Sample records for suitable geologic formations

  1. Method of fracturing a geological formation

    DOEpatents

    Johnson, James O.

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  2. The Suitable Geological Formations for Spent Fuel Disposal in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marunteanu, C.; Ionita, G.; Durdun, I.

    2007-07-01

    Using the experience in the field of advanced countries and formerly Romanian program data, ANDRAD, the agency responsible for the disposal of radioactive wastes, started the program for spent fuel disposal in deep geological formations with a documentary analysis at the national scale. The potential geological formations properly characterized elsewhere in the world: salt, clay, volcanic tuff, granite and crystalline rocks,. are all present in Romania. Using general or specific selection criteria, we presently consider the following two areas for candidate geological formations: 1. Clay formations in two areas in the western part of Romania: (1) The Pannonian basin Socodormore » - Zarand, where the clay formation is 3000 m thick, with many bentonitic strata and undisturbed structure, and (2) The Eocene Red Clay on the Somes River, extending 1200 m below the surface. They both need a large investigation program in order to establish and select the required homogeneous, dry and undisturbed zones at a suitable depth. 2. Old platform green schist formations, low metamorphosed, quartz and feldspar rich rocks, in the Central Dobrogea structural unit, not far from Cernavoda NPP (30 km average distance), 3000 m thick and including many homogeneous, fine granular, undisturbed, up to 300 m thick layers. (authors)« less

  3. Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville Basin, Northern Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Bird, Kenneth J.

    2003-01-01

    A revised stratigraphic nomenclature is proposed for Cretaceous and Tertiary geologic units of the central and western North Slope of Alaska. This revised nomenclature is a simplified and broadly applicable scheme suitable for a suite of digital geologic quadrangle maps being prepared jointly by the U.S. Geological Survey and the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas. This revised nomenclature scheme is a simplification of a complex stratigraphic terminology that developed piecemeal during five decades of geologic investigations of the North Slope. It is based on helicopter-supported geologic field investigations incorporating information from high-resolution aerial photography, satellite imagery, paleontology, reflection seismic records, and sequence stratigraphic concepts. This revised nomenclature proposes the abandonment of the Colville Group; demotion of the Nanushuk Group to formation status; abandonment of six formations (Kukpowruk, Tuktu, Grandstand, Corwin, Chandler, and Ninuluk); revision of four formations (Sagavanirktok, Prince Creek, Schrader Bluff, and Seabee); elevation of the Tuluvak Tongue of the Prince Creek Formation to formation status; revision of two members (Franklin Bluffs Member and Sagwon Member of the Sagavanirktok Formation); abandonment of eight members or tongues (Kogosukruk, Rogers Creek, Barrow Trail, Sentinel Hill, Ayiyak, Shale Wall, Niakogon, and Killik); and definition of one new member (White Hills Member of the Sagavanirktok Formation).

  4. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: Data used in Geosphere Journal Article

    DOE Data Explorer

    Thomas A. Buscheck

    2015-06-01

    This data submission is for Phase 2 of Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations, which focuses on multi-fluid (CO2 and brine) geothermal energy production and diurnal bulk energy storage in geologic settings that are suitable for geologic CO2 storage. This data submission includes all data used in the Geosphere Journal article by Buscheck et al (2016). All assumptions are discussed in that article.

  5. Connecting onshore and offshore near-surface geology: Delaware's sand inventory project

    USGS Publications Warehouse

    Ramsey, K.W.; Jordan, R.R.; Talley, J.H.

    1999-01-01

    Beginning in 1988, the Delaware Geological Survey began a program to inventory on-land sand resources suitable for beach nourishment. The inventory included an assessment of the native beach textures using existing data and developing parameters of what would be considered suitable sand textures for Delaware's Atlantic beaches. An assessment of the economics of on-land sand resources was also conducted, and it was determined that the cost of the sand was competitive with offshore dredging costs. In addition, the sand resources were put into a geologic context for purposes of predicting which depositional environments and lithostratigraphic units were most likely to produce suitable sand resources. The results of the work identified several suitable on-land sand resource areas in the Omar and Beaverdam formations that were deposited in barrier-tidal delta and fluvial-estuarine environments, respectively. The identified on-land resources areas have not been utilized due to difficulties of truck transport and development pressures in the resource areas. The Delaware Geological Survey's participation in years 8, 9, and 10 of the Continental Margins Program was developed to extend the known resource areas onshore to offshore Delaware in order to determine potential offshore sand resources for beach nourishment. Years 8 and 9 involved primarily the collection of all available data on the offshore geology. These data included all seismic lines, surface grab samples, and cores. The data were filtered for those that had reliable locations and geologic information that could be used for geologic investigations. Year 10 completed the investigations onshore by construction of a geologic cross-section from data along the coast of Delaware from Cape Henlopen to Fenwick. This cross section identified the geologic units and potential sand resource bodies as found immediately along the coast. These units and resources are currently being extended offshore and tied to known and potential sand resources as part of the continuing cooperative effort between the Delaware Geological Survey and the Minerals Management Service's INTERMAR office as sand resources are identified in federal waters off Delaware. Offshore sand resources are found in the Pliocene Beaverdam Formation offshore where overlying Quaternary units have been stripped, in the tidal delta complexes of several Quaternary units likely equivalent to the onshore Omar Formation, and in late Pleistocene- and Holocene-age shoal complexes. Onshore lithostratigraphic units can be traced offshore and show another reason for continued geologic mapping both onshore and offshore.The Delaware Geological Survey's participation in years 8, 9, and 10 of the Continental Margins Program was developed to extend the known resource areas onshore to offshore Delaware in order to determine potential offshore sand resources for beach nourishment. Years 8 and 9 involved primarily the collection of all available data on the offshore geology. These data included all seismic lines, surface grab samples, and cores. The data were filtered for those that had reliable locations and geologic information that could be used for geologic investigations. Year 10 completed the investigations onshore by construction of a geologic cross-section from data along the coast of Delaware from cape Henlopen to Fenwick.

  6. Geologic framework for the national assessment of carbon dioxide storage resources: Powder River Basin, Wyoming, Montana, South Dakota, and Nebraska: Chapter B in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Craddock, William H.; Drake II, Ronald M.; Mars, John L.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven A.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2012-01-01

    This report presents ten storage assessment units (SAUs) within the Powder River Basin of Wyoming, Montana, South Dakota, and Nebraska. The Powder River Basin contains a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic, and at least three stratigraphic packages contain strata that are suitable for CO2 storage. Pennsylvanian through Triassic siliciclastic strata contain two potential storage units: the Pennsylvanian and Permian Tensleep Sandstone and Minnelusa Formation, and the Triassic Crow Mountain Sandstone. Jurassic siliciclastic strata contain one potential storage unit: the lower part of the Sundance Formation. Cretaceous siliciclastic strata contain seven potential storage units: (1) the Fall River and Lakota Formations, (2) the Muddy Sandstone, (3) the Frontier Sandstone and Turner Sandy Member of the Carlile Shale, (4) the Sussex and Shannon Sandstone Members of Cody Shale, and (5) the Parkman, (6) Teapot, and (7) Teckla Sandstone Members of the Mesaverde Formation. For each SAU, we discuss the areal distribution of suitable CO2 reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein will be employed to calculate the potential storage space in the various SAUs.

  7. Reconnaissance geologic map of the Harrat Tuffil Quadrangle, sheet 20/39 B, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Pallister, John S.

    1983-01-01

    A perlite deposit at Jabal Shama may be suitable as light aggregate for concrete. Sparse barite veins were discovered in the lower Shumaysi formation. Relatively small deposits of Sa’diyah formation marble may be of interest for local use in building or cement. The Jurassic dolomite is locally quite pure and may have economic applications.

  8. Feasibility of Lateral Emplacement in Very Deep Borehole Disposal of High Level Nuclear Waste

    DTIC Science & Technology

    2010-06-01

    superior isolation of the waste (mitigating proliferation, terrorist and human intrusion concerns), the impermeability of available geologic formations ...Continental U.S. (Courtesy “The Future of Geothermal Energy” by MIT)7 2. Age of the granitic formation (Figure 1-4) 3. Proximity to rail, barge, and...state are of particular interest with their access to the ancient and stable Canadian granite shield, but access to suitable formations is found in

  9. Geological, geomorphological, facies and allostratigraphic maps of the Eberswalde fan delta

    NASA Astrophysics Data System (ADS)

    Pondrelli, M.; Rossi, A. P.; Platz, T.; Ivanov, A.; Marinangeli, L.; Baliva, A.

    2011-09-01

    Geological, facies, geomorphological and allostratigraphic map of the Eberswalde fan delta area are presented. The Eberswalde fan delta is proposed as a sort of prototype area to map sedimentary deposits, because of its excellent data coverage and its variability in depositional as well as erosional morphologies and sedimentary facies. We present a report to distinguish different cartographic products implying an increasing level of interpretation. The geological map - in association with the facies map - represents the most objective mapping product. Formations are distinguished on the basis of objectively observable parameters: texture, color, sedimentary structures and geographic distribution. Stratigraphic relations are evaluated using Steno's principles. Formations can be interpreted in terms of depositional environment, but an eventual change of the genetic interpretation would not lead to a change in the geological map. The geomorphological map is based on the data represented in the geological map plus the association of the morphological elements, in order to infer the depositional sub-environments. As a consequence, it is an interpretative map focused on the genetic reconstruction. The allostratigraphic map is based on the morphofacies analysis - expressed by the geomorphological map - and by the recognition of surfaces which reflect allogenic controls, such as water level fluctuations: unconformities, erosional truncations and flooding surfaces. As a consequence, this is an even more interpretative map than the geomorphological one, since it focuses on the control on the sedimentary systems. Geological maps represent the most suitable cartographic product for a systematic mapping, which can serve as a prerequisite for scientific or landing site analyses. Geomorphological and allostratographic maps are suitable tools to broaden scientific analysis or to provide scientific background to landing site selection.

  10. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  11. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  12. Use of petrophysical data for siting of deep geological repository of radioactive waste

    NASA Astrophysics Data System (ADS)

    Petrenko, Liliana; Shestopalov, Vyacheslav

    2017-11-01

    The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.

  13. Do scaly clays control seismicity on faulted shale rocks?

    NASA Astrophysics Data System (ADS)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  14. Two innovative pore pressure calculation methods for shallow deep-water formations

    NASA Astrophysics Data System (ADS)

    Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei

    2017-11-01

    There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.

  15. Geoscientific Site Evaluation Approach for Canada's Deep Geological Repository for Used Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Sanchez-Rico Castejon, M.; Hirschorn, S.; Ben Belfadhel, M.

    2015-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The site evaluation process includes three main technical evaluation steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations, to assess the suitability of candidate areas in a stepwise manner over a period of many years. By the end of 2012, twenty two communities had expressed interest in learning more about the project. As of July 2015, nine communities remain in the site selection process. To date (July 2015), NWMO has completed Initial Screenings for the 22 communities that expressed interest, and has completed the first phase of Preliminary Assessments (desktop) for 20 of the communities. Phase 2 of the Preliminary Assessments has been initiated in a number of communities, with field activities such as high-resolution airborne geophysical surveys and geological mapping. This paper describes the approach, methods and criteria being used to assess the geoscientific suitability of communities currently involved in the site selection process.

  16. Reaction capacity characterization of shallow sedimentary deposits in geologically different regions of the Netherlands.

    PubMed

    Griffioen, Jasper; Klein, Janneke; van Gaans, Pauline F M

    2012-01-01

    Quantitative insight into the reaction capacity of porous media is necessary to assess the buffering capacity of the subsurface against contaminant input via groundwater recharge. Here, reaction capacity is to be considered as a series of geochemical characteristics that control acid/base conditions, redox conditions and sorption intensity. Using existing geochemical analyses, a statistical regional assessment of the reaction capacity was performed for two geologically different areas in the Netherlands. The first area is dominated by Pleistocene aquifer sediments only, in the second area a heterogeneous Holocene confining layer is found on top of the Pleistocene aquifer sediments. Within both areas, two or more regions can be distinguished that have a distinctly different geological build-up of the shallow subsurface. The reactive compounds considered were pyrite, reactive Fe other than pyrite, sedimentary organic matter, carbonate and clay content. This characterization was complemented by the analysis of a dataset of samples newly collected, from two regions within the Pleistocene area, where the sedimentary facies of samples was additionally distinguished. The statistical assessment per area was executed at the levels of region, geological formation and lithology class. For both areas, significant differences in reaction capacities were observed between: 1. different lithology classes within a geological formation in a single region, 2. identical geological formations in different regions and 3. various geological formations within a single region. Here, the reaction capacity is not only controlled by lithostratigraphy, but also by post-depositional diagenesis and paleohydrology. Correlation coefficients among the reactive compounds were generally higher for sand than for clay, but insufficiently high to allow good estimation of reactive compounds from each other. For the sandy Pleistocene aquifer sediments, the content of reactive compounds was frequently observed to be below detection limits. From this, future characterization of sediment reaction capacity is best performed at the sublevel of lithology class, being the geochemically near-uniform unit identifiable for individual geological formations within geographic regions. Additional subdivision on facies provides particular insight in the spatial entity where relatively high reaction capacities may be encountered. To obtain quantitative insight into the reaction capacity of aquifer sediments, non-sandy minor subunits should be well characterised on their reaction capacity as well as their spatial occurrence in the geological formations. A straightforward approach is presented in which the regional statistics on geochemical reactivity become combined with a 3-dimensional geological voxel model. This results into 3-dimensional data fields on reactivity, which are suitable for, for example, groundwater transport modelling. The sedimentological architecture of the deposits becomes well maintained in the geochemical data field, which is an advantage in itself. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Analysis of Geologic CO2 Sequestration at Farnham Dome, Utah, USA

    NASA Astrophysics Data System (ADS)

    Lee, S.; Han, W.; Morgan, C.; Lu, C.; Esser, R.; Thorne, D.; McPherson, B.

    2008-12-01

    The Farnham Dome in east-central Utah is an elongated, Laramide-age anticline along the northern plunge of the San Rafael uplift and the western edge of the Uinta Basin. We are helping design a proposed field demonstration of commercial-scale geologic CO2 sequestration, including injection of 2.9 million tons of CO2 over four years time. The Farnham Dome pilot site stratigraphy includes a stacked system of saline formations alternating with low-permeability units. Facilitating the potential sequestration demonstration is a natural CO2 reservoir at depth, the Jurassic-age Navajo formation, which contains an estimated 50 million tons of natural CO2. The sequestration test design includes two deep formations suitable for supercritical CO2 injection, the Jurassic-age Wingate sandstone and the Permian-age White Rim sandstone. We developed a site-specific geologic model based on available geophysical well logs and formation tops data for use with numerical simulation. The current geologic model is limited to an area of approximately 6.5x4.5 km2 and 2.5 km thick, which contains 12 stacked formations starting with the White Rim formation at the bottom (>5000 feet bgl) and extending to the Jurassic Curtis formation at the top of the model grid. With the detail of the geologic model, we are able to estimate the Farnham Dome CO2 capacity at approximately 36.5 million tones within a 5 mile radius of a single injection well. Numerical simulation of multiphase, non- isothermal CO2 injection and flow suggest that the injected CO2 plume will not intersect nearby fault zones mapped in previous geologic studies. Our simulations also examine and compare competing roles of different trapping mechanisms, including hydrostratigraphic, residual gas, solubility, and mineralization trapping. Previous studies of soil gas flux at the surface of the fault zones yield no significant evidence of CO2 leakage from the natural reservoir at Farnham Dome, and thus we use these simulations to evaluate what factors make this natural reservoir so effective for CO2 storage. Our characterization and simulation efforts are producing a CO2 sequestration framework that incorporates production and capacity estimation, area-of-review, injectivity, and trapping mechanisms. Likewise, mitigation and monitoring strategies have been formulated from the site characterization and modeling results.

  18. Geological Modeling and Fluid Flow Simulation of Acid Gas Storage, Nugget Sandstone, Moxa Arch, Wyoming

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.; Du, C.

    2009-12-01

    The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering variables on model predictions. Results suggest that (1) a horizontal and vertical resolution of 1/75 and 1/5~1/2 porosity correlation length is needed, respectively, to accurately capture the flow physics and mass balance. (2) the most sensitive variables that have first order impact on model predictions (i.e., regional storage, local displacement efficiency) are boundary condition, vertical permeability, relative permeability hysteresis, and injection rate. However, all else being equal, formation brine salinity has the most important effects on the concentrations of all dissolved components. Future work will define and simulate reactions of acid gases with formation brines and rocks which are currently under laboratory investigations.

  19. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    PubMed

    Elliot, T R; Celia, M A

    2012-04-03

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.

  20. Informing geobiology through GIS site suitability analysis: locating springs in mantle units of ophiolites

    NASA Astrophysics Data System (ADS)

    Bowman, A.; Cardace, D.; August, P.

    2012-12-01

    Springs sourced in the mantle units of ophiolites serve as windows to the deep biosphere, and thus hold promise in elucidating survival strategies of extremophiles, and may also inform discourse on the origin of life on Earth. Understanding how organisms can survive in extreme environments provides clues to how microbial life responds to gradients in pH, temperature, and oxidation-reduction potential. Spring locations associated with serpentinites have traditionally been located using a variety of field techniques. The aqueous alteration of ultramafic rocks to serpentinites is accompanied by the production of very unusual formation fluids, accessed by drilling into subsurface flow regimes or by sampling at related surface springs. The chemical properties of these springs are unique to water associated with actively serpentinizing rocks; they reflect a reducing subsurface environment reacting at low temperatures producing high pH, Ca-rich formation fluids with high dissolved hydrogen and methane. This study applies GIS site suitability analysis to locate high pH springs upwelling from Coast Range Ophiolite serpentinites in Northern California. We used available geospatial data (e.g., geologic maps, topography, fault locations, known spring locations, etc.) and ArcGIS software to predict new spring localities. Important variables in the suitability model were: (a) bedrock geology (i.e., unit boundaries and contacts for peridotite, serpentinite, possibly pyroxenite, or chromite), (b) fault locations, (c) regional data for groundwater characteristics such as pH, Ca2+, and Mg2+, and (d) slope-aspect ratio. The GIS model derived from these geological and environmental data sets predicts the latitude/longitude points for novel and known high pH springs sourced in serpentinite outcrops in California. Field work confirms the success of the model, and map output can be merged with published environmental microbiology data (e.g., occurrence of hydrogen-oxidizers) to showcase patterns in microbial community structure. Discrepancies between predicted and actual spring locations are then used to tune GIS suitability analysis, re-running the model with corrected geo-referenced data. This presentation highlights a powerful GIS-based technique for accelerating field exploration in this area of ongoing research.

  1. Evaluation of Lithofacies Up-Scaling Methods for Probabilistic Prediction of Carbon Dioxide Behavior

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Lee, S.; Lee, Y. I.; Kihm, J. H.; Kim, J. M.

    2017-12-01

    Behavior of carbon dioxide injected into target reservoir (storage) formations is highly dependent on heterogeneities of geologic lithofacies and properties. These heterogeneous lithofacies and properties basically have probabilistic characteristics. Thus, their probabilistic evaluation has to be implemented properly into predicting behavior of injected carbon dioxide in heterogeneous storage formations. In this study, a series of three-dimensional geologic modeling is performed first using SKUA-GOCAD (ASGA and Paradigm) to establish lithofacies models of the Janggi Conglomerate in the Janggi Basin, Korea within a modeling domain. The Janggi Conglomerate is composed of mudstone, sandstone, and conglomerate, and it has been identified as a potential reservoir rock (clastic saline formation) for geologic carbon dioxide storage. Its lithofacies information are obtained from four boreholes and used in lithofacies modeling. Three different up-scaling methods (i.e., nearest to cell center, largest proportion, and random) are applied, and lithofacies modeling is performed 100 times for each up-scaling method. The lithofacies models are then compared and analyzed with the borehole data to evaluate the relative suitability of the three up-scaling methods. Finally, the lithofacies models are converted into coarser lithofacies models within the same modeling domain with larger grid blocks using the three up-scaling methods, and a series of multiphase thermo-hydrological numerical simulation is performed using TOUGH2-MP (Zhang et al., 2008) to predict probabilistically behavior of injected carbon dioxide. The coarser lithofacies models are also compared and analyzed with the borehole data and finer lithofacies models to evaluate the relative suitability of the three up-scaling methods. Three-dimensional geologic modeling, up-scaling, and multiphase thermo-hydrological numerical simulation as linked methodologies presented in this study can be utilized as a practical probabilistic evaluation tool to predict behavior of injected carbon dioxide and even to analyze its leakage risk. This work was supported by the Korea CCS 2020 Project of the Korea Carbon Capture and Sequestration R&D Center (KCRC) funded by the National Research Foundation (NRF), Ministry of Science and ICT (MSIT), Korea.

  2. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  3. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    USGS Publications Warehouse

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hite, Roger

    The project site is located in Livingston Parish, Louisiana, approximately 26 miles due east of Baton Rouge. This project proposed to evaluate an early Eocene-aged Wilcox oil reservoir for permanent storage of CO 2. Blackhorse Energy, LLC planned to conduct a parallel CO 2 oil recovery project in the First Wilcox Sand. The primary focus of this project was to examine and prove the suitability of South Louisiana geologic formations for large-scale geologic sequestration of CO 2 in association with enhanced oil recovery applications. This was to be accomplished through the focused demonstration of small-scale, permanent storage of CO 2more » in the First Wilcox Sand. The project was terminated at the request of Blackhorse Energy LLC on October 22, 2014.« less

  5. Ground-water geology of Karnes County, Texas

    USGS Publications Warehouse

    Anders, Robert B.

    1963-01-01

    Most of the usable ground water in Karnes County is of substandard quality; whereas water from the San Antonio River, although hard, is of excellent quality. Wells tapping the Carrizo may yield as much as 1,000 gpm in the northwestern part of the county; wells in the shallower formations may yield as much as 600 gpm in the most favorable areas, but in some places may yield only a few gallons per minute of water suitable only for stock.

  6. Framework for the assessment of interaction between CO2 geological storage and other sedimentary basin resources.

    PubMed

    Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B

    2016-02-01

    Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide.

  7. Review of Knowledge on the Occurrence, Chemical Composition, and Potential Use for Desalination of Saline Ground Water in Arizona, New Mexico, and Texas with a Discussion of Potential Future Study Needs

    USGS Publications Warehouse

    Huff, G.F.

    2004-01-01

    Increasing demand on the limited supplies of freshwater in the desert Southwest, as well as other parts of the United States, has increased the level of interest in saline-water resources. Saline ground water has long been recognized as a potentially important contributor to water supply in the Southwest, as demonstrated by the number of hydrologic, geologic, and engineering studies on the distribution of saline water and the feasibility of desalination. Potential future study needs include investigating and documenting the three-dimensional distribution of salinity and chemical composition of saline-water resources and the hydraulic properties of aquifers containing these saline-water resources, assessing the chemical suitability of saline water for use with existing and anticipated desalination technologies, simulating the effect of withdrawal of saline ground water on water levels and water composition in saline and adjoining or overlying freshwater aquifers, and determining the suitability of target geologic formations for injection of desalination-generated waste.

  8. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    USGS Publications Warehouse

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and guidelines for reporting estimates within the classification based on each project's status. 

  9. The Oligocene carbonate platform of the Zagros Basin, SW Iran: An assessment of highly-complex geological heritage

    NASA Astrophysics Data System (ADS)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-05-01

    North Africa and the Middle East possess rich geological heritage, but the latter is yet to be fully identified and described. The Oligocene carbonate platform of the Zagros Basin in southwest Iran, which corresponds to the lower part of the Asmari Formation, has significant potential for geoconservation and geotourism. The types of the geological heritage, their value, and the possible geosites have been assessed. The studied deposits are interesting because of lithology (carbonate rocks), fossils (larger foraminifera, other microfossils, diverse marine invertebrates, fish microremains, and trace fossils), biostratigraphical developments, facies (homoclinal carbonate ramp) and signature of global events (glacioeustatic fluctuations), and outstanding hydrocarbon resources. The five main geological heritage types are sedimentary, palaeontological, stratigraphical, palaeogeographical, and economical, from which the palaeontological, palaeogeographical, and economical types are of global rank. The Khollar and Kavar sections in the Fars Province of Iran are recommended as geosites suitable for research, education, and tourism. The high complexity of the geological heritage linked to the Oligocene carbonate platform of the Zagros Basin implies the phenomenon of geodiversity should be understood with regard to the relationships between types and their values.

  10. Geologic framework for the national assessment of carbon dioxide storage resources: Arkoma Basin, Kansas Basins, and Midcontinent Rift Basin study areas: Chapter F in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Craddock, William H.; Blondes, Madalyn S.; Freeman, Phillip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2013-01-01

    2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Upper Cambrian to Mississippian sedimentary rocks within the Arkoma Basin study area, and two SAUs in Upper Cambrian to Mississippian sedimentary rocks within the Kansas Basins study area. The Arkoma Basin and Kansas Basins are adjacent with very similar geologic units; although the Kansas Basins area is larger, the Arkoma Basin is more structurally complex. The report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are usually provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information herein was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. The Midcontinent Rift Basin study area was not assessed, because no suitable storage formations meeting our size, depth, reservoir quality, and regional seal guidelines were found. Figures in this report show study area boundaries along with the SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one-square mile and are derived from interpretations of incompletely attributed well data and from a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on the cell maps.

  11. Water resources of Dinosaur National Monument, Colorado and Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1976-01-01

    Dinosaur National Monument, partly in the Rocky Mountain System and partly in the Colorado Plateaus physiographic province, covers an area of 322 square miles (834 square kilometres) in northwestern Colorado and northeastern Utah. The climate is generally cool and pleasant in May, early June, September, and October; winters are cold. Normal annual precipitation ranges from less than 8 to more than 16 inches (203 to 406 millimetres).Geologic formations in the monument range in age from upper Precambrian to Holocene, but not all ages are represented. The monument is on the south limb of the east-trending regional fold representing the Uinta Mountains. Faults and subsidary folds on the south slope of the Uinta Mountains complicate the geology and hydrology of the area.None of the surface streams in the monument are diverted for public supply, but the Green and Yampa Rivers are a recreational resource for boaters. The flow of the Green River is regulated by Flaming Gorge Reservoir; however, flood potentials are estimated for the Yampa River and three smaller streams. Facilities in the monument are not endangered by probable mean annual floods, but may sustain some damage to facilities by the 25- or 50-year floods.Major aquifers in the monument are sandstone and limestone formations, but these formations are drained in the higher areas. Alluvium along the major stream channels yields small amounts of water to wells, but some of the water is not of suitable chemical quality for public supply. All public water supplies in 1971 were obtained from wells, and the use of water during 1970 was estimated to be 15 million gallons (46 acre-feet or 0.057 cubic hectometres). Most of the ground water obtained from sandstone and limestone is of suitable chemical quality for public supply.

  12. An Investigation of the Hypotheses for Formation of the Platy-Ridged Terrain in Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Yue, Z.; Gou, S.; Michael, G.; Di, K.; Xie, H.; Gong, H.; Shao, Y.

    2017-07-01

    The origin of the platy-ridged-polygonized (PRP) terrains on Martian surface has long been debated. The terrain has generally been classified as water, pack ice, or basalt lava related flow. The crater counting results of the PRP terrains suggest they are geologically very young; therefore, they are significant in understanding the recent evolution of Mars. This work evaluated the current hypotheses through detailed analysis of the distribution and microtopographies with the High Resolution Imaging Science Experiment (HiRISE) images for the PRP terrains in Elysium Planitia, Mars. Quantitative measurements and statistics of the typical features of the PRP terrains were also made. In addition, we also found an analog site in Tarim Basin in Xinjiang, China. Our results suggest that mud flow is responsible for the formation of the PRP terrains on the Mars surface, although the hypothesis of low-viscosity basalt lava floods cannot be completely excluded. This finding implies that a regional environment suitable for liquid water may have existed in recent geologic time, which has great importance for future Mars scientific exploration.

  13. High-resolution geologic mapping of the inner continental shelf: Boston Harbor and approaches, Massachusetts

    USGS Publications Warehouse

    Ackerman, Seth D.; Butman, Bradford; Barnhardt, Walter A.; Danforth, William W.; Crocker, James M.

    2006-01-01

    This report presents the surficial geologic framework data and information for the sea floor of Boston Harbor and Approaches, Massachusetts (fig. 1.1). This mapping was conducted as part of a cooperative program between the U.S. Geological Survey (USGS), the Massachusetts Office of Coastal Zone Management (CZM), and the National Oceanic and Atmospheric Administration (NOAA). The primary objective of this project was to provide sea floor geologic information and maps of Boston Harbor to aid resource management, scientific research, industry and the public. A secondary objective was to test the feasibility of using NOAA hydrographic survey data, normally collected to update navigation charts, to create maps of the sea floor suitable for geologic and habitat interpretations. Defining sea-floor geology is the first steps toward managing ocean resources and assessing environmental changes due to natural or human activity. The geophysical data for these maps were collected as part of hydrographic surveys carried out by NOAA in 2000 and 2001 (fig. 1.2). Bottom photographs, video, and samples of the sediments were collected in September 2004 to help in the interpretation of the geophysical data. Included in this report are high-resolution maps of the sea floor, at a scale of 1:25,000; the data used to create these maps in Geographic Information Systems (GIS) format; a GIS project; and a gallery of photographs of the sea floor. Companion maps of sea floor to the north Boston Harbor and Approaches are presented by Barnhardt and others (2006) and to the east by Butman and others (2003a,b,c). See Butman and others (2004) for a map of Massachusetts Bay at a scale of 1:125,000. The sections of this report are listed in the navigation bar along the left-hand margin of this page. Section 1 (this section) introduces the report. Section 2 presents the large-format map sheets. Section 3 describes data collection, processing, and analysis. Section 4 summarizes the geologic history of the region and discusses geomorphic and anthropogenic features within the study area. Section 4 also provides references that contain additional information about the region. Appendix 1 provides GIS layers of all the data collected in this study, Appendix 2 contains the grain size textural analyses of sediment samples, and Appendix 3 contains bottom photographs of the sea floor in JPG format.

  14. Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myshakin, Evgeniy; Saidi, Wissam; Romanov, Vyacheslav

    2016-11-22

    In this study, classical molecular dynamics simulations and density functional theory (DFT)-based molecular dynamics are used to elucidate the process of CO 2 intercalation into hydrated Na-montmorillonite at P-T conditions relevant to geological formations suitable for CO 2 storage. Of particular interest are the structural and transport properties of interlayer species after CO 2 intercalation. The conducted simulations allowed the research team to quantify expansion/contraction of smectite as a function of CO 2 and H 2O compositions. The resulting swelling curves can be used to gauge the amount of stored CO 2, compare it to the experiment, and estimate changesmore » in geomechanical properties of the storage formation. The obtained results showed that the infrared signal of the asymmetric stretch vibration of CO 2 molecule is extremely sensitive to the solvent environment. The extent of the frequency shift relative to the gas-phase value can be used to probe hydration level in the interlayer with intercalated CO 2. Interaction of supercritical CO 2 with brine in deep geological formations promotes an increase of hydrophobicity of clay surfaces. As a result of wettability alteration, estimated diffusion constants of CO 2 and H 2O increase with the increased CO 2 load; this can contribute to faster migration of CO 2 throughout the formation.« less

  15. Carbon Capture and Storage, 2008

    ScienceCinema

    None

    2017-12-09

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  16. Outstanding diversity of heritage features in large geological bodies: The Gachsaran Formation in southwest Iran

    NASA Astrophysics Data System (ADS)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-09-01

    The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.

  17. Techniques and strategies for data integration in mineral resource assessment

    USGS Publications Warehouse

    Trautwein, Charles M.; Dwyer, John L.

    1991-01-01

    The Geologic and the National Mapping divisions of the U.S. Geological Survey have been involved formally in cooperative research and development of computer-based geographic information systems (GISs) applied to mineral-resource assessment objectives since 1982. Experience in the Conterminous United States Mineral Assessment Program (CUSMAP) projects including the Rolla, Missouri; Dillon, Montana; Butte, Montana; and Tonopah, Nevada 1?? ?? 2?? quadrangles, has resulted in the definition of processing requirements for geographically and mineral-resource data that are common to these studies. The diverse formats of data sets collected and compiled for regional mineral-resource assessments necessitate capabilities for digitally encoding and entering data into appropriate tabular, vector, and raster subsystems of the GIS. Although many of the required data sets are either available or can be provided in a digital format suitable for direct entry, their utility is largely dependent on the original intent and consequent preprocessing of the data. In this respect, special care must be taken to ensure the digital data type, encoding, and format will meet assessment objectives. Data processing within the GIS is directed primarily toward the development and application of models that can be used to describe spatially geological, geophysical, and geochemical environments either known or inferred to be associated with specific types of mineral deposits. Consequently, capabilities to analyze spatially, aggregate, and display relations between data sets are principal processing requirements. To facilitate the development of these models within the GIS, interfaces must be developed among vector-, raster-, and tabular-based processing subsystems to reformat resident data sets for comparative analyses and multivariate display of relations.

  18. Radon potential, geologic formations, and lung cancer risk

    PubMed Central

    Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay

    2015-01-01

    Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090

  19. Poza Rica: 29 years of secondary recovery (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, H.G.

    1981-03-01

    One of the main objectives of the Mexican Goverment is the suitable exploitation of its hydrocarbon reservoirs. Therefore, the application of secondary recovery methods in those reservoirs sensitive to this method was increased. Petroleos Mexicanos has 27 systems of waterflooding in operation; 30% more than in 1976. The main objective is the continuous analysis of the optimum conditions, in order to optimize the efficiency of the waterflooding process, such as in the Tamabra formation in the Poza Rica field. A history is presented of the waterflooding process utilized in the Poza Rica field to increase the oil production from themore » Tamabra formation. Geology and reservoir characteristics, antecedents, producing well requirements, project development, future programs, and economic analyses are presented.« less

  20. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah

    2013-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safetymore » and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)« less

  1. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia.

    PubMed

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-10-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparison of UAV and TLS DTMs for acquisition of geological, geomorphological information for Doren landslide, Vorarlberg Austria

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Dorninger, Peter; Rasztovits, Sascha; Roncat, Andreas; Zámolyi, András; Krawczyk, Dominik; Pfeifer, Norbert

    2014-05-01

    Aerial imagery derivatives collected by the Unmanned Aerial Vehicle (UAV) technology can be used as input for generation of high resolution digital terrain model (DTM) data along with the Terrestrial Laser Scanning (TLS) method. Both types of datasets are suitable for detailed geological and geomorphometric analysis, because the data provide micro-topographical and structural geological information. Our study focuses on the comparison of the possibilities of the extracted geological information, which is available from high resolution DTMs. This research attempts to find an answer which technology is more effective for geological and geomorphological analysis. The measurements were taken at the Doren landslide (Vorarlberg, Austria), a complex rotational land slide situated in the Alpine molasse foreland. Several formations (Kojen Formation, Würmian glacial moraine sediments, Weissach Formation) were tectonized there in the course of the alpine orogeny (Oberhauser et al, 2007). The typical fault direction is WSW-ENE. The UAV measurements that were carried out simultaneously with the TLS campaign focused on the landslide scarp. The original image resolution was 4 mm/pixel. Image matching was implemented in pyramid level 2 and the achieved resolution of the DTM was 0.05 meter. The TLS dataset includes 18 scan positions and more than 300 million points for the whole landslide area. The achieved DTM has 0.2 meter resolution. The steps of the geological and geomorphological analysis were: (1) visual interpretation based on field work and geological maps, (2) quantitative DTM analysis. In the quantitative analysis input data provided by the different kinds of DTMs were used for further parameter calculations (e.g. slope, aspect, sigmaZ). In the next step an automatic classification method was used for the detection of faults and classification of different parts of the landslide. The conclusion was that for geological visualization interpretation UAV datasets are better, because the high resolution texture information allows for the extraction of the digital geomorphology indicators. For quantitative analysis both datasets are informative, but the TLS DTM has an advantage of accessing additional information on faults beneath the vegetation cover. These studies were carried out partly in the framework of Hybrid 3D project financed by the Austrian Research Promotion Agency (FFG) and Von-Oben and 4D-IT; the contribution of ZsK was partly funded by Campus Hungary Internship TÁMOP-424B1; BSz contributed partly as an Alexander von Humboldt Research Fellow.

  3. Determining resistivity of a geological formation using circuitry located within a borehole casing

    DOEpatents

    Vail III, William Banning

    2006-01-17

    Geological formation resistivity is determined. Circuitry is located within the borehole casing that is adjacent to the geological formation. The circuitry can measure one or more voltages across two or more voltage measurement electrodes associated with the borehole casing. The measured voltages are used by a processor to determine the resistivity of the geological formation. A common mode signal can also be reduced using the circuitry.

  4. An Annotated List of Marine Stations Suitable for Field Courses in Carbonate Geology and Tropical Marine Sciences.

    ERIC Educational Resources Information Center

    Kaplan, Eugene H.

    1980-01-01

    Listed are field stations in the Caribbean and Florida-Bahamas which are suitable for classes in field geology and tropical marine science. Each field station is described by listing the name of the institution, description of accommodations, library facilities, laboratory facilities, boats, classrooms, motor vehicles, study areas, scuba, and…

  5. An Annotated List of Marine Stations Suitable for Field Courses in Carbonate Geology and Tropical Marine Sciences.

    ERIC Educational Resources Information Center

    Kaplan, Eugene H.

    1980-01-01

    This is an annotated list of marine field stations suitable for summer study or research in carbonate geology and tropical marine sciences. Thirteen are listed and described in detail. Equipment is discussed and reference is made to research-oriented Caribbean facilities for graduate study or field courses. (Author/SA)

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Frank Vinton; Kelley, Richard E.

    The DOE Spent Fuel and Waste Technology (SWFT) R&D Campaign is supporting research on crystalline rock, shale (argillite) and salt as potential host rocks for disposal of HLW and SNF in a mined geologic repository. The distribution of these three potential repository host rocks is limited to specific regions of the US and to different geologic and hydrologic environments (Perry et al., 2014), many of which may be technically suitable as a site for mined geologic disposal. This report documents a regional geologic evaluation of the Pierre Shale, as an example of evaluating a potentially suitable shale for siting amore » geologic HLW repository. This report follows a similar report competed in 2016 on a regional evaluation of crystalline rock that focused on the Superior Province of the north-central US (Perry et al., 2016).« less

  7. Revised Subsurface Stratigraphic Framework of the Fort Union and Wasatch Formations, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Flores, Romeo M.; Spear, Brianne D.; Purchase, Peter A.; Gallagher, Craig M.

    2010-01-01

    Described in this report is an updated subsurface stratigraphic framework of the Paleocene Fort Union Formation and Eocene Wasatch Formation in the Powder River Basin (PRB) in Wyoming and Montana. This framework is graphically presented in 17 intersecting west-east and north-south cross sections across the basin. Also included are: (1) the dataset and all associated digital files and (2) digital files for all figures and table 1 suitable for large-format printing. The purpose of this U.S. Geological Survey (USGS) Open-File Report is to provide rapid dissemination and accessibility of the stratigraphic cross sections and related digital data to USGS customers, especially the U.S. Bureau of Land Management (BLM), to facilitate their modeling of the hydrostratigraphy of the PRB. This report contains a brief summary of the coal-bed correlations and database, and is part of a larger ongoing study that will be available in the near future.

  8. Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran).

    PubMed

    Nasiri, Hossein; Boloorani, Ali Darvishi; Sabokbar, Hassan Ali Faraji; Jafari, Hamid Reza; Hamzeh, Mohamad; Rafii, Yusef

    2013-01-01

    Flood spreading is a suitable strategy for controlling and benefiting from floods. Selecting suitable areas for flood spreading and directing the floodwater into permeable formations are amongst the most effective strategies in flood spreading projects. Having combined geographic information systems (GIS) and multi-criteria decision analysis approaches, the present study sought to locate the most suitable areas for flood spreading operation in the Garabaygan Basin of Iran. To this end, the data layers relating to the eight effective factors were prepared in GIS environment. This stage was followed by elimination of the exclusionary areas for flood spreading while determining the potentially suitable ones. Having closely examined the potentially suitable areas using the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic hierarchy process (AHP) methods, the land suitability map for flood spreading was produced. The PROMETHEE II and AHP were used for ranking all the alternatives and weighting the criteria involved, respectively. The results of the study showed that most suitable areas for the artificial groundwater recharge are located in Quaternary Q(g) and Q(gsc) geologic units and in geomorphological units of pediment and Alluvial fans with slopes not exceeding 3%. Furthermore, significant correspondence between the produced map and the control areas, where the flood spreading projects were successfully performed, provided further evidence for the acceptable efficiency of the integrated PROMETHEE II-AHP method in locating suitable flood spreading areas.

  9. Bedrock aquifers in the northern San Rafael Swell area, Utah, with special emphasis on the Navajo Sandstone

    USGS Publications Warehouse

    Hood, J.W.; Patterson, D.J.

    1984-01-01

    This report presents the results of a study of bedrock aquifers in the northern San Rafael Swell area, Utah (fig. 1), with special emphasis on the Navajo Sandstone of Triassic(?) and Jurassic age. The study was made by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. Fieldwork was done mainly during March 1979-July 1980, with supplemental testing and observations during August-December 1980.The principal objectives of this study were to determine: (1) Well yields of the bedrock formations, (2) the capability of formations to yield, over the long term, water chemically suitable for presently (1980) known uses, and (3) effects of withdrawals from wells on the surface-water supply in the Colorado River Basin.

  10. High strain rate method of producing optimized fracture networks in reservoirs

    DOEpatents

    Roberts, Jeffery James; Antoun, Tarabay H.; Lomov, Ilya N.

    2015-06-23

    A system of fracturing a geological formation penetrated by a borehole. At least one borehole is drilled into or proximate the geological formation. An energetic charge is placed in the borehole. The energetic charge is detonated fracturing the geological formation.

  11. Relationships between palaeogeography and opal occurrence in Australia: A data-mining approach

    NASA Astrophysics Data System (ADS)

    Landgrebe, T. C. W.; Merdith, A.; Dutkiewicz, A.; Müller, R. D.

    2013-07-01

    Age-coded multi-layered geological datasets are becoming increasingly prevalent with the surge in open-access geodata, yet there are few methodologies for extracting geological information and knowledge from these data. We present a novel methodology, based on the open-source GPlates software in which age-coded digital palaeogeographic maps are used to “data-mine” spatio-temporal patterns related to the occurrence of Australian opal. Our aim is to test the concept that only a particular sequence of depositional/erosional environments may lead to conditions suitable for the formation of gem quality sedimentary opal. Time-varying geographic environment properties are extracted from a digital palaeogeographic dataset of the eastern Australian Great Artesian Basin (GAB) at 1036 opal localities. We obtain a total of 52 independent ordinal sequences sampling 19 time slices from the Early Cretaceous to the present-day. We find that 95% of the known opal deposits are tied to only 27 sequences all comprising fluvial and shallow marine depositional sequences followed by a prolonged phase of erosion. We then map the total area of the GAB that matches these 27 opal-specific sequences, resulting in an opal-prospective region of only about 10% of the total area of the basin. The key patterns underlying this association involve only a small number of key environmental transitions. We demonstrate that these key associations are generally absent at arbitrary locations in the basin. This new methodology allows for the simplification of a complex time-varying geological dataset into a single map view, enabling straightforward application for opal exploration and for future co-assessment with other datasets/geological criteria. This approach may help unravel the poorly understood opal formation process using an empirical spatio-temporal data-mining methodology and readily available datasets to aid hypothesis testing.

  12. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.

    2013-01-01

    Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.

  13. Correlation of regional geohydrologic units to geological formations in southern Missouri

    USGS Publications Warehouse

    Smith, Brenda J.; Imes, Jeffrey L.

    1991-01-01

    As part of the U.S Geological Survey's Regional Aquifer-System Analysis Program, geologic formations in southern Missouri (index map) were grouped into eight regional geohydrologic units on the basis of relative rock permeability and well yields (imes and Emmett, in press). Geohydrologic unit boundaries do not necessarily coincide with geologic unit boundaries or geologic time lines, but are determined by regional hydrologic properties, which may vary from one area to another.  The geologic formaitons were grouped into the geohydrologic units to determine the hydrologic characteristics of regional aquifer systems and associated regional confining units in parts of Arkansas, Kansas,Missouri, and Oklahoma.  This report presents a correlation of the regional geohydrologic units to corresponding geologic formations in southern Missouri.  Included in the report is a brief geologic history of southern Missouri.

  14. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.

    PubMed

    Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T

    2016-01-01

    Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A study on directional resistivity logging-while-drilling based on self-adaptive hp-FEM

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Li, Hui; Zhang, Yingying; Zhu, Gengxue; Ai, Qinghui

    2014-12-01

    Numerical simulation of resistivity logging-while-drilling (LWD) tool response provides guidance for designing novel logging instruments and interpreting real-time logging data. In this paper, based on self-adaptive hp-finite element method (hp-FEM) algorithm, we analyze LWD tool response against model parameters and briefly illustrate geosteering capabilities of directional resistivity LWD. Numerical simulation results indicate that the change of source spacing is of obvious influence on the investigation depth and detecting precision of resistivity LWD tool; the change of frequency can improve the resolution of low-resistivity formation and high-resistivity formation. The simulation results also indicate that the self-adaptive hp-FEM algorithm has good convergence speed and calculation accuracy to guide the geologic steering drilling and it is suitable to simulate the response of resistivity LWD tools.

  16. Hydrocarbon Reservoir Identification in Volcanic Zone by using Magnetotelluric and Geochemistry Information

    NASA Astrophysics Data System (ADS)

    Firda, S. I.; Permadi, A. N.; Supriyanto; Suwardi, B. N.

    2018-03-01

    The resistivity of Magnetotelluric (MT) data show the resistivity mapping in the volcanic reservoir zone and the geochemistry information for confirm the reservoir and source rock formation. In this research, we used 132 data points divided with two line at exploration area. We used several steps to make the resistivity mapping. There are time series correction, crosspower correction, then inversion of Magnetotelluric (MT) data. Line-2 and line-3 show anomaly geological condition with Gabon fault. The geology structure from the resistivity mapping show the fault and the geological formation with the geological rock data mapping distribution. The geochemistry information show the maturity of source rock formation. According to core sample analysis information, we get the visual porosity for reservoir rock formation in several geological structure. Based on that, we make the geological modelling where the potential reservoir and the source rock around our interest area.

  17. Mineral and Vegetation Maps of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada, Generated from ASTER Satellite Data

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2010-01-01

    Multispectral remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were analyzed to identify and map minerals, vegetation groups, and volatiles (water and snow) in support of geologic studies of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada. Digital mineral and vegetation mapping results are presented in both portable document format (PDF) and ERDAS Imagine format (.img). The ERDAS-format files are suitable for integration with other geospatial data in Geographic Information Systems (GIS) such as ArcGIS. The ERDAS files showing occurrence of 1) iron-bearing minerals, vegetation, and water, and 2) clay, sulfate, mica, carbonate, Mg-OH, and hydrous quartz minerals have been attributed according to identified material, so that the material detected in a pixel can be queried with the interactive attribute identification tools of GIS and image processing software packages (for example, the Identify Tool of ArcMap and the Inquire Cursor Tool of ERDAS Imagine). All raster data have been orthorectified to the Universal Transverse Mercator (UTM) projection using a projective transform with ground-control points selected from orthorectified Landsat Thematic Mapper data and a digital elevation model from the U.S. Geological Survey (USGS) National Elevation Dataset (1/3 arc second, 10 m resolution). Metadata compliant with Federal Geographic Data Committee (FGDC) standards for all ERDAS-format files have been included, and contain important information regarding geographic coordinate systems, attributes, and cross-references. Documentation regarding spectral analysis methodologies employed to make the maps is included in these cross-references.

  18. Sm-Nd in marine carbonates and phosphates - Implications for Nd isotopes in seawater and crustal ages

    NASA Technical Reports Server (NTRS)

    Shaw, H. F.; Wasserburg, G. J.

    1985-01-01

    The possibility of establishing a record of variations in the isotopic composition of Nd in seawater over geologic time is explored. To construct such a record, a phase must be identified which incorporated Nd with the same isotopic composition as seawater at the time of its formation, preserves that composition, and which is relatively common in sediments. To evaluate the suitability of carbonates and phosphates, the Rb, Sr, Sm, and Nd concentrations and the Nd and Sr isotopic composition of a variety of modern and ancient marine calcite, aragonite, and apatite samples have been measured and the results are presented and discussed.

  19. Early Mars: A Warm Wet Niche for Life

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.

    2010-01-01

    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution had conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 Ma of Martian history were ripe for life to develop because of the abundance of: (i) Water-as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at approx.3.9 Ga, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic patterns in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 Ma?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve)

  20. Geologic map of Oldonyo Lengai (Oldoinyo Lengai) Volcano and surroundings, Arusha Region, United Republic of Tanzania

    USGS Publications Warehouse

    Sherrod, David R.; Magigita, Masota M.; Kwelwa, Shimba

    2013-01-01

    The geology of Oldonyo Lengai volcano and the southernmost Lake Natron basin, Tanzania, is presented on this geologic map at scale 1:50,000. The map sheet can be downloaded in pdf format for online viewing or ready to print (48 inches by 36 inches). A 65-page explanatory pamphlet describes the geologic history of the area. Its goal is to place the new findings into the framework of previous investigations while highlighting gaps in knowledge. In this way questions are raised and challenges proposed to future workers. The southernmost Lake Natron basin is located along the East African rift zone in northern Tanzania. Exposed strata provide a history of volcanism, sedimentation, and faulting that spans 2 million years. It is here where Oldonyo Lengai, Tanzania’s most active volcano of the past several thousand years, built its edifice. Six new radiometric ages, by the 40Ar/39Ar method, and 48 new geochemical analyses from Oldonyo Lengai and surrounding volcanic features deepen our understanding of the area. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) may download an electronic database, suitable for most GIS software applications. The GIS database is in a Transverse Mercator projection, zone 36, New (1960) Arc datum. The database includes layers for hypsography (topography), hydrography, and infrastructure such as roads and trails.

  1. History of the Fort Collins Science Center, U.S. Geological Survey

    USGS Publications Warehouse

    O'Shea, Thomas J. (compiler)

    2006-01-01

    At various times during the period when it was part of the National Biological Service (1993–96), the Center served as the administrative and programmatic home base for a wide number of science activities in numerous Western states (table 1). This reflected the previous fragmentation of biological and related science efforts across resource management agencies in the U.S. Department of the Interior. The organization of the 2 Center within the National Biological Service was a manifestation of the desire of the Secretary of the Interior to consolidate its biological science activities in administratively independent entities that would ensure that the science retained its objectivity. Congress later recognized the need to maintain a hierarchical independence between biological science and resource management in the Department. However, Congress also saw that the U.S. Geological Survey, with its long history of objective science support to the nation in geology, water resources, geography, and remote sensing, was a suitable alternative home for these biological science functions. Thus, in 1996 Congress transferred the biological resources functions of the National Biological Service to the U.S. Geological Survey. Detailed overviews and opinions about the history and policy issues surrounding the formation and subsequent fate of the National Biological Service can be found elsewhere (for example Cohn, 1993, 2005; Kaufman, 1993; Kreeger, 1994; Pulliam, 1995, 1998a,b; Reichhardt, 1994; Wagner, 1999)

  2. Hydrogeology of the Lake Tahoe Basin, California and Nevada

    USGS Publications Warehouse

    Plume, Russell W.; Tumbusch, Mary L.; Welborn, Toby L.

