Nonlinear Dynamic Responses of Composite Rotor Blades
1988-08-01
models. QHD40 is an eight-noded plate element with seven degrees of freedom (three midsurface displacements, two rotations and two higher order terms for...in-plane displacements) per corner node and three degrees of freedom (transverse midsurface displacement and two rotations) per mid-state node. QHD48...and QHD48S are eight-noded plate and shell elements respectively, with six degrees of freedom (three midsurface displacements and three rotations
NASA Astrophysics Data System (ADS)
Varghani, Ali; Peiravi, Ali; Moradi, Farshad
2018-04-01
The perpendicular anisotropy Spin-Transfer Torque Random Access Memory (P-STT-RAM) is considered to be a promising candidate for high-density memories. Many distinct advantages of Perpendicular Magnetic Tunnel Junction (P-MTJ) compared to the conventional in-plane MTJ (I-MTJ) such as lower switching current, circular cell shape that facilitates manufacturability in smaller technology nodes, large thermal stability, smaller cell size, and lower dipole field interaction between adjacent cells make it a promising candidate as a universal memory. However, for small MTJ cell sizes, the perpendicular technology requires new materials with high polarization and low damping factor as well as low resistance area product of a P-MTJ in order to avoid a high write voltage as technology is scaled down. A new graphene-based STT-RAM cell for 8 nm technology node that uses high perpendicular magnetic anisotropy cobalt/nickel (Co/Ni) multilayer as magnetic layers is proposed in this paper. The proposed junction benefits from enough Tunneling Magnetoresistance Ratio (TMR), low resistance area product, low write voltage, and low power consumption that make it suitable for 8 nm technology node.
NASA Astrophysics Data System (ADS)
Franco, J. M.; Rández, L.
The construction of new two-step hybrid (TSH) methods of explicit type with symmetric nodes and weights for the numerical integration of orbital and oscillatory second-order initial value problems (IVPs) is analyzed. These methods attain algebraic order eight with a computational cost of six or eight function evaluations per step (it is one of the lowest costs that we know in the literature) and they are optimal among the TSH methods in the sense that they reach a certain order of accuracy with minimal cost per step. The new TSH schemes also have high dispersion and dissipation orders (greater than 8) in order to be adapted to the solution of IVPs with oscillatory solutions. The numerical experiments carried out with several orbital and oscillatory problems show that the new eighth-order explicit TSH methods are more efficient than other standard TSH or Numerov-type methods proposed in the scientific literature.
A Survey on the Feasibility of Sound Classification on Wireless Sensor Nodes
Salomons, Etto L.; Havinga, Paul J. M.
2015-01-01
Wireless sensor networks are suitable to gain context awareness for indoor environments. As sound waves form a rich source of context information, equipping the nodes with microphones can be of great benefit. The algorithms to extract features from sound waves are often highly computationally intensive. This can be problematic as wireless nodes are usually restricted in resources. In order to be able to make a proper decision about which features to use, we survey how sound is used in the literature for global sound classification, age and gender classification, emotion recognition, person verification and identification and indoor and outdoor environmental sound classification. The results of the surveyed algorithms are compared with respect to accuracy and computational load. The accuracies are taken from the surveyed papers; the computational loads are determined by benchmarking the algorithms on an actual sensor node. We conclude that for indoor context awareness, the low-cost algorithms for feature extraction perform equally well as the more computationally-intensive variants. As the feature extraction still requires a large amount of processing time, we present four possible strategies to deal with this problem. PMID:25822142
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.
A comparison between different finite elements for elastic and aero-elastic analyses.
Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani
2017-11-01
In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.
Prediction model of sinoatrial node field potential using high order partial least squares.
Feng, Yu; Cao, Hui; Zhang, Yanbin
2015-01-01
High order partial least squares (HOPLS) is a novel data processing method. It is highly suitable for building prediction model which has tensor input and output. The objective of this study is to build a prediction model of the relationship between sinoatrial node field potential and high glucose using HOPLS. The three sub-signals of the sinoatrial node field potential made up the model's input. The concentration and the actuation duration of high glucose made up the model's output. The results showed that on the premise of predicting two dimensional variables, HOPLS had the same predictive ability and a lower dispersion degree compared with partial least squares (PLS).
Smart-Home Architecture Based on Bluetooth mesh Technology
NASA Astrophysics Data System (ADS)
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
A new centrality measure for identifying influential nodes in social networks
NASA Astrophysics Data System (ADS)
Rhouma, Delel; Ben Romdhane, Lotfi
2018-04-01
The identification of central nodes has been a key problem in the field of social network analysis. In fact, it is a measure that accounts the popularity or the visibility of an actor within a network. In order to capture this concept, various measures, either sample or more elaborate, has been developed. Nevertheless, many of "traditional" measures are not designed to be applicable to huge data. This paper sets out a new node centrality index suitable for large social network. It uses the amount of the neighbors of a node and connections between them to characterize a "pivot" node in the graph. We presented experimental results on real data sets which show the efficiency of our proposal.
Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok
2017-04-19
The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms.
Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok
2017-01-01
The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms. PMID:28422084
Bem, C
1996-01-01
Tuberculous lymphadenitis is common in Central Africa, where diagnosis by histological examination of a biopsied node is often delayed. In the present study, the naked eye appearance of the cut surface of 306 consecutive biopsied lymph nodes was compared with the histological diagnosis. One hundred and eight-eight nodes showed tuberculosis on histology (including two with coexisting second pathology). One hundred and forty-eight (79%) cases of tuberculous lymphadenitis (including both with coexisting second pathology) showed noncaseating tuberculomata or caseation visible on naked eye examination. Such signs were not seen in other nodes. Other signs were seen in another 18 (10%) tuberculous nodes. It is concluded that naked eye examination of nodes provides useful information for the diagnosis of tuberculous lymphadenitis, pending confirmation by histology.
Adaptive Connectivity Restoration from Node Failure(s) in Wireless Sensor Networks
Wang, Huaiyuan; Ding, Xu; Huang, Cheng; Wu, Xiaobei
2016-01-01
Recently, there is a growing interest in the applications of wireless sensor networks (WSNs). A set of sensor nodes is deployed in order to collectively survey an area of interest and/or perform specific surveillance tasks in some of the applications, such as battlefield reconnaissance. Due to the harsh deployment environments and limited energy supply, nodes may fail, which impacts the connectivity of the whole network. Since a single node failure (cut-vertex) will destroy the connectivity and divide the network into disjoint blocks, most of the existing studies focus on the problem of single node failure. However, the failure of multiple nodes would be a disaster to the whole network and must be repaired effectively. Only few studies are proposed to handle the problem of multiple cut-vertex failures, which is a special case of multiple node failures. Therefore, this paper proposes a comprehensive solution to address the problems of node failure (single and multiple). Collaborative Single Node Failure Restoration algorithm (CSFR) is presented to solve the problem of single node failure only with cooperative communication, but CSFR-M, which is the extension of CSFR, handles the single node failure problem more effectively with node motion. Moreover, Collaborative Connectivity Restoration Algorithm (CCRA) is proposed on the basis of cooperative communication and node maneuverability to restore network connectivity after multiple nodes fail. CSFR-M and CCRA are reactive methods that initiate the connectivity restoration after detecting the node failure(s). In order to further minimize the energy dissipation, CCRA opts to simplify the recovery process by gridding. Moreover, the distance that an individual node needs to travel during recovery is reduced by choosing the nearest suitable candidates. Finally, extensive simulations validate the performance of CSFR, CSFR-M and CCRA. PMID:27690030
Spectral Element Method for the Simulation of Unsteady Compressible Flows
NASA Technical Reports Server (NTRS)
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
Low-energy inelastic response in the superconducting phases of PrOs4Sb12
NASA Astrophysics Data System (ADS)
Setty, Chandan; Wang, Yuxuan; Phillips, Philip W.
2017-08-01
Recent ac susceptibility and polar Kerr effect measurements in the skutterudite superconductor PrOs4Sb12 (POS) (E. M. Levenson-Falk, E. R. Schemm, M. B. Maple, and A. Kapitulnik, arXiv:1609.07535) uncovered the nature of the superconducting double transition from a high-temperature, high-field, time-reversal symmetric phase (or the A phase) to a low-temperature, low-field, time-reversal symmetry-broken phase (or the B phase). Starting from a microscopic model, we derive a Ginzburg-Landau expansion relevant to POS that describes this entrance into the time-reversal symmetry-broken phase along the temperature axis. We also provide a study of the low-energy inelastic (Raman) response in both the A and B phases of POS, and seek additional signatures which could help reveal the exact form of the gap functions previously proposed in these phases. By appropriately manipulating the incoming and scattered light geometries, along with additional subtraction procedures and suitable assumptions, we show that one can access the various irreducible representations contained in the point group describing POS. We demonstrate how to use this technique on example order parameters proposed in POS. Depending on whether there exist nodes along the c axis, we find additional low-energy spectral weight within the superconducting gap in the Eg geometry, a feature that could pinpoint the location of nodes on the Fermi surface.
Poodat, Fatemeh; Arrowsmith, Colin; Fraser, David; Gordon, Ascelin
2015-09-01
Connectivity among fragmented areas of habitat has long been acknowledged as important for the viability of biological conservation, especially within highly modified landscapes. Identifying important habitat patches in ecological connectivity is a priority for many conservation strategies, and the application of 'graph theory' has been shown to provide useful information on connectivity. Despite the large number of metrics for connectivity derived from graph theory, only a small number have been compared in terms of the importance they assign to nodes in a network. This paper presents a study that aims to define a new set of metrics and compares these with traditional graph-based metrics, used in the prioritization of habitat patches for ecological connectivity. The metrics measured consist of "topological" metrics, "ecological metrics," and "integrated metrics," Integrated metrics are a combination of topological and ecological metrics. Eight metrics were applied to the habitat network for the fat-tailed dunnart within Greater Melbourne, Australia. A non-directional network was developed in which nodes were linked to adjacent nodes. These links were then weighted by the effective distance between patches. By applying each of the eight metrics for the study network, nodes were ranked according to their contribution to the overall network connectivity. The structured comparison revealed the similarity and differences in the way the habitat for the fat-tailed dunnart was ranked based on different classes of metrics. Due to the differences in the way the metrics operate, a suitable metric should be chosen that best meets the objectives established by the decision maker.
Tartaglione, Girolamo; Vigili, Maurizio G; Rahimi, Siavash; Celebrini, Alessandra; Pagan, Marco; Lauro, Luigi; Al-Nahhas, Adil; Rubello, Domenico
2008-04-01
To evaluate the role of dynamic lymphoscintigraphy with a same-day protocol for sentinel node biopsy in oral cavity cancer. Twenty-two consecutive patients affected by cT1-2N0 squamous cell carcinoma of the oral cavity were enrolled between September 2001 and November 2005. After a local anaesthetic (10% lidocaine spray), a dose of 30-50 MBq of Tc human serum albumin nanocolloid, in ml saline, was injected superficially (1-2 mm subendothelial injection) into four points around the lesion. Dynamic lymphoscintigraphy was acquired immediately (256x256 matrix, 5 min pre-set time, LEGP collimator) in lateral and anterior projections. The imaging was prolonged until the lymph nodes of at least two neck levels were visualized (time required min). About 3 h later (same-day protocol) the patients had a radioguided sentinel node biopsy. Elective neck dissection was performed in the first 13 patients; whereas the last nine patients had elective neck dissection only if the sentinel node was positive. Sentinel nodes were dissected into 1 mm thick block sections and studied by haematoxylin & eosin staining and immunohistochemistry (anticytokeratin antibody). The sentinel nodes were found on the 1st neck level in 13 cases, on the 2nd neck level in eight cases, and on the 3rd neck level in one case (100% sensitivity). The average number of sentinel nodes was 2.2 for each patient. The sentinel node was positive in eight patients (36%); with six of them having the sentinel node as the exclusive site of metastasis. No skip metastases were found in the 14 patients with negative sentinel node (100% specificity). Our preliminary data indicate that superficial injections of radiocolloid and dynamic lymphoscintigraphy provide a high success rate in sentinel node identification in oral cavity cancers. Dynamic lymphoscintigraphy helps in distinguishing sentinel node from second-tier lymph nodes. The same-day protocol is advisable in order to correctly identify the first sentinel node, avoiding multiple and unnecessary node biopsies, without reducing sensitivity.
Dual-Source Linear Energy Prediction (LINE-P) Model in the Context of WSNs.
Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul
2017-07-20
Energy harvesting technologies such as miniature power solar panels and micro wind turbines are increasingly used to help power wireless sensor network nodes. However, a major drawback of energy harvesting is its varying and intermittent characteristic, which can negatively affect the quality of service. This calls for careful design and operation of the nodes, possibly by means of, e.g., dynamic duty cycling and/or dynamic frequency and voltage scaling. In this context, various energy prediction models have been proposed in the literature; however, they are typically compute-intensive or only suitable for a single type of energy source. In this paper, we propose Linear Energy Prediction "LINE-P", a lightweight, yet relatively accurate model based on approximation and sampling theory; LINE-P is suitable for dual-source energy harvesting. Simulations and comparisons against existing similar models have been conducted with low and medium resolutions (i.e., 60 and 22 min intervals/24 h) for the solar energy source (low variations) and with high resolutions (15 min intervals/24 h) for the wind energy source. The results show that the accuracy of the solar-based and wind-based predictions is up to approximately 98% and 96%, respectively, while requiring a lower complexity and memory than the other models. For the cases where LINE-P's accuracy is lower than that of other approaches, it still has the advantage of lower computing requirements, making it more suitable for embedded implementation, e.g., in wireless sensor network coordinator nodes or gateways.
Overconfidence, preview, and probability in strategic planning
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Pizarro, David; Bell, Brian
1991-01-01
The performance of eight subjects in a 'rescue' video game requiring choices as to which node they should fly to in order to rescue the simulated casualties is presently studied with a view to biases and display support criteria in strategic planning. After each choice, the subjects needed to fly a challenging tracking dynamic along a path to reach the next node. The results obtained indicate that the choices of the subjects were less optimal when full preview was offered, perhaps due to subjects' reliance on the simple strategy of choosing routes with the greatest number of casualties.
High-speed and low-power repeater for VLSI interconnects
NASA Astrophysics Data System (ADS)
Karthikeyan, A.; Mallick, P. S.
2017-10-01
This paper proposes a repeater for boosting the speed of interconnects with low power dissipation. We have designed and implemented at 45 and 32 nm technology nodes. Delay and power dissipation performances are analyzed for various voltage levels at these technology nodes using Spice simulations. A significant reduction in delay and power dissipation are observed compared to a conventional repeater. The results show that the proposed high-speed low-power repeater has a reduced delay for higher load capacitance. The proposed repeater is also compared with LPTG CMOS repeater, and the results shows that the proposed repeater has reduced delay. The proposed repeater can be suitable for high-speed global interconnects and has the capacity to drive large loads.
Development of fast wireless detection system for fixed offshore platform
NASA Astrophysics Data System (ADS)
Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping
2011-04-01
Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high-performance computation unit, wireless transceiver unit, mobile power unit and embedded data analysis software, can totally control multi-wireless collection nodes, receive and analyze data, parameter identification. Data is transmitted at the 2.4GHz wireless communication channel, every sensing data channel in charge of data transmission is in a stable frequency band, control channel responsible for the control of power parameters is in a public frequency band. The test is initially conducted for the designed system, experimental results show that the system has good application prospects and practical value with fast arrangement, high sampling rate, high resolution, capacity of low frequency detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, B.M.; Mann, J.H.
1982-11-01
Intraabdominal tuberculosis (TB) presents with a wide variety of clinical and radiologic features. Besides the reported computed tomographic (CT) finding of high-density ascites in tuberculous peritonitis, this report describes additional CT features highly suggestive of abdominal tuberculosis in eight cases: (1) irregular soft-tissue densities in the omental area; (2) low-density masses surrounded by thick solid rims; (3) a disorganized appearance of soft-tissue densities, fluid, and bowel loops forming a poorly defined mass; (4) low-density lymph nodes with a multilocular appearance after intravenous contrast administration; and (5) possibly high-density ascites. The differential diagnosis of these features include lymphoma, various forms ofmore » peritonitis, peritoneal carcinomatosis, and peritoneal mesothelioma. It is important that the CT features of intraabdominal tuberculosis be recognized in order that laparotomy be avoided and less invasive procedures (e.g., laparoscopy, biopsy, or a trial of antituberculous therapy) be instituted.« less
Dual-Source Linear Energy Prediction (LINE-P) Model in the Context of WSNs
Ahmed, Faisal
2017-01-01
Energy harvesting technologies such as miniature power solar panels and micro wind turbines are increasingly used to help power wireless sensor network nodes. However, a major drawback of energy harvesting is its varying and intermittent characteristic, which can negatively affect the quality of service. This calls for careful design and operation of the nodes, possibly by means of, e.g., dynamic duty cycling and/or dynamic frequency and voltage scaling. In this context, various energy prediction models have been proposed in the literature; however, they are typically compute-intensive or only suitable for a single type of energy source. In this paper, we propose Linear Energy Prediction “LINE-P”, a lightweight, yet relatively accurate model based on approximation and sampling theory; LINE-P is suitable for dual-source energy harvesting. Simulations and comparisons against existing similar models have been conducted with low and medium resolutions (i.e., 60 and 22 min intervals/24 h) for the solar energy source (low variations) and with high resolutions (15 min intervals/24 h) for the wind energy source. The results show that the accuracy of the solar-based and wind-based predictions is up to approximately 98% and 96%, respectively, while requiring a lower complexity and memory than the other models. For the cases where LINE-P’s accuracy is lower than that of other approaches, it still has the advantage of lower computing requirements, making it more suitable for embedded implementation, e.g., in wireless sensor network coordinator nodes or gateways. PMID:28726745
NASA Astrophysics Data System (ADS)
Pignaton de Freitas, Edison; Heimfarth, Tales; Pereira, Carlos Eduardo; Morado Ferreira, Armando; Rech Wagner, Flávio; Larsson, Tony
2010-04-01
A current trend that is gaining strength in the wireless sensor network area is the use of heterogeneous sensor nodes in one coordinated overall network, needed to fulfill the requirements of sophisticated emerging applications, such as area surveillance systems. One of the main concerns when developing such sensor networks is how to provide coordination among the heterogeneous nodes, in order to enable them to efficiently respond the user needs. This study presents an investigation of strategies to coordinate a set of static sensor nodes on the ground cooperating with wirelessly connected Unmanned Aerial Vehicles (UAVs) carrying a variety of sensors, in order to provide efficient surveillance over an area of interest. The sensor nodes on the ground are set to issue alarms on the occurrence of a given event of interest, e.g. entrance of a non-authorized vehicle in the area, while the UAVs receive the issued alarms and have to decide which of them is the most suitable to handle the issued alarm. A bio-inspired coordination strategy based on the concept of pheromones is presented. As a complement of this strategy, a utility-based decision making approach is proposed.
Low Phosphorylated AKT Expression in Laryngeal Cancer: Indications for a Higher Metastatic Risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nijkamp, Monique M.; Span, Paul N.; Stegeman, Hanneke
2013-10-01
Purpose: To validate the association of phosphorylated (p)AKT with lymph node metastasis in an independent, homogeneous cohort of patients with larynx cancer. Methods and Materials: Seventy-eight patients with laryngeal cancer were included. Epidermal growth factor receptor, pAKT, vimentin, E-cadherin, hypoxia, and blood vessels were visualized in biopsy material using immunohistochemistry. Positive tumor areas and spatial relationships between markers were assessed by automated image analysis. In 6 laryngeal cancer cell lines, E-cadherin and vimentin messenger RNA was quantified by real-time polymerase chain reaction and by immunohistochemistry before and after treatment with the pAKT inhibitor MK-2206. Results: A significant correlation was foundmore » between low pAKT in the primary tumor and positive lymph node status (P=.0005). Tumors with lymph node metastases had an approximately 10-fold lower median pAKT value compared with tumors without lymph node metastases, albeit with large intertumor variations, validating our previous results. After inhibition of pAKT in laryngeal cancer cells with MK-2206, up-regulation of vimentin and a downregulation of E-cadherin occurred, consistent with epithelial–mesenchymal transition. Conclusion: Low pAKT expression in larynx tumors is associated with lymph node metastases. Further, inhibition of pAKT in laryngeal cancer induces epithelial–mesenchymal transition, predisposing for an increased metastatic risk.« less
Broday, David M
2017-10-02
The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.
2017-01-01
The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented. PMID:28974042
A finite element study of the EIDI system. [Electro-Impulse De-Icing System
NASA Technical Reports Server (NTRS)
Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.
1988-01-01
This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.
NASA Technical Reports Server (NTRS)
Borgen, Richard L.
2013-01-01
The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.
Node-to-node field calibration of wireless distributed air pollution sensor network.
Kizel, Fadi; Etzion, Yael; Shafran-Nathan, Rakefet; Levy, Ilan; Fishbain, Barak; Bartonova, Alena; Broday, David M
2018-02-01
Low-cost air quality sensors offer high-resolution spatiotemporal measurements that can be used for air resources management and exposure estimation. Yet, such sensors require frequent calibration to provide reliable data, since even after a laboratory calibration they might not report correct values when they are deployed in the field, due to interference with other pollutants, as a result of sensitivity to environmental conditions and due to sensor aging and drift. Field calibration has been suggested as a means for overcoming these limitations, with the common strategy involving periodical collocations of the sensors at an air quality monitoring station. However, the cost and complexity involved in relocating numerous sensor nodes back and forth, and the loss of data during the repeated calibration periods make this strategy inefficient. This work examines an alternative approach, a node-to-node (N2N) calibration, where only one sensor in each chain is directly calibrated against the reference measurements and the rest of the sensors are calibrated sequentially one against the other while they are deployed and collocated in pairs. The calibration can be performed multiple times as a routine procedure. This procedure minimizes the total number of sensor relocations, and enables calibration while simultaneously collecting data at the deployment sites. We studied N2N chain calibration and the propagation of the calibration error analytically, computationally and experimentally. The in-situ N2N calibration is shown to be generic and applicable for different pollutants, sensing technologies, sensor platforms, chain lengths, and sensor order within the chain. In particular, we show that chain calibration of three nodes, each calibrated for a week, propagate calibration errors that are similar to those found in direct field calibration. Hence, N2N calibration is shown to be suitable for calibration of distributed sensor networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, S.W.; Heinstein, M.W.; Stone, C.M.
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less
Low-frequency meandering piezoelectric vibration energy harvester.
Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios
2012-05-01
The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; D'Azevedo, Eduardo; Philip, Bobby
On large supercomputers, the job scheduling systems may assign a non-contiguous node allocation for user applications depending on available resources. With parallel applications using MPI (Message Passing Interface), the default process ordering does not take into account the actual physical node layout available to the application. This contributes to non-locality in terms of physical network topology and impacts communication performance of the application. In order to mitigate such performance penalties, this work describes techniques to identify suitable task mapping that takes the layout of the allocated nodes as well as the application's communication behavior into account. During the first phasemore » of this research, we instrumented and collected performance data to characterize communication behavior of critical US DOE (United States - Department of Energy) applications using an augmented version of the mpiP tool. Subsequently, we developed several reordering methods (spectral bisection, neighbor join tree etc.) to combine node layout and application communication data for optimized task placement. We developed a tool called mpiAproxy to facilitate detailed evaluation of the various reordering algorithms without requiring full application executions. This work presents a comprehensive performance evaluation (14,000 experiments) of the various task mapping techniques in lowering communication costs on Titan, the leadership class supercomputer at Oak Ridge National Laboratory.« less
A multihop key agreement scheme for wireless ad hoc networks based on channel characteristics.
Hao, Zhuo; Zhong, Sheng; Yu, Nenghai
2013-01-01
A number of key agreement schemes based on wireless channel characteristics have been proposed recently. However, previous key agreement schemes require that two nodes which need to agree on a key are within the communication range of each other. Hence, they are not suitable for multihop wireless networks, in which nodes do not always have direct connections with each other. In this paper, we first propose a basic multihop key agreement scheme for wireless ad hoc networks. The proposed basic scheme is resistant to external eavesdroppers. Nevertheless, this basic scheme is not secure when there exist internal eavesdroppers or Man-in-the-Middle (MITM) adversaries. In order to cope with these adversaries, we propose an improved multihop key agreement scheme. We show that the improved scheme is secure against internal eavesdroppers and MITM adversaries in a single path. Both performance analysis and simulation results demonstrate that the improved scheme is efficient. Consequently, the improved key agreement scheme is suitable for multihop wireless ad hoc networks.
A Multihop Key Agreement Scheme for Wireless Ad Hoc Networks Based on Channel Characteristics
Yu, Nenghai
2013-01-01
A number of key agreement schemes based on wireless channel characteristics have been proposed recently. However, previous key agreement schemes require that two nodes which need to agree on a key are within the communication range of each other. Hence, they are not suitable for multihop wireless networks, in which nodes do not always have direct connections with each other. In this paper, we first propose a basic multihop key agreement scheme for wireless ad hoc networks. The proposed basic scheme is resistant to external eavesdroppers. Nevertheless, this basic scheme is not secure when there exist internal eavesdroppers or Man-in-the-Middle (MITM) adversaries. In order to cope with these adversaries, we propose an improved multihop key agreement scheme. We show that the improved scheme is secure against internal eavesdroppers and MITM adversaries in a single path. Both performance analysis and simulation results demonstrate that the improved scheme is efficient. Consequently, the improved key agreement scheme is suitable for multihop wireless ad hoc networks. PMID:23766725
Improving the communication reliability of body sensor networks based on the IEEE 802.15.4 protocol.
Gomes, Diogo; Afonso, José A
2014-03-01
Body sensor networks (BSNs) enable continuous monitoring of patients anywhere, with minimum constraints to daily life activities. Although the IEEE 802.15.4 and ZigBee(®) (ZigBee Alliance, San Ramon, CA) standards were mainly developed for use in wireless sensors network (WSN) applications, they are also widely used in BSN applications because of device characteristics such as low power, low cost, and small form factor. However, compared with WSNs, BSNs present some very distinctive characteristics in terms of traffic and mobility patterns, heterogeneity of the nodes, and quality of service requirements. This article evaluates the suitability of the carrier sense multiple access-collision avoidance protocol, used by the IEEE 802.15.4 and ZigBee standards, for data-intensive BSN applications, through the execution of experimental tests in different evaluation scenarios, in order to take into account the effects of contention, clock drift, and hidden nodes on the communication reliability. Results show that the delivery ratio may decrease substantially during transitory periods, which can last for several minutes, to a minimum of 90% with retransmissions and 13% without retransmissions. This article also proposes and evaluates the performance of the BSN contention avoidance mechanism, which was designed to solve the identified reliability problems. This mechanism was able to restore the delivery ratio to 100% even in the scenario without retransmissions.
Power impact of loop buffer schemes for biomedical wireless sensor nodes.
Artes, Antonio; Ayala, Jose L; Catthoor, Francky
2012-11-06
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application.
Real-Time Communication Support for Underwater Acoustic Sensor Networks †.
Santos, Rodrigo; Orozco, Javier; Micheletto, Matias; Ochoa, Sergio F; Meseguer, Roc; Millan, Pere; Molina, And Carlos
2017-07-14
Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios.
Real-Time Communication Support for Underwater Acoustic Sensor Networks †
Santos, Rodrigo; Orozco, Javier; Micheletto, Matias
2017-01-01
Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios. PMID:28708093
Designing Two-Layer Optical Networks with Statistical Multiplexing
NASA Astrophysics Data System (ADS)
Addis, B.; Capone, A.; Carello, G.; Malucelli, F.; Fumagalli, M.; Pedrin Elli, E.
The possibility of adding multi-protocol label switching (MPLS) support to transport networks is considered an important opportunity by telecom carriers that want to add packet services and applications to their networks. However, the question that arises is whether it is suitable to have MPLS nodes just at the edge of the network to collect packet traffic from users, or also to introduce MPLS facilities on a subset of the core nodes in order to exploit packet switching flexibility and multiplexing, thus providing induction of a better bandwidth allocation. In this article, we address this complex decisional problem with the support of a mathematical programming approach. We consider two-layer networks where MPLS is overlaid on top of transport networks-synchronous digital hierarchy (SDH) or wavelength division multiplexing (WDM)-depending on the required link speed. The discussions' decisions take into account the trade-off between the cost of adding MPLS support in the core nodes and the savings in the link bandwidth allocation due to the statistical multiplexing and the traffic grooming effects induced by MPLS nodes. The traffic matrix specifies for each point-to-point request a pair of values: a mean traffic value and an additional one. Using this traffic model, the effect of statistical multiplexing on a link allows the allocation of a capacity equal to the sum of all the mean values of the traffic demands routed on the link and only the highest additional one. The proposed approach is suitable to solve real instances in reasonable time.
Jung, Ji-Young; Seo, Dong-Yoon; Lee, Jung-Ryun
2018-01-04
A wireless sensor network (WSN) is emerging as an innovative method for gathering information that will significantly improve the reliability and efficiency of infrastructure systems. Broadcast is a common method to disseminate information in WSNs. A variety of counter-based broadcast schemes have been proposed to mitigate the broadcast-storm problems, using the count threshold value and a random access delay. However, because of the limited propagation of the broadcast-message, there exists a trade-off in a sense that redundant retransmissions of the broadcast-message become low and energy efficiency of a node is enhanced, but reachability become low. Therefore, it is necessary to study an efficient counter-based broadcast scheme that can dynamically adjust the random access delay and count threshold value to ensure high reachability, low redundant of broadcast-messages, and low energy consumption of nodes. Thus, in this paper, we first measure the additional coverage provided by a node that receives the same broadcast-message from two neighbor nodes, in order to achieve high reachability with low redundant retransmissions of broadcast-messages. Second, we propose a new counter-based broadcast scheme considering the size of the additional coverage area, distance between the node and the broadcasting node, remaining battery of the node, and variations of the node density. Finally, we evaluate performance of the proposed scheme compared with the existing counter-based broadcast schemes. Simulation results show that the proposed scheme outperforms the existing schemes in terms of saved rebroadcasts, reachability, and total energy consumption.
NASA Astrophysics Data System (ADS)
Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.
2016-11-01
In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi.
Feng, Xiaolan; Li, Haocheng; Kornaga, Elizabeth N; Dean, Michelle; Lees-Miller, Susan P; Riabowol, Karl; Magliocco, Anthony M; Morris, Don; Watson, Peter H; Enwere, Emeka K; Bebb, Gwyn; Paterson, Alexander
2016-12-27
This study was designed to investigate the combined influence of ATM and Ki67 on clinical outcome in early stage hormone receptor positive breast cancer (ES-HPBC), particularly in patients with smaller tumors (< 4 cm) and fewer than four positive lymph nodes. 532 formalin-fixed paraffin-embedded specimens of resected primary breast tumors were used to construct a tissue microarray. Samples from 297 patients were suitable for final statistical analysis. We detected ATM and Ki67 proteins using fluorescence and brightfield immunohistochemistry respectively, and quantified their expression with digital image analysis. Data on expression levels were subsequently correlated with clinical outcome. Remarkably, ATM expression was useful to stratify the low Ki67 group into subgroups with better or poorer prognosis. Specifically, in the low Ki67 subgroup defined as having smaller tumors and no positive nodes, patients with high ATM expression showed better outcome than those with low ATM, with estimated survival rates of 96% and 89% respectively at 15 years follow up (p = 0.04). Similarly, low-Ki67 patients with smaller tumors, 1-3 positive nodes and high ATM also had significantly better outcomes than their low ATM counterparts, with estimated survival rates of 88% and 46% respectively (p = 0.03) at 15 years follow up. Multivariable analysis indicated that the combination of high ATM and low Ki67 is prognostic of improved survival, independent of tumor size, grade, and lymph node status (p = 0.02). These data suggest that the prognostic value of Ki67 can be improved by analyzing ATM expression in ES-HPBC.
Feng, Xiaolan; Li, Haocheng; Kornaga, Elizabeth N.; Dean, Michelle; Lees-Miller, Susan P.; Riabowol, Karl; Magliocco, Anthony M.; Morris, Don; Watson, Peter H.; Enwere, Emeka K.; Bebb, Gwyn; Paterson, Alexander
2016-01-01
Introduction This study was designed to investigate the combined influence of ATM and Ki67 on clinical outcome in early stage hormone receptor positive breast cancer (ES-HPBC), particularly in patients with smaller tumors (< 4 cm) and fewer than four positive lymph nodes. Methods 532 formalin-fixed paraffin-embedded specimens of resected primary breast tumors were used to construct a tissue microarray. Samples from 297 patients were suitable for final statistical analysis. We detected ATM and Ki67 proteins using fluorescence and brightfield immunohistochemistry respectively, and quantified their expression with digital image analysis. Data on expression levels were subsequently correlated with clinical outcome. Results Remarkably, ATM expression was useful to stratify the low Ki67 group into subgroups with better or poorer prognosis. Specifically, in the low Ki67 subgroup defined as having smaller tumors and no positive nodes, patients with high ATM expression showed better outcome than those with low ATM, with estimated survival rates of 96% and 89% respectively at 15 years follow up (p = 0.04). Similarly, low-Ki67 patients with smaller tumors, 1-3 positive nodes and high ATM also had significantly better outcomes than their low ATM counterparts, with estimated survival rates of 88% and 46% respectively (p = 0.03) at 15 years follow up. Multivariable analysis indicated that the combination of high ATM and low Ki67 is prognostic of improved survival, independent of tumor size, grade, and lymph node status (p = 0.02). Conclusions These data suggest that the prognostic value of Ki67 can be improved by analyzing ATM expression in ES-HPBC. PMID:27741524
AES based secure low energy adaptive clustering hierarchy for WSNs
NASA Astrophysics Data System (ADS)
Kishore, K. R.; Sarma, N. V. S. N.
2013-01-01
Wireless sensor networks (WSNs) provide a low cost solution in diversified application areas. The wireless sensor nodes are inexpensive tiny devices with limited storage, computational capability and power. They are being deployed in large scale in both military and civilian applications. Security of the data is one of the key concerns where large numbers of nodes are deployed. Here, an energy-efficient secure routing protocol, secure-LEACH (Low Energy Adaptive Clustering Hierarchy) for WSNs based on the Advanced Encryption Standard (AES) is being proposed. This crypto system is a session based one and a new session key is assigned for each new session. The network (WSN) is divided into number of groups or clusters and a cluster head (CH) is selected among the member nodes of each cluster. The measured data from the nodes is aggregated by the respective CH's and then each CH relays this data to another CH towards the gateway node in the WSN which in turn sends the same to the Base station (BS). In order to maintain confidentiality of data while being transmitted, it is necessary to encrypt the data before sending at every hop, from a node to the CH and from the CH to another CH or to the gateway node.
Real time network traffic monitoring for wireless local area networks based on compressed sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.
Synchronous wearable wireless body sensor network composed of autonomous textile nodes.
Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik
2014-10-09
A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.
Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes
Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik
2014-01-01
A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system. PMID:25302808
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smylie, M. P.; Claus, H.; Welp, U.
2016-11-01
The low-temperature variation of the London penetration depth lambda(T) in the candidate topological superconductor NbxBi2Se3 (x = 0.25) is reported for several crystals. The measurements were carried out by means of a tunnel-diode oscillator technique in both field orientations (H-rf || c and H-rf || ab planes). All samples exhibited power-law behavior at low temperatures (Delta lambda similar to T-2) clearly indicating the presence of point nodes in the superconducting order parameter. The results presented here are consistent with a nematic odd-parity spin-triplet E-u pairing state in NbxBi2Se3.
Homemade Buckeye-Pi: A Learning Many-Node Platform for High-Performance Parallel Computing
NASA Astrophysics Data System (ADS)
Amooie, M. A.; Moortgat, J.
2017-12-01
We report on the "Buckeye-Pi" cluster, the supercomputer developed in The Ohio State University School of Earth Sciences from 128 inexpensive Raspberry Pi (RPi) 3 Model B single-board computers. Each RPi is equipped with fast Quad Core 1.2GHz ARMv8 64bit processor, 1GB of RAM, and 32GB microSD card for local storage. Therefore, the cluster has a total RAM of 128GB that is distributed on the individual nodes and a flash capacity of 4TB with 512 processors, while it benefits from low power consumption, easy portability, and low total cost. The cluster uses the Message Passing Interface protocol to manage the communications between each node. These features render our platform the most powerful RPi supercomputer to date and suitable for educational applications in high-performance-computing (HPC) and handling of large datasets. In particular, we use the Buckeye-Pi to implement optimized parallel codes in our in-house simulator for subsurface media flows with the goal of achieving a massively-parallelized scalable code. We present benchmarking results for the computational performance across various number of RPi nodes. We believe our project could inspire scientists and students to consider the proposed unconventional cluster architecture as a mainstream and a feasible learning platform for challenging engineering and scientific problems.
An uncommon presentation of Kikuchi Fujimoto disease: a case report with literature review.
Ranabhat, Sabin; Tiwari, Mamta; Kshetri, Jiwan; Maharjan, Sushna; Osti, Bidur Prasad
2015-09-26
Kikuchi-Fujimoto disease is so named because Kikuchi and Fujimoto were the first scientists to describe it in Japan in 1972. Although the disease has been reported from all over the world and more so from Asia, it is rare. To date only eight cases have been reported from Nepal. Cervical lymphadenopathy, fever and raised Erythrocyte Sedimentation Rate are usual presenting features of this disease. We describe a case which presented with thrombocytopenia and axillary lymphadenopathy in addition to the usual features. Out of the total eight cases that have been reported from Nepal so far, no patients had thrombocytopenia and only one patient had axillary lymphadenopathy. A 24-year-old Nepali female presented with a 3-week history of low-grade fever, headache, and painful, discrete, unilateral left-sided cervical and axillary lymphadenopathy. Among the multitude of tests that were carried out, Erythrocyte Sedimentation Rate was raised and there was thrombocytopenia while other tests were normal. Painful lymphadenopathy pointed to bacterial lymphadenitis while chronic low-grade fever suggested tuberculosis. A cervical lymph node was excised for histopathological examination to reach an accurate diagnosis. On the basis of pathognomonic features viz., paracortical foci composed of various types of histiocytes including crescentic type in the background of abundant apoptotic karyorrhectic debris, a diagnosis of Kikuchi-Fujimoto disease was made. On follow-up evaluation after 6 weeks, the patient had no systemic symptoms, enlarged lymph nodes had regressed in size significantly, and Erythrocyte Sedimentation Rate and platelet count had become normal. Kikuchi-Fujimoto disease should be kept in the differential diagnosis of lymphadenopathy in young patients, female or male even in tuberculosis-endemic countries and even in patients who have unusual features; for example thrombocytopenia and involvement of axillary lymph nodes in addition to cervical lymph nodes as in this case.
Power Impact of Loop Buffer Schemes for Biomedical Wireless Sensor Nodes
Artes, Antonio; Ayala, Jose L.; Catthoor, Francky
2012-01-01
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application. PMID:23202202
NASA Technical Reports Server (NTRS)
Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.
1985-01-01
The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.
Le, Duc Van; Oh, Hoon; Yoon, Seokhoon
2013-07-05
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.
Van Le, Duc; Oh, Hoon; Yoon, Seokhoon
2013-01-01
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134
Feasibility of contrast-enhanced ultrasound-guided biopsy of sentinel lymph nodes in dogs.
Gelb, Hylton R; Freeman, Lynetta J; Rohleder, Jacob J; Snyder, Paul W
2010-01-01
Our goal was to develop and validate a technique to identify the sentinel lymph nodes of the mammary glands of healthy dogs with contrast-enhanced ultrasound, and evaluate the feasibility of obtaining representative samples of a sentinel lymph node under ultrasound guidance using a new biopsy device. Three healthy intact female adult hounds were anesthetized and each received an injection of octafluoropropane-filled lipid microspheres and a separate subcutaneous injection of methylene blue dye around a mammary gland. Ultrasound was then used to follow the contrast agent through the lymphatic channel to the sentinel lymph node. Lymph node biopsy was performed under ultrasound guidance, followed by an excisional biopsy of the lymph nodes and a regional mastectomy procedure. Excised tissues were submitted for histopathologic examination and evaluated as to whether they were representative of the node. The ultrasound contrast agent was easily visualized with ultrasound leading up to the sentinel lymph nodes. Eight normal lymph nodes (two inguinal, one axillary in two dogs; two inguinal in one dog) were identified and biopsied. Lymphoid tissue was obtained from all biopsy specimens. Samples from four of eight lymph nodes contained both cortical and medullary lymphoid tissue. Contrast-enhanced ultrasound can be successfully used to image and guide minimally invasive biopsy of the normal sentinel lymph nodes draining the mammary glands in healthy dogs. Further work is needed to evaluate whether this technique may be applicable in patients with breast cancer or other conditions warranting evaluation of sentinel lymph nodes in animals.
Del Campo, Antonio; Cintioni, Lorenzo; Spinsante, Susanna; Gambi, Ennio
2017-01-01
With the introduction of low-power wireless technologies, like Bluetooth Low Energy (BLE), new applications are approaching the home automation, healthcare, fitness, automotive and consumer electronics markets. BLE devices are designed to maximize the battery life, i.e., to run for long time on a single coin-cell battery. In typical application scenarios of home automation and Ambient Assisted Living (AAL), the sensors that monitor relatively unpredictable and rare events should coexist with other sensors that continuously communicate health or environmental parameter measurements. The former usually work in connectionless mode, acting as advertisers, while the latter need a persistent connection, acting as slave nodes. The coexistence of connectionless and connection-oriented networks, that share the same central node, can be required to reduce the number of handling devices, thus keeping the network complexity low and limiting the packet’s traffic congestion. In this paper, the medium access management, operated by the central node, has been modeled, focusing on the scheduling procedure in both connectionless and connection-oriented communication. The models have been merged to provide a tool supporting the configuration design of BLE devices, during the network design phase that precedes the real implementation. The results highlight the suitability of the proposed tool: the ability to set the device parameters to allow us to keep a practical discovery latency for event-driven sensors and avoid undesired overlaps between scheduled scanning and connection phases due to bad management performed by the central node. PMID:28387724
Del Campo, Antonio; Cintioni, Lorenzo; Spinsante, Susanna; Gambi, Ennio
2017-04-07
With the introduction of low-power wireless technologies, like Bluetooth Low Energy (BLE), new applications are approaching the home automation, healthcare, fitness, automotive and consumer electronics markets. BLE devices are designed to maximize the battery life, i.e., to run for long time on a single coin-cell battery. In typical application scenarios of home automation and Ambient Assisted Living (AAL), the sensors that monitor relatively unpredictable and rare events should coexist with other sensors that continuously communicate health or environmental parameter measurements. The former usually work in connectionless mode, acting as advertisers, while the latter need a persistent connection, acting as slave nodes. The coexistence of connectionless and connection-oriented networks, that share the same central node, can be required to reduce the number of handling devices, thus keeping the network complexity low and limiting the packet's traffic congestion. In this paper, the medium access management, operated by the central node, has been modeled, focusing on the scheduling procedure in both connectionless and connection-oriented communication. The models have been merged to provide a tool supporting the configuration design of BLE devices, during the network design phase that precedes the real implementation. The results highlight the suitability of the proposed tool: the ability to set the device parameters to allow us to keep a practical discovery latency for event-driven sensors and avoid undesired overlaps between scheduled scanning and connection phases due to bad management performed by the central node.
A Low-Complexity and High-Performance 2D Look-Up Table for LDPC Hardware Implementation
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Yang, Po-Hui; Lain, Jenn-Kaie; Chung, Tzu-Wen
In this paper, we propose a low-complexity, high-efficiency two-dimensional look-up table (2D LUT) for carrying out the sum-product algorithm in the decoding of low-density parity-check (LDPC) codes. Instead of employing adders for the core operation when updating check node messages, in the proposed scheme, the main term and correction factor of the core operation are successfully merged into a compact 2D LUT. Simulation results indicate that the proposed 2D LUT not only attains close-to-optimal bit error rate performance but also enjoys a low complexity advantage that is suitable for hardware implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiamin; Hoffman, Joanne; Zhao, Jocelyn
2016-07-15
Purpose: To develop an automated system for mediastinal lymph node detection and station mapping for chest CT. Methods: The contextual organs, trachea, lungs, and spine are first automatically identified to locate the region of interest (ROI) (mediastinum). The authors employ shape features derived from Hessian analysis, local object scale, and circular transformation that are computed per voxel in the ROI. Eight more anatomical structures are simultaneously segmented by multiatlas label fusion. Spatial priors are defined as the relative multidimensional distance vectors corresponding to each structure. Intensity, shape, and spatial prior features are integrated and parsed by a random forest classifiermore » for lymph node detection. The detected candidates are then segmented by the following curve evolution process. Texture features are computed on the segmented lymph nodes and a support vector machine committee is used for final classification. For lymph node station labeling, based on the segmentation results of the above anatomical structures, the textual definitions of mediastinal lymph node map according to the International Association for the Study of Lung Cancer are converted into patient-specific color-coded CT image, where the lymph node station can be automatically assigned for each detected node. Results: The chest CT volumes from 70 patients with 316 enlarged mediastinal lymph nodes are used for validation. For lymph node detection, their system achieves 88% sensitivity at eight false positives per patient. For lymph node station labeling, 84.5% of lymph nodes are correctly assigned to their stations. Conclusions: Multiple-channel shape, intensity, and spatial prior features aggregated by a random forest classifier improve mediastinal lymph node detection on chest CT. Using the location information of segmented anatomic structures from the multiatlas formulation enables accurate identification of lymph node stations.« less
LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN
Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha
2009-01-01
Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio. PMID:22346730
LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN.
Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha
2009-01-01
Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio.
Information loss method to measure node similarity in networks
NASA Astrophysics Data System (ADS)
Li, Yongli; Luo, Peng; Wu, Chong
2014-09-01
Similarity measurement for the network node has been paid increasing attention in the field of statistical physics. In this paper, we propose an entropy-based information loss method to measure the node similarity. The whole model is established based on this idea that less information loss is caused by seeing two more similar nodes as the same. The proposed new method has relatively low algorithm complexity, making it less time-consuming and more efficient to deal with the large scale real-world network. In order to clarify its availability and accuracy, this new approach was compared with some other selected approaches on two artificial examples and synthetic networks. Furthermore, the proposed method is also successfully applied to predict the network evolution and predict the unknown nodes' attributions in the two application examples.
An efficient grid layout algorithm for biological networks utilizing various biological attributes
Kojima, Kaname; Nagasaki, Masao; Jeong, Euna; Kato, Mitsuru; Miyano, Satoru
2007-01-01
Background Clearly visualized biopathways provide a great help in understanding biological systems. However, manual drawing of large-scale biopathways is time consuming. We proposed a grid layout algorithm that can handle gene-regulatory networks and signal transduction pathways by considering edge-edge crossing, node-edge crossing, distance measure between nodes, and subcellular localization information from Gene Ontology. Consequently, the layout algorithm succeeded in drastically reducing these crossings in the apoptosis model. However, for larger-scale networks, we encountered three problems: (i) the initial layout is often very far from any local optimum because nodes are initially placed at random, (ii) from a biological viewpoint, human layouts still exceed automatic layouts in understanding because except subcellular localization, it does not fully utilize biological information of pathways, and (iii) it employs a local search strategy in which the neighborhood is obtained by moving one node at each step, and automatic layouts suggest that simultaneous movements of multiple nodes are necessary for better layouts, while such extension may face worsening the time complexity. Results We propose a new grid layout algorithm. To address problem (i), we devised a new force-directed algorithm whose output is suitable as the initial layout. For (ii), we considered that an appropriate alignment of nodes having the same biological attribute is one of the most important factors of the comprehension, and we defined a new score function that gives an advantage to such configurations. For solving problem (iii), we developed a search strategy that considers swapping nodes as well as moving a node, while keeping the order of the time complexity. Though a naïve implementation increases by one order, the time complexity, we solved this difficulty by devising a method that caches differences between scores of a layout and its possible updates. Conclusion Layouts of the new grid layout algorithm are compared with that of the previous algorithm and human layout in an endothelial cell model, three times as large as the apoptosis model. The total cost of the result from the new grid layout algorithm is similar to that of the human layout. In addition, its convergence time is drastically reduced (40% reduction). PMID:17338825
Neworal, E P M; Altemani, A; Mamoni, R L; Noronha, I L; Blotta, M H S L
2003-03-07
Paracoccidioidomycosis (PCM) is a deep mycosis caused by Paracoccidioides brasiliensis, with high incidence in Brazil. In order to examine the immune response in lesional tissue from patients with PCM, we analyzed cytokines as well as the phenotype of the cell infiltrate. Paraffin-embedded tissue from the oral mucosa of eight patients with the localized adult form (AF) of PCM and from the lymph nodes of 10 patients with the juvenile form (JF) of PCM was analyzed by immunohistochemistry to detect tumor necrosis factor-alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), transforming growth factor-beta (TGF-beta) and interleukin-10 (IL-10). Most of the inflammatory cells in the lymph nodes were CD68+ (macrophages, epithelioid and giant cells), while a mixed infiltrate with macrophages, plasma cells and neutrophils was detected in the oral mucosa. TNF-alpha as well as iNOS expression was similar in lymph nodes and oral mucosa, whereas TGF-beta and IL-10 were observed in a larger number of macrophages, epithelioid and giant cells in the lymph nodes, where numerous yeast cells were visualized. The higher expression of anti-inflammatory cytokines (IL-10 and TGF-beta) in lesions of patients with the JF of PCM (lymph nodes) may represent a mechanism by which the fungus evades the host immune response, contributing to a more severe and disseminated form of the disease.
Correlation between centrality metrics and their application to the opinion model
NASA Astrophysics Data System (ADS)
Li, Cong; Li, Qian; Van Mieghem, Piet; Stanley, H. Eugene; Wang, Huijuan
2015-03-01
In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well as a high centrality similarity between the leverage and the degree.
An ultra-low power wireless sensor network for bicycle torque performance measurements.
Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod
2015-05-21
In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.
An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements
Gharghan, Sadik K.; Nordin, Rosdiadee; Ismail, Mahamod
2015-01-01
In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach. PMID:26007728
Monitoring urban air quality using a high-density network of low-cost sensor nodes in Oslo, Norway.
