed circuit function in the submicrowatt range as the implemented CMOS 0.18- microm chip dissipates 780 nW, and it features a size of 0.07 mm(2). So it is suitable for massive integration in a multichannel device with modest overhead. The fabricated detector succeeds to automatically detect APs from underlying background activity. Testbench validation results obtained with synthetic neural waveforms are presented.

  4. Approaches to a global quantum key distribution network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Bedington, Robert; Ling, Alexander

    2017-10-01

    Progress in realising quantum computers threatens to weaken existing public key encryption infrastructure. A global quantum key distribution (QKD) network can play a role in computational attack-resistant encryption. Such a network could use a constellation of high altitude platforms such as airships and satellites as trusted nodes to facilitate QKD between any two points on the globe on demand. This requires both space-to-ground and inter-platform links. However, the prohibitive cost of traditional satellite based development limits the experimental work demonstrating relevant technologies. To accelerate progress towards a global network, we use an emerging class of shoe-box sized spacecraft known as CubeSats. We have designed a polarization entangled photon pair source that can operate on board CubeSats. The robustness and miniature form factor of our entanglement source makes it especially suitable for performing pathfinder missions that studies QKD between two high altitude platforms. The technological outcomes of such mission would be the essential building blocks for a global QKD network.

  5. GIPAW (gauge including projected augmented wave) and local dynamics in 13C and 29Si solid state NMR: the study case of silsesquioxanes (RSiO1.5)8.

    PubMed

    Gervais, Christel; Bonhomme-Coury, Laure; Mauri, Francesco; Babonneau, Florence; Bonhomme, Christian

    2009-08-28

    Octameric silsesquioxanes (RSiO(1.5))(8) are versatile and interesting nano building blocks, suitable for the synthesis of nanocomposites with controlled porosity. In this paper, we revisit the (29)Si and (13)C solid state NMR spectroscopy for this class of materials, by using GIPAW (gauge including projected augmented wave) first principles calculations [Pickard & Mauri, Phys. Rev. B, 2001, 63, 245101]. Full tensorial data, including the chemical shift anisotropies (CSA) and the absolute orientation of the corresponding principal axes systems (PAS), were calculated. Subsequent averaging of the calculated tensors (due to fast reorientation of the R groups around the Si-C bonds) allowed for the interpretation of the strong reduction of CSA and dipolar couplings for these derivatives. Good agreement was observed between the averaged calculated data and the experimental parameters. Interesting questions related to the interplay between X-ray crystallography and solid state NMR are raised and will be emphasized.

  6. Applications of Alginate-Based Bioinks in 3D Bioprinting

    PubMed Central

    Axpe, Eneko; Oyen, Michelle L.

    2016-01-01

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine. PMID:27898010

  7. Andreev molecules in semiconductor nanowire double quantum dots.

    PubMed

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  8. A linear decomposition method for large optimization problems. Blueprint for development

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1982-01-01

    A method is proposed for decomposing large optimization problems encountered in the design of engineering systems such as an aircraft into a number of smaller subproblems. The decomposition is achieved by organizing the problem and the subordinated subproblems in a tree hierarchy and optimizing each subsystem separately. Coupling of the subproblems is accounted for by subsequent optimization of the entire system based on sensitivities of the suboptimization problem solutions at each level of the tree to variables of the next higher level. A formalization of the procedure suitable for computer implementation is developed and the state of readiness of the implementation building blocks is reviewed showing that the ingredients for the development are on the shelf. The decomposition method is also shown to be compatible with the natural human organization of the design process of engineering systems. The method is also examined with respect to the trends in computer hardware and software progress to point out that its efficiency can be amplified by network computing using parallel processors.

  9. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  10. Two-dimensional distribution of carbon nanotubes in copper flake powders.

