Sample records for suitable microenvironment prepared

  1. Regulating the local pH level of titanium via Mg-Fe layered double hydroxides films for enhanced osteogenesis.

    PubMed

    Li, Qianwen; Wang, Donghui; Qiu, Jiajun; Peng, Feng; Liu, Xuanyong

    2018-05-01

    Hard tissue implant materials which can cause a suitable alkaline microenvironment are thought to be beneficial for stimulating osteoblast differentiation while suppressing osteoclast generation. To make the local pH around the interface between materials and cells controllable, we prepared a series of Mg-Fe layered double hydroxide (LDH) films on acid-etched pure titanium surfaces via hydrothermal treatment. By adjusting the Mg/Fe proportion ratio, the interlayer spacing of Mg-Fe LDHs was regulated, making their OH- exchange abilities adjustable, and this ultimately resulted in a microenvironment with a controllable pH value. In vitro experiments demonstrated that the Mg-Fe LDH film-modified titanium surface possessed good biocompatibility and osteogenic activity, especially the Mg-Fe LDH film with Mg/Fe proportion ratio of 4, which could form a suitable alkaline microenvironment for the growth and osteogenetic differentiation of stem cells. These results demonstrate the potential application of the prepared Mg-Fe LDH films in enhancing the osteogenesis of implant materials while providing a new way into the design of controllable alkaline environment.

  2. Silica nanoparticles for micro-particle imaging velocimetry: fluorosurfactant improves nanoparticle stability and brightness of immobilized iridium(III) complexes.

    PubMed

    Lewis, David J; Dore, Valentina; Rogers, Nicola J; Mole, Thomas K; Nash, Gerard B; Angeli, Panagiota; Pikramenou, Zoe

    2013-11-26

    To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (μ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (μ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. μ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.

  3. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.

    PubMed

    Angeloni, Valentina; Contessi, Nicola; De Marco, Cinzia; Bertoldi, Serena; Tanzi, Maria Cristina; Daidone, Maria Grazia; Farè, Silvia

    2017-11-01

    Breast cancer (BC) represents the most incident cancer case in women (29%), with high mortality rate. Bone metastasis occurs in 20-50% cases and, despite advances in BC research, the interactions between tumor cells and the metastatic microenvironment are still poorly understood. In vitro 3D models gained great interest in cancer research, thanks to the reproducibility, the 3D spatial cues and associated low costs, compared to in vivo and 2D in vitro models. In this study, we investigated the suitability of a poly-ether-urethane (PU) foam as 3D in vitro model to study the interactions between BC tumor-initiating cells and the bone microenvironment. PU foam open porosity (>70%) appeared suitable to mimic trabecular bone structure. The PU foam showed good mechanical properties under cyclic compression (E=69-109kPa), even if lower than human trabecular bone. The scaffold supported osteoblast SAOS-2 cell line proliferation, with no cytotoxic effects. Human adipose derived stem cells (ADSC) were cultured and differentiated into osteoblast lineage on the PU foam, as shown by alizarin red staining and RT-PCR, thus offering a bone biomimetic microenvironment to the further co-culture with BC derived tumor-initiating cells (MCFS). Tumor aggregates were observed after three weeks of co-culture by e-cadherin staining and SEM; modification in CaP distribution was identified by SEM-EDX and associated to the presence of tumor cells. In conclusion, we demonstrated the suitability of the PU foam to reproduce a bone biomimetic microenvironment, useful for the co-culture of human osteoblasts/BC tumor-initiating cells and to investigate their interaction. 3D in vitro models represent an outstanding alternative in the study of tumor metastases development, compared to traditional 2D in vitro cultures, which oversimplify the 3D tissue microenvironment, and in vivo studies, affected by low reproducibility and ethical issues. Several scaffold-based 3D in vitro models have been proposed to recapitulate the development of metastases in different body sites but, still, the crucial challenge is to correctly mimic the tissue to be modelled in terms of physical, mechanical and biological properties. Here, we prove the suitability of a porous polyurethane foam, synthesized using an appropriate formulaton, in mimicking the bone tissue microenvironment and in reproducing the metastatic colonization derived from human breast cancer, particularly evidencing the devastating effects on the bone extracellular matrix caused by metastatic spreading. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Preparation of Human Primary Colon Tissue-Derived Organoid Using Air Liquid Interface Culture.