NASA Astrophysics Data System (ADS)
Castell, Nuria; Schneider, Philipp; Vogt, Matthias; Dauge, Franck R.; Lahoz, William; Bartonova, Alena
2017-04-01
Urban air quality represents a major public health burden and is a long-standing concern to citizens. Air pollution is associated with a range of diseases, symptoms and conditions that impair health and quality of life. In Oslo, traffic, especially exhaust from heavy-duty and private diesel vehicles and dust resuspension from studded tyres, together with wood burning in winter, are the main sources of pollution. Norway, as part of the European Economic Area, is obliged to comply with the European air quality regulations and ensure clean air. Despite this, Oslo has exceeded both the NO2 and PM10 thresholds for health protection defined in the Directive 2008/50/EC. The air quality in the Oslo area is continuously monitored in 12 compliance monitoring stations. These stations provide reliable and accurate data but their density is too low to provide a detailed spatial distribution of air quality. The emergence of low-cost nodes enables observations at high spatial resolution, providing the opportunity to enhance existing monitoring systems. However, the data generated by these nodes is significantly less accurate and precise than the data provided by reference equipment. We have conducted an evaluation of low-cost nodes to monitor NO2 and PM10, comparing the data collected with low-cost nodes against CEN (European Standardization Organization) reference analysers. During January and March 2016, a network of 24 nodes was deployed in Oslo. During January, high NO2 levels were observed for several days in a row coinciding with the formation of a thermal inversion. During March, we observed an episode with high PM10 levels due to road dust resuspension. Our results show that there is a major technical challenge associated with current commercial low-cost sensors, regarding the sensor robustness and measurement repeatability. Despite this, low-cost sensor nodes are able to reproduce the NO2 and PM10 variability. The data from the sensors was employed to generate detailed NO2 and PM10 air quality maps using a data fusion technique. This way we were able to offer localized air quality information for the city of Oslo. The outlook for commercial low-cost sensors is promising, and our results show that currently some sensors are already capable of providing coarse information about air quality, indicating if the air quality is good, moderate or if the air is heavily polluted. This type of information could be suitable for applications that aim to raise awareness, or engage the community by monitoring local air quality, as such applications do not require the same accuracy as scientific or regulatory monitoring.
Node Deployment with k-Connectivity in Sensor Networks for Crop Information Full Coverage Monitoring
Liu, Naisen; Cao, Weixing; Zhu, Yan; Zhang, Jingchao; Pang, Fangrong; Ni, Jun
2016-01-01
Wireless sensor networks (WSNs) are suitable for the continuous monitoring of crop information in large-scale farmland. The information obtained is great for regulation of crop growth and achieving high yields in precision agriculture (PA). In order to realize full coverage and k-connectivity WSN deployment for monitoring crop growth information of farmland on a large scale and to ensure the accuracy of the monitored data, a new WSN deployment method using a genetic algorithm (GA) is here proposed. The fitness function of GA was constructed based on the following WSN deployment criteria: (1) nodes must be located in the corresponding plots; (2) WSN must have k-connectivity; (3) WSN must have no communication silos; (4) the minimum distance between node and plot boundary must be greater than a specific value to prevent each node from being affected by the farmland edge effect. The deployment experiments were performed on natural farmland and on irregular farmland divided based on spatial differences of soil nutrients. Results showed that both WSNs gave full coverage, there were no communication silos, and the minimum connectivity of nodes was equal to k. The deployment was tested for different values of k and transmission distance (d) to the node. The results showed that, when d was set to 200 m, as k increased from 2 to 4 the minimum connectivity of nodes increases and is equal to k. When k was set to 2, the average connectivity of all nodes increased in a linear manner with the increase of d from 140 m to 250 m, and the minimum connectivity does not change. PMID:27941704
de la Piedra, Antonio; Braeken, An; Touhafi, Abdellah
2013-01-01
Typically, commercial sensor nodes are equipped with MCUsclocked at a low-frequency (i.e., within the 4–12 MHz range). Consequently, executing cryptographic algorithms in those MCUs generally requires a huge amount of time. In this respect, the required energy consumption can be higher than using a separate accelerator based on a Field-programmable Gate Array (FPGA) that is switched on when needed. In this manuscript, we present the design of a cryptographic accelerator suitable for an FPGA-based sensor node and compliant with the IEEE802.15.4 standard. All the embedded resources of the target platform (Xilinx Artix-7) have been maximized in order to provide a cost-effective solution. Moreover, we have added key negotiation capabilities to the IEEE 802.15.4 security suite based on Elliptic Curve Cryptography (ECC;. Our results suggest that tailored accelerators based on FPGA can behave better in terms of energy than contemporary software solutions for motes, such as the TinyECC and NanoECC libraries. In this regard, a point multiplication (PM) can be performed between 8.58- and 15.4-times faster, 3.40- to 23.59-times faster (Elliptic Curve Diffie-Hellman, ECDH) and between 5.45- and 34.26-times faster (Elliptic Curve Integrated Encryption Scheme, ECIES). Moreover, the energy consumption was also improved with a factor of 8.96 (PM). PMID:23899936
Al Mamoon, Ishtiak; Muzahidul Islam, A K M; Baharun, Sabariah; Ahmed, Ashir; Komaki, Shozo
2016-08-01
Due to the rapid growth of wireless medical devices in near future, wireless healthcare services may face some inescapable issue such as medical spectrum scarcity, electromagnetic interference (EMI), bandwidth constraint, security and finally medical data communication model. To mitigate these issues, cognitive radio (CR) or opportunistic radio network enabled wireless technology is suitable for the upcoming wireless healthcare system. The up-to-date research on CR based healthcare has exposed some developments on EMI and spectrum problems. However, the investigation recommendation on system design and network model for CR enabled hospital is rare. Thus, this research designs a hierarchy based hybrid network architecture and network maintenance protocols for previously proposed CR hospital system, known as CogMed. In the previous study, the detail architecture of CogMed and its maintenance protocols were not present. The proposed architecture includes clustering concepts for cognitive base stations and non-medical devices. Two cluster head (CH selector equations are formulated based on priority of location, device, mobility rate of devices and number of accessible channels. In order to maintain the integrity of the proposed network model, node joining and node leaving protocols are also proposed. Finally, the simulation results show that the proposed network maintenance time is very low for emergency medical devices (average maintenance period 9.5 ms) and the re-clustering effects for different mobility enabled non-medical devices are also balanced.
de la Piedra, Antonio; Braeken, An; Touhafi, Abdellah
2013-07-29
Typically, commercial sensor nodes are equipped with MCUsclocked at a low-frequency (i.e., within the 4-12 MHz range). Consequently, executing cryptographic algorithms in those MCUs generally requires a huge amount of time. In this respect, the required energy consumption can be higher than using a separate accelerator based on a Field-programmable Gate Array (FPGA) that is switched on when needed. In this manuscript, we present the design of a cryptographic accelerator suitable for an FPGA-based sensor node and compliant with the IEEE802.15.4 standard. All the embedded resources of the target platform (Xilinx Artix-7) have been maximized in order to provide a cost-effective solution. Moreover, we have added key negotiation capabilities to the IEEE 802.15.4 security suite based on Elliptic Curve Cryptography (ECC). Our results suggest that tailored accelerators based on FPGA can behave better in terms of energy than contemporary software solutions for motes, such as the TinyECC and NanoECC libraries. In this regard, a point multiplication (PM) can be performed between 8.58- and 15.4-times faster, 3.40- to 23.59-times faster (Elliptic Curve Diffie-Hellman, ECDH) and between 5.45- and 34.26-times faster (Elliptic Curve Integrated Encryption Scheme, ECIES). Moreover, the energy consumption was also improved with a factor of 8.96 (PM).
Hegemann, Nina-Sophie; Wenter, Vera; Spath, Sonja; Kusumo, Nadia; Li, Minglun; Bartenstein, Peter; Fendler, Wolfgang P; Stief, Christian; Belka, Claus; Ganswindt, Ute
2016-03-11
In order to define adequate radiation portals in nodal positive prostate cancer a detailed knowledge of the anatomic lymph-node distribution is mandatory. We therefore systematically analyzed the localization of Choline PET/CT positive lymph nodes and compared it to the RTOG recommendation of pelvic CTV, as well as to previous work, the SPECT sentinel lymph node atlas. Thirty-two patients being mostly high risk patients with a PSA of 12.5 ng/ml (median) received PET/CT before any treatment. Eighty-seven patients received PET/CT for staging due to biochemical failure with a median PSA of 3.12 ng/ml. Each single PET-positive lymph node was manually contoured in a "virtual" patient dataset to achieve a 3-D visualization, resulting in an atlas of the cumulative PET positive lymph node distribution. Further the PET-positive lymph node location in each patient was assessed with regard to the existence of a potential geographic miss (i.e. PET-positive lymph nodes that would not have been treated adequately by the RTOG consensus on CTV definition of pelvic lymph nodes). Seventy-eight and 209 PET positive lymph nodes were detected in patients with no prior treatment and in postoperative patients, respectively. The most common sites of PET positive lymph nodes in patients with no prior treatment were external iliac (32.1 %), followed by common iliac (23.1 %) and para-aortic (19.2 %). In postoperative patients the most common sites of PET positive lymph nodes were common iliac (24.9 %), followed by external iliac (23.0 %) and para-aortic (20.1 %). In patients with no prior treatment there were 34 (43.6 %) and in postoperative patients there were 77 (36.8 %) of all detected lymph nodes that would not have been treated adequately using the RTOG CTV. We compared the distribution of lymph nodes gained by Choline PET/CT to the preexisting SPECT sentinel lymph node atlas and saw an overall good congruence. Choline PET/CT and SPECT sentinel lymph node atlas are comparable to each other. More than one-third of the PET positive lymph nodes in patients with no prior treatment and in postoperative patients would not have been treated adequately using the RTOG CTV. To reduce geographical miss, image based definition of an individual target volume is necessary.
FDG uptake in cervical lymph nodes in children without head and neck cancer.
Vali, Reza; Bakari, Alaa A; Marie, Eman; Kousha, Mahnaz; Charron, Martin; Shammas, Amer
2017-06-01
Reactive cervical lymphadenopathy is common in children and may demonstrate increased 18 F-fluoro-deoxyglucose ( 18 F-FDG) uptake on positron emission tomography/computed tomography (PET/CT). We sought to evaluate the frequency and significance of 18 F-FDG uptake by neck lymph nodes in children with no history of head and neck cancer. The charts of 244 patients (114 female, mean age: 10.4 years) with a variety of tumors such as lymphoma and post-transplant lymphoproliferative diseases (PTLD), but no head and neck cancers, who had undergone 18 F-FDG PET/CT were reviewed retrospectively. Using the maximum standardized uptake value (SUVmax), increased 18 F-FDG uptake by neck lymph nodes was recorded and compared with the final diagnosis based on follow-up studies or biopsy results. Neck lymph node uptake was identified in 70/244 (28.6%) of the patients. In 38 patients, the lymph nodes were benign. In eight patients, the lymph nodes were malignant (seven PTLD and one lymphoma). In 24 patients, we were not able to confirm the final diagnosis. Seven out of the eight malignant lymph nodes were positive for PTLD. The mean SUVmax was significantly higher in malignant lesions (4.2) compared with benign lesions (2.1) (P = 0.00049). 18 F-FDG uptake in neck lymph nodes is common in children and is frequently due to reactive lymph nodes, especially when the SUVmax is <3.2. The frequency of malignant cervical lymph nodes is higher in PTLD patients compared with other groups.
Outcome Analysis of Patients With Oral Cavity Cancer and Extracapsular Spread in Neck Lymph Nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Chun-Ta, E-mail: liaoct@adm.cgmh.org.tw; Department of Head and Neck Oncology Group, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Lee, Li-Yu
Purpose: Extracapsular spread (ECS) in neck lymph nodes is a major adverse prognostic factor in patients with oral cavity squamous cell carcinoma (OSCC). We conducted a retrospective analysis of prognostic factors in this patient group and tried to identify a subset of patients with a worse prognosis suitable for more aggressive therapeutic interventions. Methods and Materials: Enrolled in the study were 255 OSCC patients with ECS in neck nodes and without evidence of distant metastasis. All participants were followed-up for at least 2 years or censored at last follow-up. The 5-year rates of control, distant metastasis, and survival were themore » main outcome measures. Results: Level IV/V lymph node metastases and tumor depth {>=}12 mm were independent predictors of 5-year survival and identified three prognostic groups. In the low-risk group (no level IV/V metastases and tumor depth <12 mm), the 5-year disease-free, disease-specific, and overall survival rates were 60%, 66%, and 50%, respectively. In the intermediate-risk group (no level IV/V metastases and tumor depth {>=}12 mm), the 5-year disease-free, disease-specific, and overall survival rates were 39%, 41%, and 28%, respectively. In the high-risk group (evidence of level IV/V metastases), the 5-year disease-free, disease-specific, and overall survival rates were 14%, 12%, and 10%, respectively. Conclusions: Among OSCC patients with ECS, those with level IV/V metastases appear to have the worst prognosis followed by without level IV/V metastases and tumor depth {>=}12 mm. An aggressive therapeutic approach may be suitable for intermediate- and high-risk patients.« less
Coupling effect of nodes popularity and similarity on social network persistence.
Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong
2017-02-21
Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes' popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology.
Enhanced parent selection algorithms in mintroute protocol
NASA Astrophysics Data System (ADS)
Kim, Ki-Il
2012-11-01
A low-rate, short-range wireless radio communication on a small device often hampers high reliability in wireless sensor networks. However, more applications are increasingly demanding high reliability. To meet this requirement, various approaches have been proposed in each viewpoint of layers. Among those, MintRoute is a well-known network layer approach to develop a new metric based on link quality for path selection towards the sink. By choosing the link with the highest measured value, it has a higher possibility to transmit a packet over the link without error. However, there are still several issues to be mentioned during operations. In this paper, we propose how to improve the MintRoute protocol through revised algorithms. They include a parent selection considering distance and level from the sink node, and a fast recovery method against failures. Simulations and analysis are performed by in order to validate the suitability of reduced end-to-end delay and fast recovery for failures, thus to enhance the reliability of communication.
Chung, Yun Won; Hwang, Ho Young
2010-01-01
In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years) but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty. PMID:22219676
WindTalker: A P2P-Based Low-Latency Anonymous Communication Network
NASA Astrophysics Data System (ADS)
Zhang, Jia; Duan, Haixin; Liu, Wu; Wu, Jianping
Compared with traditional static anonymous communication networks, the P2P architecture can provide higher anonymity in communication. However, the P2P architecture also leads to more challenges, such as route, stability, trust and so on. In this paper, we present WindTalker, a P2P-based low-latency anonymous communication network. It is a pure decentralized mix network and can provide low-latency services which help users hide their real identity in communication. In order to ensure stability and reliability, WindTalker imports “seed nodes” to help a peer join in the P2P network and the peer nodes can use gossip-based protocol to exchange active information. Moreover, WindTalker uses layer encryption to ensure the information of relayed messages cannot be leaked. In addition, malicious nodes in the network are the major threat to anonymity of P2P anonymous communication, so WindTalker imports a trust mechanism which can help the P2P network exclude malicious nodes and optimize the strategy of peer discovery, tunnel construction, and relaying etc. in anonymous communications. We deploy peer nodes of WindTalker in our campus network to test reliability and analyze anonymity in theory. The network measurement and simulation analysis shows that WindTalker can provide low-latency and reliable anonymous communication services.
NASA Astrophysics Data System (ADS)
Tommy, Lukas; Hardjianto, Mardi; Agani, Nazori
2017-04-01
Connect Four is a two-player game which the players take turns dropping discs into a grid to connect 4 of one’s own discs next to each other vertically, horizontally, or diagonally. At Connect Four, Computer requires artificial intelligence (AI) in order to play properly like human. There are many AI algorithms that can be implemented to Connect Four, but the suitable algorithms are unknown. The suitable algorithm means optimal in choosing move and its execution time is not slow at search depth which is deep enough. In this research, analysis and comparison between standard alpha beta (AB) Pruning and MTD(f) will be carried out at the prototype of Connect Four in terms of optimality (win percentage) and speed (execution time and the number of leaf nodes). Experiments are carried out by running computer versus computer mode with 12 different conditions, i.e. varied search depth (5 through 10) and who moves first. The percentage achieved by MTD(f) based on experiments is win 45,83%, lose 37,5% and draw 16,67%. In the experiments with search depth 8, MTD(f) execution time is 35, 19% faster and evaluate 56,27% fewer leaf nodes than AB Pruning. The results of this research are MTD(f) is as optimal as AB Pruning at Connect Four prototype, but MTD(f) on average is faster and evaluates fewer leaf nodes than AB Pruning. The execution time of MTD(f) is not slow and much faster than AB Pruning at search depth which is deep enough.
Coupling effect of nodes popularity and similarity on social network persistence
Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong
2017-01-01
Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes’ popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology. PMID:28220840
Coupling effect of nodes popularity and similarity on social network persistence
NASA Astrophysics Data System (ADS)
Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong
2017-02-01
Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes’ popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology.
LDPC Codes with Minimum Distance Proportional to Block Size
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy
2009-01-01
Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low error floors as well as low decoding thresholds. As an example, the illustration shows the protograph (which represents the blueprint for overall construction) of one proposed code family for code rates greater than or equal to 1.2. Any size LDPC code can be obtained by copying the protograph structure N times, then permuting the edges. The illustration also provides Field Programmable Gate Array (FPGA) hardware performance simulations for this code family. In addition, the illustration provides minimum signal-to-noise ratios (Eb/No) in decibels (decoding thresholds) to achieve zero error rates as the code block size goes to infinity for various code rates. In comparison with the codes mentioned in the preceding article, these codes have slightly higher decoding thresholds.
Low power sensor network for wireless condition monitoring
NASA Astrophysics Data System (ADS)
Richter, Ch.; Frankenstein, B.; Schubert, L.; Weihnacht, B.; Friedmann, H.; Ebert, C.
2009-03-01
For comprehensive fatigue tests and surveillance of large scale structures, a vibration monitoring system working in the Hz and sub Hz frequency range was realized and tested. The system is based on a wireless sensor network and focuses especially on the realization of a low power measurement, signal processing and communication. Regarding the development, we met the challenge of synchronizing the wireless connected sensor nodes with sufficient accuracy. The sensor nodes ware realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization, algorithms for data reduction and network communication. The core component is a digital micro controller which performs the basic algorithms necessary for the data acquisition synchronization and the filtering. As a first application, the system was installed in a rotor blade of a wind power turbine in order to monitor the Eigen modes over a longer period of time. Currently the sensor nodes are battery powered.
Rossi, E D; Martini, M; Straccia, P; Bizzarro, T; Fadda, G; Larocca, L M
2016-02-01
Our aim was to evaluate the feasibility and diagnostic accuracy of liquid-based cytology (LBC) on lymph node fine needle aspiration (FNA). FNA may fulfil a challenging role in the evaluation of the majority of primary (benign and malignant) diagnoses as well as metastatic lymph node lesions. Although the morphological features may be quite easily recognized, cytological samples with a scant cellular component may raise some issues. We appraised 263 cytological lymph nodes from different body regions analysed between January and December 2013, including 137 male and 126 female patients, and processed with LBC. The cytological diagnoses included 160 benign and 103 malignant lesions. We reported 35 benign and 73 malignant lesions from 108 with surgical follow-up. The latter malignant series included 68 metastatic lesions, four suspicious for malignancy and one inadequate sample. The cytological diagnoses were supported by 62 conclusive immunocytochemical and 28 molecular analyses. Of the 108 cases, we documented 35 true negatives, 72 true positives, one false negative and no false positives, resulting in 98.6% sensitivity, 100% specificity, 99% diagnostic accuracy, 97.2% negative predictive value and 100% positive predictive value. FNA represents the first diagnostic tool in lymph node management and a reliable approach in order to avoid an excision biopsy. Furthermore, LBC is a feasible method for ancillary tests for which methanol-fixed samples are suitable, such as immunocytochemistry and molecular analysis. © 2014 John Wiley & Sons Ltd.
Heuristic Strategies for Persuader Selection in Contagions on Complex Networks.
Wang, Peng; Zhang, Li-Jie; Xu, Xin-Jian; Xiao, Gaoxi
2017-01-01
Individual decision to accept a new idea or product is often driven by both self-adoption and others' persuasion, which has been simulated using a double threshold model [Huang et al., Scientific Reports 6, 23766 (2016)]. We extend the study to consider the case with limited persuasion. That is, a set of individuals is chosen from the population to be equipped with persuasion capabilities, who may succeed in persuading their friends to take the new entity when certain conditions are satisfied. Network node centrality is adopted to characterize each node's influence, based on which three heuristic strategies are applied to pick out persuaders. We compare these strategies for persuader selection on both homogeneous and heterogeneous networks. Two regimes of the underline networks are identified in which the system exhibits distinct behaviors: when networks are sufficiently sparse, selecting persuader nodes in descending order of node centrality achieves the best performance; when networks are sufficiently dense, however, selecting nodes with medium centralities to serve as the persuaders performs the best. Under respective optimal strategies for different types of networks, we further probe which centrality measure is most suitable for persuader selection. It turns out that for the first regime, degree centrality offers the best measure for picking out persuaders from homogeneous networks; while in heterogeneous networks, betweenness centrality takes its place. In the second regime, there is no significant difference caused by centrality measures in persuader selection for homogeneous network; while for heterogeneous networks, closeness centrality offers the best measure.
Li, Xiangyu; Xie, Nijie; Tian, Xinyue
2017-01-01
This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget. PMID:28208730
Li, Xiangyu; Xie, Nijie; Tian, Xinyue
2017-02-08
This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget.
Spontaneous Symmetry-Breaking in a Network Model for Quadruped Locomotion
NASA Astrophysics Data System (ADS)
Stewart, Ian
2017-12-01
Spontaneous symmetry-breaking proves a mechanism for pattern generation in legged locomotion of animals. The basic timing patterns of animal gaits are produced by a network of spinal neurons known as a Central Pattern Generator (CPG). Animal gaits are primarily characterized by phase differences between leg movements in a periodic gait cycle. Many different gaits occur, often having spatial or spatiotemporal symmetries. A natural way to explain gait patterns is to assume that the CPG is symmetric, and to classify the possible symmetry-breaking periodic motions. Pinto and Golubitsky have discussed a four-node model CPG network for biped gaits with ℤ2 × ℤ2 symmetry, classifying the possible periodic states that can arise. A more specific rate model with this structure has been analyzed in detail by Stewart. Here we extend these methods to quadruped gaits, using an eight-node network with ℤ4 × ℤ2 symmetry proposed by Golubitsky and coworkers. We formulate a rate model and calculate how the first steady or Hopf bifurcation depends on its parameters, which represent four connection strengths. The calculations involve a distinction between “real” gaits with one or two phase shifts (pronk, bound, pace, trot) and “complex” gaits with four phase shifts (forward and reverse walk, forward and reverse buck). The former correspond to real eigenvalues of the connection matrix, the latter to complex conjugate pairs. The partition of parameter space according to the first bifurcation, ignoring complex gaits, is described explicitly. The complex gaits introduce further complications, not yet fully understood. All eight gaits can occur as the first bifurcation from a fully synchronous equilibrium, for suitable parameters, and numerical simulations indicate that they can be asymptotically stable.
Human astrocytic grid networks patterned in parylene-C inlayed SiO2 trenches.
Jordan, M D; Raos, B J; Bunting, A S; Murray, A F; Graham, E S; Unsworth, C P
2016-10-01
Recent literature suggests that glia, and in particular astrocytes, should be studied as organised networks which communicate through gap junctions. Astrocytes, however, adhere to most surfaces and are highly mobile cells. In order to study, such organised networks effectively in vitro it is necessary to influence them to pattern to certain substrates whilst being repelled from others and to immobilise the astrocytes sufficiently such that they do not continue to migrate further whilst under study. In this article, we demonstrate for the first time how it is possible to facilitate the study of organised patterned human astrocytic networks using hNT astrocytes in a SiO2 trench grid network that is inlayed with the biocompatible material, parylene-C. We demonstrate how the immobilisation of astrocytes lies in the depth of the SiO2 trench, determining an optimum trench depth and that the optimum patterning of astrocytes is a consequence of the parylene-C inlay and the grid node spacing. We demonstrate high fidelity of the astrocytic networks and demonstrate that functionality of the hNT astrocytes through ATP evoked calcium signalling is also dependent on the grid node spacing. Finally, we demonstrate that the location of the nuclei on the grid nodes is also a function of the grid node spacing. The significance of this work, is to describe a suitable platform to facilitate the study of hNT astrocytes from the single cell level to the network level to improve knowledge and understanding of how communication links to spatial organisation at these higher order scales and trigger in vitro research further in this area with clinical applications in the area of epilepsy, stroke and focal cerebral ischemia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Theoretical Manual for Analysis of Arch Dams
1993-07-01
eight nodes lying on the midsurface , half-way between the corresponding surface nodes (Pawsey 1970). Each node on the midsurface has five DOF’s, three...translations in the global directions, and two rotations about two axes perpendicular to the midsurface normal (Figure 5-4). The sixth DOF, associated...Figure 5-3). The coordinates of any point within the element are described in terms of the midsurface coordinates and a vector connecting the two upper
Bogani, Giorgio; Tagliabue, Elena; Ditto, Antonino; Signorelli, Mauro; Martinelli, Fabio; Casarin, Jvan; Chiappa, Valentina; Dondi, Giulia; Leone Roberti Maggiore, Umberto; Scaffa, Cono; Borghi, Chiara; Montanelli, Luca; Lorusso, Domenica; Raspagliesi, Francesco
2017-10-01
To estimate the prevalence of lymph node involvement in early-stage epithelial ovarian cancer in order to assess the prognostic value of lymph node dissection. Data of consecutive patients undergoing staging for early-stage epithelial ovarian cancer were retrospectively evaluated. Logistic regression and a nomogram-based analysis were used to assess the risk of lymph node involvement. Overall, 290 patients were included. All patients had lymph node dissection including pelvic and para-aortic lymphadenectomy. Forty-two (14.5%) patients were upstaged due to lymph node metastatic disease. Pelvic and para-aortic nodal metastases were observed in 22 (7.6%) and 42 (14.5%) patients. Lymph node involvement was observed in 18/95 (18.9%), 1/37 (2.7%), 4/29 (13.8%), 11/63 (17.4%), 3/41 (7.3%) and 5/24 (20.8%) patients with high-grade serous, low-grade-serous, endometrioid G1, endometrioid G2&3, clear cell and undifferentiated, histology, respectively (p=0.12, Chi-square test). We observed that high-grade serous histology was associated with an increased risk of pelvic node involvement; while, histology rather than low-grade serous and bilateral tumors were independently associated with para-aortic lymph node involvement (p<0.05). Nomograms displaying the risk of nodal involvement in the pelvic and para-aortic areas were built. High-grade serous histology and bilateral tumors are the main characteristics suggesting lymph node positivity. Our data suggested that high-grade serous and bilateral early-stage epithelial ovarian cancer are at high risk of having disease harboring in the lymphatic tissues of both pelvic and para-aortic area. After receiving external validation, our data will help to identify patients deserving comprehensive retroperitoneal staging. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Santoni, Fabio; Piergentili, Fabrizio; Bulgarelli, Fabio; Graziani, Filippo
2005-05-01
An overview of the UNISAT-3 microsatellite power subsystem is given. This is an educational, low weight and low cost microsatellite designed, built, launched and operated in space by students and professors of Scuola di Ingegneria Aerospaziale, at University of Rome "La Sapienza". The satellite power system is based on terrestrial technology solar arrays and NiCd batteries. The microsatellite hosts other solar arrays, including multi-junction solar cells and mono- crystalline silicon high efficiency solar cells, in order to compare their behaviour in orbit. Moreover a MPPT (Maximum Power Point Tracking ) system has been designed and tested, and it is a technological payload of UNISAT-3. The MPPT design follows the studies performed in the field of solar powered racing cars, with modifications to make the system suitable for use in space. The system design, numerical simulation and hardware ground testing are described in the paper. The experiment and the performance evaluation criterion are described, together with the preliminary results of the first eight months of operation in orbit.
Zealotry effects on opinion dynamics in the adaptive voter model
NASA Astrophysics Data System (ADS)
Klamser, Pascal P.; Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.
2017-11-01
The adaptive voter model has been widely studied as a conceptual model for opinion formation processes on time-evolving social networks. Past studies on the effect of zealots, i.e., nodes aiming to spread their fixed opinion throughout the system, only considered the voter model on a static network. Here we extend the study of zealotry to the case of an adaptive network topology co-evolving with the state of the nodes and investigate opinion spreading induced by zealots depending on their initial density and connectedness. Numerical simulations reveal that below the fragmentation threshold a low density of zealots is sufficient to spread their opinion to the whole network. Beyond the transition point, zealots must exhibit an increased degree as compared to ordinary nodes for an efficient spreading of their opinion. We verify the numerical findings using a mean-field approximation of the model yielding a low-dimensional set of coupled ordinary differential equations. Our results imply that the spreading of the zealots' opinion in the adaptive voter model is strongly dependent on the link rewiring probability and the average degree of normal nodes in comparison with that of the zealots. In order to avoid a complete dominance of the zealots' opinion, there are two possible strategies for the remaining nodes: adjusting the probability of rewiring and/or the number of connections with other nodes, respectively.
Localization Algorithm with On-line Path Loss Estimation and Node Selection
Bel, Albert; Vicario, José López; Seco-Granados, Gonzalo
2011-01-01
RSS-based localization is considered a low-complexity algorithm with respect to other range techniques such as TOA or AOA. The accuracy of RSS methods depends on the suitability of the propagation models used for the actual propagation conditions. In indoor environments, in particular, it is very difficult to obtain a good propagation model. For that reason, we present a cooperative localization algorithm that dynamically estimates the path loss exponent by using RSS measurements. Since the energy consumption is a key point in sensor networks, we propose a node selection mechanism to limit the number of neighbours of a given node that are used for positioning purposes. Moreover, the selection mechanism is also useful to discard bad links that could negatively affect the performance accuracy. As a result, we derive a practical solution tailored to the strict requirements of sensor networks in terms of complexity, size and cost. We present results based on both computer simulations and real experiments with the Crossbow MICA2 motes showing that the proposed scheme offers a good trade-off in terms of position accuracy and energy efficiency. PMID:22163992
Mistry, R C; Qureshi, S S; Talole, S D; Deshmukh, S
2008-01-01
Management of cervical lymph nodes metastases of squamous cell carcinoma (SCC) from primary of unknown origin (PUO) is contentious and there is insignificant data from India on this subject. To present experience of management of these patients treated with curative intent at a single institution. Retrospective study of patients treated between 1989-1994 in a tertiary referral cancer centre. Eighty-nine patients were evaluated in the study period and their survival compared with patients with common sites of primary in the head and neck with comparable node stage. Kaplan-Meier method. The clinical stage of the neck nodes at presentation was N1 in 11%, N2a in 28.5%, N2b in 22.5%, N3 in 35% and Nx in 3.4% patients. All patients underwent surgery and 70 patients received more than 40Gy postoperative radiotherapy. Twenty-nine (32.6%) patients had relapse of which 19 (21%) were in the neck. Postoperative radiotherapy did not influence the neck relapse (p=0.72). Primary was detected in 13 patients (14.6%) on subsequent follow up. The overall five and eight-years survival was 55% and 51% respectively. The overall five-year survival was better compared to patients with known primary with comparable node stage. Patients with cervical lymph nodes metastases of SCC from PUO have reasonable survival and low rate of development of subsequent primary when treated with surgery and radiotherapy. The overall survival is comparable to that of patients with known primary and hence an attempt at cure should always be made.
Mian, Adnan Noor; Fatima, Mehwish; Khan, Raees; Prakash, Ravi
2014-01-01
Energy efficiency is an important design paradigm in Wireless Sensor Networks (WSNs) and its consumption in dynamic environment is even more critical. Duty cycling of sensor nodes is used to address the energy consumption problem. However, along with advantages, duty cycle aware networks introduce some complexities like synchronization and latency. Due to their inherent characteristics, many traditional routing protocols show low performance in densely deployed WSNs with duty cycle awareness, when sensor nodes are supposed to have high mobility. In this paper we first present a three messages exchange Lightweight Random Walk Routing (LRWR) protocol and then evaluate its performance in WSNs for routing low data rate packets. Through NS-2 based simulations, we examine the LRWR protocol by comparing it with DYMO, a widely used WSN protocol, in both static and dynamic environments with varying duty cycles, assuming the standard IEEE 802.15.4 in lower layers. Results for the three metrics, that is, reliability, end-to-end delay, and energy consumption, show that LRWR protocol outperforms DYMO in scalability, mobility, and robustness, showing this protocol as a suitable choice in low duty cycle and dense WSNs.
Availability and End-to-end Reliability in Low Duty Cycle Multihop Wireless Sensor Networks.
Suhonen, Jukka; Hämäläinen, Timo D; Hännikäinen, Marko
2009-01-01
A wireless sensor network (WSN) is an ad-hoc technology that may even consist of thousands of nodes, which necessitates autonomic, self-organizing and multihop operations. A typical WSN node is battery powered, which makes the network lifetime the primary concern. The highest energy efficiency is achieved with low duty cycle operation, however, this alone is not enough. WSNs are deployed for different uses, each requiring acceptable Quality of Service (QoS). Due to the unique characteristics of WSNs, such as dynamic wireless multihop routing and resource constraints, the legacy QoS metrics are not feasible as such. We give a new definition to measure and implement QoS in low duty cycle WSNs, namely availability and reliability. Then, we analyze the effect of duty cycling for reaching the availability and reliability. The results are obtained by simulations with ZigBee and proprietary TUTWSN protocols. Based on the results, we also propose a data forwarding algorithm suitable for resource constrained WSNs that guarantees end-to-end reliability while adding a small overhead that is relative to the packet error rate (PER). The forwarding algorithm guarantees reliability up to 30% PER.
The Node Deployment of Intelligent Sensor Networks Based on the Spatial Difference of Farmland Soil.
Liu, Naisen; Cao, Weixing; Zhu, Yan; Zhang, Jingchao; Pang, Fangrong; Ni, Jun
2015-11-11
Considering that agricultural production is characterized by vast areas, scattered fields and long crop growth cycles, intelligent wireless sensor networks (WSNs) are suitable for monitoring crop growth information. Cost and coverage are the most key indexes for WSN applications. The differences in crop conditions are influenced by the spatial distribution of soil nutrients. If the nutrients are distributed evenly, the crop conditions are expected to be approximately uniform with little difference; on the contrary, there will be great differences in crop conditions. In accordance with the differences in the spatial distribution of soil information in farmland, fuzzy c-means clustering was applied to divide the farmland into several areas, where the soil fertility of each area is nearly uniform. Then the crop growth information in the area could be monitored with complete coverage by deploying a sensor node there, which could greatly decrease the deployed sensor nodes. Moreover, in order to accurately judge the optimal cluster number of fuzzy c-means clustering, a discriminant function for Normalized Intra-Cluster Coefficient of Variation (NICCV) was established. The sensitivity analysis indicates that NICCV is insensitive to the fuzzy weighting exponent, but it shows a strong sensitivity to the number of clusters.
Ultrasonography of the medial iliac lymph nodes in the dog.
Llabrés-Díaz, Francisco J
2004-01-01
Sixty-one medial iliac lymph nodes of 38 different dogs (eight with adenocarcinoma of the apocrine glands of the anal sac, 13 with multicentric lymphoma, six with multicentric lymphoma but in clinical remission, and 11 control dogs) were evaluated to assess the ability of ultrasound to identify and interrogate these lymph nodes across the different groups and to differentiate these groups using different sonographic parameters. Ultrasound proved to be useful to assess canine medial iliac lymph nodes. An increase in size or number of detected lymph nodes or finding rounder or heterogeneous lymph nodes could differentiate lymph nodes of dogs of the control group from lymph nodes of dogs with lymphoma or an adenocarcinoma of the apocrine glands of the anal sac. Subcategories of malignancy could not be differentiated. More studies need to be performed, both with patients with reactive lymph nodes and also focusing on other canine superficial lymph nodes, before generalizing the results of this study to other areas or diseases.
Acquisition and tracking for underwater optical communications
NASA Astrophysics Data System (ADS)
Williams, Andrew J.; Laycock, Leslie L.; Griffith, Michael S.; McCarthy, Andrew G.; Rowe, Duncan P.
2017-10-01
There is a growing requirement to transfer large volumes of data between underwater platforms. As seawater is transmissive in the visible band, underwater optical communications is an active area of interest since it offers the potential for power efficient, covert and high bandwidth datalinks at short to medium ranges. Short range systems have been successfully demonstrated using sources with low directionality. To realise higher data rates and/or longer ranges, the use of more efficient directional beams is required; by necessity, these must be sufficiently aligned to achieve the required link margin. For mobile platforms, the acquisition and tracking of each node is therefore critical in order to establish and maintain an optical datalink. This paper describes work undertaken to demonstrate acquisition and tracking in a 3D underwater environment. A range of optical sources, beam steering technologies, and tracking sensors have been assessed for suitability. A novel scanning strategy exploiting variable beam divergence was developed to provide robust acquisition whilst minimising acquisition time. A prototype system was assembled and demonstrated in a large water tank. This utilised custom quadrant detectors based on Silicon PhotoMultiplier (SiPM) arrays for fine tracking, and a Wide Field of View (WFoV) sCMOS camera for link acquisition. Fluidic lenses provided dynamic control of beam divergence, and AC modulation/filtering enabled background rejection. The system successfully demonstrated robust optical acquisition and tracking between two nodes with only nanowatt received optical powers. The acquisition time was shown to be dependent on the initial conditions and the transmitted optical power.
Zhang, Xian-Ming; Han, Qing-Long
2016-12-01
This paper is concerned with decentralized event-triggered dissipative control for systems with the entries of the system outputs having different physical properties. Depending on these different physical properties, the entries of the system outputs are grouped into multiple nodes. A number of sensors are used to sample the signals from different nodes. A decentralized event-triggering scheme is introduced to select those necessary sampled-data packets to be transmitted so that communication resources can be saved significantly while preserving the prescribed closed-loop performance. First, in order to organize the decentralized data packets transmitted from the sensor nodes, a data packet processor (DPP) is used to generate a new signal to be held by the zero-order-hold once the signal stored by the DPP is updated at some time instant. Second, under the mechanism of the DPP, the resulting closed-loop system is modeled as a linear system with an interval time-varying delay. A sufficient condition is derived such that the closed-loop system is asymptotically stable and strictly (Q 0 ,S 0 ,R 0 ) -dissipative, where Q 0 ,S 0 , and R 0 are real matrices of appropriate dimensions with Q 0 and R 0 symmetric. Third, suitable output-based controllers can be designed based on solutions to a set of a linear matrix inequality. Finally, two examples are given to demonstrate the effectiveness of the proposed method.
Weyl magnons in noncoplanar stacked kagome antiferromagnets
NASA Astrophysics Data System (ADS)
Owerre, S. A.
2018-03-01
Weyl nodes have been experimentally realized in photonic, electronic, and phononic crystals. However, magnonic Weyl nodes are yet to be seen experimentally. In this paper, we propose Weyl magnon nodes in noncoplanar stacked frustrated kagome antiferromagnets, naturally available in various real materials. Most crucially, the Weyl nodes in the current system occur at the lowest excitation and possess a topological thermal Hall effect, therefore they are experimentally accessible at low temperatures due to the population effect of bosonic quasiparticles. In stark contrast to other magnetic systems, the current Weyl nodes do not rely on time-reversal symmetry breaking by the magnetic order. Rather, they result from explicit macroscopically broken time reversal symmetry by the scalar spin chirality of noncoplanar spin textures and can be generalized to chiral spin liquid states. Moreover, the scalar spin chirality gives a real space Berry curvature which is not available in previously studied magnetic Weyl systems. We show the existence of magnon arc surface states connecting projected Weyl magnon nodes on the surface Brillouin zone. We also uncover the first realization of triply-degenerate nodal magnon point in the noncollinear regime with zero scalar spin chirality.
Sentinel Lymph Node Biopsy for Cutaneous Head and Neck Melanoma: Mapping the Parotid Gland.
Picon, Antonio I; Coit, Daniel G; Shaha, Ashok R; Brady, Mary S; Boyle, Jay O; Singh, Bhuvanesh B; Wong, Richard J; Busam, Klaus J; Shah, Jatin P; Kraus, Dennis H
2016-12-01
Sentinel lymph node biopsy (SLNB) for primary cutaneous head and neck melanoma (CHNM) has been shown to be successful and is the current standard of care for intermediate-thickness melanoma. We evaluated our experience with CHNM associated with SLNB mapping to the region of the parotid gland. Retrospective review of a prospectively collected melanoma database identified 1014 CHNMs. Two-hundred twenty-three patients underwent SLNB, and 72 (32%) had mapping in the region of the parotid gland between May 1995 and June 2003. The mean number of SLNs per patient was 2.5. A sentinel lymph node (SLN) was successfully identified in 94% of patients, and in 12%, the SLN was positive for metastatic disease. Biopsy of intraparotid SLNs was performed in 51.4% and of periparotid SLNs in 26.4%, and a superficial parotidectomy was performed in 22.2%. Ten patients were found to have lymph nodes in the parotid region with metastatic disease (eight identified by SLNB), and two (20%) patients developed intraparotid lymph node recurrence in the setting of a negative SLNB. Same-basin recurrence in SLN-negative patients was 3.3% with a median follow-up of 26 months. Facial nerve dysfunction was identified in seven (10%) patients. Facial nerve function returned to preoperative status in all patients. SLNB for patients with primary CHNM mapping to the parotid gland can be performed with a high degree of accuracy and a low morbidity consisting of temporary facial nerve paresis.
Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing
2015-03-01
Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.
Reissner-Mindlin Legendre Spectral Finite Elements with Mixed Reduced Quadrature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brito, K. D.; Sprague, M. A.
2012-10-01
Legendre spectral finite elements (LSFEs) are examined through numerical experiments for static and dynamic Reissner-Mindlin plate bending and a mixed-quadrature scheme is proposed. LSFEs are high-order Lagrangian-interpolant finite elements with nodes located at the Gauss-Lobatto-Legendre quadrature points. Solutions on unstructured meshes are examined in terms of accuracy as a function of the number of model nodes and total operations. While nodal-quadrature LSFEs have been shown elsewhere to be free of shear locking on structured grids, locking is demonstrated here on unstructured grids. LSFEs with mixed quadrature are, however, locking free and are significantly more accurate than low-order finite-elements for amore » given model size or total computation time.« less
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El
2014-01-01
Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid
2014-09-22
Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.
A Trustworthy Key Generation Prototype Based on DDR3 PUF for Wireless Sensor Networks
Liu, Wenchao; Zhang, Zhenhua; Li, Miaoxin; Liu, Zhenglin
2014-01-01
Secret key leakage in wireless sensor networks (WSNs) is a high security risk especially when sensor nodes are deployed in hostile environment and physically accessible to attackers. With nowadays semi/fully-invasive attack techniques attackers can directly derive the cryptographic key from non-volatile memory (NVM) storage. Physically Unclonable Function (PUF) is a promising technology to resist node capture attacks, and it also provides a low cost and tamper-resistant key provisioning solution. In this paper, we designed a PUF based on double-data-rate SDRAM Type 3 (DDR3) memory by exploring its memory decay characteristics. We also described a prototype of 128-bit key generation based on DDR3 PUF with integrated fuzzy extractor. Due to the wide adoption of DDR3 memory in WSN, our proposed DDR3 PUF technology with high security levels and no required hardware changes is suitable for a wide range of WSN applications. PMID:24984058
Traffic Adaptive Energy Efficient and Low Latency Medium Access Control for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Yadav, Rajesh; Varma, Shirshu; Malaviya, N.
2008-05-01
Medium access control for wireless sensor networks has been a very active research area in the recent years. The traditional wireless medium access control protocol such as IEEE 802.11 is not suitable for the sensor network application because these are battery powered. The recharging of these sensor nodes is expensive and also not possible. The most of the literature in the medium access for the sensor network focuses on the energy efficiency. The proposed MAC protocol solves the energy inefficiency caused by idle listening, control packet overhead and overhearing taking nodes latency into consideration based on the network traffic. Simulation experiments have been performed to demonstrate the effectiveness of the proposed approach. The validation of the simulation results of the proposed MAC has been done by comparing it with the analytical model. This protocol has been simulated in Network Simulator ns-2.
A Hybrid Scheme for Fine-Grained Search and Access Authorization in Fog Computing Environment
Xiao, Min; Zhou, Jing; Liu, Xuejiao; Jiang, Mingda
2017-01-01
In the fog computing environment, the encrypted sensitive data may be transferred to multiple fog nodes on the edge of a network for low latency; thus, fog nodes need to implement a search over encrypted data as a cloud server. Since the fog nodes tend to provide service for IoT applications often running on resource-constrained end devices, it is necessary to design lightweight solutions. At present, there is little research on this issue. In this paper, we propose a fine-grained owner-forced data search and access authorization scheme spanning user-fog-cloud for resource constrained end users. Compared to existing schemes only supporting either index encryption with search ability or data encryption with fine-grained access control ability, the proposed hybrid scheme supports both abilities simultaneously, and index ciphertext and data ciphertext are constructed based on a single ciphertext-policy attribute based encryption (CP-ABE) primitive and share the same key pair, thus the data access efficiency is significantly improved and the cost of key management is greatly reduced. Moreover, in the proposed scheme, the resource constrained end devices are allowed to rapidly assemble ciphertexts online and securely outsource most of decryption task to fog nodes, and mediated encryption mechanism is also adopted to achieve instantaneous user revocation instead of re-encrypting ciphertexts with many copies in many fog nodes. The security and the performance analysis show that our scheme is suitable for a fog computing environment. PMID:28629131
A Hybrid Scheme for Fine-Grained Search and Access Authorization in Fog Computing Environment.
Xiao, Min; Zhou, Jing; Liu, Xuejiao; Jiang, Mingda
2017-06-17
In the fog computing environment, the encrypted sensitive data may be transferred to multiple fog nodes on the edge of a network for low latency; thus, fog nodes need to implement a search over encrypted data as a cloud server. Since the fog nodes tend to provide service for IoT applications often running on resource-constrained end devices, it is necessary to design lightweight solutions. At present, there is little research on this issue. In this paper, we propose a fine-grained owner-forced data search and access authorization scheme spanning user-fog-cloud for resource constrained end users. Compared to existing schemes only supporting either index encryption with search ability or data encryption with fine-grained access control ability, the proposed hybrid scheme supports both abilities simultaneously, and index ciphertext and data ciphertext are constructed based on a single ciphertext-policy attribute based encryption (CP-ABE) primitive and share the same key pair, thus the data access efficiency is significantly improved and the cost of key management is greatly reduced. Moreover, in the proposed scheme, the resource constrained end devices are allowed to rapidly assemble ciphertexts online and securely outsource most of decryption task to fog nodes, and mediated encryption mechanism is also adopted to achieve instantaneous user revocation instead of re-encrypting ciphertexts with many copies in many fog nodes. The security and the performance analysis show that our scheme is suitable for a fog computing environment.
C deg continuity elements by Hybrid Stress method. M.S. Thesis, 1982 Final Report
NASA Technical Reports Server (NTRS)
Kang, David Sung-Soo
1991-01-01
An intensive study of the assumed variable distribution necessary for the Assumed Displacement Formulation, the Hellinger-Reissner Formulation, and the Hu-Washizu Formulation is made in a unified manner. With emphasis on physical explanation, a systematic method for the Hybrid Stress element construction is outlined. The numerical examples use four and eight node plane stress elements and eight and twenty node solid elements. Computation cost study indicates that the hybrid stress element derived using recently developed Uncoupled Stress Formulation is comparable in CPU time to the Assumed Displacement element. Overall, main emphasis is placed on providing a broader understanding of the Hybrid Stress Formulation.
NASA Astrophysics Data System (ADS)
Balpande, Suresh S.; Pande, Rajesh S.
2016-04-01
Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and schottky diodes based voltage multiplier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balpande, Suresh S., E-mail: balpandes@rknec.edu; Pande, Rajesh S.
Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition tomore » this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and schottky diodes based voltage multiplier.« less
Accumulate-Repeat-Accumulate-Accumulate Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy
2007-01-01
Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.
Sentinel lymph node detection in gynecologic malignancies by a handheld fluorescence camera
NASA Astrophysics Data System (ADS)
Hirsch, Ole; Szyc, Lukasz; Muallem, Mustafa Zelal; Ignat, Iulia; Chekerov, Radoslav; Macdonald, Rainer; Sehouli, Jalid; Braicu, Ioana; Grosenick, Dirk
2017-02-01
Near-infrared fluorescence imaging using indocyanine green (ICG) as a tracer is a promising technique for mapping the lymphatic system and for detecting sentinel lymph nodes (SLN) during cancer surgery. In our feasibility study we have investigated the application of a custom-made handheld fluorescence camera system for the detection of lymph nodes in gynecological malignancies. It comprises a low cost CCD camera with enhanced NIR sensitivity and two groups of LEDs emitting at wavelengths of 735 nm and 830 nm for interlaced recording of fluorescence and reflectance images of the tissue, respectively. With the help of our system, surgeons can observe fluorescent tissue structures overlaid onto the anatomical image on a monitor in real-time. We applied the camera system for intraoperative lymphatic mapping in 5 patients with vulvar cancer, 5 patients with ovarian cancer, 3 patients with cervical cancer, and 3 patients with endometrial cancer. ICG was injected at four loci around the primary malignant tumor during surgery. After a residence time of typically 15 min fluorescence images were taken in order to visualize the lymph nodes closest to the carcinomas. In cases with vulvar cancer about half of the lymph nodes detected by routinely performed radioactive SLN mapping have shown fluorescence in vivo as well. In the other types of carcinomas several lymph nodes could be detected by fluorescence during laparotomy. We conclude that our low cost camera system has sufficient sensitivity for lymphatic mapping during surgery.
Effect of equatorial line nodes on the upper critical field and London penetration depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogan, V G; Prozorov, R
2014-09-01
The upper critical field Hc2 and its anisotropy are calculated for order parameters with line nodes at the equators, kz=0, of the Fermi surface of uniaxial superconductors. It is shown that characteristic features found in Fe-based materials (a nearly linear Hc2(T) in a broad T domain, a low and increasing on warming anisotropy γH=Hc2,ab/Hc2,c) can be caused by competing effects of the equatorial nodes and of the Fermi surface anisotropy. For certain material parameters, γH(T)-1 may change sign upon warming, in agreement with the recorded behavior of FeTeS systems. It is also shown that the anisotropy of the penetration depthmore » γλ=λc/λab decreases upon warming to reach γH at Tc, in agreement with data available. For some materials γλ(T) may change upon warming, from γλ>1 at low Ts to γλ<1 at high Ts.« less
The construction of high-accuracy schemes for acoustic equations
NASA Technical Reports Server (NTRS)
Tang, Lei; Baeder, James D.
1995-01-01
An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.
The predictive factors for lymph node metastasis in early gastric cancer: A clinical study.