    2009-01-01

    Ground water in the Lake Tahoe basin is the primary source of domestic and municipal water supply and an important source of inflow to Lake Tahoe. Over the past 30-40 years, Federal, State, and local agencies, and research institutions have collected hydrologic data to quantify the ground-water resources in the Lake Tahoe basin. These data are dispersed among the various agencies and institutions that collected the data and generally are not available in a format suitable for basin-wide assessments. To successfully and efficiently manage the ground-water resources throughout the Lake Tahoe basin, the U.S. Geological Survey (USGS) in cooperation with the U.S. Forest Service (USFS) compiled and evaluated the pertinent geologic, geophysical, and hydrologic data, and built a geodatabase incorporating the consolidated and standardized data for the Lake Tahoe basin that is relevant for examining the extent and characteristics of the hydrogeologic units that comprise the aquifers. The geodatabase can be accessed at http://water.usgs.gov/lookup/getspatial?SIM3063.

  3. CO2 Storage related Groundwater Impacts and Protection

    NASA Astrophysics Data System (ADS)

    Fischer, Sebastian; Knopf, Stefan; May, Franz; Rebscher, Dorothee

    2016-03-01

    Injection of CO2 into the deep subsurface will affect physical and chemical conditions in the storage environment. Hence, geological CO2 storage can have potential impacts on groundwater resources. Shallow freshwater can only be affected if leakage pathways facilitate the ascent of CO2 or saline formation water. Leakage associated with CO2 storage cannot be excluded, but potential environmental impacts could be reduced by selecting suitable storage locations. In the framework of risk assessment, testing of models and scenarios against operational data has to be performed repeatedly in order to predict the long-term fate of CO2. Monitoring of a storage site should reveal any deviations from expected storage performance, so that corrective measures can be taken. Comprehensive R & D activities and experience from several storage projects will enhance the state of knowledge on geological CO2 storage, thus enabling safe storage operations at well-characterised and carefully selected storage sites while meeting the requirements of groundwater protection.

  4. Publications - RI 2000-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Folding; Formations; Fossils; Generalized; Geologic; Geologic Map; Geology; Geomorphology; Glacial ; Silt; Structure; Surficial; Surficial Geology; Tectonics; Tertiary; Thaw Lakes; Trace Fossils

  5. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    DOEpatents

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  6. Abnormal formation velocities and applications to pore pressure prediction

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Shen, Guoqiang; Wang, Zhentao; Yang, Hongwei; Han, Hongwei; Cheng, Yuanfeng

    2018-06-01

    The pore pressure is a vital concept to the petroleum industry and cannot be ignored by either reservoir engineers or geoscientists. Based on theoretical analyses of effective stresses and the grain packing model, a new equation is proposed for predicting pore pressures from formation velocity data. The predictions agree well with both measured pressures and estimations using Eaton's empirical equation, but the application of the new equation to seismic data is simple and convenient. One application example shows that the identification of sweet spots is much easier using pore pressure data than with inverted seismic velocity data. In another application example using field seismic data, a distribution of overpressured strata is revealed, which is a crucial clue for petroleum generation and accumulation. Still, the accuracy of pore pressure prediction is hardly always guaranteed, mainly owing to the complexity of the real geology and the suitability of specific assumptions about the underlying rock physics.

  7. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir, which is located at the top of magma chamber of granite-porphyry system, will be revealed.

  8. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  9. Geologic framework for the national assessment of carbon dioxide storage resources─South Florida Basin: Chapter L in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Merrill, Matthew D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2015-08-26

    This report presents five storage assessment units (SAUs) that have been identified as potentially suitable for geologic carbon dioxide sequestration within a 35,075-square-mile area that includes the entire onshore and State-water portions of the South Florida Basin. Platform-wide, thick successions of laterally extensive carbonates and evaporites deposited in highly cyclic depositional environments in the South Florida Basin provide several massive, porous carbonate reservoirs that are separated by evaporite seals. For each storage assessment unit identified within the basin, the areal distribution of the reservoir-seal couplet identified as suitable for geologic Carbon dioxide sequestration is presented, along with a description of the geologic characteristics that influence the potential carbon dioxide storage volume and reservoir performance. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also discussed. Geologic information presented in this report has been employed to calculate potential storage capacities for carbon dioxide sequestration in the storage assessment units assessed herein, although complete assessment results are not contained in this report.

  10. Streambeds Merit Recognition as a Scientific Discipline

    NASA Astrophysics Data System (ADS)

    Constantz, J. E.

    2016-12-01

    Streambeds are generally viewed as simply sediments beneath streams, sediments topping alluvial aquifers, or sediments housing aquatic life, rather than as distinct geographic features comparable to soils and surficial geologic formations within watersheds. Streambeds should be viewed as distinct elements within watersheds, e.g., as akin to soils. In this presentation, streambeds are described as central features in watersheds, cycling water between the surface and underlying portions of the watershed. Regarding their kinship to soils, soils are often described as surficial sediments largely created by atmospheric weathering of underlying geologic parent material, and similarly, streambeds should be described as submerged sediments largely created by streamflow modification of underlying geologic parent material. Thus, streambeds are clearly overdue for recognition as their own scientific discipline along side other well-recognized disciplines within watersheds; however, slowing progress in this direction, the point is often made that hyporheic zones should be considered comparable to streambeds, but this is as misguided as equating unsaturated zones to soils. Streambeds and soils are physical geographic features of relatively constant volume, while hyporheic and unsaturated zones are hydrologic features of varying volume. Expanded upon in this presentation, 'Streambed Science' is proposed for this discipline, which will require both a well-designed protocol to physically characterize streambeds as well as development of streambed taxonomy, for suitable recognition as an independent discipline within watersheds.

  11. Geologic Controls on the Growth of Petroleum Reserves

    USGS Publications Warehouse

    Fishman, Neil S.; Turner, Christine E.; Peterson, Fred; Dyman, Thaddeus S.; Cook, Troy

    2008-01-01

    The geologic characteristics of selected siliciclastic (largely sandstone) and carbonate (limestone and dolomite) reservoirs in North America (largely the continental United States) were investigated to improve our understanding of the role of geology in the growth of petroleum reserves. Reservoirs studied were deposited in (1) eolian environments (Jurassic Norphlet Formation of the Gulf Coast and Pennsylvanian-Permian Minnelusa Formation of the Powder River Basin), (2) interconnected fluvial, deltaic, and shallow marine environments (Oligocene Frio Formation of the Gulf Coast and the Pennsylvanian Morrow Formation of the Anadarko and Denver Basins), (3) deeper marine environments (Mississippian Barnett Shale of the Fort Worth Basin and Devonian-Mississippian Bakken Formation of the Williston Basin), (4) marine carbonate environments (Ordovician Ellenburger Group of the Permian Basin and Jurassic Smackover Formation of the Gulf of Mexico Basin), (5) a submarine fan environment (Permian Spraberry Formation of the Midland Basin), and (6) a fluvial environment (Paleocene-Eocene Wasatch Formation of the Uinta-Piceance Basin). The connection between an oil reservoir's production history and geology was also evaluated by studying production histories of wells in disparate reservoir categories and wells in a single formation containing two reservoir categories. This effort was undertaken to determine, in general, if different reservoir production heterogeneities could be quantified on the basis of gross geologic differences. It appears that reserve growth in existing fields is most predictable for those in which reservoir heterogeneity is low and thus production differs little between wells, probably owing to relatively homogeneous fluid flow. In fields in which reservoirs are highly heterogeneous, prediction of future growth from infill drilling is notably more difficult. In any case, success at linking heterogeneity to reserve growth depends on factors in addition to geology, such as engineering and technological advances and political or cultural or economic influences.

  12. Bacterial interactions and transport in geological formation of alumino-silica clays.

    PubMed

    Vu, Kien; Yang, Guang; Wang, Boya; Tawfiq, Kamal; Chen, Gang

    2015-01-01

    Bacterial transport in the subsurface is controlled by their interactions with the surrounding environment, which are determined by the surface properties of the geological formation and bacterial surfaces. In this research, surface thermodynamic properties of Escherichia coli and the geological formation of alumino-silica clays were characterized based on contact angle measurements, which were utilized to quantify the distance-dependent interactions between E. coli and the geological formation according to the traditional and extended Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. E. coli attachment to alumino-silica clays was evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition coefficient and desorption coefficient were simulated using convection-dispersion transport models against E. coli breakthrough curves, which were then linked to interactions between E. coli and the geological formation. It was discovered that E. coli deposition was controlled by the long-ranged electrostatic interaction and E. coli desorption was attributed to the short-ranged Lifshitz-van der Waals and Lewis acid-base interactions. E. coli transport in three layers of different alumino-silica clays was further examined and the breakthrough curve was simulated using E. coli deposition coefficient and desorption coefficient obtained from their individual column experiments. The well-fitted simulation confirmed that E. coli transport observations were interaction-dependent phenomena between E. coli and the geological formation. Published by Elsevier B.V.

  13. Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota

    USGS Publications Warehouse

    Hayes, Timothy Scott

    1999-01-01

    Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the upper Minnelusa Formation, which is caused by upward leakage of relatively fresh water from the Madison aquifer. The anhydrite dissolution and dedolomitization account for the net removal of minerals that would lead to breccia pipe formation by gravitational collapse. Breccia pipes in the lower Minnelusa Formation are uncommon; however, networks of interconnected breccia layers and breccia dikes are common. These networks, along with vertical fractures and faults, are likely pathways for transmitting upward leakage from the Madison aquifer. It is concluded that suspended sediment discharged at Cascade Springs probably results from episodic collapse brecciation that is caused by subsurface dissolution of anhydrite beds and cements of the upper Minnelusa Formation, accompanied by replacement of dolomite by calcite. It is further concluded that many breccia pipes probably are the throats of artesian springs that have been abandoned and exposed by erosion. The locations of artesian spring-discharge points probably have been shifting outwards from the center of the Black Hills uplift, essentially keeping pace with regional erosion over geologic time. Thus, artesian springflow probably is a factor in controlling water levels in the Madison and Minnelusa aquifers, with hydraulic head declining over geologic time, in response to development of new discharge points. Development of breccia pipes as throats of artesian springs would greatly enhance vertical hydraulic conductivity in the immediate vicinity of spring-discharge points. Horizontal hydraulic conductivity in the Minnelusa Formation also may be enhanced by dissolution processes related to upward leakage from the Madison aquifer. Potential processes could include dissolution resulting from leakage in the vicinity of breccia pipes that are abandoned spring throats, active spring discharge, development of subsurface breccias with no visible surface expression or spring discharge, as well as general areal leakage

  14. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  15. Development of Life on Early Mars

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2009-01-01

    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution encompassed conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water- as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at 3.9 Gy, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H20, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 My?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve). The commonly stated requirement that life would need hundreds of millions of year to get started is only an assumption; we know of no evidence that requires such a long interval for the development of life, if the proper habitable conditions are meet. Perhaps it could start in a very short interval during the first tens of millions of years after crustal formation. Even with impact-driven extinction events, such a short start-up time would allow life to restart multiple times until it persevered. If panspermia is considered, life could be introduced as soon as liquid surface water was present and could instantly thrive and spread.

  16. AAPG exchange format for transfer of geologic and petroleum data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, B.R.; Waller, H.

    1989-03-01

    One of the most pressing problems of petroleum geology is transferring and exchanging data between sources. Possibly the most significant issue facing their industry is the ability to communicate. The expense and huge effort involved in all aspects of data management are expanding at a rate proportional to the number of individual data bases and software formats being created daily. There must be a common, public format to exchange information to ensure the transfer of data between all aspects of their industry. The AAPG has the opportunity to take a leadership role in addressing this problem by creating an exchangemore » format. There are five basic objectives for the proposed exchange format: (1) provide a mechanism for the exchange of digital geologic data structures, (2) provide an interchange model for the development of related geologic data, (3) facilitate effective communication between commercial data and users, (4) provide a public format independent proprietary formats and implementation environments, and (5) provide a basis for future growth and development. The proposed exchange format is intended for use by the general geologic community but is based upon many concepts currently implemented in the petroleum and natural gas industry. As such, there are no predefined terms or standards either implied or required. Eventually the format must evolve into relational structures, which will require a concept and relation definition; but there is not intent to impose compliance or conformity of the data itself. Ultimately, the effectiveness of this exchange format will be proven by the user community.« less

  17. U.S. Department of Energy's regional carbon sequestration partnership initiative: Update on validation and development phases

    USGS Publications Warehouse

    Rodosta, T.; Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Gerald, H.; McPherson, B.; Burton, E.; Vikara, D.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. The Regional Carbon Sequestration Partnerships (RCSPs) are the mechanism DOE utilizes to prove the technology and to develop human capital, stakeholder networks, information for regulatory policy, best practices documents and training to work toward the commercialization of carbon capture and storage (CCS). The RCSPs are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their respective geographic areas of responsibility. The seven partnerships include more than 400 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 43 states and four Canadian provinces. The Regional Partnerships Initiative is being implemented in three phases: Characterization, Validation, and Development. The initial Characterization Phase began in 2003 and was completed in 2005 and focused on characterization of CO2 storage potential within each region. It was followed by the Validation Phase, which began in 2005 and is nearing completion in 2011. The focus of the Validation Phase has been on small-scale field tests throughout the seven partnerships in various formation types such as saline, oil-bearing, and coal seams. The Validation Phase has characterized suitable CO2 storage reservoirs and identified the need for comprehensive legal and regulatory frameworks to enable commercial-scale CCS deployment. Finally, the Development Phase will consist of a series of large-scale, one-million-ton, injection tests throughout the United States and Canada. The objective of these large-scale tests is to identify the regulatory path or challenges in permitting CCS projects, to demonstrate the technology can inject CO2 safely, and to verify its permanence in geologic formations in preparation for the commercialization of geologic sequestration. ?? 2010 Elsevier Ltd. All rights reserved. ?? 2011 Published by Elsevier Ltd.

  18. Compendium of Arab exploratory wells and petroleum fields, 1985 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This book provides a compilation of primary and secondary information giving well name and province, operating company, completion date, exploration technique, bottom home formation, total depth, producing formations, lithology, geologic age, drilling results, and geologic, petrophysical, and production data. It covers all the Arab countries in a new format.

  19. Anciet marble quarries in Lesvos island Greece

    NASA Astrophysics Data System (ADS)

    Mataragkas, M.; Mataragkas, D.

    2009-04-01

    ANCIENT MARBLE QUARRIES IN LESBOS ISLAND, GREECE Varti- Matarangas M.1 & Matarangas D. 1 Institute of Geological and Mining Exploration (IGME), Olympic Village, Entrance C, ACHARNAE 13677, GREECE myrsini@igme.gr , myrsini@otenet.g r A B S T R A C T Ten ancient marble quarries of Lesbos Island, most of them previously unknown, have been studied, in the frame of the research study on the ancient marble quarries in the Aegean Sea. In the present paper the geological, petrological and morphological features of the aforementioned quarries are examined. Concerning the six ancient quarries located in the areas of Tarti, Agia Paraskevi (Tsaf), Mageiras, Loutra, Latomi (Plomari) and Thermi, the authochthonous neopaleozoic unit constitutes their geological formation, while their hosting lithological formations are the included crystalline limestone lens like beds. In two ancient quarries in the areas Moria and Alyfanta, the geological formation is the authochthonous upper Triassic series and the hosting lithological formation the upper Triassic carbonate sequence, while in the areas of Akrasi-Abeliko and Karyni, the geological formation is the thrust Triassic unit and the lithological hosting formations are the included strongly deformed or not crystalline limestone lenticular beds. Furthermore, the petrographic features were also determined permitting the identification of the building stones that have been used.

  20. Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    Included are a teacher's guidebook and two filmstrips, "Geology of Wisconsin," and associated materials. The following are described: outline of objectives; suggested use of the filmstrips and guidebook; outline of the filmstrip content; four pages of illustrations suitable for duplication; a test for each filmstrip; and a list of…

  1. Geologic Map of the Utukok River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.

  2. Publications - RI 2000-1B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Formations; Fossils; Geologic; Geologic Map; Geology; Glacial Processes; Kemik Sandstone; Marine; Marine ; Tectonics; Tertiary; Trace Fossils; Turbidites; Volcanic Ash Top of Page Department of Natural Resources

  3. Petroleum systems and geologic assessment of undiscovered oil and gas, Cotton Valley group and Travis Peak-Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces of the northern Gulf Coast region. Chapters 1-7.

    USGS Publications Warehouse

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.

  4. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE PAGES

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; ...

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  5. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    USGS Publications Warehouse

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-01-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  6. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  7. Salt deposits in Los Medanos area, Eddy and Lea counties, New Mexico

    USGS Publications Warehouse

    Jones, C.L.; with sections on Ground water hydrology, Cooley; and Surficial Geology, Bachman

    1973-01-01

    The salt deposits of Los Medanos area, in Eddy and Lea Counties, southeastern New Mexico, are being considered for possible use as a receptacle for radioactive wastes in a pilot-plant repository. The salt deposits of the area. are in three evaporite formations: the Castile, Salado, and Rustler Formations, in ascending order. The three formations are dominantly anhydrite and rock salt, but some gypsum, potassium ores, carbonate rock, and fine-grained clastic rocks are present. They have combined thicknesses of slightly more than 4,000 feet, of which roughly one-half belongs to the Salado. Both the Castile and the Rustler are-richer in anhydrite-and poorer in rock salt-than the Salado, and they provide this salt-rich formation with considerable Protection from any fluids which might be present in underlying or overlying rocks. The Salado Formation contains many thick seams of rock salt at moderate depths below the surface. The rock salt has a substantial cover of well-consolidated rocks, and it is very little deformed structurally. Certain geological details essential for Waste-storage purposes are unknown or poorly known, and additional study involving drilling is required to identify seams of rock salt suitable for storage purposes and to establish critical details of their chemistry, stratigraphy, and structure.

  8. CO 2 Mineral Sequestration in Naturally Porous Basalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Wells, Rachel K.; Horner, Jake A.

    2018-02-27

    Continental flood basalts are extensive geologic features currently being evaluated as reservoirs that are suitable for long-term storage of carbon emissions. Favorable attributes of these formations for containment of injected carbon dioxide (CO2) include high mineral trapping capacity, unique structural features, and enormous volumes. We experimentally investigated mineral carbonation in whole core samples retrieved from the Grand Ronde basalt, the same formation into which ~1000 t of CO2 was recently injected in an eastern Washington pilot-scale demonstration. The rate and extent of carbonate mineral formation at 100 °C and 100 bar were tracked via time-resolved sampling of bench-scale experiments. Basaltmore » cores were recovered from the reactor after 6, 20, and 40 weeks, and three-dimensional X-ray tomographic imaging of these cores detected carbonate mineral formation in the fracture network within 20 weeks. Under these conditions, a carbon mineral trapping rate of 1.24 ± 0.52 kg of CO2/m3 of basalt per year was estimated, which is orders of magnitude faster than rates for deep sandstone reservoirs. On the basis of these calculations and under certain assumptions, available pore space within the Grand Ronde basalt formation would completely carbonate in ~40 years, resulting in solid mineral trapping of ~47 kg of CO2/m3 of basalt.« less

  9. Prehistoric Life, Science (Experimental): 5311.15.

    ERIC Educational Resources Information Center

    Jenks, Lois

    Presented is a survey course of the biological and geological history of the earth which includes: (1) theories of the formation of the earth, (2) theories of the formation of life, (3) geological eras (calendar), (4) fossil formation and fossil fuels, and (5) modern-day research. This course is intended for junior high level and no previous…

  10. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.

  11. Geological Characterization of Remote Field Sites Using Visible and Infrared Spectroscopy: Results from the 1999 Marsokhod Field Test

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.

    2000-01-01

    The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.

  12. Digital geologic map and Landsat image map of parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, west-central Pakistan

    USGS Publications Warehouse

    Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude

    2011-01-01

    This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.

  13. Sakhalin Island terrain intelligence

    USGS Publications Warehouse

    ,

    1943-01-01

    This folio of maps and explanatory tables outlines the principal terrain features of Sakhalin Island. Each map and table is devoted to a specialized set of problems; together they cover the subjects of terrain appreciation, climate, rivers, water supply, construction materials, suitability for roads, suitability for airfields, fuels and other mineral resources, and geology. In most cases, the map of the island is divided into two parts: N. of latitude 50° N., Russian Sakhalin, and south of latitude 50° N., Japanese Sakhalin or Karafuto. These maps and data were compiled by the United States Geological Survey during the period from March to September, 1943.

  14. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  15. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy S.; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2012-01-01

    The results of short-duration formation tests in northern Alaska and Canada have further documented the energy-resource potential of gas hydrates and have justified the need for long-term gas-hydrate-production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally occurring gas hydrate to depressurization-induced or thermal-, chemical-, or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gashydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas-hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with the US Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk River, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas-hydrate-production test sites. The test-site-assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas-hydrate testing. The site-selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas-hydrate-production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area and provides new information on the nature of gas-hydrate occurrence and the potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well-log analysis, geological correlation and mapping, and numerical simulation.

  16. Evaluation of long-term gas hydrate production testing locations on the Alaska north slope

    USGS Publications Warehouse

    Collett, T.S.; Boswell, R.; Lee, M.W.; Anderson, B.J.; Rose, K.; Lewis, K.A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation. Copyright 2011, Offshore Technology Conference.

  17. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation.

  18. The British Geological Survey's Lexicon of Named Rock Units as Online and Linked Data

    NASA Astrophysics Data System (ADS)

    McCormick, T.

    2012-12-01

    The British Geological Survey's Lexicon of Named Rock Units provides freely accessible definitions and supplementary information about geological units of Great Britain, Northern Ireland, and their associated continental shelf. It is an online database that can be searched at www.bgs.ac.uk/Lexicon/. It has existed since 1990 (under different names) but the database and user interface have recently been completely redesigned to improve their semantic capabilities and suitability for describing different styles of geology. The data are also now freely available as linked data from data.bgs.ac.uk/. The Lexicon of Named Rock Units serves two purposes. First, it is a dictionary, defining and constraining the geological units that are referenced in the Survey's data sets, workflows, products and services. These can include printed and digital geological maps at a variety of scales, reports, books and memoirs, and 3- and 4-dimensional geological models. All geological units referenced in any of these must first be present and defined, at least to a basic level of completeness, in the Lexicon database. Only then do they become available for use. The second purpose of the Lexicon is as a repository of knowledge about the geology of the UK and its continental shelf, providing authoritative descriptions written and checked by BGS geoscientists. Geological units are assigned to one of four themes: bedrock, superficial, mass movement and artificial. They are further assigned to one of nine classes: lithostratigraphical, lithodemic intrusive, lithodemic tectono-metamorphic, lithodemic mixed, litho-morpho-genetic, man-made, age-based, composite, and miscellaneous. The combination of theme and class controls the fields that are available to describe each geological unit, so that appropriate fields are offered for each, whether it is a Precambrian tectono-metamorphic complex, a Devonian sandstone formation, or a Devensian river terrace deposit. Information that may be recorded about each unit includes its rank, parentage, previous and alternative names and usage, geochronological age, lithology, environment of deposition / mode of origin, thickness, boundaries, type and reference localities and sections, geographical distribution, associated landforms, and literature references. BGS geoscientists use a web-based 'sandbox' system to write and revise definitions. The Lexicon currently stores information on approximately 13,400 geological units that BGS considers to be 'current', with cross references to some 6,000 other names that are considered to be obsolete or alternative names. The entries span the entire preserved geological history of the UK from Archaean to Recent, onshore and offshore.

  19. Publications - PDF 98-37B v. 1.1 | Alaska Division of Geological &

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska ) Digital Geospatial Data Digital Geospatial Data Tanana A-1 and A-2 bedrock geology Data File Format File ; Bedrock; Bedrock Geologic Map; Bedrock Geology; CIPW Norms; Cerium; Dome; Economic Geology; Faults

  20. Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.

    2010-01-01

    This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geologic maps, generated under an earlier PGG mapping grant.

  1. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-10-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35{degree}N; Long. 115{degree}W and lat. 38{degree}N, long. 118{degree}W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. Themore » procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute`s ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado.« less

  2. High-resolution hydro- and geo-stratigraphy at Atlantic Coastal Plain drillhole CR-622 (Strat 8)

    USGS Publications Warehouse

    Wrege, B.M.; Isely, J.J.

    2009-01-01

    We interpret borehole geophysical logs in conjunction with lithology developed from continuous core to produce high-resolution hydro- and geo-stratigraphic profiles for the drillhole CR-622 (Strat 8) in the Atlantic Coastal Plain of North Carolina. The resulting hydrologic and stratigraphic columns show a generalized relation between hydrologic and geologic units. Fresh-water aquifers encountered are the surficial, Yorktown, Pungo River and Castle Hayne. Geologic units present are of the middle and upper Tertiary and Quaternary periods, these are the Castle Hayne (Eocene), Pungo River (Miocene), Yorktown (Pliocene), James City and Flanner Beach (Pleistocene), and the topsoil (Holocene). The River Bend Formation (Oligocene) is missing as a distinct unit between the Pungo River Formation and the Castle Hayne Formation. The confining unit underlying the Yorktown Aquifer corresponds to the Yorktown Geologic Unit. The remaining hydrologic units and geologic units are hydrologically transitional and non-coincident. The lower Pungo River Formation serves as the confining unit for the Castle Hayne Aquifer, rather than the River Bend Aquifer, and separates the Pungo River Aquifer from the upper Castle Hayne Aquifer. All geologic formations were bound by unconformities. All aquifers were confined by the anticipated hydrologic units. We conclude that CR-622 (Strat 8) represents a normal sequence in the Atlantic Coastal Plain.

  3. Geologic Map of the Point Lay Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2008-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  4. Geologic Map of the Ikpikpuk River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2005-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  5. Geologic Map of the Lookout Ridge Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  6. Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast: Chapter H in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Buursink, Marc L.; Covault, Jacob A.; Craddock, William H.; Drake II, Ronald M.; Merrill, Matthew D.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2014-01-01

    This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At least nine major depositional packages contain porous strata that are potentially suitable for geologic carbon dioxide (CO2) sequestration within the region. For each SAU identified within these packages, the areal distribution of porous rock that is suitable for geologic CO2 sequestration is discussed, along with a description of the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net-porous thickness, porosity, permeability, and groundwater salinity. Additionally, a characterization of the overlying regional seal for each SAU is presented. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also presented. Geologic information presented in this report has been employed to calculate potential storage capacities for CO2 sequestration in the SAUs that are assessed herein, although complete assessment results are not contained in this report.

  7. An enhanced trend surface analysis equation for regional-residual separation of gravity data

    NASA Astrophysics Data System (ADS)

    Obasi, A. I.; Onwuemesi, A. G.; Romanus, O. M.

    2016-12-01

    Trend surface analysis is a geological term for a mathematical technique which separates a given map set into a regional component and a local component. This work has extended the steps for the derivation of the constants in the trend surface analysis equation from the popularly known matrix and simultaneous form to a more simplified and easily achievable format. To achieve this, matrix inversion was applied to the existing equations and the outcome was tested for suitability using a large volume of gravity data set acquired from the Anambra Basin, south-eastern Nigeria. Tabulation of the field data set was done using the Microsoft Excel spread sheet, while gravity maps were generated from the data set using Oasis Montaj software. A comparison of the residual gravity map produced using the new equations with its software derived counterpart has shown that the former has a higher enhancing capacity than the latter. This equation has shown strong suitability for application in the separation of gravity data sets into their regional and residual components.

  8. Subsurface storage of freshwater in south Florida; a prospectus

    USGS Publications Warehouse

    Merritt, M.L.; Meyer, F.W.; Sonntag, W.H.; Fitzpatrick, D.J.

    1983-01-01

    A method of increasing storage capacity for freshwater in south Florida is to use brackish artesian aquifers as reservoirs. In this way, water deficiencies occurring during the annual dry season can be offset by surplus water obtained during the wet season and injected underground. Most of south Florida is underlain by several deep, confined, carbonate waterbearing zones which might be suitable for freshwater storage. These zones are in the Avon Park, Ocala, Suwannee, Tampa, and Hawthorn Formations. Experimental freshwater injection systems have been operated at five locations with promising, but not fully definitive, results. A determination of the feasibility of freshwater injection at a selected site begins with an assessment of the local geologic suitability. Verification of feasibility, however, requires injection and recovery tests to be performed at the site. Recovery efficiency, a measure of the success of the operation, is the amount of potable water, expressed as a percentage of the volume injected, which can be recovered before its salinity, or the concentration of other chemical constituents present in the native aquifer water, increases to the point that the recovered water is no longer useable. (USGS)

  9. Geologic map of the Rio Rico and Nogales 7.5’ quadrangles, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Page, William R.; Menges, Christopher M.; Gray, Floyd; Berry, Margaret E.; Bultman, Mark W.; Cosca, Michael A.; VanSistine, D. Paco

    2016-04-15

    The objectives of our mapping were to define the geologic framework for the Nogales area and the upper Santa Cruz basin to support ongoing multidisciplinary projects. This new work will improve understanding of the Nogales Formation to more fully assess its groundwater resource potential. We significantly revised the Miocene Nogales Formation based on geologic mapping combined with new geochronologic, geophysical, and petrographic studies. 

  10. Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.

    2009-01-01

    This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geo-logic maps, generated under an earlier PGG mapping grant.

  11. A catalog of porosity and permeability from core plugs in siliciclastic rocks

    USGS Publications Warehouse

    Nelson, Philip H.; Kibler, Joyce E.

    2003-01-01

    Porosity and permeability measurements on cored samples from siliciclastic formations are presented for 70 data sets, taken from published data and descriptions. Data sets generally represent specific formations, usually from a limited number of wells. Each data set is represented by a written summary, a plot of permeability versus porosity, and a digital file of the data. The summaries include a publication reference, the geologic age of the formation, location, well names, depth range, various geologic descriptions, and core measurement conditions. Attributes such as grain size or depositional environment are identified by symbols on the plots. An index lists the authors and date, geologic age, formation name, sandstone classification, location, basin or structural province, and field name.

  12. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  13. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  14. Geologic and well-construction data for the H-8 borehole complex near the proposed Waste Isolation Pilot Plant site, southeastern New Mexico

    USGS Publications Warehouse

    Wells, J.G.; Drellack, S.L.

    1982-01-01

    The H-8 complex, a group of three closely-spaced boreholes, is located 9 miles south of the proposed Waste Isolation Pilot Plant site in southeastern Eddy County, New Mexico. The holes were drilled during July, August, and September of 1979 to obtain geologic and hydrologic data to better define the regional ground-water-flow system. The geologic data presented in this report are part of a site-characterization study for the possible disposal of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. The geologic data include detailed descriptions of cores, cuttings, and geophysical logs. Each borehole was designed to penetrate a distinct water-bearing zone: H-8a (total depth 505 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation of Permian Age; H-8b (total depth 624 feet) was completed just belows the Culebra Dolomite Member of the Rustler Formation; and H-8c (total depth 808 feet) was completed just below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-8c are surficial alluvium and eolian sand of Holocene age (0-4 feet); the Mescalero caliche (4-10 feet) and Gatuna Formation (10-153 feet) , both of Pleistocene age; and the Dewey Lake Red Beds (153-399 feet), the Rustler Formation (399-733 feet), and part of the Salado Formation penetrated by borehole H-8c is composed of residue from dissolution of halite and associated rocks, and the hydration of anhydrite to gypsum, indicating that the eastward-moving dissolution front on top of the Salado, found just to the west of the WIPP site, has reached the H-8 site. (USGS)

  15. Site evaluation for U.S. Bureau of Mines experimental oil-shale mine, Piceance Creek basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, John R.; Leavesley, G.H.; Steele, G.S.; Weeks, J.B.

    1978-01-01

    The U.S. Geological Survey is cooperating with the U.S. Bureau of Mines in the selection of a site for a shaft and experimental mine to be constructed in the Piceance Creek basin, Rio Blanco County, Colo. The Piceance Creek basin, an asymmetric, northwest-trending large structural downwarp, is located approximately 40 km (25 mi) west of the town of Meeker in Rio Blanco County, Colo. The oil-shale, dawsonite, nahcolite, and halite deposits of the Piceance Creek basin occur in the lacustrine Green River Formation of Eocene age. In the basin the Green River Formation comprises three members. In ascending order, they are the Douglas Creek, the Garden Gulch, and the Parachute Creek Members, Four sites are presented for consideration and evaluated on geology and hydrology with respect to shale-oil economics. Evaluated criteria include: (1) stratigraphy, (2) size of site, (3) oil-shale yield, (4) representative quantities of the saline minerals dawsonite and nahcolite, which must be present with a minimum amount of halite, (5) thickness of a 'leached' saline zone, (6) geologic structure, (7) engineering characteristics of rock, (8) representative surface and ground-water conditions, with emphasis on waste disposal and dewatering, and (9) environmental considerations. Serious construction and support problems are anticipated in sinking a deep shaft in the Piceance Creek basin. The two major concerns will be dealing with incompetent rock and large inflow of saline ground water, particularly in the leached zone. Engineering support problems will include stabilizing and hardening the rock from which a certain amount of ground water has been removed. The relative suitability of the four potential oil-shale experimental shaft sites in the Piceance Creek basin has been considered on the basis of all available geologic, hydrologic, and engineering data; site 2 is preferred to sites 1, 3, and 4, The units in this report are presented in the form: metric (English). Both units of measurement are necessary as measurements were taken in English units, and most of the contracting agencies involved are using predominantly English units.

  16. Geologic Map of the State of Hawai`i

    USGS Publications Warehouse

    Sherrod, David R.; Sinton, John M.; Watkins, Sarah E.; Brunt, Kelly M.

    2007-01-01

    About This Map The State's geology is presented on eight full-color map sheets, one for each of the major islands. These map sheets, the illustrative meat of the publication, can be downloaded in pdf format, ready to print. Map scale is 1:100,000 for most of the islands, so that each map is about 27 inches by 36 inches. The Island of Hawai`i, largest of the islands, is depicted at a smaller scale, 1:250,000, so that it, too, can be shown on 36-inch-wide paper. The new publication isn't limited strictly to its map depictions. Twenty years have passed since David Clague and Brent Dalrymple published a comprehensive report that summarized the geology of all the islands, and it has been even longer since the last edition of Gordon Macdonald's book, Islands in the Sea, was revised. Therefore the new statewide geologic map includes an 83-page explanatory pamphlet that revisits many of the concepts that have evolved in our geologic understanding of the eight main islands. The pamphlet includes simplified page-size geologic maps for each island, summaries of all the radiometric ages that have been gathered since about 1960, generalized depictions of geochemical analyses for each volcano's eruptive stages, and discussion of some outstanding topics that remain controversial or deserving of additional research. The pamphlet also contains a complete description of map units, which enumerates the characteristics for each of the state's many stratigraphic formations shown on the map sheets. Since the late 1980s, the audience for geologic maps has grown as desktop computers and map-based software have become increasingly powerful. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) can also feast on this publication. An electronic database, suitable for most GIS software applications, is available for downloading. The GIS database is in an Earth projection widely employed throughout the State of Hawai`i, using the North American datum of 1983 and the Universal Transverse Mercator system projection to zone 4. 'This digital statewide map allows engineers, consultants, and scientists from many different fields to take advantage of the geologic database,' said John Sinton, a geology professor at the University of Hawai`i, whose new mapping of the Wai`anae Range (West O`ahu) appears on the map. Indeed, when a testing version was first made available, most requests came from biologists, archaeologists, and soil scientists interested in applying the map's GIS database to their ongoing investigations. Another area newly depicted on the map, in addition to the Wai`anae Range, is Haleakala volcano, East Maui. So too for the active lava flows of Kilauea volcano, Island of Hawai`i, where the landscape has continued to evolve in the ten years since publication of the Big Island's revised geologic map. For the other islands, much of the map is compiled from mapping published in the 1930-1960s. This reliance stems partly from shortage of funding to undertake entirely new mapping but is warranted by the exemplary mapping of those early experts. The boundaries of all map units are digitized to show correctly on modern topographic maps.

  17. System for fracturing an underground geologic formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Jonathan L.; Tappan, Bryce C.; Seitz, Gerald J.

    2017-03-14

    An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacentmore » to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.« less

  18. Geologic and well-construction data for the H-9 borehole complex near the proposed Waste Isolation Pilot Plant site, southeastern New Mexico

    USGS Publications Warehouse

    Drellack, S.L.; Wells, J.G.

    1982-01-01

    The H-9 complex, a group of three closely spaced boreholes, is located 5.5 miles south of the proposed Waste Isolation Pilot Plant (WIPP) site in east-central Eddy County, New Mexico. The holes were drilled during July, August, and September 1979 to obtain geologic and hydrologic data to better define the regional ground-water-flow system. The geologic data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. The geologic data include detailed descriptions of cores, cuttings, and geophysical logs. Each borehole was designed to penetrate a distinct water-bearing zone: H-9a (total depth 559 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation; H-9b (total depth 708 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; H-9c (total depth 816 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-9c are eolian sand of Holocene age (0-5 feet); the Gatuna Formation of Pleistocene age; (5-25 feet); and the Dewey Lake Red Beds (25-455 feet), the Rustler Formation (455.791 feet), and part of the Salado Formation (791-816 feet), all of Permian age. Three sections (494-501 feet, 615-625 feet, 692-712 feet) in the Rustler Formation penetrated by borehole H-9c are composed of remnant anhydrite (locally altered to gypsum) and clay and silt residue from the dissolution of much thicker seams of argillaceous and silty halite. This indicates that the eastward-moving dissolution within the Rustler Formation, found just to the west of the WIPP site, is present at the H-9 site. (USGS)

  19. Excerpts from selected LANDSAT 1 final reports in geology

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Smith, A.; Baker, R.

    1976-01-01

    The standard formats for the summaries of selected LANDSAT geological data are presented as checklists. These include: (1) value of LANDSAT data to geology, (2) geologic benefits, (3) follow up studies, (4) cost benefits, (5) optimistic working scales, (6) statistical analysis, and (7) enhancement effects.

  20. Geologic map of the Valjean Hills 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Calzia, J.P.; Troxel, Bennie W.; digital database by Raumann, Christian G.

    2003-01-01

    FGDC-compliant metadata for the ARC/INFO coverages. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3 above) or plotting the postscript file (2 above).

  1. Geology of the surficial aquifer system, Dade County, Florida; lithologic logs

    USGS Publications Warehouse

    Causaras, C.R.

    1986-01-01

    The geologic framework of the surficial aquifer system in Dade County, Florida, was investigated as part of a longterm study by the USGS in cooperation with the South Florida Water Management District, to describe the geology, hydrologic characteristics, and groundwater quality of the surficial aquifer system. Thirty-three test wells were drilled completely through the surficial aquifer system and into the underlying, relatively impermeable units of the Tamiami and Hawthorn Formations. Detailed lithologic logs were made from microscopic examination of rock cuttings and cores obtained from these wells. The logs were used to prepare geologic sections that show the lithologic variations, thickness of the lithologic units, and different geologic formations that comprise the aquifers system. (Author 's abstract)

  2. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2008-01-01

    Topics discussed include: Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series; Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report; Structural Maps of the V-17 Beta Regio Quadrangle, Venus; Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus; Renewed Mapping of the Nepthys Mons Quadrangle (V-54), Venus; Mapping the Sedna-Lavinia Region of Venus; Geologic Mapping of the Guinevere Planitia Quadrangle of Venus; Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons; Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean; Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training; Geologic Map of the V-1 Snegurochka Planitia Quadrangle: Progress Report; The Fredegonde (V-57) Quadrangle, Venus: Characterization of the Venus Midlands; Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping; Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism; Geologic Mapping of V-19, V-28, and V-53; Lunar Geologic Mapping Program: 2008 Update; Geologic Mapping of the Marius Quadrangle, the Moon; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report; New Geologic Map of the Argyre Region of Mars; Geologic Evolution of the Martian Highlands: MTMs -20002, -20007, -25002, and -25007; Mapping Hesperia Planum, Mars; Geologic Mapping of the Meridiani Region, Mars; Geology of Holden Crater and the Holden and Ladon Multi-Ring Impact Basins, Margaritifer Terra, Mars; Geologic Mapping of Athabasca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region of Mars; Geologic Mapping of the Martian Impact Crater Tooting; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: First Year Results and Second Year Plan; Mars Global Geologic Mapping: Amazonian Results; Recent Geologic Mapping Results for the Polar Regions of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars (MC-8 SE and MC-23 NW) and the Northern Lowlands of Venus (V-16 and V-15); Geologic Mapping of the Zal, Hi'iaka, and Shamshu Regions of Io; Global Geologic Map of Europa; Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M); and Global Geologic Mapping of Io: Preliminary Results.

  3. 10 CFR 60.132 - Additional design criteria for surface facilities in the geologic repository operations area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2014-01-01 2014-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  4. 10 CFR 60.132 - Additional design criteria for surface facilities in the geologic repository operations area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2012-01-01 2012-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  5. 10 CFR 60.132 - Additional design criteria for surface facilities in the geologic repository operations area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2013-01-01 2013-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  6. 10 CFR 60.132 - Additional design criteria for surface facilities in the geologic repository operations area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2011-01-01 2011-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  7. Map showing structure contours on the top of the upper Jurassic Morrison Formation, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 2,429 of these wells that penetrate the Minnelusa Formation and equivalents.

  8. Publications - PIR 2002-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ): Philip Smith Mountains Bibliographic Reference Stevens, D.S.P., 2014, Engineering-geologic map of the Digital Geospatial Data Philip Smith Mountains: Engineering-geologic map Data File Format File Size Info

  9. Measuring Student Knowledge of Landscapes and Their Formation Timespans

    ERIC Educational Resources Information Center

    Jolley, Alison; Jones, Francis; Harris, Sara

    2013-01-01

    Geologic time is a crucial component of any geoscientist's training. Essential knowledge of geologic time includes rates of geologic processes and the associated time it takes for geologic features to form, yet measuring conceptual thinking abilities in these domains is challenging. We describe development and initial application of the Landscape…

  10. Assessment of In-Place Oil Shale Resources of the Green River Formation, Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Self, Jesse G.

    2010-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 1.32 trillion barrels of oil in place in 18 oil shale zones in the Eocene Green River Formation in the Uinta Basin, Utah and Colorado.

  11. Using colloidal silica as isolator, diverter and blocking agent for subsurface geological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.

    A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.

  12. Waco Lake, Bosque River, Texas, Brazos River and Tributaries, Texas. Embankment Criteria, Performance and Foundation Report

    DTIC Science & Technology

    1990-01-01

    aquifers is separated from the other by relatively impervious formations. Piezometric elevations (developed from water well inventory data) range from...350 to +400 MSL. The piezometric contours developed from water levels of the Glen Rose, Hensel and Hosston Formations show a definite cone of...Regional Geology 8 3-02 Site Geology 10 3-03 Weathering 18 3-04 Structural Geology 18 3-05 Grouna°- Water Conditions SECTION 4 - STRUCTURES 4-01 Outlet

  13. Geology and ground-water resources of the Rawlins area, Carbon County, Wyoming

    USGS Publications Warehouse

    Berry, Delmar W.

    1960-01-01

    The Rawlins area in west-central Carbon County, south-central Wyoming includes approximately 634 square miles of plains and valleys grading into relatively rugged uplifts. The climate is characterized by low precipitation, rapid evaporation, and a wide range of temperature. Railroading and ranching are the principal occupations in the area. The exposed rocks in the area range in age from Precambrian through Recent. The older formations are exposed in the uplifted parts, the oldest being exposed along the apex of the Rawlins uplift. The formations dip sharply away from the anticlines and other uplifts and occur in the subsurface throughout the remainder of the area. The Cambrian rocks (undifferentiated), Madison limestone, Tensleep sandstone, Sun dance formation, Cloverly formation, Frontier formation, and Miocene and Pliocene rocks (undifferentiated) yield water to domestic and stock wells in the area. In the vicinity of the Rawlins uplift, the rocks of Cambrian age, Madison limestone, and Tensleep sandstone yield water to a few public-supply wells. The Cloverly formation yields water to public-supply wells in the Miller Hill and Sage Creek basin area. Wells that tap the Madison limestone, Tensleep sandstone, and Cloverly formation yield water under sufficient artesian pressure to flow at the land surface. The Browns Park formation yields water to springs that supply most of the Rawlins city water and supply water for domestic and stock use. Included on the geologic map are location of wells and test wells, depths to water below land surface, and location of springs. Depths to water range from zero in the unconsolidated deposits along the valley of Sugar Creek at the southern end of the Rawlins uplift to as much as 129 feet below the land surface in the Tertiary sedimentary rocks along the Continental Divide in the southern part of the area. The aquifers are recharged principally by precipitation that falls upon the area, by percolation from streams and ponds, and by movement of ground water from adjacent areas. Water is discharged from the ground-water reservoir by evaporation and transpiration, by seeps and springs, through wells, and by underflow out of the area. Although most water supplies in the area are obtained from springs, some domestic, stock, and public supplies are obtained from drilled wells, many yielding water under artesian pressure, and some flowing. Dissolved solids in the water from several geologic sources, ranging from 181 to 6,660 parts per million (ppm), indicate the varied chemical quality of ground water in the Rawlins area. Water from the Cambrian rocks, Tensleep sandstone, Cloverly formation, Frontier formation, Browns Park formation, and Miocene and Pliocene rocks is generally suitable for domestic and stock use. However, water yielded to the only well sampled in the lower part of the Frontier formation contained a high concentration of fluoride. Water from the rocks mentioned above contains less than 1,000 ppm of dissolved solids but in some places may contain iron in troublesome amounts. Water from the Madison limestone and Tensleep sandstone combined, Permian rocks, and Sundance formation contains more than 1,000 ppm of dissolved solids. Water in the Sundance, Cloverly, and Frontier :formations is very soft. More ground water can be obtained in the Rawlins area than is now being used. Many springs are undeveloped, and water can be obtained from additional wells without unduly lowering ground-water levels.

  14. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  15. A slingram survey on the Nevada Test Site: part of an integrated geologic geophysical study of site evaluation for nuclear waste disposal

    USGS Publications Warehouse

    Flanigan, Vincent J.

    1979-01-01

    A slingram geophysical survey was made in early 1978 as part of the integrated geologlcal-geophysical study aimed at evaluating the Eleana Formation as a possible repository for nuclear waste. The slingram data were taken over an alluvial fan and pediments along the eastern flank of Syncline Ridge about 45 km north of Mercury, Nevada, on the Nevada Test Site. The data show that the more conductive argillaceous Eleana Formation varies in depth from 40 to 85 m from west to east along traverse lines. Northeast-trending linear anomalies suggest rather abrupt changes in subsurface geology that may be associated with faults and fractures. The results of the slingram survey will, when interpreted in the light of other geologic and geophysical evidence, assist in understanding the shallow parts of the geologic setting of the Eleana Formation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less

  17. New approach of a transient ICP-MS measurement method for samples with high salinity.

    PubMed

    Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-03-01

    In the near future it is necessary to establish a disposal for high level nuclear waste (HLW) in deep and stable geological formations. In Germany typical host rocks are salt or claystone. Suitable clay formations exist in the south and in the north of Germany. The geochemical conditions of these clay formations show a strong difference. In the northern ionic strengths of the pore water up to 5M are observed. The determination of parameters like K d values during sorption experiments of metal ions like uranium or europium as homologues for trivalent actinides onto clay stones are very important for long term safety analysis. The measurement of the low concentrated, not sorbed analytes commonly takes place by inductively coupled plasma mass spectrometry (ICP-MS). A direct measurement of high saline samples like seawater with more than 1% total dissolved salt content is not possible. Alternatives like sample clean up, preconcentration or strong dilution have more disadvantages than advantages for example more preparation steps or additional and expensive components. With a small modification of the ICP-MS sample introduction system and a home-made reprogramming of the autosampler a transient analysing method was developed which is suitable for measuring metal ions like europium and uranium in high saline sample matrices up to 5M (NaCl). Comparisons at low ionic strength between the default and the transient measurement show the latter performs similarly well to the default measurement. Additionally no time consuming sample clean-up or expensive online dilution or matrix removal systems are necessary and the analysation shows a high sensitivity due to the data processing based on the peak area. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Geology and ground-water resources of the Cockfield Formation in western Tennessee

    USGS Publications Warehouse

    Parks, W.S.; Carmichael, J.K.

    1990-01-01

    The Cockfield Formation of the Claiborne Group of Tertiary age underlies approximately 4,000 sq mi in western Tennessee. The formation consists primarily of lenticular beds of very fine to coarse sand, silt, clay, and lignite. The Cockfield Formation has been extensively eroded, and the original thickness is preserved only in a few areas where the formation ranges from 235 to 270 ft in thickness. Recharge to the Cockfield aquifer is from precipitation on sparse outcrops or by downward infiltration of water from the overlying fluvial deposits of Tertiary and Quaternary age and alluvium of Quaternary age or, where present, the overlying Jackson Formation of Tertiary age. Data from two observation wells indicate that water levels have risen at average rates of about 0.5 and 0.7 ft/year during the period 1980-85. Water from the Cockfield aquifer is a calcium bicarbonate type that contains low concentrations of most major constituents, and generally is suitable for most uses. Dissolved-solids concentrations range from 44 to 218 mg/L. Data from two aquifer tests indicate transmissivities of 2,500 and 6 ,000 sq ft/day and storage coefficients of 0.0003 and 0.0007, respectively. The Cockfield aquifer presently provides small to moderate quantities of water for several public and industrial water supplies and small quantities to numerous domestic and farm wells. Withdrawals for public and industrial supplies in 1983 averaged about 3.3 million gal/day. (USGS)

  19. Petroleum Systems and Assessment of Undiscovered Oil and Gas in the Raton Basin - Sierra Grande Uplift Province, Colorado and New Mexico - USGS Province 41

    USGS Publications Warehouse

    Higley, Debra K.

    2007-01-01

    Introduction The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas resources of the Raton Basin-Sierra Grande Uplift Province of southeastern Colorado and northeastern New Mexico (USGS Province 41). The Cretaceous Vermejo Formation and Cretaceous-Tertiary Raton Formation have production and undiscovered resources of coalbed methane. Other formations in the province exhibit potential for gas resources and limited production. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define two total petroleum systems and five assessment units. All five assessment units were quantitatively assessed for undiscovered gas resources. Oil resources were not assessed because of the limited potential due to levels of thermal maturity of petroleum source rocks.

  20. Digitization of a geologic map for the Quebec-Maine-Gulf of Maine global geoscience transect

    USGS Publications Warehouse

    Wright, Bruce E.; Stewart, David B.

    1990-01-01

    The Bedrock Geologic Map of Maine was digitized and combined with digital geologic data for Quebec and the Gulf of Maine for the Quebec-Maine-Gulf of Maine Geologic Transect Project. This map is being combined with digital geophysical data to produce three-dimensional depictions of the subsurface geology and to produce cross sections of the Earth's crust. It is an essential component of a transect that stretches from the craton near Quebec City, Quebec, to the Atlantic Ocean Basin south of Georges Bank. The transect is part of the Global Geosciences Transect Project of the International Lithosphere Program. The Digital Line Graph format is used for storage of the digitized data. A coding scheme similar to that used for base category planimetric data was developed to assign numeric codes to the digitized geologic data. These codes were used to assign attributes to polygon and line features to describe rock type, age, name, tectonic setting of original deposition, mineralogy, and composition of igneous plutonic rocks, as well as faults and other linear features. The digital geologic data can be readily edited, rescaled, and reprojected. The attribute codes allow generalization and selective retrieval of the geologic features. The codes allow assignment of map colors based on age, lithology, or other attribute. The Digital Line Graph format is a general transfer format that is supported by many software vendors and is easily transferred between systems.