    PubMed

    Usui, Tatsuya; Sakurai, Masashi; Umata, Koji; Yamawaki, Hideyuki; Ohama, Takashi; Sato, Koichi

    2018-02-21

    In vitro analysis of intestinal epithelium has been hindered by a lack of suitable culture systems useful for gastrointestinal research. To overcome the problem, an air liquid interface (ALI) method using a collagen gel was established to culture three-dimensional primary cells containing both primary epithelial and mesenchymal components from mouse gastrointestinal tissues. ALI organoids accurately recapitulate organ structures, multilineage differentiation, and physiology. Since ALI organoids from human tissues have not been produced, we modified the previous protocol for mouse ALI organoid culture to establish the culture system of ALI organoids from normal and tumor colorectal tissues of human patients. The current unit presents a protocol for preparation of the ALI organoid culture from normal and tumor colorectal tissues of human patients. ALI organoid culture from human tissues might be useful for examining not only resistance to chemotherapy in a tumor microenvironment but also toxic effects on organoids. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  5. Liquid marble as microbioreactor for bioengineering applications

    NASA Astrophysics Data System (ADS)

    Sarvi, Fatemeh; Jain, Kanika; Alhasan, Layla; Arbatan, Tina; Shen, Wei; Chan, Peggy P. Y.

    2015-12-01

    This paper reports the use of liquid marbles (LMs) as miniature bioreactors to produce three-dimensional (3D) spheroids including tumor-like spheriods from cancer cells and embryoid bodies (EBs) from stem cells. A liquid marble microbioreactor is prepared by placing a drop of cell suspension onto a polytetrafluoroethylene (PTFE) particle bed. Without the addition of growth factors, suspended EBs from liquid marbles exhibit spontaneous contraction. These results indicate that the liquid marble provides a suitable microenvironment to induce EB formation and spontaneous cardiac differentiation. The EBs were further plated onto gelatin-coated tissue culture dishes. Plated EBs express mature cardiomyocyte marker cardiac troponinT (cTnT), indicating that these EBs have differentiated into functional cardiomyocytes. The cardiomyocytes generated using this liquid marble approach could be useful for transplantation.

  6. Breast Tissue Stromal Cells Preferentially Promote Generation of M2 Macrophages: A Novel Mechanism for Tumor Supportive Properties of Breast Microenvironment

    DTIC Science & Technology

    2011-08-01

    macrophages (MQs), on growth of breast tumor cells, and (2) to test the hypothesis that MSCs of non -breast adipose tissues, in contrast to MSCs of...macrophages in normal and malignant tissues. In contrast to all studies focused on the role of breast tissue microenvironment in growth of primary breast...the phenotype of macrophages, provide an immune environment suitable for growth of breast cancer cells, but MSCs present in non -breast adipose

  7. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  8. Analysis of Extracellular Vesicles in the Tumor Microenvironment.

    PubMed

    Al-Nedawi, Khalid; Read, Jolene

    2016-01-01

    Extracellular vesicles (ECV) are membrane compartments shed from all types of cells in various physiological and pathological states. In recent years, ECV have gained an increasing interest from the scientific community for their role as an intercellular communicator that plays important roles in modifying the tumor microenvironment. Multiple techniques have been established to collect ECV from conditioned media of cell culture or physiological fluids. The gold standard methodology is differential centrifugation. Although alternative techniques exist to collect ECV, these techniques have not proven suitable as a substitution for the ultracentrifugation procedure.

  9. The effects of electric fields on charged molecules and particles in individual microenvironments

    NASA Astrophysics Data System (ADS)

    Jamieson, K. S.; ApSimon, H. M.; Jamieson, S. S.; Bell, J. N. B.; Yost, M. G.