Wang, Yinzhong
2015-01-01
To detect the clinicopathological factors associated with lymph node metastases in early gastric cancer. We retrospectively evaluated the distribution of metastatic nodes in 198 patients with early gastric cancer treated in our hospital between May 2008 and January 2015, the clinicopathological factors including age, gender, tumor location, tumor size, macroscopic type, depth of invasion, histological type and venous invasion were studied, and the relationship between various parameters and lymph node metastases was analyzed. In this study, one hundred and ninety-eight patients with early gastric cancer were included, and lymph node metastasis was detected in 28 patients. Univariate analysis revealed a close relationship between tumor size, depth of invasion, histological type, venous invasion, local ulceration and lymph node metastases. Multivariate analysis revealed that the five factors were independent risk factors for lymph node metastases. The clinicopathological parameters including tumor size, depth of invasion, local ulceration, histological type and venous invasion are closely correlated with lymph node metastases, should be paid high attention in early gastric cancer patients.
Underwater Electromagnetic Sensor Networks, Part II: Localization and Network Simulations
Zazo, Javier; Valcarcel Macua, Sergio; Zazo, Santiago; Pérez, Marina; Pérez-Álvarez, Iván; Jiménez, Eugenio; Cardona, Laura; Brito, Joaquín Hernández; Quevedo, Eduardo
2016-01-01
In the first part of the paper, we modeled and characterized the underwater radio channel in shallow waters. In the second part, we analyze the application requirements for an underwater wireless sensor network (U-WSN) operating in the same environment and perform detailed simulations. We consider two localization applications, namely self-localization and navigation aid, and propose algorithms that work well under the specific constraints associated with U-WSN, namely low connectivity, low data rates and high packet loss probability. We propose an algorithm where the sensor nodes collaboratively estimate their unknown positions in the network using a low number of anchor nodes and distance measurements from the underwater channel. Once the network has been self-located, we consider a node estimating its position for underwater navigation communicating with neighboring nodes. We also propose a communication system and simulate the whole electromagnetic U-WSN in the Castalia simulator to evaluate the network performance, including propagation impairments (e.g., noise, interference), radio parameters (e.g., modulation scheme, bandwidth, transmit power), hardware limitations (e.g., clock drift, transmission buffer) and complete MAC and routing protocols. We also explain the changes that have to be done to Castalia in order to perform the simulations. In addition, we propose a parametric model of the communication channel that matches well with the results from the first part of this paper. Finally, we provide simulation results for some illustrative scenarios. PMID:27999309
Location estimation in wireless sensor networks using spring-relaxation technique.
Zhang, Qing; Foh, Chuan Heng; Seet, Boon-Chong; Fong, A C M
2010-01-01
Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.
Switch for serial or parallel communication networks
Crosette, D.B.
1994-07-19
A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination. 9 figs.
Switch for serial or parallel communication networks
Crosette, Dario B.
1994-01-01
A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination.
Ab initio nanostructure determination
NASA Astrophysics Data System (ADS)
Gujarathi, Saurabh
Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. This problem is cast as a complex network problem where the edges in a network have weights equal to the Euclidean distance between their endpoints. A method, called Tribond, for the reconstruction of the locations of the nodes of the network given only the edge weights of the Euclidean network is presented. The timing results indicate that the algorithm is a low order polynomial in the number of nodes in the network in two dimensions. Reconstruction of Euclidean networks in two dimensions of about one thousand nodes in approximately twenty four hours on a desktop computer using this implementation is done. In three dimensions, the computational cost for the reconstruction is a higher order polynomial in the number of nodes and reconstruction of small Euclidean networks in three dimensions is shown. If a starting network of size five is assumed to be given, then for a network of size 100, the remaining reconstruction can be done in about two hours on a desktop computer. In situations when we have less precise data, modifications of the method may be necessary and are discussed. A related problem in one dimension known as the Optimal Golomb ruler (OGR) is also studied. A statistical physics Hamiltonian to describe the OGR problem is introduced and the first order phase transition from a symmetric low constraint phase to a complex symmetry broken phase at high constraint is studied. Despite the fact that the Hamiltonian is not disordered, the asymmetric phase is highly irregular with geometric frustration. The phase diagram is obtained and it is seen that even at a very low temperature T there is a phase transition at finite and non-zero value of the constraint parameter gamma/mu. Analytic calculations for the scaling of the density and free energy of the ruler are done and they are compared with those from the mean field approach. A scaling law is also derived for the length of OGR, which is consistent with Erdos conjecture and with numerical results.
NASA Astrophysics Data System (ADS)
Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.
2016-04-01
Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.
An Optimal Method for Detecting Internal and External Intrusion in MANET
NASA Astrophysics Data System (ADS)
Rafsanjani, Marjan Kuchaki; Aliahmadipour, Laya; Javidi, Mohammad M.
Mobile Ad hoc Network (MANET) is formed by a set of mobile hosts which communicate among themselves through radio waves. The hosts establish infrastructure and cooperate to forward data in a multi-hop fashion without a central administration. Due to their communication type and resources constraint, MANETs are vulnerable to diverse types of attacks and intrusions. In this paper, we proposed a method for prevention internal intruder and detection external intruder by using game theory in mobile ad hoc network. One optimal solution for reducing the resource consumption of detection external intruder is to elect a leader for each cluster to provide intrusion service to other nodes in the its cluster, we call this mode moderate mode. Moderate mode is only suitable when the probability of attack is low. Once the probability of attack is high, victim nodes should launch their own IDS to detect and thwart intrusions and we call robust mode. In this paper leader should not be malicious or selfish node and must detect external intrusion in its cluster with minimum cost. Our proposed method has three steps: the first step building trust relationship between nodes and estimation trust value for each node to prevent internal intrusion. In the second step we propose an optimal method for leader election by using trust value; and in the third step, finding the threshold value for notifying the victim node to launch its IDS once the probability of attack exceeds that value. In first and third step we apply Bayesian game theory. Our method due to using game theory, trust value and honest leader can effectively improve the network security, performance and reduce resource consumption.
NASA Astrophysics Data System (ADS)
Bae, Pan Kee; Jung, Juyeon; Chung, Bong Hyun
2014-03-01
The near-infrared (NIR) fluorescence probe has better tissue penetration and lower autofluorescence. Indocyanine green (ICG) is an NIR organic dye for extensive biological application, and it has been clinically approved for human medical imaging and diagnosis. However, application of this dye is limited by its numerous disadvantageous properties in aqueous solution, including its concentration-dependent aggregation, poor aqueous stability in vitro, and low quantum yield. Its use in molecular imaging probes is limited because it loses fluorescence after binding to nonspecific plasma proteins, leading to rapid elimination from the body with a half-life of 2 - 4 min. In this study, the multifunctional perfluorocarbon (PFC)/ICG nanoemulsions were investigated with the aim of overcoming these limitations. The PFC/ICG nanoemulsions as a new type of delivery vehicle for contrast agents have both NIR optical imaging and 19 F-MR imaging moieties. These nanoemulsions exhibited less aggregation, increased fluorescence intensity, long-term stability, and physicochemical stability against external light and temperature compared to free aqueous ICG. Also, the PFC/ICG bimodal nanoemulsions allow excellent detection of lymph nodes in vivo through NIR optical imaging and 19 F-MR imaging. This result showed the suitability of the proposed nanoemulsions for non-invasive lymph node mapping as they enable long-time detection of lymph nodes.
Capella, Juan V.; Perles, Angel; Bonastre, Alberto; Serrano, Juan J.
2011-01-01
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties. PMID:22346630
Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J
2011-01-01
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.
NASA Astrophysics Data System (ADS)
Nakamura, Yoshihiko; Nimura, Yukitaka; Kitasaka, Takayuki; Mizuno, Shinji; Furukawa, Kazuhiro; Goto, Hidemi; Fujiwara, Michitaka; Misawa, Kazunari; Ito, Masaaki; Nawano, Shigeru; Mori, Kensaku
2013-03-01
This paper presents an automated method of abdominal lymph node detection to aid the preoperative diagnosis of abdominal cancer surgery. In abdominal cancer surgery, surgeons must resect not only tumors and metastases but also lymph nodes that might have a metastasis. This procedure is called lymphadenectomy or lymph node dissection. Insufficient lymphadenectomy carries a high risk for relapse. However, excessive resection decreases a patient's quality of life. Therefore, it is important to identify the location and the structure of lymph nodes to make a suitable surgical plan. The proposed method consists of candidate lymph node detection and false positive reduction. Candidate lymph nodes are detected using a multi-scale blob-like enhancement filter based on local intensity structure analysis. To reduce false positives, the proposed method uses a classifier based on support vector machine with the texture and shape information. The experimental results reveal that it detects 70.5% of the lymph nodes with 13.0 false positives per case.
NASA Astrophysics Data System (ADS)
Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.
2015-03-01
Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2018-05-01
The pinning/leader control problems provide the design of the leader or pinning controller in order to guide a complex network to a desired trajectory or target (synchronisation or consensus). Let a time-invariant complex network, pinning/leader control problems include the design of the leader or pinning controller gain and number of nodes to pin in order to guide a network to a desired trajectory (synchronization or consensus). Usually, lower is the number of pinned nodes larger is the pinning gain required to assess network synchronisation. On the other side, realistic application scenario of complex networks is characterised by switching topologies, time-varying node coupling strength and link weight that make hard to solve the pinning/leader control problem. Additionally, the system dynamics at nodes can be heterogeneous. In this paper, we derive robust stabilisation conditions of time-varying heterogeneous complex networks with jointly connected topologies when coupling strength and link weight interactions are affected by time-varying uncertainties. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, we formulate low computationally demanding stabilisability conditions to design a pinning/leader control gain for robust network synchronisation. The effectiveness of the proposed approach is shown by several design examples applied to a paradigmatic well-known complex network composed of heterogeneous Chua's circuits.
Multi-test decision tree and its application to microarray data classification.
Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek
2014-05-01
The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.
Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco
2017-01-01
The use of Wireless Sensor Network (WSN) technologies is an attractive option to support wide-scale monitoring applications, such as the ones that can be found in precision agriculture, environmental monitoring and industrial automation. The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable topology to build wide-scale WSNs. Despite some of its known advantages, including timing synchronisation and duty-cycle operation, cluster-tree networks may suffer from severe network congestion problems due to the convergecast pattern of its communication traffic. Therefore, the careful adjustment of transmission opportunities (superframe durations) allocated to the cluster-heads is an important research issue. This paper proposes a set of proportional Superframe Duration Allocation (SDA) schemes, based on well-defined protocol and timing models, and on the message load imposed by child nodes (Load-SDA scheme), or by number of descendant nodes (Nodes-SDA scheme) of each cluster-head. The underlying reasoning is to adequately allocate transmission opportunities (superframe durations) and parametrize buffer sizes, in order to improve the network throughput and avoid typical problems, such as: network congestion, high end-to-end communication delays and discarded messages due to buffer overflows. Simulation assessments show how proposed allocation schemes may clearly improve the operation of wide-scale cluster-tree networks. PMID:28134822
The Node Deployment of Intelligent Sensor Networks Based on the Spatial Difference of Farmland Soil
Liu, Naisen; Cao, Weixing; Zhu, Yan; Zhang, Jingchao; Pang, Fangrong; Ni, Jun
2015-01-01
Considering that agricultural production is characterized by vast areas, scattered fields and long crop growth cycles, intelligent wireless sensor networks (WSNs) are suitable for monitoring crop growth information. Cost and coverage are the most key indexes for WSN applications. The differences in crop conditions are influenced by the spatial distribution of soil nutrients. If the nutrients are distributed evenly, the crop conditions are expected to be approximately uniform with little difference; on the contrary, there will be great differences in crop conditions. In accordance with the differences in the spatial distribution of soil information in farmland, fuzzy c-means clustering was applied to divide the farmland into several areas, where the soil fertility of each area is nearly uniform. Then the crop growth information in the area could be monitored with complete coverage by deploying a sensor node there, which could greatly decrease the deployed sensor nodes. Moreover, in order to accurately judge the optimal cluster number of fuzzy c-means clustering, a discriminant function for Normalized Intra-Cluster Coefficient of Variation (NICCV) was established. The sensitivity analysis indicates that NICCV is insensitive to the fuzzy weighting exponent, but it shows a strong sensitivity to the number of clusters. PMID:26569243
Nuclear magnetic resonance in low-symmetry superconductors
NASA Astrophysics Data System (ADS)
Cavanagh, D. C.; Powell, B. J.
2018-01-01
We consider the nuclear spin-lattice relaxation rate 1 /T1 in superconductors with accidental nodes, i.e., zeros of the order parameter that are not enforced by its symmetries. Such nodes in the superconducting gap are not constrained by symmetry to a particular position on the Fermi surface. We show, analytically and numerically, that a Hebel-Slichter-like peak occurs even in the absence of an isotropic component of the superconducting gap. For a gap with symmetry-required nodes the Fermi velocity at the node must point along the node. For accidental nodes this is not, in general, the case. This leads to additional terms in spectral function and hence the density of states. These terms lead to a logarithmic divergence in 1 /T1T at T →Tc- in models neglecting disorder and interactions [except for those leading to superconductivity; here T is temperature, Tc-=limδ→0(Tc-δ ) , and Tc is the critical temperature]. This contrasts with the usual Hebel-Slichter peak which arises from the coherence factors due to the isotropic component of the gap and leads to a divergence in 1 /T1T somewhat below Tc. The divergence in superconductors with accidental nodes is controlled by either disorder or additional electron-electron interactions. However, for reasonable parameters, neither of these effects removes the peak altogether. This provides a simple experimental method to distinguish between symmetry-required and accidental nodes.
Kreiling, R; Hollnagel, H M; Hareng, L; Eigler, D; Lee, M S; Griem, P; Dreessen, B; Kleber, M; Albrecht, A; Garcia, C; Wendel, A
2008-06-01
The skin sensitization potential of eight unsaturated and one saturated lipid (bio)chemicals was tested in both the LLNA and the GPMT to address the hypothesis that chemicals with unsaturated carbon-carbon double bonds may result in a higher number of unspecific (false positive) results in the LLNA compared to the GPMT. Seven substances (oleic acid, linoleic acid, linolenic acid, undecylenic acid, maleic acid, squalene and octinol) gave clear positive results in the LLNA (stimulation index (SI)> or = 3) and thus would require labelling as skin sensitizer. Fumaric acid and succinic acid gave clearly negative results. In the GPMT, besides some sporadic skin reactions, reproducible skin reactions indicating an allergic response were found in a few animals for four test substances. Based on the GPMT results, only undecylenic acid would have to be classified and labelled as a skin sensitizer according to the European Dangerous Substance Directive (67/548/EEC) (results for linoleic acid were inconclusive), while the other seven test substances would not require labelling. Possible mechanisms for unspecific skin cell stimulation and lymph node responses are discussed. In conclusion, the suitability of the LLNA for unsaturated compounds bearing structural similarity to the tested substances should be carefully considered and the GPMT should remain available as an accepted test method for skin sensitization hazard identification.
NASA Astrophysics Data System (ADS)
Hassan, Mohamed Abd El Rehim Abd El Aziz
2014-11-01
The monitoring of land use/land cover (LULC) changes in southern Port Said region area is very important for the planner of managements, governmental and non-governmental organizations, decision makers and the scientific community. This information is essential for planning and implementing policies to optimize the use of natural resources and accommodate development whilst minimizing the impact on the environment. To monitor these changes in the study area, two sets of satellite images (Landsat TM-5 and ETM+7) data were used with Path/Row (175/38) in date 1986 and 2006, respectively. The Landsat TM and ETM data are useful for this type of study due to its high spatial resolution, spectral resolution and low repetitive acquisition (16 days). A postclassification technique is used in this study based on hybrid classification (Unsupervised and Supervised). Each method used was assessed, and checked in field. Eight to Twelve LULC classes are recognized and mapping produced. The soils in southern Port Said area were classification in two orders for soil taxonomic units, which are Entisols and Aridisols and four sub-orders classes. The study land was evaluated into five classes from non suitable (N) to very highly suitable (S1) for some crops in the southern region of Port Said studied soils, with assess the nature of future change following construction of the international coastal road which crosses near to the study area.
IEEE-802.15.4-based low-power body sensor node with RF energy harvester.
Tran, Thang Viet; Chung, Wan-Young
2014-01-01
This paper proposes the design and implementation of a low-voltage and low-power body sensor node based on the IEEE 802.15.4 standard to collect electrocardiography (ECG) and photoplethysmography (PPG) signals. To achieve compact size, low supply voltage, and low power consumption, the proposed platform is integrated into a ZigBee mote, which contains a DC-DC booster, a PPG sensor interface module, and an ECG front-end circuit that has ultra-low current consumption. The input voltage of the proposed node is very low and has a wide range, from 0.65 V to 3.3 V. An RF energy harvester is also designed to charge the battery during the working mode or standby mode of the node. The power consumption of the proposed node reaches 14 mW in working mode to prolong the battery lifetime. The software is supported by the nesC language under the TinyOS environment, which enables the proposed node to be easily configured to function as an individual health monitoring node or a node in a wireless body sensor network (BSN). The proposed node is used to set up a wireless BSN that can simultaneously collect ECG and PPG signals and monitor the results on the personal computer.
Kuwahata, Akihiro; Ahmed, Muneer; Saeki, Kohei; Chikaki, Shinichi; Kaneko, Miki; Qiu, Wenqi; Xin, Zonghao; Yamaguchi, Shinji; Kaneko, Akiko; Douek, Michael; Kusakabe, Moriaki; Sekino, Masaki
2018-01-01
Sentinel node biopsy using radioisotope and blue dye remains a gold standard for axillary staging in breast cancer patients with low axillary burden. However, limitations in the use of radioisotopes have resulted in emergence of novel techniques. This is the first in vivo study to assess the feasibility of combining the two most common novel techniques of using a magnetic tracer and indocyanine green (ICG) fluorescence. A total of 48 mice were divided into eight groups. Groups 1 and 2, the co-localization groups, received an injection of magnetic tracers (Resovist ® and Sienna+ ® , respectively) and ICG fluorescence; distilled water was used as the solvent of ICG. Groups 3 and 4, the diluted injection groups, received an injection of magnetic tracers (Resovist and Sienna+, respectively) and saline for dilution. Groups 5, 6, and 7, the control groups, received magnetic tracer (Resovist, Sienna+) and ICG alone, respectively. Fluorescent intensity assessment and iron quantification of excised popliteal lymph nodes were performed. Group 1', a co-localization group, received an injection of magnetic tracers (Resovist) and ICG' fluorescence: saline was used as the solvent for ICG. Lymphatic uptake of all tracers was confined to the popliteal nodes only, with co-localization confirmed in all cases and no significant difference in fluorescent intensity or iron content of ex vivo nodes between the groups (except for Group 1'). There was no impact of dilution on the iron content in the diluted Sienna+ group, but it significantly enhanced Resovist uptake ( P =0.005). In addition, there was a significant difference in iron content ( P =0.003) in Group 1'. The combination of a magnetic tracer (Resovist or Sienna+) and ICG fluorescence is feasible for sentinel node biopsy and will potentially allow for precise transcutaneous node identification, in addition to accurate intraoperative assessment. This radioisotope-free "combined technique" warrants further assessment within a clinical trial.
CoAP-Based Mobility Management for the Internet of Things
Chun, Seung-Man; Kim, Hyun-Su; Park, Jong-Tae
2015-01-01
Most of the current mobility management protocols such as Mobile IP and its variants standardized by the IETF may not be suitable to support mobility management for Web-based applications in an Internet of Things (IoT) environment. This is because the sensor nodes have limited power capacity, usually operating in sleep/wakeup mode in a constrained wireless network. In addition, sometimes the sensor nodes may act as the server using the CoAP protocol in an IoT environment. This makes it difficult for Web clients to properly retrieve the sensing data from the mobile sensor nodes in an IoT environment. In this article, we propose a mobility management protocol, named CoMP, which can effectively retrieve the sensing data of sensor nodes while they are moving. The salient feature of CoMP is that it makes use of the IETF CoAP protocol for mobility management, instead of using Mobile IP. Thus CoMP can eliminates the additional signaling overhead of Mobile IP, provides reliable mobility management, and prevents the packet loss. CoMP employs a separate location management server to keep track of the location of the mobile sensor nodes. In order to prevent the loss of important sensing data during movement, a holding mode of operation has been introduced. All the signaling procedures including discovery, registration, binding and holding have been designed by extending the IETF CoAP protocol. The numerical analysis and simulation have been done for performance evaluation in terms of the handover latency and packet loss. The results show that the proposed CoMP is superior to previous mobility management protocols, i.e., Mobile IPv4/v6 (MIPv4/v6), Hierarchical Mobile IPv4/v6 (HMIPv4/v6), in terms of the handover latency and packet loss. PMID:26151214
Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks
Yang, Fan; Su, Jinsong; Zhou, Qifeng; Wang, Tian; Zhang, Lu; Xu, Yifan
2017-01-01
Vehicular nodes are equipped with more and more sensing units, and a large amount of sensing data is generated. Recently, more and more research considers cooperative urban sensing as the heart of intelligent and green city traffic management. The key components of the platform will be a combination of a pervasive vehicular sensing system, as well as a central control and analysis system, where data-gathering is a fundamental component. However, the data-gathering and monitoring are also challenging issues in vehicular sensor networks because of the large amount of data and the dynamic nature of the network. In this paper, we propose an efficient continuous event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks. A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode and generate sensed data. When the probability of the event is high and exceeds some threshold, nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively adjusts the threshold to upload a suitable amount of data for decision making, while at the same time suppressing unnecessary message transmissions. Simulation results showed that the proposed scheme could reduce more than 84 percent of the data transmissions compared with other existing algorithms, while it detects the events and gathers the event data. PMID:29286320
A high-throughput method for GMO multi-detection using a microfluidic dynamic array.
Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J
2014-02-01
The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.
Design of nodes for embedded and ultra low-power wireless sensor networks
NASA Astrophysics Data System (ADS)
Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin
2008-10-01
Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.
NASA Astrophysics Data System (ADS)
Sadeghi, M.; Karimi, M.
2017-09-01
Renewable energy has less negative impacts on environment than fossil fuels. Iran has many resources for renewable energy exploitation but because of their high price, it has not been developed. Site selection is an important step for utilizing large investments like solar farms and wind turbines. Multi-criteria evaluation methods are commonly used for site selection. The purpose of this paper is to determine suitable sites for solar farm and wind turbine using GIS and AHP in Tehran, in order to generate a distributed network to increase power network stability. The final land suitability index was grouped in four categories as "most suitable", "suitable", "moderate" and "low suitable". As a result 94.61% (789939.63 km2) is low suitable, 4.47% (37337.17 km2) is moderate, 0.59% (4964.22 km2) is suitable and 0.32% (2680.70 km2) is the most suitable for building wind turbine and for solar farm, 44.07% (8116.88 km2) is low suitable, 12.81% (2359.79 km2) is moderate, 35.10% (6464.29 km2) is suitable and 8.02% (1477.28 km2) is the most suitable.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.
Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA
2011-11-15
A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected with porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (MHYO), or coinfected with both. Twenty-eight pigs were randomly assigned to one ...
A Pub/Sub Message Distribution Architecture for Disruption Tolerant Networks
NASA Astrophysics Data System (ADS)
Carrilho, Sergio; Esaki, Hiroshi
Access to information is taken for granted in urban areas covered by a robust communication infrastructure. Nevertheless most of the areas in the world, are not covered by such infrastructures. We propose a DTN publish and subscribe system called Hikari, which uses nodes' mobility in order to distribute messages without using a robust infrastructure. The area of Disruption/Delay Tolerant Networks (DTN) focuses on providing connectivity to locations separated by networks with disruptions and delays. The Hikari system does not use node identifiers for message forwarding thus eliminating the complexity of routing associated with many forwarding schemes in DTN. Hikari uses nodes paths' information, advertised by special nodes in the system or predicted by the system itself, for optimizing the message dissemination process. We have used the Paris subway system, due to it's complexity, to validate Hikari and to analyze it's performance. We have shown that Hikari achieves a superior deliver rate while keeping redundant messages in the system low, which is ideal when using devices with limited resources for message dissemination.
Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.
2015-01-01
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694
Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan
2016-07-01
In this paper, a wearable and wireless ECG system is firstly designed with Bluetooth Low Energy (BLE). It can detect 3-lead ECG signals and is completely wireless. Secondly the digital Compressed Sensing (CS) is implemented to increase the energy efficiency of wireless ECG sensor. Different sparsifying basis, various compression ratio (CR) and several reconstruction algorithms are simulated and discussed. Finally the reconstruction is done by the android application (App) on smartphone to display the signal in real time. The power efficiency is measured and compared with the system without CS. The optimum satisfying basis built by 3-level decomposed db4 wavelet coefficients, 1-bit Bernoulli random matrix and the most suitable reconstruction algorithm are selected by the simulations and applied on the sensor node and App. The signal is successfully reconstructed and displayed on the App of smartphone. Battery life of sensor node is extended from 55 h to 67 h. The presented wireless ECG system with CS can significantly extend the battery life by 22 %. With the compact characteristic and long term working time, the system provides a feasible solution for the long term homecare utilization.
Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C
2015-07-29
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.
A solar charge and discharge controller for wireless sensor nodes
NASA Astrophysics Data System (ADS)
Dang, Yibo; Shen, Shu
2018-02-01
Aiming at the energy supply problem that restricts the life of wireless sensor nodes, a solar energy charge and discharge controller suitable for wireless sensor nodes is designed in this paper. A Microcontroller is used as the core of the solar charge and discharge controller. The software of the solar charge and discharge controller adopts the C language to realize the program of the main control module. Firstly, the function of monitoring solar panel voltage and lithium battery voltage are simulated by Protel software, and the charge time is tested in cloudy and overcast outdoor environment. The results of the experiment show that our controller meets the power supply demand of wireless sensor nodes.
NASA Astrophysics Data System (ADS)
Berthier, Florent; Beigne, Edith; Heitzmann, Frédéric; Debicki, Olivier; Christmann, Jean-Frédéric; Valentian, Alexandre; Billoint, Olivier; Amat, Esteve; Morche, Dominique; Chairat, Soundous; Sentieys, Olivier
2016-11-01
In this paper, we propose to analyze Ultra Thin Body and Box FDSOI technology suitability and architectural solutions for IoT applications and more specifically for autonomous Wireless Sensor Nodes (WSNs). As IoT applications are extremely diversified there is a strong need for flexible solutions at design, architectural level but also at technological level. Moreover, as most of those systems are recovering their energy from the environment, they are challenged by low voltage supplies and low leakage functionalities. We detail in this paper some Ultra Thin Body and Box FDSOI 28 nm characteristics and results demonstrating that this technology could be a perfect option for multidisciplinary IoT devices. Back biasing capabilities and low voltage features are investigated demonstrating efficient high speed/low leakage flexibility. In addition, architectural solutions for WSNs microcontroller are also proposed taking advantage of Ultra Thin Body and Box FDSOI characteristics for full user applicative flexibility. A partitioned architecture between an Always Responsive part with an asynchronous Wake Up Controller (WUC) managing WSN current tasks and an On Demand part with a main processor for application maintenance is presented. First results of the Always Responsive part implemented in Ultra Thin Body and Box FDSOI 28 nm are also exposed.
Lymph node staging of oral and maxillofacial neoplasms in 31 dogs and cats.
Herring, Erin S; Smith, Mark M; Robertson, John L
2002-09-01
A retrospective study was performed to report the histologic examination results of regional lymph nodes of dogs and cats with oral or maxillofacial neoplasms. Twenty-eight dogs and 3 cats were evaluated. Histologic examination results of standard and serial tissue sectioning of regional lymph nodes were recorded. When available, other clinical parameters including mandibular lymph node palpation, thoracic radiographs, and pre- and postoperative fine needle aspiration of lymph nodes were compared with the histologic results. Squamous cell carcinoma, fibrosarcoma, and melanoma were the most common neoplasms diagnosed in dogs. Squamous cell carcinoma and fibrosarcoma were diagnosed in cats. Of the palpably enlarged mandibular lymph nodes, 17.0% had metastatic disease histologically. Radiographically evident thoracic metastatic disease was present in 7.4% of cases. Preoperative cytologic evaluation of the mandibular lymph node based on fine needle aspiration concurred with the histologic results in 90.5% of lymph nodes examined. Postoperative cytologic evaluation of fine needle aspirates of regional lymph nodes concurred with the histologic results in 80.6% of lymph nodes examined. Only 54.5% of cases with metastatic disease to regional lymph nodes had metastasis that included the mandibular lymph node. Serial lymph node sectioning provided additional information or metastasis detection. Cytologic evaluation of the mandibular lymph node correlates positively with histology, however results may fail to indicate the presence of regional metastasis. Assessment of all regional lymph nodes in dogs and cats with oral or maxillofacial neoplasms will detect more metastatic disease than assessing the mandibular lymph node only.
Hu, Wei; Shi, Jun-Yi; Sheng, Yuan; Ll, Li
2008-03-01
The treatment for papillary thyroid carcinoma (PTC) without cervical lymph node metastasis (cN0) is controversial. This study was to explore a suitable method to dissect cervical lymph nodes for stage cN0 PTC patients. Eighty-four stage cN0 PTC patients, diagnosed by B ultrasound or cervical MRI from 2005--2006, were randomly divided into two groups. Thyroidectomy and ipsilateral central lymph node dissection were performed in Group A, while only thyroidectomy was performed in Group B. Each group contained 42 patients. Both groups took thyroxin tablets after operation. An average of 3 lymph nodes were found in each case of Group A, and the lymph node metastasis rate was 47.62%. The occurrence rates of complications were not significantly different between the two groups (P<0.05). Thyroidectomy plus ipsilateral central lymph node dissection is recommended for the treatment of stage cN0 PTC. It can also avoid damage of recurrent laryngeal nerve in re-dissection.
NASA Astrophysics Data System (ADS)
Smylie, M. P.; Claus, H.; Welp, U.; Kwok, W.-K.; Qiu, Y.; Hor, Y. S.; Snezhko, A.
The low-temperature variation of the London penetration depth λ(T) in the candidate topological superconductor NbxBi2Se3 (x =0.25) is reported for several crystals. The measurements were carried out by means of a tunnel-diode oscillator technique in both field orientations (Hrf // c and Hrf // ab planes). All samples exhibited quadratic temperature dependence at low temperatures clearly indicating the presence of point nodes in the superconducting order parameter. The results presented here are not consistent with a complete superconducting gap. We interpret our data on NbxBi2Se3 in terms of a nematic odd-parity spin-triplet pairing state with Eu symmetry. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, Contract No. DE-AC02-06CH11357. MPS thanks ND Energy for supporting his research and professional development through the ND Energy Postdoctoral Fellowship Program. YSH acknowledges support from National Science Foundation Grant Number DMR-1255607.
NASA Astrophysics Data System (ADS)
Fan, Li; Jiang, Chao; Hu, Min
2017-02-01
Eight inclined geosynchronous satellite orbit (IGSO) satellites in the Chinese BeiDou Navigation Satellite System (BDS) have been put in orbit until now. IGSO is a special class of geosynchronous circular orbit, with the inclination not equal to zero. It can provide high elevation angle coverage to high-latitude areas. The geography longitude of the ground track cross node is the main factor to affect the ground coverage areas of the IGSO satellites. In order to ensure the navigation performance of the IGSO satellites, the maintenance control of the ground track cross node is required. Considering the tesseral resonances and the luni-solar perturbations, a control approach is proposed to maintain the ground track for the long-term evolution. The drifts of the ground track cross node of the IGSO satellites are analyzed, which is formulated as a function of the bias of the orbit elements and time. Based on the derived function, a method by offsetting the semi-major axis is put forward to maintain the longitude of the ground track cross node, and the offset calculation equation is presented as well. Moreover, the orbit inclination is adjusted to maintain the location angle intervals between each two IGSO satellites. Finally, the precision of the offset calculation equation is analyzed to achieve the operational deployment. Simulation results show that the semi-major axis offset method is effective, and its calculation equation is accurate. The proposed approach has been applied to the maintenance control of BeiDou IGSO satellites.
[Pathological character and treatment of epithelial-myoepithelial carcinoma of salivary gland].
Li, Hao; Wu, Guo-hao; Chen, Fu-jin; Zhang, Quan; Wei, Mao-wen; Chen, Wen-kuan
2006-04-01
To review and evaluate pathologic features and treatment of epithelial-myoepithelial. Retrospectively reviewed 14 cases' pathological and clinical materials of epithelial-myoepithelial carcinoma of salivary gland. Eight cases origine from parotid gland, 2 cases from hard palate, 3 cases from submandibular gland and 1 case from nasal cavity. Three cases were performed induction chemotherapy preoperation. One case had palliative radiotherapy. Thirteen cases were performed radical surgery and 6 cases had radiotherapy postoperation. Tumor arisen mostly from parotid gland and neck lymph node metastasis rate was 14.28% (2/14). The survival rate was calculated with Kaplan-Meier method. The overall 3-, 5- and 10-year survival rate were 67.20%, 45.49% and 17.06%. Its histological characteristics were inner layer composed by adenoid cells and outer layer composed by myoepithelial cells. Immunohistochemical exam show cytokeratin, S-100 and actin reaction positive. Epithelial-myoepithelial carcinoma easily develops recurrence. It is sensitivity to radiotherapy and chemotherapy to some extent. It is suitable to adopt surgical treatment as primary modality combined with other therapies.
Koskas, M; Chereau, E; Ballester, M; Dubernard, G; Lécuru, F; Heitz, D; Mathevet, P; Marret, H; Querleu, D; Golfier, F; Leblanc, E; Luton, D; Rouzier, R; Daraï, E
2013-01-01
Background: We developed a nomogram based on five clinical and pathological characteristics to predict lymph-node (LN) metastasis with a high concordance probability in endometrial cancer. Sentinel LN (SLN) biopsy has been suggested as a compromise between systematic lymphadenectomy and no dissection in patients with low-risk endometrial cancer. Methods: Patients with stage I–II endometrial cancer had pelvic SLN and systematic pelvic-node dissection. All LNs were histopathologically examined, and the SLNs were examined by immunohistochemistry. We compared the accuracy of the nomogram at predicting LN detected with conventional histopathology (macrometastasis) and ultrastaging procedure using SLN (micrometastasis). Results: Thirty-eight of the 187 patients (20%) had pelvic LN metastases, 20 had macrometastases and 18 had micrometastases. For the prediction of macrometastases, the nomogram showed good discrimination, with an area under the receiver operating characteristic curve (AUC) of 0.76, and was well calibrated (average error =2.1%). For the prediction of micro- and macrometastases, the nomogram showed poorer discrimination, with an AUC of 0.67, and was less well calibrated (average error =10.9%). Conclusion: Our nomogram is accurate at predicting LN macrometastases but less accurate at predicting micrometastases. Our results suggest that micrometastases are an ‘intermediate state' between disease-free LN and macrometastasis. PMID:23481184
NASA Astrophysics Data System (ADS)
Nogami, Hirofumi; Kobayashi, Takeshi; Okada, Hironao; Masuda, Takashi; Maeda, Ryutaro; Itoh, Toshihiro
2012-09-01
An animal health monitoring system and a wireless sensor node aimed at preventing the spread of animal-transmitted diseases and improving pastoral efficiency which are especially suitable for chickens, were developed. The sensor node uses a piezoelectric microelectromechanical system (MEMS) device and an event-driven system that is activated by the movements of a chicken. The piezoelectric MEMS device has two functions: a) it measures the activity of a chicken and b) switches the micro-control unit (MCU) of the wireless sensor node from the sleep mode. The piezoelectric MEMS device is required to produce high output voltages when the chicken moves. However, after the piezoelectric MEMS device was reflowed to the wireless sensor node, the output voltages of the piezoelectric MEMS device decreased. The main reason for this might be the loss of residual polarization, which is affected by the thermal load during the reflow process. After the reflow process, we were not able to apply a voltage to the piezoelectric MEMS device; thus, the piezoelectric output voltage was not increased by repoling the piezoelectric MEMS device. To address the thermal load of the reflow process, we established a thermal poling treatment, which achieves a higher temperature than the reflow process. We found that on increasing the thermal poling temperature, the piezoelectric output voltages did not decreased low significantly. Thus, we considered that a thermal poling temperature higher than that of the reflow process prevents the piezoelectric output voltage reduction caused by the thermal load.
Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma
2015-04-21
Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.
Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma
2015-01-01
Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698
2017-03-01
A Low- Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller Jong Hwan Ko...Atlanta, GA 30332 USA Contact Author Email: jonghwan.ko@gatech.edu Abstract: This paper presents a low- power wireless image sensor node for...present a low- power wireless image sensor node with a noise-robust moving object detection and region-of-interest based rate controller [Fig. 1]. The
Software Regression Verification
2013-12-11
input argument of f consists of two stages. First, it builds a System Defi- nition Graph [HRB90] ( SDG ) for program P where f is defined. Briefly, an SDG ...their partial order: the semantics of the function is preserved if its statements are executed in this order. An SDG consists of PDGs for each function...this function, the SDG contains a node of type u = uing and an edge entering this node and leaving node ”Enter g”. Each node representing a call to
Solar micro-power system for self-powered wireless sensor nodes
NASA Astrophysics Data System (ADS)
He, Yongtai; Li, Yangqiu; Liu, Lihui; Wang, Lei
2008-10-01
In self-powered wireless sensor nodes, the efficiency for environmental energy harvesting, storage and management determines the lifetime and environmental adaptability of the sensor nodes. However, the method of improving output efficiency for traditional photovoltaic power generation is not suitable for a solar micro-power system due to the special requirements for its application. This paper presents a solar micro-power system designed for a solar self-powered wireless sensor node. The Maximum Power Point Tracking (MPPT) of solar cells and energy storage are realized by the hybrid energy storage structure and "window" control. Meanwhile, the mathematical model of energy harvesting, storing and management is formulated. In the novel system, the output conversion efficiency of solar cells is 12%.
Lymph nodes fine needle cytology in the diagnosis of infectious diseases: clinical settings.
Natella, Valentina; Cozzolino, Immacolata; Sosa Fernandez, Laura Virginia; Vigliar, Elena
2012-01-01
Lymph node reactive hyperplasia, caused by specific infectious etiologic factors, represents the most frequent cause of enlarged peripheral lymph nodes. The main infectious agents are viruses, pyogenic bacteria, mycobacteria, fungi and protozoa that may determine unspecific or specific pathological entities, such as cat-scratch disease, toxoplasmosis or infectious mononucleosis. Lymph node fine needle cytology (FNC) is a safe, simple, cost-effective and efficient technique that quickly provides information about the cell population and the nature of the process. FNC can also provide suitable material for ancillary techniques, such as flow cytometry, immunocytochemistry, molecular biology and microbiological examinations. This study focuses on the cytological features of benign lymphadenopathy of infectious origin and their possible contribution to the clinical setting definition of corresponding patients.
2011-01-01
Background Reconstructing the higher relationships of pulmonate gastropods has been difficult. The use of morphology is problematic due to high homoplasy. Molecular studies have suffered from low taxon sampling. Forty-eight complete mitochondrial genomes are available for gastropods, ten of which are pulmonates. Here are presented the new complete mitochondrial genomes of the ten following species of pulmonates: Salinator rhamphidia (Amphiboloidea); Auriculinella bidentata, Myosotella myosotis, Ovatella vulcani, and Pedipes pedipes (Ellobiidae); Peronia peronii (Onchidiidae); Siphonaria gigas (Siphonariidae); Succinea putris (Stylommatophora); Trimusculus reticulatus (Trimusculidae); and Rhopalocaulis grandidieri (Veronicellidae). Also, 94 new pulmonate-specific primers across the entire mitochondrial genome are provided, which were designed for amplifying entire mitochondrial genomes through short reactions and closing gaps after shotgun sequencing. Results The structural features of the 10 new mitochondrial genomes are provided. All genomes share similar gene orders. Phylogenetic analyses were performed including the 10 new genomes and 17 genomes from Genbank (outgroups, opisthobranchs, and other pulmonates). Bayesian Inference and Maximum Likelihood analyses, based on the concatenated amino-acid sequences of the 13 protein-coding genes, produced the same topology. The pulmonates are paraphyletic and basal to the opisthobranchs that are monophyletic at the tip of the tree. Siphonaria, traditionally regarded as a basal pulmonate, is nested within opisthobranchs. Pyramidella, traditionally regarded as a basal (non-euthyneuran) heterobranch, is nested within pulmonates. Several hypotheses are rejected, such as the Systellommatophora, Geophila, and Eupulmonata. The Ellobiidae is polyphyletic, but the false limpet Trimusculus reticulatus is closely related to some ellobiids. Conclusions Despite recent efforts for increasing the taxon sampling in euthyneuran (opisthobranchs and pulmonates) molecular phylogenies, several of the deeper nodes are still uncertain, because of low support values as well as some incongruence between analyses based on complete mitochondrial genomes and those based on individual genes (18S, 28S, 16S, CO1). Additional complete genomes are needed for pulmonates (especially for Williamia, Otina, and Smeagol), as well as basal heterobranchs closely related to euthyneurans. Increasing the number of markers for gastropod (and more broadly mollusk) phylogenetics also is necessary in order to resolve some of the deeper nodes -although clearly not an easy task. Step by step, however, new relationships are being unveiled, such as the close relationships between the false limpet Trimusculus and ellobiids, the nesting of pyramidelloids within pulmonates, and the close relationships of Siphonaria to sacoglossan opisthobranchs. The additional genomes presented here show that some species share an identical mitochondrial gene order due to convergence. PMID:21985526
A review of variables of urban street connectivity for spatial connection
NASA Astrophysics Data System (ADS)
Mohamad, W. S. N. W.; Said, I.
2014-02-01
Several studies on street connectivity in cities and towns have been modeled on topology, morphology, technology and psychology of people living in the urban environment. Street connectivity means the connection of streets that offers people alternative routes. However, there emerge difficulties to determine the suitable variables and analysis to be chosen in defining the accurate result for studies street connectivity. The aim of this paper is to identify variables of street connectivity by applying GIS and Space Syntax. This paper reviews the variables of street connectivity from 15 past articles done in 1990s to early 2000s from journals of nine disciplines on Environment and Behavior, Planning and Design, Computers, Environment and Urban Systems, Applied Earth Observation and Geo-information, Environment and Planning, Physica A: Statistical Mechanics and its Applications, Environmental Psychology, Social Science and Medicine and Building and Environment. From the review, there are four variables found for street connectivity: link (streets-streets, street-nodes or node-streets, nodes-nodes), accessibility, least-angle, and centrality. Space syntax and GIS are suitable tools to analyze the four variables relating to systematic street systems for pedestrians. This review implies that planners of the street systems, in the aspect of street connectivity in cities and towns, should consider these four variables.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
Fourier analysis of a vibrating string through a low-cost experimental setup and a smartphone
NASA Astrophysics Data System (ADS)
Pereyra, C. J.; Osorio, M.; Laguarda, A.; Gau, D. L.
2018-07-01
In this work we present a simple and low-cost setup to illustrate the dependence of the behaviour of a standing wave in a guitar string with the initial conditions. To do so, we impose two kinds of initial conditions; in the first instance, the initial shape of the string is varied. Secondly, different nodes are imposed on the string. This dependence was studied using the Fourier analysis of the sound produced by the vibration of the string with a smartphone. The simplicity of the proposed activity makes it suitable to be implemented in any classroom to illustrate the concept of normal modes and as an example of Fourier series in a real system that is also familiar for the students.
Probabilistic Analysis of Hierarchical Cluster Protocols for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kaj, Ingemar
Wireless sensor networks are designed to extract data from the deployment environment and combine sensing, data processing and wireless communication to provide useful information for the network users. Hundreds or thousands of small embedded units, which operate under low-energy supply and with limited access to central network control, rely on interconnecting protocols to coordinate data aggregation and transmission. Energy efficiency is crucial and it has been proposed that cluster based and distributed architectures such as LEACH are particularly suitable. We analyse the random cluster hierarchy in this protocol and provide a solution for low-energy and limited-loss optimization. Moreover, we extend these results to a multi-level version of LEACH, where clusters of nodes again self-organize to form clusters of clusters, and so on.
Pervasive surveillance-agent system based on wireless sensor networks: design and deployment
NASA Astrophysics Data System (ADS)
Martínez, José F.; Bravo, Sury; García, Ana B.; Corredor, Iván; Familiar, Miguel S.; López, Lourdes; Hernández, Vicente; Da Silva, Antonio
2010-12-01
Nowadays, proliferation of embedded systems is enhancing the possibilities of gathering information by using wireless sensor networks (WSNs). Flexibility and ease of installation make these kinds of pervasive networks suitable for security and surveillance environments. Moreover, the risk for humans to be exposed to these functions is minimized when using these networks. In this paper, a virtual perimeter surveillance agent, which has been designed to detect any person crossing an invisible barrier around a marked perimeter and send an alarm notification to the security staff, is presented. This agent works in a state of 'low power consumption' until there is a crossing on the perimeter. In our approach, the 'intelligence' of the agent has been distributed by using mobile nodes in order to discern the cause of the event of presence. This feature contributes to saving both processing resources and power consumption since the required code that detects presence is the only system installed. The research work described in this paper illustrates our experience in the development of a surveillance system using WNSs for a practical application as well as its evaluation in real-world deployments. This mechanism plays an important role in providing confidence in ensuring safety to our environment.
[Interest of infiltration of Impar node in rebel vulvodynia: About a series of 8 cases].
Cardaillac, C; Ploteau, S; Labat, J-J; Levesque, A; Riant, T
2016-12-01
Vulvodynia is a common and debilitating disease, for which treatments are often of limits efficacy. As the Impar node receives nociceptive afferents from pelvis and perineum, it is a potential therapeutic target to treat pain in this region. The objective of the study was to evaluate the relevance of ropivacaine Impar node infiltration in patients suffering from rebel vulvodyny. This was a retrospective, single-center study. The Impar node infiltrations were performed by a single operator in eight patients suffering from rebel vulvodynia. Ropivacaine and iopamidol were administered in prone position with a lateral approach under scanner. The anaesthetic diagnostic block of the Impar node was positive in all eight patients included in the study. Thereafter these patients benefited of 2 additional therapeutic infiltrations. Subsequently, an infiltration of the node with 100UI of botulinum toxin was performed in two patients with a bilateral approach under scanner. The analgesic efficacy was evaluated by a Visual Analogic Scale (VAS) before, immediately after, and at day 15 following the infiltration. A subjective evaluation of pain comprising the percentage of overall improvement and duration of analgesic efficacy was performed after the third infiltration. Comparison of the VAS before and immediately after the Impar block showed in the first anesthetic block a significant decrease in pain median VAS from 51/100 to 16/100 (P=0.01). Similarly, for the second block, VAS decreased from 52.5/100 to 15/100 (P=0.02). The maximal pain reported on Day 15, was significantly lower after the third infiltration than that after the first (P=0.03). Five patients reported an overall improvement in their quality of life of over 50%, which lasted an average of six weeks. A long lasting effectiveness was obtained in the two patients who benefited of the botulinum toxin. The infiltration of Impar node is an interesting technique for patients suffering of rebel vulvodynia. 4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz
2018-02-01
This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.
Anchor Node Localization for Wireless Sensor Networks Using Video and Compass Information Fusion
Pescaru, Dan; Curiac, Daniel-Ioan
2014-01-01
Distributed sensing, computing and communication capabilities of wireless sensor networks require, in most situations, an efficient node localization procedure. In the case of random deployments in harsh or hostile environments, a general localization process within global coordinates is based on a set of anchor nodes able to determine their own position using GPS receivers. In this paper we propose another anchor node localization technique that can be used when GPS devices cannot accomplish their mission or are considered to be too expensive. This novel technique is based on the fusion of video and compass data acquired by the anchor nodes and is especially suitable for video- or multimedia-based wireless sensor networks. For these types of wireless networks the presence of video cameras is intrinsic, while the presence of digital compasses is also required for identifying the cameras' orientations. PMID:24594614
NASA Astrophysics Data System (ADS)
Stewart, G.; Popoola, O. A.; Mead, M. I.; McKeating, S. J.; Calleja, M.; Hayes, M.; Baron, R. P.; Saffell, J.; Jones, R.
2012-12-01
In this paper we describe how low-cost, lightweight devices, which incorporate GPS and GPRS facilities and contain electrochemical sensors for carbon monoxide (CO), nitrogen monoxide (NO) and nitrogen dioxide (NO2), have been used to collect data representative of personal exposure to these important urban air pollutants. E.U. legislation has set target levels for gases thought to have adverse impacts on human health, and consequently led to a need for a more informed air pollution control policy. With many sites in the U.K. and in the rest of the E.U. still failing to meet annual targets for NO2, a need to better understand pollutant sources and behaviour has arisen. Moreover, while traditional chemiluminescence techniques provide precise measurements, the instruments are sparsely populated around urban centres and are thus limited in their ability to account for true personal exposure. Through a series of laboratory and field studies, it has been shown that electrochemical sensor nodes, when configured suitably and after post-processing of data, can provide selective, reproducible measurements, and that the devices have appropriate detection limits (at the low parts-per-billion level), as well as fast enough response times, for urban air quality studies. Both mobile nodes and their static analogues have been deployed with different aims. Static nodes have been used in dense networks in both the urban environment and in the grounds of a major international airport, as described in the partner papers of Mead et al and Bright et al. Mobile units are easily deployed in scalable networks for short-term studies on personal exposure; these studies have been carried out in a wide range of locations including Lagos, Kuala-Lumpur, London and Valencia. Data collected by both mobile and static sensor nodes illustrate the insufficiency of the existing infrastructure in accounting for both the spatial and temporal variability in air pollutants due to road traffic emissions, and thus also the potential insufficiency at quantifying the risks to health in the surrounding area. Recent campaigns with mobile sensor nodes have included attempts to probe the differences in personal exposure to gas-phase air pollutants at different heights of breathing zone and between different methods of transport.
Robotic versus laparoscopic proctectomy for rectal cancer: a meta-analysis.
Memon, Sameer; Heriot, Alexander G; Murphy, Declan G; Bressel, Mathias; Lynch, A Craig
2012-07-01
Robot-assisted laparoscopic surgery is being performed more frequently for the minimally invasive management of rectal cancer. The objective of this meta-analysis was to compare the clinical and oncologic safety and efficacy of robot-assisted versus conventional laparoscopic surgery. A search of the Medline and Embase databases was performed for studies that compared clinical or oncologic outcomes of conventional laparoscopic proctectomy with robot-assisted laparoscopic proctectomy for rectal cancer. The methodological quality of the selected studies was critically assessed to identify studies suitable for inclusion. Meta-analysis was performed by a random effects model and analyzed by Review Manager. Clinical outcomes evaluated were conversion rates, operation times, length of hospital stay, and complications. Oncologic outcomes evaluated were circumferential margin status, number of lymph nodes collected, and distal resection margin lengths. Eight comparative studies were assessed for quality, and seven studies were included in the meta-analysis. Two studies were matched case-control studies, and five were unmatched. A total of 353 robot-assisted laparoscopic surgery proctectomy cases and 401 conventional laparoscopic surgery proctectomy cases were analyzed. Robotic surgery was associated with a significantly lower conversion rate (P=0.03; 95% confidence interval 1-12). There was no difference in complications, circumferential margin involvement, distal resection margin, lymph node yield, or hospital stay (P=NS). Robot-assisted surgery decreased the conversion rate compared to conventional laparoscopic surgery. Other clinical outcomes and oncologic outcomes were equivalent. The benefits of robotic rectal cancer surgery may differ between population groups.