  1. Staff - Nina T. Harun | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    mapping of the Upper Jurassic Naknek Formation in a footwall syncline associated with the Bruin Bay fault Ivishak Formation in the northeastern Brooks Range, Alaska: University of Alaska Fairbanks, M.S. thesis Triassic Ivishak Formation in the Sadlerochit Mountains, northeastern Alaska: Alaska Division of Geological

  2. Prospects of oil field development in Tomsk region

    NASA Astrophysics Data System (ADS)

    Il'ina, M. N.; Il'ina, G. F.

    2017-12-01

    The article describes the geologic structure of the formation located not far from Strezhevoy, Tomsk Oblast. The formation has been poorly studied by seismic methods. The reserves categories C1 and C2 as well as hydrocarbon potential are presented. 4 exploratory and 39 production wells are designed to be drilled depending on geologic knowledge and formation conditions. The article deals with the investment plan including development, oil export expenditures and implementing cost calculation.

  3. Publications - RI 2001-1D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    -geologic map of the Chulitna region, southcentral Alaska, scale 1:63,360 (16.0 M) Digital Geospatial Data Digital Geospatial Data Chulitna region engineering geology Data File Format File Size Info Download

  4. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James; Wright, Judith

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all aboutmore » the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific community. (authors)« less

  5. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.P. McGrail; E. C. Sullivan; F. A. Spane

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less

  6. Assessment of undiscovered continuous oil and shale-gas resources in the Bazhenov Formation of the West Siberian Basin Province, Russia, 2016

    USGS Publications Warehouse

    Klett, Timothy R.; Schenk, Christopher J.; Brownfield, Michael E.; Leathers-Miller, Heidi M.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2016-11-10

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean continuous resources of 12 billion barrels of oil and 75 trillion cubic feet of gas in the Bazhenov Formation of the West Siberian Basin Province, Russia.

  7. Assessment of undiscovered oil and gas resources in the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas, 2017

    USGS Publications Warehouse

    Marra, Kristen R.; Gaswirth, Stephanie B.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Mercier, Tracey J.; Le, Phuong A.; Tennyson, Marilyn E.; Finn, Thomas M.; Hawkins, Sarah J.; Brownfield, Michael E.

    2017-05-15

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean resources of 4.2 billion barrels of oil and 3.1 trillion cubic feet of gas in the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas.

  8. Assessment of continuous gas resources in the Phosphoria Formation of the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah, 2017

    USGS Publications Warehouse

    Schenk, Christopher J.; Mercier, Tracey J.; Tennyson, Marilyn E.; Woodall, Cheryl A.; Finn, Thomas M.; Pitman, Janet K.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phuong A.; Klett, Timothy R.; Leathers-Miller, Heidi M.

    2018-04-13

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 198 billion cubic feet of continuous gas in the Phosphoria Formation of the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah.

  9. Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska: Chapter G in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Drake II, Ronald M.; Brennan, Sean T.; Covault, Jacob A.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.

  10. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  11. Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.

    2017-09-01

    The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.

  12. The optimized log interpretation method and sweet-spot prediction of gas-bearing shale reservoirs

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Bai, Ze; Xu, Jingjing

    2017-04-01

    Shale gas is one of the most important unconventional oil and gas resources, and its lithology and reservoir type are both different from conventional reservoirs [1,2]. "Where are shale reservoirs" "How to determine the hydrocarbon potential" "How to evaluate the reservoir quality", these are some key problems in front of geophysicists. These are sweet spots prediction and quantitative evaluation. As we known, sweet spots of organic shale include geological sweet spot and engineering sweet spot. Geophysical well logging can provide a lot of in-site formation information along the borehole, and all parameters describing the sweet spots of organic shale are attained by geophysical log interpretation[2]. Based on geological and petrophysical characteristics of gas shale, the log response characteristics of gas shales are summarized. Geological sweet spot includes hydrocarbon potential, porosity, fracture, water saturation and total gas content, which can be calculated by using wireline logs[3]. Firstly, the based-logging hydrocarbon potential evaluation is carried out, and the RBF neural network method is developed to estimate the total organic carbon content (TOC), which was proved more effective and suitable than empirical formula and ΔlogR methods [4]. Next, the optimized log interpretation is achieved by using model-searching, and the mineral concentrations of kerogen, clay, feldspar and pyrite and porosity are calculated. On the other hand, engineering sweet spot of shale refers to the rock physical properties and rock mechanism parameters. Some elastic properties including volume module, shear modulus and Poisson's ratio are correspondingly determined from log interpretation, and the brittleness index (BI), effective stress and pore pressure are also estimated. BI is one of the most important engineering sweet spot parameters. A large number of instances show that the summarized log responses can accurately identify the gas-bearing shale, and the proposed RBF method for TOC prediction has more suitable and flexibility. The mineral contents and porosity from the optimized log interpretation are in good agreement with core XRD experiment and other core experiments. In some polite wells of Jiaoshiba area, china, some parameters in Wufeng-Longmaxi formation are calculated, and geological and engineering sweet spots are finally determined. For the best sweet spot, TOC is about 6%, the porosity is about 8%,the volume of kerogen is about 3%, total gas content is 8m3/t, and the brittleness index is about 90%, and the minimum and maximum horizon stress are about 30MPa and 45 MPa. Therefore, the optimized log interpretation provide an important support for sweet spots prediction and quantitative evaluation of shale gas. References: [1] Sondergeld CH, Ambrose RJ, Rai CS, Moncrieff J. Micro-structure studies of gas shales: in SPE 2012; 131771: 150-166. [2] Ellis D V, Singer J M. 2012. Well Logging for Earth Scientists (2rd edition): Springer Press. [3]Fertl W H, Chillngar G V. 1988. Total organic carbon content determined from well logs: SPE formation evaluation, 407-419. [4] Tan M J, Liu Q, and Zhang S. 2002. A dynamic adaptive radial basis function approach for total organic carbon content prediction in organic shale. Geophysics, 2013, 78(6): 445-459. Acknowledgments: This paper is sponsored by National Natural Science Foundation of China (U1403191, 41172130), the Fundamental Research Funds for the Central Universities (292015209), and National Major Projects "Development of Major Oil& Gas Fields and Coal Bed Methane" (2016ZX05014-001).

  13. Assessing inundation hazards to nuclear powerplant sites using geologically extended histories of riverine floods, tsunamis, and storm surges

    USGS Publications Warehouse

    O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.

    2014-01-01

    A screening of the 104 nuclear powerplants in the United States licensed by the Nuclear Regulatory Commission (at 64 sites) indicates several sites for which paleoflood studies likely would provide additional flood-frequency information. Two sites—Duane Arnold, Iowa, on the Cedar River; and David-Besse, Ohio, on the Toussaint River—have geologic conditions suitable for creating and preserving stratigraphic records of flooding and few upstream dams that may complicate flood-frequency analysis. One site—Crystal River, Florida1, on the Withlacoochee River and only 4 kilometers from the coast—has high potential as a candidate for assessing riverine and marine inundation hazards. Several sites on the Mississippi River have high geologic potential, but upstream dams almost certainly now regulate peak flows. Nevertheless, studies on the Mississippi River to evaluate long-term flood frequency may provide results applicable to a wide spectrum of regional hazard issues. Several sites in the southeastern United States have high geologic potential, and studies at these sites also may be helpful in evaluating hazards from outburst floods from landslide dams (river blockages formed by mass movements), which may be a regional hazard. For all these sites, closer investigation and field reconnaissance would be needed to confirm suitable deposits and settings for a complete paleoflood analysis. Similar screenings may help identify high-potential sites for geologic investigations of tsunami and storm-surge hazards.

  14. National assessment of geologic carbon dioxide storage resources: methodology implementation

    USGS Publications Warehouse

    Blondes, Madalyn S.; Brennan, Sean T.; Merrill, Matthew D.; Buursink, Marc L.; Warwick, Peter D.; Cahan, Steven M.; Corum, Margo D.; Cook, Troy A.; Craddock, William H.; DeVera, Christina A.; Drake II, Ronald M.; Drew, Lawrence J.; Freeman, P.A.; Lohr, Celeste D.; Olea, Ricardo A.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Varela, Brian A.

    2013-01-01

    In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the assessment methodology of Brennan and others (2010, http://pubs.usgs.gov/of/2010/1127/) and describes the probabilistic model used to calculate potential storage resources in subsurface saline formations.

  15. Records and history of the United States Geological Survey

    USGS Publications Warehouse

    Nelson, Clifford M.

    2000-01-01

    This publication contains two presentations in Portable Document Format (PDF). The first is Renee M. Jaussaud's inventory of the documents accessioned by the end of 1997 into Record Group 57 (Geological Survey) at the National Archives and Records Administration's (NARA) Archives II facility in College Park, Md., but not the materials in NARA's regional archives. The second is Mary C. Rabbitt's 'The United States Geological Survey 1879-1989,' which appeared in 1989 as USGS Circular 1050. Additionally, USGS Circular 1050 is also presented in Hyper Text Markup Language (HTML) format.

  16. Palaeogeographical peculiarities of the Pabdeh Formation (Paleogene) in Iran: New evidence of global diversity-determined geological heritage

    NASA Astrophysics Data System (ADS)

    Habibi, Tahereh; Nielsen, Jan K.; Ponedelnik, Alena A.; Ruban, Dmitry A.

    2017-11-01

    Unique palaeogeographical peculiarities of sedimentary formations are important for geological heritage conservation and use for the purposes of tourism. The heritage value of the Pabdeh Formation (Paleocene-Oligocene) of the Zagros Fold-Thrust Belt in Iran has been investigated. The uniqueness of its palaeogeographical peculiarities has been assessed on the basis of the literature, field studies of three representative sections in the Fars Province (Kavar, Zanjiran, and Shahneshin sections), and comparison with the similar features known in Iran and globally. The Pabdeh Formation reflects the process of mixed siliciclastic-carbonate ramp progradation and the onset of a typical carbonate platform. The other unique features include representation of mesopelagic palaeohabitat, specific trace fossil assemblages, prehistoric bituminous artefacts (production of which was linked to the Pabdeh deposits), etc. It is established that the palaeogeographical type of geological heritage of the Pabdeh Formation is represented by all known subtypes, namely facies, palaeoecosystem, ichnological, taphonomical, event, and geoarchaeological subtypes. Their rank varies between regional and global. The very fact of co-occurrence of these subtypes determines the global importance of the entire palaeogeographical type in the case of this formation. The establishment of geopark in the Zagros Fold-Thrust Belt will facilitate adequate use of the Pabdeh Formation for the purpose of geotourism development. The aesthetic properties (rocks of different colour and striped patterns of outcrops) increase the attractiveness of this geological body to visitors.

  17. Geologic map of the San Bernardino North 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, F.K.; Matti, J.C.

    2001-01-01

    3. Portable Document Format (.pdf) files of: a. This Readme; includes an Appendix, containing data found in sbnorth_met.txt . b. The Description of Map Units identical to that found on the plot of the PostScript file. c. The same graphic as plotted in 2 above. (Test plots from this .pdf do not produce 1:24,000-scale maps. Use Adobe Acrobat pagesize setting to control map scale.) The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS San Bernardino North 7.5’ topographic quadrangle in conjunction with the geologic map.

  18. Assessment of undiscovered continuous oil and gas resources in the Domanik-type formations of the Volga-Ural Region Province, Russia, 2017

    USGS Publications Warehouse

    Klett, Timothy R.; Brownfield, Michael E.; Finn, Thomas M.; Gaswirth, Stephanie B.; Le, Phuong A.; Leathers-Miller, Heidi M.; Marra, Kristen R.; Mercier, Tracey J.; Pitman, Janet K.; Schenk, Christopher J.; Tennyson, Marilyn E.; Woodall, Cheryl A.

    2018-02-27

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources of 2.8 billion barrels of oil and 34 trillion cubic feet of gas in the Domanik-type formations of the Volga-Ural Region Province, Russia.

  19. Assessment of undiscovered continuous oil and gas resources in the Monterey Formation, Los Angeles Basin Province, California, 2015

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Charpentier, Ronald R.; Klett, Timothy R.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Le, Phuong A.; Lillis, Paul G.; Marra, Kristen R.; Mercier, Tracey J.; Leathers-Miller, Heidi M.; Schenk, Christopher J.

    2016-07-08

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed technically recoverable mean resources of 13 million barrels of oil, 22 billion cubic feet of gas, and 1 million barrels of natural gas liquids in the Monterey Formation of the Los Angeles Basin Province, California.

  20. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOEpatents

    Vail, W.B. III.

    1989-04-11

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.

  1. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOEpatents

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

  2. Isopach map of the interval from surface elevation to the top of the Pennsylvanian and Permian Minnelusa Formation and equivalents, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1990-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.

  3. Map showing contours on the top of the Pennsylvanian and Permian Minnelusa Formation and equivalents, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1990-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.

  4. An evaluation of the carbon sequestration potential of the Cambro-Ordovician Strata of the Illinois and Michigan basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leetaru, Hannes

    2014-12-01

    The studies summarized herein were conducted during 2009–2014 to investigate the utility of the Knox Group and St. Peter Sandstone deeply buried geologic strata for underground storage of carbon dioxide (CO 2), a practice called CO 2 sequestration (CCS). In the subsurface of the midwestern United States, the Knox and associated strata extend continuously over an area approaching 500,000 sq. km, about three times as large as the State of Illinois. Although parts of this region are underlain by the deeper Mt. Simon Sandstone, which has been proven by other Department of Energy-funded research as a resource for CCS, themore » Knox strata may be an additional CCS resource for some parts of the Midwest and may be the sole geologic storage (GS) resource for other parts. One group of studies assembles, analyzes, and presents regional-scale and point-scale geologic information that bears on the suitability of the geologic formations of the Knox for a CCS project. New geologic and geo-engineering information was developed through a small-scale test of CO 2 injection into a part of the Knox, conducted in western Kentucky. These studies and tests establish the expectation that, at least in some locations, geologic formations within the Knox will (a) accept a commercial-scale flow rate of CO 2 injected through a drilled well; (b) hold a commercial-scale mass of CO 2 (at least 30 million tons) that is injected over decades; and (c) seal the injected CO 2 within the injection formations for hundreds to thousands of years. In CCS literature, these three key CCS-related attributes are called injectivity, capacity, and containment. The regional-scale studies show that reservoir and seal properties adequate for commercial-scale CCS in a Knox reservoir are likely to extend generally throughout the Illinois and Michigan Basins. Information distinguishing less prospective subregions from more prospective fairways is included in this report. Another group of studies report the results of reservoir flow simulations that estimate the progress and outcomes of hypothetical CCS projects carried out within the Knox (particularly within the Potosi Dolomite subunit, which, in places, is highly permeable) and within the overlying St. Peter Sandstone. In these studies, the regional-scale information and a limited amount of detailed data from specific boreholes is used as the basis for modeling the CO 2 injection process (dynamic modeling). The simulation studies were conducted progressively, with each successive study designed to refine the conclusions of the preceding one or to answer additional questions. The simulation studies conclude that at Decatur, Illinois or a geologically similar site, the Potosi Dolomite reservoir may provide adequate injectivity and capacity for commercial-scale injection through a single injection well. This conclusion depends on inferences from seismic-data attributes that certain highly permeable horizons observed in the wells represent laterally persistent, porous vuggy zones that are vertically more common than initially evident from wellbore data. Lateral persistence of vuggy zones is supported by isotopic evidence that the conditions that caused vug development (near-surface processes) were of regional rather than local scale. Other studies address aspects of executing and managing a CCS project that targets a Knox reservoir. These studies cover well drilling, public interactions, representation of datasets and conclusions using geographic information system (GIS) platforms, and risk management.« less

  5. Geologic database for digital geology of California, Nevada, and Utah: an application of the North American Data Model

    USGS Publications Warehouse

    Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.

    2003-01-01

    The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.

  6. Geologic map of the Devore 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Matti, Jonathan C.

    2001-01-01

    This Open-File Report contains a digital geologic map database of the Devore 7.5' quadrangle, San Bernardino County, California, that includes: 1. ARC/INFO (Environmental Systems Research Institute) version 7.2.1 coverages of the various components of the geologic map 2. A PostScript (.ps) file to plot the geologic map on a topographic base, containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map 3. Portable Document Format (.pdf) files of: a. This Readme; includes an Appendix, containing metadata details found in devre_met.txt b. The same graphic as plotted in 2 above. (Test plots from this .pdf do not produce 1:24,000-scale maps. Adobe Acrobat page-size settings control map scale.) The Correlation of Map Units and Description of Map Units are in the editorial format of USGS Miscellaneous Investigations Series maps (I-maps) but have not been edited to comply with I-map standards. Within the geologic-map data package, map units are identified by such standard geologic-map criteria as formation name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Devore 7.5’ topographic quadrangle in conjunction with the geologic map.

  7. Geologic map of the Fifteenmile Valley 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, F.K.; Matti, J.C.

    2001-01-01

    Open-File Report OF 01-132 contains a digital geologic map database of the Fifteenmile Valley 7.5’ quadrangle, San Bernardino County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A PostScript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units (CMU) and Description of Map Units (DMU) is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Fifteenmile Valley 7.5’ topographic quadrangle in conjunction with the geologic map.

  8. Technogenic effect of liquidation of coal mines on earth’s entrails: hydrogeochemical aspect

    NASA Astrophysics Data System (ADS)

    Tarasenko, I. A.; Zinkov, A. V.; Chudaev, O. V.; Vetoshkina, A. V.; Holodilov, I. I.

    2017-10-01

    The authors of the paper have established the geochemical features of the composition of underground waters and regularities of their formation in the areas of the liquidated coal mines of Russia and Ukraine. It is shown that the mine flood resulted in the formation of technogenic waters which geochemical specificity originates in the feeding field and is transformed in the direction of the filtration flow. It depends on the geological structure of sedimentary basins and the presence in the coal and supra-coal beds of the marine, salt-bearing and freshwater groups of geological formations. The water types are distinguished characterizing the conditions and processes of their formation that may be the regional markers in the hydrochemical and geological constructions. The technogenic waters influenced the safety of the underground waters, sources of water supply of the regions, and surface water channels. The pollutions are of local character in space.

  9. Map showing contours on top of the upper Cretaceous Mowry Shale, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 4,926 of these wells that penetrate the Minnelusa Formation and equivalents.

  10. Geology of the surficial aquifer system, Broward County, Florida; lithologic logs

    USGS Publications Warehouse

    Causaras, C.R.

    1985-01-01

    The geologic framework of the surficial aquifer system, of which the Biscayne aquifer is the major component in Broward County, Florida, is presented in eight geologic cross sections. The cross sections are based on detailed lithologic logs of 27 test wells that were drilled, in the summer of 1981, through the sediments overlying the relatively impermeable units of the Hawthorn Formation, of Miocene age. The cross sections show the aquifer system as a wedge-shaped sequence of Cenozoic sediments. The aquifer thickness gradually decreases from more than 400 feet along the coast to about 160 feet in the west and southwest parts of Broward County. The sediments that comprise the aquifer system range in age from Pliocene to Pleistocene and are assigned to the following stratigraphic units from bottom to top: Tamiami Formation, Caloosahatchee Marl, Fort Thompson Formation, Key Largo Limestone, Anastasia Formation, Miami Oolite, and Pamlico Sand. (USGS)

  11. Geologic Map of Upper Cretaceous and Tertiary Strata and Coal Stratigraphy of the Paleocene Fort Union Formation, Rawlins-Little Snake River Area, South-Central Wyoming

    USGS Publications Warehouse

    Hettinger, R.D.; Honey, J.G.; Ellis, M.S.; Barclay, C.S.V.; East, J.A.

    2008-01-01

    This report provides a map and detailed descriptions of geologic formations for a 1,250 square mile region in the Rawlins-Little Snake River coal field in the eastern part of the Washakie and Great Divide Basins of south-central Wyoming. Mapping of geologic formations and coal beds was conducted at a scale of 1:24,000 and compiled at a scale of 1:100,000. Emphasis was placed on coal-bearing strata of the China Butte and Overland Members of the Paleocene Fort Union Formation. Surface stratigraphic sections were measured and described and well logs were examined to determine the lateral continuity of individual coal beds; the coal-bed stratigraphy is shown on correlation diagrams. A structure contour and overburden map constructed on the uppermost coal bed in the China Butte Member is also provided.

  12. Geology of the Holocene surficial uranium deposit of the north fork of Flodelle Creek, northeastern Washington ( USA).

    USGS Publications Warehouse

    Johnson, S.Y.; Otton, J.K.; Macke, D.L.

    1987-01-01

    The N fork of Flodelle Creek drainage basin in NE Washington contains the first surficial U deposit to be mined in the US. The U was leached from granitic bedrock and fixed in organic-rich pond sediments. The distribution of these pond sediments and, therefore, the U has been strongly influenced by relict glacial topography, slope proceses, and beaver activity. Ponds in the drainage basin have been sinks for fine-grained, organic-rich sediments. These organic-rich sediments provide a suitable geochemical environment for precipitation and adsorption of uranium leached from granitic bedrock into ground, spring, and surface waters. Processes of pond formation have thus been important in the development of surficial U deposits in the N fork of Flodelle Creek drainage basin and may have similar significance in other areas.-from Authors

  13. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  14. High resolution multi-facies realizations of sedimentary reservoir and aquifer analogs

    PubMed Central

    Bayer, Peter; Comunian, Alessandro; Höyng, Dominik; Mariethoz, Gregoire

    2015-01-01

    Geological structures are by nature inaccessible to direct observation. This can cause difficulties in applications where a spatially explicit representation of such structures is required, in particular when modelling fluid migration in geological formations. An increasing trend in recent years has been to use analogs to palliate this lack of knowledge, i.e., exploiting the spatial information from sites where the geology is accessible (outcrops, quarry sites) and transferring the observed properties to a study site deemed geologically similar. While this approach is appealing, it is difficult to put in place because of the lack of access to well-documented analog data. In this paper we present comprehensive analog data sets which characterize sedimentary structures from important groundwater hosting formations in Germany and Brazil. Multiple 2-D outcrop faces are described in terms of hydraulic, thermal and chemical properties and interpolated in 3-D using stochastic techniques. These unique data sets can be used by the wider community to implement analog approaches for characterizing reservoir and aquifer formations. PMID:26175910

  15. Assessment of undiscovered conventional oil and gas resources in the downdip Paleogene formations, U.S. Gulf Coast, 2017

    USGS Publications Warehouse

    Buursink, Marc L.; Doolan, Colin A.; Enomoto, Catherine B.; Craddock, William H.; Coleman, James L.; Brownfield, Michael E.; Gaswirth, Stephanie B.; Klett, Timothy R.; Le, Phuong A.; Leathers-Miller, Heidi M.; Marra, Kristen R.; Mercier, Tracey J.; Pearson, Ofori N.; Pitman, Janet K.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.; Woodall, Cheryl A.

    2018-05-25

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable conventional resources of 100 million barrels of oil and 16.5 trillion cubic feet of gas in the downdip Paleogene formations in onshore lands and State waters of the U.S. Gulf Coast region.

  16. Assessment of undiscovered oil and gas resources in the Bossier Formation, U.S. Gulf Coast, 2016

    USGS Publications Warehouse

    Paxton, Stanley T.; Pitman, Janet K.; Kinney, Scott A.; Gianoutsos, Nicholas J.; Pearson, Ofori N.; Whidden, Katherine J.; Dubiel, Russell F.; Schenk, Christopher J.; Burke, Lauri A.; Klett, Timothy R.; Leathers-Miller, Heidi M.; Mercier, Tracey J.; Haines, Seth S.; Varela, Brian A.; Le, Phuong A.; Finn, Thomas M.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Marra, Kristen R.; Tennyson, Marilyn E.

    2017-04-13

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 2.9 billion barrels of conventional oil and 108.6 trillion cubic feet of natural gas in the Upper Jurassic Bossier Formation in onshore lands and State waters of the U.S. Gulf Coast region.

  17. Assessment of undiscovered oil and gas resources in the Haynesville Formation, U.S. Gulf Coast, 2016

    USGS Publications Warehouse

    Paxton, Stanley T.; Pitman, Janet K.; Kinney, Scott A.; Gianoutsos, Nicholas J.; Pearson, Ofori N.; Whidden, Katherine J.; Dubiel, Russell F.; Schenk, Christopher J.; Burke, Lauri A.; Klett, Timothy R.; Leathers-Miller, Heidi M.; Mercier, Tracey J.; Haines, Seth S.; Varela, Brian A.; Le, Phuong A.; Finn, Thomas M.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Marra, Kristen R.; Tennyson, Marilyn E.

    2017-04-13

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 1.1 billion barrels of conventional oil and 195.8 trillion cubic feet of gas in the Upper Jurassic Haynesville Formation in onshore lands and State waters of the U.S. Gulf Coast region.

  18. Horizontal sliding of kilometre-scale hot spring area during the 2016 Kumamoto earthquake

    PubMed Central

    Tsuji, Takeshi; Ishibashi, Jun’ichiro; Ishitsuka, Kazuya; Kamata, Ryuichi

    2017-01-01

    We report horizontal sliding of the kilometre-scale geologic block under the Aso hot springs (Uchinomaki area) caused by vibrations from the 2016 Kumamoto earthquake (Mw 7.0). Direct borehole observations demonstrate the sliding along the horizontal geological formation at ~50 m depth, which is where the shallowest hydrothermal reservoir developed. Owing to >1 m northwest movement of the geologic block, as shown by differential interferometric synthetic aperture radar (DInSAR), extensional open fissures were generated at the southeastern edge of the horizontal sliding block, and compressional deformation and spontaneous fluid emission from wells were observed at the northwestern edge of the block. The temporal and spatial variation of the hot spring supply during the earthquake can be explained by the horizontal sliding and borehole failures. Because there was no strain accumulation around the hot spring area prior to the earthquake and gravitational instability could be ignored, the horizontal sliding along the low-frictional formation was likely caused by seismic forces from the remote earthquake. The insights derived from our field-scale observations may assist further research into geologic block sliding in horizontal geological formations. PMID:28218298

  19. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE

    EPA Science Inventory

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  20. Geologic map of the Patagonia Mountains, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Graybeal, Frederick T.; Moyer, Lorre A.; Vikre, Peter; Dunlap, Pamela; Wallis, John C.

    2015-01-01

    Several spatial databases provide data for the geologic map of the Patagonia Mountains in Arizona. The data can be viewed and queried in ArcGIS 10, a geographic information system; a geologic map is also available in PDF format. All products are available online only.

  1. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION

    EPA Science Inventory

    The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...

  2. Records of wells drilled for oil and gas in Montana, June 1, 1951 through December 31, 1953

    USGS Publications Warehouse

    Smith, Howard R.

    1955-01-01

    Data concerning about 1, 800 dry holes and selected producing wells drilled in Montana from June 1, 1951, through December 31, 1953, are contained in this circular, which supplements Circular 172 published in 1952. Also included is a table listing the oil and gas fields of Montana. WELLS DRILLED FOR OIL AND GAS IN MONTANA FROM JUNE 1, 1951, THOROUGH DECEMBER 31, 1953 This circular contains data on dry holes and selected producing wells drilled in Montana from June 1, 1951, through December 31, 1953, and supplements Circular 172 published in 1952 showing records of wells drilled prior to June 1, 1951. Table 1 lists the oil and gas fields of Montana (see map OM 130). The list of wells in table 2 has been compiled from information in Geological Survey files and includes most if not all the unsuccessful wildcat test wells and unsuccessful field extension wells drilled from June 1, 1951 to December 31, 1953. It also includes some older but successful field extension wells that had not been listed in Circular 172. Data are tabulated under location, county, field or geologic structure, operator, lease, and well number, elevation, geologic formation (at the surface and lowest formation reached), production or shows of oil or gas, total depth, and status and date. The wells are tabulated by township, range, quarter, and section in the order of townships north-ranges west, townships north-ranges east, townships south-ranges east, and townships south-ranges west. The names entered under 'Field or geologic structure' are those of the productive area or the geologic structure on or near which the wells have been drilled. Ground elevations have been given for wells for which the records indicated the reference point of the elevation. The surface formation and lowest formation reached in the wells are indicated by symbols which are identified on the accompanying explanation of formation symbols (fig. 1). Not all of the nomenclature is in accord with current Geological Survey usage. In the column 'Production or shows of oil and gas' the symbol GS is used for gas shows, OS for oil shows, GOS for shows of both gas and oil, GP for gas production, and OP for oil production. A number following the symbol for a show or production indicates the depth to the top of the zone in which the gas or oil was found. The letter symbol following the number or the hyphen indicates the geologic formation in which the gas or oil occurs. The status and depth of each well is indicated. The letters A, C, and D preceding the date indicate abandoned, completed, or drilling, respectively, in the specified year. Most if not all producing wells that have been abandoned are shown as completed wells. The date of abandonment is the year in which drilling ceased, except for a few wells in which the abandonment was preceded by one or more years of suspended operations. The diagrammatic representation of the succession of geologic formations in Montana (fig. 1) provides identification of the letter symbols used in the tabulation to indicate geologic formations.

  3. Geologic map of the Republic of Armenia

    USGS Publications Warehouse

    Maldonado, Florian; Castellanos, Esther S.

    2000-01-01

    This map is a product that resulted from a project by the U.S. Agency for International Development (Participating Agency Service Agreement No. CCN-0002-P-ID-3097-00) to conduct an evaluation of coal and other fossil fuels in the Republic of Armenia. The original map has been translated to English from Russian (Marlen Satian, Academy of Sciences, Armenian Institute of Geological Sciences, written commun., 1994), digitized, and slightly modified in some areas. The original format has been modified to follow the U.S. Geological Survey's format. The map projection is not known. Latitude and longitude tics are approximately located.

  4. The formation of Hadley Rille and implications for the geology of the Apollo 15 region

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Swann, Gordon A.; Greeley, Ronald

    1988-01-01

    The results of studies of terrestrial lava tube systems and the regional and detailed site geology of the Apollo 15 area have been combined to develop a model for the formation of Hadley Rille. The regional geology of the Apennine bench formation and its relation to Mozart and Hadley Rilles is discussed. It is shown that the total thickness of mare basalt at the Apollo landing site is on the order of a few tens of meters, mostly less than 50 m. It is suggested that the role of thermal erosion in the development of sinuous rilles on the moon may be less important than previously assumed and that the assimilation of refractory highland rock types into mare basaltic magma is a minor lunar process.

  5. Quality of ground water in Routt County, northwestern Colorado

    USGS Publications Warehouse

    Covay, Kenneth J.; Tobin, R.L.

    1980-01-01

    Chemical and bacteriological data were collected to describe the quality of water from selected geologic units in Routt County, Colo. Calcium bicarbonate was the dominant water-chemistry type; magnesium, sodium, and sulfate frequently occurred as codominant ions. Specific conductance values ranged from 50 to 6,000 micromhos. Mean values of specific conductance, dissolved solids , and hardness from the sampled aquifers were generally greatest in waters from the older sedimentary rocks of the Lance Formation, Lewis Shale, Mesaverde Group, and Mancos Shale, and least in the ground waters from the alluvial deposits, Browns Park Formation, and the basement complex. Correlations of specific conductance with dissolved solids and specific conductance with hardness were found within specified concentration ranges. On the basis of water-quality analyses, water from the alluvial desposits, Browns Park Formation, and the basement complex generally is the most suitable for domestic uses. Chemical constituents in water from wells or springs exceeded State and Federal standards for public-water supplies or State criteria for agricultural uses were pH, arsenic, boron, chloride, iron, fluoride, manganese, nitrite plus nitrate, selenium, sulfate, or dissolved solids. Total-coliform bacteria were detected in water from 29 sites and fecal-coliform bacteria were detected in water from 6 of the 29 sites. (USGS)

  6. Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Agartan, Elif; Trevisan, Luca; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin; Illangasekare, Tissa H.

    2015-03-01

    Dissolution trapping is one of the primary mechanisms that enhance the storage security of supercritical carbon dioxide (scCO2) in saline geologic formations. When scCO2 dissolves in formation brine produces an aqueous solution that is denser than formation brine, which leads to convective mixing driven by gravitational instabilities. Convective mixing can enhance the dissolution of CO2 and thus it can contribute to stable trapping of dissolved CO2. However, in the presence of geologic heterogeneities, diffusive mixing may also contribute to dissolution trapping. The effects of heterogeneity on mixing and its contribution to stable trapping are not well understood. The goal of this experimental study is to investigate the effects of geologic heterogeneity on mixing and stable trapping of dissolved CO2. Homogeneous and heterogeneous media experiments were conducted in a two-dimensional test tank with various packing configurations using surrogates for scCO2 (water) and brine (propylene glycol) under ambient pressure and temperature conditions. The results show that the density-driven flow in heterogeneous formations may not always cause significant convective mixing especially in layered systems containing low-permeability zones. In homogeneous formations, density-driven fingering enhances both storage in the deeper parts of the formation and contact between the host rock and dissolved CO2 for the potential mineralization. On the other hand, for layered systems, dissolved CO2 becomes immobilized in low-permeability zones with low-diffusion rates, which reduces the risk of leakage through any fault or fracture. Both cases contribute to the permanence of the dissolved plume in the formation.

  7. Carbonation of mantle peridotites: implications for permanent geological CO2 capture and storage

    NASA Astrophysics Data System (ADS)

    Paukert, A. N.; Matter, J. M.; Kelemen, P. B.; Marsala, P.; Shock, E.

    2012-12-01

    In situ carbonation of mantle peridotites serves as a natural analog to engineered mineral carbonation for geological CO2 capture and storage. For example, mantle peridotite in the Samail Ophiolite, Oman naturally captures and stores about 5x104 tons of atmospheric CO2 per year as carbonate minerals, and has been doing so for the past 50,000 years [Kelemen et al., 2011]. Our reaction path modeling of this system shows that the natural process is limited by subsurface availability of dissolved inorganic carbon, and that the rate of CO2 mineralization could be enhanced by a factor of 16,000 by injecting CO2 into the peridotite aquifer at 2 km depth and a fugacity of 100 bars. Injecting CO2 into mafic or ultramafic rock formations has been presumed difficult, as fractured crystalline rocks typically have low porosity and permeability; however these factors have yet to be comprehensively studied. To determine the actual value of these hydrogeological factors, this winter we carried out a multifaceted study of deep boreholes (up to 350m) in the mantle peridotite and the Moho transition zone of the Samail Ophiolite. A suite of physical and chemical parameters were collected, including slug tests for hydraulic conductivity, geophysical well logs for porosity and hydraulic conductivity, drill chips for extent and composition of secondary mineralization, and water and dissolved gas samples for chemical composition. All of these factors combine to provide a comprehensive look at the chemical and physical processes underlying natural mineral carbonation in mantle peridotites. Understanding the natural process is critical, as mineral carbonation in ultramafic rocks is being explored as a permanent and relatively safe option for geologic carbon sequestration. While injectivity in these ultramafic formations was believed to be low, our slug test and geophysical well log data suggest that the hydraulic conductivity of fractured peridotites can actually be fairly high - up to meters/day, on par with fine to medium grained sandstones - so these formations may be more suitable than previously thought. Using the Samail Ophiolite as a natural analog for in situ mineral carbonation in ultramafic rocks should help predict and optimize the efficacy and security of engineered CO2 storage projects.

  8. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  9. Geologic map of the Willow Creek Reservoir SE Quadrangle, Elko, Eureka, and Lander Counties, Nevada

    USGS Publications Warehouse

    Wallace, Alan R.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Willow CreekReservoir 7.5-minute SE Quadrangle in Elko, Eureka, and LanderCounties, Nevada, with two cross sections and descriptions of 24 rock units. Accompanying text discusses the geology, paleogeography, and formation of the Ivanhoe Hg-Au district.

  10. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable basalt in flow interiors. Other large igneous provinces and ocean floor basalts could accommodate centuries' worth of world's CO2 emissions. Low-volume basaltic flows and fractured intrusives may potentially serve as smaller-scale CO2 storage targets. However, as illustrated by the example of the Palisade sill in the Newark basin, even densely fractured intrusive basalts are often impermeable, and instead may serve as caprock for underlying formations. Hydraulic properties of fractured formations are very site-specific, but observations and theory suggest that the majority of fractures at depth remain closed. Hydraulic tests in the northern Newark basin indicate that fractures introduce strong anisotropy and heterogeneity to the formation properties, and very few of them augment hydraulic conductivity of these fractured formations. Overall, they are unlikely to provide enough storage capacity for safe CO 2 injection at large scales, but can be suitable for small-scale controlled experiments and pilot injection tests. The risk of inducing earthquakes by underground injection has emerged as one of the primary concerns for large-scale carbon sequestration, especially in fractured and moderately permeable formations. Analysis of in situ stress and distribution of fractures in the subsurface are important steps for evaluating the risks of induced seismicity. Preliminary results from the Newark basin suggest that local stress perturbation may potentially create favorable stress conditions for CO2 sequestration by allowing a considerable pore pressure increase without carrying large risks of fault reactivation. Additional in situ stress data are needed, however, to accurately constrain the magnitude of the minimum horizontal stress, and it is recommended that such tests be conducted at all potential CO 2 storage sites.

  11. Terrain intelligence Chita Oblast (U.S.S.R.)

    USGS Publications Warehouse

    ,

    1943-01-01

    The following folio of maps and explanatory tables outlines the principal terrain features of the Chita Oblast.  Each map and table is devoted to a specialized set of problems; together they cover such subjects as terrain appreciations, rivers, surface-water and ground-water supplies, construction materials, fuels, suitability for temporary roads and airfields, mineral resources, and geology.  These maps and data were complied by the United States Geological Survey.

  12. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)

    EPA Science Inventory

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  13. Radioactive Waste Management, its Global Implication on Societies, and Political Impact

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuaki

    2009-05-01

    Reprocessing plant in Rokkasho, Japan is under commissioning at the end of 2008, and it starts soon to reprocess about 800 Mt of spent fuel per annum, which have been stored at each nuclear power plant sites in Japan. Fission products together with minor actinides separated from uranium and plutonium in the spent fuel contain almost all radioactivity of it and will be vitrified with glass matrix, which then will fill the canisters. The canisters with the high level radioactive waste (HLW) are so hot in both thermal and radiological meanings that they have to be cooled off for decades before bringing out to any destination. Where is the final destination for HLW in Japan, which is located at the rim of the Pacific Ocean with volcanoes? Although geological formation in Japan is not so static and rather active as the other parts of the planet, experts concluded with some intensive studies and researches that there will be a lot of variety of geological formations even in Japan which can host the HLW for so long times of more than million years. Then an organization to implement HLW disposal program was set up and started to campaign for volunteers to accept the survey on geological suitability for HLW disposal. Some local governments wanted to apply, but were crashed down by local and neighbor governments and residents. The above development is not peculiar only to Japan, but generally speaking more or less common for those with radioactive waste programs. This is why the radioactive waste management is not any more science and technology issue but socio-political one. It does not mean further R&D on geological disposal is not any more necessary, but rather we, each of us, should face much more sincerely the societal and political issues caused by the development of the science and technology. Second topic might be how effective partitioning and transformation technology may be to reduce the burden of waste disposal and denature the waste toxicity? The third one might be the proposal of international nuclear fuel centers which supply nuclear fuel to the nuclear power plants in the region and take back spent fuel which will be reprocessed to recover useful energy resources of uranium and plutonium. This may help non proliferation issue due to world nuclear development beyond renaissance.

  14. A primer in lunar geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Schultz, P. H. (Editor)

    1974-01-01

    Primary topics in lunar geology range from the evolution of the solar system to lunar photointerpretation, impact crater formation, and sampling to analyses on various Apollo lunar landing site geomorphologies.

  15. Assessment of undiscovered oil and gas resources in the Uteland Butte Member of the Eocene Green River Formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.; Charpentier, Ronald R.; Klett, Timothy R.; Leathers, Heidi M.; Schenk, Christopher J.; Tennyson, Marilyn E.

    2015-09-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered resources of 214 million barrels of oil, 329 billion cubic feet of associated/dissolved natural gas, and 14 million barrels of natural gas liquids in the informal Uteland Butte member of the Green River Formation, Uinta Basin, Utah.

  16. A mountain of trouble; Nuclear waste has to go somewhere: But a Government geologist working at Yucca Mountain argues that burying it there is an invitation to disaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broad, W.J.

    1990-11-18

    Yucca Mountain is the last candidate for high-level radioactive waste disposal, selected after a stormy, decades-long, multibillion-dollar search that criss-crossed much of the nation and eliminated dozens of other potential sites, often for reasons of politics rather than science. Today, the site`s 1800 federal and contract workers feel great pressure to stay on schedule in assessing the site`s suitability and planning the repository, which would be a labyrinth of tunnels up to 115 miles long. Its cost is expected to be up to $15 billion, some $1 billion of which has already been spent. If everything goes according to plan,more » it will open for business in 2010. The evaluation was proceeding favorably until a young Polish geologist raised questions based on the presence of geologic faults and certain calcium carbonate mineral deposits which may have resulted from hot springs or hot water coming up through the faults. The article describes: (1) the geologic basis of their questions and their reception by previous geologists (namely US GS); and (2) the formation of review committees to resolve their new problems.« less

  17. Cartographic production for the Florida Shelf Habitat (FLaSH) map study: generation of surface grids, contours, and KMZ files

    USGS Publications Warehouse

    Robbins, Lisa L.; Hansen, Mark; Raabe, Ellen; Knorr, Paul O.; Browne, Joseph

    2007-01-01

    The Florida shelf represents a finite source of economic resources, including commercial and recreational fisheries, tourism, recreation, sand and gravel resources, phosphate, and freshwater reserves. Yet the basic information needed to locate resources, or to interpret and utilize existing data, comes from many sources, dates, and formats. A multi-agency effort is underway to coordinate and prioritize the compilation of suitable datasets for an integrated information system of Florida’s coastal and ocean resources. This report and the associated data files represent part of the effort to make data accessible and useable with computer-mapping systems, web-based technologies, and user-friendly visualization tools. Among the datasets compiled and developed are seafloor imagery, marine sediment data, and existing bathymetric data. A U.S. Geological Survey-sponsored workshop in January 2007 resulted in the establishment of mapping priorities for the state. Bathymetry was identified as a common priority among agencies and researchers. State-of-the-art computer-mapping techniques and data-processing tools were used to develop shelf-wide raster and vector data layers. Florida Shelf Habitat (FLaSH) Mapping Project (http://coastal.er.usgs.gov/flash) endeavors to locate available data, identify data gaps, synthesize existing information, and expand our understanding of geologic processes in our dynamic coastal and marine systems.

  18. Assessment of Undiscovered Technically Recoverable Oil and Gas Resources of the Bakken Formation, Williston Basin, Montana and North Dakota, 2008

    USGS Publications Warehouse

    Pollastro, R.M.; Roberts, L.N.R.; Cook, T.A.; Lewan, M.D.

    2008-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the undiscovered oil and associated gas resources of the Upper Devonian to Lower Mississippian Bakken Formation in the U.S. portion of the Williston Basin of Montana and North Dakota and within the Williston Basin Province. The assessment is based on geologic elements of a total petroleum system (TPS), which include (1) source-rock distribution, thickness, organic richness, maturation, petroleum generation, and migration; (2) reservoir-rock type (conventional or continuous), distribution, and quality; and (3) character of traps and time of formation with respect to petroleum generation and migration. Framework studies in stratigraphy and structural geology and modeling of petroleum geochemistry, combined with historical exploration and production analyses, were used to estimate the undiscovered, technically recoverable oil resource of the Bakken Formation. Using this framework, the USGS defined a Bakken-Lodgepole TPS and seven assessment units (AU) within the system. For the Bakken Formation, the undiscovered oil and associated gas resources were quantitatively estimated for six of these AUs.

  19. Biochemical evolution III: Polymerization on organophilic silica-rich surfaces, crystal–chemical modeling, formation of first cells, and geological clues

    PubMed Central

    Smith, Joseph V.; Arnold, Frederick P.; Parsons, Ian; Lee, Martin R.

    1999-01-01

    Catalysis at organophilic silica-rich surfaces of zeolites and feldspars might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and other geological sources. Crystal–chemical modeling yielded packings for amino acids neatly encapsulated in 10-ring channels of the molecular sieve silicalite-ZSM-5-(mutinaite). Calculation of binding and activation energies for catalytic assembly into polymers is progressing for a chemical composition with one catalytic Al–OH site per 25 neutral Si tetrahedral sites. Internal channel intersections and external terminations provide special stereochemical features suitable for complex organic species. Polymer migration along nano/micrometer channels of ancient weathered feldspars, plus exploitation of phosphorus and various transition metals in entrapped apatite and other microminerals, might have generated complexes of replicating catalytic biomolecules, leading to primitive cellular organisms. The first cell wall might have been an internal mineral surface, from which the cell developed a protective biological cap emerging into a nutrient-rich “soup.” Ultimately, the biological cap might have expanded into a complete cell wall, allowing mobility and colonization of energy-rich challenging environments. Electron microscopy of honeycomb channels inside weathered feldspars of the Shap granite (northwest England) has revealed modern bacteria, perhaps indicative of Archean ones. All known early rocks were metamorphosed too highly during geologic time to permit simple survival of large-pore zeolites, honeycombed feldspar, and encapsulated species. Possible microscopic clues to the proposed mineral adsorbents/catalysts are discussed for planning of systematic study of black cherts from weakly metamorphosed Archaean sediments. PMID:10097060

  20. Application of geographical information system in disposal site selection for hazardous wastes.

    PubMed

    Rezaeimahmoudi, Mehdi; Esmaeli, Abdolreza; Gharegozlu, Alireza; Shabanian, Hassan; Rokni, Ladan

    2014-01-01

    The aim of this study was to provide a scientific method based on Geographical Information System (GIS) regarding all sustainable development measures to locate a proper landfill for disposal of hazardous wastes, especially industrial (radioactive) wastes. Seven effective factors for determining hazardous waste landfill were applied in Qom Province, central Iran. These criteria included water, slope, population centers, roads, fault, protected areas and geology. The Analysis Hierarchical Process (AHP) model based on pair comparison was used. First, the weight of each factor was determined by experts; afterwards each layer of maps entered to ARC GIS and with special weight multiplied together, finally the best suitable site was introduced. The most suitable sites for burial were in northwest and west of Qom Province and eventually five zones were introduced as the sample sites. GIs and AHP model is introduced as the technical, useful and accelerator tool for disposal site selection. Furthermore it is determined that geological factor is the most effective layer for site selection. It is suggested that geological conditions should be considered primarily then other factors are taken into consideration.

  1. Some aspects of core formation in Mercury

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1976-01-01

    Some questions dealing with the nature and history of a large metallic core within Mercury are considered. These include the existence of a core, its size, whether it is fluid or solid, the timescale for core formation, the geological consequences of core formation, and whether such consequences are consistent with the surface geology. Several indirect lines of evidence are discussed which suggest the presence of a large iron-rich core. A core-formation model is examined in which core infall is accompanied by an increase of 17 km in planetary radius, an increase of 700 K in mean internal temperature, and substantial melting of the mantle. It is argued that if the core differentiated from an originally homogeneous planet, that event must have predated the oldest geological units comprising most of the planetary surface. A convective dynamo model for the source of Mercury's magnetic field is shown to conflict with cosmochemical models that do not predict a substantial radiogenic heat source in the core.

  2. Lithofacies and sequence stratigraphic description of the upper part of the Avon Park Formation and the Arcadia Formation in U.S. Geological Survey G–2984 test corehole, Broward County, Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Robinson, Edward

    2017-07-18

    Rock core and sediment from U.S. Geological Survey test corehole G–2984 completed in 2011 in Broward County, Florida, provide an opportunity to improve the understanding of the lithostratigraphic, sequence stratigraphic, and hydrogeologic framework of the intermediate confining unit and Floridan aquifer system in southeastern Florida. A multidisciplinary approach including characterization of sequence stratigraphy, lithofacies, ichnology, foraminiferal paleontology, depositional environments, porosity, and permeability was used to describe the geologic samples from this test corehole. This information has produced a detailed characterization of the lithofacies and sequence stratigraphy of the upper part of the middle Eocene Avon Park Formation and Oligocene to middle Miocene Arcadia Formation. This enhancement of the knowledge of the sequence stratigraphic framework is especially important, because subaerial karst unconformities at the upper boundary of depositional cycles at various hierarchical scales are commonly associated with secondary porosity and enhanced permeability in the Floridan aquifer system.

  3. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  4. Preliminary geologic mapping of Cretaceous and Tertiary formations in the eastern part of the Little Snake River coal field, Carbon County, Wyoming

    USGS Publications Warehouse

    Haacke, Jon E.; Barclay, C. S. Venable; Hettinger, Robert D.

    2016-09-30

    In the 1970s and 1980s, C.S. Venable Barclay conducted geologic mapping of areas primarily underlain by Cretaceous coals in the eastern part of the Little Snake River coal field (LSR) in Carbon County, southwest Wyoming. With some exceptions, most of the mapping data were never published. Subsequently, after his retirement from the U.S. Geological Survey (USGS), his field maps and field notebooks were archived in the USGS Field Records. Due to a pending USGS coal assessment of the Little Snake River coal field area and planned geological mapping to be conducted by the Wyoming State Geological Survey, Barclay’s mapping data needed to be published to support these efforts. Subsequently, geologic maps were scanned and georeferenced into a geographic information system, and project and field notes were scanned into Portable Document Format (PDF) files. Data for seventeen 7½-minute quadrangles are presented in this report. This publication is solely intended to compile the mapping data as it was last worked on by Barclay and provides no interpretation or modification of his work.

  5. Geologic map of the Cucamonga Peak 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, D.M.; Matti, J.C.; Digital preparation by Koukladas, Catherine; Cossette, P.M.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Cucamonga Peak 7.5’ topographic quadrangle in conjunction with the geologic map.

  6. Geologic map of the Telegraph Peak 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, D.M.; Woodburne, M.O.; Foster, J.H.; Morton, Gregory; Cossette, P.M.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Telegraph Peak 7.5’ topographic quadrangle in conjunction with the geologic map.

  7. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

  8. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1989-11-21

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

  9. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  10. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  11. Assessment of undiscovered oil and gas resources of the Upper Cretaceous Austin Chalk and Tokio and Eutaw Formations, Gulf Coast, 2010

    USGS Publications Warehouse

    Pearson, Krystal; Dubiel, R.F.; Pearson, O.N.; Pitman, Janet K.

    2011-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 957 million barrels of undiscovered oil, 3.6 trillion cubic feet of undiscovered natural gas, and 363 million barrels of undiscovered natural gas liquids in the Austin Chalk and Tokio and Eutaw Formations in onshore lands and State waters of the Gulf Coast.

  12. Using 3D dynamic cartography and hydrological modelling for linear streamflow mapping

    NASA Astrophysics Data System (ADS)

    Drogue, G.; Pfister, L.; Leviandier, T.; Humbert, J.; Hoffmann, L.; El Idrissi, A.; Iffly, J.-F.

    2002-10-01

    This paper presents a regionalization methodology and an original representation of the downstream variation of daily streamflow using a conceptual rainfall-runoff model (HRM) and the 3D visualization tools of the GIS ArcView. The regionalization of the parameters of the HRM model was obtained by fitting simultaneously the runoff series from five sub-basins of the Alzette river basin (Grand-Duchy of Luxembourg) according to the permeability of geological formations. After validating the transposability of the regional parameter values on five test basins, streamflow series were simulated with the model at ungauged sites in one medium size geologically contrasted test basin and interpolated assuming a linear increase of streamflow between modelling points. 3D spatio-temporal cartography of mean annual and high raw and specific discharges are illustrated. During a severe flooding, the propagation of the flood waves in the different parts of the stream network shows an important contribution of sub-basins lying on impervious geological formations (direct runoff) compared with those including permeable geological formations which have a more contrasted hydrological response. The effect of spatial variability of rainfall is clearly perceptible.