    PubMed

    Tan, Zhanqiu; Li, Zhiqiang; Fan, Genlian; Li, Wenhuan; Liu, Qinglei; Zhang, Wang; Zhang, Di

    2011-06-03

    We report an approach of flake powder metallurgy to the uniform, two-dimensional (2D) distribution of carbon nanotubes (CNTs) in Cu flake powders. It consists of the preparation of Cu flakes by ball milling in an imidazoline derivative (IMD) aqueous solution, surface modification of Cu flakes with polyvinyl alcohol (PVA) hydrosol and adsorption of CNTs from a CNT aqueous suspension. During ball milling, a hydrophobic monolayer of IMD is adsorbed on the surface of the Cu flakes, on top of which a hydrophilic PVA film is adsorbed subsequently. This PVA film could further interact with the carboxyl-group functionalized CNTs and act to lock the CNTs onto the surfaces of the Cu flakes. The CNT volume fraction is controlled easily by adjusting the concentration/volume of CNT aqueous suspension and Cu flake thickness. The as-prepared CNT/Cu composite flakes will serve as suitable building blocks for the self-assembly of CNT/Cu laminated composites that enable the full potential of 2D distributed CNTs to achieve high thermal conductivity.

  11. Newton-Euler Dynamic Equations of Motion for a Multi-body Spacecraft

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric

    2007-01-01

    The Magnetospheric MultiScale (MMS) mission employs a formation of spinning spacecraft with several flexible appendages and thruster-based control. To understand the complex dynamic interaction of thruster actuation, appendage motion, and spin dynamics, each spacecraft is modeled as a tree of rigid bodies connected by spherical or gimballed joints. The method presented facilitates assembling by inspection the exact, nonlinear dynamic equations of motion for a multibody spacecraft suitable for solution by numerical integration. The building block equations are derived by applying Newton's and Euler's equations of motion to an "element" consisting of two bodies and one joint (spherical and gimballed joints are considered separately). Patterns in the "mass" and L'force" matrices guide assembly by inspection of a general N-body tree-topology system. Straightforward linear algebra operations are employed to eliminate extraneous constraint equations, resulting in a minimum-dimension system of equations to solve. This method thus combines a straightforward, easily-extendable, easily-mechanized formulation with an efficient computer implementation.

  12. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation.

    PubMed

    Agrawal, Ravi; Espinosa, Horacio D

    2011-02-09

    Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

  13. High temperature resin matrix composites for aerospace structures

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1980-01-01

    Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.

  14. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  15. Surface tension driven aggregation of organic nanowires via lab in a droplet.

    PubMed

    Gu, Jianmin; Yin, Baipeng; Fu, Shaoyan; Feng, Man; Zhang, Ziming; Dong, Haiyun; Gao, Faming; Zhao, Yong Sheng

    2018-06-05

    Directing the architecture of complex organic nanostructures is desirable and still remains a challenge in areas of materials science due to their structure-dependent collective optoelectronic properties. Herein, we demonstrate a simple and versatile solution strategy that allows surface tension to drive low-dimensional nanostructures to aggregate into complex structures via a lab in a droplet technique. By selecting a suitable combination of a solvent and an anti-solvent with controllable surface tension difference, the droplets can be automatically cracked into micro-droplets, which provides an aggregation force directed toward the centre of the droplet to drive the low-dimensional building blocks to form the special aggregations during the self-assembly process. This synthetic strategy has been shown to be universal for organic materials, which is beneficial for further optimizing the optoelectronic properties. These results contribute to gaining an insightful understanding on the detailed growth mechanism of complex organic nanostructures and greatly promoting the development of organic nanophotonics.

  16. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    NASA Astrophysics Data System (ADS)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  17. Assessing the Potential of Folded Globular Polyproteins As Hydrogel Building Blocks

    PubMed Central

    2016-01-01

    The native states of proteins generally have stable well-defined folded structures endowing these biomolecules with specific functionality and molecular recognition abilities. Here we explore the potential of using folded globular polyproteins as building blocks for hydrogels. Photochemically cross-linked hydrogels were produced from polyproteins containing either five domains of I27 ((I27)5), protein L ((pL)5), or a 1:1 blend of these proteins. SAXS analysis showed that (I27)5 exists as a single rod-like structure, while (pL)5 shows signatures of self-aggregation in solution. SANS measurements showed that both polyprotein hydrogels have a similar nanoscopic structure, with protein L hydrogels being formed from smaller and more compact clusters. The polyprotein hydrogels showed small energy dissipation in a load/unload cycle, which significantly increased when the hydrogels were formed in the unfolded state. This study demonstrates the use of folded proteins as building blocks in hydrogels, and highlights the potential versatility that can be offered in tuning the mechanical, structural, and functional properties of polyproteins. PMID:28006103

  18. Biophysical properties of dermal building-blocks affects extra cellular matrix assembly in 3D endogenous macrotissue.