Providing Self-Healing Ability for Wireless Sensor Node by Using Reconfigurable Hardware
Yuan, Shenfang; Qiu, Lei; Gao, Shang; Tong, Yao; Yang, Weiwei
2012-01-01
Wireless sensor networks (WSNs) have received tremendous attention over the past ten years. In engineering applications of WSNs, a number of sensor nodes are usually spread across some specific geographical area. Some of these nodes have to work in harsh environments. Dependability of the Wireless Sensor Network (WSN) is very important for its successful applications in the engineering area. In ordinary research, when a node has a failure, it is usually discarded and the network is reorganized to ensure the normal operation of the WSN. Using appropriate WSN re-organization methods, though the sensor networks can be reorganized, this causes additional maintenance costs and sometimes still decreases the function of the networks. In those situations where the sensor networks cannot be reorganized, the performance of the whole WSN will surely be degraded. In order to ensure the reliable and low cost operation of WSNs, a method to develop a wireless sensor node with self-healing ability based on reconfigurable hardware is proposed in this paper. Two self-healing WSN node realization paradigms based on reconfigurable hardware are presented, including a redundancy-based self-healing paradigm and a whole FPAA/FPGA based self-healing paradigm. The nodes designed with the self-healing ability can dynamically change their node configurations to repair the nodes' hardware failures. To demonstrate these two paradigms, a strain sensor node is adopted as an illustration to show the concepts. Two strain WSN sensor nodes with self-healing ability are developed respectively according to the proposed self-healing paradigms. Evaluation experiments on self-healing ability and power consumption are performed. Experimental results show that the developed nodes can self-diagnose the failures and recover to a normal state automatically. The research presented can improve the robustness of WSNs and reduce the maintenance cost of WSNs in engineering applications. PMID:23202176
Wake characteristics of an eight-leg tower for a MOD-0 type wind turbine
NASA Technical Reports Server (NTRS)
Savino, J. M.; Wagner, L. H.; Sinclair, D.
1977-01-01
Low speed wind tunnel tests were conducted to determine the flow characteristics of the wake downwind of a 1/25th scale, all tubular eight leg tower concept suitable for application to the DOE-NASA MOD-0 wind power turbine. Measurements were made of wind speed profiles, and from these were determined the wake local minimum velocity, average velocity, and width for several wind approach angles. These data are presented herein along with tower shadow photographs and comparisons with data from an earlier lattice type, four leg tower model constructed of tubular members. Values of average wake velocity defect ratio and average ratio of wake width to blade radius for the eight leg model were estimated to be around 0.17 and 0.30, respectively, at the plane of the rotor blade. These characteristics suggest that the tower wake of the eight leg concept is slightly less than that of the four leg design.
Joint estimation of preferential attachment and node fitness in growing complex networks
NASA Astrophysics Data System (ADS)
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi
2016-09-01
Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit.
Joint estimation of preferential attachment and node fitness in growing complex networks
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi
2016-01-01
Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit. PMID:27601314
Anatomical classification of breast sentinel lymph nodes using computed tomography-lymphography.
Fujita, Tamaki; Miura, Hiroyuki; Seino, Hiroko; Ono, Shuichi; Nishi, Takashi; Nishimura, Akimasa; Hakamada, Kenichi; Aoki, Masahiko
2018-05-03
To evaluate the anatomical classification and location of breast sentinel lymph nodes, preoperative computed tomography-lymphography examinations were retrospectively reviewed for sentinel lymph nodes in 464 cases clinically diagnosed with node-negative breast cancer between July 2007 and June 2016. Anatomical classification was performed based on the numbers of lymphatic routes and sentinel lymph nodes, the flow direction of lymphatic routes, and the location of sentinel lymph nodes. Of the 464 cases reviewed, anatomical classification could be performed in 434 (93.5 %). The largest number of cases showed single route/single sentinel lymph node (n = 296, 68.2 %), followed by multiple routes/multiple sentinel lymph nodes (n = 59, 13.6 %), single route/multiple sentinel lymph nodes (n = 53, 12.2 %), and multiple routes/single sentinel lymph node (n = 26, 6.0 %). Classification based on the flow direction of lymphatic routes showed that 429 cases (98.8 %) had outward flow on the superficial fascia toward axillary lymph nodes, whereas classification based on the height of sentinel lymph nodes showed that 323 cases (74.4 %) belonged to the upper pectoral group of axillary lymph nodes. There was wide variation in the number of lymphatic routes and their branching patterns and in the number, location, and direction of flow of sentinel lymph nodes. It is clinically very important to preoperatively understand the anatomical morphology of lymphatic routes and sentinel lymph nodes for optimal treatment of breast cancer, and computed tomography-lymphography is suitable for this purpose.
2014-08-01
consensus algorithm called randomized gossip is more suitable [7, 8]. In asynchronous randomized gossip algorithms, pairs of neighboring nodes exchange...messages and perform updates in an asynchronous and unattended manner, and they also 1 The class of broadcast gossip algorithms [9, 10, 11, 12] are...dynamics [2] and asynchronous pairwise randomized gossip [7, 8], broadcast gossip algorithms do not require that nodes know the identities of their
Ubiquitous Green Computing Techniques for High Demand Applications in Smart Environments
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L.; Moya, Jose M.; Risco-Martín, José L.
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time. PMID:23112621
Ubiquitous green computing techniques for high demand applications in Smart environments.
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L; Moya, Jose M; Risco-Martín, José L
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.
Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility
Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus
2013-01-01
This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-01-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148
NASA Astrophysics Data System (ADS)
Dey, Sudip; Karmakar, Amit
2014-02-01
This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.
Nodes packaging option for Space Station application
NASA Technical Reports Server (NTRS)
So, Kenneth T.; Hall, John B., Jr.
1988-01-01
Space Station nodes packaging analyses are presented relative to moving environmental control and life support system (ECLSS) equipment from the habitability (HAB) module to node 4, in order to provide more living space and privacy for the crew, remove inherently noisy equipment from the crew quarter, retain crew waste collection and processing equipment in one location, and keep objectionable odor away from the living quarters. In addition, options for moving external electronic equipment from the Space Station truss to pressurized node 3 were evaluated in order to reduce the crew extravehicular-activity time required to install and maintain the equipment. Node size considered in this analysis is 3.66 m in diameter and 5.38 m long. The analysis shows that significant external electronic equipment could be relocated from the Space Station truss structure to node 3, and nonlife critical ECLSS HAB module equipment could be moved to node 4.
Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim
2015-01-01
In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of “bad” nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics—maliciousness, cooperation, and compatibility—and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates “bad”, “misbehaving” or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated “bad” behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to “good” nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations. PMID:25648712
Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim
2015-02-02
In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of "bad" nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics-maliciousness, cooperation, and compatibility-and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates "bad", "misbehaving" or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated "bad" behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to "good" nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations.
NASA Technical Reports Server (NTRS)
Martin, C. Wayne; Breiner, David M.; Gupta, Kajal K. (Technical Monitor)
2004-01-01
Mathematical development and some computed results are presented for Mindlin plate and shell elements, suitable for analysis of laminated composite and sandwich structures. These elements use the conventional 3 (plate) or 5 (shell) nodal degrees of freedom, have no communicable mechanisms, have no spurious shear energy (no shear locking), have no spurious membrane energy (no membrane locking) and do not require arbitrary reduction of out-of-plane shear moduli or under-integration. Artificial out-of-plane rotational stiffnesses are added at the element level to avoid convergence problems or singularity due to flat spots in shells. This report discusses a 6-node curved triangular element and a 4-node quadrilateral element. Findings show that in regular rectangular meshes, the Martin-Breiner 6-node triangular curved shell (MB6) is approximately equivalent to the conventional 8-node quadrilateral with integration. The 4-node quadrilateral (MB4) has very good accuracy for a 4-node element, and may be preferred in vibration analysis because of narrower bandwidth. The mathematical developments used in these elements, those discussed in the seven appendices, have been applied to elements with 3, 4, 6, and 10 nodes and can be applied to other nodal configurations.
Wireless Sensor Networks - Node Localization for Various Industry Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derr, Kurt; Manic, Milos
Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less
Wireless Sensor Networks - Node Localization for Various Industry Problems
Derr, Kurt; Manic, Milos
2015-06-01
Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less
Growth dominates choice in network percolation
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.
2013-09-01
The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.
A meshless approach to thermomechanics of DC casting of aluminium billets
NASA Astrophysics Data System (ADS)
Mavrič, B.; Šarler, B.
2016-03-01
The ability to model thermomechanics in DC casting is important due to the technological challenges caused by physical phenomena such as different ingot distortions, cracking, hot tearing and residual stress. Many thermomechanical models already exist and usually take into account three contributions: elastic, thermal expansion, and viscoplastic to model the mushy zone. These models are, in a vast majority, solved by the finite element method. In the present work the elastic model that accounts for linear thermal expansion is considered. The method used for solving the model is of a novel meshless type and extends our previous meshless attempts in solving fluid mechanics problems. The solution to the problem is constructed using collocation on the overlapping subdomains, which are composed of computational nodes. Multiquadric radial basis functions, augmented by monomials, are used for the displacement interpolation. The interpolation is constructed in such a manner that it readily satisfies the boundary conditions. The discretization results in construction of a global square sparse matrix representing the system of linear equations for the displacement field. The developed method has many advantages. The system of equations can be easily constructed and efficiently solved. There is no need to perform expensive meshing of the domain and the formulation of the method is similar in two and three dimensions. Since no meshing is required, the nodes can easily be added or removed, which allows for efficient adaption of the node arrangement density. The order of convergence, estimated through an analytically solvable test, can be adjusted through the number of interpolation nodes in the subdomain, with 6 nodes being enough for the second order convergence. Simulations of axisymmetric mechanical problems, associated with low frequency electromagnetic DC casting are presented.
Fault Tolerance for VLSI Multicomputers
1985-08-01
that consists of hundreds or thousands of VLSI computation nodes interconnected by dedicated links. Some important applications of high-end computers...technology, and intended applications . A proposed fault tolerance scheme combines hardware that performs error detection and system-level protocols for...order to recover from the error and resume correct operation, a valid system state must be restored. A low-overhead, application -transparent error
Divertor with a third-order null of the poloidal field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D. D.; Umansky, M. V.
2013-09-15
A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is presented. The third-order null is the point where not only the field itself but also its first and second spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the number of strike-points increases from 2 (as in the standard divertor) to six. It is shown that this magnetic configuration can be created by a proper adjustment of the currents in a set of three divertor coils. If the currents are somewhat different from the required values, themore » configuration becomes that of three closely spaced first-order nulls. Analytic approach, suitable for a quick orientation in the problem, is used. Potential advantages and disadvantages of this configuration are briefly discussed.« less
Topology of Innovation Spaces in the Knowledge Networks Emerging through Questions-And-Answers
Andjelković, Miroslav; Tadić, Bosiljka; Mitrović Dankulov, Marija; Rajković, Milan; Melnik, Roderick
2016-01-01
The communication processes of knowledge creation represent a particular class of human dynamics where the expertise of individuals plays a substantial role, thus offering a unique possibility to study the structure of knowledge networks from online data. Here, we use the empirical evidence from questions-and-answers in mathematics to analyse the emergence of the network of knowledge contents (or tags) as the individual experts use them in the process. After removing extra edges from the network-associated graph, we apply the methods of algebraic topology of graphs to examine the structure of higher-order combinatorial spaces in networks for four consecutive time intervals. We find that the ranking distributions of the suitably scaled topological dimensions of nodes fall into a unique curve for all time intervals and filtering levels, suggesting a robust architecture of knowledge networks. Moreover, these networks preserve the logical structure of knowledge within emergent communities of nodes, labeled according to a standard mathematical classification scheme. Further, we investigate the appearance of new contents over time and their innovative combinations, which expand the knowledge network. In each network, we identify an innovation channel as a subgraph of triangles and larger simplices to which new tags attach. Our results show that the increasing topological complexity of the innovation channels contributes to network’s architecture over different time periods, and is consistent with temporal correlations of the occurrence of new tags. The methodology applies to a wide class of data with the suitable temporal resolution and clearly identified knowledge-content units. PMID:27171149
Value of peripheral nodes in controlling multilayer scale-free networks
NASA Astrophysics Data System (ADS)
Zhang, Yan; Garas, Antonios; Schweitzer, Frank
2016-01-01
We analyze the controllability of a two-layer network, where driver nodes can be chosen randomly only from one layer. Each layer contains a scale-free network with directed links and the node dynamics depends on the incoming links from other nodes. We combine the in-degree and out-degree values to assign an importance value w to each node, and distinguish between peripheral nodes with low w and central nodes with high w . Based on numerical simulations, we find that the controllable part of the network is larger when choosing low w nodes to connect the two layers. The control is as efficient when peripheral nodes are driver nodes as it is for the case of more central nodes. However, if we assume a cost to utilize nodes that is proportional to their overall degree, utilizing peripheral nodes to connect the two layers or to act as driver nodes is not only the most cost-efficient solution, it is also the one that performs best in controlling the two-layer network among the different interconnecting strategies we have tested.
Shaw, Richard; Christensen, Anders; Java, Kapil; Maddani, Rehab El; Liloglou, Triantafillos; Asterios, Triantafyllou; von Buchwald, Christian; Wessel, Irene; Kiss, Katalin; Kjaer, Andreas; Lelkaitis, Giedrius; Long, Anna; Risk, Janet; Robinson, Max
2016-11-01
Intraoperative analysis of sentinel lymph nodes would enhance the care of early-stage oral squamous cell carcinoma (OSCC). We determined the frequency and extent of cytokeratin 19 (CK19) expression in OSCC primary tumours and surrounding tissues to explore the feasibility of a "clinic-ready" intraoperative diagnostic test (one step nucleic acid amplification-OSNA, sysmex). Two cohorts were assembled: cohort 1, OSCC with stage and site that closely match cases suitable for sentinel lymph node biopsy (SLNB); cohort 2, HNSCC with sufficient fresh tumour tissue available for the OSNA assay (>50 mg). CK19 assays included qRT-PCR, RNA in situ hybridisation (ISH), and immunohistochemistry (IHC), as well as OSNA. CK19 mRNA expression was detected with variable sensitivity, depending on method, in 60-80% of primary OSCC tumours, while protein expression was observed in only 50% of tumours. Discordance between different techniques indicated that OSNA was more sensitive than qRT-PCR or RNA-ISH, which in turn were more sensitive than IHC. OSNA results showed CK19 expression in 80% of primary cases, so if used for diagnosis of lymph node metastasis would lead to a false-negative result in 20% of patients with cervical lymph node metastases. OSNA in its current form is not suitable for use in OSCC SLNB due to inadequate expression of the CK19 target in all case. However, the same assay technology would likely be very promising if applied using a more ubiquitous squamous epithelial target.
Magnetic-tunnelling-induced Weyl node annihilation in TaP
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Long; Xu, Su-Yang; Wang, C. M.; Lin, Ziquan; Du, Z. Z.; Guo, Cheng; Lee, Chi-Cheng; Lu, Hong; Feng, Yiyang; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Liu, Haiwen; Lin, Hsin; Li, Liang; Zhang, Chi; Zhang, Jinglei; Xie, Xin-Cheng; Neupert, Titus; Hasan, M. Zahid; Lu, Hai-Zhou; Wang, Junfeng; Jia, Shuang
2017-10-01
Weyl nodes are topological objects in three-dimensional metals. Whereas the energy of the lowest Landau band of a conventional Fermi pocket increases with magnetic field due to the zero-point energy (1/2ℏω), the lowest Landau band of Weyl cones stays at zero energy unless a strong magnetic field couples Weyl fermions of opposite chirality. In the Weyl semimetal TaP, which possesses two types of Weyl nodes (four pairs of W1 and eight pairs of W2 nodes), we observed such a magnetic coupling between the electron pockets arising from the W1 Weyl fermions. As a result, their lowest Landau bands move above the chemical potential, leading to a sharp sign reversal in the Hall resistivity at a specific magnetic field corresponding to the separation in momentum space of the W1 Weyl nodes, . By contrast, annihilation is not observed for the hole pocket because the separation of the W2 Weyl nodes is much larger. These findings reveal the nontrivial topology of Weyl fermions in high-field transport measurements and demonstrate the observation of Weyl node annihilation, which is a unique topological phenomenon associated with Weyl fermions.
Ishimaru, Hisashi; Kageyama, Yukio; Hayashi, Tetsuo; Nemoto, Tetsuo; Eishi, Yoshinobu; Kihara, Kazunori
2002-01-01
Neuroendocrine differentiation and subsequent excretion of neuropeptides have been demonstrated to be associated with progression of human prostate cancer. Among neuropeptides found to exist in the prostate, bombesin/gastrin-releasing peptide has been shown to upregulate matrix metalloproteinase-9 (MMP-9) in human prostate cancer cell lines. Expression levels of bombesin, MMP-9, and neuron-specific enolase were examined by immunohistochemistry in 41 cases of clinically organ-confined prostate cancers including 9 with microscopic lymph node metastases. Twenty-seven (64%) of the 41 radical prostatectomy specimens were positive for both MMP-9 and bombesin. Expression of these molecules was observed in almost the same population of the cancer cells. The remaining 14 cases were negative for both MMP-9 and bombesin. High-grade tumors (Gleason sum > or = 7) were more likely to express MMP-9 and bombesin (21/24:88%) than low-grade tumors (Gleason sum > or = 6) (7/17:41%). In eight of the nine cases with pathological lymph node metastases, expression of MMP-9 and bombesin was also noted in metastatic sites. Neuron-specific enolase was positive in 16 cases (39%) and not always associated with the expression of bombesin. Expression of bombesin and expression of MMP-9 are common in human prostate cancers and may be related to an aggressive phenotype.
Alanazi, Adwan; Elleithy, Khaled
2016-09-07
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node- continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.
NASA Astrophysics Data System (ADS)
Lonsdale, R. D.; Webster, R.
This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.
Low-Latency Lunar Surface Telerobotics from Earth-Moon Libration Points
NASA Technical Reports Server (NTRS)
Lester, Daniel; Thronson, Harley
2011-01-01
Concepts for a long-duration habitat at Earth-Moon LI or L2 have been advanced for a number of purposes. We propose here that such a facility could also have an important role for low-latency telerobotic control of lunar surface equipment, both for lunar science and development. With distances of about 60,000 km from the lunar surface, such sites offer light-time limited two-way control latencies of order 400 ms, making telerobotic control for those sites close to real time as perceived by a human operator. We point out that even for transcontinental teleoperated surgical procedures, which require operational precision and highly dexterous manipulation, control latencies of this order are considered adequate. Terrestrial telerobots that are used routinely for mining and manufacturing also involve control latencies of order several hundred milliseconds. For this reason, an Earth-Moon LI or L2 control node could build on the technology and experience base of commercially proven terrestrial ventures. A lunar libration-point telerobotic node could demonstrate exploration strategies that would eventually be used on Mars, and many other less hospitable destinations in the solar system. Libration-point telepresence for the Moon contrasts with lunar telerobotic control from the Earth, for which two-way control latencies are at least six times longer. For control latencies that long, telerobotic control efforts are of the "move-and-wait" variety, which is cognitively inferior to near real-time control.
Renal lymph nodes for tumor staging: appraisal of 871 nephrectomies with examination of hilar fat.
Mehta, Vikas; Mudaliar, Kumaran; Ghai, Ritu; Quek, Marcus L; Milner, John; Flanigan, Robert C; Picken, Maria M
2013-11-01
Despite decades of research, the role of lymphadenectomy in the management of renal cell carcinoma (RCC) is still not clearly defined. Before the implementation of targeted therapies, lymph node metastases were considered to be a portent of markedly decreased survival, regardless of the tumor stage. However, the role of lymphadenectomy and the relative benefit of retroperitoneal lymph node dissection in the context of modern adjunctive therapies have not been conclusively addressed in the clinical literature. The current pathologic literature does not offer clear recommendations with regard to the minimum number of lymph nodes that should be examined in order to accurately stage the pN in renal cell carcinoma. Although gross examination of the hilar fat to assess the nodal status is performed routinely, it has not yet been determined whether this approach is adequate. To evaluate the status of lymph nodes and their rate of identification in the pathologic examination of nephrectomy specimens in adult renal malignancies. We reviewed the operative and pathology reports of 871 patients with renal malignancies treated by nephrectomy. All tumors were classified according to the seventh edition of the Tumor-Nodes-Metastasis classification. Patients were divided into 3 groups: Nx, no lymph nodes recovered; N0, negative; and N1, with positive lymph nodes. Grossly visible lymph nodes were submitted separately; as per grossing protocol, hilar fatty tissue was submitted for microscopic examination. We evaluated the factors that affected the number of lymph nodes identified and the variables that allowed the prediction of nodal involvement. Lymph nodes were recovered in 333 of 871 patients (38%): hilar in 125 patients, nonhilar in 137 patients, and hilar and nonhilar in 71 patients. Patients with positive lymph nodes (n = 87) were younger, had larger primary tumors, and had lymph nodes of average size, as well as a higher pT stage, nuclear grade, and rate of metastases. Metastases were seen only in grossly identified lymph nodes (65% hilar, 16% nonhilar); all microscopic nodes were negative. Even with the microscopic examination of fat, hilar lymph nodes were recovered in only 22.5% of patients. A nonhilar route of node metastasis was suspected in 40 patients. Only grossly identifiable lymph nodes, both hilar and nonhilar, were positive for metastases. Although microscopic examination of the hilar fat increased the number of lymph nodes recovered, the identification rate of these nodes was low (22.5%), and such microscopic nodes were invariably negative. Hence, microscopic examination of the hilar fat may be unnecessary.
A wireless multi-channel bioimpedance measurement system for personalized healthcare and lifestyle.
Ramos, Javier; Ausín, José Luis; Lorido, Antonio Manuel; Redondo, Francisco; Duque-Carrillo, Juan Francisco
2013-01-01
Miniaturized, noninvasive, wearable sensors constitute a fundamental prerequisite for pervasive, predictive, and preventive healthcare systems. In this sense, this paper presents the design, realization, and evaluation of a wireless multi-channel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz. The resulting on-chip spectrometer provides high measuring EBI capabilities and together with a low-cost, commercially available radio frequency transceiver device. It provides reliable wireless communication, constitutes the basic node to build EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multi-channel EBI spectrometer, where the number of channels is completely scalable and independently configurable to satisfy specific measurement requirements of each individual. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm2 including chip-antenna, which can operate several years on one 3-V coin cell battery and make it suitable for long-term preventive healthcare monitoring.
MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems.
González-Domínguez, Jorge; Liu, Yongchao; Touriño, Juan; Schmidt, Bertil
2016-12-15
MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-scale input datasets. In this work we present MSAProbs-MPI, a distributed-memory parallel version of the multithreaded MSAProbs tool that is able to reduce runtimes by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on a cluster with 32 nodes (each containing two Intel Haswell processors) shows reductions in execution time of over one order of magnitude for typical input datasets. Furthermore, MSAProbs-MPI using eight nodes is faster than the GPU-accelerated QuickProbs running on a Tesla K20. Another strong point is that MSAProbs-MPI can deal with large datasets for which MSAProbs and QuickProbs might fail due to time and memory constraints, respectively. Source code in C ++ and MPI running on Linux systems as well as a reference manual are available at http://msaprobs.sourceforge.net CONTACT: jgonzalezd@udc.esSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Protograph LDPC Codes with Node Degrees at Least 3
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher
2006-01-01
In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
Fencl, Pavel; Belohlavek, Otakar; Harustiak, Tomas; Zemanova, Milada
2016-11-01
The aim of the analysis was to assess the accuracy of various FDG-PET/CT parameters in staging lymph nodes after neoadjuvant chemotherapy. In this prospective study, 74 patients with adenocarcinoma of the esophageal-gastric junction were examined by FDG-PET/CT in the course of their neoadjuvant chemotherapy given before surgical treatment. Data from the final FDG-PET/CT examinations were compared with the histology from the surgical specimens (gold standard). The accuracy was calculated for four FDG-PET/CT parameters: (1) hypermetabolic nodes, (2) large nodes, (3) large-and-medium large nodes, and (4) hypermetabolic or large nodes. In 74 patients, a total of 1540 lymph nodes were obtained by surgery, and these were grouped into 287 regions according to topographic origin. Five hundred and two nodes were imaged by FDG-PET/CT and were grouped into these same regions for comparison. In the analysis, (1) hypermetabolic nodes, (2) large nodes, (3) large-and-medium large nodes, and (4) hypermetabolic or large nodes identified metastases in particular regions with sensitivities of 11.6%, 2.9%, 21.7%, and 13.0%, respectively; specificity was 98.6%, 94.5%, 74.8%, and 93.6%, respectively. The best accuracy of 77.7% reached the parameter of hypermetabolic nodes. Accuracy decreased to 62.0% when also smaller nodes (medium-large) were taken for the parameter of metastases. FDG-PET/CT proved low sensitivity and high specificity. Low sensitivity was based on low detection rate (32.6%) when compared nodes imaged by FDG-PET/CT to nodes found by surgery, and in inability to detect micrometastases. Sensitivity increased when also medium-large LNs were taken for positive, but specificity and accuracy decreased.
Multi-Disciplinary, Multi-Fidelity Discrete Data Transfer Using Degenerate Geometry Forms
NASA Technical Reports Server (NTRS)
Olson, Erik D.
2016-01-01
In a typical multi-fidelity design process, different levels of geometric abstraction are used for different analysis methods, and transitioning from one phase of design to the next often requires a complete re-creation of the geometry. To maintain consistency between lower-order and higher-order analysis results, Vehicle Sketch Pad (OpenVSP) recently introduced the ability to generate and export several degenerate forms of the geometry, representing the type of abstraction required to perform low- to medium-order analysis for a range of aeronautical disciplines. In this research, the functionality of these degenerate models was extended, so that in addition to serving as repositories for the geometric information that is required as input to an analysis, the degenerate models can also store the results of that analysis mapped back onto the geometric nodes. At the same time, the results are also mapped indirectly onto the nodes of lower-order degenerate models using a process called aggregation, and onto higher-order models using a process called disaggregation. The mapped analysis results are available for use by any subsequent analysis in an integrated design and analysis process. A simple multi-fidelity analysis process for a single-aisle subsonic transport aircraft is used as an example case to demonstrate the value of the approach.
A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context.
Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo; Pozzebon, Alessandro
2018-04-21
This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented.
A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context
Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo
2018-01-01
This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented. PMID:29690552
Alanazi, Adwan; Elleithy, Khaled
2016-01-01
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches. PMID:27618048
Parra, Lorena; García, Laura
2018-01-01
The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €. PMID:29494560
Parra, Lorena; Sendra, Sandra; García, Laura; Lloret, Jaime
2018-03-01
The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €.
Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)
NASA Astrophysics Data System (ADS)
Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.
1988-09-01
An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.
Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)
NASA Technical Reports Server (NTRS)
Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.
1988-01-01
An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.
Analytic Modeling of Pressurization and Cryogenic Propellant
NASA Technical Reports Server (NTRS)
Corpening, Jeremy H.
2010-01-01
An analytic model for pressurization and cryogenic propellant conditions during all mission phases of any liquid rocket based vehicle has been developed and validated. The model assumes the propellant tanks to be divided into five nodes and also implements an empirical correlation for liquid stratification if desired. The five nodes include a tank wall node exposed to ullage gas, an ullage gas node, a saturated propellant vapor node at the liquid-vapor interface, a liquid node, and a tank wall node exposed to liquid. The conservation equations of mass and energy are then applied across all the node boundaries and, with the use of perfect gas assumptions, explicit solutions for ullage and liquid conditions are derived. All fluid properties are updated real time using NIST Refprop.1 Further, mass transfer at the liquid-vapor interface is included in the form of evaporation, bulk boiling of liquid propellant, and condensation given the appropriate conditions for each. Model validation has proven highly successful against previous analytic models and various Saturn era test data and reasonably successful against more recent LH2 tank self pressurization ground test data. Finally, this model has been applied to numerous design iterations for the Altair Lunar Lander, Ares V Core Stage, and Ares V Earth Departure Stage in order to characterize Helium and autogenous pressurant requirements, propellant lost to evaporation and thermodynamic venting to maintain propellant conditions, and non-uniform tank draining in configurations utilizing multiple LH2 or LO2 propellant tanks. In conclusion, this model provides an accurate and efficient means of analyzing multiple design configurations for any cryogenic propellant tank in launch, low-acceleration coast, or in-space maneuvering and supplies the user with pressurization requirements, unusable propellants from evaporation and liquid stratification, and general ullage gas, liquid, and tank wall conditions as functions of time.
Assessing Low-Intensity Relationships in Complex Networks
Spitz, Andreas; Gimmler, Anna; Stoeck, Thorsten; Zweig, Katharina Anna; Horvát, Emőke-Ágnes
2016-01-01
Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes. PMID:27096435
Assessing Low-Intensity Relationships in Complex Networks.
Spitz, Andreas; Gimmler, Anna; Stoeck, Thorsten; Zweig, Katharina Anna; Horvát, Emőke-Ágnes
2016-01-01
Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes.
NASA Astrophysics Data System (ADS)
Zhang, Wanli; Li, Chuandong; Huang, Tingwen; Huang, Junjian
2018-02-01
This paper investigates the fixed-time synchronization of complex networks (CNs) with nonidentical nodes and stochastic noise perturbations. By designing new controllers, constructing Lyapunov functions and using the properties of Weiner process, different synchronization criteria are derived according to whether the node systems in the CNs or the goal system satisfies the corresponding conditions. Moreover, the role of the designed controllers is analyzed in great detail by constructing a suitable comparison system and a new method is presented to estimate the settling time by utilizing the comparison system. Results of this paper can be applied to both directed and undirected weighted networks. Numerical simulations are offered to verify the effectiveness of our new results.
Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Jin, Hao-Qiang; anMey, Dieter; Hatay, Ferhat F.
2003-01-01
Clusters of SMP (Symmetric Multi-Processors) nodes provide support for a wide range of parallel programming paradigms. The shared address space within each node is suitable for OpenMP parallelization. Message passing can be employed within and across the nodes of a cluster. Multiple levels of parallelism can be achieved by combining message passing and OpenMP parallelization. Which programming paradigm is the best will depend on the nature of the given problem, the hardware components of the cluster, the network, and the available software. In this study we compare the performance of different implementations of the same CFD benchmark application, using the same numerical algorithm but employing different programming paradigms.
Complex networks under dynamic repair model
NASA Astrophysics Data System (ADS)
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
NASA Astrophysics Data System (ADS)
Svoren, J.; Neslusan, L.; Porubcan, V.
1994-08-01
All known parent bodies of meteor showers belong to bodies moving in high-eccentricity orbits (e => 0.5). Recently, asteroids in low-eccentricity orbits (e < 0.5) approaching the Earth's orbit, were suggested as another population of possible parent bodies of meteor streams. This paper deals with the problem of calculation of meteor radiants connected with the bodies in low-eccentricity orbits from the point of view of optimal results depending on the method applied. The paper is a continuation of our previous analysis of high-eccentricity orbits (Svoren, J., Neslusan, L., Porubcan, V.: 1993, Contrib. Astron. Obs. Skalnate Pleso 23, 23). Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys. 7, 261) was applied. D <= 0.1 indicates a very good fit of orbits, 0.1 < D <= 0.2 is considered for a good fit and D > 0.2 means that the fit is rather poor and the change of orbit unrealistic. The optimal method, i.e. the one which results in the smallest D values for the population of low-eccentricity orbits, is that of adjusting the orbit by varying both the eccentricity and perihelion distance. A comparison of theoretical radiants obtained by various methods was made for typical representatives from each group of the NEA (near-Earth asteroids) objects.
Low Latency MAC Protocol in Wireless Sensor Networks Using Timing Offset
NASA Astrophysics Data System (ADS)
Choi, Seung Sik
This paper proposes a low latency MAC protocol that can be used in sensor networks. To extend the lifetime of sensor nodes, the conventional solution is to synchronize active/sleep periods of all sensor nodes. However, due to these synchronized sensor nodes, packets in the intermediate nodes must wait until the next node wakes up before it can forward a packet. This induces a large delay in sensor nodes. To solve this latency problem, a clustered sensor network which uses two types of sensor nodes and layered architecture is considered. Clustered heads in each cluster are synchronized with different timing offsets to reduce the sleep delay. Using this concept, the latency problem can be solved and more efficient power usage can be obtained.
Method of Error Floor Mitigation in Low-Density Parity-Check Codes
NASA Technical Reports Server (NTRS)
Hamkins, Jon (Inventor)
2014-01-01
A digital communication decoding method for low-density parity-check coded messages. The decoding method decodes the low-density parity-check coded messages within a bipartite graph having check nodes and variable nodes. Messages from check nodes are partially hard limited, so that every message which would otherwise have a magnitude at or above a certain level is re-assigned to a maximum magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sameer
Disclosed is a mechanism on receiving processors in a parallel computing system for providing order to data packets received from a broadcast call and to distinguish data packets received at nodes from several incoming asynchronous broadcast messages where header space is limited. In the present invention, processors at lower leafs of a tree do not need to obtain a broadcast message by directly accessing the data in a root processor's buffer. Instead, each subsequent intermediate node's rank id information is squeezed into the software header of packet headers. In turn, the entire broadcast message is not transferred from the rootmore » processor to each processor in a communicator but instead is replicated on several intermediate nodes which then replicated the message to nodes in lower leafs. Hence, the intermediate compute nodes become "virtual root compute nodes" for the purpose of replicating the broadcast message to lower levels of a tree.« less
Community detection using preference networks
NASA Astrophysics Data System (ADS)
Tasgin, Mursel; Bingol, Haluk O.
2018-04-01
Community detection is the task of identifying clusters or groups of nodes in a network where nodes within the same group are more connected with each other than with nodes in different groups. It has practical uses in identifying similar functions or roles of nodes in many biological, social and computer networks. With the availability of very large networks in recent years, performance and scalability of community detection algorithms become crucial, i.e. if time complexity of an algorithm is high, it cannot run on large networks. In this paper, we propose a new community detection algorithm, which has a local approach and is able to run on large networks. It has a simple and effective method; given a network, algorithm constructs a preference network of nodes where each node has a single outgoing edge showing its preferred node to be in the same community with. In such a preference network, each connected component is a community. Selection of the preferred node is performed using similarity based metrics of nodes. We use two alternatives for this purpose which can be calculated in 1-neighborhood of nodes, i.e. number of common neighbors of selector node and its neighbors and, the spread capability of neighbors around the selector node which is calculated by the gossip algorithm of Lind et.al. Our algorithm is tested on both computer generated LFR networks and real-life networks with ground-truth community structure. It can identify communities accurately in a fast way. It is local, scalable and suitable for distributed execution on large networks.
LUNETTE - A Discovery Class Mission to the Moon to Establish a Geophysical Network
NASA Astrophysics Data System (ADS)
Neal, C. R.; Banerdt, W. B.; Alkalai, L.
2009-12-01
Lunette is a Discovery mission concept that is designed to deliver three landed geophysical packages (“nodes”) to widely spaced (3000-5000 km) locations on the lunar surface. This mission will provide detailed information on the interior of the Moon through seismic, thermal, electromagnetic, and precision laser ranging measurements, and will substantially address the lunar interior science objectives set out in “The Scientific Context for the Exploration of the Moon” (NRC, 2008) and ”The Final Report for the International Lunar Network Anchor Nodes Science Definition Team” (NASA, 2009). Each node will contain: a very broad band seismometer that is at least an order of magnitude more sensitive over a wider frequency band than the seismometers used during Apollo; a heat flow probe, delivered via a self-penetrating “mole” device; a low-frequency electromagnetic sounding instrument, which will measure the electromagnetic properties of the outermost few hundred km of the Moon; and a corner-cube laser retroreflector for lunar laser ranging. These instruments will provide an enormous advance in our knowledge of the structure and processes of the lunar interior over that provided by Apollo-era data, allowing insights into the earliest history of the formation and evolution of the Moon. The instruments that comprise the individual nodes are all optimized for low power operation and this mission will not rely on a radioisotope power supply. Improvements in solar energy and battery technology, along with an Event Timer Module which allows the lander to shut down its electronics for most of the lunar night, enables a solar/battery mission architecture with continuous instrument operation and a two-year nominal lifetime. The instruments have a combined mass of <12 kg, and the dry mass of each lander will be on the order of 100 kg, including solar panels, batteries, and communications. The most power hungry instrument is the heat flow “mole”, which requires ~ 11 W during penetration and ~5-6 W during the active heating tests for thermal conductivity measurements. Normal operations of the mole only require 2.2 W. The nodes will operate during the lunar night in a low power mode where only systems required for data acquisition are powered. Communications back to Earth will only occur during the lunar day so there is data storage on the order of 3-4 Gbits to enable continuous operations during the lunar night (up to 16 earth days). The direct-to-Earth link is S-band at 120 kbps to a DSN 34 m ground station. UHF cross-links from remote units to the communications hub will utilize small, low power UHF transceiver for two-way communication at 128 kbps.
Cong, Zhang
2018-03-01
Based on extended state observer, a novel and practical design method is developed to solve the distributed cooperative tracking problem of higher-order nonlinear multiagent systems with lumped disturbance in a fixed communication topology directed graph. The proposed method is designed to guarantee all the follower nodes ultimately and uniformly converge to the leader node with bounded residual errors. The leader node, modeled as a higher-order non-autonomous nonlinear system, acts as a command generator giving commands only to a small portion of the networked follower nodes. Extended state observer is used to estimate the local states and lumped disturbance of each follower node. Moreover, each distributed controller can work independently only requiring the relative states and/or the estimated relative states information between itself and its neighbors. Finally an engineering application of multi flight simulators systems is demonstrated to test and verify the effectiveness of the proposed algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Local Refinement of Analysis-Suitable T-splines
2011-03-01
3.2. The extension graph Intersecting T-junction extensions in an extended T-mesh Text can be visualized using an undirected graph . We call this graph ...the extension graph and denote it by E(Text). Each node in E corresponds to a single T-junction extension in Text. If two extensions in Text...intersect then an edge is drawn between the corresponding nodes in E. The extension graph for the extended T-mesh in Figure 7b is shown in Figure 8a. In this
Entanglement of spin waves among four quantum memories.
Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J
2010-11-18
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.
ANTS/PAM: Future Exploration of the Asteroid Belt
NASA Astrophysics Data System (ADS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C. Y.
2004-05-01
The Autonomous Nano-Technology Swarm (ANTS) is applied to the Prospecting Asteroid Mission (PAM) concept, as part of a NASA RASC study. The ANTS architecture is inspired by success of social insect colonies, based on the division of labor within the colonies: 1) within their specialties, individual specialists generally outperform general-ists, and 2) with sufficiently efficient social interaction and coordination, the group of specialists generally outper-forms the group of generalists. ANTS as applied to PAM involves a thousand individual specialist `sciencecraft', one subswarm per target, in an environment where detection and tracking of irregular, infrequent targets is a major chal-lenge. Workers, carry and operate eight to nine different scientific instruments, including spectrometers, ranging and radio science devices, imagers. The remaining specialists, Messenger/Rulers, provide communication and coordina-tion. The non-expendable propulsion system is based on autonomously deployable and configurable solar sails, a system suitable to a low gravity environment. The design of the neural basis function requires a minimum of 4 or 5 specialists for collective decision making. Allowing for ten instrument specialist teams and compensating for antici-pated high attrition, we calculate an initial minimum of 100 per subswarm should allow characterization of hundreds of asteroids. The difficulty in observing irregular, rapidly moving, poorly illuminated objects is largely overcome by the ANT sciencecraft capability to optimize conditions for each instrument. Components are composed of carbon nanotubules reversibly deployable from NEMS nodes, allowing 100 times decrease in packaging volume. 1000 smart 10 centimeter, 1 kg cubic boxes create a 1000 kg 1 meter cube.
Global tree network for computing structures enabling global processing operations
Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.
2010-01-19
A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.
Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks
Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.
2015-01-01
Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604
Rosenthal, Gideon; Váša, František; Griffa, Alessandra; Hagmann, Patric; Amico, Enrico; Goñi, Joaquín; Avidan, Galia; Sporns, Olaf
2018-06-05
Connectomics generates comprehensive maps of brain networks, represented as nodes and their pairwise connections. The functional roles of nodes are defined by their direct and indirect connectivity with the rest of the network. However, the network context is not directly accessible at the level of individual nodes. Similar problems in language processing have been addressed with algorithms such as word2vec that create embeddings of words and their relations in a meaningful low-dimensional vector space. Here we apply this approach to create embedded vector representations of brain networks or connectome embeddings (CE). CE can characterize correspondence relations among brain regions, and can be used to infer links that are lacking from the original structural diffusion imaging, e.g., inter-hemispheric homotopic connections. Moreover, we construct predictive deep models of functional and structural connectivity, and simulate network-wide lesion effects using the face processing system as our application domain. We suggest that CE offers a novel approach to revealing relations between connectome structure and function.
Design and implementation of low complexity wake-up receiver for underwater acoustic sensor networks
NASA Astrophysics Data System (ADS)
Yue, Ming
This thesis designs a low-complexity dual Pseudorandom Noise (PN) scheme for identity (ID) detection and coarse frame synchronization. The two PN sequences for a node are identical and are separated by a specified length of gap which serves as the ID of different sensor nodes. The dual PN sequences are short in length but are capable of combating severe underwater acoustic (UWA) multipath fading channels that exhibit time varying impulse responses up to 100 taps. The receiver ID detection is implemented on a microcontroller MSP430F5529 by calculating the correlation between the two segments of the PN sequence with the specified separation gap. When the gap length is matched, the correlator outputs a peak which triggers the wake-up enable. The time index of the correlator peak is used as the coarse synchronization of the data frame. The correlator is implemented by an iterative algorithm that uses only one multiplication and two additions for each sample input regardless of the length of the PN sequence, thus achieving low computational complexity. The real-time processing requirement is also met via direct memory access (DMA) and two circular buffers to accelerate data transfer between the peripherals and the memory. The proposed dual PN detection scheme has been successfully tested by simulated fading channels and real-world measured channels. The results show that, in long multipath channels with more than 60 taps, the proposed scheme achieves high detection rate and low false alarm rate using maximal-length sequences as short as 31 bits to 127 bits, therefore it is suitable as a low-power wake-up receiver. The future research will integrate the wake-up receiver with Digital Signal Processors (DSP) for payload detection.
Matsen IV, Frederick A.; Evans, Steven N.
2013-01-01
Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome. PMID:23505415
Fault-Tolerant Algorithms for Connectivity Restoration in Wireless Sensor Networks.
Zeng, Yali; Xu, Li; Chen, Zhide
2015-12-22
As wireless sensor network (WSN) is often deployed in a hostile environment, nodes in the networks are prone to large-scale failures, resulting in the network not working normally. In this case, an effective restoration scheme is needed to restore the faulty network timely. Most of existing restoration schemes consider more about the number of deployed nodes or fault tolerance alone, but fail to take into account the fact that network coverage and topology quality are also important to a network. To address this issue, we present two algorithms named Full 2-Connectivity Restoration Algorithm (F2CRA) and Partial 3-Connectivity Restoration Algorithm (P3CRA), which restore a faulty WSN in different aspects. F2CRA constructs the fan-shaped topology structure to reduce the number of deployed nodes, while P3CRA constructs the dual-ring topology structure to improve the fault tolerance of the network. F2CRA is suitable when the restoration cost is given the priority, and P3CRA is suitable when the network quality is considered first. Compared with other algorithms, these two algorithms ensure that the network has stronger fault-tolerant function, larger coverage area and better balanced load after the restoration.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901
NASA Astrophysics Data System (ADS)
Hoefflinger, Bernd
Memories have been the major yardstick for the continuing validity of Moore's law. In single-transistor-per-Bit dynamic random-access memories (DRAM), the number of bits per chip pretty much gives us the number of transistors. For decades, DRAM's have offered the largest storage capacity per chip. However, DRAM does not scale any longer, both in density and voltage, severely limiting its power efficiency to 10 fJ/b. A differential DRAM would gain four-times in density and eight-times in energy. Static CMOS RAM (SRAM) with its six transistors/cell is gaining in reputation because it scales well in cell size and operating voltage so that its fundamental advantage of speed, non-destructive read-out and low-power standby could lead to just 2.5 electrons/bit in standby and to a dynamic power efficiency of 2aJ/b. With a projected 2020 density of 16 Gb/cm², the SRAM would be as dense as normal DRAM and vastly better in power efficiency, which would mean a major change in the architecture and market scenario for DRAM versus SRAM. Non-volatile Flash memory have seen two quantum jumps in density well beyond the roadmap: Multi-Bit storage per transistor and high-density TSV (through-silicon via) technology. The number of electrons required per Bit on the storage gate has been reduced since their first realization in 1996 by more than an order of magnitude to 400 electrons/Bit in 2010 for a complexity of 32Gbit per chip at the 32 nm node. Chip stacking of eight chips with TSV has produced a 32GByte solid-state drive (SSD). A stack of 32 chips with 2 b/cell at the 16 nm node will reach a density of 2.5 Terabit/cm². Non-volatile memory with a density of 10 × 10 nm²/Bit is the target for widespread development. Phase-change memory (PCM) and resistive memory (RRAM) lead in cell density, and they will reach 20 Gb/cm² in 2D and higher with 3D chip stacking. This is still almost an order-of-magnitude less than Flash. However, their read-out speed is ~10-times faster, with as yet little data on their energy/b. As a read-out memory with unparalleled retention and lifetime, the ROM with electron-beam direct-write-lithography (Chap. 8) should be considered for its projected 2D density of 250 Gb/cm², a very small read energy of 0.1 μW/Gb/s. The lithography write-speed 10 ms/Terabit makes this ROM a serious contentender for the optimum in non-volatile, tamper-proof storage.
Development of a neural network technique for KSTAR Thomson scattering diagnostics.
Lee, Seung Hun; Lee, J H; Yamada, I; Park, Jae Sun
2016-11-01
Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ 2 method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ 2 method. The best results were obtained for 10 3 training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ 2 method and performs the calculation twenty times faster.
Gunia, Sven; Koch, Stefan; May, Matthias
2013-02-01
Penile, vulvar and anal squamous cell carcinomas (SCCs) share histomorphological overlap and are prone to lymphatic dissemination into inguinal nodes. Anal SCCs might derive from the anorectal zone (ARZ), anal transitional zone, squamous zone or from perianal skin. These anatomically distinct zones differ in terms of their embryological development. We sought to investigate the role of caudal-related homeobox 2 (CDX2), a homeobox gene implicated in the development and anterior/posterior pattern specification from duodenum to rectum including the ARZ, in terms of narrowing the possible sites of origin to be considered in the setting of SCC with unknown primary presenting with histologically confirmed inguinal lymph node metastasis. By immunohistochemistry (IHC) employing a panel of antibodies directed against CK5/6, CK7, CK20, p63, p16, CEA and CDX2, we compared 89 penile, 11 vulvar and eight anal SCCs with respect to their staining profiles. Moreover, anal SCCs were subjected to in situ hybridisation (ISH) for high-risk human papillomavirus (HPV) subtypes. By IHC, CDX2 expression was observed in 2/8 anal SCCs (25%) while being absent from all penile and vulvar SCCs examined. High-risk HPV subtypes were detected by ISH in all anal SCCs examined, which were uniformly p16-positive by IHC. CDX2 might be valuable in terms of narrowing the possible sites of origin to be considered in the setting of SCC with unknown primary presenting with inguinal lymph node metastasis. However, despite its favourable specificity, the diagnostic benefit achieved by this observation is limited by the low sensitivity.
Besedovsky, Luciana; Linz, Barbara; Dimitrov, Stoyan; Groch, Sabine; Born, Jan; Lange, Tanja
2014-06-01
Glucocorticoids are well known to affect T cell migration, leading to a redistribution of the cells from blood to the bone marrow, accompanied by a concurrent suppression of lymph node homing. Despite numerous studies in this context, with most of them employing synthetic glucocorticoids in nonphysiological doses, the mechanisms of this redistribution are not well understood. Here, we investigated in healthy men the impact of cortisol at physiological concentrations on the expression of different migration molecules on eight T cell subpopulations in vivo and in vitro. Hydrocortisone (cortisol, 22 mg) infused during nocturnal rest when endogenous cortisol levels are low, compared with placebo, differentially reduced numbers of T cell subsets, with naive CD4(+) and CD8(+) subsets exhibiting the strongest reduction. Hydrocortisone in vivo and in vitro increased CXCR4 expression, which presumably mediates the recruitment of T cells to the bone marrow. Expression of the lymph node homing receptor CD62L on total CD3(+) and CD8(+) T cells appeared reduced following hydrocortisone infusion. However, this was due to a selective extravasation of CD62L(+) T cell subsets, as hydrocortisone affected neither CD62L expression on a subpopulation level nor CD62L expression in vitro. Corresponding results in the opposite direction were observed after blocking of endogenous cortisol synthesis by metyrapone. CCR7, another lymph node homing receptor, was also unaffected by hydrocortisone in vitro. Thus, cortisol seems to redirect T cells to the bone marrow by upregulating their CXCR4 expression, whereas its inhibiting effect on T cell homing to lymph nodes is apparently regulated independently of the expression of classical homing receptors. Copyright © 2014 the American Physiological Society.
EXTENSIBLE DATABASE FRAMEWORK FOR MANAGEMENT OF UNSTRUCTURED AND SEMI-STRUCTURED DOCUMENTS
NASA Technical Reports Server (NTRS)
Gawdiak, Yuri O. (Inventor); La, Tracy T. (Inventor); Lin, Shu-Chun Y. (Inventor); Malof, David A. (Inventor); Tran, Khai Peter B. (Inventor)
2005-01-01
Method and system for querying a collection of Unstructured or semi-structured documents to identify presence of, and provide context and/or content for, keywords and/or keyphrases. The documents are analyzed and assigned a node structure, including an ordered sequence of mutually exclusive node segments or strings. Each node has an associated set of at least four, five or six attributes with node information and can represent a format marker or text, with the last node in any node segment usually being a text node. A keyword (or keyphrase) is specified. and the last node in each node segment is searched for a match with the keyword. When a match is found at a query node, or at a node determined with reference to a query node, the system displays the context andor the content of the query node.
Running Batch Jobs on Peregrine | High-Performance Computing | NREL
Using Resource Feature to Request Different Node Types Peregrine has several types of compute nodes incompatibility and get the job running. More information about requesting different node types in Peregrine is available. Queues In order to meet the needs of different types of jobs, nodes on Peregrine are available
Low-Latency and Energy-Efficient Data Preservation Mechanism in Low-Duty-Cycle Sensor Networks.