  13. Raster Images of Geologic Maps of Middle Proterozoic Belt strata in parts of Benewah, Bonner, Kootenai and Shoshone Counties, Idaho and Lincoln, Mineral and Sanders Counties, Montana

    USGS Publications Warehouse

    Boleneus, David E.; Appelgate, Larry M.; Joseph, Nancy L.; Brandt, Theodore R.

    2001-01-01

    Geologic maps of the western part of the Belt Basin of western Montana and northern Idaho were converted into digital raster (TIFF image) format to facilitate their manipulation in geographic information systems. The 85-mile x 100-mile map area mostly contains rocks belonging to the lower and middle Belt Supergroup. The area is of interest as these Middle Proterozoic strata contain vein-type lead-zinc-silver deposits in the Coeur d?Alene Mining District in the St. Regis and Revett formations and strata-bound copper-silver deposits, such as the Troy mine, within the Revett Formation. The Prichard Formation is also prospective for strata-bound lead-zinc deposits because equivalent Belt strata in southern British Columbia, Canada host the Sullivan lead-zinc deposit. Map data converted to digital images include 13 geological maps at scales ranging from 1:48,000 to 1:12,000. Geologic map images produced from these maps by color scanning were registered to grid tick coverages in a Universal Transverse Mercator (North American Datum of 1927, zone 11) projection using ArcView Image Analysis. Geo-registering errors vary from 10 ft to 114 ft.

  14. Geologic hazards in the region of the Hurricane fault

    USGS Publications Warehouse

    Lund, W.R.

    1997-01-01

    Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is common in southwestern Utah where it has damaged roads, canal embankments, and water-retention structures. Several unexplained sinkholes near the town of Hurricane possibly are the result of collapse of subsurface volcanic features. Geologic formations associated with slope failures along or near the Hurricane fault include rocks of both Mesozoic and Tertiary age. Numerous landslides are present in these materials along the Hurricane Cliffs, and the Petrified Forest Member of the Chinle Formation is commonly associated with slope failures where it crops out in the St. George Basin. Steep slopes and numerous areas of exposed bedrock make rock fall a hazard in the St. George Basin. Debris flows and debris floods in narrow canyons and on alluvial fans often accompany intense summer cloudburst thunderstorms. Flooded basements and foundation problems associated with shallow ground water are common on benches north of the Santa Clara River in the city of Santa Clara. Stream flooding is the most frequently occurring and destructive geologic hazard in southwestern Utah. Since the 1850s, there have been three major riverine (regional) floods and more than 300 damaging flash floods. Although a variety of flood control measures have been implemented, continued rapid growth in the region is again increasing vulnerability to flood hazards. Site-specific studies to evaluate geologic hazards and identify hazard-reduction measures are recommended prior to construction to reduce the need for costly repair, maintenance, or replacement of improperly placed or protected facilities.

  15. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    NASA Astrophysics Data System (ADS)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled vocabularies and concepts derived from NASA SWEET ontology (3) (4) (5). At the state of the art the GeoPiemonte Map informative system is thus suitable for integration in trans-national Data Infrastructures and/or WebMap Services that require interoperability and harmonised semantic approaches. References (1)http://www.geosciml.org/geosciml/4.0/documentation/html/ - GeoSciML Data Model - (2)http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0.pdf - INSPIRE DS Technical Guidelines (3)http://resource.geosciml.org/vocabulary/cgi/201211/simplelithology.html (4)http://resource.geosciml.org/vocabulary/cgi/ - CGI GTWG controlled vocabularies repository (5) SWEET (Semantic Web for Earth and Environmental Terminology), http://www.sweet.jpl.nasa.govAppel Piana et al., 2017a. Geology of Piemonte Region (NW Italy, Alps-Apennines junction zone). Journal of Maps, in press. Piana et al., 2017b. The Geodatabase of the Piemonte Geological Map: conceptual design for knowledge encoding. ROL Soc. Geol. It., in press.

  16. The importance of geological data and derived information in seismic response assessment for urban sites. An example from the Island of Crete, Greece

    NASA Astrophysics Data System (ADS)

    Tsangaratos, Paraskevas; Loupasakis, Constantinos; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonios; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Nikos; Sarris, Apostolos

    2015-04-01

    The magnitude, frequency content and duration of an earthquake ground motion depends mainly on the surrounding geological, tectonic and geomorphological conditions. Numerous reports have been contacted illustrating the necessity of providing accurate geological information in order to estimate the level of seismic hazard. In this context, geological information is the outcome of processing primary, raw field data and geotechnical investigation data that are non - organized and associated with the geological model of the study area. In most cases, the geological information is provided as an advance element, a key component of the "function" that solves any geo-environmental problem and is primarily reflected on analogue or digital maps. The main objective of the present study is to illustrate the importance of accurate geological information in the thirteen (13) selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island, in order to estimate the seismic action according to Eurocode (EC8). As an example the detailed geological-geotechnical map of the area around HAN site in Rethymno city, Crete is presented. The research area covers a 250m radius surrounding the RTHE HAN-station at a scale of 1: 2000 with detail description of the geological and geotechnical characteristics of the formations as well as the tectonic features (cracks, upthrust, thrust, etc) of the rock mass. The field survey showed that the RTHE station is founded over limestones and dolomites formations. The formations exhibit very good geomechanical behaviour; however they present extensive fragmentation and karstification. At this particular site the identification of a fault nearby the station proved to be significant information for the geophysical research as the location and orientation of the tectonic setting provided new perspective on the models of seismic wave prorogation. So, the geological data and the induced information along with the tectonic structure of the area, revealed variations that could alter the seismic wave prorogation models as well as the ground type/soil category of the foundation formations. In conclusion, the produced geological-geotechnical maps are the main mean of communication and flow of geological information between different scientific disciplines providing the bases for defining the ground type at each HAN site and calibrating the corresponding code prescribed spectra. This study is part of the on-going project that has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

  17. Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30)

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Berman, D. C.; Petro, N. E.

    2010-01-01

    In this study we use recent image, spectral and topographic data to map the geology of the lunar South Pole quadrangle (LQ-30) at 1:2.5M scale [1-7]. The overall objective of this research is to constrain the geologic evolution of LQ-30 (60 -90 S, 0 - 180 ) with specific emphasis on evaluation of a) the regional effects of impact basin formation, and b) the spatial distribution of ejecta, in particular resulting from formation of the South Pole-Aitken (SPA) basin and other large basins. Key scientific objectives include: 1) Determining the geologic history of LQ-30 and examining the spatial and temporal variability of geologic processes within the map area. 2) Constraining the distribution of impact-generated materials, and determining the timing and effects of major basin-forming impacts on crustal structure and stratigraphy in the map area. And 3) assessing the distribution of potential resources (e.g., H, Fe, Th) and their relationships with surface materials.

  18. The application of geologic remote sensing to vertebrate biostratigraphy - General results from the Wind River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Stucky, Richard K.; Krishtalka, Leonard

    1991-01-01

    Since 1986, remote sensing images derived from satellite and aircraft-borne sensor data have been used to study the stratigraphy and sedimentology of the vertebrate-bearing Wind River and Wagon Bed formations in the Wind River Basin (Wyoming). Landsat 5 TM and aircraft Thermal Infrared Multispectral Scanner data were combined with conventional geologic analyses. The remote sensing data have contributed significantly to: (1) geologic mapping at the formation, member, and bed levels; (2) stratigraphic correlation; (3) reconstruction of ancient depositional environments; and (4) identification of structural complexity. This information is critical to vertebrate paleontology in providing the stratigraphic, sedimentologic, and structural framework required for evolutionary and paleoecologic studies. Of primary importance is the ability to map at minimal cost the geology of large areas (20,000 sq km or greater) at a high level of precision. Remote sensing data can be especially useful in geologically and paleontologically unexplored or poorly understood regions.

  19. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2010-01-01

    Topics covered include: Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury; The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2); Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus; Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report; Geologic Mapping of V-19; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Comparison of Mapping Tessera Terrain in the Phoebe Regio (V-41) and Tellus Tessera (V-10) Quadrangles; Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus; Geologic Mapping of the Aristarchus Plateau Region on the Moon; Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30); The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle; Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282; Geologic Mapping of the Mawrth Vallis Region, Mars: MTM Quadrangles 25022, 25017, 25012, 20022, 20017, and 20012; Evidence for an Ancient Buried Landscape on the NW Rim of Hellas Basin, Mars; New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data; Geologic Mapping in the Hesperia Planum Region of Mars; Geologic Mapping of the Meridiani Region of Mars; Geologic Mapping in Southern Margaritifer Terra; Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars; The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars; Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches; Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan; Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming; Progress in the Scandia Region Geologic Map of Mars; Geomorphic Mapping of MTMS -20022 and -20017; Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus; Volcanism on Io: Results from Global Geologic Mapping; Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions; and Planetary Geologic Mapping Handbook - 2010.

  20. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  1. Coupled Hydro-Mechanical Modeling of Fluid Geological Storage

    NASA Astrophysics Data System (ADS)

    Castelletto, N.; Garipov, T.; Tchelepi, H. A.

    2013-12-01

    The accurate modeling of the complex coupled physical processes occurring during the injection and the post-injection period is a key factor for assessing the safety and the feasibility of anthropogenic carbon dioxide (CO2) sequestration in subsurface formations. In recent years, it has become widely accepted the importance of the coupling between fluid flow and geomechanical response in constraining the sustainable pressure buildup caused by fluid injection relative to the caprock sealing capacity, induced seismicity effects and ground surface stability [e.g., Rutqvist, 2012; Castelletto et al., 2013]. Here, we present a modeling approach based on a suitable combination of Finite Volumes (FVs) and Finite Elements (FEs) to solve the coupled system of partial differential equations governing the multiphase flow in a deformable porous medium. Specifically, a FV method is used for the flow problem while the FE method is adopted to address the poro-elasto-plasticity equations. The aim of the present work is to compare the performance and the robustness of unconditionally stable sequential-implicit schemes [Kim et al., 2011] and the fully-implicit method in solving the algebraic systems arising from the discretization of the governing equations, for both normally conditioned and severely ill-conditioned problems. The two approaches are tested against well-known analytical solutions and experimented with in a realistic application of CO2 injection in a synthetic aquifer. References: - Castelletto N., G. Gambolati, and P. Teatini (2013), Geological CO2 sequestration in multi-compartment reservoirs: Geomechanical challenges, J. Geophys. Res. Solid Earth, 118, 2417-2428, doi:10.1002/jgrb.50180. - Kim J., H. A. Tchelepi, and R. Juanes (2011), Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16(2), 249-262. - Rutqvist J. (2012), The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng., 30, 525-551.

  2. Modeling CO2 distribution in a heterogeneous sandstone reservoir: the Johansen Formation, northern North Sea

    NASA Astrophysics Data System (ADS)

    Sundal, Anja; Miri, Rohaldin; Petter Nystuen, Johan; Dypvik, Henning; Aagaard, Per

    2013-04-01

    The last few years there has been broad attention towards finding permanent storage options for CO2. The Norwegian continental margin holds great potential for storage in saline aquifers. Common for many of these reservoir candidates, however, is that geological data are sparse relative to thoroughly mapped hydrocarbon reservoirs in the region. Scenario modeling provides a method for estimating reservoir performances for potential CO2 storage sites and for testing injection strategies. This approach is particularly useful in the evaluation of uncertainties related to reservoir properties and geometry. In this study we have tested the effect of geological heterogeneities in the Johansen Formation, which is a laterally extensive sandstone and saline aquifer at burial depths of 2 - 4 km, proposed as a suitable candidate for CO2 storage by Norwegian authorities. The central parts of the Johansen Formation are underlying the operating hydrocarbon field Troll. In order not to interfere with ongoing gas production, a potential CO2 injection well should be located at a safe distance from the gas reservoir, which consequently implies areas presently without well control. From 3D seismic data, prediction of spatial extent of sandstone is possible to a certain degree, whereas intra-reservoir flow baffles such as draping mudstone beds and calcite cemented layers are below seismic resolution. The number and lateral extent of flow baffles, as well as porosity- and permeability distributions are dependent of sedimentary facies and diagenesis. The interpretation of depositional environment and burial history is thus of crucial importance. A suite of scenario models was established for a potential injection area south of the Troll field. The model grids where made in Petrel based on our interpretations of seismic data, wire line logs, core and cuttings samples. Using Eclipse 300 the distribution of CO2 is modeled for different geological settings; with and without the presence of pervasive low permeability draping mudstone layers, and with varying lateral extent of potential calcite cemented layers in 8 to 15 intra-reservoir depth levels. The modeled area covers 10 x 15.8 km, with a thickness of 110 m at the injection point. Simulations were run with an injection phase of 30 years plus 100 years of migration. The presence of meso-scale flow baffles causes a reduction in vertical permeability in addition to the facies related variation on the micro-scale. Scenarios including potential flow baffles as separate layers in the model grids were compared to scenarios in which the effect of flow baffles were included using harmonic mean average of vertical permeability. The subsequent differences in CO2 distribution are important in estimating the contact area between the plume front and reservoir brine. A heterogeneous reservoir with internal flow baffles is not necessarily a disadvantage as long as sufficient injectivity is maintained within individual sandstone bodies. In each scenario we aim to adapt a suitable injection strategy with respect to utilizing local effects such as the delimitation of gravitational flow, in order to increase reservoir sweep and maximize the effect of trapping mechanisms (i.e. residual, stratigraphic, mineral and dissolution).

  3. Petroleum geology of Choctaw County, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, J.D.

    The first commercial oil production in the State of Alabama was established in Choctaw County in 1944 when H.L. Hunt discovered Gilbertown field. Gilbertown produces oil from the Selma and Eutaw formations of Upper Cretaceous Age. During 1967, Toxey field was discovered by E.L. Erickson and Choctaw Ridge was discovered by C. Pruet and D. Hughes. These 2 discoveries initiated the successful Smackover oil exploration in Choctaw County which is continuing today. This study deals primarily with the petroleum geology of the Smackover Formation of Jurassic Age. The detailed stratigraphic and structural geology of several Smackover oil fields in Choctawmore » County is examined to illustrate geological concepts developed while exploring the Smackover. Factors influencing porosity development are emphasized and suggestions are made for future exploration in the Choctaw trend of Alabama.« less

  4. Advanced Land Observing Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) mosaic for the Kahiltna terrane, Alaska, 2007-2010

    USGS Publications Warehouse

    Cole, Christopher J.; Johnson, Michaela R.; Graham, Garth E.

    2015-01-01

    The USGS has compiled a continuous, cloud-free 12.5-meter resolution radar mosaic of SAR data of approximately 212,000 square kilometers to examine the suitability of this technology for geologic mapping. This mosaic was created from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data collected from 2007 to 2010 spanning the Kahiltna terrane and the surrounding area. Interpretation of these data may help geologists understand past geologic processes and identify areas with potential for near-surface mineral resources for further ground-based geological and geochemical investigations.

  5. A majorized Newton-CG augmented Lagrangian-based finite element method for 3D restoration of geological models

    NASA Astrophysics Data System (ADS)

    Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia

    2016-04-01

    In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.

  6. Bedrock geologic map of the Miles Pond and Concord quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire

    USGS Publications Warehouse

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Miles Pond and Concord quadrangles covers an area of approximately 107 square miles (276 square kilometers) in east-central Vermont and adjacent New Hampshire, north of and along the Connecticut River. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. The majority of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Silurian sedimentary, volcanic, and plutonic rocks. A major feature on the map is the Monroe fault, interpreted to be a west-directed, steeply dipping Late Devonian (Acadian) thrust fault. To the west of the Monroe fault, rocks of the Connecticut Valley-Gaspé trough dominate and consist primarily of metamorphosed Silurian and Devonian sedimentary rocks. To the north, the Victory pluton intrudes the Bronson Hill anticlinorium. The Bronson Hill anticlinorium consists of the metamorphosed Albee Formation, the Ammonoosuc Volcanics, the Comerford Intrusive Complex, the Highlandcroft Granodiorite, and the Joselin Turn tonalite. The Albee Formation is an interlayered, feldspathic metasandstone and pelite that is locally sulfidic. Much of the deformed metasandstone is tectonically pinstriped. In places, one can see compositional layering that was transposed by a steeply southeast-dipping foliation. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of siltstone, phyllite, graywacke, and grit. The Comerford Intrusive Complex crops out east of the Monroe fault and consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes from the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics east of the Monroe fault. The Highlandcroft Granodiorite and Joslin Turn tonalite plutons intruded during the Middle to Late Ordovician.West of the Monroe fault, the Connecticut Valley-Gaspé trough consists of the Silurian and Devonian Waits River and Gile Mountain Formations. The Waits River Formation is a carbonaceous muscovite-biotite-quartz (±garnet) phyllite containing abundant beds of micaceous quartz-rich limestone. The Gile Mountain Formation consists of interlayered metasandstone and graphitic (and commonly sulfidic) slate, along with minor calcareous metasandstone and ironstone. Graded bedding is common in the Gile Mountain Formation. Rocks of the Devonian New Hampshire Plutonic Suite intruded as plutons, dikes, and sills. The largest of these is the Victory pluton, which consists of weakly foliated, biotite granite and granodiorite. The Victory pluton also intruded a large part of the Albee Formation to the north.This report consists of a geologic map and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The geologic map is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects.

  7. Database for Regional Geology, Phase 1: A Tool for Informing Regional Evaluations of Alternative Geologic Media and Decision Making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Frank Vinton; Kelley, Richard E.; Birdsell, Suzanne M.

    Reported is progress in the following areas: Phase 1 and 2 websites for the regional geology GIS database; terrane maps of crystalline basement rocks; inventory of shale formations in the US; and rock properties and in-situ conditions for shale estimated from sonic velocity measurements.

  8. Geologic map of the Horse Mountain Quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Perry, W.J.; Shroba, R.R.; Scott, R.B.; Maldonado, Florian

    2003-01-01

    New 1:24,000-scale geologic map of the Horse Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, summarizes available geologic information for the quadrangle. It provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Paleocene and early Eocene Wasatch Formation down through Ordovician and Cambrian units into Precambrian hornblende tonalite. The Wasatch Formation includes the Shire, Molina and Atwell Gulch Members which are mapped separately. The underlying Upper Cretaceous Mesaverde Group is subdivided into the Willams Fork and Iles Formations. The Cameo-Fairfield clinker zone within the Williams Fork Formation is mapped separately. The Iles Formation includes the Rollins Sandstone Member at the top, mapped separately, and the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale consists of four members, an upper member, the Niobrara Member, the Juana Lopez Member, and a lower member, undivided. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and Jurassic Entrada Sandstone are mapped separately. The Lower Jurassic and Upper Triassic Glen Canyon Sandstone is mapped with the Entrada in the Horse Mountain Quadrangle. The upper Triassic Chinle Formation and the Lower Permian and Triassic(?) State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is undivided. All the exposures of the Middle Pennsylvanian Eagle Valley Evaporite are diapiric, intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Lower and Middle Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group consists of the Dyer Dolomite and the underlying Parting Quartzite, undivided. Locally, the Lower Ordovician Manitou Formation is mapped separately beneath the Chaffee. Elsewhere, Ordovician through Cambrian units, the Manitou and Dotsero Formations, underlain by the Sawatch Quartzite, are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two are a complex of normal faults, the largest of which dips southward placing Chafee dolostone and Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side. Removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks and mass movement deposits consisting of a chaos of admixed Morrison and Dakota lithologies. The major geologic hazard in the area consists of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Abandoned coal mines are present along the north face of the Grand Hogback in the lower part of the Mesaverde Group

  9. 10 CFR 963.13 - Preclosure suitability evaluation method.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to evaluate whether the geologic repository is likely to comply with the applicable radiation... prevent or mitigate the effects of postulated Category 1 and 2 event sequences. The preclosure safety... prevent accidents. ...

  10. Assessment of undiscovered oil resources in the Bakken and Three Forks Formations, Williston Basin Province, Montana, North Dakota, and South Dakota, 2013

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2013-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered volumes of 7.4 billion barrels of oil, 6.7 trillion cubic feet of associated/dissolved natural gas, and 0.53 billion barrels of natural gas liquids in the Bakken and Three Forks Formations in the Williston Basin Province of Montana, North Dakota, and South Dakota.

  11. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho

    USGS Publications Warehouse

    Waddell, K.M.; Price, Don

    1972-01-01

    The United States Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Water Rights, began a reconnaissance in 1967 to obtain essential water-quality information for the Bear River basin. The reconnaissance was directed toward defining the chemical quality of the basin’s surface waters, including suitability for specific uses, geology, and general basin hydrology. Emphasis was given to those areas where water-development projects are proposed or being considered.

  12. Method for Controlling a Producing Zone of a Well in a Geological Formation

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Amini, B. Jon (Inventor)

    2005-01-01

    System and methods for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.

  13. Method for controlling a producing zone of a well in a geological formation

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Amini, B. Jon (Inventor)

    2005-01-01

    System and methods for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.

  14. Screening and ranking framework (SRF) for geologic CO2 storagesite selection on the basis of HSE risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.

    2006-11-27

    A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representingmore » expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.« less

  15. The digital geologic map of Colorado in ARC/INFO format, Part A. Documentation

    USGS Publications Warehouse

    Green, Gregory N.

    1992-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050

  16. Surficial geologic maps along the riparian zone of the Animas River and its headwater tributaries, Silverton to Durango, Colorado, with upper Animas River watershed gradient profiles

    USGS Publications Warehouse

    Blair, R.W.; Yager, D.B.; Church, S.E.

    2002-01-01

    This product consists of Adobe Acrobat .PDF format documents for 10 surficial geologic strip maps along the Animas River watershed from its major headwater tributaries, south to Durango, Colorado. The Animas River originates in the San Juan Mountains north of the historic mining town of Silverton, Colorado. The surficial geologic maps identify surficial deposits, such as flood-plain and terrace gravels, alluvial fans, glacial till, talus, colluvium, landslides, and bogs. Sixteen primary units were mapped that included human-related deposits and structures, eight alluvial, four colluvial, one glacial, travertine deposits, and undifferentiated bedrock. Each of the surficial geologic strip maps has .PDF links to surficial geology photographs, which enable the user to take a virtual tour of these deposits. Geochemical data collected from mapped surficial deposits that pre- and postdate mining activity have aided in determining the geochemical baseline in the watershed. Several photographs with their corresponding geochemical baseline profiles are accessible through .PDF links from several of the maps. A single coverage for all surficial deposits mapped is included as an ArcInfo shape file as an Arc Export format .e00 file. A gradient map for major headwater tributary streams to the Animas River is also included. The gradient map has stream segments that are color-coded based on relative variations in slope and .PDF format links to each stream gradient profile. Stream gradients were derived from U.S. Geological Survey 10-m digital elevation model data. This project was accomplished in support of the U.S. Geological Survey's Abandoned Mine Lands Initiative in the San Juan Mountains, Colorado.

  17. The digital geologic map of Colorado in ARC/INFO format, Part B. Common files

    USGS Publications Warehouse

    Green, Gregory N.

    1992-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050

  18. Past Peatland Distribution as an Indicator of Hydroclimate and Temperature

    NASA Astrophysics Data System (ADS)

    Treat, C. C.; Jones, M.; Lacourse, T.; Payne, R.; Peteet, D. M.; Sannel, B.; Stelling, J.; Talbot, J.; Williams, C. J.; Kleinen, T.; Grosse, G.; Yu, Z.; Finkelstein, S. A.; Broothaerts, N.; Dommain, R.; Kuhry, P.; Lähteenoja, O.; Dalton, A.; Notebaert, B.; Swindles, G. T.; Tarnocai, C.; Verstraeten, G.; Xia, Z.; Brovkin, V.

    2016-12-01

    Peatlands, wetlands with > 30 cm of organic sediment, cover more than 3 x 106 km2 of the earth surface and have been accumulating carbon and sediments throughout the Holocene. The location of peatland formation and accumulation has been dynamic over time, as peat formation in areas like Alaska and the West Siberian Lowlands preceded peat formation in Fennoscandia and Eastern North America due to more favorable climate for peat formation. Using the geographic distribution of peatlands in the past can indicate general climatic conditions, including hydroclimate, given that the underlying geology is well understood. Peatlands form under a variety of climatic conditions and landscape positions but do not persist under arid conditions, instead requiring either humid conditions or cold temperatures. However, peatlands may have existed in the past in areas not currently suitable for peatland formation and persistence, but where peats can be found at depth within the sediment column. Here we map the locations of histic paleosols, relict peat, and buried peats since the Last Glacial Maximum using a compilation of sites from previous studies. We compare these records of past peatland distribution to present-day peatland distribution. We evaluate regional differences in timing of peatland development in these buried peatlands to the development of extant peatlands. Finally, we compare the timing of past peatland extent to the to modeled paleoclimate during the Quaternary. In addition to implications for paleoclimate, these past peatlands are not well accounted for in present-day soil carbon stocks but could be an important component of deep soil carbon pools.

  19. Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado

    NASA Astrophysics Data System (ADS)

    Mejía-Navarro, Mario; Wohl, Ellen E.; Oaks, Sherry D.

    1994-08-01

    Glenwood Springs, Colorado, lies at the junction of the Roaring Fork and Colorado Rivers, surrounded by the steep peaks of the Colorado Rocky Mountains. Large parts of the region have had intensive sheet erosion, debris flows, and hyperconcentrated floods triggered by landslides and slumps. The latter come from unstable slopes in the many tributary channels on the mountainsides, causing concentration of debris in channels and a large accumulation of sediment in colluvial wedges and debris fans that line the river valleys. Many of the landslide and debris-flow deposits exist in a state resembling suspended animation, ready to be destabilized by intense precipitation and/or seismic activity. During this century urban development in the Roaring Fork River valley has increased rapidly. The city of Glenwood Springs continues to expand over unstable debris fans without any construction of hazard mitigation structures. Since 1900, Glenwood Springs has had at least 21 damaging debris flows and floods; on July 24, 1977 a heavy thunderstorm spread a debris flow over more than 80 ha of the city. This paper presents a method that uses Geographic Information Systems (GIS) to assess geological hazards, vulnerability, and risk in the Glenwood Springs area. The hazards evaluated include subsidence, rockfall, debris flows, and floods, and in this paper we focus on debris flows and subsidence. Information on topography, hydrology, precipitation, geomorphic processes, bedrock and surficial geology, structural geology, soils, vegetation, and land use, was processed for hazard assessment using a series of algorithms. ARC/INFO and GRASS GIS softwares were used to produce maps and tables in a format accessible to urban planners. After geological hazards were defined for the study area, we estimated the vulnerability ( Ve) of various elements for an event of intensity i. Risk is assessed as a function of hazard and vulnerability. We categorized the study area in 14 classes for planning procedures; 7 classes defined as areas suitable for human settlement, and 7 classes defined as unsuitable for building, and most effectively reserved for parks and forests.

  20. The IRHUM database - bioavailable strontium isotope ratios of France for geochemical fingerprinting

    NASA Astrophysics Data System (ADS)

    Willmes, Malte; Moffat, Ian; Grün, Rainer; Armstrong, Richard; Kinsley, Les; McMorrow, Linda

    2013-04-01

    Strontium isotope ratios (87Sr/86Sr) are used as a geochemical tracer in a wide range of fields including archaeology, ecology, soil, food and forensic sciences. These applications are based on the principle that strontium isotopic ratios of materials reflect the geological sources of the strontium, which were available during its formation. Geologic regions with distinct strontium isotope ranges, which depend on their age and composition, can be differentiated. A major constraint for current studies is the lack of robust reference maps to evaluate the strontium isotope ratios measured in the samples. The aim of the IRHUM (isotopic reconstruction of human migration) database is to provide a reference map of bioavailable strontium isotope ratios for continental France. The current dataset contains 400 sample locations covering the major geologic units of the Paris and Aquitaine Basin, the Massif Central, and the Pyrenees. At each site soil and plant samples have been collected to cover the whole range of strontium ratios at a specific location. The database is available online at www.rses.anu.edu.au/research-areas/archaeogeochemistry and contains the bioavailable strontium isotope data as well as major and trace element concentrations for soil and plant samples. Strontium isotopes were analysed using a Neptune multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) and elemental concentrations with a Varian Vista Pro Axial ICP-AES (inductively-coupled plasma atomic emission spectrometer). In addition, IRHUM provides spatial context for each sample, including background geology, field observations and soil descriptions. This metadata allows users to evaluate the suitability of a specific data point for their study. The IRHUM database fills an important gap between high resolution studies from specific sites (e.g. archaeological sites), to the very broad geochemical mapping of Europe. Thus it provides an excellent tool to evaluate the regional context of a sample and complement more closed spaced studies. New results will be added to the database continuously with the aim of covering all major geologic units of France within the next year.

  1. Hydrogeologic framework and hydrologic conditions of the Piney Point aquifer in Virginia

    USGS Publications Warehouse

    McFarland, E. Randolph

    2017-06-07

    The Piney Point aquifer in Virginia is newly described and delineated as being composed of six geologic units, in a study conducted by the U.S. Geological Survey in cooperation with the Virginia Department of Environmental Quality (VA DEQ). The eastward-dipping geologic units include, in stratigraphically ascending order, thesand of the Nanjemoy Formation Woodstock Member,interbedded limestone and sand of the Piney Point Formation,silty and clayey sand of the Gosport Formation equivalent sediments,silty sand of the Oligocene-age sediments,silty fine-grained sand of the Old Church Formation, andsilty sand of the Calvert Formation, Newport News unit and basal Plum Point Member.Identification of geologic units is based on typical sediment lithologies of geologic formations. Fine-grained sediments that compose confining units positioned immediately above and below the Piney Point aquifer are also described.The Piney Point aquifer is one of several confined aquifers within the Virginia Coastal Plain and includes a highly porous and solution-channeled indurated limestone within the Piney Point Formation from which withdrawals are made. The limestone is relatively continuous laterally across central parts of the Northern Neck, Middle Peninsula, and York-James Peninsula. Other geologic units are of variable extent. The configurations of most of the geologic units are further affected by newly identified faults that are aligned radially from the Chesapeake Bay impact crater and create constrictions or barriers to groundwater flow. Some geologic units are also truncated beneath the lower Rappahannock River by a resurge channel associated with the impact crater.Groundwater withdrawals from the Piney Point aquifer increased from approximately 1 million gallons per day (Mgal/d) during 1900 to 7.35 Mgal/d during 2004. As a result, a water-level cone of depression in James City and northern York Counties was estimated to be as low as 70 feet (ft) below the National Geodetic Vertical Datum of 1929 (NGVD 29) by 2005. Withdrawals decreased to 5.01 Mgal/d by 2009 as withdrawals were shifted toward other sources, and by 2015 water levels had recovered to approximately 50 ft below NGVD 29.The mean estimated transmissivity of the Piney Point aquifer in York and James City Counties is 16,300 feet squared per day (ft2/d), but farther north it is only 925 ft2/d. The mean well specific capacity in York and James City Counties is 11.4 gallons per minute per foot (gal/min/ft). Farther north in Virginia, mean specific capacity is only 2.26 gal/min/ft, and in Maryland it is 0.99 gal/min/ft. The northward decrease in specific capacity probably reflects the northward decrease in transmissivity, which results from poor development of the solution-channeled limestone.An aquifer test in northern York County induced vertical leakage to the solution-channeled limestone from overlying silty sand and a change in response of the aquifer to pumping from a single layer to two layers. Transmissivity of the limestone of approximately 19,800 ft2/d was distinguished from the silty sand of approximately 2,500 ft2/d.Most of the water in the Piney Point aquifer is slightly alkaline with moderate concentrations primarily of sodium and bicarbonate that are slightly undersaturated with respect to calcite. Iron concentrations are generally less than 0.3 milligrams per liter (mg/L). Mixing of freshwater with seawater has elevated chloride concentrations to the southeast to as much as 7,120 mg/L.Information on the Piney Point aquifer can benefit water-resource management in siting production wells, predicting likely well yield, and anticipating water-level response to withdrawals. Models that vertically discretize individual geologic units can potentially be used to evaluate groundwater flow in greater detail by representing lateral flow and vertical leakage among the geologic units.Because groundwater withdrawals are made primarily from the limestone and sand of the Piney Point Formation, the VA DEQ has considered regarding the limestone and sand singly as a regulated aquifer apart from the other geologic units. Under current policy in Virginia, if only the limestone and sand were regarded as a regulated aquifer, a greater amount of drawdown would be allowed than is allowed for the Piney Point aquifer consisting of six geologic units. Some production wells intercept multiple geologic units, and the units can undergo water-level decline and vertical leakage induced by pumping from the limestone and sand. Whether the other geologic units are to be regarded as regulated aquifers is an additional consideration for the VA DEQ.

  2. Geological implications and controls on the determination of water saturation in shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Hartigan, David; Lovell, Mike; Davies, Sarah

    2014-05-01

    A significant challenge to the petrophysical evaluation of shale gas systems can be attributed to the conductivity behaviour of clay minerals and entrained clay bound waters. This is compounded by centimetre to sub-millimetre vertical and lateral heterogeneity in formation composition and structure. Where despite significant variation in formation geological and therefore petrophysical properties, we routinely rely on conventional resistivity methods for the determination of water saturation (Sw), and hence the free gas saturation (Sg) in gas bearing mudstones. The application of resistivity based methods is the subject of continuing debate, and there is often significant uncertainty in both how they are applied and the saturation estimates they produce. This is partly a consequence of the view that "the quantification of the behaviour of shale conductivity....has only limited geological significance" (Rider 1986). As a result, there is a separation between our geological understanding of shale gas systems and the petrophysical rational and methods employed to evaluate them. In response to this uncertainty, many petrophysicists are moving away from the use of more complex 'shaly-sand' based evaluation techniques and returning to traditional Archie methods for answers. The Archie equation requires various parameter inputs such as porosity and saturation exponents (m and n), as well as values for connate fluid resistivity (Rw). Many of these parameters are difficult to determine in shale gas systems, where obtaining a water sample, or carrying out laboratory experiments on recovered core is often technically impractical. Here we assess the geological implications and controls on variations in pseudo Archie parameters across two geological formations, using well data spanning multiple basinal settings for a prominent shale gas play in the northern Gulf of Mexico basin. The results, of numerical analysis and systematic modification of parameter values to minimise the error between core derived Sw (Dean Stark analysis) and computed Sw, links sample structure with composition, highlighting some unanticipated impacts of clay minerals on the effective bulk fluid resistivity (Rwe) and thus formation resistivity (Rt). In addition, it highlights simple corrective empirical adaptations that can significantly reduce the error in Sw estimation for some wells. Observed results hint at the possibility of developing a predictive capability in selecting Archie parameter values based on geological facies association and log composition indicators (i.e. V Clay), establishing a link between formation depositional systems and their petrophysical properties in gas bearing mudstones. Rider, M.H., 1986. The Geological Interpretation of Well Logs, Blackie.

  3. Barcelona Rocks, a mobile app to learn geology in your city

    NASA Astrophysics Data System (ADS)

    Geyer, Adelina; Cabrera, Lluis; Alias, Gemma; Aulinas, Meritxell; Becerra, Margarita; Casadellà, Jordi; Clotet, Roger; Delclós, Xavier; Fernández-Turiel, José-Luis; Tarragó, Marta; Travé, Anna

    2016-04-01

    Barcelona Rocks is an application for personal mobile devices suitable for secondary and high school students as well as the general public without a solid background in Earth Sciences. The main objective of this app is to teach Geology using as learning resource our city façades and pavements. Additionally, Barcelona Rocks provides a short explanation about the significance of the appearance of the different rock types at the different historical periods of the city. Although it has been designed as a playful learning resource for secondary school students, the level of knowledge also allows bringing some basic concepts and principles of Earth Sciences to the general public, irrespective of age. This app is intended to provide the degree of interactivity and entertainment required by the different individual users and aims to: (i) Explain the techniques and experiments that allow the user to identify the different rocks, as well as their genesis. (ii) Introduce geology to the youngest users in a more attractive and entertaining way, providing also some information regarding the use of the different ornamental rocks during the different historical periods of the city: roman, medieval, etc. (iii) Provide historical and architectural information of the selected buildings in order to improve the city's historical architectural knowledge of the users. (iv) Show the non-expert public the importance of their country's geology. (v) Develop of outreach and dissemination resources taking advantage of the versatile and potent mobile application format using also the content as support material for science courses, seminars, or social learning events. (vi) Encourage new generations of Earth Scientists (vii) Promote science and scientific culture of the society, integrating culture and innovation as essential for the emergence of new scientific and technological vocations, promoting critical thinking, understanding of the scientific method and the social interest in science, technology and innovation.

  4. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

  5. Modeling an exhumed basin: A method for estimating eroded overburden

    USGS Publications Warehouse

    Poelchau, H.S.

    2001-01-01

    The Alberta Deep Basin in western Canada has undergone a large amount of erosion following deep burial in the Eocene. Basin modeling and simulation of burial and temperature history require estimates of maximum overburden for each gridpoint in the basin model. Erosion can be estimated using shale compaction trends. For instance, the widely used Magara method attempts to establish a sonic log gradient for shales and uses the extrapolation to a theoretical uncompacted shale value as a first indication of overcompaction and estimation of the amount of erosion. Because such gradients are difficult to establish in many wells, an extension of this method was devised to help map erosion over a large area. Sonic A; values of one suitable shale formation are calibrated with maximum depth of burial estimates from sonic log extrapolation for several wells. This resulting regression equation then can be used to estimate and map maximum depth of burial or amount of erosion for all wells in which this formation has been logged. The example from the Alberta Deep Basin shows that the magnitude of erosion calculated by this method is conservative and comparable to independent estimates using vitrinite reflectance gradient methods. ?? 2001 International Association for Mathematical Geology.

  6. The Surface of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Head, J. W.

    2018-03-01

    This chapter reviews the conditions under which the basic landforms of Venus formed, interprets their nature, and analyzes their local, regional, and global age relationships. The strong greenhouse effect on Venus causes hyper-dry, almost stagnant near-surface environments. These conditions preclude water-driven, and suppress wind-related, geological processes; thus, the common Earth-like water-generated geological record of sedimentary materials does not currently form on Venus. Three geological processes are important on the planet: volcanism, tectonics, and impact cratering. The small number of impact craters on Venus ( 1,000) indicates that their contribution to resurfacing is minor. Volcanism and tectonics are the principal geological processes operating on Venus during its observable geologic history. Landforms of the volcanic and tectonic nature have specific morphologies, which indicate different modes of formation, and their relationships permit one to establish their relative ages. Analysis of these relationships at the global scale reveals that three distinct regimes of resurfacing comprise the observable geologic history of Venus: (1) the global tectonic regime, (2) the global volcanic regime, and (3) the network rifting-volcanism regime. During the earlier global tectonic regime, tectonic resurfacing dominated. Tectonic deformation at this time caused formation of strongly tectonized terrains such as tessera, and deformational belts. Exposures of these units comprise 20% of the surface of Venus. The apparent beginning of the global tectonic regime is related to the formation of tessera, which is among the oldest units on Venus. The age relationships among the tessera structures indicate that this terrain is the result of crustal shortening. During the global volcanic regime, volcanism overwhelmed tectonic activity and caused formation of vast volcanic plains that compose 60% of the surface of Venus. The plains show a clear stratigraphic sequence from older shield plains to younger regional plains. The distinctly different morphologies of the plains indicate different volcanic formation styles ranging from eruption through broadly distributed local sources of shield plains to the volcanic flooding of regional plains. The density of impact craters on units of the tectonic and volcanic regimes suggests that these regimes characterized about the first one-third of the visible geologic history of Venus. During this time, 80%–85% of the surface of the planet was renovated. The network rifting-volcanism regime characterized the last two-thirds of the visible geologic history of Venus. The major components of the regime include broadly synchronous lobate plains and rift zones. Although the network rifting-volcanism regime characterized 2/3 of the visible geologic history of Venus, only 15%–20% of the surface was resurfaced during this time. This means that the level of endogenous activity during this time has dropped by about an order of magnitude compared with the earlier regimes.

  7. Internet-based information system of digital geological data providing

    NASA Astrophysics Data System (ADS)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.

  8. Geology of an area near Brentwood, Williamson County, Tennessee

    USGS Publications Warehouse

    Hanchar, D.W.

    1988-01-01

    The geology and structure of an area near Brentwood, Williamson County, Tennessee, were studied to define the potential aquifers and confining units that comprise the groundwater flow system of the area. Four different formations were identified. These formations are, in descending order, the Bigby-Cannon Limestone, the Hermitage Formation, the Carters Limestone, and the Lebanon Limestone. The Bigby-Cannon Limestone and the Hermitage Formation have been affected by recent erosion. Any variation of the Carters Limestone is controlled by pre-Carters erosion of the top of the Lebanon Limestone. The thickness of this formation ranges from 65 to 79 ft. A small scale anticline-syncline pair is evident. This structure is not a result of erosion and also occurs in the T-3 bentonite bed in the Carters Limestone. (USGS)

  9. Application of geologic-mathematical 3D modeling for complex structure deposits by the example of Lower- Cretaceous period depositions in Western Ust - Balykh oil field (Khanty-Mansiysk Autonomous District)

    NASA Astrophysics Data System (ADS)

    Perevertailo, T.; Nedolivko, N.; Prisyazhnyuk, O.; Dolgaya, T.

    2015-11-01

    The complex structure of the Lower-Cretaceous formation by the example of the reservoir BC101 in Western Ust - Balykh Oil Field (Khanty-Mansiysk Autonomous District) has been studied. Reservoir range relationships have been identified. 3D geologic- mathematical modeling technique considering the heterogeneity and variability of a natural reservoir structure has been suggested. To improve the deposit geological structure integrity methods of mathematical statistics were applied, which, in its turn, made it possible to obtain equal probability models with similar input data and to consider the formation conditions of reservoir rocks and cap rocks.

  10. Adaptive management for subsurface pressure and plume control in application to geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.

    2016-12-01

    Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.

  11. Publications - PR 121 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    : Download below or please see our publication sales page for more information. Quadrangle(s): Philip Smith Philip Smith Mountains: Surficial Geology Data File Format File Size Info Download psm-surficial-geo

  12. Publications - RI 2001-1C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    map of the Chulitna region, southcentral Alaska, scale 1:63,360 (7.5 M) Digital Geospatial Data Digital Geospatial Data Chulitna region surficial geology Data File Format File Size Info Download

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leetaru, Hannes

    This report describes a process and provides seed information for identifying and evaluating risks pertinent to a hypothetical carbon dioxide (CO{sub 2}) capture and sequestration (CCS) project. In the envisioned project, the target sequestration reservoir rock is the Potosi Formation of the Knox Supergroup. The Potosi is identified as a potential target formation because (1) at least locally, it contains vuggy to cavernous layers that have very high porosity, and (2) it is present in areas where the deeper Mt. Simon Sandstone (a known potential reservoir unit) is absent or nonporous. The key report content is discussed in Section 3.3,more » which describes two lists of Features, Events, and Processes (FEPs) that should be considered during the design stage of such a project. These lists primarily highlight risk elements particular to the establishment of the Potosi as the target formation in general. The lists are consciously incomplete with respect to risk elements that would be relevant for essentially all CCS projects regardless of location or geology. In addition, other risk elements specific to a particular future project site would have to be identified. Sources for the FEPs and scenarios listed here include the iconic Quintessa FEPs list developed for the International Energy Agency Greenhouse Gas (IEAGHG) Programme; previous risk evaluation projects executed by Schlumberger Carbon Services; and new input solicited from experts currently working on aspects of CCS in the Knox geology. The projects used as sources of risk information are primarily those that have targeted carbonate reservoir rocks similar in age, stratigraphy, and mineralogy to the Knox-Potosi. Risks of using the Potosi Formation as the target sequestration reservoir for a CCS project include uncertainties about the levels of porosity and permeability of that rock unit; the lateral consistency and continuity of those properties; and the ability of the project team to identify suitable (i.e., persistently porous and permeable) injection depths within the overall formation. Less direct implications include the vertical position of the Potosi within the rock column and the absence of a laterally extensive shale caprock immediately overlying the Potosi. Based on modeling work done partly in association with this risk report, risks that should also be evaluated include the ability of available methods to predict and track the development of a CO{sub 2} plume as it migrates away from the injection point(s). The geologic and hydrodynamic uncertainties present risks that are compounded at the stage of acquiring necessary drilling and injection permits. It is anticipated that, in the future, a regional geologic study or CO{sub 2}-emitter request may identify a small specific area as a prospective CCS project site. At that point, the FEPs lists provided in this report should be evaluated by experts for their relative levels of risk. A procedure for this evaluation is provided. The higher-risk FEPs should then be used to write project-specific scenarios that may themselves be evaluated for risk. Then, actions to reduce and to manage risk can be described and undertaken. The FEPs lists provided as Appendix 2 should not be considered complete, as potentially the most important risks are ones that have not yet been thought of. But these lists are intended to include the most important risk elements pertinent to a Potosi-target CCS project, and they provide a good starting point for diligent risk identification, evaluation, and management.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnottavange-Telleen, Ken; Leetaru, Hannes

    This report describes a process and provides seed information for identifying and evaluating risks pertinent to a hypothetical carbon dioxide (CO2) capture and sequestration (CCS) project. In the envisioned project, the target sequestration reservoir rock is the Potosi Formation of the Knox Supergroup. The Potosi is identified as a potential target formation because (1) at least locally, it contains vuggy to cavernous layers that have very high porosity, and (2) it is present in areas where the deeper Mt. Simon Sandstone (a known potential reservoir unit) is absent or nonporous. The key report content is discussed in Section 3.3, whichmore » describes two lists of Features, Events, and Processes (FEPs) that should be considered during the design stage of such a project. These lists primarily highlight risk elements particular to the establishment of the Potosi as the target formation in general. The lists are consciously incomplete with respect to risk elements that would be relevant for essentially all CCS projects regardless of location or geology. In addition, other risk elements specific to a particular future project site would have to be identified. Sources for the FEPs and scenarios listed here include the iconic Quintessa FEPs list developed for the International Energy Agency Greenhouse Gas (IEAGHG) Programme; previous risk evaluation projects executed by Schlumberger Carbon Services; and new input solicited from experts currently working on aspects of CCS in the Knox geology. The projects used as sources of risk information are primarily those that have targeted carbonate reservoir rocks similar in age, stratigraphy, and mineralogy to the Knox-Potosi. Risks of using the Potosi Formation as the target sequestration reservoir for a CCS project include uncertainties about the levels of porosity and permeability of that rock unit; the lateral consistency and continuity of those properties; and the ability of the project team to identify suitable (i.e., persistently porous and permeable) injection depths within the overall formation. Less direct implications include the vertical position of the Potosi within the rock column and the absence of a laterally extensive shale caprock immediately overlying the Potosi. Based on modeling work done partly in association with this risk report, risks that should also be evaluated include the ability of available methods to predict and track the development of a CO2 plume as it migrates away from the injection point(s). The geologic and hydrodynamic uncertainties present risks that are compounded at the stage of acquiring necessary drilling and injection permits. It is anticipated that, in the future, a regional geologic study or CO2-emitter request may identify a small specific area as a prospective CCS project site. At that point, the FEPs lists provided in this report should be evaluated by experts for their relative levels of risk. A procedure for this evaluation is provided. The higher-risk FEPs should then be used to write project-specific scenarios that may themselves be evaluated for risk. Then, actions to reduce and to manage risk can be described and undertaken. The FEPs lists provided as Appendix 2 should not be considered complete, as potentially the most important risks are ones that have not yet been thought of. But these lists are intended to include the most important risk elements pertinent to a Potosi-target CCS project, and they provide a good starting point for diligent risk identification, evaluation, and management.« less

  15. Notes for Teachers on an Earth Science Excursion to the Sellicks Beach Area

    ERIC Educational Resources Information Center

    Reid, R.

    1977-01-01

    Describes approximately 15 hours of activities in the Sellicks Beach Area suitable for high school students interested in studying sedimentary and structural geology, geomorphology, and human land use patterns. (CP)

  16. Preliminary geologic map of the Elsinore 7.5' Quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Weber, F. Harold; Digital preparation: Alvarez, Rachel M.; Burns, Diane

    2003-01-01

    Open-File Report 03-281 contains a digital geologic map database of the Elsinore 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in els_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  17. Poromechanical behaviour of a surficial geological barrier during fluid injection into an underlying poroelastic storage formation

    PubMed Central

    Selvadurai, A. P. S.; Kim, Jueun

    2016-01-01

    A competent low permeability and chemically inert geological barrier is an essential component of any strategy for the deep geological disposal of fluidized hazardous material and greenhouse gases. While the processes of injection are important to the assessment of the sequestration potential of the storage formation, the performance of the caprock is important to the containment potential, which can be compromised by the development of cracks and other defects that might be activated during and after injection. This paper presents a mathematical modelling approach that can be used to assess the state of stress in a surficial caprock during injection of a fluid to the interior of a poroelastic storage formation. Important information related to time-dependent evolution of the stress state and displacements of the surficial caprock with injection rates, and the stress state in the storage formation can be obtained from the theoretical developments. Most importantly, numerical results illustrate the influence of poromechanics on the development of adverse stress states in the geological barrier. The results obtained from the mathematical analysis illustrate that the surface heave increases as the hydraulic conductivity of the caprock decreases, whereas the surface heave decreases as the shear modulus of the caprock increases. The results also illustrate the influence of poromechanics on the development of adverse stress states in the caprock. PMID:27118906

  18. Poromechanical behaviour of a surficial geological barrier during fluid injection into an underlying poroelastic storage formation.

    PubMed

    Selvadurai, A P S; Kim, Jueun

    2016-03-01

    A competent low permeability and chemically inert geological barrier is an essential component of any strategy for the deep geological disposal of fluidized hazardous material and greenhouse gases. While the processes of injection are important to the assessment of the sequestration potential of the storage formation, the performance of the caprock is important to the containment potential, which can be compromised by the development of cracks and other defects that might be activated during and after injection. This paper presents a mathematical modelling approach that can be used to assess the state of stress in a surficial caprock during injection of a fluid to the interior of a poroelastic storage formation. Important information related to time-dependent evolution of the stress state and displacements of the surficial caprock with injection rates, and the stress state in the storage formation can be obtained from the theoretical developments. Most importantly, numerical results illustrate the influence of poromechanics on the development of adverse stress states in the geological barrier. The results obtained from the mathematical analysis illustrate that the surface heave increases as the hydraulic conductivity of the caprock decreases, whereas the surface heave decreases as the shear modulus of the caprock increases. The results also illustrate the influence of poromechanics on the development of adverse stress states in the caprock.

  19. US Topo: Topographic Maps for the Nation

    USGS Publications Warehouse

    Hytes, Patricia L.

    2009-01-01

    US Topo is the next generation of topographic maps from the U.S. Geological Survey (USGS). Arranged in the familiar 7.5-minute quadrangle format, digital US Topo maps are designed to look and feel (and perform) like the traditional paper topographic maps for which the USGS is so well known. In contrast to paper-based maps, US Topo maps provide modern technical advantages that support faster, wider public distribution and enable basic, on-screen geographic analysis for all users. US Topo maps are available free on the Web. Each map quadrangle is constructed in GeoPDF? format from key layers of geographic data (orthoimagery, roads, geographic names, topographic contours, and hydrographic features) found in The National Map. US Topo quadrangles can be printed from personal computers or plotters as complete, full-sized, maps or in customized sections, in a user-desired specific format. Paper copies of the maps can also be purchased from the USGS Store. Download links and a users guide are featured on the US Topo Web site. US Topo users can turn geographic data layers on and off as needed; they can zoom in and out to highlight specific features or see a broader area. File size for each digital 7.5-minute quadrangle, about 15-20 megabytes, is suitable for most users. Associated electronic tools for geographic analysis are available free for download.

  20. Plagioclase mineralogy of olivine alkaline basalt

    NASA Technical Reports Server (NTRS)

    Hoffer, J. M.