    Measurements of small air ion concentrations, electrostatic potential and AC electric field strengths were taken in an office setting to investigate the link between electric fields and charged molecule and particle concentrations in individual microenvironments. The results obtained indicate that the electromagnetic environments individuals can be exposed to whilst indoors can often bear little resemblance to those experienced outdoors in nature, and that many individuals may spend large periods of their time in "Faraday cage"-like conditions exposed to inappropriate levels and types of electric fields that can reduce localised concentrations of biologically essential and microbiocidal small air ions. Such conditions may escalate their risk of infection from airborne contaminants, including microbes, whilst increasing localised surface contamination. The degree of "electro-pollution" that individuals are exposed to was shown to be influenced by the type of microenvironment they occupy, with it being possible for very different types of microenvironment to exist within the same room. It is suggested that adopting suitable electromagnetic hygiene/productivity guidelines that seek to replicate the beneficial effects created by natural environments may greatly mitigate such problems.

  10. A method to integrate patterned electrospun fibers with microfluidic systems to generate complex microenvironments for cell culture applications

    PubMed Central

    Wallin, Patric; Zandén, Carl; Carlberg, Björn; Hellström Erkenstam, Nina; Liu, Johan; Gold, Julie

    2012-01-01

    The properties of a cell’s microenvironment are one of the main driving forces in cellular fate processes and phenotype expression invivo. The ability to create controlled cell microenvironments invitro becomes increasingly important for studying or controlling phenotype expression in tissue engineering and drug discovery applications. This includes the capability to modify material surface properties within well-defined liquid environments in cell culture systems. One successful approach to mimic extra cellular matrix is with porous electrospun polymer fiber scaffolds, while microfluidic networks have been shown to efficiently generate spatially and temporally defined liquid microenvironments. Here, a method to integrate electrospun fibers with microfluidic networks was developed in order to form complex cell microenvironments with the capability to vary relevant parameters. Spatially defined regions of electrospun fibers of both aligned and random orientation were patterned on glass substrates that were irreversibly bonded to microfluidic networks produced in poly-dimethyl-siloxane. Concentration gradients obtained in the fiber containing channels were characterized experimentally and compared with values obtained by computational fluid dynamic simulations. Velocity and shear stress profiles, as well as vortex formation, were calculated to evaluate the influence of fiber pads on fluidic properties. The suitability of the system to support cell attachment and growth was demonstrated with a fibroblast cell line. The potential of the platform was further verified by a functional investigation of neural stem cell alignment in response to orientation of electrospun fibers versus a microfluidic generated chemoattractant gradient of stromal cell-derived factor 1 alpha. The described method is a competitive strategy to create complex microenvironments invitro that allow detailed studies on the interplay of topography, substrate surface properties, and soluble microenvironment on cellular fate processes. PMID:23781291

  11. Design of 3-D adipospheres for quantitative metabolic study

    PubMed Central

    Akama, Takeshi; Leung, Brendan M.; Labuz, Joseph M.; Takayama, Shuichi; Chun, Tae-Hwa

    2017-01-01

    Quantitative assessment of adipose mitochondrial activity is critical for better understanding of adipose tissue function in obesity and diabetes. While the two-dimensional (2-D) tissue culture method has been sufficient to discover key molecules that regulate adipocyte differentiation and function, the method is insufficient to determine the role of extracellular matrix (ECM) molecules and their modifiers, such as matrix metalloproteinases (MMPs), in regulating adipocyte function in three-dimensional (3-D) in vivo-like microenvironments. By using a 3-D hanging drop tissue culture system, we are able to produce scalable 3-D adipospheres that are suitable for quantitative mitochondrial study in 3-D microenvironment. PMID:28244051

  12. Conjugation of cytochrome c with ferrocene-terminated hyperbranched polymer and its influence on protein structure, conformation and function.

    PubMed

    Xiao, Fengjuan; Yue, Lin; Li, Song; Li, Xinxin

    2016-06-05

    Interaction mechanism of a new hyperbranched polyurethane-based ferrocene (HPU-Fc) with cytochrome c (cyt c) and cyt c structure and conformation change induced by HPU-Fc were investigated using cyclic voltammogram(CV), differential pulse voltammetry (DPV), circular dichroism (CD), fluorescence, synchronous fluorescence and absorbance spectroscopy technique. The peroxidase activity of cyt c in the presence of HPU-Fc was also studied. The structure and conformation of protein are relatively stable at moderate concentration of HPU-Fc without obvious perturbation of the heme pocket and significant changes in protein secondary structure. Conjugation of cyt c with excessive HPU-Fc (over about 3 times of cyt c) slightly changed the α-helix structure in protein, disturbed the microenvironment around heme as well as away from the heme crevice, which caused the changes of the electrochemical behavior and the absorption spectra. Reasonable amount of HPU-Fc has no significant influence on the protein enzymatic activity, while excess HPU-Fc may cause a conformation not suitable for H2O2 activation and guaiacol oxidation. The interaction of HPU-Fc with cyt c and the conservation of protein function at suitable HPU-Fc amount make prepared complex promising for the synergistic anticancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Lead spatio-temporal pattern identification in urban microenvironments using moss bags and the Kohonen self-organizing maps