Jiang, Chan; Li, Tao-Shen; Liang, Jun-Bin; Wu, Heng
2017-05-06
Similar to traditional wireless sensor networks (WSN), the nodes only have limited memory and energy in low-duty-cycle sensor networks (LDC-WSN). However, different from WSN, the nodes in LDC-WSN often sleep most of their time to preserve their energies. The sleeping feature causes serious data transmission delay. However, each source node that has sensed data needs to quickly disseminate its data to other nodes in the network for redundant storage. Otherwise, data would be lost due to its source node possibly being destroyed by outer forces in a harsh environment. The quick dissemination requirement produces a contradiction with the sleeping delay in the network. How to quickly disseminate all the source data to all the nodes with limited memory in the network for effective preservation is a challenging issue. In this paper, a low-latency and energy-efficient data preservation mechanism in LDC-WSN is proposed. The mechanism is totally distributed. The data can be disseminated to the network with low latency by using a revised probabilistic broadcasting mechanism, and then stored by the nodes with LT (Luby Transform) codes, which are a famous rateless erasure code. After the process of data dissemination and storage completes, some nodes may die due to being destroyed by outer forces. If a mobile sink enters the network at any time and from any place to collect the data, it can recover all of the source data by visiting a small portion of survived nodes in the network. Theoretical analyses and simulation results show that our mechanism outperforms existing mechanisms in the performances of data dissemination delay and energy efficiency.
Hong, Q; Wang, Y; Wang, J J; Hu, C G; Fang, Y J; Fan, X X; Liu, T; Tong, Q
2017-01-10
Objective: To evaluate the application value of carbon lymph node tracing technique by preoperative endoscopic subserosal injection in laparoscopic radical gastrectomy. Methods: From June 2013 to February 2015, seventy eight patients with gastric cancer were enrolled and randomly divided into trial group and control group. Subserosal injection of carbon nanoparticles around the tumor was performed by preoperative endoscopic subserosal injection one day before the operation in trial group, while the patients routinely underwent laparoscopic gastrectomy in control group. Results of harvested lymph nodes, postoperative complications were compared between the two groups. Carbon nanoparticle-related side effect was also evaluated. Results: The average number of harvested lymph node in trial group was significantly higher than that in control group (35.5±8.5 vs 29.5±6.5, P <0.05). The rate of overall black-dyed harvested lymph node was 74.7% (1 035/1 386) in trial group, the black-dyed lymph node rate in D1 lymph node was 80.1%, which was significantly higher than that in D2 lymph node (69.8%, χ 2 =19.38, P <0.01). When comparing the lymph node with and without black-dyed in trial group, the rate of metastasis lymph node was significantly higher in lymph node with black-dyed (17.3% vs 4.0%, χ 2 =38.67, P <0.01). There was no significant difference in postoperative complications rate between two group (trial group 10.2%; control group 12.8%, χ 2 =0.00, P >0.05), and no carbon nanoparticle-related side effect was observed. Conclusion: Given a higher harvested lymph node number and a similar rate of complications, preoperative endoscopic subserosal injection of carbon nanoparticles was safe and feasible.
Analysis of Network Vulnerability Under Joint Node and Link Attacks
NASA Astrophysics Data System (ADS)
Li, Yongcheng; Liu, Shumei; Yu, Yao; Cao, Ting
2018-03-01
The security problem of computer network system is becoming more and more serious. The fundamental reason is that there are security vulnerabilities in the network system. Therefore, it’s very important to identify and reduce or eliminate these vulnerabilities before they are attacked. In this paper, we are interested in joint node and link attacks and propose a vulnerability evaluation method based on the overall connectivity of the network to defense this attack. Especially, we analyze the attack cost problem from the attackers’ perspective. The purpose is to find the set of least costs for joint links and nodes, and their deletion will lead to serious network connection damage. The simulation results show that the vulnerable elements obtained from the proposed method are more suitable for the attacking idea of the malicious persons in joint node and link attack. It is easy to find that the proposed method has more realistic protection significance.
Crawford, E D; Batuello, J T; Snow, P; Gamito, E J; McLeod, D G; Partin, A W; Stone, N; Montie, J; Stock, R; Lynch, J; Brandt, J
2000-05-01
The current study assesses artificial intelligence methods to identify prostate carcinoma patients at low risk for lymph node spread. If patients can be assigned accurately to a low risk group, unnecessary lymph node dissections can be avoided, thereby reducing morbidity and costs. A rule-derivation technology for simple decision-tree analysis was trained and validated using patient data from a large database (4,133 patients) to derive low risk cutoff values for Gleason sum and prostate specific antigen (PSA) level. An empiric analysis was used to derive a low risk cutoff value for clinical TNM stage. These cutoff values then were applied to 2 additional, smaller databases (227 and 330 patients, respectively) from separate institutions. The decision-tree protocol derived cutoff values of < or = 6 for Gleason sum and < or = 10.6 ng/mL for PSA. The empiric analysis yielded a clinical TNM stage low risk cutoff value of < or = T2a. When these cutoff values were applied to the larger database, 44% of patients were classified as being at low risk for lymph node metastases (0.8% false-negative rate). When the same cutoff values were applied to the smaller databases, between 11 and 43% of patients were classified as low risk with a false-negative rate of between 0.0 and 0.7%. The results of the current study indicate that a population of prostate carcinoma patients at low risk for lymph node metastases can be identified accurately using a simple decision algorithm that considers preoperative PSA, Gleason sum, and clinical TNM stage. The risk of lymph node metastases in these patients is < or = 1%; therefore, pelvic lymph node dissection may be avoided safely. The implications of these findings in surgical and nonsurgical treatment are significant.
Percolation of networks with directed dependency links
NASA Astrophysics Data System (ADS)
Niu, Dunbiao; Yuan, Xin; Du, Minhui; Stanley, H. Eugene; Hu, Yanqing
2016-04-01
The self-consistent probabilistic approach has proven itself powerful in studying the percolation behavior of interdependent or multiplex networks without tracking the percolation process through each cascading step. In order to understand how directed dependency links impact criticality, we employ this approach to study the percolation properties of networks with both undirected connectivity links and directed dependency links. We find that when a random network with a given degree distribution undergoes a second-order phase transition, the critical point and the unstable regime surrounding the second-order phase transition regime are determined by the proportion of nodes that do not depend on any other nodes. Moreover, we also find that the triple point and the boundary between first- and second-order transitions are determined by the proportion of nodes that depend on no more than one node. This implies that it is maybe general for multiplex network systems, some important properties of phase transitions can be determined only by a few parameters. We illustrate our findings using Erdős-Rényi networks.
Endometrial Cancer and the Role of Lymphadenectomy.
Clark, Leslie H; Soper, John T
2016-06-01
The role of lymph node dissection in early-stage endometrial cancer is highly debated, but staging and prognosis are dependent on knowledge of lymph node metastasis. We sought to review the available data on the use of lymph node assessment in presumed early-stage endometrial cancer. A comprehensive literature review was performed using MEDLINE, the Cochrane Collaborative Database, and PubMed. There is limited retrospective data that suggest a therapeutic benefit to lymphadenectomy. Prospective randomized trials have not shown a benefit to lymphadenectomy in low-risk patients, but found significant morbidity in patients undergoing lymphadenectomy. Selective lymph node assessment should be used in low-risk endometrial cancer. Sentinel lymph node assessment is emerging as a potential strategy for lymph node assessment. Selective use of lymphadenectomy in early-stage endometrial cancer can reduce the morbidity associated with lymph node dissection without compromising clinical outcomes. Multiple strategies are available including sentinel lymph nodes and risk factor based lymphadenectomy.
Technique for reliable sentinel node biopsy in squamous cell carcinomas of the floor of mouth.
Stoeckli, Sandro J; Huebner, Thomas; Huber, Gerhard F; Broglie, Martina A
2016-09-01
Applicability of sentinel node biopsy (SNB) for tumors of the floor of mouth (FOM) is controversial. Prospective evaluation of the accuracy of gamma-probe-guided superselective neck dissection of the preglandular triangle of level I for SNB in FOM squamous cell carcinoma (SCC) after preoperative lymphoscintigraphy and single photon emission CT (SPECT)/CT. In total, 22 sentinel lymph nodes were harvested in level I. Eight of 22 (36%) were seen on lymphoscintigraphy and 11 (50%) on SPECT/CT. Eleven sentinel lymph nodes (50%) were only detected intraoperatively. In unilateral tumors, 20% were contralateral, and, in midline tumors, 93% showed bilateral level I sentinel lymph nodes. The false-negative rate was 8.3%, the negative predictive value was 96.4%, and the false-omission rate was 3.6%. The ultimate neck control rate, including salvage treatment, was 100%. SNB in FOM can be reliably performed using the presented surgical technique. Level I exploration, bilaterally in midline tumors, is mandatory irrespective of the visualization of sentinel lymph nodes in other levels. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1367-1372, 2016. © 2016 Wiley Periodicals, Inc.
Vanderveen, Keith B [Tracy, CA; Talbot, Edward B [Livermore, CA; Mayer, Laurence E [Davis, CA
2008-04-08
Nodes in a network having a plurality of nodes establish communication links with other nodes using available transmission media, as the ability to establish such links becomes available and desirable. The nodes predict when existing communications links will fail, become overloaded or otherwise degrade network effectiveness and act to establish substitute or additional links before the node's ability to communicate with the other nodes on the network is adversely affected. A node stores network topology information and programmed link establishment rules and criteria. The node evaluates characteristics that predict existing links with other nodes becoming unavailable or degraded. The node then determines whether it can form a communication link with a substitute node, in order to maintain connectivity with the network. When changing its communication links, a node broadcasts that information to the network. Other nodes update their stored topology information and consider the updated topology when establishing new communications links for themselves.
Ahuja, V; Platzek, T; Fink, H; Sonnenburg, A; Stahlmann, R
2010-09-01
Disperse dyes, which are suitable for dyeing synthetic fibres, are responsible for the great majority of allergic contact dermatitis (ACD) cases to textile dyes. The aim of the present study was to investigate the sensitising potential of various disperse dyes using a biphasic protocol of the local lymph node assay (LLNA). Briefly, mice were shaved over a surface of approximately 2 cm(2) on their backs and treated using a "sensitisation-challenge protocol". The shaved surface was treated once daily on days 1-3 with 50 microl of the test solution. Animals remained untreated on days 4-14. On days 15-17, mice were treated with 25 microl of the test solution on the dorsum of both ears. Mice were killed on day 19 with deep CO(2) anaesthesia, the lymph nodes prepared and various end points, such as ear thickness, ear punch weight, lymph node weight, lymph node cell count and the proportion of various lymphocyte subpopulations, were determined by flow cytometry. The results were compared to control group treated with the vehicle alone. Our results showed that almost all of the tested textile dyes caused a significant increase in lymph node cell count and lymph node weight. We also observed an increase in ear thickness and ear punch weight in most of the concentrations tested for various textile dyes. We observed a decrease in CD4+ and CD8+ cells and an increase in CD19+, CD45+ and CD45+/1A+ cells in most of the cases, which is characteristic for allergens. The CD4+/CD69+ cells increased in only few experiments mainly with Disperse Blue 124 and Disperse Blue 106. Based on our results, the disperse dyes could be arranged in four groups on the basis of their sensitising potency in the following decreasing order (in parenthesis: lowest concentration causing a significant increase in lymph node cell number): group 1, strong: Disperse Blue 124 and Disperse Blue 106 (0.003%); group 2, moderate: Disperse Red 1 and Disperse Blue 1 (3%); group 3, weak: Disperse Orange 37 and Disperse Blue 35 (10%); and group 4, very weak: Disperse yellow 3 and Disperse Orange 3 (increase at 30% or no increase at 30%). In conclusion, our study shows that the biphasic LLNA protocol was proficient enough to study the sensitisation potential of tested textile dyes and provides data allowing to discriminate them according to their potency.
Device and method for creating Gaussian aberration-corrected electron beams
McMorran, Benjamin; Linck, Martin
2016-01-19
Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.
Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun
2017-01-01
To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.
Left-right asymmetry in pelvic lymph nodes distribution: is there a right-side prevalence?
Ghezzi, Fabio; Cromi, Antonella; Uccella, Stefano; Giudici, Silvia; Franchi, Massimo; Bolis, Pierfrancesco
2006-08-01
To assess whether pelvic lymph nodes have a left-right asymmetric distribution. The oncologic databases of two gynecologic academic departments were used to identify consecutive patients undergoing pelvic systematic lymphadenectomy as part of the treatment for a variety of gynecologic malignancies. All procedures were carried out in a standardized fashion. Lymph node counts were retrieved from pathological reports. Four hundred and twenty-eight women underwent pelvic lymphadenectomy during the study period. The median lymph node count was higher on the right side than on the left side [10 (0-33) versus 8 (0-29); P<0.0001]. A prevalence of right-sided nodes was found in 265 (61.9%) patients, while in 44 (10.3%) cases pelvic nodes were equally distributed on the two sides. The right-sided prevalence was significantly higher than the expected 50% in each type of malignancy and surgical technique subgroup. The right-sided prevalence was statistically significant even when the analysis was performed for different nodal groups [external iliac nodes: 5 (0-23) versus 4 (0-13), P=0.005; hypogastric and obturator nodes: 6 (0-17) versus 5 (0-19), P=0.04]. Moreover, nodal count was higher on the right than on the left in obese [10 (1-33) versus 8 (1-26), P=0.0002] and nonobese women [10 (0-32) versus 9 (0-29), P<0.0001]. Our findings suggest the existence of a left-right asymmetry in pelvic lymph nodes distribution, with right-sided prevalence.
AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks
Yoon, Seokhoon; Azad, Abul K.; Oh, Hoon; Kim, Sunghwan
2012-01-01
Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved. PMID:22438740
AURP: an AUV-aided underwater routing protocol for underwater acoustic sensor networks.
Yoon, Seokhoon; Azad, Abul K; Oh, Hoon; Kim, Sunghwan
2012-01-01
Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved.
Reliable Broadcast under Cascading Failures in Interdependent Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Sisi; Lee, Sangkeun; Chinthavali, Supriya
Reliable broadcast is an essential tool to disseminate information among a set of nodes in the presence of failures. We present a novel study of reliable broadcast in interdependent networks, in which the failures in one network may cascade to another network. In particular, we focus on the interdependency between the communication network and power grid network, where the power grid depends on the signals from the communication network for control and the communication network depends on the grid for power. In this paper, we build a resilient solution to handle crash failures in the communication network that may causemore » cascading failures and may even partition the network. In order to guarantee that all the correct nodes deliver the messages, we use soft links, which are inactive backup links to non-neighboring nodes that are only active when failures occur. At the core of our work is a fully distributed algorithm for the nodes to predict and collect the information of cascading failures so that soft links can be maintained to correct nodes prior to the failures. In the presence of failures, soft links are activated to guarantee message delivery and new soft links are built accordingly for long term robustness. Our evaluation results show that the algorithm achieves low packet drop rate and handles cascading failures with little overhead.« less
NASA Astrophysics Data System (ADS)
Mascarenas, David; Stull, Christopher; Farrar, Charles
2011-06-01
In order to realize the wide-scale deployment of high-endurance, unattended mobile sensing technologies, it is vital to ensure the self-preservation of the sensing assets. Deployed mobile sensor nodes face a variety of physical security threats including theft, vandalism and physical damage. Unattended mobile sensor nodes must be able to respond to these threats with control policies that facilitate escape and evasion to a low-risk state. In this work the Precision Immobilization Technique (PIT) problem has been considered. The PIT maneuver is a technique that a pursuing, car-like vehicle can use to force a fleeing vehicle to abruptly turn ninety degrees to the direction of travel. The abrupt change in direction generally causes the fleeing driver to lose control and stop. The PIT maneuver was originally developed by law enforcement to end vehicular pursuits in a manner that minimizes damage to the persons and property involved. It is easy to imagine that unattended autonomous convoys could be targets of this type of action by adversarial agents. This effort focused on developing control policies unattended mobile sensor nodes could employ to escape, evade and recover from PIT-maneuver-like attacks. The development of these control policies involved both simulation as well as small-scale experimental testing. The goal of this work is to be a step toward ensuring the physical security of unattended sensor node assets.
Aoun, Fouad; Peltier, Alexandre; van Velthoven, Roland
2014-01-01
To provide an overview of the currently available literature regarding local control of primary tumor and oligometastases in metastatic prostate cancer and salvage lymph node dissection of clinical lymph node relapse after curative treatment of prostate cancer. Evidence Acquisition. A systematic literature search was conducted in 2014 to identify abstracts, original articles, review articles, research articles, and editorials relevant to the local control in metastatic prostate cancer. Evidence Synthesis. Local control of primary tumor in metastatic prostate cancer remains experimental with low level of evidence. The concept is supported by a growing body of genetic and molecular research as well as analogy with other cancers. There is only one retrospective observational population based study showing prolonged survival. To eradicate oligometastases, several options exist with excellent local control rates. Stereotactic body radiotherapy is safe, well tolerated, and efficacious treatment for lymph node and bone lesions. Both biochemical and clinical progression are slowed down with a median time to initiate ADT of 2 years. Salvage lymph node dissection is feasible in patients with clinical lymph node relapse after local curable treatment. Conclusion. Despite encouraging oncologic midterm results, a complete cure remains elusive in metastatic prostate cancer patients. Further advances in imaging are crucial in order to rapidly evolve beyond the proof of concept. PMID:25485280
Lipidots: competitive organic alternative to quantum dots for in vivo fluorescence imaging
NASA Astrophysics Data System (ADS)
Gravier, Julien; Navarro, Fabrice P.; Delmas, Thomas; Mittler, Frédérique; Couffin, Anne-Claude; Vinet, Françoise; Texier, Isabelle
2011-09-01
The use of fluorescent nanostructures can bring several benefits on the signal to background ratio for in vitro microscopy, in vivo small animal imaging, and image-guided surgery. Fluorescent quantum dots (QDs) display outstanding optical properties, with high brightness and low photobleaching rate. However, because of their toxic element core composition and their potential long term retention in reticulo-endothelial organs such as liver, their in vivo human applications seem compromised. The development of new dye-loaded (DiO, DiI, DiD, DiR, and Indocyanine Green (ICG)) lipid nanoparticles for fluorescence imaging (lipidots) is described here. Lipidot optical properties quantitatively compete with those of commercial QDs (QTracker®705). Multichannel in vivo imaging of lymph nodes in mice is demonstrated for doses as low as 2 pmols of particles. Along with their optical properties, fluorescent lipidots display very low cytotoxicity (IC50 > 75 nM), which make them suitable tools for in vitro, and especially in vivo, fluorescence imaging applications.
Quantum statistics in complex networks
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
The Barabasi-Albert (BA) model for a complex network shows a characteristic power law connectivity distribution typical of scale free systems. The Ising model on the BA network shows that the ferromagnetic phase transition temperature depends logarithmically on its size. We have introduced a fitness parameter for the BA network which describes the different abilities of nodes to compete for links. This model predicts the formation of a scale free network where each node increases its connectivity in time as a power-law with an exponent depending on its fitness. This model includes the fact that the node connectivity and growth rate do not depend on the node age alone and it reproduces non trivial correlation properties of the Internet. We have proposed a model of bosonic networks by a generalization of the BA model where the properties of quantum statistics can be applied. We have introduced a fitness eta i = e-bei where the temperature T = 1/ b is determined by the noise in the system and the energy ei accounts for qualitative differences of each node for acquiring links. The results of this work show that a power law network with exponent gamma = 2 can give a Bose condensation where a single node grabs a finite fraction of all the links. In order to address the connection with self-organized processes we have introduced a model for a growing Cayley tree that generalizes the dynamics of invasion percolation. At each node we associate a parameter ei (called energy) such that the probability to grow for each node is given by pii ∝ ebei where T = 1/ b is a statistical parameter of the system determined by the noise called the temperature. This model has been solved analytically with a similar mathematical technique as the bosonic scale-free networks and it shows the self organization of the low energy nodes at the interface. In the thermodynamic limit the Fermi distribution describes the probability of the energy distribution at the interface.
ERIC Educational Resources Information Center
Solomon, Sheila
This practicum study evaluated a non-basal, multidisciplinary, multisensory approach to teaching higher order reading comprehension skills to eight fifth-grade learning-disabled students from low socioeconomic minority group backgrounds. The four comprehension skills were: (1) identifying the main idea; (2) determining cause and effect; (3) making…
DfM requirements and ROI analysis for system-on-chip
NASA Astrophysics Data System (ADS)
Balasinski, Artur
2005-11-01
DfM (Design-for-Manufacturability) has become staple requirement beyond 100 nm technology node for efficient generation of mask data, cost reduction, and optimal circuit performance. Layout pattern has to comply to many requirements pertaining to database structure and complexity, suitability for image enhancement by the optical proximity correction, and mask data pattern density and distribution over the image field. These requirements are of particular complexity for Systems-on-Chip (SoC). A number of macro-, meso-, and microscopic effects such as reticle macroloading, planarization dishing, and pattern bridging or breaking would compromise fab yield, device performance, or both. In order to determine the optimal set of DfM rules applicable to the particular designs, Return-on-Investment and Failure Mode and Effect Analysis (FMEA) are proposed.
Kim, Keonwook
2013-08-23
The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.
An Interpolation Approach to Optimal Trajectory Planning for Helicopter Unmanned Aerial Vehicles
2012-06-01
Armament Data Line DOF Degree of Freedom PS Pseudospectral LGL Legendre -Gauss-Lobatto quadrature nodes ODE Ordinary Differential Equation xiv...low order polynomials patched together in such away so that the resulting trajectory has several continuous derivatives at all points. In [7], Murray...claims that splines are ideal for optimal control problems because each segment of the spline’s piecewise polynomials approximate the trajectory
Cortes-Rodicio, J; Sanchez-Merino, G; Garcia-Fidalgo, M A; Tobalina-Larrea, I
To identify those textural features that are insensitive to both technical and biological factors in order to standardise heterogeneity studies on 18 F-FDG PET imaging. Two different studies were performed. First, nineteen series from a cylindrical phantom filled with different 18 F-FDG activity concentration were acquired and reconstructed using three different protocols. Seventy-two texture features were calculated inside a circular region of interest. The variability of each feature was obtained. Second, the data for 15 patients showing non-pathological liver were acquired. Anatomical and physiological features such as patient's weight, height, body mass index, metabolic active volume, blood glucose level, SUV and SUV standard deviation were also recorded. A liver covering region of interest was delineated and low variability textural features calculated in each patient. Finally, a multivariate Spearman's correlation analysis between biological factors and texture features was performed. Only eight texture features analysed show small variability (<5%) with activity concentration and reconstruction protocol making them suitable for heterogeneity quantification. On the other hand, there is a high statistically significant correlation between MAV and entropy (P<0.05). Entropy feature is, indeed, correlated (P<0.05) with all patient parameters, except body mass index. The textural features that are correlated with neither technical nor biological factors are run percentage, short-zone emphasis and intensity, making them suitable for quantifying functional changes or classifying patients. Other textural features are correlated with technical and biological factors and are, therefore, a source of errors if used for this purpose. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Modeling pre-metastatic lymphvascular niche in the mouse ear sponge assay
NASA Astrophysics Data System (ADS)
García-Caballero, Melissa; van de Velde, Maureen; Blacher, Silvia; Lambert, Vincent; Balsat, Cédric; Erpicum, Charlotte; Durré, Tania; Kridelka, Frédéric; Noel, Agnès
2017-01-01
Lymphangiogenesis, the formation of new lymphatic vessels, occurs in primary tumors and in draining lymph nodes leading to pre-metastatic niche formation. Reliable in vivo models are becoming instrumental for investigating alterations occurring in lymph nodes before tumor cell arrival. In this study, we demonstrate that B16F10 melanoma cell encapsulation in a biomaterial, and implantation in the mouse ear, prevents their rapid lymphatic spread observed when cells are directly injected in the ear. Vascular remodeling in lymph nodes was detected two weeks after sponge implantation, while their colonization by tumor cells occurred two weeks later. In this model, a huge lymphangiogenic response was induced in primary tumors and in pre-metastatic and metastatic lymph nodes. In control lymph nodes, lymphatic vessels were confined to the cortex. In contrast, an enlargement and expansion of lymphatic vessels towards paracortical and medullar areas occurred in pre-metastatic lymph nodes. We designed an original computerized-assisted quantification method to examine the lymphatic vessel structure and the spatial distribution. This new reliable and accurate model is suitable for in vivo studies of lymphangiogenesis, holds promise for unraveling the mechanisms underlying lymphatic metastases and pre-metastatic niche formation in lymph nodes, and will provide new tools for drug testing.
Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2012-01-10
The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.
Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2008-01-01
The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.
Klaus, Christine; Beer, Martin; Saier, Regine; Schubert, Harald; Bischoff, Sabine; Süss, Jochen
2011-01-01
Tick-borne encephalitis (TBE) in animals is not well understood yet. TBE virus (TBEV) serology in several host species could be valuable for epidemiological analyses in the field as well as for the detection of clinical cases. However, performance and suitability of the available test systems are not well assessed. Therefore, we evaluated two commercial TBEV-ELISA kits in a pilot study and compared them for their suitability in veterinary applications. For this purpose, we tested 163 field collected goat sera and evaluated the results by serum neutralization test (SNT) as "gold standard". Twenty-eight SNT positive sera (17.2%) were detected. The best suited ELISA kit was used for determination of a species-specific cutoff for horses, cattle, sheep, goats, pigs, mice, dogs, rabbits and monkeys with defined sera from animals without known or with improbable contact to TBEV. The level of non-specific ELISA results does not only differ between animal species but may also be influenced by the age of the tested animals. The number of sera which tested false positive by ELISA was higher in older than in young sheep. In order to obtain defined polyclonal sera as references, two dogs, cattle, goats, sheep, rabbits and pigs each, as well as one horse and 90 mice were immunized four times with a commercially available TBEV vaccine. In conclusion, our results demonstrated that commercial TBEV-ELISA kits are suitable for application in veterinary medicine for both, verification of clinical TBE cases and epidemiological screening. However, positive ELISA results should be verified by SNT. Only a very low number of false negative ELISA-results were found.
Yin, Yueju; Sheng, Xiugui; Li, Xinglan; Li, Dapeng; Han, Xiaoyun; Zhang, Xiaoling; Zhang, Tingting
2014-06-01
The distal external iliac lymph nodes are located along the external iliac artery between the deep circumflex iliac vein and the inguinal canal. Our study aimed to investigate the incidence of metastasis in distal external iliac lymph nodes and its association with clinicopathological factors in patients with early stage cervical cancer, and to determine the role of distal external iliac lymph nodes dissection in the surgery. Five hundred and twenty-four patients with early stage cervical cancer underwent radical hysterectomy and bilateral pelvic lymphadenectomy in the Shandong Province Cancer Hospital between June 1995 and December 2011, and their clinicopathological features were analyzed retrospectively. Of the 524 patients, 124 (23.7%) had pelvic lymph node metastasis. The metastasis rates were 16.2% (85 of 524 patients) in the obturator lymph nodes, 12.2% (64 of 524 patients) in the internal and external iliac lymph nodes, 2.9% (15 of 524 patients) in the common iliac lymph nodes, 2.1% (11 of 524 patients) in the distal external iliac lymph nodes, and 1.7% (9 of 524 patients) in the para-aortic nodes. The incidence of isolated positive distal external iliac lymph nodes was 0.2%. Univariate analysis showed that lymphovascular space invasion, pelvic lymph node metastases (excluding distal external iliac lymph nodes) were significantly associated with distal external iliac lymph node metastasis (P < 0.05). Logistic regression analysis showed that pelvic lymph node metastasis (excluding distal external iliac lymph nodes) was the independent risk factor for metastasis to distal external iliac lymph nodes. In early stage cervical cancer, distal external iliac lymph node metastasis is rare, especially in cases with stage IA or without pelvic lymph node metastasis. Less extensive pelvic lymphadenectomy may be considered in these patients in order to reduce operative complications and improve patients' quality of life. The deep circumflex iliac vein may be an appropriate landmark for the caudal limit of external iliac lymphadenectomy. However, if pelvic lymph node metastasis (excluding distal external iliac lymph nodes) is found by intraoperative rapid pathological diagnosis, systematic pelvic lymphadenectomy including removal of the distal external iliac lymph nodes should be performed in order to reduce the risk of distant metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Run-Ye; Liu, Kang; Wang, Wei-Hu
Purpose: This study aimed to determine the pathways of primary tumor invasion (PTI) and regional lymph node (LN) spread based on magnetic resonance imaging (MRI) in early-stage nasal NK/T-cell lymphoma (NKTCL), to improve clinical target volume (CTV) delineation and evaluate the prognostic value of locoregional extension patterns. Methods and Materials: A total of 105 patients with newly diagnosed early-stage nasal NKTCL who underwent pretreatment MRI were retrospectively reviewed. All patients received radiation therapy with or without chemotherapy. Results: The incidences of PTI and regional LN involvement were 64.7% and 25.7%, respectively. Based on the incidence of PTI, involved sites surroundingmore » the nasal cavity were classified into 3 risk subgroups: high-risk (>20%), intermediate-risk (5%-20%), and low-risk (<5%). The most frequently involved site was the nasopharynx (35.2%), followed by the maxillary (21.9%) and ethmoid (21.9%) sinuses. Local disease and regional LN spread followed an orderly pattern without LN skipping. The retropharyngeal nodes (RPNs) were most frequently involved (19.0%), followed by level II (11.4%). The 5-year overall survival (OS), progression-free survival (PFS), and locoregional control (LRC) rates for all patients were 72.8%, 65.2%, and 90.0%, respectively. The presence of PTI and regional LN involvement based on MRI significantly and negatively affected PFS and OS. Conclusions: Early-stage nasal NKTCL presents with a high incidence of PTI but a relatively low incidence of regional LN spread. Locoregional spread followed an orderly pattern, and PTI and regional LN spread are powerful prognostic factors for poorer survival outcomes. CTV reduction may be feasible for selected patients.« less
Estimates of streamflow characteristics for selected small streams, Baker River basin, Washington
Williams, John R.
1987-01-01
Regression equations were used to estimate streamflow characteristics at eight ungaged sites on small streams in the Baker River basin in the North Cascade Mountains, Washington, that could be suitable for run-of-the-river hydropower development. The regression equations were obtained by relating known streamflow characteristics at 25 gaging stations in nearby basins to several physical and climatic variables that could be easily measured in gaged or ungaged basins. The known streamflow characteristics were mean annual flows, 1-, 3-, and 7-day low flows and high flows, mean monthly flows, and flow duration. Drainage area and mean annual precipitation were not the most significant variables in all the regression equations. Variance in the low flows and the summer mean monthly flows was reduced by including an index of glacierized area within the basin as a third variable. Standard errors of estimate of the regression equations ranged from 25 to 88%, and the largest errors were associated with the low flow characteristics. Discharge measurements made at the eight sites near midmonth each month during 1981 were used to estimate monthly mean flows at the sites for that period. These measurements also were correlated with concurrent daily mean flows from eight operating gaging stations. The correlations provided estimates of mean monthly flows that compared reasonably well with those estimated by the regression analyses. (Author 's abstract)
Compression in wearable sensor nodes: impacts of node topology.
Imtiaz, Syed Anas; Casson, Alexander J; Rodriguez-Villegas, Esther
2014-04-01
Wearable sensor nodes monitoring the human body must operate autonomously for very long periods of time. Online and low-power data compression embedded within the sensor node is therefore essential to minimize data storage/transmission overheads. This paper presents a low-power MSP430 compressive sensing implementation for providing such compression, focusing particularly on the impact of the sensor node architecture on the compression performance. Compression power performance is compared for four different sensor nodes incorporating different strategies for wireless transmission/on-sensor-node local storage of data. The results demonstrate that the compressive sensing used must be designed differently depending on the underlying node topology, and that the compression strategy should not be guided only by signal processing considerations. We also provide a practical overview of state-of-the-art sensor node topologies. Wireless transmission of data is often preferred as it offers increased flexibility during use, but in general at the cost of increased power consumption. We demonstrate that wireless sensor nodes can highly benefit from the use of compressive sensing and now can achieve power consumptions comparable to, or better than, the use of local memory.
Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability.
Lihe Zhang; Jianwu Ai; Bowen Jiang; Huchuan Lu; Xiukui Li
2018-02-01
In this paper, we propose a bottom-up saliency model based on absorbing Markov chain (AMC). First, a sparsely connected graph is constructed to capture the local context information of each node. All image boundary nodes and other nodes are, respectively, treated as the absorbing nodes and transient nodes in the absorbing Markov chain. Then, the expected number of times from each transient node to all other transient nodes can be used to represent the saliency value of this node. The absorbed time depends on the weights on the path and their spatial coordinates, which are completely encoded in the transition probability matrix. Considering the importance of this matrix, we adopt different hierarchies of deep features extracted from fully convolutional networks and learn a transition probability matrix, which is called learnt transition probability matrix. Although the performance is significantly promoted, salient objects are not uniformly highlighted very well. To solve this problem, an angular embedding technique is investigated to refine the saliency results. Based on pairwise local orderings, which are produced by the saliency maps of AMC and boundary maps, we rearrange the global orderings (saliency value) of all nodes. Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art methods on six publicly available benchmark data sets.
NASA Astrophysics Data System (ADS)
Bilen, S. G.; Anandakrishnan, S.; Urbina, J. V.
2012-12-01
In an effort to provide new and improved geophysical sensing capabilities for the study of ice sheets in Antarctica and Greenland, or to study mountain glaciers, we are developing a network of wirelessly interconnected seismic and GPS sensor nodes (called "geoPebbles"), with the primary objective of making such instruments more capable and cost effective. We describe our design methodology, which has enabled us to develop these state-of-the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self-contained, wirelessly connected sensor for collecting seismic measurements and position information. Each node is built around a three-component seismic recorder, which includes an amplifier, filter, and 24-bit analog-to-digital card that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available through a carrier-phase measurement of the L1 GPS signal at an absolute accuracy of better than a microsecond. Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (up to eight 10-bit channels at low sample rates). We will report on current efforts to test this new instrument and how we are addressing the challenges imposed by the extreme weather conditions on the Antarctic continent. After fully validating its operational conditions, the geoPebble system will be available for NSF-sponsored glaciology research projects. Geophysical experiments in the polar region are logistically difficult. With the geoPebble system, the cost of doing today's experiments (low-resolution, 2D) will be significantly reduced, and the cost and feasibility of doing tomorrow's experiments (integrated seismic, positioning, 3D, etc.) will be reasonable. Sketch of an experiment with geoPebbles scattered on the surface of the ice sheet. The seismic source can move through the array. The SQC node communicates with all the elements in the array.
Approximating frustration scores in complex networks via perturbed Laplacian spectra
NASA Astrophysics Data System (ADS)
Savol, Andrej J.; Chennubhotla, Chakra S.
2015-12-01
Systems of many interacting components, as found in physics, biology, infrastructure, and the social sciences, are often modeled by simple networks of nodes and edges. The real-world systems frequently confront outside intervention or internal damage whose impact must be predicted or minimized, and such perturbations are then mimicked in the models by altering nodes or edges. This leads to the broad issue of how to best quantify changes in a model network after some type of perturbation. In the case of node removal there are many centrality metrics which associate a scalar quantity with the removed node, but it can be difficult to associate the quantities with some intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application of network theory: real-world utility networks are rarely altered according to theoretic principles unless the kinetic impact on the network's users are fully appreciated beforehand. In pursuit of a kinetically interpretable centrality score, we discuss the f-score, or frustration score. Each f-score quantifies whether a selected node accelerates or inhibits global mean first passage times to a second, independently selected target node. We show that this is a natural way of revealing the dynamical importance of a node in some networks. After discussing merits of the f-score metric, we combine spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which can otherwise be expensive to compute. Following tests on both synthetic and real medium-sized networks, we report f-score runtime improvements over exact brute force approaches in the range of 0 to 400 % with low error (<3 % ).
FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks
Kopta, Vladimir; Farserotu, John; Enz, Christian
2017-01-01
The Frequency Modulated Ultra-Wideband (FM-UWB) is known as a low-power, low-complexity modulation scheme targeting low to moderate data rates in applications such as wireless body area networks. In this paper, a thorough review of all FM-UWB receivers and transmitters reported in literature is presented. The emphasis is on trends in power reduction that exhibit an improvement by a factor 20 over the past eight years, showing the high potential of FM-UWB. The main architectural and circuit techniques that have led to this improvement are highlighted. Seldom explored potential of using higher data rates and more complex modulations is demonstrated as a way to increase energy efficiency of FM-UWB. Multi-user communication over a single Radio Frequency (RF) channel is explored in more depth and multi-channel transmission is proposed as an extension of standard FM-UWB. The two techniques provide means of decreasing network latency, improving performance, and allow the FM-UWB to accommodate the increasing number of sensor nodes in the emerging applications such as High-Density Wireless Sensor Networks. PMID:28481248
An improved network model for railway traffic
NASA Astrophysics Data System (ADS)
Li, Keping; Ma, Xin; Shao, Fubo
In railway traffic, safety analysis is a key issue for controlling train operation. Here, the identification and order of key factors are very important. In this paper, a new network model is constructed for analyzing the railway safety, in which nodes are regarded as causation factors and links represent possible relationships among those factors. Our aim is to give all these nodes an importance order, and to find the in-depth relationship among these nodes including how failures spread among them. Based on the constructed network model, we propose a control method to ensure the safe state by setting each node a threshold. As the results, by protecting the Hub node of the constructed network, the spreading of railway accident can be controlled well. The efficiency of such a method is further tested with the help of numerical example.
Accuracy-preserving source term quadrature for third-order edge-based discretization
NASA Astrophysics Data System (ADS)
Nishikawa, Hiroaki; Liu, Yi
2017-09-01
In this paper, we derive a family of source term quadrature formulas for preserving third-order accuracy of the node-centered edge-based discretization for conservation laws with source terms on arbitrary simplex grids. A three-parameter family of source term quadrature formulas is derived, and as a subset, a one-parameter family of economical formulas is identified that does not require second derivatives of the source term. Among the economical formulas, a unique formula is then derived that does not require gradients of the source term at neighbor nodes, thus leading to a significantly smaller discretization stencil for source terms. All the formulas derived in this paper do not require a boundary closure, and therefore can be directly applied at boundary nodes. Numerical results are presented to demonstrate third-order accuracy at interior and boundary nodes for one-dimensional grids and linear triangular/tetrahedral grids over straight and curved geometries.
Single-agent parallel window search
NASA Technical Reports Server (NTRS)
Powley, Curt; Korf, Richard E.
1991-01-01
Parallel window search is applied to single-agent problems by having different processes simultaneously perform iterations of Iterative-Deepening-A(asterisk) (IDA-asterisk) on the same problem but with different cost thresholds. This approach is limited by the time to perform the goal iteration. To overcome this disadvantage, the authors consider node ordering. They discuss how global node ordering by minimum h among nodes with equal f = g + h values can reduce the time complexity of serial IDA-asterisk by reducing the time to perform the iterations prior to the goal iteration. Finally, the two ideas of parallel window search and node ordering are combined to eliminate the weaknesses of each approach while retaining the strengths. The resulting approach, called simply parallel window search, can be used to find a near-optimal solution quickly, improve the solution until it is optimal, and then finally guarantee optimality, depending on the amount of time available.
Use of High Frequency Ultrasound to Monitor Cervical Lymph Node Alterations in Mice
Walk, Elyse L.; McLaughlin, Sarah; Coad, James; Weed, Scott A.
2014-01-01
Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC), provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO) and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular) lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA) biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl). Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy. PMID:24955984
Use of high frequency ultrasound to monitor cervical lymph node alterations in mice.
Walk, Elyse L; McLaughlin, Sarah; Coad, James; Weed, Scott A
2014-01-01
Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC), provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO) and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular) lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA) biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl). Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy.
Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto
2014-01-01
Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.
Zhang, Xing-Mao; Liang, Jian-Wei; Wang, Zheng; Kou, Jian-tao; Zhou, Zhi-Xiang
2016-04-04
Carbon nanoparticles show significant lymphatic tropism and can be used to identify lymph nodes surrounding mid-low rectal tumors. In this study, we analyzed the effect of trans anal injection of a carbon nanoparticle suspension on the outcomes of patients with mid-low rectal cancer who underwent laparoscopic resection. We collected the data of 87 patients with mid-low rectal cancer who underwent laparoscopic resection between November 2014 and March 2015 at Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College. For 35 patients in the experimental group, the carbon nanoparticle suspension was injected transanally into the submucosa of the rectum around the tumor 30 min before the operation; 52 patients in the control group underwent the operation directly without the injection of carbon nanoparticle suspension. We then compared the operation outcomes between the two groups. In the experimental group, the rate of incomplete mesorectal excision was lower than that in the control group, but no significant difference was found (2.9% vs. 7.7%, P = 0.342). The distance between the tumor and the circumferential resection margin was 5.8 ± 1.4 mm in the experimental group and 4.8 ± 1.1 mm in the control group (P = 0.001). The mean number of lymph nodes removed was 28.2 ± 9.4 in the experimental group and 22.7 ± 7.3 in the control group (P = 0.003); the mean number of lymph nodes smaller than 5 mm in diameter was 10.1 ± 7.5 and 4.5 ± 3.7, respectively (P < 0.001). Three patients in the experimental group received lateral lymph node resection. Among the three patients, we retrieved three nodes (one stained node) from the first patient, three nodes (two stained nodes) from the second patient, and two nodes (no stained nodes) from the third patient. Injecting a carbon nanoparticle suspension improved the outcomes of patients who underwent laparoscopic resection for mid-low rectal cancer; it also improved the accuracy of pathologic staging. Moreover, for selected patients, this technique narrowed the scope of lateral lymph node dissection.
NASA Astrophysics Data System (ADS)
Okada, Hironao; Kobayashi, Takeshi; Masuda, Takashi; Itoh, Toshihiro
2009-07-01
We describe a low power consumption wireless sensor node designed for monitoring the conditions of animals, especially of chickens. The node detects variations in 24-h behavior patterns by acquiring the number of the movement of an animal whose acceleration exceeds a threshold measured in per unit time. Wireless sensor nodes when operated intermittently are likely to miss necessary data during their sleep mode state and waste the power in the case of acquiring useless data. We design the node worked only when required acceleration is detected using a piezoelectric accelerometer and a comparator for wake-up source of micro controller unit.
Data acquisition, detection and estimation for structural health monitoring.
DOT National Transportation Integrated Search
2014-05-01
This project deals with using a wireless sensor network for structural health monitoring. It includes two objectives: (1) to develop : energy-efficient protocols for sensing and communication that are suitable for battery-powered sensor nodes; (2) to...
Gas levitator having fixed levitation node for containerless processing
NASA Technical Reports Server (NTRS)
Berge, L. H.; Oran, W. A.; Theiss, M. (Inventor)
1981-01-01
A method and apparatus is disclosed for levitating a specimen of material in a containerless environment at a stable nodal position independent of gravity. An elongated levitation tube has a contoured interior in the form of convergent section, constriction, and a divergent section in which the levitation node is created. A gas flow control means prevents separation of flow from the interior walls in the region of a specimen. The apparatus provides for levitating and heating the specimen simultaneously by combustion of a suitable gas mixture combined with an inert gas.
Digital seismo-acoustic signal processing aboard a wireless sensor platform
NASA Astrophysics Data System (ADS)
Marcillo, O.; Johnson, J. B.; Lorincz, K.; Werner-Allen, G.; Welsh, M.
2006-12-01
We are developing a low power, low-cost wireless sensor array to conduct real-time signal processing of earthquakes at active volcanoes. The sensor array, which integrates data from both seismic and acoustic sensors, is based on Moteiv TMote Sky wireless sensor nodes (www.moteiv.com). The nodes feature a Texas Instruments MSP430 microcontroller, 48 Kbytes of program memory, 10 Kbytes of static RAM, 1 Mbyte of external flash memory, and a 2.4-GHz Chipcon CC2420 IEEE 802.15.4 radio. The TMote Sky is programmed in TinyOS. Basic signal processing occurs on an array of three peripheral sensor nodes. These nodes are tied into a dedicated GPS receiver node, which is focused on time synchronization, and a central communications node, which handles data integration and additional processing. The sensor nodes incorporate dual 12-bit digitizers sampling a seismic sensor and a pressure transducer at 100 samples per second. The wireless capabilities of the system allow flexible array geometry, with a maximum aperture of 200m. We have already developed the digital signal processing routines on board the Moteiv Tmote sensor nodes. The developed routines accomplish Real-time Seismic-Amplitude Measurement (RSAM), Seismic Spectral- Amplitude Measurement (SSAM), and a user-configured Short Term Averaging / Long Term Averaging (STA LTA ratio), which is used to calculate first arrivals. The processed data from individual nodes are transmitted back to a central node, where additional processing may be performed. Such processing will include back azimuth determination and other wave field analyses. Future on-board signal processing will focus on event characterization utilizing pattern recognition and spectral characterization. The processed data is intended as low bandwidth information which can be transmitted periodically and at low cost through satellite telemetry to a web server. The processing is limited by the computational capabilities (RAM, ROM) of the nodes. Nevertheless, we envision this product to be a useful tool for assessing the state of unrest at remote volcanoes.
A Self-Organizing Incremental Neural Network based on local distribution learning.
Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi
2016-12-01
In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis; Vilajosana, Xavier
2014-07-24
Data collection is a key scenario for the Internet of Things because it enables gathering sensor data from distributed nodes that use low-power and long-range wireless technologies to communicate in a single-hop approach. In this kind of scenario, the network is composed of one coordinator that covers a particular area and a large number of nodes, typically hundreds or thousands, that transmit data to the coordinator upon request. Considering this scenario, in this paper we experimentally validate the energy consumption of two Medium Access Control (MAC) protocols, Frame Slotted ALOHA (FSA) and Distributed Queuing (DQ). We model both protocols as a state machine and conduct experiments to measure the average energy consumption in each state and the average number of times that a node has to be in each state in order to transmit a data packet to the coordinator. The results show that FSA is more energy efficient than DQ if the number of nodes is known a priori because the number of slots per frame can be adjusted accordingly. However, in such scenarios the number of nodes cannot be easily anticipated, leading to additional packet collisions and a higher energy consumption due to retransmissions. Contrarily, DQ does not require to know the number of nodes in advance because it is able to efficiently construct an ad hoc network schedule for each collection round. This kind of a schedule ensures that there are no packet collisions during data transmission, thus leading to an energy consumption reduction above 10% compared to FSA.
High-speed microstrip multi-anode multichannel plate detector system
NASA Astrophysics Data System (ADS)
Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter
2017-04-01
High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.
Distributed parametric amplifier for RZ-DPSK signal transmission system.
Xu, Xing; Zhang, Chi; Yuk, T I; Wong, Kenneth K Y
2012-08-13
We have experimentally demonstrated a single pump distributed parametric amplification (DPA) system for differential phase shift keying (DPSK) signal in a spool of dispersion-shifted fiber (DSF). The gain spectrum of single pump DPA is thoroughly investigated by both simulation and experiment, and a possible reference for optimal input pump power and fiber length relationship is provided to DPA based applications. Furthermore, DPSK format is compared with on-off keying (OOK) within DPA scheme. Eight WDM signal channels at 10-Gb/s are utilized, and approximately 0.5-dB power penalties at the bit-error rate (BER) of 10(-9) are achieved for return-to-zero DPSK (RZ-DPSK), comparing to larger than 1.5-dB with OOK format. In order to improve the system power efficiency, at the receiver, the pump is recycled by a photovoltaic cell and the converted energy can be used by potential low-power-consuming devices, i.e sensors or small-scale electronic circuits. Additionally, with suitable components, the whole DPA concept could be directly applied to the 1.3-μm telecommunication window along the most commonly used single-mode fiber (SMF).
Fotis, Dimitrios; Doukas, Michael; Wijnhoven, Bas PL; Didden, Paul; Biermann, Katharina; Bruno, Marco J
2015-01-01
Background Due to the high mortality and morbidity rates of esophagectomy, endoscopic mucosal resection (EMR) is increasingly used for the curative treatment of early low risk Barrett’s adenocarcinoma. Objective This retrospective cohort study aimed to assess the prevalence of lymph node metastases (LNM) in submucosal (T1b) esophageal adenocarcinomas (EAC) in relation to the absolute depth of submucosal tumor invasion and demonstrate the efficacy of EMR for low risk (well and moderately differentiated without lymphovascular invasion) EAC with sm1 invasion (submucosal invasion ≤500 µm) according to the Paris classification. Methods The pathology reports of patients undergoing endoscopic resection and surgery from January 1994 until December 2013 at one center were reviewed and 54 patients with submucosal invasion were included. LNM were evaluated in surgical specimens and by follow up examinations in case of EMR. Results No LNM were observed in 10 patients with sm1 adenocarcinomas that underwent endoscopic resection. Three of them underwent supplementary endoscopic eradication therapy with a median follow up of 27 months for patients with sm1 tumors. In the surgical series two patients (29%) with sm1 invasion according to the pragmatic classification (subdivision of the submucosa into three equal thirds), staged as sm2-3 in the Paris classification, had LNM. The rate of LNM for surgical patients with low risk sm1 tumors was 10% according to the pragmatic classification and 0% according to Paris classification. Conclusion Different classifications of the tumor invasion depth lead to different LNM risks and treatment strategies for sm1 adenocarcinomas. Patients with low risk sm1 adenocarcinomas appear to be suitable candidates for EMR. PMID:26668743
Robustness of network of networks under targeted attack.
Dong, Gaogao; Gao, Jianxi; Du, Ruijin; Tian, Lixin; Stanley, H Eugene; Havlin, Shlomo
2013-05-01
The robustness of a network of networks (NON) under random attack has been studied recently [Gao et al., Phys. Rev. Lett. 107, 195701 (2011)]. Understanding how robust a NON is to targeted attacks is a major challenge when designing resilient infrastructures. We address here the question how the robustness of a NON is affected by targeted attack on high- or low-degree nodes. We introduce a targeted attack probability function that is dependent upon node degree and study the robustness of two types of NON under targeted attack: (i) a tree of n fully interdependent Erdős-Rényi or scale-free networks and (ii) a starlike network of n partially interdependent Erdős-Rényi networks. For any tree of n fully interdependent Erdős-Rényi networks and scale-free networks under targeted attack, we find that the network becomes significantly more vulnerable when nodes of higher degree have higher probability to fail. When the probability that a node will fail is proportional to its degree, for a NON composed of Erdős-Rényi networks we find analytical solutions for the mutual giant component P(∞) as a function of p, where 1-p is the initial fraction of failed nodes in each network. We also find analytical solutions for the critical fraction p(c), which causes the fragmentation of the n interdependent networks, and for the minimum average degree k[over ¯](min) below which the NON will collapse even if only a single node fails. For a starlike NON of n partially interdependent Erdős-Rényi networks under targeted attack, we find the critical coupling strength q(c) for different n. When q>q(c), the attacked system undergoes an abrupt first order type transition. When q≤q(c), the system displays a smooth second order percolation transition. We also evaluate how the central network becomes more vulnerable as the number of networks with the same coupling strength q increases. The limit of q=0 represents no dependency, and the results are consistent with the classical percolation theory of a single network under targeted attack.