    PubMed

    Urciuolo, F; Garziano, A; Imparato, G; Panzetta, V; Fusco, S; Casale, C; Netti, P A

    2016-01-29

    The fabrication of functional tissue units is one of the major challenges in tissue engineering due to their in vitro use in tissue-on-chip systems, as well as in modular tissue engineering for the construction of macrotissue analogs. In this work, we aim to engineer dermal tissue micromodules obtained by culturing human dermal fibroblasts into porous gelatine microscaffold. We proved that such stromal cells coupled with gelatine microscaffolds are able to synthesize and to assemble an endogenous extracellular matrix (ECM) resulting in tissue micromodules, which evolve their biophysical features over the time. In particular, we found a time-dependent variation of oxygen consumption kinetic parameters, of newly formed ECM stiffness and of micromodules self-aggregation properties. As consequence when used as building blocks to fabricate larger tissues, the initial tissue micromodules state strongly affects the ECM organization and maturation in the final macrotissue. Such results highlight the role of the micromodules properties in controlling the formation of three-dimensional macrotissue in vitro, defining an innovative design criterion for selecting tissue-building blocks for modular tissue engineering.

  19. Insights into Inverse Materials Design from Phase Transitions in Shape Space

    NASA Astrophysics Data System (ADS)

    Cersonsky, Rose; van Anders, Greg; Dodd, Paul M.; Glotzer, Sharon C.

    In designing new materials for synthesis, the inverse materials design approach posits that, given a structure, we can predict a building block optimized for self- assembly. How does that building block change as pressure is varied to maintain the same crystal structure? We address this question for entropically stabilized colloidal crystals by working in a generalized statistical thermodynamic ensemble where an alchemical potential variable is fixed and its conjugate variable, particle shape, is allowed to fluctuate. We show that there are multiple regions of shape behavior and phase transitions in shape space between these regions. Furthermore, while past literature has looked towards packing arguments for proposing shape-filling candidate building blocks for structure formation, we show that even at very high pressures, a structure will attain lowest free energy by modifying these space-filling shapes. U.S. Army Research Office under Grant Award No. W911NF-10-1-0518, Emerging Frontiers in Research and Innovation Award EFRI-1240264, National Science Foundation Grant Number ACI- 1053575, XSEDE award DMR 140129, Rackham Merit Fellowship Program.

  20. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods.

    PubMed

    McClements, David Julian; Decker, Eric Andrew; Park, Yeonhwa; Weiss, Jochen

    2009-06-01

    There have been major advances in the design and fabrication of structured delivery systems for the encapsulation of nutraceutical and functional food components. A wide variety of delivery systems is now available, each with its own advantages and disadvantages for particular applications. This review begins by discussing some of the major nutraceutical and functional food components that need to be delivered and highlights the main limitations to their current utilization within the food industry. It then discusses the principles underpinning the rational design of structured delivery systems: the structural characteristics of the building blocks; the nature of the forces holding these building blocks together; and, the different ways of assembling these building blocks into structured delivery systems. Finally, we review the major types of structured delivery systems that are currently available to food scientists: lipid-based (simple, multiple, multilayer, and solid lipid particle emulsions); surfactant-based (simple micelles, mixed micelles, vesicles, and microemulsions) and biopolymer-based (soluble complexes, coacervates, hydrogel droplets, and particles). For each type of delivery system we describe its preparation, properties, advantages, and limitations.

  1. Building blocks toward contemporary trauma theory: Ferenczi 's paradigm shift.

    PubMed

    Mészáros, Judit

    2010-12-01

    In laying down the building blocks of contemporary trauma theory, Ferenczi asserted that trauma is founded on real events and that it occurs in the interpersonal and intersubjective dynamics of object relations. He stressed the significance of the presence or lack of a trusted person in the post-traumatic situation. After the trauma, the loneliness and later the isolation of the victim represent a serious pathogenic source. In the traumatic situation, the victim and the persecutor/aggressor operate differing ego defense mechanisms. Ferenczi was the first to describe the ego defense mechanism of identification with the aggressor. Ferenczi pointed out the characteristic features of the role of analyst/therapist with which (s)he may assist the patient in working through the trauma, among them being the development of a therapeutic atmosphere based on trust, so that the traumatic experiences can be relived, without which effective therapeutic change cannot be achieved. For the analyst, countertransference, as part of authentic communication, is incorporated into the therapeutic process. These are the key building blocks that are laid down by Ferenczi in his writings and appear in later works on trauma theory.