    NASA Astrophysics Data System (ADS)

    Deljanin, Isidora; Antanasijević, Davor; Vuković, Gordana; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2015-09-01

    The first investigation of the use of the Kohonen self-organizing map (SOM) which includes lead concentration and its isotopic composition in moss bags to assess the spatial and temporal patterns of lead in the urban microenvironments is presented in this paper. The moss bags experiment was carried out during 2011 in the city tunnel in Belgrade, as well as in street canyons at different heights (4, 8 and 16 m) and in public garages. The moss bags were exposed for 5 and 10 weeks. The results revealed that the 10 weeks period represents suitable exposure time in screening Pb isotopic composition in active biomonitoring analysis. The obtained results showed that the SOM analysis, by recognizing slight differences among moss samples regarding exposure time, horizontal and vertical spatial distribution, with both, contribution of stable lead isotopes and Pb concentration, could be recommended in biomonitoring analysis of lead distribution in urban microenvironments.

  14. The dynamic changes and interactional networks of prokaryotic community between co-digestion and mono-digestions of corn stalk and pig manure.

    PubMed

    Wang, Min; Zhang, Xueying; Zhou, Jun; Yuan, Yuexiang; Dai, Yumei; Li, Dong; Li, Zhidong; Liu, Xiaofeng; Yan, Zhiying

    2017-02-01

    Anaerobic co-digestion is considered to be an efficient way to improve the biogas production. The abundance, dynamic and interactional networks of prokaryotic community were investigated between co-digestion and mono-digestions of corn stalk and pig manure in mesophilic batch test. Co-digestion showed higher methane production, and contributed to suitable microenvironment as well as stable prokaryotic community structure. The highest methane production was achieved with the highest relative abundance of Methanosaeta. Prokaryotic community in mono-digestions might inhibited by FA or FVFA. The functional modules in co-digestion and mono-digestion of pig manure clustered together with bigger size and higher degree, and the connections of metabolic functions were better-organized, which means high-efficient utilization of substrate and prevention of the two digestion systems crash. The partial mantel tests showed the functional modules were significantly affected by environmental factors. These results further explained that why co-digestion was more efficient than mono-digestion owing to suitable microenvironment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of lidocaine forms (salt vs. freebase) on properties of drug-eudragit® L100-55 extrudates prepared by reactive melt extrusion.

    PubMed

    Liu, Xu; Ma, Xiangyu; Kun, Eucharist; Guo, Xiaodi; Yu, Zhongxue; Zhang, Feng

    2018-06-05

    This study examines the preparation of sustained-release lidocaine polyelectrolyte complex using reactive melt extrusion. Eudragit L100-55 was selected as the ionic polymer. The influence of drug forms (freebase vs. hydrochloride salt) on lidocaine-Eudragit L100-55 interactions, physical stability, and dissolution properties of extrudates was investigated. It was confirmed by DSC, FT-IR and Raman spectroscopy that polyelectrolyte could only form via the acid-base reaction between Eudragit L100-55 and lidocaine freebase. Due to this ionic interaction, the lidocaine extrudate was physically more stable than the lidocaine hydrochloride extrudate during the storage under stressed condition. Drug release from lidocaine extrudate was a function of drug solubility, polymer solubility, drug-polymer interaction, and drug-induced microenvironment pH. At 30% drug loading, extrudate exhibited sustained release in aqueous media at pH 1.2 and 4.5. Due to the alkaline microenvironment pH induced by dissolved lidocaine, Eudragit L100-55 was solubilized and sustained-release was not achieved in water and aqueous media at pH 5.5. In comparison, lidocaine hydrochloride induced an acidic microenvironment. Drug release of lidocaine hydrochloride extrudate was similar at pH 1.2, 4.5, 5.5 and water with drug being released over 10 h. The release of lidocaine hydrochloride from the extrudates in these media was primarily controlled by microenvironment pH. It is concluded that different forms of lidocaine resulted in different drug-polymer interactions and distinctive physicochemical properties of extrudates. Copyright © 2018. Published by Elsevier B.V.