    1973-01-01

    A geological and mineralogical study of the Potrillo volcanics is reported. The investigation consisted first of field mapping to establish and identify the different rock types and volcanic features in order to determine the geological history. Next, samples were collected and analyzed petrographically to determine suitable rocks from the various stratigraphic units for study of plagioclase. Samples selected for further study were crushed and the plagioclase extracted for the determination of composition and structural state. These results were then related to the petrology and crystallization of the basalt.

  1. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    USGS Publications Warehouse

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  2. ERTS-1 imagery as an aid to the understanding of the regional setting of base metal deposits in the North West Cape Province, South Africa. [mineral exploration

    NASA Technical Reports Server (NTRS)

    Viljoen, R. P.

    1974-01-01

    A number of base metal finds have recently focussed attention on the North Western Cape Province of South Africa as an area of great potential mineral wealth. From the point of view of competitive mineral exploration it was essential that an insight into the regional geological controls of the base metal mineralization of the area be obtained as rapidly as possible. Conventional methods of producing a suitable regional geological map were considered to be too time-consuming and ERTS-1 imagery was consequently examined. This imagery has made a significant contribution in the compilation of a suitable map on which to base further mineral exploration programmes. The time involved in the compilation of maps of this nature was found to be only a fraction of the time necessary for the production of similar maps using other methods. ERTS imagery is therefore considered to be valuable in producing accurate regional maps in areas where little or no geological data are available, or in areas of poor access. Furthermore, these images have great potential for rapidly defining the regional extent of metallogenic provinces.

  3. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of bothmore » vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sener, M.; Tufekci, K.

    In Turkey, the three power plants (Yataan, Yenikoy, and Kemerkoy) in the southwestern part of Anatolia use Upper Miocene-Pliocene coal and cause environmental pollution in the winter. For this reason, some considerations have been given to the injection of CO{sub 2} from the power plants into the crust. A research project has been put into the practice for decreasing of global warming. Karstification and geological features, which are included in very thick carbonate rocks (a thickness over 2,000 m and limestone, dolomite, and marble from Paleozoic to Pliocene), and faults-lineaments have been considered as very important agents that will affectmore » the injection of CO{sub 2}. The micro- and macro-karstification and lineament of the region have been studied, and the rocks of the area have been grouped into two classes based on the appropriateness of karstification as suitable and unsuitable rocks. Karstic and geological features (rocks and dislocation lines) have been compared together in a Geographic Information Systems (GIS); thus, by taking note of the geological-geomorphological characteristics of the area, a case study has been proposed for the CO{sub 2} injection from the Gokova power plant emissions with GIS applications, and suitable areas for the injection have been determined for further research.« less

  5. Comparison of long-term numerical simulations at the Ketzin pilot site using the Schlumberger ECLIPSE and LBNL TOUGH2 simulators

    NASA Astrophysics Data System (ADS)

    Kempka, T.; Norden, B.; Tillner, E.; Nakaten, B.; Kühn, M.

    2012-04-01

    Geological modelling and dynamic flow simulations were conducted at the Ketzin pilot site showing a good agreement of history matched geological models with CO2 arrival times in both observation wells and timely development of reservoir pressure determined in the injection well. Recently, a re-evaluation of the seismic 3D data enabled a refinement of the structural site model and the implementation of the fault system present at the top of the Ketzin anticline. The updated geological model (model size: 5 km x 5 km) shows a horizontal discretization of 5 x 5 m and consists of three vertical zones, with the finest discretization at the top (0.5 m). According to the revised seismic analysis, the facies modelling to simulate the channel and floodplain facies distribution at Ketzin was updated. Using a sequential Gaussian simulator for the distribution of total and effective porosities and an empiric porosity-permeability relationship based on site and literature data available, the structural model was parameterized. Based on this revised reservoir model of the Stuttgart formation, numerical simulations using the TOUGH2-MP/ECO2N and Schlumberger Information Services (SIS) ECLIPSE 100 black-oil simulators were undertaken in order to evaluate the long-term (up to 10,000 years) migration of the injected CO2 (about 57,000 t at the end of 2011) and the development of reservoir pressure over time. The simulation results enabled us to quantitatively compare both reservoir simulators based on current operational data considering the long-term effects of CO2 storage including CO2 dissolution in the formation fluid. While the integration of the static geological model developed in the SIS Petrel modelling package into the ECLIPSE simulator is relatively flawless, a work-flow allowing for the export of Petrel models into the TOUGH2-MP input file format had to be implemented within the scope of this study. The challenge in this task was mainly determined by the presence of a complex faulted system in the revised reservoir model demanding for an integrated concept to deal with connections between the elements aligned to faults in the TOUGH2-MP simulator. Furthermore, we developed a methodology to visualize and compare the TOUGH2-MP simulation results with those of the Eclipse simulator using the Petrel software package. The long-term simulation results of both simulators are generally in good agreement. Spatial and timely migration of the CO2 plume as well as residual gas saturation are almost identical for both simulators, even though a time-dependent approach of CO2 dissolution in the formation fluid was chosen in the ECLIPSE simulator. Our results confirmed that a scientific open-source simulator as the TOUGH2-MP software package is capable to provide the same accuracy as the industrial standard simulator ECLIPSE 100. However, the computational time and additional efforts to implement a suitable workflow for using the TOUGH2-MP simulator are significantly higher, while the open-source concept of TOUGH2 provides more flexibility regarding process adaptation.

  6. Briefing on geological sequestration

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  7. Geologic and well-construction data for the H-10 borehole complex near the proposed Waste Isolation Pilot Plant site, southeastern New Mexico

    USGS Publications Warehouse

    Wells, J.G.; Drellack, S.L.

    1983-01-01

    The H-10 borehole complex, a group of three closely spaced boreholes, is located 3 1/2 miles southeast of the proposed Waste Isolation Pilot Plant site in west-central Lea County, New Mexico. The geological data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. Each borehole was designated to penetrate a distinct water-bearing zone: H-10a (total depth 1 ,318 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation of Permian age; H-10b (total depth 1 ,398 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; and H-10c (total depth 1,538 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-10c are surficial alluvium and eolian sand of Holocene age (0-5 feet); the Mescalero caliche (5-9 feet) and the Gatuna Formation (9-90 feet) of Pleistocene age; formation in the Dockum Group (Chinle Formation, 90-482 feet and Santa Rosa Sandstone, 482-658 feet) of Late Triassic age; and the Dewey Lake Red Beds (658-1,204 feet), the Rustler Formation (1,204-1,501 feet), and part of the Salado Formation (1,501-1,538 feet), all of Permian age. The sections of the Rustler and Salado Formations penetrated by borehole H-10c are complete and contain little or no evidence of dissolution of halite and associated rocks, indicating that the eastward-moving dissolution on top of the Salado, found just to the west of the WIPP site, has not reached the H-10 site. (USGS)

  8. GIS-based model of groundwater occurrence using geological and hydrogeological data in Precambrian Oban Massif southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Sikakwe, Gregory Udie

    2018-06-01

    This research modeled geological and hydrogeological controls on groundwater occurrence in Oban Massif and environs southeastern Nigeria. Topographical, hydrogeological, and structural maps, including lithology samples from drilled bores, well completion, and pumping test data in the study area were procured. Collection of coordinates of rock sample locations and structural data on strike and dip of rock exposures was collected. Geological and structural information collected was overlaid on the topographical, hydrogeological and structural map and digitized to produce the geological map of the study area. Thematic map on geological groundwater prospect map of the study was prepared using multicriteria evaluation. Relative weights were assigned to various rock types based on their relative contribution to groundwater occurrence and the map was reclassified using geographic information system (ArcGIS10.1) analysis. Depth ranges of the various lithologic units from drilled boreholes were used to construct lithologic correlation section of the boreholes across the study area using RockWorks16 Program software. Hydrogeological parameters such as storativity, specific capacity, transmissivity, drawdown, pumping rate, static water level, total depth, and well yield were computed from well completion reports and aquifer test. Results shows that the geologic groundwater prospect map was categorized into very good (28.73 m2), good (9.66 m2), moderate (35.08 m2), fair (49.38 m2), and poor (77.63 m2) zones. Aquifer parameters showed ranges such as (specific capacity (1.81-31.16 m2/day/m), transmissivity (0.0033-12 m2/day), storativity (9.4 × 10-3-2.3), drawdown (2.2-17.65 m), pumping rate (0.75-3.57 l/s), static water level (0-20.5 m), and total depth (3.3-61 m). Borehole depths obtained in the basement are shallower than those in the sedimentary area. Aquifer test parameters obtained from boreholes across the study indicate better correspondence with zones identified as good water prospect in the study. It was evident that well yield is not a very reliable aquifer performance indicator, because it depends largely on the efficiency of the pump installed. Therefore, other aquifer parameters must be employed in aquifer performance assessment. The geologic formation is paramount in determining aquifer performance. The result of this groundwater occurrence is useful as a guide for groundwater developers, which engineers in water resource management and land-use planners to select suitable areas to implement development schemes and also government agencies.

  9. Bedrock geologic map of the Nashua South quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts

    USGS Publications Warehouse

    Walsh, Gregory J.; Jahns, Richard H.; Aleinikoff, John N.

    2013-01-01

    The bedrock geology of the 7.5-minute Nashua South quadrangle consists primarily of deformed Silurian metasedimentary rocks of the Berwick Formation. The metasedimentary rocks are intruded by a Late Silurian to Early Devonian diorite-gabbro suite, Devonian rocks of the Ayer Granodiorite, Devonian granitic rocks of the New Hampshire Plutonic Suite including pegmatite and the Chelmsford Granite, and Jurassic diabase dikes. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts and New Hampshire. This report presents mapping by G.J. Walsh and R.H. Jahns and zircon U-Pb geochronology by J.N. Aleinikoff. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are only available as downloadable files (see frame at right). The GIS database is available for download in ESRITM shapefile and Google EarthTM formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, photographs, and a three-dimensional model.

  10. The Mars 2020 Rover Mission Landing Site Candidates

    NASA Astrophysics Data System (ADS)

    Schulte, M.; Meyer, M.; Grant, J.; Golombek, M.

    2018-04-01

    The number of suitable landing sites for the Mars 2020 rover mission has been narrowed to three leading candidates: Jezero Crater, NE Syrtis, and Columbia Hills. Each offers geologic settings with the potential for preservation of biosignatures.

  11. Input-form data for the U.S. Geological Survey assessment of the Devonian and Mississippian Bakken and Devonian Three Forks Formations of the U.S. Williston Basin Province, 2013

    USGS Publications Warehouse

    ,; Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2013-01-01

    In 2013, the U.S. Geological Survey assessed the technically recoverable oil and gas resources of the Bakken and Three Forks Formations of the U.S. portion of the Williston Basin. The Bakken and Three Forks Formations were assessed as continuous and hypothetical conventional oil accumulations using a methodology similar to that used in the assessment of other continuous- and conventional-type assessment units throughout the United States. The purpose of this report is to provide supplemental documentation and information used in the Bakken-Three Forks assessment.

  12. Mineral surveys by the Geological Survey and the Bureau of Mines of Bureau of Land Management Wilderness Study Areas

    USGS Publications Warehouse

    Beikman, Helen M.; Hinkle, Margaret E.; Frieders, Twila; Marcus, Susan M.; Edward, James R.

    1983-01-01

    The Federal Land Policy and Management Act of 1976 instructed the Bureau of Land Management (BLM) to review all public lands under its jurisdiction and to determine their suitability or nonsuitability for wilderness designation. As part of this process, the Geological Survey and the Bureau of Mines conduct mineral surveys of areas for which a preliminary determination of wilderness suitability has been made. The BLM has completed its wilderness inventory phase and has found that 23.2 million acres deserve further study for wilderness consideration. These 23.2 million acres of wilderness study areas include 1 million acres of natural and primitive areas (Instant Study Areas), 5.7 million acres in the California Desert Conservation Area, and 16.5 million acres in other wilderness study areas. Mineral surveys on all areas recommended for wilderness will be completed by 1990.

  13. The facts on file. Dictionary of geology and geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapidus, D.F.; Coates, D.R.

    1987-01-01

    This reference to the basic vocabulary of geology and geophysics has more than 3,000 clear and concise entries defining the entire range of geological phenomena. This book covers such areas as types of rocks and rock formations, deformation processes such as erosion and plate tectonics, volcanoes, glaciers and their effects on topography, geodesy and survey methods, earthquakes and seismology, fuels and mineral deposits.

  14. Geologic framework of the regional ground-water flow system in the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Lite, Kenneth E.; Gannett, Marshall W.

    2002-12-10

    Geologic units in the Deschutes Basin were divided into several distinct hydrogeologic units. In some instances the units correspond to existing stratigraphic divisions. In other instances, hydrogeologic units correspond to different facies within a single stratigraphic unit or formation. The hydrogeologic units include Quaternary sediment, deposits of the Cascade Range and Newberry Volcano, four zones within the Deschutes Formation and age-equivalent rocks that roughly correspond with depositional environments, and pre-Deschutes-age strata.

  15. Assessing rare earth elements in quartz rich geological samples.

    PubMed

    Santoro, A; Thoss, V; Ribeiro Guevara, S; Urgast, D; Raab, A; Mastrolitti, S; Feldmann, J

    2016-01-01

    Sodium peroxide (Na2O2) fusion coupled to Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) measurements was used to rapidly screen quartz-rich geological samples for rare earth element (REE) content. The method accuracy was checked with a geological reference material and Instrumental Neutron Activation Analysis (INAA) measurements. The used mass-mode combinations presented accurate results (only exception being (157)Gd in He gas mode) with recovery of the geological reference material QLO-1 between 80% and 98% (lower values for Lu, Nd and Sm) and in general comparable to INAA measurements. Low limits of detection for all elements were achieved, generally below 10 pg g(-1), as well as measurement repeatability below 15%. Overall, the Na2O2/ICP-MS/MS method proved to be a suitable lab-based method to quickly and accurately screen rock samples originating from quartz-rich geological areas for rare earth element content; particularly useful if checking commercial viability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Briefing on geological sequestration (Tulsa)

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  17. Assessment of Paleozoic shale gas resources in the Sichuan Basin of China, 2015

    USGS Publications Warehouse

    Potter, Christopher J.; Schenk, Christopher J.; Charpentier, Ronald R.; Gaswirth, Stephanie B.; Klett, Timothy R.; Leathers, Heidi M.; Brownfield, Michael E.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.

    2015-10-14

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 23.9 trillion cubic feet of technically recoverable shale gas resources in Paleozoic formations in the Sichuan Basin of China.

  18. Preliminary geologic map of the Mesquite Quadrangle, Clark and Lincoln Counties, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Williams, Van S.

    1996-01-01

    Original geologic data mapped by the author in 1995 and 1996 with emphasis on structures in Miocene basin-fill deposits of the Muddy Creek Formation that may control availability and quality of groundwater.

  19. Student Enrollment in Geoscience Departments. 1982-1983.

    ERIC Educational Resources Information Center

    American Geological Inst., Washington, DC.

    Presented in table format are student enrollment data for geoscience disciplines at colleges and universities in the United States and Canada. Subfields for both countries include: geology; geophysics; oceanography; marine science; geological engineering; geophysical engineering; geochemistry; hydrology; mineralogy; paleontology; soil science;…

  20. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  1. Mineralization of Carbon Dioxide: Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Soong, Y; Carney, C

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrialmore » process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2« less

  2. Guidelines for sinkhole and subsidence rehabilitation based on generic geological models of a dolomite environment on the East Rand, South Africa

    NASA Astrophysics Data System (ADS)

    Kleinhans, Ilse; Van Rooy, J. Louis

    2016-05-01

    A sound understanding of the various factors influencing and associated with the formation of sinkholes or subsidences on dolomite land is essential for the selection of appropriate rehabilitation methods. The investigation and rehabilitation of numerous sinkholes and subsidences located on dolomite in the East Rand of South Africa, created an opportunity to develop a broad based understanding of different karst environments, their susceptibility to sinkhole and subsidence formation and best practice rehabilitation methods. This paper is based on the guidelines developed whereby the geological model of the sinkhole or subsidence is used to recommend an appropriate rehabilitation method. Nine typical geological models with recommended rehabilitation methods are presented in this paper.

  3. Geology of the Greenwater Range, and the dawn of Death Valley, California—Field guide for the Death Valley Natural History Conference, 2013

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.; Jachens, Robert; Smith, Eugene; Knott, Jeffrey

    2016-05-02

    Much has been written about the age and formation of Death Valley, but that is one—if not the last—chapter in the fascinating geologic history of this area. Igneous and sedimentary rocks in the Greenwater Range, one mountain range east of Death Valley, tell an earlier story that overlaps with the formation of Death Valley proper. This early story has been told by scientists who have studied these rocks for many years and continue to do so. This field guide was prepared for the first Death Valley Natural History Conference and provides an overview of the geology of the Greenwater Range and the early history (10–0 Ma) of Death Valley.

  4. Contributions to the geology of uranium and thorium by the United States Geological Survey and Atomic Energy Commission for the United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1955

    USGS Publications Warehouse

    Page, Lincoln R.; Stocking, Hobart E.; Smith, Harriet B.

    1956-01-01

    Within the boundaries of the United States abnormal amounts of uranium have been found in rocks of nearly all geologic ages and lithologic types. Distribution of ore is more restricted. On the Colorado Plateau, the Morrison formation of Jurassic age yields 61.4 percent of the ore produced in the United States, and the Chinle conglomerate and Shinarump formation of Triassic age contribute 26.0 and 5.8 percent, respectively. Clastic, carbonaceous, and carbonate sedimentary rocks of Tertiary, Mesozoic, and Paleozoic ages and veins of Tertiary age are the source of the remaining 6.8 percent.

  5. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  6. Digital geologic map and GIS database of Venezuela

    USGS Publications Warehouse

    Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco

    2006-01-01

    The digital geologic map and GIS database of Venezuela captures GIS compatible geologic and hydrologic data from the 'Geologic Shaded Relief Map of Venezuela,' which was released online as U.S. Geological Survey Open-File Report 2005-1038. Digital datasets and corresponding metadata files are stored in ESRI geodatabase format; accessible via ArcGIS 9.X. Feature classes in the geodatabase include geologic unit polygons, open water polygons, coincident geologic unit linework (contacts, faults, etc.) and non-coincident geologic unit linework (folds, drainage networks, etc.). Geologic unit polygon data were attributed for age, name, and lithologic type following the Lexico Estratigrafico de Venezuela. All digital datasets were captured from source data at 1:750,000. Although users may view and analyze data at varying scales, the authors make no guarantee as to the accuracy of the data at scales larger than 1:750,000.

  7. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallan, R; Wilt, M; Kirkendall, B

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series ofmore » three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of the tool in a low risk environment. The Dixie Valley site offered an environment where the tool could locate near-well fractures associated with steam development. The Lost Hills field measurements yielded a data set suitable for 3D imaging. The Geo-BLT data corresponded to existing conventional logging data and showed clear indications, in several depth intervals, of near-well 3D structure. Subsequent 3D inversion of these data produced a model consistent with non-planar water flow in specific layers. The Dixie Valley measurements identified structures associated with dike intrusions and water inflow at particular depths. Preliminary analysis suggests these structures are steeply dipping, which is consistent with the geology.« less

  8. Use of Microtremor Array Recordings for Mapping Subsurface Soil Structure, Singapore

    NASA Astrophysics Data System (ADS)

    Walling, M.

    2012-12-01

    Microtremor array recordings are carried out in Singapore, for different geology, to study the influence of each site in modeling the subsurface structure. The Spatial Autocorrelation (SPAC) method is utilized for the computation of the soil profiles. The array configuration of the recording consists of 7 seismometers, recording the vertical component of the ground motion, and the recording at each site is carried out for 30 minutes. The results from the analysis show that the soil structure modeled for the young alluvial of Kallang Formation (KF), in terms of shear wave velocity (Vs), gives a good correlation with borehole information, while for the older geological formation of Jurong Formation (JF) (sedimentary rock sequence) and Old Alluvial (OA) (dense alluvium formation), the correlation is not very clear due to the lack of impedance contrast. The older formation of Bukit Timah Granite (BTG) show contrasting results within the formation, with the northern BTG suggesting a low Vs upper layer of about 20m - 30m while the southern BTG reveals a dense formation. The discrepancy in the variation within BTG is confirmed from borehole data that reveals the northern BTG to have undergone intense weathering while the southern BTG have not undergone noticeable weathering. Few sites with bad recording quality could not resolve the soil structure. Microtremor array recording is good for mapping sites with soft soil formation and weathered rock formation but can be limited in the absence of subsurface velocity contrast and bad quality of microtremor records.; The correlation between the Vs30 estimated from SPAC method and borehole data for the four major geological formations of Singapore. The encircled sites are the sites with recording error.

  9. National Assessment of Geologic Carbon Dioxide Storage Resources -- Trends and Interpretations

    NASA Astrophysics Data System (ADS)

    Buursink, M. L.; Blondes, M. S.; Brennan, S.; Drake, R., II; Merrill, M. D.; Roberts-Ashby, T. L.; Slucher, E. R.; Warwick, P.

    2013-12-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resource (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins or study areas were defined on the basis of geologic and hydrologic characteristics outlined in the USGS assessment methodology. The mean national TASR is approximately 3,000 metric gigatons. To augment the release of the assessment, this study reviews input estimates and output results as a part of the resource calculation. Included in this study are a collection of both cross-plots and maps to demonstrate our trends and interpretations. Alongside the assessment, the input estimates were examined for consistency between SAUs and cross-plotted to verify expected trends, such as decreasing storage formation porosity with increasing SAU depth, for instance, and to show a positive correlation between storage formation porosity and permeability estimates. Following the assessment, the output results were examined for correlation with selected input estimates. For example, there exists a positive correlation between CO2 density and the TASR, and between storage formation porosity and the TASR, as expected. These correlations, in part, serve to verify our estimates for the geologic variables. The USGS assessment concluded that the Coastal Plains Region of the eastern and southeastern United States contains the largest storage resource. Within the Coastal Plains Region, the storage resources from the U.S. Gulf Coast study area represent 59 percent of the national CO2 storage capacity. As part of this follow up study, additional maps were generated to show the geographic distribution of the input estimates and the output results across the U.S. For example, the distribution of the SAUs with fresh, saline or mixed formation water quality is shown. Also mapped is the variation in CO2 density as related to basin location and to related properties such as subsurface temperature and pressure. Furthermore, variation in the estimated SAU depth and resulting TASR are shown across the assessment study areas, and these depend on the geologic basin size and filling history. Ultimately, multiple map displays are possible with the complete data set of input estimates and range of reported results. The findings from this study show the effectiveness of the USGS methodology and the robustness of the assessment.

  10. Geology and Refractory Clay Deposits of the Haldeman and Wrigley Quadrangles, Kentucky

    USGS Publications Warehouse

    Patterson, Sam H.; Hosterman, John W.; Huddle, John Warfield

    1962-01-01

    The Haldeman and Wrigley 7th-minute quadrangles are near the western edge of the eastern Kentucky coal field and cover an area of approximately 117 square miles in parts of Carter, Rowan, Elliott, and Morgan Counties, Ky. The rocks exposed in the two quadrangles are of Early and Late Mississippian and Early and Middle Pennsylvanian age. The Mississippian rocks are composed of the thick Brodhead formation, which consists of siltstone and shale, and eleven thin marine limestone and shale formations, having an aggregate thickness of about 150 feet. The Lee and Breathitt formations, of Pennsylvanian age, consist of sandstone, siltstone, and shale; they also contain thin beds of coal and several beds of underclay, including the economically important Olive Hill clay bed of Crider, 1913. Pennsylvanian rocks include beds of both continental and marine origin. The eleven thin Mississippian formations and the upper-most part of the thick Brodhead formation are truncated by a prominent unconformity on which rocks of Pennsylvanian age rest. The rocks occupy a region of gentle dips between the Cincinnati arch and the Appalachian Mountains. Refractory clay deposits are in the Olive Hill clay bed, which occurs in the lower part of the Lee formation. The Olive Hill clay bed is discontinuous and consists of a series of irregularly shaped lenses. The bed is approximately two-thirds semifiint clay and one-third flint clay, and it contains minor amounts of plastic clay. Some of the flint clay is nearly pure kaolinite, but the semi flint and plastic clay consists of mixtures of kaolinite, illite, and mixed-layer clay minerals. The structure of the kaolinite ranges from highly crystalline to very poorly crystalline 'fireclay' type. The degree of crystallinity of the kaolinite and the hardness of the clay vary inversely with the amount of illite and mixed-layer clay minerals present. The nearly pure kaolinite is believed to have formed by the removal of alkalies and some silica fram mixtures of kaolinite, illite, and mixed-layer clays by leaching in swamps to the deposition of the beds overlying the clay. The refractory properties of the clay vary directly with the purity of the kaolinite, and refractoriness decreases as the proportions of illite and mixed-layer clays increase. Certain nonclay minerals, chiefly siderite, pyrite, and iron oxide-bearing minerals, also act as fiuxes, reducing the refractory properties of the clay. The entire resources of clay in the Olive Hill clay bed are roughly and tentatively estimated to include 105,000,000 tons in the Haldeman quadrangle and 175,000,000 tons in the Wrigley quadrangle. Much of this clay is of poor quality and the amount that is better than the minimum requirements for use in refractories is probably about 30,000,000 tons. Only a fraction of this tonnage is suitable for superheat-duty products. Limestone is the only nonmetallic mineral resource other than refractory clay that has been developed in the two quadrangles, but 1arge amounts of shale suitable for use in making lightweight aggregate and structural clay products may also be present. Most of the limestone, which is quarried. in both quadrangles, is used for road-metal, concrete aggregate, and agriculture stone, but some of the limestone is of the quality that would be suitable for other uses. Virtually all the Mississippian Beech Creek limestone of Malott, 1919 which is as much as 18 feet thick, consists of high-calcium limestone. Shale beds that appear most favoralble for making lightweight aggregate are in the shale facies of the Lee formation of Pennsylvanian age. Shale that is probably suitable for structural clay products is present in the shale flacles of the Lee formation and in the Muldraugh formation of Mississippian age. Several dry holes have been drilled in search for oil and gas within the area of the two quadrangles. Though no commercial production was ever attained, one well furnished a supply of gas f

  11. Evidence for Regional Basin Formation in Early Post-Tessera Venus History: Geology of the Lavinia Planitia Area (V55)

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Ivanov, M. A.

    1995-01-01

    On Venus, global topography shows the presence of highs and lows including regional highly deformed plateaus (tesserae), broad rifted volcanic rises, linear lows flanking uplands, and more equidimensional lowlands (e.g. Lavinia and Atalanta planitiae) Each of these terrain types on Venus has relatively distinctive characteristics, but origins are uncertain in terms of mode of formation, time of formation, and potential evolutionary links. There is a high level of uncertainty about the formation and evolution of lowlands on Venus. We have undertaken the mapping of a specific lowlands region of Venus to address several of these major questions. Using geologic mapping we have tried to establish: What is the sequence of events in the formation and evolution of large-scale equidimensional basins on Venus? When do the compressional features typical of basin interiors occur? What is the total volume of lava that occurs in the basins and is this similar to other non-basin areas? How much subsidence and downwarping has occurred after the last major plains units? WE have undertaken an analysis of the geology of the V55 Lavinia Planitia quadrangle in order to address many of these issues and we report on the results here.

  12. Bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire

    USGS Publications Warehouse

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone, siltstone, and phyllite.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics including the Moody Ledge pluton and the Scrag granite of Billings (1937). Subsequent plutonism related to the Acadian orogeny occurred after volcanism and deposition resulted in the Littleton Formation during the Late Devonian, including the intrusion of the Haverhill pluton and French Pond Granite found in the southern part of the map.This report consists of a geologic map and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The geologic map is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects.

  13. 10 CFR 60.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Site characterization includes borings, surface excavations, excavation of exploratory shafts, limited subsurface lateral excavations and borings, and in situ testing at depth needed to determine the suitability of the site for a geologic repository, but does not include preliminary borings and geophysical...

  14. 10 CFR 60.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Site characterization includes borings, surface excavations, excavation of exploratory shafts, limited subsurface lateral excavations and borings, and in situ testing at depth needed to determine the suitability of the site for a geologic repository, but does not include preliminary borings and geophysical...

  15. 10 CFR 60.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Site characterization includes borings, surface excavations, excavation of exploratory shafts, limited subsurface lateral excavations and borings, and in situ testing at depth needed to determine the suitability of the site for a geologic repository, but does not include preliminary borings and geophysical...

  16. Digital geologic map of the Butler Peak 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, Fred K.; Matti, Jonathan C.; Brown, Howard J.; digital preparation by Cossette, P. M.

    2000-01-01

    Open-File Report 00-145, is a digital geologic map database of the Butler Peak 7.5' quadrangle that includes (1) ARC/INFO (Environmental Systems Research Institute) version 7.2.1 Patch 1 coverages, and associated tables, (2) a Portable Document Format (.pdf) file of the Description of Map Units, Correlation of Map Units chart, and an explanation of symbols used on the map, btlrpk_dcmu.pdf, (3) a Portable Document Format file of this Readme, btlrpk_rme.pdf (the Readme is also included as an ascii file in the data package), and (4) a PostScript plot file of the map, Correlation of Map Units, and Description of Map Units on a single sheet, btlrpk.ps. No paper map is included in the Open-File report, but the PostScript plot file (number 4 above) can be used to produce one. The PostScript plot file generates a map, peripheral text, and diagrams in the editorial format of USGS Geologic Investigation Series (I-series) maps.

  17. Geology and neotectonism in the epicentral area of the 2011 M5.8 Mineral, Virginia, earthquake

    USGS Publications Warehouse

    Burton, William C.; Spears, David B.; Harrison, Richard W.; Evans, Nicholas H.; Schindler, J. Stephen; Counts, Ronald C.

    2015-01-01

    arc (Ordovician Chopawamsic Formation) to Laurentia, intrusion of a granodiorite pluton (Ordovician Ellisville pluton), and formation of a post-Chopawamsic successor basin (Ordovician Quantico Formation), all accompanied by early Paleozoic regional deformation and metamorphism. Local transpressional faulting and retrograde metamorphism occurred in the late Paleozoic, followed by diabase dike intrusion and possible local normal faulting in the early Mesozoic. The overall goal of the bedrock mapping is to determine what existing geologic structures might have been reactivated during the 2011 seismic event, and surfi cial deposits along the South Anna River are being mapped in order to determine possible neotectonic uplift. In addition to bedrock and surfi cial studies, we have excavated trenches in an area that contains two late Paleozoic faults and represents the updip projection of the causative fault for the 2011 quake. The trenches reveal faulting that has offset surfi cial deposits dated as Quaternary in age, as well as numerous other brittle structures that suggest a geologically recent history of neotectonic activity.

  18. High-Resolution Geologic Mapping of Martian Terraced Fan Deposits

    NASA Astrophysics Data System (ADS)

    Wolak, J. M.; Patterson, A. B.; Smith, S. D.; Robbins, N. N.

    2018-06-01

    This abstract documents our initial progress (year 1) mapping terraced fan features on Mars. Our objective is to investigate the role of fluids during fan formation and produce the first high-resolution geologic map (1:18k) of a terraced fan.

  19. 30 CFR 762.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... investments that have been made on the basis of a long-term coal contract in power plants, railroads, coal... threatened species of animals or plants, uncommon geologic formations, paleontological sites, National... dunes, severe wind or soil erosion, frequent flooding, avalanches and areas of unstable geology...

  20. Water availability and geology of Sumter County, Alabama

    USGS Publications Warehouse

    Davis, Marvin E.; Sanford, Thomas H.; Jefferson, Patrick O.

    1975-01-01

    Geologic units that crop out in Sumter County include the Selma Group of Late Cretaceous age; the Midway and Wilcox Groups of Tertiary Age; and terrace deposits and alluvium of Quaternary age. The Tuscaloosa Group, consisting of the Coker and Gordo Formations, and Eutaw Formation of Late Cretaceous age underlie the entire county. The Cretaceous units dip southwestward about 45 feet per mile and strike northwestward. They consist chiefly of deposits of sand, gravel, chalk, and clay. Potential sources of large supplies of ground water are major aquifers in the Coker, Gordo, and Eutaw Formations; expected yields are 1.6 mgd (million gallons per day or more per well. The Naheola and Nanafalia formations, Tuscahome Sand, and terrace deposits and alluvium are expected to yield 10 to 50 gallons per minute per well.

  1. Geophysical Characterization of the Quaternary-Cretaceous Contact Using Surface Resistivity Methods in Franklin and Webster Counties, South-Central Nebraska

    USGS Publications Warehouse

    Teeple, Andrew; Kress, Wade H.; Cannia, James C.; Ball, Lyndsay B.

    2009-01-01

    To help manage and understand the Platte River system in Nebraska, the Platte River Cooperative Hydrology Study (COHYST), a group of state and local governmental agencies, developed a regional ground-water model. The southern boundary of this model lies along the Republican River, where an area with insufficient geologic data immediately north of the Republican River led to problems in the conceptualization of the simulated flow system and to potential problems with calibration of the simulation. Geologic descriptions from a group of test holes drilled in south-central Nebraska during 2001 and 2002 indicated a possible hydrologic disconnection between the Quaternary-age alluvial deposits in the uplands and those in the Republican River lowland. This disconnection was observed near a topographic high in the Cretaceous-age Niobrara Formation, which is the local bedrock. In 2003, the U.S. Geological Survey, in cooperation with the COHYST, collected surface geophysical data near these test holes to better define this discontinuity. Two-dimensional imaging methods for direct-current resistivity and capacitively coupled resistivity were used to define the subsurface distribution of resistivity along several county roads near Riverton and Inavale, Nebraska. The relation between the subsurface distribution of resistivity and geology was defined by comparing existing geologic descriptions of test holes to surface-geophysical resistivity data along two profiles and using the information gained from these comparisons to interpret the remaining four profiles. In all of the resistivity profile sections, there was generally a three-layer subsurface interpretation, with a resistor located between two conductors. Further comparison of geologic data with the geophysical data and with surficial features was used to identify a topographic high in the Niobrara Formation near the Franklin Canal which was coincident with a resistivity high. Electrical properties of the Niobrara Formation made accurate interpretation of the resistivity profile sections difficult and less confident because of similar resistivity of this formation and that of the coarser-grained sediment of the Quaternary-age deposits. However, distinct conductive features were identified within the resistivity profile sections that aided in delineating the contact between the resistive Quaternary-age deposits and the resistive Niobrara Formation. Using this information, an interpretive boundary was drawn on the resistivity profile sections to represent the contact between the Quaternary-age alluvial deposits and the Cretaceous-age Niobrara Formation. A digital elevation model (DEM) of the top of the Niobrara Formation was constructed using the altitudes from the interpreted contact lines. This DEM showed that the general trend of top of the Niobrara Formation dips to the southeast. At the north edge of the study site, the Niobrara Formation topographic high trends east-west with an altitude range of 559 meters in the west to 543 meters in the east. Based on the land-surface elevation and the Niobrara Formation DEM, the estimated thickness of the Quaternary-age alluvial deposits throughout the study area was mapped and showed a thinning of the Quaternary-age alluvial deposits to the north, approximately where the topographic high of the Niobrara Formation is located. This topographic high in the Niobrara Formation has the potential to act as a barrier to ground-water flow from the uplands alluvial aquifer to the Republican River alluvial aquifer as shown in the resistivity profile sections. The Quaternary-age alluvial deposits in the uplands and those in the Republican River Valley are not fully represented as disconnected because it is possible that there are ground-water flow paths that were not mapped during this study.

  2. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)

  3. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic map analyses: Correlation of geologic and cratering histories. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Geologic map analyses are expanded, beginning with a discussion of particular regions which may illustrate volcanic and ballistic plains emplacement on Mercury. Major attention is focused on the surface history of Mercury through discussion of the areal distribution of plains and craters and the paleogeologic maps of the first quadrant. A summary of the lunar intercrater plains formation similarly interrelates the information from the Moon's geologic and cratering histories.

  4. Paleozoic shale gas resources in the Sichuan Basin, China

    USGS Publications Warehouse

    Potter, Christopher J.

    2018-01-01

    The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.

  5. Preliminary digital geologic map of the Penokean (early Proterozoic) continental margin in northern Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, W.F.; Ottke, Doug

    1999-01-01

    The data on this CD consist of geographic information system (GIS) coverages and tabular data on the geology of Early Proterozoic and Archean rocks in part of the Early Proterozoic Penokean orogeny. The map emphasizes metasedimentary and metavolcanic rocks that were deposited along the southern margin of the Superior craton and were later deformed during continental collision at about 1850 Ma. The area includes the famous iron ranges of the south shore region of the Lake Superior district. Base maps, both as digital raster graphics (DRG) and digital line graphs (DLG) are also provided for the convenience of users. The map has been compiled from many individual studies, mostly by USGS researchers, completed during the past 50 years, including many detailed (1:24,000 scale) geologic maps. Data was compiled at 1:100,000 scale and preserves most of the details of source materials. This product is a preliminary release of the geologic map data bases during ongoing studies of the geology and metallogeny of the Penokean continental margin. Files are provided in three formats: Federal Spatial Data Transfer format (SDTS), Arc export format (.e00) files, and Arc coverages. All files can be accessed directly from the CD-ROM using either ARC/INFO 7.1.2 or later or Arc View 3.0 or later software. ESRI's Arc Explorer, a free GIS data viewer available at the web site: http://www.esri.com/software/arcexplorer/index.html also provides display and querying capability for these files.

  6. Log ASCII Standard (LAS) Files for Geophysical Wireline Well Logs and Their Application to Geologic Cross Sections Through the Central Appalachian Basin

    USGS Publications Warehouse

    Crangle, Robert D.

    2007-01-01

    Introduction The U.S. Geological Survey (USGS) uses geophysical wireline well logs for a variety of purposes, including stratigraphic correlation (Hettinger, 2001, Ryder, 2002), petroleum reservoir analyses (Nelson and Bird, 2005), aquifer studies (Balch, 1988), and synthetic seismic profiles (Kulander and Ryder, 2005). Commonly, well logs are easier to visualize, manipulate, and interpret when available in a digital format. In recent geologic cross sections E-E' and D-D', constructed through the central Appalachian basin (Ryder, Swezey, and others, in press; Ryder, Crangle, and others, in press), gamma ray well log traces and lithologic logs were used to correlate key stratigraphic intervals (Fig. 1). The stratigraphy and structure of the cross sections are illustrated through the use of graphical software applications (e.g., Adobe Illustrator). The gamma ray traces were digitized in Neuralog (proprietary software) from paper well logs and converted to a Log ASCII Standard (LAS) format. Once converted, the LAS files were transformed to images through an LAS-reader application (e.g., GeoGraphix Prizm) and then overlain in positions adjacent to well locations, used for stratigraphic control, on each cross section. This report summarizes the procedures used to convert paper logs to a digital LAS format using a third-party software application, Neuralog. Included in this report are LAS files for sixteen wells used in geologic cross section E-E' (Table 1) and thirteen wells used in geologic cross section D-D' (Table 2).

  7. Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.

    2015-01-01

    Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.

  8. Geologic framework for the national assessment of carbon dioxide storage resources: Alaska North Slope and Kandik Basin, Alaska: Chapter I in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Craddock, William H.; Buursink, Marc L.; Covault, Jacob A.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven N.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2014-01-01

    For each SAU in both of the basins, we discuss the areal distribution of suitable CO2 sequestration reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein was employed to calculate the potential storage volume in the various SAUs. Lastly, in this report, we present the rationale for not conducting assessment work in fifteen sedimentary basins distributed across the Alaskan interior and within Alaskan State waters.

  9. Reconnaissance geologic map of Kodiak Island and adjacent islands, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.

    2013-01-01

    Kodiak Island and its adjacent islands, located on the west side of the Gulf of Alaska, contain one of the largest areas of exposure of the flysch and melange of the Chugach terrane of southern Alaska. However, in the past 25 years, only detailed mapping covering small areas in the archipelago has been done. This map and its associated digital files (Wilson and others, 2005) present the best available mapping compiled in an integrated fashion. The map and associated digital files represent part of a systematic effort to release geologic map data for the United States in a uniform manner. The geologic data have been compiled from a wide variety of sources, ranging from state and regional geologic maps to large-scale field mapping. The map data are presented for use at a nominal scale of 1:500,000, although individual datasets (see Wilson and others, 2005) may contain data suitable for use at larger scales.

  10. Evaluation of the suitability of Skylab data for the purpose of petroleum exploration

    NASA Technical Reports Server (NTRS)

    Collins, R. J. (Principal Investigator); Petzel, G.; Everett, J. R.

    1975-01-01

    The author has identified the following significant results. Comparisons of the various photographic bands of Skylab imagery indicate that, overall, standard color (particularly S190B) is the most valuable for geological purposes. Detailed examination of all bands indicates that as with ERTS imagery each band contains useful information that is unique to it. The results of geological interpretations based on ERTS and Skylab imagery are strikingly similar. It appears that more information can be extracted from a single Skylab overpass than a single ERTS overpass, but that with repeated passes the lower resolution ERTS imagery may yield information comparable to that contained in S190B imagery. Comparison of Skylab photography to high altitude aircraft photography suggests that there are distinct advantages to using Skylab imagery for regional geologic interpretations. This is primarily because of the synoptic view provided by the space acquired imagery allows and encourages integration of regional geologic features.

  11. Hydrogeologic reconnaissance of part of the headwaters area of the Price River, Utah

    USGS Publications Warehouse

    Cordova, Robert M.

    1963-01-01

    The area investigated comprises 33 square miles in the Price River drainage basin ad is in the High Plateaus section of Utah. Precipitation on most of the area ranges from about 20 to 23 inches per year, and the average annual precipitation for the entire area was assumed to be 22 inches, of which approximately 65 percent is lost by evapotranspiration. The geologic formations underlying the area are the Blackhawk and Price River Formations of Cretaceous age, the North Horn Formation of Cretaceous and Tertiary age, the Flagstaff Limestone and Colton Formation of tertiary age, and unconsolidated deposits of probable Quaternary age.Some ground water issues from springs and seeps and is used by stock and the cities of Price and Helper. The annual discharge from the springs and seeps in the area averages about 3,000 acre-feet. Two deep wells supply about 400 acre-feet per year for use at a steam-generating plant. The aquifers penetrated by the wells are in the Flagstaff Limestone and the North Horn formation, the deepest aquifer being about 1,500 feet below the land surface. Most of the ground water in the area is suitable for municipal and industrial use.The surface discharge from the area is approximately 6,000 acre-feet per year. By means of a water budget, it is calculated that approximately 4,000 acre-feet per year leaves the area by subsurface flow. Further development of ground water on a large scale can be accomplished only by the use of wells. It is possible, however, that part of any newly developed supply from wells may be drawn from existing spring discharge or streamflow.

  12. Digital geologic map of the Spokane 1:100,000 quadrangle, Washington and Idaho: a digital database for the 1990 N.L. Joseph map

    USGS Publications Warehouse

    Johnson, Bruce R.; Derkey, Pamela D.

    1998-01-01

    Geologic data from the geologic map of the Spokane 1:100,000-scale quadrangle compiled by Joseph (1990) were entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The map area is located in eastern Washington and extends across the state border into western Idaho (Fig. 1). This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  13. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid-Tertiary(?) Rifle Falls normal fault, that dips southward placing Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side and presumably was injected into older strata on the upthrown block creating a blister-like, steeply north-dipping sequence of Mississippian and older strata. Also, removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks that form distinctly different styles of compressive deformation called the Elk Park fold and fault complex at different parts of the toe of the slide. The major geologic hazard in the area consist of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Significant uranium and vanadium deposits were mined prior to 1980.

  14. Integrated Chronology, Flora and Faunas, and Paleoecology of the Alajuela Formation, Late Miocene of Panama

    PubMed Central

    MacFadden, Bruce J.; Jones, Douglas S.; Jud, Nathan A.; Moreno-Bernal, Jorge W.; Morgan, Gary S.; Portell, Roger W.; Perez, Victor J.; Moran, Sean M.; Wood, Aaron R.

    2017-01-01

    The late Miocene was an important time to understand the geological, climatic, and biotic evolution of the ancient New World tropics and the context for the Great American Biotic Interchange (GABI). Despite this importance, upper Miocene deposits containing diverse faunas and floras and their associated geological context are rare in Central America. We present an integrated study of the geological and paleontological context and age of a new locality from Lago Alajuela in northern Panama (Caribbean side) containing late Miocene marine and terrestrial fossils (plants, invertebrates, and vertebrates) from the Alajuela Formation. These taxa indicate predominantly estuarine and shallow marine paleoenvironments, along with terrestrial influences based on the occurrence of land mammals. Sr-isotope ratio analyses of in situ scallop shells indicate an age for the Alajuela Formation of 9.77 ± 0.22 Ma, which also equates to a latest Clarendonian (Cl3) North American Land Mammal Age. Along with the roughly contemporaneous late Miocene Gatun and Lago Bayano faunas in Panama, we now have the opportunity to reconstruct the dynamics of the Central America seaway that existed before final closure coincident with formation of the Isthmus of Panama. PMID:28107398

  15. A data driven model for the impact of IFT and density variations on CO2 sequestration in porous media

    NASA Astrophysics Data System (ADS)

    Nomeli, Mohammad; Riaz, Amir

    2017-11-01

    CO2 storage in geological formations is one of the most promising solutions for mitigating the amount of greenhouse gases released into the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. A novel model is proposed to find the IFT of the systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a machine learning-assisted modeling of experimental data. The IFT between mineral surfaces and CO2/brine-salt solutions determines the efficiency of enhanced oil or gas recovery operations as well as our ability to inject and store CO2 in geological formations. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity are improved with reservoir depth.

  16. Creationism Challenges Geology: A Retreat to the Eighteenth Century.

    ERIC Educational Resources Information Center

    Eglin, Paula G.; Graham, Mildred W.

    1982-01-01

    Some contentions of scientific creationism that conflict with accepted principles of geology (catastrophism, fossil records, earth's age, rock formation, second law of thermodynamics) are reviewed, demonstrating that these claims are based not on scientific research or reasonable conjecture but on Biblical references. (Author/DC)

  17. Integrated characterization of the geologic framework of a contaminated site in West Trenton, New Jersey

    USGS Publications Warehouse

    Ellefsen, Karl J.; Burton, William C.; Lacombe, Pierre J.

    2012-01-01

    Fractured sedimentary bedrock and groundwater at the former Naval Air Warfare Center in West Trenton, New Jersey (United States of America) are contaminated with chlorinated solvents. Predicting contaminant migration or removing the contaminants requires an understanding of the geology. Consequently, the geologic framework near the site was characterized with four different methods having different spatial scales: geologic field mapping, analyses of bedrock drill core, analyses of soil and regolith, and S-wave refraction surveys. A fault zone is in the southeast corner of the site and separates two distinct sedimentary formations; the fault zone dips (steeply) southeasterly, strikes northeasterly, and extends at least 550 m along its strike direction. Drill core from the fault zone is extensively brecciated and includes evidence of tectonic contraction. Approximately 300 m east of this fault zone is another fault zone, which offsets the contact between the two sedimentary formations. The S-wave refraction surveys identified both fault zones beneath soil and regolith and thereby provided constraints on their lateral extent and location.

  18. Terrestrial gamma radiation dose (TGRD) levels in northern zone of Jos Plateau, Nigeria: Statistical relationship between dose rates and geological formations

    NASA Astrophysics Data System (ADS)

    Abba, Habu Tela; Hassan, Wan Muhamad Saridan Wan; Saleh, Muneer Aziz; Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi

    2017-11-01

    In- situ measurement of terrestrial gamma radiation dose rates (TGRD) was conducted in northern zone of Jos Plateau and a statistical relationship between the TGRD and the underlying geological formations was investigated. The TGRD rates in all the measurements ranged from 40 to 1265 nGy h-1 with a mean value of 250 nGy h-1. The maximum TGDR was recorded on geological type G8 (Younger Granites) at Bisitchi, and the lowest TGDR was recorded on G6 (Basaltic rocks) at Gabia. One way analysis of variance (ANOVA) statistical test was used to compared the data. Significantly, the results of this study inferred a strong relationship between TGRD levels with geological structures of a place. An isodose map was plotted to represent exposure rates due to TGRD. The results of this investigation could be useful for multiple public interest such as evaluating public dose for the area.

  19. U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.

    2014-01-01

    The Upper Devonian Three Forks and Upper Devonian to Lower Mississippian Bakken Formations comprise a major United States continuous oil resource. Current exploitation of oil is from horizontal drilling and hydraulic fracturing of the Middle Member of the Bakken and upper Three Forks, with ongoing exploration of the lower Three Forks, and the Upper, Lower, and Pronghorn Members of the Bakken Formation. In 2008, the U.S. Geological Survey (USGS) estimated a mean of 3.65 billion bbl of undiscovered, technically recoverable oil resource within the Bakken Formation. The USGS recently reassessed the Bakken Formation, which included an assessment of the underlying Three Forks Formation. The Pronghorn Member of the Bakken Formation, where present, was included as part of the Three Forks assessment due to probable fluid communication between reservoirs. For the Bakken Formation, five continuous and one conventional assessment units (AUs) were defined. These AUs are modified from the 2008 AU boundaries to incorporate expanded geologic and production information. The Three Forks Formation was defined with one continuous and one conventional AU. Within the continuous AUs, optimal regions of hydrocarbon recovery, or “sweet spots,” were delineated and estimated ultimate recoveries were calculated for each continuous AU. Resulting undiscovered, technically recoverable resource estimates were 3.65 billion bbl for the five Bakken continuous oil AUs and 3.73 billion bbl for the Three Forks Continuous Oil AU, generating a total mean resource estimate of 7.38 billion bbl. The two conventional AUs are hypothetical and represent a negligible component of the total estimated resource (8 million barrels of oil).

  20. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the Rio Grande rift system in Colorado. In the southwestern part of the map area, a diapiric(?) exposure of the Eagle Valley Evaporite exists and chaotic faults and folds suggest extensive dissolution and collapse of overlying bedrock, indicating the presence of a geologic hazard. Quaternary landslides are common and indicate that landslide hazards are widespread in the area, particularly where old slide deposits are disturbed by construction. The late Pliocene(?) landslide that consists largely of a smectitic upper Morrison Formation matrix and boulders of Dakota Sandstone is readily reactivated. Debris flows are likely to invade low-standing areas within the towns of Vail and West Vail where tributaries of Gore Creek issue from the mountains on the north side of the valley.

  1. Multispectral Thermal Imagery and Its Application to the Geologic Mapping of the Koobi Fora Formation, Northwestern Kenya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Mary K.