  2. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, Taejong; Yun, Hongseok; Fleury, Blaise

    We demonstrate the fabrication of hierarchical materials by controlling the structure of highly ordered binary nanocrystal superlattices (BNSLs) on multiple length scales. Combinations of magnetic, plasmonic, semiconducting, and insulating colloidal nanocrystal (NC) building blocks are self-assembled into BNSL membranes via the liquid–interfacial assembly technique. Free-standing BNSL membranes are transferred onto topographically structured poly(dimethylsiloxane) molds via the Langmuir–Schaefer technique and then deposited in patterns onto substrates via transfer printing. BNSLs with different structural motifs are successfully patterned into various meso- and microstructures such as lines, circles, and even three-dimensional grids across large-area substrates. A combination of electron microscopy and grazing incidencemore » small-angle X-ray scattering (GISAXS) measurements confirm the ordering of NC building blocks in meso- and micropatterned BNSLs. This technique demonstrates structural diversity in the design of hierarchical materials by assembling BNSLs from NC building blocks of different composition and size by patterning BNSLs into various size and shape superstructures of interest for a broad range of applications.« less

  3. 1. AERIAL VIEW OF WEST/FRONT AND NORTH/SIDE FACADES, LOOKING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF WEST/FRONT AND NORTH/SIDE FACADES, LOOKING SOUTHEAST (FROM LEFT TO RIGHT): VA-1272 Ball Building, 1437 N. Court House Road. VA-1273 Jesse Building, 1423-27 N. Court House Road. VA-1276 Jesse-Hosmer Building, 1419 N. Court House Road. VA-1275 Moncure (Adams, Porter, Radigan) Building, N. 1415 Court House Road. VA-1274 Rucker Building, N. 1403 Court House Road. - Lawyers' Row Block, North Court House Road between Fourteenth & Fifteenth Streets, Arlington, Arlington County, VA

  4. 14. A westward view of building #5 in the background, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. A westward view of building #5 in the background, low buildings #22 and #23 in the center and supports for the water tower. The roadway was previously rail service to buildings #3, #5, and #9. The trackage had been mostly covered with fill, representing the transition from rail to truck service. The two enclosed passageways to the left of center carried semi-processed tire chain from building #9, on the left, to buildings #3 and #5. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  5. 77 FR 53212 - Federal Property Suitable as Facilities To Assist the Homeless

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Buildings Duplex Cabins Yosemite CA 95389 Landholding Agency: Interior Property Number: 61201230009 Status... details 33 Buildings Duplex Cabins Yosemite CA 95389 Landholding Agency: Interior Property Number...

  6. 8. This metal chute in building #3 carried the cloth ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. This metal chute in building #3 carried the cloth bags full of finished tire chains from upper floors to the warehouse on the first floor. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  7. MTR BUILDING, TRA603. SOUTHEAST CORNER, EAST SIDE FACING TOWARD RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BUILDING, TRA-603. SOUTHEAST CORNER, EAST SIDE FACING TOWARD RIGHT OF VIEW. CAMERA FACING NORTHWEST. LIGHT-COLORED PROJECTION AT LEFT IS ENGINEERING SERVICES BUILDING, TRA-635. SMALL CONCRETE BLOCK BUILDING AT CENTER OF VIEW IS FAST CHOPPER DETECTOR HOUSE, TRA-665. INL NEGATIVE NO. HD46-43-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. 11. A westward view within building #8A of space used ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. A westward view within building #8-A of space used as a foreman's office, as storage, and for rectifiers (converters of alternating current to direct current for the zinc-electro-plating equipment). Buildings #6-A and #8-A were the enclosed outside spaces between the outer walls of buildings #6 and #7, and #8 and #7 respectively. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  9. Scalable geocomputation: evolving an environmental model building platform from single-core to supercomputers

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; de Jong, Kor; Karssenberg, Derek