  16. One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Bi, Linlin; Ci, Suqin; Cai, Pingwei; Li, Hao; Wen, Zhenhai

    2018-01-01

    The design and synthesis of low-cost and favourable anode materials is crucial to both power production efficiency and overall performance of microbial fuel cells (MFCs). Herein, we reported the preparation of three dimensional (3D) nitrogen-doped porous carbons (N/PCs) by one-step pyrolysis of solid mixture of sodium citrate and melamine. a variety of techniques, including electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc., were applied to characterize the surface physicochemical properties of the products, featuring macroporous structure with rich nitrogen doping on the as-prepared N/PCs. When applied as anode materials of MFC, the N/PCs exhibits a maximum power density of 2777.7 mW m-2, approximately twice higher than that of the MFCs with the commercial carbon cloth (CC) as anode. The significantly improved performance of the N/PCs was attributed to the unique structure and properties, such as favourable porous structure, good electrical conductivity, and large pore volume (0.7 cm3 g-1) in the present N/PCs. Nitrogen dopant on the surface of porous carbon contributed to an increasing in biocompatibility, resulting in a suitable micro-environment for microbial growth and thus helps to decrease charge transfer resistance at the electrode interface.

  17. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells

    PubMed Central

    2014-01-01

    Introduction The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment. Methods The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced. Results The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival. Conclusions The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need. PMID:24916098

  18. Multiscale habitat relationships of stream amphibians in the Klamath-Siskiyou region of California and Oregon

    Treesearch

    Hartwell H. Welsh Jr; Amy J. Lind

    2002-01-01

    Regional amphibian distribution patterns can vary greatly depending on species and the spatial scale of inquiry (e.g., landscape to microenvironment). These differences appear to be related both to habitat selection among species as well as availability of suitable habitats across scales. We sampled amphibians in 39 second- and third-order streams in the conifer-...

  19. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments.

    PubMed

    Nwe, Kido; Huang, Ching-Hui; Tsourkas, Andrew

    2013-10-24

    Neoplastic lesions can create a hostile tumor microenvironment with low extracellular pH. It is commonly believed that these conditions can contribute to tumor progression as well as resistance to therapy. We report the development and characterization of a pH-responsive magnetic resonance imaging contrast agent for imaging the acidic tumor microenvironment. The preparation included the conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1-(2,5-dioxo-1-pyrrolidinyl) ester (DOTA-NHS) to the surface of a water-soluble glycol chitosan (GC) polymer, which contains pH-titrable primary amines, followed by gadolinium complexation (GC-NH2-GdDOTA). GC-NH2-GdDOTA had a chelate-to-polymer ratio of approximately1:24 and a molar relaxivity of 9.1 mM(-1) s(-1). GC-NH2-GdDOTA demonstrated pH-dependent cellular association in vitro compared to the control. It also generated a 2.4-fold enhancement in signal in tumor-bearing mice 2 h postinjection. These findings suggest that glycol chitosan coupled with contrast agents can provide important diagnostic information about the tumor microenvironment.

  20. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment.

    PubMed

    Pillarisetti, Shameer; Maya, S; Sathianarayanan, S; Jayakumar, R

    2017-11-01

    Tunable pH and redox responsive polymer was prepared using γ-polyglutamic acid (γ-PGA) with linker 3-mercaptopropionic acid (3-MPA) (γ-PGA_SH) via oxidation to obtain redox responsive disulfide (γ-PGA_SS) backbone and adipic acid dihydrazide (ADH) (γ-PGA_SS_ADH) with hydrazide functional group for pH responsiveness. Further curcumin (Cur) was conjugated through hydrazone bond of the γ-PGA_SS_ADH via Schiff base reaction to obtain (γ-PGA_SS_ADH_Cur). The prepared systems were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Qq-TOF-MS/MS) and Solid state nuclear magnetic resonance (SS NMR) techniques. γ-PGA_SS_ADH_Cur formed self-assembled core shell nanoparticles (NPs) in existence of stabilized aqueous medium. γ-PGA_SS_ADH_Cur NPs maintained its stability in physiological condition. NPs tunable Cur release and cytotoxicity were observed for γ-PGA_SS_ADH_Cur NPs in both acidic and redox conditions mimicking the cancer microenvironment. γ-PGA_SS_ADH_Cur NPs uptake study showed via endocytosis mechanism resulted in the lysosomal entrapment of these NPs within the cell. γ-PGA_SS_ADH_Cur NPs exhibited a dual stimuli responsive drug delivery and can be used as a smart and potential drug delivery system in cancer microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    PubMed Central