High-order finite difference formulations for the incompressible Navier-Stokes equations on the CM-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tafti, D.
1995-12-01
The paper describes the features and implementation of a general purpose high-order accurate finite difference computer program for direct and large-eddy simulations of turbulence on the CM-5 in the data parallel mode. Benchmarking studies for a direct simulation of turbulent channel flow are discussed. Performance of up to 8.8 GFLOPS is obtained for the high-order formulations on 512 processing nodes of the CM-5. The execution time for a simulation with 24 million nodes in a domain with two periodic directions is in the range of 0.2 {mu}secs/time-step/degree of freedom on 512 processing nodes of the CM-5.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2009-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.
Kuusk, Teele; De Bruijn, Roderick; Brouwer, Oscar R; De Jong, Jeroen; Donswijk, Maarten; Grivas, Nikolaos; Hendricksen, Kees; Horenblas, Simon; Prevoo, Warner; Valdés Olmos, Renato A; Van Der Poel, Henk G; Van Rhijn, Bas W G; Wit, Esther M; Bex, Axel
2018-06-01
Lymphatic drainage from renal tumors is unpredictable. In vivo drainage studies of primary lymphatic landing sites may reveal the variability and dynamics of lymphatic connections. The purpose of this study was to investigate the lymphatic drainage pattern of renal tumors in vivo with single photon emission/computerized tomography after intratumor radiotracer injection. We performed a phase II, prospective, single arm study to investigate the distribution of sentinel nodes from renal tumors on single photon emission/computerized tomography. Patients with cT1-3 (less than 10 cm) cN0M0 renal tumors of any subtype were enrolled in analysis. After intratumor ultrasound guided injection of 0.4 ml 99m Tc-nanocolloid we performed preoperative imaging of sentinel nodes with lymphoscintigraphy and single photon emission/computerized tomography. Sentinel and locoregional nonsentinel nodes were resected with a γ probe combined with a mobile γ camera. The primary study end point was the location of sentinel nodes outside the locoregional retroperitoneal templates on single photon emission/computerized tomography. Using a Simon minimax 2-stage design to detect a 25% extralocoregional retroperitoneal template location of sentinel nodes on imaging at α = 0.05 and 80% power at least 40 patients with sentinel node imaging on single photon emission/computerized tomography were needed. Of the 68 patients 40 underwent preoperative single photon emission/computerized tomography of sentinel nodes and were included in primary end point analysis. Lymphatic drainage outside the locoregional retroperitoneal templates was observed in 14 patients (35%). Eight patients (20%) had supradiaphragmatic sentinel nodes. Sentinel nodes from renal tumors were mainly located in the respective locoregional retroperitoneal templates. Simultaneous sentinel nodes were located outside the suggested lymph node dissection templates, including supradiaphragmatic sentinel nodes in more than a third of the patients. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
A Very Low Power MAC (VLPM) Protocol for Wireless Body Area Networks
Ullah, Niamat; Khan, Pervez; Kwak, Kyung Sup
2011-01-01
Wireless Body Area Networks (WBANs) consist of a limited number of battery operated nodes that are used to monitor the vital signs of a patient over long periods of time without restricting the patient’s movements. They are an easy and fast way to diagnose the patient’s status and to consult the doctor. Device as well as network lifetime are among the most important factors in a WBAN. Prolonging the lifetime of the WBAN strongly depends on controlling the energy consumption of sensor nodes. To achieve energy efficiency, low duty cycle MAC protocols are used, but for medical applications, especially in the case of pacemakers where data have time-limited relevance, these protocols increase latency which is highly undesirable and leads to system instability. In this paper, we propose a low power MAC protocol (VLPM) based on existing wakeup radio approaches which reduce energy consumption as well as improving the response time of a node. We categorize the traffic into uplink and downlink traffic. The nodes are equipped with both a low power wake-up transmitter and receiver. The low power wake-up receiver monitors the activity on channel all the time with a very low power and keeps the MCU (Micro Controller Unit) along with main radio in sleep mode. When a node [BN or BNC (BAN Coordinator)] wants to communicate with another node, it uses the low-power radio to send a wakeup packet, which will prompt the receiver to power up its primary radio to listen for the message that follows shortly. The wake-up packet contains the desired node’s ID along with some other information to let the targeted node to wake-up and take part in communication and let all other nodes to go to sleep mode quickly. The VLPM protocol is proposed for applications having low traffic conditions. For high traffic rates, optimization is needed. Analytical results show that the proposed protocol outperforms both synchronized and unsynchronized MAC protocols like T-MAC, SCP-MAC, B-MAC and X-MAC in terms of energy consumption and response time. PMID:22163818
Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel †
Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf
2018-01-01
We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e−/s at 60 °C. PMID:29370146
Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel.
Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf
2018-01-25
Abstract : We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e - /s at 60 °C.
ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems
Expósito, Roberto R.
2018-01-01
Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/. PMID:29608567
ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems.
González-Domínguez, Jorge; Expósito, Roberto R
2018-01-01
Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/.
NASA Astrophysics Data System (ADS)
Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh
2018-02-01
The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.
Development of a neural network technique for KSTAR Thomson scattering diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung Hun, E-mail: leesh81@nfri.re.kr; Lee, J. H.; Yamada, I.
Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ{sup 2} method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ{sup 2} method. The best results were obtained for 10{sup 3} training cyclesmore » and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ{sup 2} method and performs the calculation twenty times faster.« less
[Low-power Wireless Micro Ambulatory Electrocardiogram Node].
Cai, Zhipeng; Luo, Kan; Li, Jianqing
2016-02-01
Ambulatory electrocardiogram (ECG) monitoring can effectively reduce the risk and death rate of patients with cardiovascular diseases (CVDs). The Body Sensor Network (BSN) based ECG monitoring is a new and efficien method to protect the CVDs patients. To meet the challenges of miniaturization, low power and high signal quality of the node, we proposed a novel 50 mmX 50 mmX 10 mm, 30 g wireless ECG node, which includes the single-chip an alog front-end AD8232, ultra-low power microprocessor MSP430F1611 and Bluetooth module HM-11. The ECG signal quality is guaranteed by the on-line digital filtering. The difference threshold algorithm results in accuracy of R-wave detection and heart rate. Experiments were carried out to test the node and the results showed that the pro posed node reached the design target, and it has great potential in application of wireless ECG monitoring.
Magnetic sensor nodes for enhanced situational awareness in urban settings
NASA Astrophysics Data System (ADS)
Trammell, Hoke; Shelby, Richard; Mathis, Kevin; Dalichaouch, Yacine; Kumar, Sankaran
2005-05-01
Military forces conducting urban operations are in need of non-line-of-sight sensor technologies for enhanced situational awareness. Disposable sensors ought to be able to detect and track targets through walls and within rooms in a building and relay that information in real-time to the soldier. We have recently developed magnetic sensor nodes aimed towards low cost, small size, low power consumption, and wireless communication. The current design uses a three-axis thin-film magnetoresistive sensor for low bandwidth B-field monitoring of magnetic targets such as vehicles and weapons carried by personnel. These sensor nodes are battery operated and use IEEE 802.15.4 communication link for control and data transmission. Power consumption during signal acquisition and communication is approximately 300 mW per channel. We will present and discuss node array performance, future node development and sensor fusion concepts.
Loiselle, Christopher; Eby, Peter R.; Kim, Janice N.; Calhoun, Kristine E.; Allison, Kimberly H.; Gadi, Vijayakrishna K.; Peacock, Sue; Storer, Barry; Mankoff, David A.; Partridge, Savannah C.; Lehman, Constance D.
2014-01-01
Rationale and Objectives To test the ability of quantitative measures from preoperative Dynamic Contrast Enhanced MRI (DCE-MRI) to predict, independently and/or with the Katz pathologic nomogram, which breast cancer patients with a positive sentinel lymph node biopsy will have ≥ 4 positive axillary lymph nodes upon completion axillary dissection. Methods and Materials A retrospective review was conducted to identify clinically node-negative invasive breast cancer patients who underwent preoperative DCE-MRI, followed by sentinel node biopsy with positive findings and complete axillary dissection (6/2005 – 1/2010). Clinical/pathologic factors, primary lesion size and quantitative DCE-MRI kinetics were collected from clinical records and prospective databases. DCE-MRI parameters with univariate significance (p < 0.05) to predict ≥ 4 positive axillary nodes were modeled with stepwise regression and compared to the Katz nomogram alone and to a combined MRI-Katz nomogram model. Results Ninety-eight patients with 99 positive sentinel biopsies met study criteria. Stepwise regression identified DCE-MRI total persistent enhancement and volume adjusted peak enhancement as significant predictors of ≥4 metastatic nodes. Receiver operating characteristic (ROC) curves demonstrated an area under the curve (AUC) of 0.78 for the Katz nomogram, 0.79 for the DCE-MRI multivariate model, and 0.87 for the combined MRI-Katz model. The combined model was significantly more predictive than the Katz nomogram alone (p = 0.003). Conclusion Integration of DCE-MRI primary lesion kinetics significantly improved the Katz pathologic nomogram accuracy to predict presence of metastases in ≥ 4 nodes. DCE-MRI may help identify sentinel node positive patients requiring further localregional therapy. PMID:24331270
Generalized Orienteering Problem with Resource Dependent Rewards
2013-02-19
School, Monterey, California February 19, 2013 Abstract We introduce a generalized Orienteering Problem where, as usual, a vehicle is routed from a ...prescribed start node, through a directed network, to a prescribed destination node, collecting rewards at each node visited, in order to maximize the...total reward along the path. In our generalization, transit on arcs in the network and reward collection at nodes both consume a variable amount of the
Using Object-Oriented Databases for Implementation of Interactive Electronic Technical Manuals
1992-03-01
analytical process applied throughout the system acquisition program in order to define supportability related design factors and to ensure development of a...Node Alternatives Node Alternatives (NODEALTS) is a list of mutually exclusive nodes, grouped together by the fact that they apply to different...contextual situations. The content specific layer NODEALTS element is a reference to a set of nodes that might apply in different situations. No hierarchy
Cuny, F; Géry, B; Florescu, C; Clarisse, B; Blanchard, D; Rame, J-P; Babin, E; De Raucourt, D
2013-11-01
Study of patients with stage T1N0M0 or T2N0M0 glottic cancer treated by exclusive radiotherapy and comparison of the survival and functional results of this series with those of the literature. Retrospective study of stage T1N0M0 or T2N0M0 glottic cancers diagnosed between 1st January 2000 and 31st December 2010 and treated by exclusive radiotherapy. Evaluation of survival, recurrence and larynx preservation rates. CLCC François-Baclesse and CHU de Caen. Fifty-nine patients (53 men and sixwomen) treated for glottic cancer (57 squamous cell carcinomas, two verrucous carcinomas) comprising 51 T1N0M0 and eight T2N0M0 tumours. Treatment with exclusive radiotherapy (mean dose of 70 Grays limited to the thyroid cartilage for 57 patients, with lymph node irradiation for two patients). In this series, five (9.8%) patients with stage T1N0M0 glottic cancer and three patients (37.5%) with stage T2N0M0 glottic cancer relapsed, corresponding to a global recurrence rate of 13.6%. Three of the eight recurrences involved lymph nodes exclusively (N), two patients relapsed exclusively at the primary tumour site (T) and three patients presented local and lymph node recurrence (T and N). Treatment consisted of salvage total laryngectomy with bilateral cervical lymph node dissection in three cases, bilateral cervical lymph node dissection and sensitized radiotherapy in two cases, exclusive chemotherapy in one case, cervical lymph node dissection and cervical radiotherapy in one case. The last patient with recurrence died prior to salvage therapy. The larynx preservation rate was 94.9%. In comparison with the literature, treatment of stage T1-T2N0M0 glottic cancer by exclusive radiotherapy gives very good results, with a larynx preservation rate of 95%. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Distributed intelligent control and status networking
NASA Technical Reports Server (NTRS)
Fortin, Andre; Patel, Manoj
1993-01-01
Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.
Asynchronous Data Retrieval from an Object-Oriented Database
NASA Astrophysics Data System (ADS)
Gilbert, Jonathan P.; Bic, Lubomir
We present an object-oriented semantic database model which, similar to other object-oriented systems, combines the virtues of four concepts: the functional data model, a property inheritance hierarchy, abstract data types and message-driven computation. The main emphasis is on the last of these four concepts. We describe generic procedures that permit queries to be processed in a purely message-driven manner. A database is represented as a network of nodes and directed arcs, in which each node is a logical processing element, capable of communicating with other nodes by exchanging messages. This eliminates the need for shared memory and for centralized control during query processing. Hence, the model is suitable for implementation on a multiprocessor computer architecture, consisting of large numbers of loosely coupled processing elements.
NASA Astrophysics Data System (ADS)
Miret, Josep M.; Sebé, Francesc
Low-cost devices are the key component of several applications: RFID tags permit an automated supply chain management while smart cards are a secure means of storing cryptographic keys required for remote and secure authentication in e-commerce and e-government applications. These devices must be cheap in order to permit their cost-effective massive manufacturing and deployment. Unfortunately, their low cost limits their computational power. Other devices such as nodes of sensor networks suffer from an additional constraint, namely, their limited battery life. Secure applications designed for these devices cannot make use of classical cryptographic primitives designed for full-fledged computers.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.
Sentinel lymph node biopsy in endometrial cancer-Feasibility, safety and lymphatic complications.
Geppert, Barbara; Lönnerfors, Céline; Bollino, Michele; Persson, Jan
2018-03-01
To compare the rate of lymphatic complications in women with endometrial cancer undergoing sentinel lymph node biopsy versus a full pelvic and infrarenal paraaortic lymphadenectomy, and to examine the overall feasibility and safety of the former. A prospective study of 188 patients with endometrial cancer planned for robotic surgery. Indocyanine green was used to identify the sentinel lymph nodes. In low-risk patients the lymphadenectomy was restricted to removal of sentinel lymph nodes whereas in high-risk patients also a full lymphadenectomy was performed. The impact of the extent of the lymphadenectomy on the rate of complications was evaluated. The bilateral detection rate of sentinel lymph nodes was 96% after cervical tracer injection. No intraoperative complication was associated with the sentinel lymph node biopsy per se. Compared with hysterectomy alone, the additional average operative time for removal of sentinel lymph nodes was 33min whereas 91min were saved compared with a full pelvic and paraaortic lymphadenectomy. Sentinel lymph node biopsy alone resulted in a lower incidence of leg lymphedema than infrarenal paraaortic and pelvic lymphadenectomy (1.3% vs 18.1%, p=0.0003). The high feasibility, the absence of intraoperative complications and the low risk of lymphatic complications supports implementing detection of sentinel lymph nodes in low-risk endometrial cancer patients. Given that available preliminary data on sensitivity and false negative rates in high-risk patients are confirmed in further studies, we also believe that the reduction in lymphatic complications and operative time strongly motivates the sentinel lymph node concept in high-risk endometrial cancer. Copyright © 2017. Published by Elsevier Inc.
Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes.
Salomons, Etto L; Havinga, Paul J M; van Leeuwen, Henk
2016-09-27
A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed.
Pervasive Radio Mapping of Industrial Environments Using a Virtual Reality Approach
Nedelcu, Adrian-Valentin; Machedon-Pisu, Mihai; Talaba, Doru
2015-01-01
Wireless communications in industrial environments are seriously affected by reliability and performance issues, due to the multipath nature of obstacles within such environments. Special attention needs to be given to planning a wireless industrial network, so as to find the optimum spatial position for each of the nodes within the network, and especially for key nodes such as gateways or cluster heads. The aim of this paper is to present a pervasive radio mapping system which captures (senses) data regarding the radio spectrum, using low-cost wireless sensor nodes. This data is the input of radio mapping algorithms that generate electromagnetic propagation profiles. Such profiles are used for identifying obstacles within the environment and optimum propagation pathways. With the purpose of further optimizing the radio planning process, the authors propose a novel human-network interaction (HNI) paradigm that uses 3D virtual environments in order to display the radio maps in a natural, easy-to-perceive manner. The results of this approach illustrate its added value to the field of radio resource planning of industrial communication systems. PMID:26167533
Pervasive Radio Mapping of Industrial Environments Using a Virtual Reality Approach.
Nedelcu, Adrian-Valentin; Machedon-Pisu, Mihai; Duguleana, Mihai; Talaba, Doru
2015-01-01
Wireless communications in industrial environments are seriously affected by reliability and performance issues, due to the multipath nature of obstacles within such environments. Special attention needs to be given to planning a wireless industrial network, so as to find the optimum spatial position for each of the nodes within the network, and especially for key nodes such as gateways or cluster heads. The aim of this paper is to present a pervasive radio mapping system which captures (senses) data regarding the radio spectrum, using low-cost wireless sensor nodes. This data is the input of radio mapping algorithms that generate electromagnetic propagation profiles. Such profiles are used for identifying obstacles within the environment and optimum propagation pathways. With the purpose of further optimizing the radio planning process, the authors propose a novel human-network interaction (HNI) paradigm that uses 3D virtual environments in order to display the radio maps in a natural, easy-to-perceive manner. The results of this approach illustrate its added value to the field of radio resource planning of industrial communication systems.
Synchronization in Random Pulse Oscillator Networks
NASA Astrophysics Data System (ADS)
Brown, Kevin; Hermundstad, Ann
Motivated by synchronization phenomena in neural systems, we study synchronization of random networks of coupled pulse oscillators. We begin by considering binomial random networks whose nodes have intrinsic linear dynamics. We quantify order in the network spiking dynamics using a new measure: the normalized Lev-Zimpel complexity (LZC) of the nodes' spike trains. Starting from a globally-synchronized state, we see two broad classes of behaviors. In one (''temporally random''), the LZC is high and nodes spike independently with no coherent pattern. In another (''temporally regular''), the network does not globally synchronize but instead forms coherent, repeating population firing patterns with low LZC. No topological feature of the network reliably predicts whether an individual network will show temporally random or regular behavior; however, we find evidence that degree heterogeneity in binomial networks has a strong effect on the resulting state. To confirm these findings, we generate random networks with independently-adjustable degree mean and variance. We find that the likelihood of temporally-random behavior increases as degree variance increases. Our results indicate the subtle and complex relationship between network structure and dynamics.
Intelligent Sensing in Dynamic Environments Using Markov Decision Process
Nanayakkara, Thrishantha; Halgamuge, Malka N.; Sridhar, Prasanna; Madni, Asad M.
2011-01-01
In a network of low-powered wireless sensors, it is essential to capture as many environmental events as possible while still preserving the battery life of the sensor node. This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor node to sense and transmit environmental events. A common method that is generally adopted in ad-hoc sensor networks is to periodically put the sensor nodes to sleep. The purpose of the learning algorithm is to couple the sensor’s sleeping behavior to the natural statistics of the environment hence that it can be in optimal harmony with changes in the environment, the sensors can sleep when steady environment and stay awake when turbulent environment. This paper presents theoretical and experimental validation of a reward based learning algorithm that can be implemented on an embedded sensor. The key contribution of the proposed approach is the design and implementation of a reward function that satisfies a trade-off between the above two mutually contradicting objectives, and a linear critic function to approximate the discounted sum of future rewards in order to perform policy learning. PMID:22346624
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2010-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom.
Neural node network and model, and method of teaching same
Parlos, A.G.; Atiya, A.F.; Fernandez, B.; Tsai, W.K.; Chong, K.T.
1995-12-26
The present invention is a fully connected feed forward network that includes at least one hidden layer. The hidden layer includes nodes in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device occurring in the feedback path (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit from all the other nodes within the same layer. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing. 21 figs.
Neural node network and model, and method of teaching same
Parlos, Alexander G.; Atiya, Amir F.; Fernandez, Benito; Tsai, Wei K.; Chong, Kil T.
1995-01-01
The present invention is a fully connected feed forward network that includes at least one hidden layer 16. The hidden layer 16 includes nodes 20 in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device 24 occurring in the feedback path 22 (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit 36 from all the other nodes within the same layer 16. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing.
Energy efficient sensor network implementations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, Janette R; Raby, Eric Y; Brennan, Sean M
In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study.more » We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.« less
Grid generation methodology and CFD simulations in sliding vane compressors and expanders
NASA Astrophysics Data System (ADS)
Bianchi, Giuseppe; Rane, Sham; Kovacevic, Ahmed; Cipollone, Roberto; Murgia, Stefano; Contaldi, Giulio
2017-08-01
The limiting factor for the employment of advanced 3D CFD tools in the analysis and design of rotary vane machines is the unavailability of methods for generation of computational grids suitable for fast and reliable numerical analysis. The paper addresses this challenge presenting the development of an analytical grid generation for vane machines that is based on the user defined nodal displacement. In particular, mesh boundaries are defined as parametric curves generated using trigonometrical modelling of the axial cross section of the machine while the distribution of computational nodes is performed using algebraic algorithms with transfinite interpolation, post orthogonalisation and smoothing. Algebraic control functions are introduced for distribution of nodes on the rotor and casing boundaries in order to achieve good grid quality in terms of cell size and expansion. In this way, the moving and deforming fluid domain of the sliding vane machine is discretized and the conservation of intrinsic quantities in ensured by maintaining the cell connectivity and structure. For validation of generated grids, a mid-size air compressor and a small-scale expander for Organic Rankine Cycle applications have been investigated in this paper. Remarks on implementation of the mesh motion algorithm, stability and robustness experienced with the ANSYS CFX solver as well as the obtained flow results are presented.
An Intelligent Cooperative Visual Sensor Network for Urban Mobility
Leone, Giuseppe Riccardo; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea
2017-01-01
Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities. PMID:29125535
NASA Astrophysics Data System (ADS)
Anwar, Farhat; Masud, Mosharrof H.; Latif, Suhaimi A.
2013-12-01
Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6.
Performance and policy dimensions in internet routing
NASA Technical Reports Server (NTRS)
Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.; Thyagarajan, Ajit
1995-01-01
The Internet Routing Project, referred to in this report as the 'Highball Project', has been investigating architectures suitable for networks spanning large geographic areas and capable of very high data rates. The Highball network architecture is based on a high speed crossbar switch and an adaptive, distributed, TDMA scheduling algorithm. The scheduling algorithm controls the instantaneous configuration and swell time of the switch, one of which is attached to each node. In order to send a single burst or a multi-burst packet, a reservation request is sent to all nodes. The scheduling algorithm then configures the switches immediately prior to the arrival of each burst, so it can be relayed immediately without requiring local storage. Reservations and housekeeping information are sent using a special broadcast-spanning-tree schedule. Progress to date in the Highball Project includes the design and testing of a suite of scheduling algorithms, construction of software reservation/scheduling simulators, and construction of a strawman hardware and software implementation. A prototype switch controller and timestamp generator have been completed and are in test. Detailed documentation on the algorithms, protocols and experiments conducted are given in various reports and papers published. Abstracts of this literature are included in the bibliography at the end of this report, which serves as an extended executive summary.
An Intelligent Cooperative Visual Sensor Network for Urban Mobility.
Leone, Giuseppe Riccardo; Moroni, Davide; Pieri, Gabriele; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea; Marino, Francesco
2017-11-10
Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities.
Real-time trajectory optimization on parallel processors
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1993-01-01
A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.
Rapid crystallization of externally produced ions in a Penning trap
NASA Astrophysics Data System (ADS)
Murböck, T.; Schmidt, S.; Birkl, G.; Nörtershäuser, W.; Thompson, R. C.; Vogel, M.
2016-10-01
We have studied the cooling dynamics, formation process, and geometric structure of mesoscopic crystals of externally produced magnesium ions in a Penning trap. We present a cooling model and measurements for a combination of buffer gas cooling and laser cooling which has been found to reduce the ion kinetic energy by eight orders of magnitude from several hundreds of eV to μ eV and below within seconds. With ion numbers of the order of 1 ×103 to 1 ×105 , such cooling leads to the formation of ion Coulomb crystals which display a characteristic shell structure in agreement with the theory of non-neutral plasmas. We show the production and characterization of two-species ion crystals as a means of sympathetic cooling of ions lacking a suitable laser-cooling transition.
Jiang, Joe-Air; Chuang, Cheng-Long; Lin, Tzu-Shiang; Chen, Chia-Pang; Hung, Chih-Hung; Wang, Jiing-Yi; Liu, Chang-Wang; Lai, Tzu-Yun
2010-01-01
In recent years, various received signal strength (RSS)-based localization estimation approaches for wireless sensor networks (WSNs) have been proposed. RSS-based localization is regarded as a low-cost solution for many location-aware applications in WSNs. In previous studies, the radiation patterns of all sensor nodes are assumed to be spherical, which is an oversimplification of the radio propagation model in practical applications. In this study, we present an RSS-based cooperative localization method that estimates unknown coordinates of sensor nodes in a network. Arrangement of two external low-cost omnidirectional dipole antennas is developed by using the distance-power gradient model. A modified robust regression is also proposed to determine the relative azimuth and distance between a sensor node and a fixed reference node. In addition, a cooperative localization scheme that incorporates estimations from multiple fixed reference nodes is presented to improve the accuracy of the localization. The proposed method is tested via computer-based analysis and field test. Experimental results demonstrate that the proposed low-cost method is a useful solution for localizing sensor nodes in unknown or changing environments.
NASA Astrophysics Data System (ADS)
Gautam, Amit Kr.; Gautam, Ajay Kr.; Patel, R. B.
2010-11-01
In order to provide load balancing in clustered sensor deployment, the upstream clusters (near the BS) are kept smaller in size as compared to downstream ones (away from BS). Moreover, geographic awareness is also desirable in order to further enhance energy efficiency. But, this must be cost effective, since most of current location awareness strategies are either cost and weight inefficient (GPS) or are complex, inaccurate and unreliable in operation. This paper presents design and implementation of a Geographic LOad BALanced (GLOBAL) Clustering Protocol for Wireless Sensor Networks. A mathematical formulation is provided for determining the number of sensor nodes in each cluster. This enables uniform energy consumption after the multi-hop data transmission towards BS. Either the sensors can be manually deployed or the clusters be so formed that the sensor are efficiently distributed as per formulation. The latter strategy is elaborated in this contribution. Methods to provide static clustering and custom cluster sizes with location awareness are also provided in the given work. Finally, low mobility node applications can also implement the proposed work.
Achieving Fair Throughput among TCP Flows in Multi-Hop Wireless Mesh Networks
NASA Astrophysics Data System (ADS)
Hou, Ting-Chao; Hsu, Chih-Wei
Previous research shows that the IEEE 802.11 DCF channel contention mechanism is not capable of providing throughput fairness among nodes in different locations of the wireless mesh network. The node nearest the gateway will always strive for the chance to transmit data, causing fewer transmission opportunities for the nodes farther from the gateway, resulting in starvation. Prior studies modify the DCF mechanism to address the fairness problem. This paper focuses on the fairness study when TCP flows are carried over wireless mesh networks. By not modifying lower layer protocols, the current work identifies TCP parameters that impact throughput fairness and proposes adjusting those parameters to reduce frame collisions and improve throughput fairness. With the aid of mathematical formulation and ns2 simulations, this study finds that frame transmission from each node can be effectively controlled by properly controlling the delayed ACK timer and using a suitable advertised window. The proposed method reduces frame collisions and greatly improves TCP throughput fairness.
Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas.
Wang, Ze; Zhang, Haijuan; Wu, Luqiang; Zhou, Chang
2015-09-25
Network security is one of the most important issues in mobile sensor networks (MSNs). Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA) is proposed to resist malicious attacks by using mobile nodes' dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.
Diamond photonics for distributed quantum networks
NASA Astrophysics Data System (ADS)
Johnson, Sam; Dolan, Philip R.; Smith, Jason M.
2017-09-01
The distributed quantum network, in which nodes comprising small but well-controlled quantum states are entangled via photonic channels, has in recent years emerged as a strategy for delivering a range of quantum technologies including secure communications, enhanced sensing and scalable quantum computing. Colour centres in diamond are amongst the most promising candidates for nodes fabricated in the solid-state, offering potential for large scale production and for chip-scale integrated devices. In this review we consider the progress made and the remaining challenges in developing diamond-based nodes for quantum networks. We focus on the nitrogen-vacancy and silicon-vacancy colour centres, which have demonstrated many of the necessary attributes for these applications. We focus in particular on the use of waveguides and other photonic microstructures for increasing the efficiency with which photons emitted from these colour centres can be coupled into a network, and the use of microcavities for increasing the fraction of photons emitted that are suitable for generating entanglement between nodes.
Simplified Dynamic Analysis of Grinders Spindle Node
NASA Astrophysics Data System (ADS)
Demec, Peter
2014-12-01
The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.
An improved AVC strategy applied in distributed wind power system
NASA Astrophysics Data System (ADS)
Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.
2016-08-01
Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.
Multiple node remote messaging
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos
2010-08-31
A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).
Rossi, Luca; Torsello, Andrea; Hancock, Edwin R
2015-02-01
In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs. We design an experiment where the two graphs are merged by establishing a complete set of connections between their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In order to analyze the behavior of the walks without causing wave function collapse, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the divergence between the evolution of two suitably initialized quantum walks over this structure is maximum when the original pair of graphs is isomorphic. We also prove that under special conditions the divergence is minimum when the sets of eigenvalues of the Hamiltonians associated with the two original graphs have an empty intersection.
Merlin - Massively parallel heterogeneous computing
NASA Technical Reports Server (NTRS)
Wittie, Larry; Maples, Creve
1989-01-01
Hardware and software for Merlin, a new kind of massively parallel computing system, are described. Eight computers are linked as a 300-MIPS prototype to develop system software for a larger Merlin network with 16 to 64 nodes, totaling 600 to 3000 MIPS. These working prototypes help refine a mapped reflective memory technique that offers a new, very general way of linking many types of computer to form supercomputers. Processors share data selectively and rapidly on a word-by-word basis. Fast firmware virtual circuits are reconfigured to match topological needs of individual application programs. Merlin's low-latency memory-sharing interfaces solve many problems in the design of high-performance computing systems. The Merlin prototypes are intended to run parallel programs for scientific applications and to determine hardware and software needs for a future Teraflops Merlin network.
Concurrent communication among multi-transceiver stations over shared media. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Birk, Yitzhak
1987-01-01
In order to increase a local-area network's throughput beyond a single bus data rate without using dedicated switching nodes, multiple buses and multitransceiver stations are required. The design space of single-hop interconnections is explored among such stations. Interconnections are presented whose throughput can grow quadratically with the number of transmitters and receivers per station. These are referred to as selective broadcast interconnections (SBIs). The performance of various SBIs are studied. A spread-spectrum channel can accommodate several current successful transmission, and a single-transceiver node can thus utilize only a small fraction of the channel capacity. In order to allocate the appropriate fraction of capacity to a busy node, it is proposed to equip it with several transmitters and receivers, thereby turning it into a supernode. Several architectures and operation policies for supernodes are suggested and compared. It is shown that a supernode can significantly outperform a collection of independent conventional nodes with the same total numbers of transmitters and receivers. Packet-radio networks with half-duplex nodes, as well as networks with full-duplex nodes, are considered.
Märkl, Bruno; Schaller, Tina; Kokot, Yuriy; Endhardt, Katharina; Kretsinger, Hallie; Hirschbühl, Klaus; Aumann, Georg; Schenkirsch, Gerhard
2016-10-01
Stage migration is an accepted explanation for the association between lymph node (LN) yield and outcome in colon cancer. To investigate whether the alternative thesis of immune response is more likely, we performed a retrospective study. We enrolled 239 cases of node negative cancers, which were categorized according to the number of LNs with diameters larger than 5 mm (LN5) into the groups LN5-very low (0 to 1 LN5), LN5-low (2 to 5 LN5), and LN5-high (≥6 LN5). Significant differences were found in pT3/4 cancers with median survival times of 40, 57, and 71 months (P = .022) in the LN5-very low, LN5-low, and LN5-high groups, respectively. Multivariable analysis revealed that LN5 number and infiltration type were independent prognostic factors. LN size is prognostic in node negative colon cancer. The correct explanation for outcome differences associated with LN harvest is probably the activation status of LNs. Copyright © 2015 Elsevier Inc. All rights reserved.
An Obstacle-Tolerant Path Planning Algorithm for Mobile-Anchor-Node-Assisted Localization
Tsai, Rong-Guei
2018-01-01
The location information obtained using a sensor is a critical requirement in wireless sensor networks. Numerous localization schemes have been proposed, among which mobile-anchor-node-assisted localization (MANAL) can reduce costs and overcome environmental constraints. A mobile anchor node (MAN) provides its own location information to assist the localization of sensor nodes. Numerous path planning schemes have been proposed for MANAL, but most scenarios assume the absence of obstacles in the environment. However, in a realistic environment, sensor nodes cannot be located because the obstacles block the path traversed by the MAN, thereby rendering the sensor incapable of receiving sufficient three location information from the MAN. This study proposes the obstacle-tolerant path planning (OTPP) approach to solve the sensor location problem owing to obstacle blockage. OTPP can approximate the optimum beacon point number and path planning, thereby ensuring that all the unknown nodes can receive the three location information from the MAN and reduce the number of MAN broadcast packet times. Experimental results demonstrate that OTPP performs better than Z-curves because it reduces the total number of beacon points utilized and is thus more suitable in an obstacle-present environment. Compared to the Z-curve, OTPP can reduce localization error and improve localization coverage. PMID:29547582
Ruskin, Olivia; Sanelli, Alexandra; Herschtal, Alan; Webb, Angela; Dixon, Ben; Pohl, Miklos; Donahoe, Simon; Spillane, John; Henderson, Michael A; Gyorki, David E
2016-09-01
Recommended margins for thick cutaneous melanoma (Breslow thickness >4 mm; T4) have decreased over recent decades. Optimal margins and the role of sentinel node biopsy (SNB) in thick head and neck melanoma remain controversial. A single-center review was conducted of patients treated between 2002 and 2012 assessing the impact of excision margins and sentinel lymph node status on locoregional recurrence and melanoma-specific survival (MSS). One hundred eight patients were identified. Median age was 71.1 years and median Breslow thickness was 6.0 mm. Median follow-up was 40 months. Locoregional recurrence occurred in 27% and there was no significant reduction in recurrence with margins ≥2 cm (p = .17). Increasing margins did not improve survival (p = .58). Fifty-nine patients (55%) underwent SNB, of which 27% were positive. There was a trend toward longer survival for patients who were sentinel lymph node-negative (p = .097). Wider margins do not significantly improve locoregional recurrence or MSS. Sentinel lymph node involvement reflects a poor prognosis. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1373-1379, 2016. © 2016 Wiley Periodicals, Inc.
History, present status and future of sentinel node biopsy in breast cancer. The Mary Béves Lecture.
Mansel, R E; Khonji, N I; Clarke, D
2000-01-01
The word Sentinel' is defined in The Oxford English Dictionary as 'a guard, one who keeps watch or a sentry'. When translated to the concept of a tumour and its lymph node drainage, the sentinel node could be interpreted to mean the lymph node that guards or keeps watch over a tumour. The sentinel lymph node can thus be defined as the first lymph node that drains a primary tumour within the regional lymphatic basin of that tumour. We know that tumour progression in breast cancer often occurs in an orderly, progressive fashion. So in theory, if the sentinel node is tumour free then the rest of the nodes in the lymphatic basin should also be uninvolved by the tumour.
Khaled, W; Ermert, H; Bruhns, O; Boese, H; Baumann, M; Monkman, G J; Egersdoerfer, S; Meier, A; Klein, D; Freimuth, H
2003-01-01
Mechanical properties of biological tissue represent important diagnostic information and are of histological relevance (hard lesions, "nodes" in organs: tumors; calcifications in vessels: arteriosclerosis). The problem is, that such information is usually obtained by digital palpation only, which is limited with respect to sensitivity. It requires intuitive assessment and does not allow quantitative documentation. A suitable sensor is required for quantitative detection of mechanical tissue properties. On the other hand, there is also some need for a realistic mechanical display of those tissue properties. Suitable actuator arrays with high spatial resolution and real-time capabilities are required operating in a haptic sensor actuator system with different applications. The sensor system uses real time ultrasonic elastography whereas the tactile actuator is based on electrorheological fluids. Due to their small size the actuator array elements have to be manufactured by micro-mechanical production methods. In order to supply the actuator elements with individual high voltages a sophisticated switching and control concept have been designed. This haptic system has the potential of inducing real time substantial forces, using a compact lightweight mechanism which can be applied to numerous areas including intraoperative navigation, telemedicine, teaching, space and telecommunication.
Low latency, high bandwidth data communications between compute nodes in a parallel computer
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2010-11-02
Methods, parallel computers, and computer program products are disclosed for low latency, high bandwidth data communications between compute nodes in a parallel computer. Embodiments include receiving, by an origin direct memory access (`DMA`) engine of an origin compute node, data for transfer to a target compute node; sending, by the origin DMA engine of the origin compute node to a target DMA engine on the target compute node, a request to send (`RTS`) message; transferring, by the origin DMA engine, a predetermined portion of the data to the target compute node using memory FIFO operation; determining, by the origin DMA engine whether an acknowledgement of the RTS message has been received from the target DMA engine; if the an acknowledgement of the RTS message has not been received, transferring, by the origin DMA engine, another predetermined portion of the data to the target compute node using a memory FIFO operation; and if the acknowledgement of the RTS message has been received by the origin DMA engine, transferring, by the origin DMA engine, any remaining portion of the data to the target compute node using a direct put operation.
Toward two-dimensional search engines
NASA Astrophysics Data System (ADS)
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A generalized approach to complex networks
NASA Astrophysics Data System (ADS)
Costa, L. Da F.; da Rocha, L. E. C.
2006-03-01
This work describes how the formalization of complex network concepts in terms of discrete mathematics, especially mathematical morphology, allows a series of generalizations and important results ranging from new measurements of the network topology to new network growth models. First, the concepts of node degree and clustering coefficient are extended in order to characterize not only specific nodes, but any generic subnetwork. Second, the consideration of distance transform and rings are used to further extend those concepts in order to obtain a signature, instead of a single scalar measurement, ranging from the single node to whole graph scales. The enhanced discriminative potential of such extended measurements is illustrated with respect to the identification of correspondence between nodes in two complex networks, namely a protein-protein interaction network and a perturbed version of it.
Antolín, Diego; Calvo, Belén; Martínez, Pedro A.
2017-01-01
This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units—characterization and modelling—are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions. PMID:28777330
Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Martínez, Pedro A
2017-08-04
This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units-characterization and modelling-are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions.
Finite-time synchronization of complex networks with non-identical nodes and impulsive disturbances
NASA Astrophysics Data System (ADS)
Zhang, Wanli; Li, Chuandong; He, Xing; Li, Hongfei
2018-01-01
This paper investigates the finite-time synchronization of complex networks (CNs) with non-identical nodes and impulsive disturbances. By utilizing stability theories, new 1-norm-based analytical techniques and suitable comparison, systems, several sufficient conditions are obtained to realize the synchronization goal in finite time. State feedback controllers with and without the sign function are designed. Results show that the controllers with sign function can reduce the conservativeness of control gains and the controllers without sign function can overcome the chattering phenomenon. Numerical simulations are offered to verify the effectiveness of the theoretical analysis.
Micropropagation and Biomass Production of True-to-Type Stevia rebaudiana Bertoni.
Modi, Arpan R; Sharma, Vikas; Patil, Ghanshyam; Singh, Amritpal S; Subhash, N; Kumar, Nitish
2016-01-01
Here we describe an efficient micropropagation protocol for Stevia rebaudiana Bertoni. We present experiments carried out to optimize the suitable media for in vitro shoot multiplication and root induction and to study the effect of culture vessel on shoot multiplication. Among all different media tested for in vitro shoot multiplication, hormone-free liquid medium is most suitable. The highest number of nodes per shoot (5.4) and length of shoot (4.76 cm) at 4 weeks after subculturing are observed when single node explants are placed on modified MS medium supplemented with 1 % sucrose and 0.7 % agar. The highest response of multiplication rate (9.56) is observed on half strength of macroelement of MS with full strength of microelement of MS and 170 mg/l KH2PO4, and 185 mg/l MgSO4 in plastic growth container. Further, RAPD marker analysis of in vitro-raised plants maintained their clonal fidelity and true-to-type without showing any somaclonal variation.
A secured authentication protocol for wireless sensor networks using elliptic curves cryptography.
Yeh, Hsiu-Lien; Chen, Tien-Ho; Liu, Pin-Chuan; Kim, Tai-Hoo; Wei, Hsin-Wen
2011-01-01
User authentication is a crucial service in wireless sensor networks (WSNs) that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das' protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs.
A Secured Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography
Yeh, Hsiu-Lien; Chen, Tien-Ho; Liu, Pin-Chuan; Kim, Tai-Hoo; Wei, Hsin-Wen
2011-01-01
User authentication is a crucial service in wireless sensor networks (WSNs) that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das’ protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs. PMID:22163874
[Pay attention to the selective lateral pelvic lymph node dissection in mid-low rectal cancer].
Meng, Wenjian; Wang, Ziqiang
2017-03-25
Lateral pelvic lymph node metastasis is an important metastatic mode and a major cause of locoregional recurrence of mid-low rectal cancer. Recently, there is an East-West discrepancy in regard to the diagnosis, clinical significance, treatment and prognosis of lateral pelvic lymph node metastasis. In the West, lateral nodal involvement may represent systemic disease and preoperative chemoradiotherapy can sterilize clinically suspected lateral nodes. Thus, in many Western countries, the standard therapy for lower rectal cancer is total mesorectal excision with chemoradiotherapy, and pelvic sidewall dissection is rarely performed. In the East, and Japan in particular, however, there is a positive attitude in regard to lateral pelvic lymph node dissection (LPND). They consider that lateral pelvic lymph node metastasis is as regional metastasis, and the clinically suspected lateral nodes can not be removed by neoadjuvant chemoradiotherapy. The selective LPND after neoadjuvant chemoradiotherapy may be found to be promising treatment for the improvement of therapeutic benefits in these patients. Therefore, the large-scale prospective studies are urgently required to improve selection criteria for LPND and neoadjuvant treatment to prevent overtreatment in the near future. Selective LPND after neoadjuvant treatment based on modern imaging techniques is expected to reduce locoregional recurrence and improve long-term survival in patients with mid-low rectal cancer.
Image sensor with motion artifact supression and anti-blooming
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)
2006-01-01
An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.
High speed CMOS imager with motion artifact supression and anti-blooming
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)
2001-01-01
An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.
NASA Astrophysics Data System (ADS)
Sun, Dan; Garmory, Andrew; Page, Gary J.
2017-02-01
For flows where the particle number density is low and the Stokes number is relatively high, as found when sand or ice is ingested into aircraft gas turbine engines, streams of particles can cross each other's path or bounce from a solid surface without being influenced by inter-particle collisions. The aim of this work is to develop an Eulerian method to simulate these types of flow. To this end, a two-node quadrature-based moment method using 13 moments is proposed. In the proposed algorithm thirteen moments of particle velocity, including cross-moments of second order, are used to determine the weights and abscissas of the two nodes and to set up the association between the velocity components in each node. Previous Quadrature Method of Moments (QMOM) algorithms either use more than two nodes, leading to increased computational expense, or are shown here to give incorrect results under some circumstances. This method gives the computational efficiency advantages of only needing two particle phase velocity fields whilst ensuring that a correct combination of weights and abscissas is returned for any arbitrary combination of particle trajectories without the need for any further assumptions. Particle crossing and wall bouncing with arbitrary combinations of angles are demonstrated using the method in a two-dimensional scheme. The ability of the scheme to include the presence of drag from a carrier phase is also demonstrated, as is bouncing off surfaces with inelastic collisions. The method is also applied to the Taylor-Green vortex flow test case and is found to give results superior to the existing two-node QMOM method and is in good agreement with results from Lagrangian modelling of this case.
Brountzos, Elias N; Panagiotou, Irene E; Bafaloukos, Dimitrios I; Kelekis, Dimitrios A
2003-01-01
Careful monitoring of regional lymph nodes and early detection of metastases in malignant melanoma patients has an impact on their survival, since it may permit beneficial surgical therapy. Palpation is routinely used in clinical practice. The value of ultrasonography for routine follow-up of melanoma patients, still, is not generally accepted. The aim of our study was to assess the sensitivity and specificity of ultrasound and clinical examination respectively, in the detection of melanoma regional node metastases. Additionally, we evaluated whether early detection of metastases improved overall survival. One hundred and forty-eight melanoma patients with an intermediate or thick primary lesion were followed between January 1997 and May 2001. Clinical examination and concomitant regional lymph node ultrasonography were performed, every 3-4 months. If suspicious findings were identified, regional lymph node dissection was undertaken. Forty-four from the initial 148 patients relapsed with regional lymph nodal metastases. In 11 patients (25%) palpation failed to reveal the disease and metastases were depicted only by ultrasonography. In only 1 patient ultrasonography was false-negative. The sensitivity and specificity of palpation were 72.7 and 97% respectively, while those of ultrasonography were 97.7 (p<0.001) and 98% respectively. Ultrasonography was more sensitive in detecting lymph node metastases in the axilla (100%) and the groin (93.3%). When overall survival of patients presenting with local-regional recurrence was calculated--depending on the number of involved lymph nodes--a survival benefit (p<0.05) was found for patients with only one lymph node metastasis. In conclusion, ultrasonography is superior to clinical examination in the early detection of regional lymph node metastases from an intermediate or thick malignant melanoma and should be a part of those patients' surveillance.
The Value of Sentinel Lymph Node Biopsy in Oral Cavity Cancers
Kaya, İsa; Göde, Sercan; Öztürk, Kerem; Turhal, Göksel; Aliyev, Araz; Akyıldız, Serdar; Duygun, Ülkem Yararbaş; Uluöz, Ümit; Yavuzer, Atilla
2015-01-01
Objective The aim of this study was to establish the effectiveness of sentinel lymph node biopsy in the detection of metastasis in N0 necks of T1–T2 early-stage oral cavity cancers. Materials and Methods Twenty neck dissections were performed in 18 patients diagnosed with T1 and T2 oral cavity cancer, with an indication for elective neck dissection between November 2007 and January 2011. The male to female ratio was 12:8, with a mean age of 54.5 years (range 28–76). Eight of the dissections were performed for lower lip cancer, 7 for tongue cancer, and 5 for floor of the mouth cancer. Sentinel lymph node biopsy was used to detect metastatic lymph nodes. Tc99m radionuclide injection was administered to the periphery of the tumor 24 h before the operation, and a lymphoscintigraphy image was obtained 30 min after the injection. Sentinel lymph nodes were localized and excised on the day of surgery using static lymphoscintigraphy images and a gamma probe. Sentinel lymph nodes were sent for a frozen section examination, and either a selective or a comprehensive neck dissection was performed for each neck according to the results. Results After the final histopathological examination of the specimens, the negative predictive value, the positive predictive value, the accuracy of the sentinel lymph node biopsy, and frozen section accuracy were found to be 100%. Conclusion Sentinel lymph node biopsy was found to be an efficient method in the pathological staging and management of the N0 neck in early T-stage oral cavity cancers. PMID:29391982
A Bayesian spawning habitat suitability model for American shad in southeastern United States rivers
Hightower, Joseph E.; Harris, Julianne E.; Raabe, Joshua K.; Brownell, Prescott; Drew, C. Ashton
2012-01-01
Habitat suitability index models for American shad Alosa sapidissima were developed by Stier and Crance in 1985. These models, which were based on a combination of published information and expert opinion, are often used to make decisions about hydropower dam operations and fish passage. The purpose of this study was to develop updated habitat suitability index models for spawning American shad in the southeastern United States, building on the many field and laboratory studies completed since 1985. We surveyed biologists who had knowledge about American shad spawning grounds, assembled a panel of experts to discuss important habitat variables, and used raw data from published and unpublished studies to develop new habitat suitability curves. The updated curves are based on resource selection functions, which can model habitat selectivity based on use and availability of particular habitats. Using field data collected in eight rivers from Virginia to Florida (Mattaponi, Pamunkey, Roanoke, Tar, Neuse, Cape Fear, Pee Dee, St. Johns), we obtained new curves for temperature, current velocity, and depth that were generally similar to the original models. Our new suitability function for substrate was also similar to the original pattern, except that sand (optimal in the original model) has a very low estimated suitability. The Bayesian approach that we used to develop habitat suitability curves provides an objective framework for updating the model as new studies are completed and for testing the model's applicability in other parts of the species' range.
IoGET: Internet of Geophysical and Environmental Things
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudunuru, Maruti Kumar
The objective of this project is to provide novel and fast reduced-order models for onboard computation at sensor nodes for real-time analysis. The approach will require that LANL perform high-fidelity numerical simulations, construct simple reduced-order models (ROMs) using machine learning and signal processing algorithms, and use real-time data analysis for ROMs and compressive sensing at sensor nodes.
Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chew, Jia Wei
2018-02-01
In this study, an alternative second-order boundary scheme is proposed under the framework of the convection-diffusion lattice Boltzmann (LB) method for both straight and curved geometries. With the proposed scheme, boundary implementations are developed for the Dirichlet, Neumann and linear Robin conditions in a consistent way. The Chapman-Enskog analysis and the Hermite polynomial expansion technique are first applied to derive the explicit expression for the general distribution function with second-order accuracy. Then, the macroscopic variables involved in the expression for the distribution function is determined by the prescribed macroscopic constraints and the known distribution functions after streaming [see the paragraph after Eq. (29) for the discussions of the "streaming step" in LB method]. After that, the unknown distribution functions are obtained from the derived macroscopic information at the boundary nodes. For straight boundaries, boundary nodes are directly placed at the physical boundary surface, and the present scheme is applied directly. When extending the present scheme to curved geometries, a local curvilinear coordinate system and first-order Taylor expansion are introduced to relate the macroscopic variables at the boundary nodes to the physical constraints at the curved boundary surface. In essence, the unknown distribution functions at the boundary node are derived from the known distribution functions at the same node in accordance with the macroscopic boundary conditions at the surface. Therefore, the advantages of the present boundary implementations are (i) the locality, i.e., no information from neighboring fluid nodes is required; (ii) the consistency, i.e., the physical boundary constraints are directly applied when determining the macroscopic variables at the boundary nodes, thus the three kinds of conditions are realized in a consistent way. It should be noted that the present focus is on two-dimensional cases, and theoretical derivations as well as the numerical validations are performed in the framework of the two-dimensional five-velocity lattice model.