    2017-04-01

    There is an increasing demand to run environmental models on a big scale: simulations over large areas at high resolution. The heterogeneity of available computing hardware such as multi-core CPUs, GPUs or supercomputer potentially provides significant computing power to fulfil this demand. However, this requires detailed knowledge of the underlying hardware, parallel algorithm design and the implementation thereof in an efficient system programming language. Domain scientists such as hydrologists or ecologists often lack this specific software engineering knowledge, their emphasis is (and should be) on exploratory building and analysis of simulation models. As a result, models constructed by domain specialists mostly do not take full advantage of the available hardware. A promising solution is to separate the model building activity from software engineering by offering domain specialists a model building framework with pre-programmed building blocks that they combine to construct a model. The model building framework, consequently, needs to have built-in capabilities to make full usage of the available hardware. Developing such a framework providing understandable code for domain scientists and being runtime efficient at the same time poses several challenges on developers of such a framework. For example, optimisations can be performed on individual operations or the whole model, or tasks need to be generated for a well-balanced execution without explicitly knowing the complexity of the domain problem provided by the modeller. Ideally, a modelling framework supports the optimal use of available hardware whichsoever combination of model building blocks scientists use. We demonstrate our ongoing work on developing parallel algorithms for spatio-temporal modelling and demonstrate 1) PCRaster, an environmental software framework (http://www.pcraster.eu) providing spatio-temporal model building blocks and 2) parallelisation of about 50 of these building blocks using the new Fern library (https://github.com/geoneric/fern/), an independent generic raster processing library. Fern is a highly generic software library and its algorithms can be configured according to the configuration of a modelling framework. With manageable programming effort (e.g. matching data types between programming and domain language) we created a binding between Fern and PCRaster. The resulting PCRaster Python multicore module can be used to execute existing PCRaster models without having to make any changes to the model code. We show initial results on synthetic and geoscientific models indicating significant runtime improvements provided by parallel local and focal operations. We further outline challenges in improving remaining algorithms such as flow operations over digital elevation maps and further potential improvements like enhancing disk I/O.

  10. 77 FR 76509 - Federal Property Suitable as Facilities To Assist the Homeless

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... Register publication; off-site removal only, sf. varies, fair conditions, asbestos, restricted area...; moderate conditions; asbestos; access by appt. only Unsuitable Properties Building FLORIDA Building 11 NAS...

  11. On the Road to Quality: Turning Stumbling Blocks into Stepping Stones.

    ERIC Educational Resources Information Center

    Bonstingl, John Jay

    1996-01-01

    W. Edwards Deming's quality philosophy can help organizations develop collaborative, community-building leadership practices. This article outlines five personal practices of quality based on personal leadership, partnerships, a systems focus, a process orientation, and constant dedication to continuous improvement. Stumbling blocks can be…

  12. 45. OVERALL VIEW OF 100 AND 200 BLOCKS OF IOWA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. OVERALL VIEW OF 100 AND 200 BLOCKS OF IOWA STREET WITH MCFADDEN SPICE AND COFFEE COMPANY FACTORY AND WAREHOUSE AT LEFT, DUBUQUE SEED COMPANY IN CENTER, AND DUBUQUE PAPER COMPANY WAREHOUSE AT RIGHT. VIEW TO NORTHEAST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA

  13. Adaptive 3D single-block grids for the computation of viscous flows around wings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmeijer, R.; Kok, J.C.

    1996-12-31

    A robust algorithm for the adaption of a 3D single-block structured grid suitable for the computation of viscous flows around a wing is presented and demonstrated by application to the ONERA M6 wing. The effects of grid adaption on the flow solution and accuracy improvements is analyzed. Reynolds number variations are studied.

  14. 24 CFR 1003.602 - Relocation and real property acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... may occupy a suitable, decent, safe, and sanitary dwelling in the building/complex following... dwelling unit who moves from the building/complex permanently after the submission to HUD of an application... project. (iii) A tenant-occupant of a dwelling who moves from the building/complex permanently, after the...