    2014-01-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068

  2. Tumor cell culture on collagen-chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies.

    PubMed

    Mahmoudzadeh, Aziz; Mohammadpour, Hemn

    2016-07-01

    Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.

  3. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish.

    PubMed

    Hess, Isabell; Boehm, Thomas

    2016-01-18

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-myb(I181N) mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development.

  4. An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction.

    PubMed

    Nabetani, Yu; Takamura, Hazuki; Hayasaka, Yuika; Sasamoto, Shin; Tanamura, Yoshihiko; Shimada, Tetsuya; Masui, Dai; Takagi, Shinsuke; Tachibana, Hiroshi; Tong, Zhiwei; Inoue, Haruo

    2013-04-21

    From the viewpoint of developing photoresponsive supramolecular systems in microenvironments to exhibit more sophisticated photo-functions even at the macroscopic level, inorganic/organic hybrid compounds based on clay or niobate nanosheets as the microenvironments were prepared, characterized, and examined for their photoreactions. We show here a novel type of artificial muscle model unit having much similarity with that in natural muscle fibrils. Upon photoirradiation, the organic/inorganic hybrid nanosheets reversibly slide horizontally on a giant scale, and the interlayer spaces in the layered hybrid structure shrink and expand vertically. In particular, our layered hybrid molecular system exhibits a macroscopic morphological change on a giant scale (~1500 nm) compared with the molecular size of ~1 nm, based on a reversible sliding mechanism.

  5. Human pluripotent stem cells on artificial microenvironments: a high content perspective

    PubMed Central

    Viswanathan, Priyalakshmi; Gaskell, Terri; Moens, Nathalie; Culley, Oliver J.; Hansen, Darrick; Gervasio, Mia K. R.; Yeap, Yee J.; Danovi, Davide

    2014-01-01

    Self-renewing stem cell populations are increasingly considered as resources for cell therapy and tools for drug discovery. Human pluripotent stem (hPS) cells in particular offer a virtually unlimited reservoir of homogeneous cells and can be differentiated toward diverse lineages. Many diseases show impairment in self-renewal or differentiation, abnormal lineage choice or other aberrant cell behavior in response to chemical or physical cues. To investigate these responses, there is a growing interest in the development of specific assays using hPS cells, artificial microenvironments and high content analysis. Several hurdles need to be overcome that can be grouped into three areas: (i) availability of robust, homogeneous, and consistent cell populations as a starting point; (ii) appropriate understanding and use of chemical and physical microenvironments; (iii) development of assays that dissect the complexity of cell populations in tissues while mirroring specific aspects of their behavior. Here we review recent progress in the culture of hPS cells and we detail the importance of the environment surrounding the cells with a focus on synthetic material and suitable high content analysis approaches. The technologies described, if properly combined, have the potential to create a paradigm shift in the way diseases are modeled and drug discovery is performed. PMID:25071572

  6. Using smartphone as a motion detector to collect time-microenvironment data for estimating the inhalation dose.

    PubMed

    Hoi, Tran Xuan; Phuong, Huynh Truc; Van Hung, Nguyen

    2016-09-01

    During the production of iodine-131 from neutron irradiated tellurium dioxide by the dry distillation, a considerable amount of (131)I vapor is dispersed to the indoor air. People who routinely work at the production area may result in a significant risk of exposure to chronic intake by inhaled (131)I. This study aims to estimate the inhalation dose for individuals manipulating the (131)I at a radioisotope production. By using an application installed on smartphones, we collected the time-microenvironment data spent by a radiation group during work days in 2015. Simultaneously, we used a portable air sampler combined with radioiodine cartridges for grabbing the indoor air samples and then the daily averaged (131)I concentration was calculated. Finally, the time-microenvironment data jointed with the concentration to estimate the inhalation dose for the workers. The result showed that most of the workers had the annual internal dose in 1÷6mSv. We concluded that using smartphone as a motion detector is a possible and reliable way instead of the questionnaires, diary or GPS-based method. It is, however, only suitable for monitoring on fixed indoor environments and limited the targeted people. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Electrospun PBLG/PLA nanofiber membrane for constructing in vitro 3D model of melanoma.