Analysis of complex network performance and heuristic node removal strategies
NASA Astrophysics Data System (ADS)
Jahanpour, Ehsan; Chen, Xin
2013-12-01
Removing important nodes from complex networks is a great challenge in fighting against criminal organizations and preventing disease outbreaks. Six network performance metrics, including four new metrics, are applied to quantify networks' diffusion speed, diffusion scale, homogeneity, and diameter. In order to efficiently identify nodes whose removal maximally destroys a network, i.e., minimizes network performance, ten structured heuristic node removal strategies are designed using different node centrality metrics including degree, betweenness, reciprocal closeness, complement-derived closeness, and eigenvector centrality. These strategies are applied to remove nodes from the September 11, 2001 hijackers' network, and their performance are compared to that of a random strategy, which removes randomly selected nodes, and the locally optimal solution (LOS), which removes nodes to minimize network performance at each step. The computational complexity of the 11 strategies and LOS is also analyzed. Results show that the node removal strategies using degree and betweenness centralities are more efficient than other strategies.
Anatomical variations in lymphatic drainage of the right lung: applications in lung cancer surgery.
Ndiaye, Assane; Di-Marino, V; Ba, P S; Ndiaye, Aï; Gaye, M; Nazarian, S
2016-12-01
To specify the topography and variations in lymphatic drainage of the right lung to the mediastinum and their therapeutic implications in non-small cell lung cancers (NSCLC). We injected a dye into the subpleural lymphatic vessels in 65 right lung segments, followed by dissection in 22 subjects. At the upper lobe, we had injected 32 segments. We noted extrasegmental overflow in one case; extrasegmental and extralobar drainage in two cases; drainage to the lymph nodes of another lobe in one case. Fifty-six percent of the segments drained directly (skipping intrapulmonary and hilar lymph nodes) into the right paratracheal lymph nodes, and one dorsal segment drained into the thoracic duct. A ventral segment drained into the inferior tracheobronchial lymph nodes. A contralateral drainage to the recurrent chain was observed in two cases. Sixteen segments of the middle lobe were injected and mainly drained into the inferior tracheobronchial lymph nodes with six direct paths; one medial segment drained into the right anterior mediastinal chain. We noted three contralateral drainages and eight downward abdominal drainages. Out of the 17 segments of the lower lobe injected, 6 segments drained into the lymph nodes of another lobe, 5 segments showed a direct route to the lower quadrant chains. We noted one time a drainage into the paraesophageal lymph nodes. The variations in lymphatic drainage of the right lung require to carry out systematically a radical mediastinal lymphadenectomy during the removal of non-small cell lung cancers and to associate an adjuvant treatment.
Kim, Keonwook
2013-01-01
The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably. PMID:23979482
Latency Hiding in Dynamic Partitioning and Load Balancing of Grid Computing Applications
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak
2001-01-01
The Information Power Grid (IPG) concept developed by NASA is aimed to provide a metacomputing platform for large-scale distributed computations, by hiding the intricacies of highly heterogeneous environment and yet maintaining adequate security. In this paper, we propose a latency-tolerant partitioning scheme that dynamically balances processor workloads on the.IPG, and minimizes data movement and runtime communication. By simulating an unsteady adaptive mesh application on a wide area network, we study the performance of our load balancer under the Globus environment. The number of IPG nodes, the number of processors per node, and the interconnected speeds are parameterized to derive conditions under which the IPG would be suitable for parallel distributed processing of such applications. Experimental results demonstrate that effective solution are achieved when the IPG nodes are connected by a high-speed asynchronous interconnection network.
Leading edge analysis of transcriptomic changes during pseudorabies virus infection
USDA-ARS?s Scientific Manuscript database
Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN) of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV) were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each...
Kranzbühler, Benedikt; Nagel, Hannes; Becker, Anton S; Müller, Julian; Huellner, Martin; Stolzmann, Paul; Muehlematter, Urs; Guckenberger, Matthias; Kaufmann, Philipp A; Eberli, Daniel; Burger, Irene A
2018-01-01
Sensitive visualization of recurrent prostate cancer foci is a challenge in patients with early biochemical recurrence (EBR). The recently established 68 Ga-PSMA-11 PET/CT has significantly improved the detection rate with published values of up to 55% for patients with a serum PSA concentration between 0.2-0.5 ng/mL. The increased soft tissue contrast in the pelvis using simultaneous 68 Ga-PSMA-11 PET/MRI might further improve the detection rate in patients with EBR and low PSA values over PET/CT. We retrospectively analyzed a cohort of 56 consecutive patients who underwent a 68 Ga-PSMA-11 PET/MRI for biochemical recurrence in our institution between April and December 2016 with three readers. Median PSA level was 0.99 ng/mL (interquartile range: 3.1 ng/mL). Detection of PSMA-positive lesions within the prostate fossa, local and distant lymph nodes, bones, or visceral organs was recorded. Agreement among observers was evaluated with Fleiss's kappa (k). Overall, in 44 of 56 patients (78.6%) PSMA-positive lesions were detected. In four of nine patients (44.4%) with a PSA < 0.2 ng/mL, suspicious lesions were detected (two pelvic and one paraaortic lymph nodes, and two bone metastases). In eight of 11 patients (72.7%) with a PSA between 0.2 and < 0.5 ng/mL, suspicious lesions were detected (two local recurrences, six lymph nodes, and one bone metastasis). Five out of 20 patients with a PSA < 0.5 ng/mL had extrapelvic disease. In 12 of 15 patients (80.0%) with a PSA between 0.5 and < 2.0 ng/mL, suspicious lesions were detected (four local recurrences, nine lymph nodes, and four bone metastases). In 20 of 21 patients (95.2%) with a PSA >2.0 ng/mL, suspicious lesions were detected. The overall interreader agreement for cancer detection was excellent (κ = 0.796, CI 0.645-0.947). Our data show that 68 Ga-PSMA-11 PET/MRI has a high detection rate for recurrent prostate cancer even at very low PSA levels <0.5 ng/mL. Furthermore, even at those low levels extrapelvic disease can be localized in 25% of the cases and local recurrence alone is seen only in 10%.
Yang, Lin; Xiong, Zhenchong; Xie, Qiankun; He, Wenzhuo; Liu, Shousheng; Kong, Pengfei; Jiang, Chang; Guo, Guifang; Xia, Liangping
2018-05-11
The consensus is that a minimum of 12 lymph nodes should be analyzed at colectomy for colon cancer. However, right colon cancer and left colon cancer have different characteristics, and this threshold value for total number of lymph nodes retrieved may not be universally applicable. The data of 63,243 patients with colon cancer treated between 2004 and 2012 were retrieved from the National Cancer Institute's Surveillance, Epidemiology, and End Results database. Multivariate Cox regression analysis was used to determine the predictive value of total number of lymph nodes for survival after adjusting for lymph nodes ratio. The predictive value in left-sided colon cancer and right-sided colon cancer was compared. The optimal total number of lymph nodes cutoff value for prediction of overall survival was identified using the online tool Cutoff Finder. Survival of patients with high total number of lymph nodes (≥12) and low total number of lymph nodes (< 12) was compared by Kaplan-Meier analysis. After stratifying by lymph nodes ratio status, total number of lymph nodes≥12 remained an independent predictor of survival in the whole cohort and in right-sided colon cancer, but not in left-sided colon cancer. The optimal cutoff value for total number of lymph nodes was determined to be 11. Low total number of lymph nodes (< 11) was associated with significantly poorer survival after adjusting for lymph nodes ratio in all subgroups except in the subgroup with high lymph nodes ratio (0.5-1.0). Previous reports of the prognostic significance of total number of lymph nodes on node-positive colon cancer were confounded by lymph nodes ratio. The 12-node standard for total number of lymph nodes may not be equally applicable in right-sided colon cancer and left-sided colon cancer.
Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto
2014-01-01
Objective: Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. Methods: This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Results: Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. Conclusions: The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM. PMID:25029653
Assessing node risk and vulnerability in epidemics on networks
NASA Astrophysics Data System (ADS)
Rogers, T.
2015-01-01
Which nodes are most vulnerable to an epidemic spreading through a network, and which carry the highest risk of causing a major outbreak if they are the source of the infection? Here we show how these questions can be answered to good approximation using the cavity method. Several curious properties of node vulnerability and risk are explored: some nodes are more vulnerable than others to weaker infections, yet less vulnerable to stronger ones; a node is always more likely to be caught in an outbreak than it is to start one, except when the disease has a deterministic lifetime; the rank order of node risk depends on the details of the distribution of infectious periods.
Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta
NASA Astrophysics Data System (ADS)
Zeng, Y.
2017-09-01
Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.
Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.
Han, Changcai; Yang, Jinsheng
2017-10-30
The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.
Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network
Han, Changcai; Yang, Jinsheng
2017-01-01
The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes. PMID:29084155
Bahrami, R Nikkhah; Khodadadi, M; Pirivatlo, S Piry; Hassanpanah, D
2009-03-15
This experiment carried out to evaluate the effects of planting methods (seed sowing and transplanting) and head pruning (no pruning, pruning after 12th node and pruning after 16th node) on yield and yield components such as number of branches (sub-branches) per plant, fruits per plant, growth, fruit size, weight of fresh fruit, weight of seeds per fruit, number of seeds per fruit and seed yield of medicinal pumpkin. The experiment was carried out based of factorial experiment with Randomized Completely Blocks Design (RCBD) by three replications in Ardabil Agricultural and Natural Resources Researches Station at 2007. Seedlings were grown in heated greenhouse. When the climatic condition became suitable and seedlings were at the four leaves stage, both seeds and seedlings were planted at the same time in the farm. Maintenance operations were done during the growth season. Head pruning treatments were done the forecast time. The results showed that the planting methods had significant effect on the number of ripen fruits per plant, fruits diameter, weight of seeds per fruit, weight of 1000 seeds and seed yield and had no significant effect on the other traits. Also the results indicated that head pruning treatments had significant effects on the number of branches per plant, growth and seed yield and no significant on the other traits. In this experiment the most seed yield (997.8 kg ha(-1)) obtained from transplanting method with head pruning after 12th node and the least seed yield obtained from control.
Topology reduction in deep convolutional feature extraction networks
NASA Astrophysics Data System (ADS)
Wiatowski, Thomas; Grohs, Philipp; Bölcskei, Helmut
2017-08-01
Deep convolutional neural networks (CNNs) used in practice employ potentially hundreds of layers and 10,000s of nodes. Such network sizes entail significant computational complexity due to the large number of convolutions that need to be carried out; in addition, a large number of parameters needs to be learned and stored. Very deep and wide CNNs may therefore not be well suited to applications operating under severe resource constraints as is the case, e.g., in low-power embedded and mobile platforms. This paper aims at understanding the impact of CNN topology, specifically depth and width, on the network's feature extraction capabilities. We address this question for the class of scattering networks that employ either Weyl-Heisenberg filters or wavelets, the modulus non-linearity, and no pooling. The exponential feature map energy decay results in Wiatowski et al., 2017, are generalized to O(a-N), where an arbitrary decay factor a > 1 can be realized through suitable choice of the Weyl-Heisenberg prototype function or the mother wavelet. We then show how networks of fixed (possibly small) depth N can be designed to guarantee that ((1 - ɛ) · 100)% of the input signal's energy are contained in the feature vector. Based on the notion of operationally significant nodes, we characterize, partly rigorously and partly heuristically, the topology-reducing effects of (effectively) band-limited input signals, band-limited filters, and feature map symmetries. Finally, for networks based on Weyl-Heisenberg filters, we determine the prototype function bandwidth that minimizes - for fixed network depth N - the average number of operationally significant nodes per layer.
Micklitz, T.; Norman, M. R.
2017-05-18
We classify line nodes in superconductors with strong spin-orbit interactions and time-reversal symmetry, where the latter may include nonprimitive translations in the magnetic Brillouin zone to account for coexistence with antiferromagnetic order. We find four possible combinations of irreducible representations of the order parameter on high-symmetry planes, two of which allow for line nodes in pseudospin-triplet pairs and two that exclude conventional fully gapped pseudospin-singlet pairs. We show that the former can only be realized in the presence of band-sticking degeneracies, and we verify their topological stability using arguments based on Clifford algebra extensions. Lastly, our classification exhausts all possiblemore » symmetry protected line nodes in the presence of spin-orbit coupling and a (generalized) time-reversal symmetry. Implications for existing nonsymmorphic and antiferromagnetic superconductors are discussed.« less
The triglyceride-glucose index, an insulin resistance marker in newborns?
Gesteiro, Eva; Bastida, Sara; Barrios, Laura; Sánchez-Muniz, Francisco J
2018-04-01
The study aims to assess the utility of the triglyceride-glucose index (TyG) as a marker of insulin resistance (IR) in neonates. TyG and the homeostatic model assessment (HOMA-IR) values were compared in 196 singleton, term normoweight and without distress newborns. A Decision Tree procedure (CHAID) was used to classify cases into groups or predict values of a dependent (Ln HOMA-IR) variable. Three nodes were drawn for TyG: ≤ 6.7, > 6.7-7.8 and > 7.8 (p < 0.0001; F = 20.52). The predictability of those TyG values vs HOMA-IR was statistically significant (p < 0.0001). It was neither affected by gender (p = 0.084), glucose challenge test (p = 0.138) classifications nor by the TyG node* glucose challenge test and TyG node*gender interactions (p = 0.456 and p = 0.209, respectively). Glucose, HOMA-IR, and the triglyceride/HDL cholesterol ratio increased progressively from node 1 to 3 for TyG while QUICKI decreased. In conclusion, TyG appears to be a suitable tool for identifying IR at birth, justifying the further insulin determination in those neonates. TyG ≥ 7.8 is recommended as cut-off point in neonates. The need for a follow-up study to confirm the TyG as early IR marker is desirable. • HOMA-IR and the triglyceride-glucose index (TyG) show a high correlation. • The TyG has been used as an insulin resistance marker in adults. • This is the first study where TyG has been assessed in neonates. • TyG appears to be a suitable and cheap tool for identifying insulin resistance at birth.
A survey on routing protocols for large-scale wireless sensor networks.
Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong
2011-01-01
With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. "Large-scale" means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed.
A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks
Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong
2011-01-01
With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. “Large-scale” means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed. PMID:22163808
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks.
Luo, Junhai; Fan, Liying
2017-03-30
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization.
Hierarchical sequencing of online social graphs
NASA Astrophysics Data System (ADS)
Andjelković, Miroslav; Tadić, Bosiljka; Maletić, Slobodan; Rajković, Milan
2015-10-01
In online communications, patterns of conduct of individual actors and use of emotions in the process can lead to a complex social graph exhibiting multilayered structure and mesoscopic communities. Using simplicial complexes representation of graphs, we investigate in-depth topology of the online social network constructed from MySpace dialogs which exhibits original community structure. A simulation of emotion spreading in this network leads to the identification of two emotion-propagating layers. Three topological measures are introduced, referred to as the structure vectors, which quantify graph's architecture at different dimension levels. Notably, structures emerging through shared links, triangles and tetrahedral faces, frequently occur and range from tree-like to maximal 5-cliques and their respective complexes. On the other hand, the structures which spread only negative or only positive emotion messages appear to have much simpler topology consisting of links and triangles. The node's structure vector represents the number of simplices at each topology level in which the node resides and the total number of such simplices determines what we define as the node's topological dimension. The presented results suggest that the node's topological dimension provides a suitable measure of the social capital which measures the actor's ability to act as a broker in compact communities, the so called Simmelian brokerage. We also generalize the results to a wider class of computer-generated networks. Investigating components of the node's vector over network layers reveals that same nodes develop different socio-emotional relations and that the influential nodes build social capital by combining their connections in different layers.
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks
Luo, Junhai; Fan, Liying
2017-01-01
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization. PMID:28358342
Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring
Lazarescu, Mihai T.
2015-01-01
Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349
On 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.
1986-01-01
Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
The 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.
1992-01-01
A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
Kim, Seok-Mo; Jun, Hak Hoon; Chang, Ho-Jin; Chun, Ki Won; Kim, Bup-Woo; Lee, Yong Sang; Chang, Hang-Seok; Park, Cheong Soo
2016-06-01
Tuberculosis (TB) lymphadenitis is a frequent cause of lymphadenopathy in areas in which TB is endemic. Cervical lymphadenopathy in TB can mimic lateral neck metastasis (LNM) from papillary thyroid carcinoma (PTC). This study evaluated the clinicopathological features of patients with PTC and TB lateral neck lymphadenopathy. Of the 9098 thyroid cancer patients who underwent thyroid cancer surgery at the Thyroid Cancer Center of Gangnam Severance Hospital between January 2009 and April 2013, 28 had PTC and showed TB lymphadenopathy of the lateral neck node. The clinicopathological features of these 28 patients were evaluated. Preoperatively, all 28 patients were diagnosed with PTC and showed cervical lymphadenopathy. All had radiological characteristics suspicious of metastasis in lateral neck nodes. Based upon the results from intraoperative frozen sections, lymph node dissection (LND) was not performed on 19 patients. Seven of eight patients who underwent LND had metastasis combined with tuberculous lymphadenopathy, with the remaining patient negative for LNM. Intraoperative sampling and frozen sectioning of lymph nodes suspicious of metastasis can help avoid unnecessary LND for tuberculous lymphadenopathy. © 2014 Royal Australasian College of Surgeons.
NASA Astrophysics Data System (ADS)
Feng, Shou; Fu, Ping; Zheng, Wenbin
2018-03-01
Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.
Green operators for low regularity spacetimes
NASA Astrophysics Data System (ADS)
Sanchez Sanchez, Yafet; Vickers, James
2018-02-01
In this paper we define and construct advanced and retarded Green operators for the wave operator on spacetimes with low regularity. In order to do so we require that the spacetime satisfies the condition of generalised hyperbolicity which is equivalent to well-posedness of the classical inhomogeneous problem with zero initial data where weak solutions are properly supported. Moreover, we provide an explicit formula for the kernel of the Green operators in terms of an arbitrary eigenbasis of H 1 and a suitable Green matrix that solves a system of second order ODEs.
Adoptive TIL Transfer in the Adjuvant Setting for Melanoma: Long-Term Patient Survival
Khammari, Amir; Knol, Anne-Chantal; Nguyen, Jean-Michel; Bossard, Céline; Denis, Marc-Guillaume; Pandolfino, Marie-Christine; Quéreux, Gaëlle; Bercegeay, Sylvain; Dréno, Brigitte
2014-01-01
Two first analyses of our clinical trial on TIL as adjuvant therapy for melanoma were published in 2002 and 2007. We present here an update of the clinical results after a 17-year median followup. In this trial, disease-free patients were randomly assigned to receive either TIL/IL-2 or IL-2. The relapse-free survival (RFS) was the primary objective. Eighty-eight patients were enrolled. A new analysis performed in May 2013 did not show significant changes in RFS or OS duration. However, our first finding on the association between the number of invaded lymph nodes and TIL effectiveness was strengthened. The Cox model adjusted on this interaction showed for the first time a significant treatment effect when considering the overall population, both on the RFS and OS. Patients treated with TIL had a longer RFS (P = 0.023) or OS (P = 0.020). This study being with a very long followup (17 years), confirmed the association between TIL effectiveness and the number of invaded lymph nodes, indicating that a low tumor burden could be a crucial factor enhancing the curative effect of TIL in possible microscopic residual disease. Moreover, we confirmed that a prolonged survival was associated with the presence of specific TIL and a decrease in Foxp3 expression. PMID:24741578
Adoptive TIL transfer in the adjuvant setting for melanoma: long-term patient survival.
Khammari, Amir; Knol, Anne-Chantal; Nguyen, Jean-Michel; Bossard, Céline; Denis, Marc-Guillaume; Pandolfino, Marie-Christine; Quéreux, Gaëlle; Bercegeay, Sylvain; Dréno, Brigitte
2014-01-01
Two first analyses of our clinical trial on TIL as adjuvant therapy for melanoma were published in 2002 and 2007. We present here an update of the clinical results after a 17-year median followup. In this trial, disease-free patients were randomly assigned to receive either TIL/IL-2 or IL-2. The relapse-free survival (RFS) was the primary objective. Eighty-eight patients were enrolled. A new analysis performed in May 2013 did not show significant changes in RFS or OS duration. However, our first finding on the association between the number of invaded lymph nodes and TIL effectiveness was strengthened. The Cox model adjusted on this interaction showed for the first time a significant treatment effect when considering the overall population, both on the RFS and OS. Patients treated with TIL had a longer RFS (P = 0.023) or OS (P = 0.020). This study being with a very long followup (17 years), confirmed the association between TIL effectiveness and the number of invaded lymph nodes, indicating that a low tumor burden could be a crucial factor enhancing the curative effect of TIL in possible microscopic residual disease. Moreover, we confirmed that a prolonged survival was associated with the presence of specific TIL and a decrease in Foxp3 expression.
Extracting spatial information from networks with low-order eigenvectors
NASA Astrophysics Data System (ADS)
Cucuringu, Mihai; Blondel, Vincent D.; Van Dooren, Paul
2013-03-01
We consider the problem of inferring meaningful spatial information in networks from incomplete information on the connection intensity between the nodes of the network. We consider two spatially distributed networks: a population migration flow network within the US, and a network of mobile phone calls between cities in Belgium. For both networks we use the eigenvectors of the Laplacian matrix constructed from the link intensities to obtain informative visualizations and capture natural geographical subdivisions. We observe that some low-order eigenvectors localize very well and seem to reveal small geographically cohesive regions that match remarkably well with political and administrative boundaries. We discuss possible explanations for this observation by describing diffusion maps and localized eigenfunctions. In addition, we discuss a possible connection with the weighted graph cut problem, and provide numerical evidence supporting the idea that lower-order eigenvectors point out local cuts in the network. However, we do not provide a formal and rigorous justification for our observations.
NASA Astrophysics Data System (ADS)
Xu, Guoping; Udupa, Jayaram K.; Tong, Yubing; Cao, Hanqiang; Odhner, Dewey; Torigian, Drew A.; Wu, Xingyu
2018-03-01
Currently, there are many papers that have been published on the detection and segmentation of lymph nodes from medical images. However, it is still a challenging problem owing to low contrast with surrounding soft tissues and the variations of lymph node size and shape on computed tomography (CT) images. This is particularly very difficult on low-dose CT of PET/CT acquisitions. In this study, we utilize our previous automatic anatomy recognition (AAR) framework to recognize the thoracic-lymph node stations defined by the International Association for the Study of Lung Cancer (IASLC) lymph node map. The lymph node stations themselves are viewed as anatomic objects and are localized by using a one-shot method in the AAR framework. Two strategies have been taken in this paper for integration into AAR framework. The first is to combine some lymph node stations into composite lymph node stations according to their geometrical nearness. The other is to find the optimal parent (organ or union of organs) as an anchor for each lymph node station based on the recognition error and thereby find an overall optimal hierarchy to arrange anchor organs and lymph node stations. Based on 28 contrast-enhanced thoracic CT image data sets for model building, 12 independent data sets for testing, our results show that thoracic lymph node stations can be localized within 2-3 voxels compared to the ground truth.
Energy scavenging for long-term deployable wireless sensor networks.
Mathúna, Cian O; O'Donnell, Terence; Martinez-Catala, Rafael V; Rohan, James; O'Flynn, Brendan
2008-05-15
The coming decade will see the rapid emergence of low cost, intelligent, wireless sensors and their widespread deployment throughout our environment. While wearable systems will operate over communications ranges of less than a meter, building management systems will operate with inter-node communications ranges of the order of meters to tens of meters and remote environmental monitoring systems will require communications systems and associated energy systems that will allow reliable operation over kilometers. Autonomous power should allow wireless sensor nodes to operate in a "deploy and forget" mode. The use of rechargeable battery technology is problematic due to battery lifetime issues related to node power budget, battery self-discharge, number of recharge cycles and long-term environmental impact. Duty cycling of wireless sensor nodes with long "SLEEP" times minimises energy usage. A case study of a multi-sensor, wireless, building management system operating using the Zigbee protocol demonstrates that, even with a 1 min cycle time for an 864 ms "ACTIVE" mode, the sensor module is already in SLEEP mode for almost 99% of the time. For a 20-min cycle time, the energy utilisation in SLEEP mode exceeds the ACTIVE mode energy by almost a factor of three and thus dominates the module energy utilisation thereby providing the ultimate limit to the power system lifetime. Energy harvesting techniques can deliver energy densities of 7.5 mW/cm(2) from outdoor solar, 100 microW/cm(2) from indoor lighting, 100 microW/cm(3) from vibrational energy and 60 microW/cm(2) from thermal energy typically found in a building environment. A truly autonomous, "deploy and forget" battery-less system can be achieved by scaling the energy harvesting system to provide all the system energy needs. In the building management case study discussed, for duty cycles of less than 0.07% (i.e. in ACTIVE mode for 0.864 s every 20 min), energy harvester device dimensions of approximately 2 cm on a side would be sufficient to supply the complete wireless sensor node energy. Key research challenges to be addressed to deliver future, remote, wireless, chemo-biosensing systems include the development of low cost, low-power sensors, miniaturised fluidic transport systems, anti-bio-fouling sensor surfaces, sensor calibration, reliable and robust system packaging, as well as associated energy delivery systems and energy budget management.
Bellomo, D; Lander, A; Harragan, I; Brown, N A
1996-04-01
During gastrulation, the node of the mammalian embryo appears to be an organising centre, homologous to Hensen's node in the chick and the dorsal lip of the amphibian blastopore. In addition, the node serves as a precursor population for the head process, notochord and foregut endoderm. We have studied node architecture and cell morphology by electron microscopy, and cell proliferation using bromodeoxyuridine incorporation and mitotic counts. The dorsal (ectodermal) and ventral (endodermal) components of the node are two distinct populations, separated by a basement membrane. The ventral node, contiguous with the head process, is characterised by a relatively low proliferation rate, with only approximately 10% of cells incorporating BrdU over 4 hr, compared to > 95% in surrounding mesodermal and ectodermal tissues. This is the case from the beginning of node formation, at the no-allantoic-bud stage, until the 7 somite stage, and is not compatible with the idea that the ventral node is a stem cell population. The dorsal node is highly proliferative, its rate of division being indistinguishable from the neurectoderm, with which it is contiguous. In the ventral node, two regions can be recognised: cells in the "pit" are columnar and all monociliated; around them lies a "crown" of cells arranged radially in a horseshoe shape and less often ciliated. Node derivatives share common features with the ventral node; the head process and the notochord are relatively quiescent; and some head process cells are also monociliated. Node and head process monocilia are immotile and appear to be associated with non-proliferation. We suggest that the ventral node contains all the properties of the organiser, while the dorsal node is indistinct from the surrounding epiblast. The cranial end of the foregut pouch, the thyroid diverticulum, and the promyocardium of early somite stage embryos are also areas of low cell division. All the described regions of relative quiescence are sites of expression of members of the TGF beta family, which may be involved in maintaining non-proliferation.
A sub-sampled approach to extremely low-dose STEM
Stevens, A.; Luzi, L.; Yang, H.; ...
2018-01-22
The inpainting of deliberately and randomly sub-sampled images offers a potential means to image specimens at a high resolution and under extremely low-dose conditions (≤1 e -/Å 2) using a scanning transmission electron microscope. We show that deliberate sub-sampling acquires images at least an order of magnitude faster than conventional low-dose methods for an equivalent electron dose. More importantly, when adaptive sub-sampling is implemented to acquire the images, there is a significant increase in the resolution and sensitivity which accompanies the increase in imaging speed. Lastly, we demonstrate the potential of this method for beam sensitive materials and in-situ observationsmore » by experimentally imaging the node distribution in a metal-organic framework.« less
A sub-sampled approach to extremely low-dose STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A.; Luzi, L.; Yang, H.
The inpainting of deliberately and randomly sub-sampled images offers a potential means to image specimens at a high resolution and under extremely low-dose conditions (≤1 e -/Å 2) using a scanning transmission electron microscope. We show that deliberate sub-sampling acquires images at least an order of magnitude faster than conventional low-dose methods for an equivalent electron dose. More importantly, when adaptive sub-sampling is implemented to acquire the images, there is a significant increase in the resolution and sensitivity which accompanies the increase in imaging speed. Lastly, we demonstrate the potential of this method for beam sensitive materials and in-situ observationsmore » by experimentally imaging the node distribution in a metal-organic framework.« less
In vivo and ex vivo sentinel node mapping does not identify the same lymph nodes in colon cancer.
Andersen, Helene Schou; Bennedsen, Astrid Louise Bjørn; Burgdorf, Stefan Kobbelgaard; Eriksen, Jens Ravn; Eiholm, Susanne; Toxværd, Anders; Riis, Lene Buhl; Rosenberg, Jacob; Gögenur, Ismail
2017-07-01
Identification of lymph nodes and pathological analysis is crucial for the correct staging of colon cancer. Lymph nodes that drain directly from the tumor area are called "sentinel nodes" and are believed to be the first place for metastasis. The purpose of this study was to perform sentinel node mapping in vivo with indocyanine green and ex vivo with methylene blue in order to evaluate if the sentinel lymph nodes can be identified by both techniques. Patients with colon cancer UICC stage I-III were included from two institutions in Denmark from February 2015 to January 2016. In vivo sentinel node mapping with indocyanine green during laparoscopy and ex vivo sentinel node mapping with methylene blue were performed in all patients. Twenty-nine patients were included. The in vivo sentinel node mapping was successful in 19 cases, and ex vivo sentinel node mapping was successful in 13 cases. In seven cases, no sentinel nodes were identified. A total of 51 sentinel nodes were identified, only one of these where identified by both techniques (2.0%). In vivo sentinel node mapping identified 32 sentinel nodes, while 20 sentinel nodes were identified by ex vivo sentinel node mapping. Lymph node metastases were found in 10 patients, and only two had metastases in a sentinel node. Placing a deposit in relation to the tumor by indocyanine green in vivo or of methylene blue ex vivo could only identify sentinel lymph nodes in a small group of patients.
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
Combinatorics of transformations from standard to non-standard bases in Brauer algebras
NASA Astrophysics Data System (ADS)
Chilla, Vincenzo
2007-05-01
Transformation coefficients between standard bases for irreducible representations of the Brauer centralizer algebra \\mathfrak{B}_f(x) and split bases adapted to the \\mathfrak{B}_{f_1} (x) \\times \\mathfrak{B}_{f_2} (x) \\subset \\mathfrak{B}_f (x) subalgebra (f1 + f2 = f) are considered. After providing the suitable combinatorial background, based on the definition of the i-coupling relation on nodes of the subduction grid, we introduce a generalized version of the subduction graph which extends the one given in Chilla (2006 J. Phys. A: Math. Gen. 39 7657) for symmetric groups. Thus, we can describe the structure of the subduction system arising from the linear method and give an outline of the form of the solution space. An ordering relation on the grid is also given and then, as in the case of symmetric groups, the choices of the phases and of the free factors governing the multiplicity separations are discussed.
3D electrode localization on wireless sensor networks for wearable BCI.
Figueiredo, C P; Dias, N S; Hoffmann, K P; Mendes, P M
2008-01-01
This paper presents a solution for electrode localization on wearable BCI radio-enabled electrodes. Electrode positioning is a common issue in any electrical physiological recording. Although wireless node localization is a very active research topic, a precise method with few centimeters of range and a resolution in the order of millimeters is still to be found, since far-field measurements are very prone to error. The calculation of 3D coordinates for each electrode is based on anchorless range-based localization algorithms such as Multidimensional Scaling and Self-Positioning Algorithm. The implemented solution relies on the association of a small antenna to measure the magnetic field and a microcontroller to each electrode, which will be part of the wireless sensor network module. The implemented solution is suitable for EEG applications, namely the wearable BCI, with expected range of 20 cm and resolution of 5 mm.
Approximate solution of the multiple watchman routes problem with restricted visibility range.
Faigl, Jan
2010-10-01
In this paper, a new self-organizing map (SOM) based adaptation procedure is proposed to address the multiple watchman route problem with the restricted visibility range in the polygonal domain W. A watchman route is represented by a ring of connected neuron weights that evolves in W, while obstacles are considered by approximation of the shortest path. The adaptation procedure considers a coverage of W by the ring in order to attract nodes toward uncovered parts of W. The proposed procedure is experimentally verified in a set of environments and several visibility ranges. Performance of the procedure is compared with the decoupled approach based on solutions of the art gallery problem and the consecutive traveling salesman problem. The experimental results show the suitability of the proposed procedure based on relatively simple supporting geometrical structures, enabling application of the SOM principles to watchman route problems in W.
Wagner, Lars M; Kremer, Nathalie; Gelfand, Michael J; Sharp, Susan E; Turpin, Brian K; Nagarajan, Rajaram; Tiao, Gregory M; Pressey, Joseph G; Yin, Julie; Dasgupta, Roshni
2017-01-01
Lymph node metastases are an important cause of treatment failure for pediatric and adolescent/young adult (AYA) sarcoma patients. Nodal sampling is recommended for certain sarcoma subtypes that have a predilection for lymphatic spread. Sentinel lymph node biopsy (SLNB) may improve the diagnostic yield of nodal sampling, particularly when single-photon emission computed tomography/computed tomography (SPECT-CT) is used to facilitate anatomic localization. Functional imaging with positron emission tomography/computed tomography (PET-CT) is increasingly used for sarcoma staging and is a less invasive alternative to SLNB. To assess the utility of these 2 staging methods, this study prospectively compared SLNB plus SPECT-CT with PET-CT for the identification of nodal metastases in pediatric and AYA patients. Twenty-eight pediatric and AYA sarcoma patients underwent SLNB with SPECT-CT. The histological findings of the excised lymph nodes were then correlated with preoperative PET-CT imaging. A median of 2.4 sentinel nodes were sampled per patient. No wound infections or chronic lymphedema occurred. SLNB identified tumors in 7 of the 28 patients (25%), including 3 patients who had normal PET-CT imaging of the nodal basin. In contrast, PET-CT demonstrated hypermetabolic regional nodes in 14 patients, and this resulted in a positive predictive value of only 29%. The sensitivity and specificity of PET-CT for detecting histologically confirmed nodal metastases were only 57% and 52%, respectively. SLNB can safely guide the rational selection of nodes for biopsy in pediatric and AYA sarcoma patients and can identify therapy-changing nodal disease not appreciated with PET-CT. Cancer 2017;155-160. © 2016 American Cancer Society. © 2016 American Cancer Society.
Soergel, Philipp; Hertel, Hermann; Nacke, Anna Kaarina; Klapdor, Rüdiger; Derlin, Thorsten; Hillemanns, Peter
2017-05-01
Nowadays, sentinel diagnostic is performed using technetium 99m (Tc) nanocolloid as a radioactive marker and sometimes patent blue. In the last years, indocyanine green has been evaluated for sentinel diagnostic in different tumor entities. Indocyanine green is a fluorescent molecule that emits a light signal in the near-infrared band after excitation. Our study aimed to evaluate indocyanine green compared with the criterion-standard Tc-nanocolloid. We included patients with primary, unifocal vulvar cancer of less than 4 cm with clinically node-negative groins in this prospective trial. Sentinel diagnostic was carried out using Tc-nanocolloid, indocyanine green, and patent blue. We examined each groin for light signals from the near-infrared band, for radioactivity, and for blue staining. A sentinel lymph node was defined as a Tc-nanocolloid-positive lymph node. All sentinel lymph nodes and all additional blue or fluorescent lymph nodes were excised and tested and then sent for histologic examination. In all, 27 patients were included in whom we found 91 sentinel lymph nodes in 52 groins. All these lymph nodes were positive for indocyanine green, also giving a sensitivity of 100% (95% confidence interval [CI], 96.0%-100%) compared with Tc-nanocolloid. Eight additional lymph nodes showed indocyanine green fluorescence but no Tc positivity, so that the positive predictive value was 91.9% (95% confidence interval, 84.6%-96.5%). In 1 patient, a false-negative sentinel missed by all 3 modalities was found. Our results show that indocyanine green is a promising approach for inguinal sentinel identification in vulvar cancer with a similar sensitivity as radioactive Tc-nanocolloid and worth to be evaluated in further studies.
Construction of Protograph LDPC Codes with Linear Minimum Distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
Modelling and simulation of a heat exchanger
NASA Technical Reports Server (NTRS)
Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.
1991-01-01
Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, R; Gallagher, B; Neville, J
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less
Schlottmann, Francisco; Barbetta, Arianna; Mungo, Benedetto; Lidor, Anne O; Molena, Daniela
2017-03-01
Nodal status is one of the most important long-term prognostic factors for esophageal cancer. The aim of this study was to evaluate the ability of near-infrared (NIR) light fluorescent imaging to identify the lymphatic drainage pattern of esophageal cancer. Patients with distal esophageal cancer or esophagogastric junction cancer scheduled for esophagectomy were enrolled in this study. Before surgery, an endoscopy was performed with submucosal injection of 2 cc of indocyanine green (ICG) around the tumor. Real-time NIR images from the surgical field were obtained for each patient to visualize the lymphatic ICG drainage. A total of nine patients were included in this study. Ivor Lewis esophagectomy was performed in all cases. ICG drainage was visualized to first drain along the left gastric nodes in eight patients (88.9%) and toward the diaphragmatic nodes in one patient (11.1%). The median number of resected nodes was 32. Three patients (33.3%) presented nodal involvement. All of them had positive nodes in the first nodal station identified with ICG. Evaluation of the lymphatic drainage pattern with real-time NIR light fluorescent technique is feasible. Distal and esophagogastric junction tumors showed to drain first in the left gastric nodes in most of the cases.
Malignant lymphoma simulating lymph node toxoplasmosis.
Miettinen, M; Franssila, K
1982-03-01
On histological examination of 667 cases originally suspected of lymph node toxoplasmosis, 12 cases were diagnosed as malignant lymphoma and 15 cases as atypical hyperplasia (AH), suspicious of malignant lymphoma. All 12 malignant cases were of Hodgkin's disease: eight of the lymphocyte predominant nodular type, two of lymphocyte predominant diffuse type, and two of the nodular sclerosis type. In all cases, the lymph nodes contained small groups of epithelioid cells which were virtually indistinguishable from those seen in toxoplasmosis. In the differential diagnosis between lymph node toxoplasmosis and malignant lymphoma, the following features were found helpful. In toxoplasmosis the general structure is preserved and germinal centres are frequent, while in malignant lymphoma and in AH the general structure is destroyed. However, in some cases of toxoplasmosis germinal centres may be difficult to identify because their margins are indistinct due to clusters of epithelioid cells. Also, in some types of Hodgkin's disease and in some cases of AH with epithelioid cells, the general structure of the lymph node may be partially preserved. The occurrence of epithelioid cells within germinal centres seems to be a specific feature for toxoplasmosis; it was never seen in malignant lymphoma nor in AH. The occurrence of strands of monocytoid cells (unreife Sinushistiocytose) though a fairly typical feature of toxoplasmosis, was also occasionally seen in Hodgkin's disease or AH.
Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung
2009-01-01
Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.
Authentication and Key Establishment in Dynamic Wireless Sensor Networks
Qiu, Ying; Zhou, Jianying; Baek, Joonsang; Lopez, Javier
2010-01-01
When a sensor node roams within a very large and distributed wireless sensor network, which consists of numerous sensor nodes, its routing path and neighborhood keep changing. In order to provide a high level of security in this environment, the moving sensor node needs to be authenticated to new neighboring nodes and a key established for secure communication. The paper proposes an efficient and scalable protocol to establish and update the authentication key in a dynamic wireless sensor network environment. The protocol guarantees that two sensor nodes share at least one key with probability 1 (100%) with less memory and energy cost, while not causing considerable communication overhead. PMID:22319321
Modal and Temporal Argumentation Networks
NASA Astrophysics Data System (ADS)
Barringer, Howard; Gabbay, Dov M.
The traditional Dung networks depict arguments as atomic and studies the relationships of attack between them. This can be generalised in two ways. One is to consider, for example, various forms of attack, support and feedback. Another is to add content to nodes and put there not just atomic arguments but more structure, for example, proofs in some logic or simply just formulas from a richer language. This paper offers to use temporal and modal language formulas to represent arguments in the nodes of a network. The suitable semantics for such networks is Kripke semantics. We also introduce a new key concept of usability of an argument.
Scanner focus metrology and control system for advanced 10nm logic node
NASA Astrophysics Data System (ADS)
Oh, Junghun; Maeng, Kwang-Seok; Shin, Jae-Hyung; Choi, Won-Woong; Won, Sung-Keun; Grouwstra, Cedric; El Kodadi, Mohamed; Heil, Stephan; van der Meijden, Vidar; Hong, Jong Kyun; Kim, Sang-Jin; Kwon, Oh-Sung
2018-03-01
Immersion lithography is being extended beyond the 10-nm node and the lithography performance requirement needs to be tightened further to ensure good yield. Amongst others, good on-product focus control with accurate and dense metrology measurements is essential to enable this. In this paper, we will present new solutions that enable onproduct focus monitoring and control (mean and uniformity) suitable for high volume manufacturing environment. We will introduce the concept of pure focus and its role in focus control through the imaging optimizer scanner correction interface. The results will show that the focus uniformity can be improved by up to 25%.
CFRP mirror technology for cryogenic space interferometry: review and progress to date
NASA Astrophysics Data System (ADS)
Jones, Martyn L.; Walker, David; Naylor, David A.; Veenendaal, Ian T.; Gom, Brad G.
2016-07-01
The FP7 project, FISICA (Far Infrared Space Interferometer Critical Assessment), called for the investigation into the suitability of Carbon fiber Reinforced Plastic (CFRP) for a 2m primary mirror. In this paper, we focus on the major challenge for application, the development of a mirror design that would maintain its form at cryogenic temperatures. In order to limit self-emission the primary is to be cooled to 4K whilst not exceeding a form error of 275nm PV. We then describe the development of an FEA model that utilizes test data obtained from a cryogenic test undertaken at the University of Lethbridge on CFRP samples. To conclude, suggestions are made in order to advance this technology to be suitable for such an application in order to exploit the low density and superior specific properties of polymeric composites.
Collective network for computer structures
Blumrich, Matthias A; Coteus, Paul W; Chen, Dong; Gara, Alan; Giampapa, Mark E; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E; Steinmacher-Burow, Burkhard D; Vranas, Pavlos M
2014-01-07
A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to the needs of a processing algorithm.
Collective network for computer structures
Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY
2011-08-16
A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.
Ground-water resources of southern Tangipahoa Parish and adjacent areas, Louisiana
Rapp, T.R.
1994-01-01
Groundwater resources in southern Tangipahoa Parish and adjacent areas were studied to determine their potential for development as an alternative to the Mississippi River as a water-supply source for Jefferson Parish. Eight major aquifers consisting of thick sand units that underlie the study area are, in descending order: (1) shallow, (2) upper Ponchatoula, (3) lower Ponchatoula, (4) Abita, (5) Covington, (6) Tchefuncta, (7) Hammond, and (8) Amite. A fault zone, referred to as the Baton Rouge fault, crosses southern Tangipahoa Parish. Analyses of geophysical logs indicated that the deep aquifers south of the fault zone had been displaced from 350 to 400 feet, and that the deeper aquifers were not in hydraulic connection with the flow system north of the fault. The groundwater resources of southeastern Louisiana are immense and the quality of groundwater in Tangipahoa Parish is suitable for most uses. The quality of water in these aquifers generally meets the U.S. Environmental Protection Agency's standards for public supply. The hydrologic system underlying Tangipahoa Parish and adjacent areas in 1990 supplied about 19 Mgal/d of water that was suitable for public supply. However, substantial increases in pumping from the aquifer system would result in renewed water-level declines throughout the hydrologic system until a new equilibrium is established. A test we11 in southern Tangipahoa Parish, penetrated all eight aquifers. Total thickness of freshwater sand beds penetrated by the 3003-ft test hole was more than 1900 ft. Resistivity values from an electric log of the test typically averaged 200 ohm-meters, which indicates that the water has low dissolved-solids and chloride concentrations. An analysis of the Abita aquifer at Ruddock in St. John the Baptist Parish, for two of three hypothetical well fields, indicated that for a hypothetical we11 field with a pumping rate of 112 Mgal/d, the freshwater/saltwater interface could arrive at the outer perimeter we11 in 10 to 14 years. The 1990 location of the interface in the Abita aquifer is 1.9 mi from the southernmost part of the potential location of the 112 Mgal/d well field.
Three-Dimensional Finite Element Analysis of Sheet-Pile Cellular Cofferdams
1992-04-01
requirements were in selecting the shell element for this study: * Nodes only at the midsurface of the element. * Higher-order shape functions to...on orthogonal curvilinear coordinate (shell coordinates) system with the ref- erence surface of the element midsurface (Figure 4.13). The formulation...element was selected which allows for: * Nodes at the midsurface of the element only. 150 CHAPTER 4. ADDITIONS TO THE ELEMENT LIBRARY " Higher-order
A Teleo-Reactive Node for Implementing Internet of Things Systems
Álvarez, Bárbara; Fernández, Diego
2018-01-01
The Internet of Things (IoT) is one of today’s main disruptive technologies and, although massive research has been carried out in recent years, there are still some open issues such as the consideration of software engineering methods and tools. We propose the adoption of the Teleo-Reactive approach in order to facilitate the development of Internet of Things systems as a set of communicating Teleo-Reactive nodes. The software behavior of the nodes is specified in terms of goals, perceptions and actions over the environment, achieving higher abstraction than using general-purpose programming languages and therefore, enhancing the involvement of non-technical users in the specification process. Throughout this paper, we describe the elements of a Teleo-Reactive node and a systematic procedure for translating Teleo-Reactive specifications into executable code for Internet of Things devices. The case study of a robotic agent is used in order to validate the whole approach. PMID:29614772
A Teleo-Reactive Node for Implementing Internet of Things Systems.
Sánchez, Pedro; Álvarez, Bárbara; Antolinos, Elías; Fernández, Diego; Iborra, Andrés
2018-04-01
The Internet of Things (IoT) is one of today's main disruptive technologies and, although massive research has been carried out in recent years, there are still some open issues such as the consideration of software engineering methods and tools. We propose the adoption of the Teleo-Reactive approach in order to facilitate the development of Internet of Things systems as a set of communicating Teleo-Reactive nodes. The software behavior of the nodes is specified in terms of goals, perceptions and actions over the environment, achieving higher abstraction than using general-purpose programming languages and therefore, enhancing the involvement of non-technical users in the specification process. Throughout this paper, we describe the elements of a Teleo-Reactive node and a systematic procedure for translating Teleo-Reactive specifications into executable code for Internet of Things devices. The case study of a robotic agent is used in order to validate the whole approach.
Rutgers University Subcontract B611610 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soundarajan, Sucheta; Eliassi-Rad, Tina; Gallagher, Brian
Given an incomplete (i.e., partially-observed) network, which nodes should we actively probe in order to achieve the highest accuracy for a given network feature? For example, consider a cyber-network administrator who observes only a portion of the network at time t and wants to accurately identify the most important (e.g., highest PageRank) nodes in the complete network. She has a limited budget for probing the network. Of all the nodes she has observed, which should she probe in order to most accurately identify the important nodes? We propose a novel and scalable algorithm, MaxOutProbe, and evaluate it w.r.t. four networkmore » features (largest connected component, PageRank, core-periphery, and community detection), five network sampling strategies, and seven network datasets from different domains. Across a range of conditions, MaxOutProbe demonstrates consistently high performance relative to several baseline strategies« less
Immersion and dry scanner extensions for sub-10nm production nodes
NASA Astrophysics Data System (ADS)
Weichselbaum, Stefan; Bornebroek, Frank; de Kort, Toine; Droste, Richard; de Graaf, Roelof F.; van Ballegoij, Rob; Botter, Herman; McLaren, Matthew G.; de Boeij, Wim P.
2015-03-01
Progressing towards the 10nm and 7nm imaging node, pattern-placement and layer-to-layer overlay requirements keep on scaling down and drives system improvements in immersion (ArFi) and dry (ArF/KrF) scanners. A series of module enhancements in the NXT platform have been introduced; among others, the scanner is equipped with exposure stages with better dynamics and thermal control. Grid accuracy improvements with respect to calibration, setup, stability, and layout dependency tighten MMO performance and enable mix and match scanner operation. The same platform improvements also benefit focus control. Improvements in detectability and reproducibility of low contrast alignment marks enhance the alignment solution window for 10nm logic processes and beyond. The system's architecture allows dynamic use of high-order scanner optimization based on advanced actuators of projection lens and scanning stages. This enables a holistic optimization approach for the scanner, the mask, and the patterning process. Productivity scanner design modifications esp. stage speeds and optimization in metrology schemes provide lower layer costs for customers using immersion lithography as well as conventional dry technology. Imaging, overlay, focus, and productivity data is presented, that demonstrates 10nm and 7nm node litho-capability for both (immersion & dry) platforms.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-02-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.
2016-12-01
To review reports of adenoid cystic carcinomas arising in the head and neck area outside of the major salivary glands, in order to enhance the care of patients with these unusual neoplasms. An international team of head and neck surgeons, pathologists, oncologists and radiation oncologists was assembled to explore the published experience and their own working experience of the diagnosis and treatment of adenoid cystic carcinomas arising in the vicinity of the sinonasal tract, nasopharynx, lacrimal glands and external auditory canal. The behaviour of adenoid cystic carcinoma arising in head and neck sites exclusive of the major salivary glands parallels that of tumours with a similar histology arising in the major salivary glands - these are relentless, progressive tumours, associated with high rates of mortality. Of 774 patients reviewed, at least 41 (5.3 per cent) developed documented regional node metastases. The relatively low overall incidence of nodal metastases in adenoid cystic carcinomas arising in the head and neck region outside of the major salivary glands suggests that routine elective regional lymph node dissection might not be indicated in most patients with these tumours.
2017-01-01
Objective To review reports of adenoid cystic carcinomas arising in the head and neck area outside of the major salivary glands, in order to enhance the care of patients with these unusual neoplasms. Methods An international team of head and neck surgeons, pathologists, oncologists and radiation oncologists was assembled to explore the published experience and their own working experience of the diagnosis and treatment of adenoid cystic carcinomas arising in the vicinity of the sinonasal tract, nasopharynx, lacrimal glands and external auditory canal. Results The behaviour of adenoid cystic carcinoma arising in head and neck sites exclusive of the major salivary glands parallels that of tumours with a similar histology arising in the major salivary glands – these are relentless, progressive tumours, associated with high rates of mortality. Of 774 patients reviewed, at least 41 (5.3 per cent) developed documented regional node metastases. Conclusion The relatively low overall incidence of nodal metastases in adenoid cystic carcinomas arising in the head and neck region outside of the major salivary glands suggests that routine elective regional lymph node dissection might not be indicated in most patients with these tumours. PMID:27839526
Adaptive Wavelet Coding Applied in a Wireless Control System.
Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O
2017-12-13
Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN.
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foucher, J.; Faurie, P.; Dourthe, L.