    The Koobi Fora Formation in northwestern Kenya has yielded more hominin fossils dated between 2.1 and 1.2 Ma than any other location on Earth. This research was undertaken to discover the spectral signatures of a portion of the Koobi Fora Formation using imagery from the DOE's Multispectral Thermal Imager (MTI) satellite. Creation of a digital geologic map from MTI imagery was a secondary goal of this research. MTI is unique amongst multispectral satellites in that it co-collects data from 15 spectral bands ranging from the visible to the thermal infrared with a ground sample distance of 5 meters per pixelmore » in the visible and 20 meters in the infrared. The map was created in two stages. The first was to correct the base MTI image using spatial accuracy assessment points collected in the field. The second was to mosaic various MTI images together to create the final Koobi Fora map. Absolute spatial accuracy of the final map product is 73 meters. The geologic classification of the Koobi Fora MTI map also took place in two stages. The field work stage involved location of outcrops of different lithologies within the Koobi Fora Formation. Field descriptions of these outcrops were made and their locations recorded. During the second stage, a linear spectral unmixing algorithm was applied to the MTI mosaic. In order to train the linear spectra unmixing algorithm, regions of interest representing four different classes of geologic material (tuff, alluvium, carbonate, and basalt), as well as a vegetation class were defined within the MTI mosaic. The regions of interest were based upon the aforementioned field data as well as overlays of geologic maps from the 1976 Iowa State mapping project. Pure spectra were generated for each class from the regions of interest, and then the unmixing algorithm classified each pixel according to relative percentage of classes found within the pixel based upon the pure spectra values. A total of four unique combinations of geologic classes were analyzed using the algorithm. The tuffs within the Koobi Fora Formation were defined with 100% accuracy using a combination of pure spectra from the basalt, vegetation, and tuff.« less

  2. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium concentrations were greatest in samples containing indications of reducing conditions and organic matter (dark gray to black claystones and lignite horizons). The Toll Gate Creek watershed is situated in a unique hydrogeologic setting in the west-central part of the Denver Basin such that weathering of Cretaceous- to Tertiary-aged, non-marine, selenium-bearing rocks releases selenium to groundwater and surface water under present-day semi-arid environmental conditions. The Denver Formation contains several known and suspected geologic sources of selenium including: (1) lignite deposits; (2) tonstein partings; (3) organic-rich bentonite claystones; (4) salts formed as secondary weathering products; and possibly (5) the Cretaceous-Tertiary boundary. Organically complexed selenium and/or selenium-bearing pyrite in the enclosing claystones are likely the primary mineral sources of selenium in the Denver Formation, and correlations between concentration of dissolved selenium and dissolved organic carbon in groundwater indicate weathering and dissolution of organically complexed selenium from organic-rich claystone is a primary process mobilizing selenium. Secondary salts accumulated along fractures and bedding planes in the weathered zone are another potential geologic source of selenium, although their composition was not specifically addressed by the solids analyses. Results from this and previous work indicate that shallow groundwater and streams similarly positioned over Denver Formation claystone units at other locations in the Denver Basin also may contain concentrations of dissolved selenium greater than the Colorado aquatic-life standard or the drinking- water standard.

  3. Petrophysical Rock Typing of Unconventional Shale Plays: A Case Study for the Niobrara Formation of the Denver-Julesburg (DJ) Basin

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, A.; Prasad, M.

    2015-12-01

    The hydrocarbon-rich mudstone rock layers of the Niobrara Formation were deposited in the shallow marine environment and have evolved as overmature oil- or gas-prone source and reservoir rocks. The hydrocarbon production from its low-porosity, nano-darcy permeability and interbedded chalk-marl reservoir intervals is very challenging. The post-diagenetic processes have altered the mineralogy and pore structure of its sourcing and producing rock units. A rock typing analysis in this play can help understand the reservoir heterogeneity significantly. In this study, a petrophysical rock typing workflow is presented for the Niobrara Formation by integrating experimental rock properties with geologic lithofacies classification, well log data and core study.Various Niobrara lithofacies are classified by evaluating geologic depositional history, sequence stratigraphy, mineralogy, pore structure, organic content, core texture, acoustic properties, and well log data. The experimental rock measurements are conducted on the core samples recovered from a vertical well from the Wattenberg Field of the Denver-Julesburg (DJ) Basin. Selected lithofacies are used to identify distinct petrofacies through the empirical analysis of the experimental data-set. The grouped petrofacies are observed to have unique mineralogical properties, pore characteristics, and organic contents and are labelled as discrete Niobrara rock types in the study area.Micro-textural image analysis (FESEM) is performed to qualitatively examine the pore size distribution, pore types and mineral composition in the matrix to confirm the classified rock units. The principal component analysis and the cluster analysis are carried out to establish the certainty of the selected rock types. Finally, the net-to-pay thicknesses of these rock units are compared with the cumulative production data from the field to further validate the chosen rock types.For unconventional shale plays, the rock typing information can be used to locate hydrocarbon sweetspots, facilitate the placement of the horizontal section of the wells along the sweetspots, and can augment engineers' abilities on suitable well placement considerations. It can also help enhancing the effectiveness of the hydraulic fracture stimulation and completion operation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, Jens; Apps, John; Zheng, Liange

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water qualitymore » of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.« less

  5. Evaluation of three electronic report processing systems for preparing hydrologic reports of the U.S Geological Survey, Water Resources Division

    USGS Publications Warehouse

    Stiltner, G.J.

    1990-01-01

    In 1987, the Water Resources Division of the U.S. Geological Survey undertook three pilot projects to evaluate electronic report processing systems as a means to improve the quality and timeliness of reports pertaining to water resources investigations. The three projects selected for study included the use of the following configuration of software and hardware: Ventura Publisher software on an IBM model AT personal computer, PageMaker software on a Macintosh computer, and FrameMaker software on a Sun Microsystems workstation. The following assessment criteria were to be addressed in the pilot studies: The combined use of text, tables, and graphics; analysis of time; ease of learning; compatibility with the existing minicomputer system; and technical limitations. It was considered essential that the camera-ready copy produced be in a format suitable for publication. Visual improvement alone was not a consideration. This report consolidates and summarizes the findings of the electronic report processing pilot projects. Text and table files originating on the existing minicomputer system were successfully transformed to the electronic report processing systems in American Standard Code for Information Interchange (ASCII) format. Graphics prepared using a proprietary graphics software package were transferred to all the electronic report processing software through the use of Computer Graphic Metafiles. Graphics from other sources were entered into the systems by scanning paper images. Comparative analysis of time needed to process text and tables by the electronic report processing systems and by conventional methods indicated that, although more time is invested in creating the original page composition for an electronically processed report , substantial time is saved in producing subsequent reports because the format can be stored and re-used by electronic means as a template. Because of the more compact page layouts, costs of printing the reports were 15% to 25% less than costs of printing the reports prepared by conventional methods. Because the largest report workload in the offices conducting water resources investigations is preparation of Water-Resources Investigations Reports, Open-File Reports, and annual State Data Reports, the pilot studies only involved these projects. (USGS)

  6. Geologic map and database of the Roseburg 30' x 60' quadrangle, Douglas and Coos counties, Oregon

    USGS Publications Warehouse

    Wells, Ray E.; Jayko, A.S.; Niem, A.R.; Black, G.; Wiley, T.; Baldwin, E.; Molenaar, K.M.; Wheeler, K.L.; DuRoss, C.B.; Givler, R.W.

    2001-01-01

    The Roseburg 30' x 60' Quadrangle covers the southeastern margin of the Oregon Coast Range and its tectonic boundary with Mesozoic terranes of the Klamath Mountains (see figures 1 and 2 in pamphlet, also shown on map sheet). The geologic framework of the Roseburg area was established by the pioneering work of Diller (1898), Wells and Peck, (1961) and Ewart Baldwin (1974) and his students (see figure 3 in pamphlet, also shown on map sheet). Baldwin and his students focussed on the history of the Eocene Tyee basin, where the sediments lap across the tectonic boundary with the Mesozoic terranes and record the accretion of the Coast Range basement to the continent. Others have examined the sedimentary fill of the Tyee basin in detail, recognizing the deep marine turbidite facies of the Tyee Formation (Snavely and others, 1964) and proposing several models for the Eocene evolution of the forearc basin (Heller and Ryberg, 1983; Chan and Dott, 1983; Heller and Dickinson, 1985; Molenaar, 1985; see Ryu and others, 1992 for a comprehensive summary). Along the eastern margin of the quadrangle, both the Tyee basin and the Klamath terranes are overlain by Eocene volcanic rocks of the Western Cascade arc (Walker and MacLeod, 1991). The thick Eocene sedimentary sequence of the Tyee basin has significant oil and gas potential (Armentrout and Suek, 1985; Gautier and others, 1993; Ryu and others, 1996). Although 13 deep test wells have been drilled in the Roseburg quadrangle (see figure 2 and table 1 in pamphlet, also shown on map sheet), exploration to date has been hampered by an incomplete understanding of the basin�s tectonic setting and evolution. In response, the Oregon Department of Geology and Mineral Industries (DOGAMI) initiated a five year assessment of the oil and gas potential of the Tyee basin. This map is a product of a cooperative effort by the U. S. Geological Survey, Oregon State University, and DOGAMI to systematically map the sedimentary facies and structure of the Tyee basin. New geologic mapping of twenty-eight 7.5' quadrangles is summarized on the map (see figure 3, also shown on map sheet), and the digital database contains geologic information suitable for both 1:100K and 1:24K scale analysis. DOGAMI has published a compilation and synthesis of previous mapping (Niem and Niem, 1990), a basin-wide sequence stratigraphic model and correlations (Ryu and others, 1992), and a report on the oil and gas potential (Ryu and others, 1996). Readers interested in the oil and gas potential of the Roseburg quadrangle should use the map in combination with Ryu and others (1996) to address specific stratigraphic units and structural plays. Stratigraphic terminology for the Tyee basin adopts the type sections, formation names, and framework of Ryu and others (1992, 1996), which were developed concurrently with the mapping and are recognized throughout the basin. For detailed discussion of nomenclature, type sections, lithology, thickness and distribution, age, contact relationships, and depositional environment of stratigraphic units, the reader is referred to Ryu and others (1992). In this report we focus on the spatial, temporal, and structural relationships between units revealed by geologic mapping. Map unit ages (see figure 4 in pamphlet, also shown on map sheeet) are adjusted slightly from Ryu and others (1992, 1996) to fit new coccolith age determinations (D. Bukry, cited in pamphlet), paleomagnetic polarity data (Simpson, 1977 and new data cited in pamphlet), and the time scale of Berggren and others (1995).

  7. Geo3DML: A standard-based exchange format for 3D geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Wang, Xianghong

    2018-01-01

    A geological model (geomodel) in three-dimensional (3D) space is a digital representation of the Earth's subsurface, recognized by geologists and stored in resultant geological data (geodata). The increasing demand for data management and interoperable applications of geomodelscan be addressed by developing standard-based exchange formats for the representation of not only a single geological object, but also holistic geomodels. However, current standards such as GeoSciML cannot incorporate all the geomodel-related information. This paper presents Geo3DML for the exchange of 3D geomodels based on the existing Open Geospatial Consortium (OGC) standards. Geo3DML is based on a unified and formal representation of structural models, attribute models and hierarchical structures of interpreted resultant geodata in different dimensional views, including drills, cross-sections/geomaps and 3D models, which is compatible with the conceptual model of GeoSciML. Geo3DML aims to encode all geomodel-related information integrally in one framework, including the semantic and geometric information of geoobjects and their relationships, as well as visual information. At present, Geo3DML and some supporting tools have been released as a data-exchange standard by the China Geological Survey (CGS).

  8. A Geologic Symphony: Science, Artistic Inspiration and Community Engagement in Jeffrey Nytch's Symphony No 1: Formations

    NASA Astrophysics Data System (ADS)

    Nytch, J.

    2017-12-01

    While the natural world has inspired works of visual art and music for centuries, examples of music being created as a direct expression of scientific processes or principles are relatively rare. In his 2013 work, Symphony No. 1: Formations, composer Jeffrey Nytch created a work that explicitly communicated the geologic history of the Rocky Mountain west through a musical composition. Commissioned by the Geological Society of America and premiered at the GSA's 125th Anniversary meeting, the symphony is more than merely inspired by the Rocky Mountains; rather, specific episodes of geologic history are depicted in the music. Moreover, certain processes such as metamorphosis, erosion, vulcanism, plate tectonics, and the relative duration of geologic time guided the structure and form of the music. This unique approach to musical composition allowed the work to play a novel and potent role in community engagement and education, both at the premiere performances in Colorado and subsequent performances of the symphony elsewhere. This project is thus a powerful example of how the arts can help illuminate scientific principles to the general public, in turn engaging them and helping to establish a more personal connection to the natural world around them.

  9. Hydraulics of wells

    USGS Publications Warehouse

    McLaughlin, Thad G.

    1955-01-01

    Although the subject of this lecture is supposed to be concerned primarily with the hydraulics of wells, Professor Weers has asked that I also discuss the effects tat geological formations have on the quantity and quality of water available to wells. I will discuss the geology of Colorado in relation to the availability and quality of water with particular reference to the most productive aquifers or water-bearing formations in the State. I will then discuss the hydraulics of wells with the aim of emphasizing the differences between water-table and artesian conditions.

  10. In-place oil shale resources examined by grade in the major basins of the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2013-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 4.285 trillion barrels of oil in-place in the oil shale of the three principal basins of the Eocene Green River Formation. Using oil shale cutoffs of potentially viable (15 gallons per ton) and high grade (25 gallons per ton), it is estimated that between 353 billion and 1.146 trillion barrels of the in-place resource have a high potential for development.

  11. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert

    NASA Technical Reports Server (NTRS)

    Friedmann, E. Imre; Weed, Rebecca

    1987-01-01

    In the Antarctic cold desert (Ross Desert), the survival of the cryptoendolithic microorganisms that colonize the near-surface layer of porous sandstone rocks depends on a precarious equilibrium of biological and geological factors. An unfavorable shift of this equilibrium results in death, and this may be followed by formation of trace fossils that preserve the characteristic iron-leaching pattern caused by microbial activity. Similar microbial trace fossils may exist in the geological record. If life ever arose on early Mars, similar processes may have occurred there and left recognizable traces.

  12. Cigeo, the French Geological Repository Project - 13022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude

    The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

  13. Geologic framework for the national assessment of carbon dioxide storage resources: Williston Basin, Central Montana Basins, and Montana Thrust Belt study areas: Chapter J in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Merrill, Matthew D.; Craddock, William H.; Roberts-Ashby, Tina L.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2014-01-01

    Figures in this report show the study area boundaries along with the SAU extent and cell maps of well penetrations through sealing units into the top of the storage formations. The USGS does not necessarily know the location of all wells and cannot guarantee the full extent of drilling through specific formations in any given cell shown on the cell maps.

  14. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    EPA Science Inventory

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  15. Anatomy of a Mountain Range.

    ERIC Educational Resources Information Center

    Chew, Berkeley

    1993-01-01

    Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…

  16. Development of new mapping standards for geological surveys in Greenland

    NASA Astrophysics Data System (ADS)

    Mätzler, Eva; langley, Kirsty; Hollis, Julie; Heide-Jørgensen, Helene

    2017-04-01

    The current official topographic and geological maps of Greenland are in scale of 1:250:000 and 1:500.000 respectively, allowing only very limited amount of detail. The maps are outdated, and periglacial landscapes have changed significantly since the acquisition date. Hence, new affordable mapping products of high quality are in demand that can be available within a restricted time frame. In order to fulfill those demands a new mapping standard based on satellite imagery was developed, where classifications are mainly carried out with algorithms suitable for automatization. A Digital Elevation Model (ArcticDEM) was applied allowing examination of topographic and geological structures and 3D visualizing. Information on topographic features and lithology was extracted based on analysis of spectral characteristics from different multispectral data sources (Landsat 8, ASTER, WorldView-3) partly combined with the DEM. A first product is completed, and validation was carried out by field surveys. Field and remotely sensed data were integrated into a GIS database, and derived data will be freely available providing a valuable tool for planning and carrying out mineral exploration and other field activities. This study offers a method for generating up-to-date, low-cost and high quality mapping products suitable for Arctic regions, where accessibility is restricted due to remoteness and lack of infrastructure.

  17. Preliminary three-dimensional geohydrologic framework of the San Antonio Creek Groundwater Basin, Santa Barbara County, California

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.

    2017-12-01

    The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are the primary grou­ndwater-bearing units within the basin, and that the fine-grained layer within this Formation locally restricts vertical groundwater flow.

  18. Geological features indicative of processes related to the hematite formation in Meridiani Planum and Aram Chaos, Mars: a comparison with diagenetic hematite deposits in southern Utah, USA

    NASA Astrophysics Data System (ADS)

    Ormö, Jens; Komatsu, Goro; Chan, Marjorie A.; Beitler, Brenda; Parry, William T.

    2004-10-01

    In order to understand the formation of the few but large, hematite deposits on Mars, comparisons are often made with terrestrial hematite occurrences. In southern Utah, hematite concretions have formed within continental sandstones and are exposed as extensive weathered-out beds. The hematite deposits are linked to geological and geomorphological features such as knobs, buttes, bleached beds, fractures and rings. These terrestrial features are visible in aerial and satellite images, which enables a comparison with similar features occurring extensively in the martian hematite-rich areas. The combination of processes involved in the movement and precipitation of iron in southern Utah can provide new insights in the context of the hematite formation on Mars. Here we present a mapping of the analogue geological and geomorphological features in parts of Meridiani Planum and Aram Chaos. Based on mapping comparisons with the Utah occurrences, we present models for the formation of the martian analogues, as well as a model for iron transport and precipitation on Mars. Following the Utah model, high albedo layers and rings in the mapped area on Mars are due to removal or lack of iron, and precipitation of secondary diagenetic minerals as fluids moved up along fractures and permeable materials. Hematite was precipitated intraformationally where the fluid transporting the reduced iron met oxidizing conditions. Our study shows that certain geological/geomorphological features can be linked to the hematite formation on Mars and that pH differences could suffice for the transport of the iron from an orthopyroxene volcanoclastic source rock. The presence of organic compounds can enhance the iron mobilization and precipitation processes. Continued studies will focus on possible influence of biological activity and/or methane in the formation of the hematite concretions in Utah and on Mars.

  19. Environmental siting suitability analysis for commercial scale ocean renewable energy: A southeast Florida case study

    NASA Astrophysics Data System (ADS)

    Mulcan, Amanda

    This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (OCE) projects offshore southeastern Florida through the analysis of benthic anchoring conditions. Specifically, a suitability analysis considering all presently available biologic and geologic datasets within the legal framework of OCE policy and regulation was done. OCE related literature sources were consulted to assign suitability levels to each dataset, ArcGIS interpolations generated seafloor substrate maps, and existing submarine cable pathways were considered for OCE power cables. The finalized suitability map highlights the eastern study area as most suitable for OCE siting due to its abundance of sand/sediment substrate, existing underwater cable route access, and minimal biologic presence. Higher resolution datasets are necessary to locate specific OCE development locales, better understand their benthic conditions, and minimize potentially negative OCE environmental impacts.

  20. OneGeology: Making the World’s Geological Map Data Accessible Online

    NASA Astrophysics Data System (ADS)

    Broome, H.; Jackson, I.; Robida, F.; Thorleifson, H.

    2009-12-01

    OneGeology (http://onegeology.org) is a successful international initiative of the geological surveys of the world and the flagship project of the ‘International Year of Planet Earth’. Its aim is to provide dynamic web access to geological map data covering the world, creating a focus for accessing geological information for everyone. Thanks to the enthusiasm and support of participating nations the initiative has progressed rapidly and geological surveys and the many users of their data are excited about this ground-breaking project. Currently 10 international geoscience organizations have endorsed the initiative and more than 109 countries have agreed to participate. OneGeology works with whatever digital format is available in each country. The target scale is 1:1 million, but the project is pragmatic and accepts a range of scales and the best available data. The initiative recognizes that different nations have differing abilities to participate and transfer of know-how to those who need it is a key aspect of the approach. A key contributor to the success of OneGeology has been its utilization of the latest new web technology and an emerging data exchange standard for geological map data called GeoSciML. GeoSciML (GeoScience Markup Language) is a schema written in GML (Geography Markup Language) for geological data. GeoSciML has the ability to represent both the geography (geometries e.g. polygons, lines and points) and geological attribution in a clear and structured format. OneGeology was launched March 2007 at the inaugural workshop in Brighton England. At that workshop the 43 participating nations developed a declaration of a common objective and principles called the “Brighton Accord” (http://onegeology.org/what_is/accord.html) . Work was initiated immediately and the resulting OneGeology Portal was launched at the International Geological Congress in Oslo in August 2008 by Simon Winchester, author of “The Map that Changed the World”. Since the successful launch, OneGeology participants have continued working both to increase national participation and content, and to put in place a more formal governance structure to oversee the long term evolution of the initiative. OneGeology is an example of collaboration in action and is both multilateral and multinational. In 2007, a group of motivated geoscientists and data managers identified an opportunity and took the initiative to engage their peers to work in concert to achieve a shared objective. OneGeology has facilitated collaborative development of an Internet site that provides unprecedented online access to global geological map data.

  1. AAPB-B - Committee offers revised exchange format for transferring geologic and petroleum data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waller, H.O.; Guinn, D.; Herkommer, M.

    1990-04-01

    Comments received since the publication of Exchange Format for Transfer of Geologic and Petroleum Data revealed the need for more flexibility with the AAPG-A Format (Shaw and Waller, 1989). This discussion resulted in the proposed AAPG-B version, which has unlimited number of data fields per record and unlimited number of records. Comment lines can appear anywhere, including in data records, to help document data transfer. Data dictionary hooks have been added. The American Petroleum Institute has assisted by supplying an ANSI envelope for this format, which will permit the electronic transfer with verification of data sets between any two ANSImore » installations. The American Association of Petroleum Geologists Database Standards Subcommittee invites comments on the proposed revisions, and will review the suggestions when it meets June 2 in San Francisco.« less

  2. Percolation Tests for Septic Systems: A Laboratory Exercise.

    ERIC Educational Resources Information Center

    Tinker, John R., Jr.

    1978-01-01

    Describes how the procedures by which a certificate soil tester evaluates a parcel of land for its suitability as a site for a private sewage system or septic tank can be used by college students as a laboratory exercise in environmental geology. (HM)

  3. Preliminary geologic map of the Fontana 7.5' quadrangle, Riverside and San Bernardino Counties, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.

    2003-01-01

    Open-File Report 03-418 is a digital geologic data set that maps and describes the geology of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California. The Fontana quadrangle database is one of several 7.5’ quadrangle databases that are being produced by the Southern California Areal Mapping Project (SCAMP). These maps and databases are, in turn, part of the nation-wide digital geologic map coverage being developed by the National Cooperative Geologic Map Program of the U.S. Geological Survey (USGS). General Open-File Report 03-418 contains a digital geologic map database of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file (fon_map.ps) to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. An Encapsulated PostScript (EPS) file (fon_grey.eps) created in Adobe Illustrator 10.0 to plot the geologic map on a grey topographic base, and containing a Correlation of Map Units (CMU), a Description of Map Units (DMU), and an index map. 4. Portable Document Format (.pdf) files of: a. the Readme file; includes in Appendix I, data contained in fon_met.txt b. The same graphics as plotted in 2 and 3 above.Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (4b above) or plotting the postscript files (2 or 3 above).

  4. Analyzing a suitable elastic geomechanical model for Vaca Muerta Formation

    NASA Astrophysics Data System (ADS)

    Sosa Massaro, Agustin; Espinoza, D. Nicolas; Frydman, Marcelo; Barredo, Silvia; Cuervo, Sergio

    2017-11-01

    Accurate geomechanical evaluation of oil and gas reservoir rocks is important to provide design parameters for drilling, completion and predict production rates. In particular, shale reservoir rocks are geologically complex and heterogeneous. Wells need to be hydraulically fractured for stimulation and, in complex tectonic environments, it is to consider that rock fabric and in situ stress, strongly influence fracture propagation geometry. This article presents a combined wellbore-laboratory characterization of the geomechanical properties of a well in El Trapial/Curamched Field, over the Vaca Muerta Formation, located in the Neuquén Basin in Argentina. The study shows the results of triaxial tests with acoustic measurements in rock plugs from outcrops and field cores, and corresponding dynamic to static correlations considering various elastic models. The models, with increasing complexity, include the Isotropic Elastic Model (IEM), the Anisotropic Elastic Model (AEM) and the Detailed Anisotropic Elastic Model (DAEM). Each model shows advantages over the others. An IEM offers a quick overview, being easy to run without much detailed data for heterogeneous and anisotropic rocks. The DAEM requires significant amounts of data, time and a multidisciplinary team to arrive to a detailed model. Finally, an AEM suits well to an anisotropic and realistic rock without the need of massive amounts of data.

  5. Accuracy and sensitivity analysis on seismic anisotropy parameter estimation

    NASA Astrophysics Data System (ADS)

    Yan, Fuyong; Han, De-Hua

    2018-04-01

    There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.

  6. Constructional Volcanic Edifices on Mercury: Candidates and Hypotheses of Formation

    NASA Astrophysics Data System (ADS)

    Wright, Jack; Rothery, David A.; Balme, Matthew R.; Conway, Susan J.

    2018-04-01

    Mercury, a planet with a predominantly volcanic crust, has perplexingly few, if any, constructional volcanic edifices, despite their common occurrence on other solar system bodies with volcanic histories. Using image and topographical data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we describe two small (<15-km diameter) prominences with shallow summit depressions associated with volcanically flooded impact features. We offer both volcanic and impact-related interpretations for their formation, and then compare these landforms with volcanic features on Earth and the Moon. Though we cannot definitively conclude that these landforms are volcanic, the paucity of constructional volcanic edifices on Mercury is intriguing in itself. We suggest that this lack is because volcanic eruptions with sufficiently low eruption volumes, rates, and flow lengths, suitable for edifice construction, were highly spatiotemporally restricted during Mercury's geological history. We suggest that volcanic edifices may preferentially occur in association with late-stage, postimpact effusive volcanic deposits. The European Space Agency/Japan Aerospace Exploration Agency BepiColombo mission to Mercury will be able to investigate further our candidate volcanic edifices; search for other, as-yet unrecognized edifices beneath the detection limits of MESSENGER data; and test our hypothesis that edifice construction is favored by late-stage, low-volume effusive eruptions.

  7. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    NASA Technical Reports Server (NTRS)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  8. Lithology and aggregate quality attributes for the digital geologic map of Colorado

    USGS Publications Warehouse

    Knepper, Daniel H.; Green, Gregory N.; Langer, William H.

    1999-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map.

  9. Technical Report for Proposed Ordnance Clearance at Fort George G. Meade

    DTIC Science & Technology

    1991-03-01

    Potomac Group (including the Patapsco, Arundel Clay, and Patuxent Formations), the Magothy Formation and the Patuxent River terraces and associated...alluvium. The youngest geologic unit in theI stratigraphic sequence underlying Fort Meade is the Magothy Formation of Late Cretaceous age. This formation...Department of the Army, 1981). The Magothy Formation unconformably overlies the sediments of the Lower Cretaceous Potomac Group. i The formations of the

  10. Geological Sequestration of CO2 A Brief Overview and Potential for Application for Oklahoma

    EPA Science Inventory

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  11. Life on Guam: Geology. 1977 Edition.

    ERIC Educational Resources Information Center

    Elkins, Gail; And Others

    As part of an updated series of activity oriented educational materials dealing with aspects of the Guam environment, this publication focuses on the physical environment of Guam through an introduction to the geology of Guam. Contents include the formation of Guam, weathering and erosion, earthquakes, soil, and water. Activities investigate…

  12. Geologic Map of the Derain (H-10) Quadrangle on Mercury: The Challenges of Consistently Mapping the Intercrater Plains Unit

    NASA Astrophysics Data System (ADS)

    Whitten, J. L.; Fassett, C. I.; Ostrach, L. R.

    2018-06-01

    We present the initial mapping of the H-10 quadrangle on Mercury, a region that was imaged for the first time by MESSENGER. Geologic map with assist with further characterization of the intercrater plains and their possible formation mechanism(s).

  13. 40 CFR 98.441 - Reporting threshold.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Reporting threshold. 98.441 Section 98...) MANDATORY GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.441 Reporting threshold. (a... amount of CO2 for long-term containment in subsurface geologic formations. There is no threshold. (b...

  14. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  15. U.S. Geological Survey Geologic Carbon Sequestration Assessment

    NASA Astrophysics Data System (ADS)

    Warwick, P. D.; Blondes, M. S.; Brennan, S.; Corum, M.; Merrill, M. D.

    2012-12-01

    The Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geological storage resources for carbon dioxide (CO2) in consultation with the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and State geological surveys. To conduct the assessment, the USGS developed a probability-based assessment methodology that was extensively reviewed by experts from industry, government and university organizations (Brennan et al., 2010, http://pubs.usgs.gov/of/2010/1127). The methodology is intended to be used at regional to sub-basinal scales and it identifies storage assessment units (SAUs) that are based on two depth categories below the surface (1) 3,000 to 13,000 ft (914 to 3,962 m), and (2) 13,000 ft (3,962 m) and greater. In the first category, the 3,000 ft (914 m) minimum depth of the storage reservoir ensures that CO2 is in a supercritical state to minimize the storage volume. The depth of 13,000 ft (3,962 m) represents maximum depths that are accessible with average injection pressures. The second category represents areas where a reservoir formation has potential storage at depths below 13,000 ft (3,962 m), although they are not accessible with average injection pressures; these are assessed as a separate SAU. SAUs are restricted to formation intervals that contain saline waters (total dissolved solids greater than 10,000 parts per million) to prevent contamination of protected ground water. Carbon dioxide sequestration capacity is estimated for buoyant and residual storage traps within the basins. For buoyant traps, CO2 is held in place in porous formations by top and lateral seals. For residual traps, CO2 is contained in porous formations as individual droplets held within pores by capillary forces. Preliminary geologic models have been developed to estimate CO2 storage capacity in approximately 40 major sedimentary basins within the United States. More than 200 SAUs have been identified within these basins. The results of the assessment are estimates of the technically accessible storage resources based on present-day geological and engineering technology related to CO2 injection into geologic formations; therefore the assessment is not of total in-place resources. Summary geologic descriptions of the evaluated basins and SAUs will be prepared, along with the national assessment results. During the coming year, these results will be released as USGS publications available from http://energy.usgs.gov. In support of these assessment activities, CO2 sequestration related research science is being conducted by members of the project. Results of our research will contribute to current and future CO2 storage assessments conducted by the USGS and other organizations. Research topics include: (a) geochemistry of CO2 interactions with subsurface environments; (b) subsurface petrophysical rock properties in relation to CO2 injection; (c) enhanced oil recovery and the potential for CO2 storage; (d) storage of CO2 in unconventional reservoirs (coal, shale, and basalt); (e) statistical aggregation of assessment results; and (f) potential risks of induced seismicity.

  16. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOEpatents

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

  17. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOEpatents

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

  18. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin.

    PubMed

    Edwards, N P; Barden, H E; van Dongen, B E; Manning, P L; Larson, P L; Bergmann, U; Sellers, W I; Wogelius, R A

    2011-11-07

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms.

  19. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin

    PubMed Central

    Edwards, N. P.; Barden, H. E.; van Dongen, B. E.; Manning, P. L.; Larson, P. L.; Bergmann, U.; Sellers, W. I.; Wogelius, R. A.

    2011-01-01

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms. PMID:21429928

  20. The bedrock electrical conductivity map of the UK

    NASA Astrophysics Data System (ADS)

    Beamish, David

    2013-09-01

    Airborne electromagnetic (AEM) surveys, when regionally extensive, may sample a wide-range of geological formations. The majority of AEM surveys can provide estimates of apparent (half-space) conductivity and such derived data provide a mapping capability. Depth discrimination of the geophysical mapping information is controlled by the bandwidth of each particular system. The objective of this study is to assess the geological information contained in accumulated frequency-domain AEM survey data from the UK where existing geological mapping can be considered well-established. The methodology adopted involves a simple GIS-based, spatial join of AEM and geological databases. A lithology-based classification of bedrock is used to provide an inherent association with the petrophysical rock parameters controlling bulk conductivity. At a scale of 1:625k, the UK digital bedrock geological lexicon comprises just 86 lithological classifications compared with 244 standard lithostratigraphic assignments. The lowest common AEM survey frequency of 3 kHz is found to provide an 87% coverage (by area) of the UK formations. The conductivities of the unsampled classes have been assigned on the basis of inherent lithological associations between formations. The statistical analysis conducted uses over 8 M conductivity estimates and provides a new UK national scale digital map of near-surface bedrock conductivity. The new baseline map, formed from central moments of the statistical distributions, allows assessments/interpretations of data exhibiting departures from the norm. The digital conductivity map developed here is believed to be the first such UK geophysical map compilation for over 75 years. The methodology described can also be applied to many existing AEM data sets.

  1. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Grant, John A., III; Nedell, Susan S.

    1987-01-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  2. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    PubMed Central

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-01-01

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems. PMID:26694380

  3. Maps for America: cartographic products of the U.S. Geological Survey and others

    USGS Publications Warehouse

    Thompson, Morris M.

    1981-01-01

    "Maps for America" was originally published in 1979 as a Centennial Volume commemorating the Geological Survey's hundred years of service (1879-1979) in the earth sciences. It was an eminently fitting Centennial Year publication, for, since its establishment, the Geological Survey has continuously carried on an extensive program of mapping to provide knowledge of the topography, geology, hydrology, and natural resources of our Nation. This volume contains an organized presentation of information about the maps produced by the Geological Survey and other American organizations, public and private. Such maps are important tools for those in government and in private endeavors who are working to assure the wisest choices in managing the Nation's resources. They are particularly supportive of the Department of the Interior's role as the Nation's principal conservation agency. The second edition of "Maps for America" is intended primarily to replenish the dwindling supply of copies of the book, but it also contains a number of changes to correct or update the text and to provide more suitable illustrations in certain instances.

  4. Analysis of the characteristics appearing in LANDSAT multispectral images in the geological structural mapping of the midwestern portion of the Rio Grande do Sul shield. M.S. Thesis - 25 Mar. 1982; [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Ohara, T.

    1982-01-01

    The central-western part of Rio Grande do Sul Shield was geologically mapped to test the use of MSS-LANDSAT data in the study of mineralized regions. Visual interpretation of the images a the scale of 1:500,000 consisted, in the identification and analysis of the different tonal and textural patterns in each spectral band. After the structural geologic mapping of the area, using visual interpretation techniques, the statistical data obtained were evaluated, specially data concerning size and direction of fractures. The IMAGE-100 system was used to enlarge and enhance certain imagery. The LANDSAT MSS data offer several advantages over conventional white and black aerial photographs for geological studies. Its multispectral characteristic (band 6 and false color composition of bands 4, 5 and 7 were best suitable for the study). Coverage of a large imaging area of about 35,000 sq km, giving a synoptical view, is very useful for perceiving the regional geological setting.

  5. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences--A Review.

    PubMed

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  6. Digital atlas of the upper Washita River basin, southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  7. "Let's take back our roots through Science". The Sicilian Sulfur: a mineralogical treasure to rediscover.

    NASA Astrophysics Data System (ADS)

    Parisi, Bianca

    2015-04-01

    The name of sulfur is synonymous of Sicily! Sicilian Sulfur minerals and evaporitic deposits are well-known because they are connected with an important evolution stage of the old mediterranean area. In this Island, in the southern part of Italy, a geological formation of Messinian age, called "gessoso solfifera", outcrops. These rocks are widespread in the south and south-west Sicily, and, there, salt mines and "zolfare", sulfur mines, were located. The formation is characterized by large amounts of gypsum, potassium salts, sodium chlorates and other deposits. Most of the main mineralogical museum collections all over the world have at least a sample of one of these minerals that are usually characterized by a high aesthetic quality. When I proposed a lesson on the origin of sulfur in evaporitic rocks, I realized that an important part of the hystory of our region was in danger to be forgotten by younger generation. The exploitation of this mineral resource in the past is strictly linked to the troubled social and cultural transformation of Sicily during the last century. Thus, this is a particularly suitable topic for a multidisciplinary approach. In cooperation with the Mineralogical Museum (SteBiCeF Department, University of Palermo), a learning project was proposed to a group of 4th year high school students. It has been carrying on in order to develop the knowledge of the geological and chemical features of evaporitic deposits and to promote scientific abilities together with a better understanding of social-environmental issues. Project aims and activities include: ➢ Solubility and saturation experiments to reconstruct a simplified model of minerals deposition ➢ Working in groups: collection of data about old geological outcrops and current evaporating basins where rocks are forming in the world as well as information on sicilian mines from literature and historical documents (video, interviews, pictures, newspapers and others) ➢ a guided tour of the Mineralogical Museum and participation to laboratory activities, especially focussing on the identification of sulfates and chlorates minerals and on the observation of samples of different kind of rocks coming from the outcropping areas. ➢ a trip to the Floristella Geopark, instituted on the area of one of the oldest sulfur mine and most eloquent site of industrial archeology and scenario of the fighting for the workers' social rescue. The project can be experienced as a virtual journey through the geological time but also as a dramatic picture of the hard working conditions into the mines. Students are motivated and engaged to learn about geological processes using their whole scientific competences. Nevertheless, expected learning outcomes will be the final awareness to manage responsibly natural resources, even because of the strong impact on social daylife. That's we can definitely say how to take back our roots through Science!

  8. Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, James W.

    2008-01-01

    Lakshmi Planum is a high-standing plateau (3.5-4.5 km above MPR) surrounded by the highest mountain ranges on Venus. Lakshmi represents a unique type of elevated region different from dome-shaped and rifted rises and tessera-bearing crustal plateaus. The unique characteristics of Lakshmi suggest that it formed by an unusual combination of processes and played an important role in Venus geologic history. Lakshmi was studied with Venera-15/16 and Magellan data, resulting in two classes of models, divergent and convergent, to explain its unusual topographic and morphologic characteristics. Divergent models explain Lakshmi as a site of mantle upwelling due to rising and subsequent collapse of a mantle diapir; such models explain emplacement of a lava plateau inside Lakshmi and, in some circumstances, formation of the mountain ranges. The convergent models consider Lakshmi as a locus of mantle downwelling, convergence, underthrusting, and possible subduction. Key features in these models are the mountain ranges, high topography of Lakshmi interior, and the large volcanic centers in the plateau center. These divergent and convergent models entail principally different mechanisms of formation and suggest different geodynamic regimes on Venus. Almost all models make either explicit or implicit predictions about the type and sequence of major events during formation and evolution of Lakshmi and thus detailed geological mapping can be used to test them. Here we present the results of such geological mapping (the V-7 quadrangle, 50-75degN, 300-360degE; scale 1:5M) that allows testing the proposed models for Lakshmi.

  9. Publications - GMC 301 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 301 Publication Details Title: Seal quality evaluations of selected formations of Umiat wells Reference PetroTech Associates, 2002, Seal quality evaluations of selected formations of Umiat wells, Umiat

  10. View of Yellowknife Bay Formation, with Drilling Sites

    NASA Image and Video Library

    2013-12-09

    This mosaic of images from NASA Curiosity shows geological members of the Yellowknife Bay formation, and the sites where Curiosity drilled into the lowest-lying member, called Sheepbed, at targets John Klein and Cumberland.

  11. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  12. Ground-water data for the Hanna and Carbon basins, south-central Wyoming, through 1980

    USGS Publications Warehouse

    Daddow, P.B.

    1986-01-01

    Groundwater resources in the Hanna and Carbon Basins of Wyoming were assessed in a study from 1974 through 1980 because of the development of coal mining in the area. Data collected from 105 wells during that study, including well-completion records, lithologic logs, and water levels, are presented. The data are from stock wells, coal-test holes completed as observation wells by the U.S. Geological Survey. The data are mostly from mined coal-bearing formations: the Tertiary Hanna Formation and the Tertiary and Cretaceous Ferris Formation. Well-completion data and lithologic logs were collected on-site during drilling of the wells or from U.S. Geological Survey files, company records, Wyoming State Engineer well-permit files, and published reports. (USGS)

  13. Chemical and Isotopic Tracers of Natural Gas and Formation Waters in Fractured Shales, Feb 24-25, 2011

    EPA Pesticide Factsheets

    This presentation by J.McIntosh, M.Schlegal, and B.Bates from the University of Arizona compares the chemical and isotope formation in fractured shales with shallow drift aquifers, coalbeds and other deep geologic formations, based on the Illinois basin.

  14. 10 CFR 63.302 - Definitions for Subpart L.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; and (5) The lithosphere. Aquifer means a water-bearing underground geological formation, group of formations, or part of a formation (excluding perched water bodies) that can yield a significant amount of ground water to a well or spring. Controlled area means: (1) The surface area, identified by passive...

  15. 10 CFR 63.302 - Definitions for Subpart L.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; and (5) The lithosphere. Aquifer means a water-bearing underground geological formation, group of formations, or part of a formation (excluding perched water bodies) that can yield a significant amount of ground water to a well or spring. Controlled area means: (1) The surface area, identified by passive...

  16. Alaska Geochemical Database - Mineral Exploration Tool for the 21st Century - PDF of presentation

    USGS Publications Warehouse

    Granitto, Matthew; Schmidt, Jeanine M.; Labay, Keith A.; Shew, Nora B.; Gamble, Bruce M.

    2012-01-01

    The U.S. Geological Survey has created a geochemical database of geologic material samples collected in Alaska. This database is readily accessible to anyone with access to the Internet. Designed as a tool for mineral or environmental assessment, land management, or mineral exploration, the initial version of the Alaska Geochemical Database - U.S. Geological Survey Data Series 637 - contains geochemical, geologic, and geospatial data for 264,158 samples collected from 1962-2009: 108,909 rock samples; 92,701 sediment samples; 48,209 heavy-mineral-concentrate samples; 6,869 soil samples; and 7,470 mineral samples. In addition, the Alaska Geochemical Database contains mineralogic data for 18,138 nonmagnetic-fraction heavy mineral concentrates, making it the first U.S. Geological Survey database of this scope that contains both geochemical and mineralogic data. Examples from the Alaska Range will illustrate potential uses of the Alaska Geochemical Database in mineral exploration. Data from the Alaska Geochemical Database have been extensively checked for accuracy of sample media description, sample site location, and analytical method using U.S. Geological Survey sample-submittal archives and U.S. Geological Survey publications (plus field notebooks and sample site compilation base maps from the Alaska Technical Data Unit in Anchorage, Alaska). The database is also the repository for nearly all previously released U.S. Geological Survey Alaska geochemical datasets. Although the Alaska Geochemical Database is a fully relational database in Microsoft® Access 2003 and 2010 formats, these same data are also provided as a series of spreadsheet files in Microsoft® Excel 2003 and 2010 formats, and as ASCII text files. A DVD version of the Alaska Geochemical Database was released in October 2011, as U.S. Geological Survey Data Series 637, and data downloads are available at http://pubs.usgs.gov/ds/637/. Also, all Alaska Geochemical Database data have been incorporated into the interactive U.S. Geological Survey Mineral Resource Data web portal, available at http://mrdata.usgs.gov/.

  17. Entrepreneurial Earth Science.

    ERIC Educational Resources Information Center

    Lacy, Carol

    1997-01-01

    Presents an activity in which groups of students form land-use companies that work for a client who is seeking land suitable for an all-season resort. Involves students working together and drawing on their knowledge of contour lines, topography, land forms, climate, natural disasters, geology, and hydrology. (JRH)

  18. Regional assessment of aquifers for thermal-energy storage. Volume 2: Regions 7 through 12

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the unglaciated central region, glaciated Appalachians, unglaciated Appalachians, coastal plain, Hawaii, and Alaska are discussed.

  19. Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. Thismore » report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less

  20. Summary of hydrogeologic and ground-water-quality data and hydrogeologic framework at selected well sites, Adams County, Pennsylvania

    USGS Publications Warehouse

    Low, Dennis J.; Dugas, Diana L.

    1999-01-01

    Rapid population growth in Adams County has increased the demand for ground water and led Adams County planning officials to undertake an effort to evaluate the capabilities of existing community water systems to meet future, projected growth and to begin wellhead-protection programs for public-supply wells. As part of this effort, this report summarizes ground-water data on a countywide scale and provides hydrogeologic information needed to delineate wellheadprotection areas in three hydrogeologic units (Gettysburg Lowland, Blue Ridge, and Piedmont Lowland).Reported yields, specific capacities, well depths, and reported overburden thickness can vary by hydrogeologic unit, geologic formation, water use (domestic and nondomestic), and topographic setting. The reported yields of domestic wells drilled in the Gettysburg Lowland (median reported yield of 10 gallons per minute) are significantly greater than the reported yields from the Blue Ridge, Piedmont Lowland, and Piedmont Upland (median reported yields of 7.0, 8.0, and 7.0 gallons per minute, respectively). Reported yields of domestic wells completed in the diabase and the New Oxford Formation of the Gettysburg Lowland, and in the metarhyolite and metabasalt of the Blue Ridge, are significantly lower than reported yields of wells completed in the Gettysburg Formation. For nondomestic wells, reported yields from the Conestoga Formation of the Piedmont Lowland are significantly greater than in the diabase. Reported yields of nondomestic wells drilled in the Gettysburg, New Oxford, and Conestoga Formations, and the metarhyolite are significantly greater than those for domestic wells drilled in the respective geologic formations. Specific capacities of nondomestic wells in the Conestoga and Gettysburg Formations are significantly greater than their domestic counterparts. Specific capacities of nondomestic wells in the Conestoga Formation are significantly greater than the specific capacities of nondomestic wells in the metarhyolite, diabase, and Gettysburg and New Oxford Formations.Well depths do not vary considerably by hydrogeologic unit; instead, the greatest variability is by water use. Nondomestic wells drilled in the metarhyolite, Kinzers, Conestoga, Gettysburg, and New Oxford Formations are completed at significantly greater depths than their domestic counterparts. The reported thickness of overburden varies significantly by geologic formation and water use, but not by topographic setting. The median overburden thickness of the Blue Ridge (35 feet) is greater than in any other hydrologic unit.Except where adversely affected by human activities, ground water in Adams County is suitable for most purposes. Calcium and magnesium are the dominant cations, and bicarbonate is the dominant anion. In general, the pH and hardness of ground water is lower in areas that are underlain by crystalline rocks (Blue Ridge and Piedmont Upland) than in areas underlain by sedimentary rocks, especially where limestone or dolomite is dominant (Piedmont Lowland). Dissolved nitrate (as N) and dissolved nitrite (as N) concentrations in the water from 9 of 69 wells and 3 of 80 wells sampled exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant levels (MCL) of 10 and 1.0 mg/L (milligrams per liter), respectively. Sulfate concentrations greater than the proposed USEPA MCL of 500 mg/L were reported from the water in 3 of 110 wells sampled. Iron concentrations in the water from 13 of 67 wells sampled and manganese in the water from 9 of 64 wells sampled exceeded the USEPA secondary maximum contaminant level (SMCL) of 300 and 50 mg/L (micrograms per liter), respectively. Aluminum concentrations in the water from 16 of 22 wells sampled exceeded the lower USEPA SMCL threshold of 50 µg/L. Pesticides were detected in the water from seven wells but at concentrations that did not exceed USEPA MCL's. Most volatile organic compounds detected in the ground water were confined to USEPA Superfund sites or the immediate area around the sites.The hydrogeologic framework in the vicinity of four public-supply well fields (Gettysburg, Abbottstown, Fairfield, and Littlestown) consists of two zones—an upper zone and a lower zone. In general, the upper zone is thin (5 to 60 feet or more) and dominated by saturated regolith and deeply weathered bedrock. The upper zone is bounded at the top by the water table and below by bedrock in which secondary porosity and permeability are considerably lower. Ground water is generally unconfined, and recharge rates are rapid. Ground-water flow is influenced more strongly by the topography of the ground surface and bedrock surface than by geologic structure. The lower zone is relatively thick (400 to 1,000 feet) and consists of slightly weathered to highly competent bedrock. Ground-water flow paths in the lower zone are generally greater and recharge rates are longer than in the upper zone; confined conditions are common, especially at depth.

  1. Seismic Moment and Recurrence using Luminescence Dating Techniques: Characterizing brittle fault zone materials suitable for luminescence dating

    NASA Astrophysics Data System (ADS)

    Tsakalos, E.; Lin, A.; Bassiakos, Y.; Kazantzaki, M.; Filippaki, E.

    2017-12-01

    During a seismic-geodynamic process, frictional heating and pressure are generated on sediments fragments resulting in deformation and alteration of minerals contained in them. The luminescence signal enclosed in minerals crystal lattice can be affected and even zeroed during such an event. This has been breakthrough in geochronological studies as it could be utilized as a chronometer for the previous seismic activity of a tectonically active area. Although the employment of luminescence dating has in some cases been successfully described, a comprehensive study outlining and defining protocols for routine luminescence dating applied to neotectonic studies has not been forthcoming. This study is the experimental investigation, recording and parameterization of the effects of tectonic phenomena on minerals luminescence signal and the development of detailed protocols for the standardization of the luminescence methodology for directly dating deformed geological formations, so that the long-term temporal behaviour of seismically active faults could be reasonably understood and modeled. This will be achieved by: a) identifying and proposing brittle fault zone materials suitable for luminescence dating using petrological, mineralogical and chemical analyses and b) investigating the "zeroing" potential of the luminescence signal of minerals contained in fault zone materials by employing experimental simulations of tectonic processes in the laboratory, combined with luminescence measurements on samples collected from real fault zones. For this to be achieved, a number of samples collected from four faults of four different geographical regions will be used. This preliminary-first step of the study presents the microstructural, and mineralogical analyses for the characterization of brittle fault zone materials that contain suitable minerals for luminescence dating (e.g., quartz and feldspar). The results showed that the collected samples are seismically deformed fault zone materials (mylonites, tectonites, and tectonic breccias etc) and contained enough quantity of minerals suitable for luminescence dating.

  2. Mont Terri Underground Rock Laboratory, Switzerland-Research Program And Key Results

    NASA Astrophysics Data System (ADS)

    Nussbaum, C. O.; Bossart, P. J.

    2012-12-01

    Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants and the potential for self-sealing, has brought clay formations into focus as potential host rocks for the geological disposal of radioactive waste. Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching clay formations. Research is carried out in the underground facility, which is located adjacent to the security gallery of the Mont Terri motorway tunnel. Fifteen partners from European countries, USA, Canada and Japan participate in the project. The objectives of the research program are to analyze the hydrogeological, geochemical and rock mechanical properties of the Opalinus Clay, to determine the changes induced by the excavation of galleries and by heating of the rock formation, to test sealing and container emplacement techniques and to evaluate and improve suitable investigation techniques. For the safety of deep geological disposal, it is of key importance to understand the processes occurring in the undisturbed argillaceous environment, as well as the processes in a disturbed system, during the operation of the repository. The objectives are related to: 1. Understanding processes and mechanisms in undisturbed clays and 2. Experiments related to repository-induced perturbations. Experiments of the first group are dedicated to: i) Improvement of drilling and excavation technologies and sampling methods; ii) Estimation of hydrogeological, rock mechanical and geochemical parameters of the undisturbed Opalinus Clay. Upscaling of parameters from laboratory to in situ scale; iii) Geochemistry of porewater and natural gases; evolution of porewater over time scales; iv) Assessment of long-term hydraulic transients associated with erosion and thermal scenarios and v) Evaluation of diffusion and retention parameters for long-lived radionuclides. Experiments related to repository-induced perturbations are focused on: i) Influence of rock liner on the disposal system and the buffering potential of the host rock; ii) Self-sealing processes in the excavation damaged zone; iii) Hydro-mechanical coupled processes (e.g. stress redistributions and pore pressure evolution during excavation); iv) Thermo-hydro-mechanical-chemical coupled processes (e.g. heating of bentonite and host rock) and v) Gas-induced transport of radionuclides in porewater and along interfaces in the engineered barrier system. A third research direction is to demonstrate the feasibility of repository construction and long-term safety after repository closure. Demonstration experiments can contribute to improving the reliability of the scientific basis for the safety assessment of future geological repositories, particularly if they are performed on a large scale and with a long duration. These experiments include the construction and installation of engineered barriers on a 1:1 scale: i) Horizontal emplacement of canisters; ii) Evaluation of the corrosion of container materials; repository re-saturation; iii) Sealing of boreholes and repository access tunnels and iv) Long-term monitoring of the repository. References Bossart, P. & Thury, M. (2008): Mont Terri Rock Laboratory. Project, Programme 1996 to 2007 and Results. - Rep. Swiss Geol. Surv. 3.