  15. Using triggered operations to offload collective communication operations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian W.; Hemmert, K. Scott; Underwood, Keith Douglas

    2010-04-01

    Efficient collective operations are a major component of application scalability. Offload of collective operations onto the network interface reduces many of the latencies that are inherent in network communications and, consequently, reduces the time to perform the collective operation. To support offload, it is desirable to expose semantic building blocks that are simple to offload and yet powerful enough to implement a variety of collective algorithms. This paper presents the implementation of barrier and broadcast leveraging triggered operations - a semantic building block for collective offload. Triggered operations are shown to be both semantically powerful and capable of improving performance.

  16. RHIC on "How the Universe Works"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisa, Mike

    2014-08-11

    If you want to know how the universe works, part of the answer lies in understanding the building blocks of matter—before they became inextricably bound within the protons, neutrons, and atoms that make up everything visible in our universe today. That’s why producers for the Science Channel’s documentary series “How the Universe Works” made a point of stopping by the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, where physicists recreate post-Big Bang “primal matter” millions of times each day. Learn about RHIC’s role in exploring the building blocks of matter by watching this segment.

  17. Road map to adaptive optimal control. [jet engine control

    NASA Technical Reports Server (NTRS)

    Boyer, R.

    1980-01-01

    A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.

  18. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  19. Student-driven courses on the social and ecological responsibilities of engineers : commentary on "student-inspired activities for the teaching and learning of engineering ethics".

    PubMed

    Baier, André

    2013-12-01

    A group of engineering students at the Technical University of Berlin, Germany, designed a course on engineering ethics. The core element of the developed Blue Engineering course are self-contained teaching-units, "building blocks". These building blocks typically cover one complex topic and make use of various teaching methods using moderators who lead discussions, rather than experts who lecture. Consequently, the students themselves started to offer the credited course to their fellow students who take an active role in further developing the course themselves.

  20. Three-dimensional {Co(3+)-Zn2+} and {Co(3+)-Cd2+} networks originated from carboxylate-rich building blocks: syntheses, structures, and heterogeneous catalysis.

    PubMed

    Kumar, Girijesh; Gupta, Rajeev

    2013-10-07

    The present work shows the utilization of Co(3+) complexes appended with either para- or meta-arylcarboxylic acid groups as the molecular building blocks for the construction of three-dimensional {Co(3+)-Zn(2+)} and {Co(3+)-Cd(2+)} heterobimetallic networks. The structural characterizations of these networks show several interesting features including well-defined pores and channels. These networks function as heterogeneous and reusable catalysts for the regio- and stereoselective ring-opening reactions of various epoxides and size-selective cyanation reactions of assorted aldehydes.

  1. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks.

    PubMed

    Li, Junqi; Grillo, Anthony S; Burke, Martin D

    2015-08-18

    The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules using a linear-to-cyclized strategy, in which Csp(3) boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform has been automated. The synthesis of 14 distinct classes of small molecules, including pharmaceuticals, materials components, and polycyclic natural products, has been achieved using this new synthesis machine. It is anticipated that the scope of small molecules accessible by this platform will continue to expand via further developments in building block synthesis, Csp(3) cross-coupling methodologies, and cyclization strategies. Achieving these goals will enable the more generalized synthesis of small molecules and thereby help shift the rate-limiting step in small molecule science from synthesis to function.

  2. Assessment and Rehabilitation Issues Concerning Existing 70’s Structural Stock

    NASA Astrophysics Data System (ADS)

    Sabareanu, E.

    2017-06-01

    The last 30 years were very demanding in terms of norms and standards change concerning the structural calculus for buildings, leaving a large stock of structures erected during 70-90 decades in a weak position concerning seismic loads and loads level for live loads, wind and snow. In the same time, taking into account that a large amount of buildings are in service all over the country, they cannot be demolished, but suitable rehabilitation methods should be proposed, structural durability being achieved. The paper proposes some rehabilitation methods suitable in terms of structural safety and cost optimization for diaphragm reinforced concrete structures, with an example on an existing multi storey building.