2011-11-10
The measurement accuracy is becoming one of the major components that have to be controlled in order to guarantee sufficient production yield. Already at the R and D level, we have to come up with the accurate measurements of sub-40 nm dense trenches and contact holes coming from 193 immersion lithography or E-Beam lithography. Current production CD (Critical Dimension) metrology techniques such as CD-SEM (CD-Scanning Electron Microscope) and OCD (Optical Critical Dimension) are limited in relative accuracy for various reasons (i.e electron proximity effect, outputs parameters correlation, stack influence, electron interaction with materials...). Therefore, time for R and D ismore » increasing, process windows degrade and finally production yield can decrease because you cannot manufactured correctly if you are unable to measure correctly. A new high volume manufacturing (HVM) CD metrology solution has to be found in order to improve the relative accuracy of production environment otherwise current CD Metrology solution will very soon get out of steam.In this paper, we will present a potential Hybrid CD metrology solution that smartly tuned 3D-AFM (3D-Atomic Force Microscope) and CD-SEM data in order to add accuracy both in R and D and production. The final goal for 'chip makers' is to improve yield and save R and D and production costs through real-time feedback loop implement on CD metrology routines. Such solution can be implemented and extended to any kind of CD metrology solution. In a 2{sup nd} part we will discuss and present results regarding a new AFM3D probes breakthrough with the introduction of full carbon tips made will E-Beam Deposition process. The goal is to overcome the current limitations of conventional flared silicon tips which are definitely not suitable for sub-32 nm nodes production.« less
Protzel, C; Knoedel, J; Zimmermann, U; Woenckhaus, C; Poetsch, M; Giebel, J
2007-11-01
Clinical outcome of penile squamous cell carcinoma (PSCC) largely depends on the presence of lymph node metastasis. In search of a valuable marker predicting the risk for metastasis, the expression of Ki67 was investigated immunohistochemically in primary tumors and compared to presence of inguinal lymph node metastasis. As human papilloma virus (HPV) is thought to affect Ki67 expression, we evaluated whether occurrence of HPV DNA correlates to Ki67 score or metastatic potential. Samples originated from patients subjected to resection of invasive SCC of penis. Immunohistochemistry was done on paraffin-embedded sections using a monoclonal antibody against Ki67. After DNA isolation from paraffin embedded tissue the presence of HPV 6/11, HPV 16 and HPV 18 DNA was analyzed by PCR. Statistical analysis was done using two tail unpaired t test and Chi-square test. Four of 28 patients showed a weak Ki67 expression, without displaying lymph node metastasis. Among 17 patients showing an intermediate Ki67 index, eight exhibited metastases while in all seven patients with a strong expression of Ki67 lymph node metastases were found. The median Ki67 expression in metastastic lesions was significantly different (50.3%) from tumors without lymph node metastasis (31.8%) (p=0.024). Furthermore, a correlation between presence of HPV DNA and strong Ki67 expression was determined (p=0.009). Since our study demonstrated a strong Ki67 labeling index significantly associated to positive lymph nodes, we suggest Ki67 expression as a prognostic marker for lymph node metastasis in penile squamous carcinoma.
CT of chronic infiltrative lung disease: Prevalence of mediastinal lymphadenopathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niimi, Hiroshi; Kang, Eun-Young; Kwong, S.
1996-03-01
Our goal was to determine the prevalence of mediastinal lymph node enlargement at CT in patients with diffuse infiltrative lung disease. The study was retrospective and included 175 consecutive patients with diffuse infiltrative lung diseases. Diagnoses included idiopathic pulmonary fibrosis (IPF) (n = 61), usual interstitial pneumonia associated with collagen vascular disease (CVD) (n = 20), idiopathic bronchiolitis obliterans organizing pneumonia (BOOP) (n = 22), extrinsic allergic alveolitis (EAA) (n = 17), and sarcoidosis (n = 55). Fifty-eight age-matched patients with CT of the chest performed for unrelated conditions served as controls. The presence, number, and sites of enlarged nodesmore » (short axis {ge}10 mm in diameter) were recorded. Enlarged mediastinal nodes were present in 118 of 175 patients (67%) with infiltrative lung disease and 3 of 58 controls (5%) (p < 0.001). The prevalence of enlarged nodes was 84% (46 of 55) in sarcoidosis, 67% (41 of 61) in IPF, 70% (14 of 20) in CVD, 53% (9 of 17) in EAA, and 36% (8 of 22) in BOOP. The mean number of enlarged nodes was higher in sarcoidosis (mean 3.2) than in the other infiltrative diseases (mean 1.2) (p < 0.001). Enlarged nodes were most commonly present in station 10R, followed by 7, 4R, and 5. Patients with infiltrative lung disease frequently have enlarged mediastinal lymph nodes. However, in diseases other than sarcoid, usually only one or two nodes are enlarged and their maximal short axis diameter is <15 mm. 11 refs., 2 figs., 1 tab.« less
Profile based image analysis for identification of chopped biomass stem nodes and internodes
USDA-ARS?s Scientific Manuscript database
Because of their significant variation in chemical composition, segregation of chopped biomass into nodes and internodes helps in efficient utilization of these feedstocks. Stem internodes having low ash content are a better feedstock for bioenergy and biofuel applications than nodes. However, separ...
Reynders, Truus; Tournel, Koen; De Coninck, Peter; Heymann, Steve; Vinh-Hung, Vincent; Van Parijs, Hilde; Duchateau, Michaël; Linthout, Nadine; Gevaert, Thierry; Verellen, Dirk; Storme, Guy
2009-10-01
Investigation of the use of TomoTherapy and TomoDirect versus conventional radiotherapy for the treatment of post-operative breast carcinoma. This study concentrates on the evaluation of the planning protocol for the TomoTherapy and TomoDirect TPS, dose verification and the implementation of in vivo dosimetry. Eight patients with different breast cancer indications (left/right tumor, axillary nodes involvement (N+)/no nodes (N0), tumorectomy/mastectomy) were enrolled. TomoTherapy, TomoDirect and conventional plans were generated for prone and supine positions leading to six or seven plans per patient. Dose prescription was 42Gy in 15 fractions over 3weeks. Dose verification of a TomoTherapy plan is performed using TLDs and EDR2 film inside a home-made wax breast phantom fixed on a rando-alderson phantom. In vivo dosimetry was performed with TLDs. It is possible to create clinically acceptable plans with TomoTherapy and TomoDirect. TLD calibration protocol with a water equivalent phantom is accurate. TLD verification with the phantom shows measured over calculated ratios within 2.2% (PTV). An overresponse of the TLDs was observed in the low dose regions (<0.1Gy). The film measurements show good agreement for high and low dose regions inside the phantom. A sharp gradient can be created to the thoracic wall. In vivo dosimetry with TLDs was clinically feasible. The TomoTherapy and TomoDirect modalities can deliver dose distributions which the radiotherapist judges to be equal to or better than conventional treatment of breast carcinoma according to the organ to be protected.
Axillary Lymph Node Evaluation Utilizing Convolutional Neural Networks Using MRI Dataset.
Ha, Richard; Chang, Peter; Karcich, Jenika; Mutasa, Simukayi; Fardanesh, Reza; Wynn, Ralph T; Liu, Michael Z; Jambawalikar, Sachin
2018-04-25
The aim of this study is to evaluate the role of convolutional neural network (CNN) in predicting axillary lymph node metastasis, using a breast MRI dataset. An institutional review board (IRB)-approved retrospective review of our database from 1/2013 to 6/2016 identified 275 axillary lymph nodes for this study. Biopsy-proven 133 metastatic axillary lymph nodes and 142 negative control lymph nodes were identified based on benign biopsies (100) and from healthy MRI screening patients (42) with at least 3 years of negative follow-up. For each breast MRI, axillary lymph node was identified on first T1 post contrast dynamic images and underwent 3D segmentation using an open source software platform 3D Slicer. A 32 × 32 patch was then extracted from the center slice of the segmented tumor data. A CNN was designed for lymph node prediction based on each of these cropped images. The CNN consisted of seven convolutional layers and max-pooling layers with 50% dropout applied in the linear layer. In addition, data augmentation and L2 regularization were performed to limit overfitting. Training was implemented using the Adam optimizer, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. Code for this study was written in Python using the TensorFlow module (1.0.0). Experiments and CNN training were done on a Linux workstation with NVIDIA GTX 1070 Pascal GPU. Two class axillary lymph node metastasis prediction models were evaluated. For each lymph node, a final softmax score threshold of 0.5 was used for classification. Based on this, CNN achieved a mean five-fold cross-validation accuracy of 84.3%. It is feasible for current deep CNN architectures to be trained to predict likelihood of axillary lymph node metastasis. Larger dataset will likely improve our prediction model and can potentially be a non-invasive alternative to core needle biopsy and even sentinel lymph node evaluation.
Using high hydraulic conductivity nodes to simulate seepage lakes
Anderson, Mary P.; Hunt, Randall J.; Krohelski, James T.; Chung, Kuopo
2002-01-01
In a typical ground water flow model, lakes are represented by specified head nodes requiring that lake levels be known a priori. To remove this limitation, previous researchers assigned high hydraulic conductivity (K) values to nodes that represent a lake, under the assumption that the simulated head at the nodes in the high-K zone accurately reflects lake level. The solution should also produce a constant water level across the lake. We developed a model of a simple hypothetical ground water/lake system to test whether solutions using high-K lake nodes are sensitive to the value of K selected to represent the lake. Results show that the larger the contrast between the K of the aquifer and the K of the lake nodes, the smaller the error tolerance required for the solution to converge. For our test problem, a contrast of three orders of magnitude produced a head difference across the lake of 0.005 m under a regional gradient of the order of 10−3 m/m, while a contrast of four orders of magnitude produced a head difference of 0.001 m. The high-K method was then used to simulate lake levels in Pretty Lake, Wisconsin. Results for both the hypothetical system and the application to Pretty Lake compared favorably with results using a lake package developed for MODFLOW (Merritt and Konikow 2000). While our results demonstrate that the high-K method accurately simulates lake levels, this method has more cumbersome postprocessing and longer run times than the same problem simulated using the lake package.
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...
2017-04-18
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
Epiphanio, S; Guimarães, M A; Fedullo, D L; Correa, S H; Catão-Dias, J L
2000-06-01
From 1991 to 1995, eight New World nonhuman primates of the family Callitrichidae belonging to the collection of Fundacão Parque Zoologico de São Paulo died of toxoplasmosis. Of the eight affected nonhuman primates, four were Leontopithecus chrysomelas (one male, three females) and four were Saguinus imperator (two males, two females). The most commonly affected organs were the lungs, liver, and lymph nodes, with hemorrhagic and necrotic lesions. Histopathologic examination revealed protozoa that were morphologically consistent with Toxoplasma gondii. Immunohistochemical assays were strongly positive for T. gondii.
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-04-19
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-01-01
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062
He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei
2012-06-25
Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.
An authentication scheme to healthcare security under wireless sensor networks.
Hsiao, Tsung-Chih; Liao, Yu-Ting; Huang, Jen-Yan; Chen, Tzer-Shyong; Horng, Gwo-Boa
2012-12-01
In recent years, Taiwan has been seeing an extension of the average life expectancy and a drop in overall fertility rate, initiating our country into an aged society. Due to this phenomenon, how to provide the elderly and patients with chronic diseases a suitable healthcare environment has become a critical issue presently. Therefore, we propose a new scheme that integrates healthcare services with wireless sensor technology in which sensor nodes are employed to measure patients' vital signs. Data collected from these sensor nodes are then transmitted to mobile devices of the medical staff and system administrator, promptly enabling them to understand the patients' condition in real time, which will significantly improve patients' healthcare quality. As per the personal data protection act, patients' vital signs can only be accessed by authorized medical staff. In order to protect patients', the system administrator will verify the medical staff's identity through the mobile device using a smart card and password mechanism. Accordingly, only the verified medical staff can obtain patients' vital signs data such as their blood pressure, pulsation, and body temperature, etc.. Besides, the scheme includes a time-bounded characteristic that allows the verified staff access to data without having to have to re-authenticate and re-login into the system within a set period of time. Consequently, the time-bounded property also increases the work efficiency of the system administrator and user.
Lazarou, Stavros; Vita, Vasiliki; Ekonomou, Lambros
2018-02-01
The data of this article represent a real electricity distribution network on twenty kilovolts (20 kV) at medium voltage level of the Hellenic electricity distribution system [1]. This network has been chosen as suitable for smart grid analysis. It demonstrates moderate penetration of renewable sources and it has capability in part of time for reverse power flows. It is suitable for studies of load aggregation, storage, demand response. It represents a rural line of fifty-five kilometres (55 km) total length, a typical length for this type. It serves forty-five (45) medium to low voltage transformers and twenty-four (24) connections to photovoltaic plants. The total installed load capacity is twelve mega-volt-ampere (12 MVA), however the maximum observed load is lower. The data are ready to perform load flow simulation on Matpower [2] for the maximum observed load power on the half production for renewables. The simulation results and processed data for creating the source code are also provided on the database available at http://dx.doi.org/10.7910/DVN/1I6MKU.
Knowledge diffusion in the collaboration hypernetwork
NASA Astrophysics Data System (ADS)
Yang, Guang-Yong; Hu, Zhao-Long; Liu, Jian-Guo
2015-02-01
As knowledge constitutes a primary productive force, it is important to understand the performance of knowledge diffusion. In this paper, we present a knowledge diffusion model based on the local-world non-uniform hypernetwork, which introduces the preferential diffusion mechanism and the knowledge absorptive capability αj, where αj is correlated with the hyperdegree dH(j) of node j. At each time step, we randomly select a node i as the sender; a receiver node is selected from the set of nodes that the sender i has published with previously, with probability proportional to the number of papers they have published together. Applying the average knowledge stock V bar(t) , the variance σ2(t) and the variance coefficient c(t) of knowledge stock to measure the growth and diffusion of knowledge and the adequacy of knowledge diffusion, we have made 3 groups of comparative experiments to investigate how different network structures, hypernetwork sizes and knowledge evolution mechanisms affect the knowledge diffusion, respectively. As the diffusion mechanisms based on the hypernetwork combine with the hyperdegree of node, the hypernetwork is more suitable for investigating the performance of knowledge diffusion. Therefore, the proposed model could be helpful for deeply understanding the process of the knowledge diffusion in the collaboration hypernetwork.
Local Higher-Order Graph Clustering
Yin, Hao; Benson, Austin R.; Leskovec, Jure; Gleich, David F.
2018-01-01
Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif conductance, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology. PMID:29770258
Network overload due to massive attacks
NASA Astrophysics Data System (ADS)
Kornbluth, Yosef; Barach, Gilad; Tuchman, Yaakov; Kadish, Benjamin; Cwilich, Gabriel; Buldyrev, Sergey V.
2018-05-01
We study the cascading failure of networks due to overload, using the betweenness centrality of a node as the measure of its load following the Motter and Lai model. We study the fraction of survived nodes at the end of the cascade pf as a function of the strength of the initial attack, measured by the fraction of nodes p that survive the initial attack for different values of tolerance α in random regular and Erdös-Renyi graphs. We find the existence of a first-order phase-transition line pt(α ) on a p -α plane, such that if p
Highly Branched Phenotype of the Petunia dad1-1 Mutant Is Reversed by Grafting.
Napoli, C.
1996-01-01
The recessive dad1-1 allele conditions a highly branched growth habit resulting from a proliferation of first- and second-order branches. Unlike the wild-type parent, which has lateral branching delayed until the third or fourth leaf node distal to the cotyledons, dad1-1 initiates lateral branching from each cotyledon axil. In addition to initiating lateral branching sooner than the wild type, dad1-1 sustains branching through more nodes on the main shoot axis than the wild type. In keeping with a propensity for branching at basal nodes, dad1-1 produces second-order branches at the proximal-most nodes on first-order branches and small shoots from accessory buds at basal nodes on the main shoot axis. Additional traits associated with the mutation are late flowering, adventitious root formation, shortened internodes, and mild leaf chlorosis. Graft studies show that a dad1-1 scion, when grafted onto wild-type stock, is converted to a phenotype resembling the wild type. Furthermore, a small wild-type interstock fragment inserted between a mutant root stock and a mutant scion is sufficient to convert the dad1-1 scion from mutant to a near wild-type appearance. The recessive dad1-1 phenotype combines traits associated with cytokinin overexpression, auxin overexpression, and gibberellin limitation, which suggests a complex interaction of hormones in establishing the mutant phenotype. PMID:12226274
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.
Revathy, M; Saravanan, R
2015-01-01
Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.
IEEE 342 Node Low Voltage Networked Test System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Kevin P.; Phanivong, Phillippe K.; Lacroix, Jean-Sebastian
The IEEE Distribution Test Feeders provide a benchmark for new algorithms to the distribution analyses community. The low voltage network test feeder represents a moderate size urban system that is unbalanced and highly networked. This is the first distribution test feeder developed by the IEEE that contains unbalanced networked components. The 342 node Low Voltage Networked Test System includes many elements that may be found in a networked system: multiple 13.2kV primary feeders, network protectors, a 120/208V grid network, and multiple 277/480V spot networks. This paper presents a brief review of the history of low voltage networks and how theymore » evolved into the modern systems. This paper will then present a description of the 342 Node IEEE Low Voltage Network Test System and power flow results.« less
Hybrid wireless sensor network for rescue site monitoring after earthquake
NASA Astrophysics Data System (ADS)
Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei
2016-07-01
This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.
What is an expert? A systems perspective on expertise.
Caley, Michael Julian; O'Leary, Rebecca A; Fisher, Rebecca; Low-Choy, Samantha; Johnson, Sandra; Mengersen, Kerrie
2014-02-01
Expert knowledge is a valuable source of information with a wide range of research applications. Despite the recent advances in defining expert knowledge, little attention has been given to how to view expertise as a system of interacting contributory factors for quantifying an individual's expertise. We present a systems approach to expertise that accounts for many contributing factors and their inter-relationships and allows quantification of an individual's expertise. A Bayesian network (BN) was chosen for this purpose. For illustration, we focused on taxonomic expertise. The model structure was developed in consultation with taxonomists. The relative importance of the factors within the network was determined by a second set of taxonomists (supra-experts) who also provided validation of the model structure. Model performance was assessed by applying the model to hypothetical career states of taxonomists designed to incorporate known differences in career states for model testing. The resulting BN model consisted of 18 primary nodes feeding through one to three higher-order nodes before converging on the target node (Taxonomic Expert). There was strong consistency among node weights provided by the supra-experts for some nodes, but not others. The higher-order nodes, "Quality of work" and "Total productivity", had the greatest weights. Sensitivity analysis indicated that although some factors had stronger influence in the outer nodes of the network, there was relatively equal influence of the factors leading directly into the target node. Despite the differences in the node weights provided by our supra-experts, there was good agreement among assessments of our hypothetical experts that accurately reflected differences we had specified. This systems approach provides a way of assessing the overall level of expertise of individuals, accounting for multiple contributory factors, and their interactions. Our approach is adaptable to other situations where it is desirable to understand components of expertise.
Haijun, Yu; Qiuji, Wu; Zhenming, Fu; Yong, Huang; Zhengkai, Liao; Conghua, Xie; Yunfeng, Zhou; Yahua, Zhong
2015-08-01
In the context of gastric cancer, lymph node target volume delineation for post-operative radiotherapy is currently built on the traditional system of dividing the stomach and 2-D treatment methods. Here, we have proposed a new delineation approach with irradiation indications for lymph node stations. Its safety and efficacy were evaluated in a phase II clinical trial. Fifty-four gastric cancer patients with D2 lymph node dissection received 2 cycles of FOLFOX4. They subsequently received concurrent chemoradiotherapy (45 Gy at 1.8 Gy per fraction, 5 fractions per week for 5 weeks) with a 5-fluorouracil/leucovorin regimen, followed by 4 additional FOLFOX4 cycles. The target volume included the remnant stomach, anastomosis site, tumor bed, and regional lymph nodes selected through our new approach by taking gastric arteries as references. The most common grade 3-4 adverse event was neutropenia (14.8%). Neutropenia, anemia, and nausea were common grade 1-2 toxicities. No treatment-related deaths occurred during treatment. The 3-year overall, disease-free, and locoregional recurrence-free survival rates were 81.6%, 70.2%, and 91.1%, respectively. Eight patients developed peritoneal or distant metastases. Using our new approach and irradiation indications, delineation of the target volume of post-operative lymph node stations was feasible and well tolerated after D2 resection in patients with gastric cancer. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Modeling and Performance Evaluation of Backoff Misbehaving Nodes in CSMA/CA Networks
2012-08-01
Modeling and Performance Evaluation of Backoff Misbehaving Nodes in CSMA/CA Networks Zhuo Lu, Student Member, IEEE, Wenye Wang, Senior Member, IEEE... misbehaving nodes can obtain, we define and study two general classes of backoff misbehavior: continuous misbehavior, which keeps manipulating the backoff...misbehavior sporadically. Our approach is to introduce a new performance metric, namely order gain, to characterize the performance benefits of misbehaving
Ullah, Sana; Kwak, Kyung Sup
2012-06-01
Wireless Body Area Network (WBAN) consists of low-power, miniaturized, and autonomous wireless sensor nodes that enable physicians to remotely monitor vital signs of patients and provide real-time feedback with medical diagnosis and consultations. It is the most reliable and cheaper way to take care of patients suffering from chronic diseases such as asthma, diabetes and cardiovascular diseases. Some of the most important attributes of WBAN is low-power consumption and delay. This can be achieved by introducing flexible duty cycling techniques on the energy constraint sensor nodes. Stated otherwise, low duty cycle nodes should not receive frequent synchronization and control packets if they have no data to send/receive. In this paper, we introduce a Traffic-adaptive MAC protocol (TaMAC) by taking into account the traffic information of the sensor nodes. The protocol dynamically adjusts the duty cycle of the sensor nodes according to their traffic-patterns, thus solving the idle listening and overhearing problems. The traffic-patterns of all sensor nodes are organized and maintained by the coordinator. The TaMAC protocol is supported by a wakeup radio that is used to accommodate emergency and on-demand events in a reliable manner. The wakeup radio uses a separate control channel along with the data channel and therefore it has considerably low power consumption requirements. Analytical expressions are derived to analyze and compare the performance of the TaMAC protocol with the well-known beacon-enabled IEEE 802.15.4 MAC, WiseMAC, and SMAC protocols. The analytical derivations are further validated by simulation results. It is shown that the TaMAC protocol outperforms all other protocols in terms of power consumption and delay.
Robustness and percolation of holes in complex networks
NASA Astrophysics Data System (ADS)
Zhou, Andu; Maletić, Slobodan; Zhao, Yi
2018-07-01
Efficient robustness and fault tolerance of complex network is significantly influenced by its connectivity, commonly modeled by the structure of pairwise relations between network elements, i.e., nodes. Nevertheless, aggregations of nodes build higher-order structures embedded in complex network, which may be more vulnerable when the fraction of nodes is removed. The structure of higher-order aggregations of nodes can be naturally modeled by simplicial complexes, whereas the removal of nodes affects the values of topological invariants, like the number of higher-dimensional holes quantified with Betti numbers. Following the methodology of percolation theory, as the fraction of nodes is removed, new holes appear, which have the role of merger between already present holes. In the present article, relationship between the robustness and homological properties of complex network is studied, through relating the graph-theoretical signatures of robustness and the quantities derived from topological invariants. The simulation results of random failures and intentional attacks on networks suggest that the changes of graph-theoretical signatures of robustness are followed by differences in the distribution of number of holes per cluster under different attack strategies. In the broader sense, the results indicate the importance of topological invariants research for obtaining further insights in understanding dynamics taking place over complex networks.
Monitoring Traffic Information with a Developed Acceleration Sensing Node.
Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan
2017-12-05
In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring.
Monitoring Traffic Information with a Developed Acceleration Sensing Node
Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan
2017-01-01
In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring. PMID:29206169
Purves, Randy W; Khazaei, Hamid; Vandenberg, Albert
2018-02-01
Faba bean (Vicia faba L.) provides environmental and health benefits; however, the presence of the pyrimidine glycosides vicine and convicine (v-c) in its seeds limits consumption. Low v-c genotypes have been introduced, but the convicine levels in these genotypes have not been quantified. To improve detection, the polar nature of v-c was exploited by implementing hydrophilic interaction liquid chromatography (HILIC). A sample preparation method using a two-step extraction was developed for use with UV and/or tandem mass spectrometry (SRM) detection. The HILIC-UV method was suitable for over three orders of magnitude, covering the range of v-c concentrations in faba bean seeds across all genotypes tested. The linear range of HILIC-SRM was slightly less (∼3 orders of magnitude), but improved sensitivity and selectivity make it more suitable for quantifying low v-c samples. The analysis of 13 genotypes suggests that v-c concentrations in faba bean seeds may be independent quantitative traits. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-adaptive formation of uneven node spacings in wild bamboo
NASA Astrophysics Data System (ADS)
Shima, Hiroyuki; Sato, Motohiro; Inoue, Akio
2016-02-01
Bamboo has a distinctive structure wherein a long cavity inside a cylindrical woody section is divided into many chambers by stiff diaphragms. The diaphragms are inserted at nodes and thought to serve as ring stiffeners for bamboo culms against the external load; if this is the case, the separation between adjacent nodes should be configured optimally in order to enhance the mechanical stability of the culms. Here, we reveal the hitherto unknown blueprint of the optimal node spacings used in the growth of wild bamboo. Measurement data analysis together with theoretical formulations suggest that wild bamboos effectively control their node spacings as well as other geometric parameters in accord with the lightweight and high-strength design concept.
Small worlds in space: Synchronization, spatial and relational modularity
NASA Astrophysics Data System (ADS)
Brede, M.
2010-06-01
In this letter we investigate networks that have been optimized to realize a trade-off between enhanced synchronization and cost of wire to connect the nodes in space. Analyzing the evolved arrangement of nodes in space and their corresponding network topology, a class of small-world networks characterized by spatial and network modularity is found. More precisely, for low cost of wire optimal configurations are characterized by a division of nodes into two spatial groups with maximum distance from each other, whereas network modularity is low. For high cost of wire, the nodes organize into several distinct groups in space that correspond to network modules connected on a ring. In between, spatially and relationally modular small-world networks are found.
NASA Astrophysics Data System (ADS)
Chartier, Thomas; Scotti, Oona; Boiselet, Aurelien; Lyon-Caen, Hélène
2016-04-01
Including faults in probabilistic seismic hazard assessment tends to increase the degree of uncertainty in the results due to the intrinsically uncertain nature of the fault data. This is especially the case in the low to moderate seismicity regions of Europe, where slow slipping faults are difficult to characterize. In order to better understand the key parameters that control the uncertainty in the fault-related hazard computations, we propose to build an analytic tool that provides a clear link between the different components of the fault-related hazard computations and their impact on the results. This will allow identifying the important parameters that need to be better constrained in order to reduce the resulting uncertainty in hazard and also provide a more hazard-oriented strategy for collecting relevant fault parameters in the field. The tool will be illustrated through the example of the West Corinth rifts fault-models. Recent work performed in the gulf has shown the complexity of the normal faulting system that is accommodating the extensional deformation of the rift. A logic-tree approach is proposed to account for this complexity and the multiplicity of scientifically defendable interpretations. At the nodes of the logic tree, different options that could be considered at each step of the fault-related seismic hazard will be considered. The first nodes represent the uncertainty in the geometries of the faults and their slip rates, which can derive from different data and methodologies. The subsequent node explores, for a given geometry/slip rate of faults, different earthquake rupture scenarios that may occur in the complex network of faults. The idea is to allow the possibility of several faults segments to break together in a single rupture scenario. To build these multiple-fault-segment scenarios, two approaches are considered: one based on simple rules (i.e. minimum distance between faults) and a second one that relies on physically-based simulations. The following nodes represents for each rupture scenario different rupture forecast models (i.e; characteristic or Gutenberg-Richter) and for a given rupture forecast, two probability models commonly used in seismic hazard assessment: poissonian or time-dependent. The final node represents an exhaustive set of ground motion prediction equations chosen in order to be compatible with the region. Finally, the expected probability of exceeding a given ground motion level is computed at each sites. Results will be discussed for a few specific localities of the West Corinth Gulf.
Research on Segmentation Monitoring Control of IA-RWA Algorithm with Probe Flow
NASA Astrophysics Data System (ADS)
Ren, Danping; Guo, Kun; Yao, Qiuyan; Zhao, Jijun
2018-04-01
The impairment-aware routing and wavelength assignment algorithm with probe flow (P-IA-RWA) can make an accurate estimation for the transmission quality of the link when the connection request comes. But it also causes some problems. The probe flow data introduced in the P-IA-RWA algorithm can result in the competition for wavelength resources. In order to reduce the competition and the blocking probability of the network, a new P-IA-RWA algorithm with segmentation monitoring-control mechanism (SMC-P-IA-RWA) is proposed. The algorithm would reduce the holding time of network resources for the probe flow. It segments the candidate path suitably for the data transmitting. And the transmission quality of the probe flow sent by the source node will be monitored in the endpoint of each segment. The transmission quality of data can also be monitored, so as to make the appropriate treatment to avoid the unnecessary probe flow. The simulation results show that the proposed SMC-P-IA-RWA algorithm can effectively reduce the blocking probability. It brings a better solution to the competition for resources between the probe flow and the main data to be transferred. And it is more suitable for scheduling control in the large-scale network.
Masquillier, Caroline; Wouters, Edwin; Loos, Jasna; Nöstlinger, Christiana
2012-01-01
Background and Objectives Access to antiretroviral treatment among adolescents living with HIV (ALH) is increasing. Health-related quality of life (HRQOL) is relevant for monitoring the impact of the disease on both well-being and treatment outcomes. However, adequate screening tools to assess HRQOL in low-resource settings are scarce. This study aims to fill this research gap, by 1) assessing the psychometric properties and reliability of an Eastern African English version of a European HRQOL scale for adolescents (KIDSCREEN) and 2) determining which version of the KIDSCREEN (52-, 27- and 10-item version) is most suitable for low-resource settings. Methods The KIDSCREEN was translated into Eastern African English, Luganda (Uganda) and Dholuo (Kenya) according to standard procedures. The reconciled version was administered in 2011 to ALH aged 13–17 in Kenya (n = 283) and Uganda (n = 299). All three KIDSCREEN versions were fitted to the data with confirmatory factor analysis (CFA). After comparison, the most suitable version was adapted based on the CFA outcomes utilizing the results of previous formative research. In order to develop a general HRQOL factor, a second-order measurement model was fitted to the data. Results The CFA results showed that without adjustments, the KIDSCREEN cannot be used for measuring the HRQOL of HIV-positive adolescents. After comparison, the most suitable version for low-resource settings - the 27-item version - was adapted further. The introduction of a negative wording factor was required for the Dholuo model. The Dholuo (CFI: 0.93; RMSEA: 0.039) and the Luganda model (CFI: 0.90; RMSEA: 0.052) showed a good fit. All cronbach’s alphas of the factors were 0.70 or above. The alpha value of the Dholuo and Lugandan HRQOL second-order factor was respectively 0.84 and 0.87. Conclusions The study showed that the adapted KIDSCREEN-27 is an adequate tool for measuring HRQOL in low-resource settings with high HIV prevalence. PMID:22815776
Pijnappel, E N; Bhoo-Pathy, N; Suniza, J; See, M H; Tan, G H; Yip, C H; Hartman, M; Taib, N A; Verkooijen, H M
2014-12-01
In settings with limited resources, sentinel lymph node biopsy (SNB) is only offered to breast cancer patients with small tumors and a low a priori risk of axillary metastases. We investigated whether CancerMath, a free online prediction tool for axillary lymph node involvement, is able to identify women at low risk of axillary lymph node metastases in Malaysian women with 3-5 cm tumors, with the aim to offer SNB in a targeted, cost-effective way. Women with non-metastatic breast cancers, measuring 3-5 cm were identified within the University Malaya Medical Centre (UMMC) breast cancer registry. We compared CancerMath-predicted probabilities of lymph node involvement between women with versus without lymph node metastases. The discriminative performance of CancerMath was tested using receiver operating characteristic (ROC) analysis. Out of 1,017 patients, 520 (51 %) had axillary involvement. Tumors of women with axillary involvement were more often estrogen-receptor positive, progesterone-receptor positive, and human epidermal growth factor receptor (HER)-2 positive. The mean CancerMath score was higher in women with axillary involvement than in those without (53.5 vs. 51.3, p = 0.001). In terms of discrimination, CancerMath performed poorly, with an area under the ROC curve of 0.553 (95 % confidence interval CI 0.518-0.588). Attempts to optimize the CancerMath model by adding ethnicity and HER2 to the model did not improve discriminatory performance. For Malaysian women with tumors measuring 3-5 cm, CancerMath is unable to accurately predict lymph node involvement and is therefore not helpful in the identification of women at low risk of node-positive disease who could benefit from SNB.
A quality-refinement process for medical imaging applications.
Neuhaus, J; Maleike, D; Nolden, M; Kenngott, H-G; Meinzer, H-P; Wolf, I
2009-01-01
To introduce and evaluate a process for refinement of software quality that is suitable to research groups. In order to avoid constraining researchers too much, the quality improvement process has to be designed carefully. The scope of this paper is to present and evaluate a process to advance quality aspects of existing research prototypes in order to make them ready for initial clinical studies. The proposed process is tailored for research environments and therefore more lightweight than traditional quality management processes. Focus on quality criteria that are important at the given stage of the software life cycle. Usage of tools that automate aspects of the process is emphasized. To evaluate the additional effort that comes along with the process, it was exemplarily applied for eight prototypical software modules for medical image processing. The introduced process has been applied to improve the quality of all prototypes so that they could be successfully used in clinical studies. The quality refinement yielded an average of 13 person days of additional effort per project. Overall, 107 bugs were found and resolved by applying the process. Careful selection of quality criteria and the usage of automated process tools lead to a lightweight quality refinement process suitable for scientific research groups that can be applied to ensure a successful transfer of technical software prototypes into clinical research workflows.
Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.
Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan
2012-01-01
Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.
A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting
Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao
2014-01-01
We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813
Three faces of node importance in network epidemiology: Exact results for small graphs
NASA Astrophysics Data System (ADS)
Holme, Petter
2017-12-01
We investigate three aspects of the importance of nodes with respect to susceptible-infectious-removed (SIR) disease dynamics: influence maximization (the expected outbreak size given a set of seed nodes), the effect of vaccination (how much deleting nodes would reduce the expected outbreak size), and sentinel surveillance (how early an outbreak could be detected with sensors at a set of nodes). We calculate the exact expressions of these quantities, as functions of the SIR parameters, for all connected graphs of three to seven nodes. We obtain the smallest graphs where the optimal node sets are not overlapping. We find that (i) node separation is more important than centrality for more than one active node, (ii) vaccination and influence maximization are the most different aspects of importance, and (iii) the three aspects are more similar when the infection rate is low.
Wireless sensor networks for heritage object deformation detection and tracking algorithm.
Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu
2014-10-31
Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.
Unobstructive Body Area Networks (BAN) for efficient movement monitoring.
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.
Toward cost-efficient sampling methods
NASA Astrophysics Data System (ADS)
Luo, Peng; Li, Yongli; Wu, Chong; Zhang, Guijie
2015-09-01
The sampling method has been paid much attention in the field of complex network in general and statistical physics in particular. This paper proposes two new sampling methods based on the idea that a small part of vertices with high node degree could possess the most structure information of a complex network. The two proposed sampling methods are efficient in sampling high degree nodes so that they would be useful even if the sampling rate is low, which means cost-efficient. The first new sampling method is developed on the basis of the widely used stratified random sampling (SRS) method and the second one improves the famous snowball sampling (SBS) method. In order to demonstrate the validity and accuracy of two new sampling methods, we compare them with the existing sampling methods in three commonly used simulation networks that are scale-free network, random network, small-world network, and also in two real networks. The experimental results illustrate that the two proposed sampling methods perform much better than the existing sampling methods in terms of achieving the true network structure characteristics reflected by clustering coefficient, Bonacich centrality and average path length, especially when the sampling rate is low.
Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm
Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu
2014-01-01
Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458
Takei, Yuichiro; Katsuta, Hiroki; Takizawa, Kenichi; Ikegami, Tetsushi; Hamaguchi, Kiyoshi
2012-01-01
This paper presents an experimental evaluation of communication during human walking motion, using the medium access control (MAC) evaluation system for a prototype ultra-wideband (UWB) based wireless body area network for suitable MAC parameter settings for data transmission. Its physical layer and MAC specifications are based on the draft standard in IEEE802.15.6. This paper studies the effects of the number of retransmissions and the number of commands of GTS (guaranteed time slot) request packets in the CAP (contention access period) during human walking motion by varying the number of sensor nodes or the number of CFP (contention free period) slots in the superframe. The experiments were performed in an anechoic chamber. The number of packets received is decreased by packet loss caused by human walking motion in the case where 2 slots are set for CFP, regardless of the number of nodes, and this materially decreases the total number of packets received. The number of retransmissions and the GTS request commands increase according to increases in the number of nodes, largely reflecting the effects of the number of CFP slots in the case where 4 nodes are attached. In the cases where 2 or 3 nodes are attached and 4 slots are set for CFP, the packet transmission rate is more than 95%. In the case where 4 nodes are attached and 6 slots are set for CFP, the packet transmission rate is reduced to 88% at best.
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications
Revathy, M.; Saravanan, R.
2015-01-01
Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures. PMID:26065017
Zhang, Runjin; Song, Wei; Wang, Kai; Zou, Shubing
2017-09-01
The tumor-stroma ratio (TSR) has been reported as a prognosis predictor in multiple cancers. The aim of this meta-analysis was to investigate the potential value of TSR as a prognostic predictor of cancer in the digestive system. We searched PubMed, Embase, Elsevier and Web of Science. All studies exploring the association of TSR with overall survival (OS) or disease-free survival (DFS), and lymph node metastasis (LNM) were identified. In total, eight studies were eligible for analysis, and they included 1959 patients. Meta-analysis showed that the low TSR in the tumor could predict poor overall survival (OS) in multiple cancers (pooled Hazard Ratio [HR]: 2.15, 95%CI: 1.80-2.57, P<0.00001, fixed effects). For disease-free survival (DFS), low TSR was also a significant predictor (pooled Hazard Ratio [HR]: 2.31, 95%CI: 1.88-2.83, P<0.00001, fixed effects). In addition, low TSR was correlated with tumor stage. The tumor-stroma ratio (TSR) may potentially serve as a poor prognostic predictor for the metastasis and prognosis of cancer. Copyright © 2017. Published by Elsevier B.V.
Towards the development of tamper-resistant, ground-based mobile sensor nodes
NASA Astrophysics Data System (ADS)
Mascarenas, David; Stull, Christopher; Farrar, Charles
2011-11-01
Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.
Decomposition of CO2 Emission Factors in Baoding
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, xuyang; Zhang, Hongzhi
2018-01-01
Baoding, as one of the first “five provinces and eight cities” low carbon pilot cities, undertakes an important task and mission. The urgent task is to explore a peak route and emission reduction path suitable for Baoding’s own development, so as to provide reference for the construction of low-carbon pilot cities. At present, the carbon emissions of Baoding city and its subordinate districts and counties are not clear, and the carbon emissions, change trends and emission characteristics of various industries have not been systematically studied. This lead researcherscan not carry out further attribution analysis, the prediction of future emissions trends and put forward specific measures to reduce emissions are impossible.If the government can not accurately and comprehensively understand the problems faced in the construction and development of low-carbon cities, it is difficult to fundamentally put forward effective emission reduction policies and measures.
NASA Technical Reports Server (NTRS)
Cowings, P. S.
1977-01-01
Three groups of eight male and female subjects (aged 20-27 yr) categorized by low and high hypnotic susceptibility were taught to control their heart rates by means of an appropriate autogenic therapy/biofeedback technique. The experimental groups were trained by autogenic therapy and biofeedback, while the control group received only biofeedback. Significant differences are observed in all psychological test scores between subjects of high and low hypnotic susceptibility. The results confirm that (1) there are qualitative and quantitative differences between the performance of individuals with high and low hypnotic susceptibility; (2) interindividual-variability tests yield data relevant to individual performance in visceral learning tasks; (3) the combined autogenic therapy/biofeedback/verbal feedback technique is suitable for conditioning large stable autonomic responses in humans; and (4) this kind of conditioning is effective in eliminating or alleviating physiological reactions to some environmental stressors.
Siesto, Gabriele; Romano, Fabrizio; Fiamengo, Barbara; Vitobello, Domenico
2016-01-01
Sentinel lymph node (SLN) mapping has emerged as the new frontier for the surgical staging of apparently early-stage cervical and endometrial cancer. Different colorimetric and radioactive tracers, alone and in combination, have been proposed with encouraging results. Fluorometric mapping using indocyanine green (ICG) appears to be a suitable and attractive alternative to provide reliable staging [1-4]. In this video, we present the technique of SLN mapping in 2 cases (1 endometrial and 1 cervical cancer, respectively) using ICG and the near-infrared technology provided by the newest Da Vinci Xi robotic system (Intuitive Surgical Inc., Sunnyvale, CA). Together we report the results of our preliminary experience on the first 20 cases performed. The new robotic Da Vinci Xi system was available at our institution since May 2015. Upon institutional review board/ethical committee approval, all consecutive patients with early-stage endometrial and cervical cancer who were judged suitable for robotic surgery have been enrolled for SLN mapping with ICG. We adopted the Memorial Sloan Kettering Cancer Center SLN algorithm; the tracer was delivered into the cervix in all cases. Four milliliters (1.25 mg/mL) of ICG was injected divided into the 3- and 9-o'clock positions of the cervix alone, with 1 mL deep into the stroma and 1 mL submucosally at the skin incision. Sentinel lymph nodes were examined with a protocol including both ultrastaging with immunohistochemistry [3] and 1-step nucleic acid amplification assay [5,6] under a parallel protocol of study. During the study period, 20 cases were managed; 14 and 6 patients had endometrial and cervical cancer, respectively. SLN was detected in all cases (20/20, 100%). Bilateral SLNs were detected in 17 of 20 (85.0%) cases. Based on preoperative and intraoperative findings, 13 (65.0%) patients received systematic pelvic lymphadenectomy after SLN mapping. Three (15.0%) patients had microscopic nodal metastases on SLN. No patients had positive regional nodes other than SLN. No perioperative complications were recorded. SLN mapping has been acknowledged by the National Comprehensive Cancer Network guidelines as a viable option for the management of selected uterine malignancies [7,8]. Currently, the near-infrared technology built in the Da Vinci Xi system provides an enhanced real-time imaging system that improves the advantages given by ICG. Together with our experience, these conditions indicate that SLN mapping is an effective and safe procedure with high overall detection and low false-negative rates. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
He, Qingqing; Zhuang, Dayong; Zheng, Luming; Fan, Ziyi; Zhou, Peng; Zhu, Jian; Lv, Zhen; Chai, Jixin; Cao, Lei
2012-12-01
Electrocautery has been proven to be associated with prolonged serous drainage that might result in several complications in patients requiring axillary lymph node dissection for breast cancer. We proposed that the Harmonic Focus might outperform electrocautery in axillary lymph node dissection, resulting in shorter operative times and reduced postoperative complications. One hundred twenty-eight women with confirmed T1-3 N1-2 breast cancer were randomly assigned to undergo mastectomy or breast-conserving surgery with axillary dissection by using Harmonic Focus or electrocautery. Sixty-four has surgery with Harmonic Focus (group A) and 64 with electrocautery (group B) by the same surgical team. Operative time, blood loss, total drainage volume and days, incidence of seroma, hematoma, pain score, and flap necrosis were recorded. Using Harmonic Focus significantly diminished operative time, blood loss, total drainage volume, days of stay, and visual analogue scale as compared with traditional electrocautery. There was no statistical difference between the 2 groups regarding seroma, hematoma, and flap necrosis. Axillary lymph node dissection using Harmonic Focus is feasible, safe, and a more comfortable design for the surgeon. Copyright © 2012 Elsevier Inc. All rights reserved.
Carnation (Dianthus caryophylus L.).
Nontaswatsri, Chalermsri; Fukai, Seiichi
2006-01-01
Carnation is a valuable crop for the cut flower industry and demand for new and improved varieties is growing. However, genetic transformation of carnations is currently limited because of a lack of efficient routine technique. In this chapter, we present an easy and effective protocol for gene transfer to carnation node explants and subsequent adventitious shoot regeneration. For high-adventitious shoot regeneration, node explants from first to third node of 5- to 8-cm long shoots were cultured on Murashige and Skoog (MS) medium, containing 1.0 mg/Lthidiazuron (TDZ), 0.1 mg/L alpha-napthalenoacetic acid (NAA), 20 g/L sucrose, and 2 g/L Gellan gum for 10 d. Then the explants were cut into 8 radial segments and subcultured onto MS medium, containing 1.0 mg/L BA, 0.1 mg/L NAA, 20 g/L sucrose and 2 g/L Gellan Gum. For effective genetic transformation, 3- to 5-d precultured node explants were submerged in an Agrobacerium suspension for 10 min, then cocultivated on filter paper soaked with water and 50 microM acetosyringone (AS). After cocultivation, the explants were cut into eight radial segments and subcultured onto selection medium until transformed shoots regenerated from the explants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazeron, J.J.; Langlois, D.; Lobo, P.A.
1984-10-01
From 1970 to 1979, a group of 50 patients was treated for squamous cell carcinoma of the penis by interstitial irradiation using an afterloading technique and iridium 192 wires. The group included 9 patients with T1 tumors, 27 with T2 tumors, and 14 with T3 tumors. Forty-five patients presented with no metastatic inguinal nodes (NO), 3 patients with N1 nodes, and 2 patients had N3 nodes. After treatment, 11 patients (1 T1, 6 T2 and 4 T3) developed local recurrences. Three patients developed post-therapeutic necrosis which necessitated partial amputation in 2 cases. Eight patients developed post-therapeutic urethral stenosis, which requiredmore » surgical treatment in three of the cases. Twenty-one percent of the patients died of their disease. The authors advocate interstitial irradiation using iridium 192 wires for the treatment of non-infiltrating or moderately infiltrating squamous cell carcinoma of the penis in which the largest dimension does no exceed 4 cm. When regular follow-up can be assurred, it is reasonable to forgo prophylactic treatment of the inguinal nodes in patients presenting without groin metastasis.« less
Nonlinear anomalous photocurrents in Weyl semimetals
NASA Astrophysics Data System (ADS)
Rostami, Habib; Polini, Marco
2018-05-01
We study the second-order nonlinear optical response of a Weyl semimetal (WSM), i.e., a three-dimensional metal with linear band touchings acting as pointlike sources of Berry curvature in momentum space, termed "Weyl-Berry monopoles." We first show that the anomalous second-order photocurrent of WSMs can be elegantly parametrized in terms of Weyl-Berry dipole and quadrupole moments. We then calculate the corresponding charge and node conductivities of WSMs with either broken time-reversal invariance or inversion symmetry. In particular, we predict a dissipationless second-order anomalous node conductivity for WSMs belonging to the TaAs family.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q.; Sprague, M. A.; Jonkman, J.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less
Synchronous Firefly Algorithm for Cluster Head Selection in WSN
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC. PMID:26495431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A new steel jacket design by Aker Engineering A.S. suitable for use in construction of platforms in 50m of water results in a 47% saving of steel as compared to conventional designs. Modifications of the design extends its usefulness to 150m of water with steel savings of 20 to 30%. A node design is used, and all nodes except the top and bottom ones are identical. The basic shape is a tetrahedron and all steel members are cylindrical with the same outside diameter but with different wall thickness where more or less strength is needed. Other advantages of this designmore » are ease and speed of fabrication. The tetratower is compared with the more conventional 8-legged jacket. (BLM)« less
Paley, Pamela J; Veljovich, Dan S; Press, Joshua Z; Isacson, Christina; Pizer, Ellen; Shah, Chirag
2016-07-01
The accuracy of sentinel lymph node mapping has been shown in endometrial cancer, but studies to date have primarily focused on cohorts at low risk for nodal involvement. In our practice, we acknowledge the lack of benefit of lymphadenectomy in the low-risk subgroup and omit lymph node removal in these patients. Thus, our aim was to evaluate the feasibility and accuracy of sentinel node mapping in women at sufficient risk for nodal metastasis warranting lymphadenectomy and in whom the potential benefit of avoiding nodal procurement could be realized. To evaluate the detection rate and accuracy of fluorescence-guided sentinel lymph node mapping in endometrial cancer patients undergoing robotic-assisted staging. One hundred twenty-three endometrial cancer patients undergoing sentinel lymph node sentinel node mapping using indocyanine green were prospectively evaluated. Two mL (1.0 mg/mL) of dye were injected into the cervical stroma divided between the 2-3 and 9-10 o'clock positions at the time of uterine manipulator placement. Before hysterectomy, the retroperitoneal spaces were developed and fluorescence imaging was used for sentinel node detection. Identified sentinel nodes were removed and submitted for touch prep intraoperatively, followed by permanent assessment with routine hematoxylin and eosin levels. Patients then underwent hysterectomy, bilateral salpingo-oophorectomy, and completion bilateral pelvic and periaortic lymphadenectomy based on intrauterine risk factors determined intraoperatively (tumor size >2 cm, >50% myometrial invasion, and grade 3 histology). Of 123 patients enrolled, at least 1 sentinel node was detected in 119 (96.7%). Ninety-nine patients (80%) had bilateral pelvic or periaortic sentinel nodes detected. A total of 85 patients met criteria warranting completion lymphadenectomy. In 14 patients (16%) periaortic lymphadenectomy was not feasible, and the mean number of pelvic nodes procured was 13 (6-22). Of the 71 patients undergoing pelvic and periaortic lymphadenectomy, the mean nodal count was 23.2 (8-51). Of patients undergoing lymphadenectomy, 10.6% had lymph node metastasis on final hematoxylin and eosin evaluation. Notably, the sentinel node was the only positive node in 44% of cases. There were no cases in which final pathology of the sentinel node was negative and metastatic disease was detected upon completion lymphadenectomy in the non-sentinel nodes (no false negatives), yielding a sensitivity of 100%. Of the 14 sentinel nodes ultimately found to harbor metastases, 3 were negative on touch prep, yielding a sensitivity of 78.6% for intraoperative detection of sentinel node involvement. In all 3 of the false-negative touch preps, final pathology detected a single micrometastasis (0.24 mm, 1.4 mm, 1.5 mm). As expected, there were no false-positive results, yielding a specificity of 100%. No complications related to sentinel node mapping or allergic reactions to the dye were encountered. Intraoperative sentinel node mapping using fluorescence imaging with indocyanine green in endometrial cancer patients is feasible and yields high detection rates. In our pilot study, sentinel node mapping identified all women with Stage IIIC disease. Low false-negative rates are encouraging, and if confirmed in multi-institutional trials, this approach would be anticipated to reduce the morbidity, operative times, and costs associated with complete pelvic and periaortic lymphadenectomy. Copyright © 2015 Elsevier Inc. All rights reserved.