  3. Geologic map of the Silt Quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Shroba, R.R.; Scott, R.B.

    2001-01-01

    New 1:24,000-scale geologic mapping in the Silt 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift, the Grand Hogback, and the eastern Piceance Basin. The Wasatch Formation was subdivided into three formal members, the Shire, Molina, and Atwell Gulch Members. Also a sandstone unit within the Shire Member was broken out. The Mesaverde Group consists of the upper Williams Fork Formation and the lower Iles Formation. Members for the Iles Formation consist of the Rollins Sandstone, the Cozzette Sandstone, and the Corcoran Sandstone Members. The Cozzette and Corcoran Sandstone Members were mapped as a combined unit. Only the upper part of the Upper Member of the Mancos Shale is exposed in the quadrangle. From the southwestern corner of the map area toward the northwest, the unfaulted early Eocene to Paleocene Wasatch Formation and underlying Mesaverde Group gradually increase in dip to form the Grand Hogback monocline that reaches 45-75 degree dips to the southwest (section A-A'). The shallow west-northwest-trending Rifle syncline separates the northern part of the quadrangle from the southern part along the Colorado River. Geologic hazards in the map area include erosion, expansive soils, and flooding. Erosion includes mass wasting, gullying, and piping. Mass wasting involves any rock or surficial material that moves downslope under the influence of gravity, such as landslides, debris flows, or rock falls, and is generally more prevalent on steeper slopes. Locally, where the Grand Hogback is dipping greater than 60 degrees and the Wasatch Formation has been eroded, leaving sandstone slabs of the Mesa Verde Group unsupported over vertical distances as great as 500 m, the upper part of the unit has collapsed in landslides, probably by a process of beam-buckle failure. In the source area of these landslides strata are overturned and dip shallowly to the northeast. Landslide deposits now armor Pleistocene pediment surfaces and extend at least 1 km into Cactus Valley. Gullying and piping generally occur on more gentle slopes. Expansive soils and expansive bedrock are those unconsolidated materials or rocks that swell when wet and shrink when dry. Most floods are restricted to low-lying areas. Several gas-producing wells extract methane from coals from the upper part of the Iles Formation.

  4. Geology of Unga Island and the northwestern part of Popof Island: Chapter 2 in A geological and geophysical study of the gold-silver vein system of Unga Island, Southwestern Alaska

    USGS Publications Warehouse

    Riehle, James R.; Wilson, Frederic H.; Shew, Nora B.; White, Willis H.

    1999-01-01

    The first geologic map of Unga Island was published by Atwood (1911; scale 1:250,000), who correctly inferred the middle Tertiary age of the volcanic rocks and made the important distinction between the lava flows and the intrusive domes. Although Burk's (1964) reconnaissance map of the Alaska Peninsula (scale 1:250,000) has been modified in some respects, it does correct Atwood's map by replacing the Kenai Formation on northwestern Unga Island with the Unga Conglomerate and by recognizing the older Stepovak Formation elsewhere on Unga and Popof Islands.U.S. Geological Survey (USGS) field studies that were focused on the mineral-resource potential of the Alaska Peninsula began in the late 1970's. These studies led to a geologic map of the Port Moller quadrangle--including Unga Island--at 1:250,000 scale (Wilson and others, 1995), as well as summaries of mineral occurrences and geochronological studies (Wilson and others, 1988, 1994) and a formal revision of the stratigraphic units of the Alaska Peninsula (Detterman and others, 1996). As follow-up to the regional studies, a detailed study of the vein systems on Unga Island was undertaken as a collaborative effort between USGS and private industry (White and Queen, 1989). The fieldwork leading to the present report and geologic map was started in 1978 (Riehle and others, 1982) and was completed as part of the vein study. The objective was a better understanding of the geologic setting of the vein systems: the geologic history of the host rocks, the structural controls on the veins, and the types of processes that likely caused the mineralization.

  5. Geologic map of the Grand Junction Quadrangle, Mesa County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Carrara, Paul E.; Hood, William C.; Murray, Kyle E.

    2002-01-01

    This 1:24,000-scale geologic map of the Grand Junction 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the junction of the Colorado River and the Gunnison River. Bedrock strata include the Upper Cretaceous Mancos Shale through the Lower Jurassic Wingate Sandstone units. Below the Mancos Shale, which floors the Grand Valley, the Upper and Lower(?)Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation hold up much of the resistant northeast- dipping monocline along the northeast side of the Uncompahgre uplift. The impressive sequence of Jurassic strata below include the Brushy Basin, Salt Wash, and Tidwell Members of the Upper Jurassic Morrison Formation, the Middle Jurassic Wanakah Formation and informal 'board beds' unit and Slick Rock Member of the Entrada Formation, and the Lower Jurassic Kayenta Formation and Wingate Sandstone. The Upper Triassic Chinle Formation and Early Proterozoic meta-igneous gneiss and migmatitic meta- sedimentary rocks, which are exposed in the Colorado National Monument quadrangle to the west, do not crop out here. The monoclinal dip slope of the northeastern margin of the Uncompahgre uplift is apparently a Laramide structural feature. Unlike the southwest-dipping, high-angle reverse faults in the Proterozoic basement and s-shaped fault- propagation folds in the overlying strata found in the Colorado National Monument 7.5' quadrangle along the front of the uplift to the west, the monocline in the map area is unbroken except at two localities. One locality displays a small asymmetrical graben that drops strata to the southwest. This faulted character of the structure dies out to the northwest into an asymmetric fault-propagation fold that also drops strata to the southwest. Probably both parts of this structure are underlain by a northeast-dipping high-angle reverse fault. The other locality displays a second similar asymmetric fold. No evidence of post-Laramide tilting or uplift exists here, but the antecedent Unaweep Canyon, only 30 km to the south-southwest of the map area, provides clear evidence of Late Cenozoic, if not Pleistocene, uplift. The major geologic hazards in the area include large landslides associated with the dip-slope-underlain, smectite-rich Brushy Basin Member of the Morrison Formation and overlying Dakota and Burro Canyon Formations. Active landslides affect the southern bank of the Colorado River where undercutting by the river and smectitic clays in the Mancos trigger landslides. The Wanakah, Morrison, and Dakota Formations and the Mancos Shale create a significant hazard to houses and other structures by containing expansive smectitic clay. In addition to seasonal spring floods associated with the Colorado and Gunnison Rivers, a serious flash flood hazard associated with sudden summer thunderstorms threatens the intermittent washes that drain the dip slope of the monocline.

  6. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes.more » The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the disposal system to evolve in a physically realistic manner. In the example presented the reactive-transport coupling develops chemically reducing zones, which limit the transport of uranium. This illustrates the potential significance of media degradation and chemical effect on the transport of radionuclides which would need to be taken into account when examining the long-term behaviour and containment properties of the geological disposal system. Microstructure-informed modelling and its potential linkage with continuum flow modelling is a subject of ongoing studies. The approach of microstructure-informed modelling is discussed to provide insight and a mechanistic understanding of macroscopic parameters and their evolution. The proposed theoretical and methodological basis for microstructure-informed modelling of porous quasi-brittle media has the potential to develop into an explanatory and predictive tool for deriving mechanism-based, as opposed to phenomenological, evolution laws for macroscopic properties. These concepts in micro-scale modelling are likely to be applicable to the diffusion process, in addition to advective transport illustrated here for porous media. (authors)« less

  7. A framework for assessing the uncertainty in wave energy delivery to targeted subsurface formations

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.; Manuel, Lance

    2016-02-01

    Stress wave stimulation of geological formations has potential applications in petroleum engineering, hydro-geology, and environmental engineering. The stimulation can be applied using wave sources whose spatio-temporal characteristics are designed to focus the emitted wave energy into the target region. Typically, the design process involves numerical simulations of the underlying wave physics, and assumes a perfect knowledge of the material properties and the overall geometry of the geostructure. In practice, however, precise knowledge of the properties of the geological formations is elusive, and quantification of the reliability of a deterministic approach is crucial for evaluating the technical and economical feasibility of the design. In this article, we discuss a methodology that could be used to quantify the uncertainty in the wave energy delivery. We formulate the wave propagation problem for a two-dimensional, layered, isotropic, elastic solid truncated using hybrid perfectly-matched-layers (PMLs), and containing a target elastic or poroelastic inclusion. We define a wave motion metric to quantify the amount of the delivered wave energy. We, then, treat the material properties of the layers as random variables, and perform a first-order uncertainty analysis of the formation to compute the probabilities of failure to achieve threshold values of the motion metric. We illustrate the uncertainty quantification procedure using synthetic data.

  8. CCS Activities Being Performed by the U.S. DOE

    PubMed Central

    Dressel, Brian; Deel, Dawn; Rodosta, Traci; Plasynski, Sean; Litynski, John; Myer, Larry

    2011-01-01

    The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO2 in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U.S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE’s Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO2; Public Outreach and Education for Carbon Storage Projects; Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formation; Site Screening, Site Selection, and Initial Characterization of CO2 Storage in Deep Geologic Formations. DOE’s future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development. PMID:21556188

  9. Book review: Economic geology: Principles and practice: Metals, minerals, coal and hydrocarbons—Introduction to formation and sustainable exploitation of mineral deposits

    USGS Publications Warehouse

    Anderson, Eric

    2013-01-01

    This volume, available in both hardcover and paperback, is an English translation of the fifth edition of the German language text Mineralische und Energie-Rohstoffe. The book provides an extensive overview of natural resources and societal issues associated with extracting raw materials. The comprehensive list of raw materials discussed includes metals, industrial minerals, coal, and hydrocarbons. The book is divided into four parts: (1) “Metalliferous ore deposits,” (2) “Nonmetallic minerals and rocks,” (3) “Practice of economic geology,” and (4) “Fossil energy raw materials—coal, oil, and gas.” These sections are bound by a brief introduction and an extensive list of up-to-date references as well as an index. Each chapter begins with a concise synopsis and concludes with a summary that contains useful suggestions for additional reading. All figures are grayscale images and line drawings; however, several have been grouped together and reproduced as color plates. Also included is a companion website (www.wiley.com/go/pohl/geology) that contains additional resources, such as digital copies of figures, tables, and an expanded index, all available for download in easy-to-use formats.Economic Geology: Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction to Formation and Sustainable Exploitation of Mineral Deposits. Walter l. Pohl. 2011. Wiley-Blackwell. Pp. 663. ISBN 978-1-4443-3663-4 (paperback).

  10. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak

    PubMed Central

    Vilarrasa, Victor; Carrera, Jesus

    2015-01-01

    Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26):10164–10168] have claimed that geologic carbon storage in deep saline formations is very likely to trigger large induced seismicity, which may damage the caprock and ruin the objective of keeping CO2 stored deep underground. We argue that felt induced earthquakes due to geologic CO2 storage are unlikely because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2 dissolution into brine may help in reducing overpressure; and (iv) CO2 will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. The latter two mechanisms ensure that overpressures caused by CO2 injection will dissipate in a moderate time after injection stops, hindering the occurrence of postinjection induced seismicity. Furthermore, even if microseismicity were induced, CO2 leakage through fault reactivation would be unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along the localized deformation zone. For these reasons, we contend that properly sited and managed geologic carbon storage in deep saline formations remains a safe option to mitigate anthropogenic climate change. PMID:25902501

  11. Scoping Alternatives for Negative Emission Technologies. FRACCC - Possible Routes to Biomass-Derived Carbon Injection in Shallow Aquifers?

    NASA Astrophysics Data System (ADS)

    Correa Silva, R.; Larter, S.

    2016-12-01

    Atmospheric CO2 capture into biomass is one of the capture options for negative emission technologies, although proposed sequestration systems such as the permanent burial of total fresh biomass, algal lipids or soil amendment with biochar are yet to be successfully demonstrated as effective at scale. In the context of carbon sequestration, shallow geological reservoirs have not been exhaustively explored, even though they pose, away from groundwater protection zones, potentially low implementation cost, and geographically abundant potential carbon storage reservoirs. Typical carbon storage vectors considered, such as CO2 and biochar, are not suitable for shallow aquifer disposal, due either to cap rock containment requirements, or shallow aquifer CO2 densities, or issues related to formation damage from solid particles. Thus, a cost-effective technology, aimed at converting biomass into a large-scale carbon vector fit-for-disposal in shallow formations could be significant, linking promising carbon capture and containment strategies. In this work, we discuss the development of unconventional carbon vectors for subsurface storage in the form of Functionalized, Refractory and Aqueous Compatible Carbon Compounds (FRACCC), as a potential alternative negative emission technology (Larter et al., 2010). The concept is based on CO2 capture into microbial and algal biomass, followed by the modification of biomass constituents through facile chemical reactions aimed at rendering the biomass efficiently into a stable, biologically refractory but water soluble form, similar in some regards, to dissolved organic matter in the oceans, then sequestering the material in geological settings. As the injected material is not buoyant, containment specifications are more modest than for CO2 injection and potentially, more reservoirs could be accessible! This work analyses the technological, economic and societal implications of such potential FRACCC technologies, and make an assessment of whether such routes are likely to be technically, economically and politically viable.

  12. An approach of groundwater management in Barcelona City

    NASA Astrophysics Data System (ADS)

    Criollo, Rotman; Vázquez-Suñé, Enric; Velasco, Violeta; Marazuela, Miguel Angel; Burdons, Silvia; Enrich, Monica; Cardona, Fidel

    2017-04-01

    Urban groundwater is a valuable resource since its quantity is larger than frequently expected due to additional recharge sources (Lerner, 2002; Vázquez-Suñé et al., 2003). Its interaction with the complex infrastructures network makes the water authorities a challenge to ensure a proper water management. Necessary datasets to ensure a suitable water management have normally different origins and formats. At the same time, the water management of a city involves different decision makers with different knowledges. In this scenario, it is a necessity to create a common environment where different actors would be able to understand and analyze problems in the same way. It should be also necessary to store, analyze and visualize all the required data in the same formats within its geographical context by using standardized specific tools. To apply these recommendations for the urban groundwater management of the Barcelona City Council, we have implemented a software platform developed in a Geographic Information System (GIS) environment. These GIS-based tools will give support to the users for storing, managing, and analyzing geological, hydrogeological and hydrochemical data in 2D and in a 3D context (Velasco et al., 2013). This implementation will improve the groundwater management in Barcelona city optimizing the analysis and decision making processes. References Lerner, D.N., (2002). Identifying and quantifying urban recharge: a review. Hydrogeology Journal, 10 (1), pp. 143-152 Vázquez-Suñé, E., Sánchez-Vila, X. & Carrera, J. (2005). Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeology Journal, 13: 522. doi:10.1007/s10040-004-0360-2 Velasco, V., Gogu, R., Vázquez-Suñè, E., Garriga A., Ramos, E., Riera, J., Alcaraz, M. (2013). The use of GIS-based 3D geological tools to improve hydrogeological models of sedimentary media in an urban environment. Environmental Earth Sciences 68: 2145. doi:10.1007/s12665-012-1898-2

  13. Determining resistivity of a formation adjacent to a borehole having casing using multiple electrodes and with resistances being defined between the electrodes

    DOEpatents

    Vail, III, William B.

    1996-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity.

  14. Determining resistivity of a formation adjacent to a borehole having casing using multiple electrodes and with resistances being defined between the electrodes

    DOEpatents

    Vail, W.B. III

    1996-10-29

    Methods of operation are disclosed for different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced-apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced-apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced-apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity. 13 figs.

  15. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Sheng; Santamarina, J. Carlos

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate naturalmore » hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.« less

  16. U.S. Geological Survey input-data forms for the assessment of the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas, 2017

    USGS Publications Warehouse

    Marra, Kristen R.

    2017-10-24

    In 2017, the U.S. Geological Survey (USGS) completed an updated assessment of undiscovered, technically recoverable oil and gas resources in the Spraberry Formation of the Midland Basin (Permian Basin Province) in southwestern Texas (Marra and others, 2017). The Spraberry Formation was assessed using both the standard continuous (unconventional) and conventional methodologies established by the USGS for three assessment units (AUs): (1) Lower Spraberry Continuous Oil Trend AU, (2) Middle Spraberry Continuous Oil Trend AU, and (3) Northern Spraberry Conventional Oil AU. The revised assessment resulted in total estimated mean resources of 4,245 million barrels of oil, 3,112 billion cubic feet of gas, and 311 million barrels of natural gas liquids. The purpose of this report is to provide supplemental documentation of the input parameters used in the USGS 2017 Spraberry Formation assessment.

  17. Silicate Carbonation in Supercritical CO2 Containing Dissolved H2O: An in situ High Pressure X-Ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Miller, Quin RS; Thompson, Christopher J.

    2013-06-30

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring between supercritical CO2 containing water and the silicate minerals forsterite (Mg2SiO4), wollastonite (CaSiO3), and enstatite (MgSiO3). This study utilizes newly developed in situ high pressure x-ray diffraction (HXRD) and in situ infra red (IR) to examine mineralmore » transformation reactions. Forsterite and enstatite were selected as they are important minerals present in igneous and mafic rocks and have been the subject of a large number of aqueous dissolution studies that can be compared with non-aqueous fluid tests in this study. Wollastonite, classified as a pyroxenoid (similar to a pyroxene), was chosen as a suitably fast reacting proxy for examining silicate carbonation processes associated with a wet scCO2 fluid as related to geologic carbon sequestration. The experiments were conducted under modest pressures (90 to 160 bar), temperatures between 35° to 70° C, and varying concentrations of dissolved water. Under these conditions scCO2 contains up to 3,500 ppm dissolved water.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Greenland's Mineral Resources Administration (MRA) plans a series of licensing rounds off western Greenland. Meanwhile, the MRA has declared the Jameson Land basin of east central Greenland as open acreage. Greenland Geological Survey (GGU), Copenhagen, has prepared a report on the geographical conditions, logistics, exploration history, and geological development of Jameson Land. The article emphasizes source and reservoir rocks, conceptual play types with six seismic examples, and thermal history with basin modeling. It also includes two interpreted regional seismic lines, a geological and an aeromagnetic map, depth structure, and isopach maps of selected formations.

  19. Digital data for preliminary geologic map of the Mount Hood 30- by 60-minute quadrangle, northern Cascade Range, Oregon

    USGS Publications Warehouse

    Lina Ma,; Sherrod, David R.; Scott, William E.

    2014-01-01

    This geodatabase contains information derived from legacy mapping that was published in 1995 as U.S. Geological Survey Open-File Report 95-219. The main component of this publication is a geologic map database prepared using geographic information system (GIS) applications. Included are pdf files to view or print the map sheet, the accompanying pamphlet from Open-File Report 95-219, and links to the original publication, which is available as scanned files in pdf format.

  20. Maps showing selected geology and phosphate resources of the Snowdrift Mountain quadrangle, Bear Lake and Caribou Counties, Idaho

    USGS Publications Warehouse

    Derkey, Pamela Dunlap; Paul, Ken; Johnston, Bea; Palmer, Pamela; Zamanek, Alexander; Fakourbayat, Mahasti; Hovland, R.D.

    1985-01-01

    This report summarizes information on the thickness grade, lateral continuity, phosphate resources, and ownership of phosphate bearing units in the Meade Park Phosphatic Shale Member of the Phosphoria Formation in the Snowdrift Mountain quadrangle. This report is one of a series of quadrangle reports prepared by the Idaho Bureau of Mines and Geology under U.S. Geological Survey cost-sharing contract #14-08-0001-17925 to calculate phosphate resources in southeastern Idaho (fig.1).

  1. Geologic map of the west-central Buffalo National River region, northern Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2014-01-01

    This report provides a geologic map database of the map area that improves understanding of the regional geologic framework and its influence on the regional groundwater flow system. Furthermore, additional edits were made to the Ponca and Jasper quadrangles in the following ways: new control points on important contacts were obtained using modern GPS; recent higher resolution elevation data allowed further control on placement of contacts; some new contacts were added, in particular the contact separating the upper and lower Everton Formation.

  2. Spatial Digital Database for the Geology of the San Pedro River Basin in Cochise, Gila, Graham, Pima, and Pinal Counties, Arizona

    USGS Publications Warehouse

    Bolm, Karen S.

    2002-01-01

    The map area is located in southeastern Arizona. This report describes the map units, the methods used to convert the geologic map data into a digital format, and the ArcInfo GIS file structures and relationships; and it explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. See figures 2 and 3 for page-size versions of the map compilation.

  3. Assessment of water and proppant quantities associated with petroleum production from the Bakken and Three Forks Formations, Williston Basin Province, Montana and North Dakota, 2016

    USGS Publications Warehouse

    Haines, Seth S.; Varela, Brian A.; Hawkins, Sarah J.; Gianoutsos, Nicholas J.; Thamke, Joanna N.; Engle, Mark A.; Tennyson, Marilyn E.; Schenk, Christopher J.; Gaswirth, Stephanie B.; Marra, Kristen R.; Kinney, Scott A.; Mercier, Tracey J.; Martinez, Cericia D.

    2017-06-23

    The U.S. Geological Survey (USGS) has completed an assessment of water and proppant requirements and water production associated with the possible future production of undiscovered oil and gas resources in the Three Forks and Bakken Formations (Late Devonian to Early Mississippian) of the Williston Basin Province in Montana and North Dakota. This water and proppant assessment is directly linked to the geology-based assessment of the undiscovered, technically recoverable continuous oil and gas resources that is described in USGS Fact Sheet 2013–3013.

  4. Fundamental issues in the geology and geophysics of venus.

    PubMed

    Solomon, S C; Head, J W

    1991-04-12

    A number of important and currently unresolved issues in the global geology and geophysics of Venus will be addressable with the radar imaging, altimetry, and gravity measurements now forthcoming from the Magellan mission. Among these are the global volcanic flux and the rate of formation of new crust; the global heat flux and its regional variations; the relative importance of localized hot spots and linear centers of crustal spreading to crustal formation and tectonics; and the planform of mantle convection on Venus and the nature of the interactions among interior convective flow, near-surface deformation and magmatism.

  5. Geology and paleontology of the Santa Maria district, California

    USGS Publications Warehouse

    Woodring, W.P.; Bramlette, M.N.

    1950-01-01

    Among areas of possible interest, three appear to be favorable for prospecting on the basis of surface geology: an area east of Foxen Canyon, where oil may be trapped in the basal part of the Tinaquaic sandstone member of the Sisquoc formation by westward overlap of successively higher Tinaquaic strata onto the Monterey shale; an area so1tth of the I ... ions Head fault, where oil may be trapped by the fault; and the offshore extension of the north border of Point Sal Ridge, where oil may possibly be trapped in the Monterey by overlap of the Sisquoc formation.

  6. Assessment of Permian tight oil and gas resources in the Junggar basin of China, 2016

    USGS Publications Warehouse

    Potter, Christopher J.; Schenk, Christopher J.; Tennyson, Marilyn E.; Klett, Timothy R.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Brownfield, Michael E.; Pitman, Janet K.; Mercier, Tracey J.; Le, Phuong A.; Drake, Ronald M.

    2017-04-05

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 764 million barrels of oil and 3.5 trillion cubic feet of gas in tight reservoirs in the Permian Lucaogou Formation in the Junggar basin of northwestern China.

  7. Presentations - Herriott, T.M. and others, 2015 | Alaska Division of

    Science.gov Websites

    Sections Geologic Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory and Location Policy and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Formation, Alaska - New insights into the sequence stratigraphy of the Late Jurassic Cook Inlet forearc

  8. North Dakota geology school receives major gift

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-10-01

    Petroleum geology and related areas of study at the University of North Dakota (UND) received a huge financial boost with the announcement on 24 September of $14 million in private and public partnership funding. The university announced the naming of the Harold Hamm School of Geology and Geological Engineering, formerly a department within the College of Engineering and Mines, in recognition of $10 million provided as a gift by oilman Harold Hamm and Continental Resources, Inc. Hamm is the chair and chief executive officer of Continental, the largest leaseholder in the Bakken Play oil formation in North Dakota and Montana, and he is also an energy policy advisor to Republican presidential candidate Mitt Romney. UND also received $4 million from the Oil and Gas Research Program of the North Dakota Industrial Commission to support geology and geological engineering education and research.

  9. Deposits of Claiborne and Jackson age in Georgia

    USGS Publications Warehouse

    Cooke, Charles Wythe; Shearer, Harold Kurtz

    1919-01-01

    In 1911 the Geological Survey of Georgia published as Bulletin 26 a "Preliminary report on the geology of the Coastal Plain of Georgia," by Otto Veatch and Lloyd William Stephenson, prepared in cooperation with the United States Geological Survey under the supervision of T. Wayland Vaughan, a geologist in charge of Coastal Plain investigations, who contributed the determinations of the invertebrate fossils of the Tertiary and Quaternary formations. Although this report constituted a decided advance in our knowledge of the geology of the Coastal Plain of Georgia, it was admittedly of reconnaissance character, and corrections and additions to it were to be expected. During the last few years field work has been prosecuted vigorously in the Coastal Plain of Georgia, and the additional information thus accumulated throws light upon certain problems of stratigraphy left unsolved by Veatch and Stephenson and alters considerably some of their correlations. The object of the present paper is to present the new evidence regarding the age and correlation of the Eocene formations of Georgia and to revise in accordance with present knowledge the descriptions of the deposits of Claiborne and Jackson age.

  10. Preliminary location and age database for invertebrate fossils collected in the San Francisco Bay region, California

    USGS Publications Warehouse

    Parker, John M.; West, William B.; Malmborg, William T.; Brabb, Earl E.

    2003-01-01

    Most geologic maps published for central California in the past century have been made without the benefit of microfossils. The age of Cretaceous and Tertiary rocks in the structurally complex sedimentary formations of the Coast Ranges is critical in determining stratigraphic succession and in determining whether the juxtapositon of similar appearing formations means that a fault is present. Since the 1930’s, at least, oil company geologists have used microfossils to assist them in geologic mapping and in determining the environments of deposition of sedimentary rocks. This information has been confidential, but in the past 20 years the attitude of petroleum companies about this information has changed, and much material is now available. We report here on approximately 4,700 samples, largely foraminifers, from surface localities in the San Francisco Bay region of California. The information contained here can be used to update geologic maps, to analyze the depth and temperature of ocean water covering parts of California during the Mesozoic and Cenozoic eras, and for solving other geologic problems.

  11. Preliminary geologic map of the Perris 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.; Alvarez, Rachel M.

    2003-01-01

    Open-File Report 03-270 contains a digital geologic map database of the Perris 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. A Readme file b. The same graphic as described in 2 above. Test plots have not produced precise 1:24,000- scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formationname, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc.

  12. Geologic Map of the San Luis Hills Area, Conejos and Costilla Counties, Colorado

    USGS Publications Warehouse

    Thompson, Ren A.; Machette, Michael N.

    1989-01-01

    This report is a digital image of the U.S. Geological Survey Miscellaneous Investigations Series Map I-1906, 'Geologic map of the San Luis Hills area, Conejos and Costilla Counties, Colorado,' which was published in 1989 by Thompson and Machette, scale 1:50,000 but has been unavailable in a digital version. The map area represents the southwestern portion of the Alamosa 30' x 60' quadrangle, which is currently being remapped by the U.S. Geological Survey. The northern and eastern margins of the San Luis Hills area have been remapped at greater detail and thus small portions of the map area have been updated. The northern margin is shown on U.S. Geological Survey Open-File Report 2005-1392, the northeastern portion is shown on U.S. Geological Survey Open-File Report 2008-1124, and the eastern margin is shown on U.S. Geological Survey Open-File Report 2007-1074. The most significant changes to the 1989 map area are recognition of Lake Alamosa and its deposits (Alamosa Formation), remapping of bedrock in the northeastern San Luis Hills, and redating of volcanic units in the San Luis Hills. Although unpublished, new 40Ar/39Ar ages for volcanic units in the Conejos and Hinsdale Formations add precision to the previous K/Ar-dated rocks, but do not change the basic chronology of the units. The digital version of this map was prepared by Theodore R. Brandt by scanning the original map at 300 pixels per inch, prior to creating the press-quality (96 Mb) and standard (5 Mb) .pdf files.

  13. Geological Prediction Ahead of Tunnel Face in the Limestone Formation Tunnel using Multi-Modal Geophysical Surveys

    NASA Astrophysics Data System (ADS)

    Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.

  14. A spatial database of bedding attitudes to accompany Geologic map of the greater Denver area, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  15. CAFFEINE SPECIFICITY OF VARIOUS NON-IMPRINTED POLYMERS IN AQUEOUS MEDIA

    EPA Science Inventory

    Limitations exist in applying the conventional microbial methods to the detection of human fecal contamination in water. Certain organic compounds such as caffeine, have been reported by the U.S. Geological Survey as a more suitable tracer. The employment of caffeine has been h...

  16. Desert soil collection at the JPL soil science laboratory

    NASA Technical Reports Server (NTRS)

    Blank, G. B.; Cameron, R. E.

    1969-01-01

    Collection contains desert soils and other geologic materials collected from sites in the United States and foreign countries. Soils are useful for test purposes in research related to extraterrestrial life detection, sampling, harsh environmental studies, and determining suitable areas for training astronauts for lunar exploration.

  17. Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California

    USGS Publications Warehouse

    Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.

    2008-01-01

    A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.

  18. The U.S. Geological Survey's Earthquake Summary Posters: A GIS-based Education and Communication Product for Presenting Consolidated Post-Earthquake Information

    NASA Astrophysics Data System (ADS)

    Tarr, A.; Benz, H.; Earle, P.; Wald, D. J.

    2003-12-01

    Earthquake Summary Posters (ESP's), a new product of the U.S. Geological Survey's Earthquake Program, are produced at the National Earthquake Information Center (NEIC) in Golden. The posters consist of rapidly-generated, GIS-based maps made following significant earthquakes worldwide (typically M>7.0, or events of significant media/public interest). ESP's consolidate, in an attractive map format, a large-scale epicentral map, several auxiliary regional overviews (showing tectonic and geographical setting, seismic history, seismic hazard, and earthquake effects), depth sections (as appropriate), a table of regional earthquakes, and a summary of the reional seismic history and tectonics. The immediate availability of the latter text summaries has been facilitated by the availability of Rapid, Accurate Tectonic Summaries (RATS) produced at NEIC and posted on the web following significant events. The rapid production of ESP's has been facilitated by generating, during the past two years, regional templates for tectonic areas around the world by organizing the necessary spatially-referenced data for the map base and the thematic layers that overlay the base. These GIS databases enable scripted Arc Macro Language (AML) production of routine elements of the maps (for example background seismicity, tectonic features, and probabilistic hazard maps). However, other elements of the maps are earthquake-specific and are produced manually to reflect new data, earthquake effects, and special characteristics. By the end of this year, approximately 85% of the Earth's seismic zones will be covered for generating future ESP's. During the past year, 13 posters were completed, comparable to the yearly average expected for significant earthquakes. Each year, all ESPs will be published on a CD in PDF format as an Open-File Report. In addition, each is linked to the special event earthquake pages on the USGS Earthquake Program web site (http://earthquake.usgs.gov). Although three formats are generated, the poster-size format is the most popular for display, outreach, and use as a working map for project scientists (JPEG format for web; PDF for download, editing, and printing) whereas the other (smaller) formats are suitable for briefing packages. We will soon make both GIS and PDF files of individual elements of the posters available online. ESP's provide an unprecedented opportunity for college earth-science faculty to take advantage of current events for timely lessons in global tectonics. They are also invaluable to communicate with the media and with government officials. ESP's will be used as a vehicle to present other products now under development under the auspices of NEIC and the ANSS, including rapid finite-fault models, global predictive ShakeMaps, "Did You Feel It?", and Rapid Assessments of Global Earthquakes (RAGE, Earle and others, this meeting).

  19. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Sassani, David

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less

  20. Chapter 7. The GIS project for the geologic assessment of undiscovered oil and gas in the Cotton Valley group and Travis Peak and Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Biewick, Laura

    2006-01-01

    A geographic information system (GIS) focusing on the Upper Jurassic-Lower Cretaceous Cotton Valley Group and the Lower Cretaceous Travis Peak and Hosston Formations in the northern Gulf Coast region was developed as a visual-analysis tool for the U.S. Geological Survey's 2002 assessment of undiscovered, technically recoverable oil and natural gas resources in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces. The Central Energy Resources Team of the U.S. Geological Survey has also developed an Internet Map Service to deliver the GIS data to the public. This mapping tool utilizes information from a database about the oil and natural gas endowment of the United States-including physical locations of geologic and geographic data-and converts the data into visual layers. Portrayal and analysis of geologic features on an interactive map provide an excellent tool for understanding domestic oil and gas resources for strategic planning, formulating economic and energy policies, evaluating lands under the purview of the Federal Government, and developing sound environmental policies. Assessment results can be viewed and analyzed or downloaded from the internet web site, http://energy.cr.usgs.gov/oilgas/noga/ .

  1. Multiwell CO2 injectivity: impact of boundary conditions and brine extraction on geologic CO2 storage efficiency and pressure buildup.

    PubMed

    Heath, Jason E; McKenna, Sean A; Dewers, Thomas A; Roach, Jesse D; Kobos, Peter H

    2014-01-21

    CO2 storage efficiency is a metric that expresses the portion of the pore space of a subsurface geologic formation that is available to store CO2. Estimates of storage efficiency for large-scale geologic CO2 storage depend on a variety of factors including geologic properties and operational design. These factors govern estimates on CO2 storage resources, the longevity of storage sites, and potential pressure buildup in storage reservoirs. This study employs numerical modeling to quantify CO2 injection well numbers, well spacing, and storage efficiency as a function of geologic formation properties, open-versus-closed boundary conditions, and injection with or without brine extraction. The set of modeling runs is important as it allows the comparison of controlling factors on CO2 storage efficiency. Brine extraction in closed domains can result in storage efficiencies that are similar to those of injection in open-boundary domains. Geomechanical constraints on downhole pressure at both injection and extraction wells lower CO2 storage efficiency as compared to the idealized scenario in which the same volumes of CO2 and brine are injected and extracted, respectively. Geomechanical constraints should be taken into account to avoid potential damage to the storage site.

  2. The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2)

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Ivanov, M. A.

    2010-01-01

    Today, and throughout its recorded history, Venus can be classified as a "one-plate planet." The observable geological record of the planet comprises only the last 1/4 or less of its overall geologic history. As shown by many authors, it started with intensive deformation in broad regions to form tessera [1-6] during the Fortunian period of history [7]. The period of tessera formation quickly changed to numerous zonal deformational belts of ridges and grooves that were followed by emplacement of vast volcanic plains (shield plains, regional plains) [7,8]. During the final epoch of the geologic history of Venus, large but isolated centers of volcanism formed extensive fields of lavas, with tectonics concentrated within fewer very prominent rift zones [8,9]. The observable changes in intensity and character of volcanism and tectonics suggest progressive changes from thin lithosphere early in the geologic history to thick lithosphere during later epochs [6,10]. We have little idea of the character of the first 3/4 of Venus' history. So, what does the earliest period of recorded history tell us about the transition from the Pre-Fortunian to the Fortunian period and what insight does this give us into this earlier period?

  3. Engineering geology considerations for park planning, Antelope Island State Park, Davis County, Utah

    USGS Publications Warehouse

    Hecker, Suzanne; Case, William F.; King, Jon K.; Willis, Grant C.

    2000-01-01

    Report: 00-1 In the mid-1980s, historically high levels of Great Salt Lake caused damage to park facilities on Antelope Island and destroyed the causeway linking the park to the mainland. Information on the engineering geology of Antelope Islandcan be used to improve park facilities and reduce the risk from geologic hazards and poor construction conditions. Certain characteristics of the geologic environment need to be considered in park planning. During wet cycles, Great Salt Lake may reach static levels of 4,217 feet (1,285.3 m), and wave- and wind-elevated levels locally may reach 6.5 feet (2 m) higher. A probabilistic assessment of the earthquake ground-shaking hazard along the Wasatch Front indicates that peak ground accelerations of approximately 0.20 to 0.30 g have a one-in-ten chance of being exceeded in 50 years on the island. A slope-failure hazard exists locally in colluvial and Lake Bonneville deposits, along the modern shore, and beneath cliffs. Flash-flood and debris-flow hazards exist on alluvial fans. Areas in the southern two-thirds of the island may have a relatively high potential for radon emission. Particular soil types on the island may be expansive, compressible, erodible, impermeable, or susceptible to liquefaction or hydrocompaction. The distribution of most geologic hazards can be defined, and many locations on the island have conditions suitable for construction. Lacustrine sand and gravel deposits are wide-spread and have engineering characteristics that are generally favorable for foundations. However, facilities and roads built close to the modern shoreline may be susceptible to lake flooding and erosion, slope failures, shallow ground water, and burial by active sand dunes. Well-graded (poorly sorted) alluvial-fan deposits are generally most suitable for wastewater disposal, although they may be subject to flooding or be underlain by low-permeability, fine-grained lacustrine deposits.

  4. The Pliocene Citronelle Formation of the Gulf Coastal Plain

    USGS Publications Warehouse

    Matson, George Charlton

    1916-01-01

    In the spring of 1910 the writer, working under the direction of T. Wayland Vaughan, geologist in charge of Coastal Plain investigations, undertook a study of the later Tertiary formations of the Gulf Coastal Plain. According to the plans outlined before the work was begun, the beds that had formerly been grouped under the names Lafayette formation and Grand Gulf formation were to be studied with a view to their possible separation into more satisfactory stratigraphic units that might be correlated with other formations which, on the basis of their fossils, had been assigned to their proper positions in the geologic time scale. The original plan included a study of the post-Vicksburgian Tertiary deposits from western Florida to Mississippi River and correlations with formations previously recognized in Florida, southern Alabama, and Louisiana. This plan was subsequently modified to extend the investigation as far west as Sabine River. The field work was interrupted and the office work was delayed by calls for geologic work in other areas, so that the preparation of the reports could not be begun until the spring of 1914.

  5. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  6. Medium Frequency Pseudo Noise Geological Radar

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Amini, B. Jon (Inventor)

    2003-01-01

    System and methods are disclosed for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.

  7. Volcanism on Io: Insights from Global Geologic Mapping

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.

    2009-01-01

    We are preparing a new global geo-logic map of Jupiter s volcanic moon, Io. Here we report the type of data that are now available from our global mapping efforts, and how these data can be used to investigate questions regarding the volcano-tectonic evolution of Io. We are using the new map to investigate several specific questions about the geologic evolution of Io that previously could not be well addressed, including (for example) a comparison of the areas vs. the heights of Ionian mountains to assess their stability and evolution (Fig. 1). The area-height relationships of Io s visible mountains show the low abundance and low relief of volcanic mountains (tholi) relative to tectonic mountains, consistent with formation from low-viscosity lavas less likely to build steep edifices. Mottled mountains are generally less high than lineated mountains, consistent with a degradational formation.

  8. Stress Analysis for the Formation of En Echelon Veins and Vortex Structures: a Lesson Plan with a Brief Illumination

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Birnbaum, S.

    2006-12-01

    An English lesson plan exploring stress analysis of En Echelon veins and vortex structures used in the bilingual course in Structural Geology at the National Science Training Base of China is described. Two mechanical models are introduced in class and both mathematical and mechanical analyses are conducted. Samples, pictures and case studies are selected from Britain, Switzerland, and China. These case studies are augmented from the previous research results of the first author. Students are guided through the entire thought process, including methods and procedures used in the stress analysis of geologic structures. The teaching procedures are also illustrated. The method showed is effective to help students to get the initial knowledge of quantitative analysis for the formation of geological structures. This work is supported by the Ministry of Education of China, the Education Bureau of Hubei Province of China and China University of Geosciences (Wuhan).

  9. Geology and ground water in north-central Santa Cruz County, California

    USGS Publications Warehouse

    Johnson, Michael J.

    1980-01-01

    North-central Santa Cruz County is underlain mainly by folded sedimentary rocks of Tertiary and Cretaceous age that have been highly fractured by movements in the San Andreas fault system. Ground water is stored in fractures within shale and mudstone formations and in intergranular pore spaces within fine- to very fine-grained sandstone and siltstone formations. Fewer than 10% of the wells yield more than 15 gallons of water per minute. The water in most wells is moderately hard to very hard, is generally of a sodium bicarbonate or calcium bicarbonate type, and commonly has excessive concentrations of iron or manganese. Of the many geologic units in the study area, only the Purisima Formation of Pliocene age has the potential to sustain well yields greater than 100 gallons per minute. (USGS)

  10. Geology and undiscovered oil and gas resources in the Madison Group, Williston Basin, North Dakota and Montana

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Lillis, Paul G.; Pollastro, Richard M.; Anna, Lawrence O.

    2010-01-01

    Two of the total petroleum systems (TPS) defined as part of the U.S. Geological Survey (USGS) assessment of the Williston Basin contain Mississippian Madison Group strata: 1) the Bakken-Lodgepole TPS, which includes the Lodgepole Formation; and 2) the Madison TPS, which includes the Mission Canyon, Charles, and Spearfish formations. The Bakken-Lodgepole TPS is defined as the area in which oil generated from the upper and lower shales of the Upper Devonian-Lower Mississippian Bakken Formation has accumulated in reservoirs in the Three Forks, Bakken, and Lodgepole formations. Two conventional assessment units (AU) have been identified within the Bakken-Lodgepole TPS, including one in the Bakken Formation and another in the Waulsortian mound reservoirs of the lower Lodgepole Formation. Lodgepole Formation Waulsortian mound oil production has been restricted to a small part of Stark County, North Dakota. Reservoirs are sealed by middle and upper Lodgepole Formation tight argillaceous limestones. Several nonproductive mounds and mound-like structures have also been identified in the Lodgepole Formation. Productivity correlates closely with the oil window of the Bakken Formation shales, and also indicates the likelihood of limited lateral migration of Bakken Formation oil into Lodgepole Formation reservoirs in North Dakota and Montana. Such considerations limit the estimated mean of undiscovered, technically recoverable resources to 8 million barrels of oil (MMBO) for the Lodgepole Formation conventional reservoirs. The Madison TPS is defined as the area where oil generated from Mission Canyon and Charles formation source rocks has accumulated in reservoirs of the Mission Canyon and Charles formations and in reservoirs within the Triassic Spearfish Formation. One continuous reservoir AU, the Mission Canyon-Charles AU, was defined within the Madison TPS; its boundary coincides with the TPS boundary. There is extensive conventional production throughout the AU on major structures and in stratigraphic-structural traps. The largest fields are on the Little Knife, Billings Nose, and Nesson anticlines. Recent studies show that Madison Group oils were generated from organic-rich Mission Canyon Formation and Ratcliffe Interval carbonates adjacent to the reservoirs. Seals were formed by overlying or lateral evaporites or tight carbonates. Based on available geologic and production data, the undiscovered oil resources for conventional reservoirs in the Mission Canyon-Charles AU were estimated to have a mean of 45 MMBO.

  11. Controls on bedrock bedform development at the base of the Uummannaq Ice Stream System, West Greenland

    NASA Astrophysics Data System (ADS)

    Lane, Tim; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.

    2014-05-01

    This research investigates the glacial and non-glacial controls on glacially eroded bedrock bedforms beneath the topographically confined upstream fjord region of the Uummannaq Ice Stream (UIS), West Greenland. The UIS was a cross-shelf ice stream system that operated during the Last Glacial Maximum (LGM), formed of 10 coalescent outlet glaciers. Reconstructions suggest that palaeo-glaciological conditions were similar for all sites in the study, characterised by thick, fast flowing ice moving over a rigid bedrock bed. Areally scoured terrain were mapped using remotely sensed imagery to assess regional-scale patterns of glacial erosion and to select suitable field locations. In the field, bedform measurements were taken from four discrete areas within two neighbouring fjords in the northern Uummannaq region (Rink-Karrat and Ingia). Classic bedrock bedforms indicative of glacially eroded terrain were mapped, including p-forms, roche moutonnées, and whalebacks. Bedform long axes and plucked face orientations display close correlation with palaeo-ice flow directions inferred from striae measurements. Across all sites, elongation ratios (length to width) varied by an order of magnitude between 0.8:1 and 8.4:1. Bedform properties (length, height, width, and long axis orientation) from the four sample areas form individual morphometrically distinct populations. However, bedform populations display high inter-area variability despite their close proximity, and hypothesised similarity in palaeo-glaciological conditions. The relationship of bedforms to palaeo-glaciological conditions in this study is not simple, having been complicated by bedrock properties. Geological structures including: joint frequency; joint dip; joint orientation; bedding plane thickness; and bedding plane dip have provided lines of geological weakness along which glacial erosion has been able to focus, controlling bedform length and width. Lateral plucking, a mechanism previously described for the development of megagroove features, is invoked here for the formation of whaleback-type bedforms in Ingia Fjord. Bedding plane thickness and bedding plane dip relative to palaeo-ice flow direction and is shown to a key control on bedform morphology and ELR. Consequently, a knowledge of bedding plane dip relative to palaeo-ice flow can allow predictions to be made about likely bedform shape, relative length, amplitude, and wavelength. These predictions have important ramifications for understanding subglacial bed roughness, cavity formation, and likely ice-bed erosion processes. These observations demonstrate the direct link between bedrock bedform properties and underlying geological structure. This supports evidence which suggests that the use of bedrock bedform characteristics to directly infer palaeo-glaciological conditions must be approached with caution. In order to robustly understand bedform morphology, a full appreciation of local geological structure is necessary.

  12. Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Warwick, Peter D.; Corum, Margo D.

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) and to consult with other Federal and State agencies to locate the pertinent geological data needed for the assessment. The geologic sequestration of CO2 is one possible way to mitigate its effects on climate change. The methodology used for the national CO2 assessment (Open-File Report 2010-1127; http://pubs.usgs.gov/of/2010/1127/) is based on previous USGS probabilistic oil and gas assessment methodologies. The methodology is non-economic and intended to be used at regional to subbasinal scales. The operational unit of the assessment is a storage assessment unit (SAU), composed of a porous storage formation with fluid flow and an overlying sealing unit with low permeability. Assessments are conducted at the SAU level and are aggregated to basinal and regional results. This report identifies and contains geologic descriptions of SAUs in separate packages of sedimentary rocks within the assessed basin and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  13. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site.

    PubMed

    Lin, Xueju; Kennedy, David; Fredrickson, Jim; Bjornstad, Bruce; Konopka, Allan

    2012-02-01

    Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington state (USA) was investigated by analysing 21 samples recovered from depths of 9-52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analysed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (operational taxonomic units at the 97% identity level) respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (> 700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (c. 90%) of Proteobacteria. The bacterial community in the oxic sediments contained not only members of nine well-recognized phyla but also an unusually high proportion of three candidate divisions (GAL15, NC10 and SPAM). Additionally, 13 novel phylogenetic orders were identified within the Deltaproteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Identification and Evaluation of Fluvial-Dominated Deltaic (Class 1 Oil) Reservoirs in Oklahoma: Yearly technical progress report for January 1-December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banken, M.K.; Andrews, R.

    The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes a systematic and comprehensive collection and evaluation of information on all FDD oil reservoirs in Oklahoma and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. During 1996, three highly successful FDD workshops involving 6 producing formations (4 plays) were completed: (1) Layton and Osage-Layton April 17 (2)more » Prue and Skinner June 19 and 26 (3) Cleveland October 17 (4) Peru October 17 (combined with Cleveland play). Each play was presented individually using the adopted protocol of stratigraphic interpretations, a regional overview, and two or more detailed field studies. The project goal was to have one field study from each play selected for waterflood simulation in order to demonstrate enhanced recovery technologies that can be used to recovery secondary oil. In this effort, software utilized for reservoir simulation included Eclipse and Boast 111. In some cases, because of poor production records and inadequate geologic data, field studies completed in some plays were not suitable for modeling. All of the workshops included regional sandstone trend analysis, updated field boundary identification, a detailed bibliography and author reference map, and detailed field studies. Discussion of general FDD depositional concepts was also given. In addition to the main workshop agenda, the workshops provided computer mapping demonstrations and rock cores with lithologic and facies interpretations. In addition to the workshops, other elements of FDD program were improved during 1996. Most significant was the refinement of NRIS MAPS - a user-friendly computer program designed to access NRIS data and interface with mapping software such as Arc View in order to produce various types of information maps. Most commonly used are well base maps for field studies, lease production maps, and regional maps showing well production codes, formation show codes, well spud dates, and well status codes. These regional maps are valuable in identifying areas of by-passed oil production, field trends, and time periods of development for the various FDD plays in Oklahoma. Besides maps, NRIS MAPS provides data in table format which can be used to generate production decline curves and estimates of cumulative hydrocarbon production for leases and fields. Additionally, many computer-related services were provided by support staff concerning technical training, private consultation, computer mapping, and data acquisition.« less

  15. Mineralogical and microstructural investigations of fractures in Permian z2 potash seam and surrounding salt rocks

    NASA Astrophysics Data System (ADS)

    Mertineit, Michael; Grewe, Wiebke; Schramm, Michael; Hammer, Jörg; Blanke, Hartmut; Patzschke, Mario

    2017-04-01

    Fractures occur locally in the z2 potash seam (Kaliflöz Staßfurt). Most of them extend several centimeter to meter into the surrounding salt rocks. The fractures are distributed on all levels in an extremely deformed area of the Morsleben salt mine, Northern Germany. The sampling site is located within a NW-SE trending synclinal structure, which was reverse folded (Behlau & Mingerzahn 2001). The samples were taken between the -195 m and - 305 m level at the field of Marie shaft. In this area, more than 200 healed fractures were mapped. Most of them show opening widths of only a few millimeters to rarely 10 cm. The fractures in rock salt are filled with basically polyhalite, halite and carnallite. In the potash seam, the fractures are filled with kainite, halite and minor amounts of carnallite and polyhalite. In some cases the fracture infill changes depending on the type of surrounding rocks. There are two dominant orientations of the fractures, which can be interpreted as a conjugated system. The main orientation is NE-SW trending, the dip angles are steep (ca. 70°, dip direction NW and SE, respectively). Subsequent deformation of the filled fractures is documented by a strong grain shape fabric of kainite, undulatory extinction and subgrain formation in kainite, and several mineral transformations. Subgrain formation in halite occurred in both, the fracture infill and the surrounding salt rocks. The results correlate in parts with investigations which were carried out at the close-by rock salt mine Braunschweig-Lüneburg (Horn et al. 2016). The development of the fractures occurred during compression of clayey salt rocks. However, the results are only partly comparable due to different properties (composition, impurities) of the investigated stratigraphic units. Further investigations will focus on detailed microstructural and geochemical analyses of the fracture infill and surrounding salt rocks. Age dating of suitable minerals, e.g. polyhalite (Leitner et al. 2013), could help to reconstruct the formation conditions. Behlau, J. & Mingerzahn, G. 2001. Geological and tectonic investigations in the former Morsleben salt mine (Germany) as a basis for the safety assessment of a radioactive waste repository. Engineering Geology 61, 83-97. Leitner, C., Neubauer, F., Genser, J., Borojevic-Sostaric, S. & Rantitsch, G. 2013. 40Ar/39Ar ages of crystallization and recrystallization of rock-forming polyhalite in Alpine rocksalt deposits. In: Jourdan, F., Mark, D.F. & Verati, C. (eds.): Advances in 40Ar/39Ar dating from archaeology to planetary sciences. - Geological Society of London, Special Publications 378, 207-224. Horn, M., Barnasch, J., Bode, J., Stanek, K. & Zeibig, S. 2016. Erscheinungsformen der bruchlosen Deformation und Bruchdeformation im Salinar des Steinsalzbergwerkes Braunschweig-Lüneburg. Kali und Steinsalz 02/2016, 30-42.

  16. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir in the subduction zone were was revealed.