  3. Fort Belvoir’s Engineer Replacement Training Center

    DTIC Science & Technology

    2011-12-01

    investing in permanent buildings of brick and tile. Makers of concrete and cinder blocks, cement siding, structural steel, and asbestos sheeting...in 1917. Hundreds of temporary wooden buildings and other structures , lining a central parade/training ground, were quickly built at a new...typical barracks building was considered significant because of the new technologies employed, including the standardization of plans, prefabrication of

  4. Prefinishing of Exterior Building Components. Proceedings of a Conference of the Building Research Institute, Division of Engineering and Industrial Research (Fall 1961).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Current trends in architectural design and construction are described which may affect the prefinishing of exterior building components. Contents include--(1) prefinishing of ferrous metals, (2) prefinishing of nonferrous metals, (3) prefinishing of wood and composition board, (4) prefinishing of masonry concrete block, (5) prefinishing of…

  5. PBF Reactor Building (PER620). Camera facing north toward south facade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera facing north toward south facade. Note west-wing siding on concrete block; high-bay siding of metal. Excavation and forms for signal and cable trenches proceed from building. Photographer: Kirsh. Date August 20, 1968. INEEL negative no. 68-3332 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla.

    PubMed

    Oezerdem, Celal; Winter, Lukas; Graessl, Andreas; Paul, Katharina; Els, Antje; Weinberger, Oliver; Rieger, Jan; Kuehne, Andre; Dieringer, Matthias; Hezel, Fabian; Voit, Dirk; Frahm, Jens; Niendorf, Thoralf

    2016-06-01

    To design, evaluate, and apply a bow tie antenna transceiver radiofrequency (RF) coil array tailored for cardiac MRI at 7.0 Tesla (T). The radiofrequency (RF) coil array comprises 16 building blocks each containing a bow tie shaped λ/2-dipole antenna. Numerical simulations were used for transmission field homogenization and RF safety validation. RF characteristics were examined in a phantom study. The array's suitability for high spatial resolution two-dimensional (2D) CINE imaging and for real time imaging of the heart was examined in a volunteer study. The arrays transmission fields and RF characteristics are suitable for cardiac MRI at 7.0T. The coil performance afforded a spatial resolution as good as (0.8 × 0.8 × 2.5) mm(3) for segmented 2D CINE MRI at 7.0T which is by a factor of 12 superior versus standardized protocols used in clinical practice at 1.5T. The proposed transceiver array supports 1D acceleration factors of up to R = 6 without impairing image quality significantly. The 16-channel bow tie antenna transceiver array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0 Tesla. Magn Reson Med 75:2553-2565, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.

    PubMed

    Regalia, Giulia; Coelli, Stefania; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting "building blocks" into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis.

  8. Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite.

    PubMed

    Saber-Samandari, Saeed; Alamara, Kadhim; Saber-Samandari, Samaneh; Gross, Karlis A

    2013-12-01

    The diversity in the structural and chemical state of apatites allows implant manufacturers to fine-tune implant properties. This requires suitable manufacturing processes and characterization tools to adjust the amorphous phase and hydroxyl content from the source hydroxylapatite. Hydroxylapatite was processed by high-velocity oxy-fuel spraying, plasma spraying and flame spraying, and primarily analyzed by Raman spectroscopy. Investigation of rounded splats, the building blocks of thermal spray coatings, allowed correlation between the visual identity of the splat surface and the Raman spectra. Splats were heat-treated to crystallize any remaining amorphous phase. The ν1 PO4 stretching peak at 950-970 cm(-1) displayed the crystalline order, but the hydroxyl peak at 3572 cm(-1) followed the degree of dehydroxylation. Hydroxyl loss was greatest for flame-sprayed particles, which create the longest residence time for the melted particle. Higher-frequency hydroxyl peaks in flame- and plasma-sprayed splats indicated a lower structural order for the recrystallized hydroxylapatite within the splats. Crystallization at 700 °C has shown potential for revealing hydroxyl ions previously trapped in amorphous calcium phosphate. This work compares Fourier transform infrared and Raman spectroscopy to measure the hydroxyl content in rapidly solidified apatites and shows that Raman spectroscopy is more suitable. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Why did Nature choose manganese to make oxygen?

    PubMed Central

    Armstrong, Fraser A

    2007-01-01

    This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2− and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1 V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329

  10. Modeling lift operations with SASmacr Simulation Studio

    NASA Astrophysics Data System (ADS)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  11. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the microstructure is being characterized in terms of casting defects. In addition, a small study (ref. 3) is being undertaken with GE Aircraft Engines to determine the suitability of superalloy lattice block for engine components.