  17. Preliminary surficial geologic map database of the Amboy 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.

    2006-01-01

    The surficial geologic map database of the Amboy 30x60 minute quadrangle presents characteristics of surficial materials for an area approximately 5,000 km2 in the eastern Mojave Desert of California. This map consists of new surficial mapping conducted between 2000 and 2005, as well as compilations of previous surficial mapping. Surficial geology units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects occurring post-deposition, and, where appropriate, the lithologic nature of the material. The physical properties recorded in the database focus on those that drive hydrologic, biologic, and physical processes such as particle size distribution (PSD) and bulk density. This version of the database is distributed with point data representing locations of samples for both laboratory determined physical properties and semi-quantitative field-based information. Future publications will include the field and laboratory data as well as maps of distributed physical properties across the landscape tied to physical process models where appropriate. The database is distributed in three parts: documentation, spatial map-based data, and printable map graphics of the database. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, a database 'readme' file, which describes the database contents, and FGDC metadata for the spatial map information. Spatial data are distributed as Arc/Info coverage in ESRI interchange (e00) format, or as tabular data in the form of DBF3-file (.DBF) file formats. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.

  18. Digitized analog boomer seismic-reflection data collected during U.S. Geological Survey cruises Erda 90-1_HC, Erda 90-1_PBP, and Erda 91-3 in Mississippi Sound, June 1990 and September 1991

    USGS Publications Warehouse

    Bosse, Stephen T.; Flocks, James G.; Forde, Arnell S.

    2017-04-21

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic-reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. A large portion of this data resides in a single repository with minimal metadata. As part of the National Geological and Geophysical Data Preservation Program, scientists at the USGS St. Petersburg Coastal and Marine Science Center are converting the analog paper records to digital format using a large-format continuous scanner.This report, along with the accompanying USGS data release (Bosse and others, 2017), serves as an archive of seismic profiles with headers, converted Society of Exploration Geophysicists Y format (SEG-Y) files, navigation data, and geographic information system data files for digitized boomer seismic-reflection data collected from the Research Vessel (R/V) Erda during two cruises in 1990 and 1991. The Erda 90-1 geophysical cruise was conducted in two legs. The first leg included seismic data collected from the Hancock County region of the Mississippi Sound (Erda 90-1_HC) from June 4 to June 6, 1990. The second leg included seismic data collected from the Petit Bois Pass area of Mississippi Sound (Erda 90-1_PBP) from June 8 to June 9, 1990. The Erda 91-3 cruise occurred between September 12 and September 23, 1991, and surveyed the Mississippi Sound region just west of Horn Island, Mississippi.

  19. Use of geological mapping tools to improve the hydraulic performance of SuDS.

    PubMed

    Bockhorn, Britta; Klint, Knud Erik Strøyberg; Jensen, Marina Bergen; Møller, Ingelise

    2015-01-01

    Most cities in Denmark are situated on low permeable clay rich deposits. These sediments are of glacial origin and range among the most heterogeneous, with hydraulic conductivities spanning several orders of magnitude. This heterogeneity has obvious consequences for the sizing of sustainable urban drainage systems (SuDS). We have tested methods to reveal geological heterogeneity at field scale to identify the most suitable sites for the placement of infiltration elements and to minimize their required size. We assessed the geological heterogeneity of a clay till plain in Eastern Jutland, Denmark measuring the shallow subsurface resistivity with a geoelectrical multi-electrode system. To confirm the resistivity data we conducted a spear auger mapping. The exposed sediments ranged from clay tills over sandy clay tills to sandy tills and correspond well to the geoelectrical data. To verify the value of geological information for placement of infiltration elements we carried out a number of infiltration tests on geologically different areas across the field, and we observed infiltration rates two times higher in the sandy till area than in the clay till area, thus demonstrating that the hydraulic performance of SuDS can be increased considerably and oversizing avoided if field geological heterogeneity is revealed before placing SuDS.

  20. Current Status of The Romanian National Deep Geological Repository Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, M.; Nicolae, R.; Nicolae, D.

    2008-07-01

    Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvementmore » in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)« less

  1. Geologic map of the greater Denver area, Front Range urban corridor, Colorado

    USGS Publications Warehouse

    Trimble, Donald E.; Machette, Michael N.

    1979-01-01

    This digital map shows the areal extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette from 1973 to 1977 and published in 1979 under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999) was digitized under the USGS Front Range Infrastructure Resources Project. In general, the mountainous areas in the western part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle comprises eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and a few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  2. Publications - GMC 430 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    : Formation hardness of Hemlock Formation cores after immersion in water and oil based fracturing fluids; and mechanics: Formation hardness of Hemlock Formation cores after immersion in water and oil based fracturing Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska

  3. Cenozoic stratigraphy and geologic history of the Tucson Basin, Pima County, Arizona

    USGS Publications Warehouse

    Anderson, S.R.

    1987-01-01

    This report was prepared as part of a geohydrologic study of the Tucson basin conducted by the U.S. Geological Survey in cooperation with the city of Tucson. Geologic data from more than 500 water supply and test wells were analyzed to define characteristics of the basin sediments that may affect the potential for land subsidence induced by groundwater withdrawal. The Tucson basin is a structural depression within the Basin and Range physiographic province. The basin is 1,000 sq mi in units area and trends north to northwest. Three Cenozoic stratigraphic unit--the Pantano Formation of Oligocene age, the Tinaja beds (informal usage) of Miocene and Pliocene age, and the Fort Lowell Formation of Pleistocene age--fill the basin. The Tinaja beds include lower, middle, and upper unconformable units. A thin veneer of stream alluvium of late Quaternary age overlies the Fort Lowell Formation. The Pantano Formation and the lower Tinaja beds accumulated during a time of widespread continental sedimentation, volcanism, plutonism, uplift, and complex faulting and tilting of rock units that began during the Oligocene and continued until the middle Miocene. Overlying sediments of the middle and upper Tinaja beds were deposited in response to two subsequent episodes of post-12-million-year block faulting, the latter of which was accompanied by renewed uplift. The Fort Lowell Formation accumulated during the Quaternary development of modern through-flowing the maturation of the drainage. The composite Cenozoic stratigraphic section of the Tucson basin is at least 20,000 ft thick. The steeply tilted to flat-lying section is composed of indurated to unconsolidated clastic sediments, evaporites, and volcanic rocks that are lithologically and structurally complex. The lithology and structures of the section was greatly affected by the uplift and exhumation of adjacent metamorphic core-complex rocks. Similar Cenozoic geologic relations have been identified in other parts of southern Arizona. (Author 's abstract)

  4. Landsat: Space Activities for Students

    ERIC Educational Resources Information Center

    Marks, Steven K.

    1979-01-01

    An aerospace education activity is described which is suitable for grades 3-12. Students piece together several images from the Landsat satellite to make a mosaic of their state. From the mosaic clear acetate overlay maps can be made relating to such subjects as agriculture, geology, hydrology, or urban planning. (BB)

  5. 43 CFR 3592.1 - Operating plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OPERATIONS Plans and Maps § 3592.1 Operating plans. (a) Before conducting any operations under any lease(s... description of geologic conditions and mineral resources, with appropriate maps, within the area where mining is to be conducted; (3) A copy of a suitable map or aerial photograph showing the topography, the...

  6. 43 CFR 3592.1 - Operating plans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OPERATIONS Plans and Maps § 3592.1 Operating plans. (a) Before conducting any operations under any lease(s... description of geologic conditions and mineral resources, with appropriate maps, within the area where mining is to be conducted; (3) A copy of a suitable map or aerial photograph showing the topography, the...

  7. 43 CFR 3592.1 - Operating plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OPERATIONS Plans and Maps § 3592.1 Operating plans. (a) Before conducting any operations under any lease(s... description of geologic conditions and mineral resources, with appropriate maps, within the area where mining is to be conducted; (3) A copy of a suitable map or aerial photograph showing the topography, the...

  8. Geology of the Teakettle Creek watersheds

    Treesearch

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  9. Regional assessment of aquifers for thermal energy storage. Volume 1: Regions 1 through 6

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the western mountains, alluvial basins, Columbia LAVA plateau, Colorado plateau, high plains, and glaciated central region are discussed.

  10. Using High-Precision Specific Gravity Measurements to Study Minerals in Undergraduate Geoscience Courses

    ERIC Educational Resources Information Center

    Brandriss, Mark E.

    2010-01-01

    This article describes ways to incorporate high-precision measurements of the specific gravities of minerals into undergraduate courses in mineralogy and physical geology. Most traditional undergraduate laboratory methods of measuring specific gravity are suitable only for unusually large samples, which severely limits their usefulness for student…

  11. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  12. Metropolitan Washington Area Water Supply Study. Appendix F. Structural Alternatives.

    DTIC Science & Technology

    1983-09-01

    Geology F-132 Description of Aquifers F-137 Patuxent Formation F-137 Patapsco Formation F-137 Magothy Formation F-138 Aquia Formation F-138 Aquifer...Distribution in the Patuxent Aquifer F-146 F-32 Transmissivity Distribution in the Patapsco Aquifer F-i46 F-33 Transmissivity Distribution in the Magothy ...wellfield scheme was planned to tap the region’s deep * - aquifers, particularly the Magothy and Patapsco formations. To fully penetrate these aquifers

  13. Carbon dioxide fluid-flow modeling and injectivity calculations

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    These results were used to classify subsurface formations into three permeability classifications for the probabilistic calculations of storage efficiency and containment risk of the U.S. Geological Survey geologic carbon sequestration assessment methodology. This methodology is currently in use to determine the total carbon dioxide containment capacity of the onshore and State waters areas of the United States.

  14. Publications - SR 37 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Section; Resource Assessment; Tyonek Formation; Type Section Top of Page Department of Natural Resources State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home

  15. Assessment of undiscovered continuous oil and gas resources in the Heath Formation, central Montana and western North Dakota, 2016

    USGS Publications Warehouse

    Drake, Ronald M.; Schenk, Christopher J.; Klett, Timothy R.; Le, Phuong A.; Leathers, Heidi M.; Brownfield, Michael E.; Finn, Thomas M.; Gaswirth, Stephanie B.; Marra, Kristen R.; Tennyson, Marilyn E.

    2017-06-07

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 884 million barrels of oil and 106 billion cubic feet of gas in the North-Central Montana and Williston Basin Provinces of central Montana and western North Dakota.

  16. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  17. Geophysical log analysis of selected test and residential wells at the Shenandoah Road National Superfund Site, East Fishkill, Dutchess County, New York

    USGS Publications Warehouse

    Reynolds, Richard J.; Anderson, J. Alton; Williams, John H.

    2015-01-01

    The geophysical logs and their analyses are available for display and download from the U.S. Geological Survey, New York Water Science Center, online geophysical log archive (http://ny.water.usgs.gov/maps/geologs/) in LAS (Log ASCII Standard), PDF, and WellCad formats.

  18. 76 FR 13396 - Notice of Availability of the Draft Environmental Impact Statement for the Mountaineer Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... deep saline geologic formations for permanent geologic storage. DATES: DOE invites the public to...; or by fax (304) 285-4403. The Draft EIS is available on DOE's NEPA Web page at: http://nepa.energy.gov/DOE_NEPA_documents.htm ; and on the National Energy Technology Laboratory's Web page at: http...

  19. The role of exogenic factors in the formation of the lunar surface

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Bazilevskiy, A. T.; Ivanov, A. V.

    1977-01-01

    The formation of the surface of planetary bodies is determined by the interaction of endogenic and exogenic forces. Clarification of the mutual role of these forces is one of the most important trends in the geological sciences.

  20. Some Aspects of Evolution of Microbial Rock-Formation in the Earth's History

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. G.

    2018-01-01

    Under a relatively constant system and morphology of microbiota, sedimentary rocks produced by microbial organisms (microbiolites) evolved intensively during the geological history of the Earth. The parameters that changed were the composition, extraction form, and formation environments.

  1. National Assessment of Oil and Gas Project: Petroleum Systems and Geologic Assessment of Undiscovered Oil and Gas, Hanna, Laramie, and Shirley Basins Province, Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey Hanna, Laramie

    2007-01-01

    INTRODUCTION The purpose of the U.S. Geological Survey?s (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Hanna, Laramie, and Shirley Basins Province in Wyoming and northeastern Colorado. The assessment is based on the geologic elements of each total petroleum system (TPS) defined in the province, including hydrocarbon source rocks (source-rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined three TPSs and seven assessment units (AUs) within them; undiscovered resources for three of the seven AUs were quantitatively assessed.

  2. Jurassic-Cretaceous Composite Total Petroleum System and Geologic Assessment of Oil and Gas Resources of the North Cuba Basin, Cuba

    USGS Publications Warehouse

    ,

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) World Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the world. The U.S. Geological Survey (USGS) completed an assessment of the undiscovered oil and gas potential of the North Cuba Basin. The assessment is based on the geologic elements of the total petroleum system (TPS) defined in the province, including petroleum source rocks (source-rock maturation, generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and petroleum traps (Trap formation and timing). Using this geologic framework, the USGS defined a Jurassic-Cretaceous Total Petroleum System in the North Cuba Basin Province. Within this TPS, three assessment units were defined and assessed for undiscovered oil and gas resources.

  3. Process for structural geologic analysis of topography and point data

    DOEpatents

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  4. Effects of local geology on ground motion in the San Francisco Bay region, California—A continued study

    USGS Publications Warehouse

    Gibbs, James F.; Borcherdt, Roger D.

    1974-01-01

    Measurements of ground motion generated by nuclear explosions in Nevada have been completed for 99 locations in the San Francisco Bay region, California. The seismograms, Fourier amplitude spectra, spectral amplification curves for the signal, and the Fourier amplitude spectra of the seismic noise are presented for 60 locations. Analog amplifications, based on the maximum signal amplitude, are computed for an additional 39 locations. The recordings of the nuclear explosions show marked amplitude variations which are consistently related to the local geologic conditions of the recording site. The average spectral amplifications observed for vertical and horizontal ground motions are, respectively: (1, 1) for granite, (1.5, 1.6) for the Franciscan Formation, (2.3, 2.3), for other pre-Tertiary and Tertiary rocks, (3.0, 2.7) for the Santa Clara Formation, (3.3, 4.4) for older bay sediments, and (3.7, 11.3) for younger bay mud. Spectral amplification curves define predominant ground frequencies for younger bay mud sites and for some older bay sediment sites. The predominant frequencies for most sites were not clearly defined by the amplitude spectra computed from the seismic background noise. The intensities ascribed to various sites in the San Francisco Bay region for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the intensities for 917 sites on Franciscan rocks generally decrease with the logarithm of distance as Intensity = 2.69 - 1.90 log (Distance Km). For sites on other geologic units, intensity increments, derived from this empirical rela.tion, correlate strongly with the Average Horizontal Spectral Amplifications (MISA) according to the empirical relation Intensity Increment= 0.27 + 2.70 log(AHSA). Average intensity increments predicted for various geologic units are -0.3 for granite, 0.2 for Franciscan Formation, 0.6 for other pre-Tertiary, Tertiary bedrock, 0.8 for Santa Clara Formation, 1 .3 for older bay sediments, 2.4 for younger bay mud. These empirical relations, together with detailed geologic maps, delineate areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hayward fault.

  5. National Assessment of Oil and Gas Project: Geologic Assessment of Undiscovered Oil and Gas Resources of the Eastern Great Basin Province, Nevada, Utah, Idaho, and Arizona

    USGS Publications Warehouse

    ,

    2007-01-01

    Introduction The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Eastern Great Basin Province of eastern Nevada, western Utah, southeastern Idaho, and northwestern Arizona. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and three assessment units. All three assessment units were quantitatively assessed for undiscovered oil and gas resources.

  6. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  7. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE PAGES

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; ...

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  8. Suitability of Spatial Interpolation Techniques in Varying Aquifer Systems of a Basaltic Terrain for Monitoring Groundwater Availability

    NASA Astrophysics Data System (ADS)

    Katpatal, Y. B.; Paranjpe, S. V.; Kadu, M. S.

    2017-12-01

    Geological formations act as aquifer systems and variability in the hydrological properties of aquifers have control over groundwater occurrence and dynamics. To understand the groundwater availability in any terrain, spatial interpolation techniques are widely used. It has been observed that, with varying hydrogeological conditions, even in a geologically homogenous set up, there are large variations in observed groundwater levels. Hence, the accuracy of groundwater estimation depends on the use of appropriate interpretation techniques. The study area of the present study is Venna Basin of Maharashtra State, India which is a basaltic terrain with four different types of basaltic layers laid down horizontally; weathered vesicular basalt, weathered and fractured basalt, highly weathered unclassified basalt and hard massive basalt. The groundwater levels vary with topography as different types of basalts are present at varying depths. The local stratigraphic profiles were generated at different types of basaltic terrains. The present study aims to interpolate the groundwater levels within the basin and to check the co-relation between the estimated and the observed values. The groundwater levels for 125 observation wells situated in these different basaltic terrains for 20 years (1995 - 2015) have been used in the study. The interpolation was carried out in Geographical Information System (GIS) using ordinary kriging and Inverse Distance Weight (IDW) method. A comparative analysis of the interpolated values of groundwater levels is carried out for validating the recorded groundwater level dataset. The results were co-related to various types of basaltic terrains present in basin forming the aquifer systems. Mean Error (ME) and Mean Square Errors (MSE) have been computed and compared. It was observed that within the interpolated values, a good correlation does not exist between the two interpolation methods used. The study concludes that in crystalline basaltic terrain, interpolation methods must be verified with the changes in the geological profiles.

  9. Conditions on Early Mars Might Have Fostered Rapid and Early Development of Life

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2007-01-01

    The exploration of Mars during the past decades has begun to unveil the history of the planet. The combinations of remote sensing, in situ geochemical compositional measurements and photographic observations from both above and on the surface have shown Mars to have a dynamic and active geologic evolution. Mars geologic evolution clearly had conditions that were suitable for supporting life. For a planet to be able to be habitable, it must have water, carbon sources, energy sources and a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water-carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001 well-dated at approx.3.9 Gy., (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, early active volcanism continuing throughout Martian history, and, and continuing impact processes, (iii) Carbon and water from possibly extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) some crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust. The question arises: "Why would life not evolve from these favorable conditions on early Mars in its first 600 My?" During this period, it seems likely that environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would all favor the formation of early life. Even if life developed elsewhere (on Earth, Venus, or on other solar systems) and was transported to Mars, the surface conditions were likely very hospitable for that introduced life to multiply and evolve.

  10. NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information

    USGS Publications Warehouse

    ,

    2004-01-01

    Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.

  11. Large-Scale Topographic Features on Venus: A Comparison by Geological Mapping in Four Quadrangles

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Head, J. W.

    2002-05-01

    We have conducted geological mapping in four quadrangles under the NASA program of geological mapping of Venus. Two quadrangles portray large equidimensional lowlands (Lavinia, V55, and Atalanta, V4, Planitiae) and two more areas are characterized by a large corona (Quetzalpetlatl corona, QC, V66), and Lakshmi Planum (LP, V7). Geological mapping of these large-scale features allows for their broad comparisons by both sets of typical structures and sequences of events. The Planitiae share a number of similar characteristics. (1) Lavinia and Atalanta are broad quasi-circular lowlands 1-2 km deep. (2) The central portions of the basins lack both coronae and large volcanoes. (3) The belts of tectonic deformation characterize the central portions of the basins. (4) There is evidence in both lowlands that they subsided predominantly before the emplacement of regional plains. (5) Recent volcanism is shifted toward the periphery of the basins and occurred after or at the late stages the formation of the lowlands. The above characteristics of the lowlands are better reconciled with the scenario in which their formation is due to a broad-scale mantle downwelling that started relatively early in the visible geologic history of Venus. The QC and LP are elevated structures roughly comparable in size. The formation of QC is commonly attributed to large-scale mantle positive diapirism while the formation of LP remains controversial and both mantle upwelling and downwelling models exist. QC and LP have similar characteristics such as broadly circular shape in plan-view, association with regional highlands, associated relatively young volcanism, and a topographic moat bordering both QC and LP from the North. Despite the above similarities, the striking differences between QC and LP are obvious too. LP is crowned by the highest mountain ranges on Venus and QC is bordered from the North by a common belt of ridges. LP itself makes up a regional highland within the upland of Ishtar Terra while QC produces a much less significant topographic anomaly on the background of the highland of Lada Terra. Highly deformed, tessera-like, terrain apparently makes up the basement of LP, and QC formed in the tessera-free area. Volcanic activity is concentrated in the central portion of LP while QC is a regionally important center of young volcanism. These differences, which probably can not be accounted for by simple difference in the size of LP and QC, suggest non-similar modes of the formation of both regional structures and do not favor the upwelling models of the formation of LP.

  12. [Geognosy versus Geology: National Modes of Thought and Cultural Practices Concerning Space and Time in Competition].

    PubMed

    Klemun, Marianne

    2015-09-01

    Natural science investigators at the end of the eighteenth century made use of conflicting labels to position their respective preferred fields of activity in the Earth sciences. This mania for labelling marked their break with natural science and the umbrella term 'mineralogy'. In this conflict situation of specialist classifications and explanations, two terms in particular were established: geognosy and geology, which covered the very promising project of research in the areas of the 'origin of the Earth' and the 'formation of the Earth'. These and the associated research goals were subsequently accorded a dazzling career. Proceeding from the conceptual core-meaning in the formation of terms und its semantic spectrum and conceptual shifts in a time of change, my study will look at the identity and heterogeneity functions of geology and geognosy. For whereas in French and English speaking countries the term geology came to be used exclusively (geology, géologie), this was avoided in German, particularly because the term geognosy was preferred. These national differences may be explained with reference to the different cultural and national styles of science: for example the social embedding of geology in the culture of the English gentleman or the French museum culture, and the close connection of 'German' geognosy to mining. A further starting point in the analysis of the double use of both geology and geognosy in German speaking countries until 1840 is provided by the different references to temporalization and spatialization of the two terms. And we should also include the practical implications and the epistemic requirements that were bound up with the defence of geognosy in the German speaking world.

  13. Geologic framework for the national assessment of carbon dioxide storage resources: Hanna, Laramie, and Shirley Basins, Wyoming: Chapter C in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Covault, Jacob A.; Craddock, William H.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110-140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used for the national CO2 assessment is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rock within the Hanna, Laramie, and Shirley Basins of Wyoming. It focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included herein will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data in a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  14. Geology and geomorphology of the Carolina Sandhills, Chesterfield County, South Carolina

    USGS Publications Warehouse

    Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard

    2016-01-01

    This two-day field trip focuses on the geology and geomorphology of the Carolina Sandhills in Chesterfield County, South Carolina. This area is located in the updip portion of the U.S. Atlantic Coastal Plain province, supports an ecosystem of longleaf pine (Pinus palustris) and wiregrass (Aristida stricta), and contains three major geologic map units: (1) An ~60–120-m-thick unit of weakly consolidated sand, sandstone, mud, and gravel is mapped as the Upper Cretaceous Middendorf Formation and is interpreted as a fluvial deposit. This unit is capped by an unconformity, and displays reticulate mottling, plinthite, and other paleosol features at the unconformity. The Middendorf Formation is the largest aquifer in South Carolina. (2) A 0.3–10-m-thick unit of unconsolidated sand is mapped as the Quaternary Pinehurst Formation and is interpreted as deposits of eolian sand sheets and dunes derived via remobilization of sand from the underlying Cretaceous strata. This unit displays argillic horizons and abundant evidence of bioturbation by vegetation. (3) A <3-m-thick unit of sand, pebbly sand, sandy mud, and mud is mapped as Quaternary terrace deposits adjacent to modern drainages. In addition to the geologic units listed above, a prominent geomorphologic feature in the study area is a north-trending escarpment (incised by headwater streams) that forms a markedly asymmetric drainage divide. This drainage divide, as well as the Quaternary terraces deposits, are interpreted as evidence of landscape disequilibrium (possibly geomorphic responses to Quaternary climate changes).

  15. Geologic assessment of undiscovered oil and gas resources in Aptian carbonates, onshore northern Gulf of Mexico Basin, United States

    USGS Publications Warehouse

    Hackley, Paul C.; Karlsen, Alexander W.

    2014-01-01

    Carbonate lithofacies of the Lower Cretaceous Sligo Formation and James Limestone were regionally evaluated using established U.S. Geological Survey (USGS) assessment methodology for undiscovered conventional hydrocarbon resources. The assessed area is within the Upper Jurassic–Cretaceous–Tertiary Composite total petroleum system, which was defined for the assessment. Hydrocarbons reservoired in carbonate platform Sligo-James oil and gas accumulations are interpreted to originate primarily from the Jurassic Smackover Formation. Emplacement of hydrocarbons occurred via vertical migration along fault systems; long-range lateral migration also may have occurred in some locations. Primary reservoir facies include porous patch reefs developed over paleostructural salt highs, carbonate shoals, and stacked linear reefs at the carbonate shelf margin. Hydrocarbon traps dominantly are combination structural-stratigraphic. Sealing lithologies include micrite, calcareous shale, and argillaceous lime mudstone. A geologic model, supported by discovery history analysis of petroleum geology data, was used to define a single regional assessment unit (AU) for conventional reservoirs in carbonate facies of the Sligo Formation and James Limestone. The AU is formally entitled Sligo-James Carbonate Platform Oil and Gas (50490121). A fully risked mean undiscovered technically recoverable resource in the AU of 50 million barrels of oil (MMBO), 791 billion cubic feet of natural gas (BCFG), and 26 million barrels of natural gas liquids was estimated. Substantial new development through horizontal drilling has occurred since the time of this assessment (2010), resulting in cumulative production of >200 BCFG and >1 MMBO.

  16. Method of detecting leakage from geologic formations used to sequester CO.sub.2

    DOEpatents

    White, Curt [Pittsburgh, PA; Wells, Arthur [Bridgeville, PA; Diehl, J Rodney [Pittsburgh, PA; Strazisar, Brian [Venetia, PA

    2010-04-27

    The invention provides methods for the measurement of carbon dioxide leakage from sequestration reservoirs. Tracer moieties are injected along with carbon dioxide into geological formations. Leakage is monitored by gas chromatographic analyses of absorbents. The invention also provides a process for the early leak detection of possible carbon dioxide leakage from sequestration reservoirs by measuring methane (CH.sub.4), ethane (C.sub.2H.sub.6), propane (C.sub.3H.sub.8), and/or radon (Rn) leakage rates from the reservoirs. The invention further provides a method for branding sequestered carbon dioxide using perfluorcarbon tracers (PFTs) to show ownership.

  17. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1983-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  18. Comet and meteorite traditions of Aboriginal Australians

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2014-06-01

    This research contributes to the disciplines of cultural astronomy (the academic study of how past and present cultures understand and utilise celestial objects and phenomena) and geomythology (the study of geological events and the formation of geological features described in oral traditions). Of the hundreds of distinct Aboriginal cultures of Australia, many have oral traditions rich in descriptions and explanations of comets, meteors, meteorites, airbursts, impact events, and impact craters. These views generally attribute these phenomena to spirits, death, and bad omens. There are also many traditions that describe the formation of meteorite craters as well as impact events that are not known to Western science.

  19. Reservoir and Source Rock Identification Based on Geologycal, Geophysics and Petrophysics Analysis Study Case: South Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Anggit Maulana, Hiska; Haris, Abdul

    2018-05-01

    Reservoir and source rock Identification has been performed to deliniate the reservoir distribution of Talangakar Formation South Sumatra Basin. This study is based on integrated geophysical, geological and petrophysical data. The aims of study to determine the characteristics of the reservoir and source rock, to differentiate reservoir and source rock in same Talangakar formation, to find out the distribution of net pay reservoir and source rock layers. The method of geophysical included seismic data interpretation using time and depth structures map, post-stack inversion, interval velocity, geological interpretations included the analysis of structures and faults, and petrophysical processing is interpret data log wells that penetrating Talangakar formation containing hydrocarbons (oil and gas). Based on seismic interpretation perform subsurface mapping on Layer A and Layer I to determine the development of structures in the Regional Research. Based on the geological interpretation, trapping in the form of regional research is anticline structure on southwest-northeast trending and bounded by normal faults on the southwest-southeast regional research structure. Based on petrophysical analysis, the main reservoir in the field of research, is a layer 1,375 m of depth and a thickness 2 to 8.3 meters.

  20. Chemical, thermal and impact processing of asteroids

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Taylor, G. J.; Newsom, H. E.; Herbert, F.; Zolensky, M.

    1989-01-01

    The geological effects of impacts, heating, melting, core formation, and aqueous alteration on asteroids are reviewed. A review of possible heat sources appears to favor an important role for electrical induction heating. The effects of each geologic process acting individually and in combination with others, are considered; it is concluded that there is much evidence for impacts during alteration, metamorphism and melting. These interactions vastly increased the geologic diversity of the asteroid belt. Subsequent impacts of cool asteroids did not reduce this diversity. Instead new rock types were created by mixing, brecciation and minor melting.

  1. Map showing potential metal-mine drainage hazards in Colorado, based on mineral-deposit geology

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Streufert, Randall K.; Smith, Kathleen S.; Smith, Steven M.; Wallace, Alan R.; Toth, Margo I.; Nash, J. Thomas; Robinson, Rob A.; Ficklin, Walter H.; Lee, Gregory K.

    1995-01-01

    This map, compiled by the U.S. Geological Survey (USGS) in cooperation with the Colorado Geological Survey (CGS) and the U. S. Bureau of Land Management (BLM), shows potential mine-drainage hazards that may exist in Colorado metal-mining districts, as indicated by the geologic characteristics of the mineral deposits that occur in the respective districts. It was designed to demonstrate how geologic and geochemical information can be used on a regional scale to help assess the potential for mining-related and natural drainage problems in mining districts, unmined mineralized areas, and surrounding watersheds. The map also provides information on the distribution of different mineral deposit types across Colorado. A GIS (Geographic Information System) format was used to integrate geologic, geochemical, water-quality, climate, landuse, and ecological data from diverse sources. Likely mine-drainage signatures were defined for each mining district based on: (1) a review of the geologic characteristics of the mining district, including mineralogy, trace-element content, host-rock lithology, and wallrock alteration, and; (2) results of site specific studies on the geologic controls on mine-drainage composition.

  2. Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma

    USGS Publications Warehouse

    Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.

    2013-01-01

    This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.

  3. The graphic cell method: a new look at digitizing geologic maps

    USGS Publications Warehouse

    Hanley, J.T.

    1982-01-01

    The graphic cell method is an alternative method of digitizing areal geologic information. It involves a discrete-point sampling scheme in which the computer establishes a matrix of cells over the map. Each cell and the whole cell is assigned the identity or value of the geologic information that is recognized at its center. Cell size may be changed to suit the needs of the user. The computer program resolves the matrix and identifies potential errors such as multiple assignments. Input includes the digitized boundaries of each geologic formation. This method should eliminate a primary bottleneck in the creation and testing of geomathematical models in such disciplines as resource appraisal. ?? 1982.

  4. Method for carbon dioxide sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  5. Brachyceratops, a ceratopsian dinosaur from the Two Medicine formation of Montana, with notes on associated fossil reptiles

    USGS Publications Warehouse

    Gilmore, Charles W.

    1917-01-01

    The fossils on which this paper is based were collected by me and my assistant, Mr. J. F. Strayrer, during the summer of 1913, while working under the auspices of the United States Geological Survey on the Blackfeet Indian Reservation, in northwestern Montana. The specimens were obtained from exposures of the Two Medicine formation along Milk River near the Canadian boundary, in T. 37 N., R. 8 W., about 30 miles northwest of the town of Cut Bank, Mont., and along Two Medicine River in T. 31 N., R. 7 W., about 15 miles southwest of Cut Bank. Vertebrate remains were found at these places in, 1911 and 1912 by Eugene Stebinger, while he was engaged in Geological Survey work, and he was the first to note that the localities are good fields for finding specimens of fossil vertebrates.2 Although the present collection is small, it is of considerable scientific interest because it supplements the collections made in neighboring areas by other investigators, and because it contains a new genus of Ceratopsia in addition to other recognizable specimens which afford evidence that considerably extends the geologic and geographic ranges of forms heretofore described.The beds from which the collection was made constitute the upper part of the Two Medicine formation, which includes the equivalent of the Judith River formation and some older beds. The fossiliferous beds are also the equivalent of the upper part of the Belly River formation as found in neighboring areas of Canada.The fauna of the American Judith River formation, although diversified, is very inadequately known. Many of the genera and species have been founded on specimens so scant and fragmentary that it is almost impossible to refer to them subsequently discovered and more perfect materials. Recent collections made by L. M. Lambe, of the Canada Geological Survey, and by Barnum Brown, of the American Museum of Natural History, from the Belly River formation along Red Deer River in Canada, however, have placed this fauna on a more solid basis.The purpose of this paper is to give as complete and detailed a description of the skeletal anatomy of Brachyceratops montanensis as the material at hand will permit and to discuss briefly, in systematic order, other forms represented by specimens in the collection made in 1913.I take this opportunity to express my thanks for assistance rendered and for courtesies extended at many times, both in the field and during the preparation of this report, by Messrs. M. R. Campbell, T. W. Stanton, and F. H. Knowlton, and especially by Mr. Eugene Stebinger, all of the United States Geological Survey.

  6. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste: Part I, Introduction and guidelines

    USGS Publications Warehouse

    Bedinger, M.S.; Sargent, Kenneth A.; Reed, J.E.

    1984-01-01

    The U.S. Geological Survey's program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight States in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the Federal Government in the evaluation process. Each Governor was requested to nominate an Earth scientist to represent the State in a province working group composed of State and U.S. Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration.Part II is a reconnaissance characterization of the geologic and hydrologic factors to be used in the initial screening of the Basin and Range Province. Part III will be the initial evaluation of the Province and will identify regions that appear suitable for further study.The plan for study of the Province includes a stepwise screening process by which successively smaller land units are considered in increasing detail. Each step involves characterization of the geology and hydrology and selection of subunits for more intensive characterization. Selection of subunits for further study is by evaluation of geologic and hydrologic conditions following a set of guidelines. By representation on the Province Working Group, the States participate in a consultation and review role in: (1) Establishing geologic and hydrologic guidelines, and (2) characterizing and evaluating the Province. The States also participate in compilation of geologic and hydrologic data used in characterizing the Province.The current (1983) needs for a high-level radioactive waste repository include: (1) Disposal in a mined repository; (2) retrievability of the waste for as much as 50 years; and (3) confidence of isolation of the waste from the accessible environment. Isolation of the waste needs to be assured using geologic and hydrologic conditions that: (1) Minimize risk of inadvertent future intrusions by man; (2) minimize the possibility of disturbance by processes that would expose the waste or increase its mobility; and (3) provide a system of natural barriers to the migration of waste by ground water. The guidelines adopted by the Province Working Group are designed to provide a standard with which these conditions can be compared.The guidelines can be grouped into four principal categories: (1) Potential host media, (2) ground-water conditions, (3) tectonic conditions, and. (4) occurrence of natural resources. Ideally the host medium constitutes the first natural barrier to migration of radionculides. The host medium ideally should be a rock type that prevents or retards dissolution and transport of radionuclides. Rocks in both the saturated and unsaturated zones may have desirable characteristics for host media. Rocks-other than the host-in the ground-water flow path from the repository ideally should be major barriers to radionuclide migration. Confining beds of low permeability might be present to retard the rate of flow between more permeable beds. Additionally, sorption of radionuclides by materials such as clays and zeolites in the flow path can further retard the flow of radionuclides by several orders of magnitude. Tectonic conditions in an area should not present a probable cause for exhumation or increased mobility of radioactive waste. Natural resources are a factor for consideration because of the problem of future human intrusion and exposure to radioactivity in the quest for minerals, oil, gas, water, and geothermal resources.The ultimate evaluation of the suitability of a geohydrologic environment for developing a mined repository needs to assess all geologic and hydrologic characteristics and their interaction in providing confidence that a geohydrologic environment will effectively isolate radionuclides from human access. Several hypothetical settings with typical geohydrologic conditions in the Basin and Range Province are used to illustrate the effect of multiple barriers in the isolation of radionuclides.

  7. A comparison of Gemini and ERTS imagery obtained over southern Morocco

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Anderson, A. T.

    1973-01-01

    A mosaic constructed from three ERTS MSS band 5 images enlarged to 1:500,000 compares favorably with a similar scale geologic map of southern Morocco, and a near-similar scale Gemini 5 photo pair. A comparative plot of lineations and generalized geology on the three formats show that a significantly greater number of probable fractures are visible on the ERTS imagery than on the Gemini photography, and that both orbital formats show several times more lineaments than were previously mapped. A plot of mineral occurrences on the structural overlays indicates that definite structure-mineralization relationships exist; this finding is used to define underdeveloped areas which are prospective for mineralization. More detailed mapping is possible using MSS imagery than on Gemini 5 photographs, and in addition, the ERTS format is not restricted to limited coverage.

  8. Digital seismic-reflection data from western Rhode Island Sound, 1980

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Soderberg, N.K.

    2009-01-01

    During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey in western Rhode Island Sound aboard the Research Vessel Neecho. Data from this survey were recorded in analog form and archived at the USGS Woods Hole Science Center's Data Library. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and converted to Tagged Image File Format (TIFF) images and SEG-Y data files. Navigation data were converted from U.S. Coast Guard Long Range Aids to Navigation (LORAN-C) time delays to latitudes and longitudes, which are available in Environmental Systems Research Institute, Inc. (ESRI) shapefile format and as eastings and northings in space-delimited text format.

  9. The systematic geologic mapping program and a quadrangle-by-quadrangle analysis of time-stratigraphic relations within oil shale-bearing rocks of the Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.

    2012-01-01

    During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.

  10. Semantic Web-based digital, field and virtual geological

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer in the stack assembles a set of polygonal (e.g., formation, member, intrusion), linear (e.g., fault, contact), and/or point (e.g., sample or measurement site) geological elements. These feature classes, represented in domain ontologies by classes, have their own sets of property (attribute, association relation) and topological (e.g., overlap, adjacency, containment), and network (cross-cuttings; connectivity) relationships. Since geological mapping involves describing and depicting different aspects of each feature class (e.g., contact, formation, structure), the same geographic region may be investigated by different communities, for example, for its stratigraphy, rock type, structure, soil type, and isotopic and paleontological age, using sets of ontologies. These data can become interconnected applying the Semantic Web technologies, on the Linked Open Data Cloud, based on their underlying common geographic coordinates. Sets of geological data published on the Cloud will include multiple RDF links to Cloud's geospatial nodes such as GeoNames and Linked GeoData. During mapping, a device such as smartphone, laptop, or iPad, with GPS and GIS capability and a DBpedia Mobile client, can use the current position to discover and query all the geological linked data, and add new data to the thematic layers and publish them to the Cloud.

  11. Assessment of undiscovered continuous oil and gas resources of Upper Cretaceous Shales in the Songliao Basin of China, 2017

    USGS Publications Warehouse

    Potter, Christopher J.; Schenk, Christopher J.; Pitman, Janet K.; Klett, Timothy R.; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Brownfield, Michael E.; Mercier, Tracey J.; Marra, Kristen R.; Woodall, Cheryl A.

    2018-05-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 3.3 billion barrels of oil and 887 billion cubic feet of gas in shale reservoirs of the Upper Cretaceous Qingshankou and Nenjiang Formations in the Songliao Basin of northeastern China.

  12. Publications - PIR 2008-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    of recent geologic field investigations in the Brooks Range Foothills and North Slope, Alaska: Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska ; Tectonics; Thermal History; Thrust; Toolik River; Torok Formation; Turbidites; Turonian; Valanginian Top of

  13. In detail monazite characterization in a carbonatite weathering profile - a new tool for landscape geochronology

    NASA Astrophysics Data System (ADS)

    Renno, A. D.; Le Bras, L.; Ziegenrücker, R.; Couffignal, F.; Wiedenbeck, M.; Haser, S.; Hlawacek, G.

    2016-12-01

    The Post-Gondwana geology of South Africa is marked by two prominent planation surfaces, the result of two distinct phases of uplift and erosion. The first of these took place during the mid- to late Cretaceous (the so-called "African planation"), whilst the second is tentatively placed into the Miocene or Oligocene (the "Post-African I planation"). Humid and warm climatic conditions are recorded by deep lateritic weathering columns of suitable lithologies. The present study tests the suitability of U-Th-Pb dating on supergene monazite as a geochronometer for landscape formation and the downward progression of the chemical weathering process. We investigated material from the Zandkopsdrift carbonatite, Namaqualand, South Africa, a pipe-shaped intrusion located in the Northern Cape Province of South Africa. The age of carbonatite intrusion has been determined to be Eocene (54-56 Ma). This carbonatite has a well-developed lateritic cap that is more than 80 m thick in places and that is highly enriched in REE's hosted mostly by very fine crystalline monazite of presumably supergene origin. Due to the fact that the age of intrusion postdates the African planation surface, the lateritic cap almost certainly marks the Post-African I erosion surface. Both the onset and duration of the Post-African I cycle of erosion remain uncertain. This study addresses the duration of the Post-African I event through the dating of supergene monazite from the Zandkopsdrift laterite cap. A detailed description of the petrographic and mineralogical properties has identified the most promising samples for dating using secondary ion mass spectrometry (SIMS). A detailed description of the internal structure, microporosity and inclusions as well as intergrowths and pseudomorphic mineral formations has helped greatly toward understand the origins of the Zandkopsdrift sequence and the genesis of the REE within this profile. These data establish important anchor points for the reconstruction of the landscape evolution in South Africa.

  14. Stratigraphic sections of the Phosphoria formation in Idaho, 1947-48, Part I

    USGS Publications Warehouse

    McKelvey, Vincent Ellis; Davidson, D.F.; O'Malley, F. W.; Smith, L.E.; Armstrong, F.C.; Sheldon, R.P.

    1952-01-01

    The Permian Phosphoria formation of the western states contains one of the world's largest reserves of phosphate. Although previous investigations (see especially Mansfield, 1927), including reconnaissance geologic mapping and sampling, established the location of most of the important deposits and their quality of scattered localities, they were not sufficiently detailed to permit a comparison of the merits of individual deposits or an appraisal of the reserves of phosphate rock that might be available under present economic conditions. Because the growing importance of the western phosphate deposits requires a better, more detailed understanding of their distribution and quality, the Geological Survey began in 1947 a comprehensive investigation, including (1) reconnaissance geologic mapping, mostly in Montana, of areas in which the Phosphoria formation could occur but where it had not previously been looked for or found; (2) geologic mapping, mostly in Montana, at a scale no smaller than 1:62,500, of several areas known to contain the Phosphoria formation but not previously mapped except in reconnaissance fashion; (3) geologic and topographic mapping, at a scale of 1:12,000, of some of the richest, thickest, and most accessible deposits; (4) measuring, describing, and sampling all beds of the phosphatic and shaly parts, and in some places the full thickness, of the Phosphoria formation and its stratigraphic equivalents at one or two localities per township over the entire field; (5) chemical and spectrographic analysis of the samples for phosphate, fluorine, minor metals, oil, and rock-forming constituents; and (6) petrologic and geochemical studies of the rocks and minerals of the formation. These studies are designed to define the regional and local geologic structures in which the phosphate bed lie, to provide a basis for the estimation of reserves of the inferred class over the entire region, and to determine the origin of the rocks and the elements contained in them. The data collected are not of the detail required to plan actual mining operations, but it is hoped they will guide industry in the selection of individual deposits worthy of further exploration. Most of the field work contemplated as a part of this investigation is now completed. Although the data will not be compiled or published in final form for some years to come, segments of the data, accompanied by little or no interpretation, will be published as preliminary maps or reports as they are assembled. The present report is the first of a series presenting in abbreviated form the description and analyses of the beds measured and sampled at various localities in southeastern Idaho (pl. 1). Companion reports presenting segments of the data from Montana, Wyoming, and Utah (Swanson and others, 1952, and McKelvey and others, 1952a and 1952b) are being released at the same time as this report, and others are in preparation.

  15. Martian mud volcanism: Terrestrial analogs and implications for formational scenarios

    USGS Publications Warehouse

    Skinner, J.A.; Mazzini, A.

    2009-01-01

    The geology of Mars and the stratigraphic characteristics of its uppermost crust (mega-regolith) suggest that some of the pervasively-occurring pitted cones, mounds, and flows may have formed through processes akin to terrestrial mud volcanism. A comparison of terrestrial mud volcanism suggests that equivalent Martian processes likely required discrete sedimentary depocenters, volatile-enriched strata, buried rheological instabilities, and a mechanism of destabilization to initiate subsurface flow. We outline five formational scenarios whereby Martian mud volcanism might have occurred: (A) rapid deposition of sediments, (B) volcano-induced destabilization, (C) tectonic shortening, (D) long-term, load-induced subsidence, and (E) seismic shaking. We describe locations within and around the Martian northern plains that broadly fit the geological context of these scenarios and which contain mud volcano-like landforms. We compare terrestrial and Martian satellite images and examine the geological settings of mud volcano provinces on Earth in order to describe potential target areas for piercement structures on Mars. Our comparisons help to evaluate not only the role of water as a functional component of geological processes on Mars but also how Martian mud volcanoes could provide samples of otherwise inaccessible strata, some of which could contain astrobiological evidence.

  16. Leonardo da Vinci's Geology: The Authenticity of The Virgin of the Rocks

    NASA Astrophysics Data System (ADS)

    Pizzorusso, Ann

    2017-04-01

    Viewed from a geological perspective, all of Leonardo's paintings and drawings reveal a remarkable fidelity to nature. The Virgin of the Rocks in the National Gallery in London (1495-1508), attributed to him, displays no such fidelity. If we compare it to the Virgin of the Rocks in the Louvre in Paris (1483-86) whose geological accuracy is astounding, we cannot help questioning whether Leonardo painted the background in the National Gallery work. Over the centuries, various arguments have called into question the attribution of the National Gallery painting to Leonardo. Scholars have analyzed the brush strokes, undertaken document searches and tried to prove definitively that Leonardo produced the National Gallery version. However, there have always been doubts, naysayers and many unanswered questions concerning its authenticity. The fact that attribution of the work has been the subject of such controversy throughout history suggests that new diagnostic means of determining authenticity is in order. A comparison of the representations of geological formations in the two paintings offers such means. It seems unlikely that the same person could have portrayed rock formations so accurately in the Louvre work and so incongruously in the National Gallery painting.

  17. Continuity of Permian Mengkareng formation through GPR interpretation in Merangin Geopark

    NASA Astrophysics Data System (ADS)

    Hanif, F.; Syahputra, R.; Kristyanto, T. H. W.; Tempessy, A. S.; Rokhmatuloh

    2017-07-01

    The Permian Mengkarang Formation was a part of the continental margin (Gondwana Land) which separated in the Devon Period. In this period, Gondwana Land experienced glaciation at the Paleo South Pole. However, the fossils found in Mengkarang Formation were tropical flora, had made the Merangin to be certified as one of the national geoparks. It also shows that the geological process (stratigraphy and tectonic) in the Merangin has occurred before the Indonesian archipelago was formed: namely the Permian to Triassic period. Ground Penetrating Radar (GPR) was chosen as an effective geophysical method to study shallow subsurface geology. GPR and seismic reflection method have the same common principle to identify the facies and sub-sequence stratigraphy but they are different in implementation. Therefore, this study aims to deliver the vertical continuity of the Permian Mengkarang Formation in high resolution unit. The GPR result showing the subsurface image is based on dielectric of the rock layers. The GPR sections show the absence of the unconformity delivered in the intercalation between mudstone, sandstone, and tuff. Thus, it can be concluded that the Permian Mengkareng Formation continues up to 20 m depth.

  18. Mineral Grains, Dimples, and Hot Volcanic Organic Streams: Dynamic Geological Backstage of Macromolecular Evolution.

    PubMed

    Skoblikow, Nikolai E; Zimin, Andrei A

    2018-04-01

    The hypothesis of hot volcanic organic stream as the most probable and geologically plausible environment for abiogenic polycondensation is proposed. The primary synthesis of organic compounds is considered as result of an explosive volcanic (perhaps, meteorite-induced) eruption. The eruption was accompanied by a shock wave propagating in the primeval atmosphere and resulting in the formation of hot cloud of simple organic compounds-aldehydes, alcohols, amines, amino alcohols, nitriles, and amino acids-products, which are usually obtained under the artificial conditions in the spark-discharge experiments. The subsequent cooling of the organic cloud resulted in a gradual condensation and a serial precipitation of organic compounds (in order of decreasing boiling point values) into the liquid phase forming a hot, viscous and muddy organic stream (named "lithorheos"). That stream-even if the time of its existence was short-is considered here as a geologically plausible environment for abiogenic polycondensation. The substances successively prevailing in such a stream were cyanamide, acetamide, formamide, glycolonitrile, acetonitrile. An important role was played by mineral (especially, phosphate-containing) grains (named "lithosomes"), whose surface was modified with heterocyclic nitrogen compounds synthesized in the course of eruption. When such grains got into hot organic streams, their surface catalytic centers (named "lithozymes") played a decisive role in the emergence, facilitation and maintenance of prebiotic reactions and key processes characteristic of living systems. Owing to its cascade structure, the stream was a factor underlying the formation of mineral-polymeric aggregates (named "lithocytes") in the small natural streambed cavities (dimples)-as well as a factor of their further spread within larger geological locations which played a role of chemo-ecological niches. All three main stages of prebiotic evolution (primary organic synthesis, polycondensation, and formation of proto-cellular structures) are combined within a common dynamic geological process. We suppose macromolecular evolution had an extremely fast, "flash" start: the period from volcanic eruption to formation of lithocyte "populations" took not million years but just several tens of minutes. The scenario proposed can be verified experimentally with a three-module setup working with principles of dynamic (flow) chemistry in its core element.

  19. Mars Sample Return: The Next Step Required to Revolutionize Knowledge of Martian Geological and Climatological History

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.

    2012-01-01

    The capability of scientific instrumentation flown on planetary orbiters and landers has made great advances since the signature Viking mission of the seventies. At some point, however, the science return from orbital remote sensing, and even in situ measurements, becomes incremental, rather than revolutionary. This is primarily caused by the low spatial resolution of such measurements, even for landed instrumentation, the incomplete mineralogical record derived from such measurements, the inability to do the detailed textural, mineralogical and compositional characterization needed to demonstrate equilibrium or reaction paths, and the lack of chronological characterization. For the foreseeable future, flight instruments will suffer from this limitation. In order to make the next revolutionary breakthrough in understanding the early geological and climatological history of Mars, samples must be available for interrogation using the full panoply of laboratory-housed analytical instrumentation. Laboratory studies of samples allow for determination of parageneses of rocks through microscopic identification of mineral assemblages, evaluation of equilibrium through electron microbeam analyses of mineral compositions and structures, determination of formation temperatures through secondary ion or thermal ionization mass spectrometry (SIMS or TIMS) analyses of stable isotope compositions. Such details are poorly constrained by orbital data (e.g. phyllosilicate formation at Mawrth Vallis), and incompletely described by in situ measurements (e.g. genesis of Burns formation sediments at Meridiani Planum). Laboratory studies can determine formation, metamorphism and/or alteration ages of samples through SIMS or TIMS of radiogenic isotope systems; a capability well-beyond flight instrumentation. Ideally, sample return should be from a location first scouted by landers such that fairly mature hypotheses have been formulated that can be tested. However, samples from clastic sediments derived from an extensive region of Mars can provide important, detailed understanding of early martian geological and climatological history. Interrogating clastic "sediments" from the Earth, Moon and asteroids has allowed discovery of new crustal units, identification of now-vanished crust, and determination of the geological history of extensive, remote regions. Returned sample of martian fluvial and/or aeolian sediments, for example from Gale crater, could be "read like a book" in terrestrial laboratories to provide truly revolutionary new insights into early martian geological and climatological evolution.

  20. Soda Lake Well Lithology Data and Geologic Cross-Sections

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross‐sections in Adobe Illustrator format.

Top