  12. Retrofit Audits and Cost Estimates. A Look at Quality and Consistency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, L.; Shapiro, C.; Fleischer, W.

    Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community-based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low-and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC: Block bymore » Block program.« less

  13. Retrofit Audits and Cost Estimates: A Look at Quality and Consistency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, L.; Shapiro, C.; Fleischer, W.

    Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low- and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC:more » Block by Block program.« less

  14. ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Worldwide studies on aircraft disinsection at “blocks away”

    PubMed Central

    Sullivan, W. N.; Pal, R.; Wright, J. W.; Azurin, J. C.; Okamoto, R.; McGuire, J. U.; Waters, R. M.

    1972-01-01

    During 1971 worldwide experiments on the disinsection of passenger cabins at “blocks away” (as the aircraft starts taxiing for take-off) were conducted in several types of jet aircraft. A procedure was developed whereby the high capacity Boeing 747 could be disinsected by four stewardesses in less than 1 minute. The favourable results of these and previous trials indicate that this method is suitable as a standard procedure for aircraft disinsection for international quarantine purposes. The biological effectiveness against resistant and non-resistant mosquitos of a 2% concentration of a pyrethroid, resmethrin, in Freon 11+Freon 12 (1:1) (without kerosine) and a favourable passenger response make it suitable as a standard formulation for aircraft disinsection. PMID:4538193

  16. Creative Curriculum Integration in Atlantic Canada: A "MindShift"

    ERIC Educational Resources Information Center

    Warner, Alan; de Vreede, Cate

    2011-01-01

    Curriculum integration through block programs has not taken hold in Atlantic Canada, but another approach has blossomed in Nova Scotia that is achieving some of the key benefits--interdisciplinary, holistic and problem-based learning, student engagement, community building, collaborative relationships, and real-world experiences. If block programs…

  17. Design of a 2.4-GHz CMOS monolithic fractional-N frequency synthesizer

    NASA Astrophysics Data System (ADS)

    Shu, Keliu

    The wireless communication technology and market have been growing rapidly since a decade ago. The high demand market is a driving need for higher integration in the wireless transceivers. The trend is to achieve low-cost, small form factor and low power consumption. With the ever-reducing feature size, it is becoming feasible to integrate the RF front-end together with the baseband in the low-cost CMOS technology. The frequency synthesizer is a key building block in the RF front-end of the transceivers. It is used as a local oscillator for frequency translation and channel selection. The design of a 2.4-GHz low-power frequency synthesizer in 0.35mum CMOS is a challenging task mainly due to the high-speed prescaler. In this dissertation, a brief review of conventional PLL and frequency synthesizers is provided. Design techniques of a 2.4-GHz monolithic SigmaDelta fractional-N frequency synthesizer are investigated. Novel techniques are proposed to tackle the speed and integration bottlenecks of high-frequency PLL. A low-power and inherently glitch-free phase-switching prescaler and an on-chip loop filter with capacitance multiplier are developed. Compared with the existing and popular dual-path topology, the proposed loop filter reduces circuit complexity and its power consumption and noise are negligible. Furthermore, a third-order three-level digital SigmaDelta modulator topology is employed to reduce the phase noise generated by the modulator. Suitable PFD and charge-pump designs are employed to reduce their nonlinearity effects and thus minimize the folding of the SigmaDelta modulator-shaped phase noise. A prototype of the fractional-N synthesizer together with some standalone building blocks is designed and fabricated in TSMC 0.35mum CMOS through MOSIS. The prototype frequency synthesizer and standalone prescaler and loop filter are characterized. The feasibility and practicality of the proposed prescaler and loop filter are experimentally verified.

  18. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  19. Advancing metropolitan planning for operations : the building blocks of a model transportation plan incorporating operations : a desk reference

    DOT National Transportation Integrated Search

    2010-04-01

    This publication is a resource designed to enable transportation planners and their planning partners to build a transportation plan that includes operations objectives, performance measures, and strategies that are relevant to their region, that ref...

  20. Interior, detail view of last original windows and filed in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, detail view of last original windows and filed in wall arches, also concrete block wall of beryllum/uranium labs to left, looking southwest near center of west elevation, main building. - Watertown Arsenal, Building No. 312, Wooley Avenue, Watertown, Middlesex County, MA

Top