    PubMed

    Wang, Yaping; Qian, Junmin; Liu, Ting; Xu, Weijun; Zhao, Na; Suo, Aili

    2017-07-01

    Though much progress in utilizing tissue engineering technology to investigate tumor development in vitro has been made, the effective management of human melanoma is still a challenge in clinic due to lack of suitable 3D culture systems. In this study, we prepared a poly(γ-benzyl-l-glutamate)/poly(lactic acid) (PBLG/PLA) nanofiber membrane by electrospinning and demonstrated its suitability as a matrix for 3D culture of melanoma cells in vitro. The electrospun PBLG/PLA nanofiber membrane displayed a smooth and uniform fibrous morphology and had a desirable water contact angle of 79.3±0.6°. The average diameter of PBLG/PLA nanofibers was 320.3±95.1nm that was less than that (516.2±163.3nm) of pure PLA nanofibers. The addition of PBLG into PLA decreased the cold crystallization peak of PLA fibers from 93 to 75°C. The in vitro biocompatibility of PBLG/PLA nanofiber membrane was evaluated with B16F10 cells using PLA nanofiber membrane as control. It was found that, compared to PLA nanofiber membrane, PBLG/PLA nanofiber membrane could better support cell viability and proliferation, as indicated by MTT assay and live-dead staining. SEM results revealed that PBLG/PLA rather than PLA nanofiber membrane promoted the generation of tumoroid-like structures. These findings clearly demonstrated that the electrospun PBLG/PLA nanofiber membrane could mimick the extracellular matrix of melanoma microenvironment and be a promising platform for 3D cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synchronized chaotic targeting and acceleration of surface chemistry in prebiotic hydrothermal microenvironments

    PubMed Central

    Priye, Aashish; Yu, Yuncheng; Hassan, Yassin A.; Ugaz, Victor M.

    2017-01-01

    Porous mineral formations near subsea alkaline hydrothermal vents embed microenvironments that make them potential hot spots for prebiotic biochemistry. But, synthesis of long-chain macromolecules needed to support higher-order functions in living systems (e.g., polypeptides, proteins, and nucleic acids) cannot occur without enrichment of chemical precursors before initiating polymerization, and identifying a suitable mechanism has become a key unanswered question in the origin of life. Here, we apply simulations and in situ experiments to show how 3D chaotic thermal convection—flows that naturally permeate hydrothermal pore networks—supplies a robust mechanism for focused accumulation at discrete targeted surface sites. This interfacial enrichment is synchronized with bulk homogenization of chemical species, yielding two distinct processes that are seemingly opposed yet synergistically combine to accelerate surface reaction kinetics by several orders of magnitude. Our results suggest that chaotic thermal convection may play a previously unappreciated role in mediating surface-catalyzed synthesis in the prebiotic milieu. PMID:28119504

  9. Hydrologic refugia, plants, and climate change.

    PubMed

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  10. Impact craters as biospheric microenvironments, Lawn Hill Structure, Northern Australia.

    PubMed

    Lindsay, John; Brasier, Martin

    2006-04-01

    Impact craters on Mars act as traps for eolian sediment and in the past may have provided suitable microenvironments that could have supported and preserved a stressed biosphere. If this is so, terrestrial impact structures such as the 18-km-diameter Lawn Hill Structure, in northern Australia, may prove useful as martian analogs. We sampled outcrop and drill core from the carbonate fill of the Lawn Hill Structure and recorded its gamma-log signature. Facies data along with whole rock geochemistry and stable isotope signatures show that the crater fill is an outlier of the Georgina Basin and was formed by impact at, or shortly before, approximately 509-506 million years ago. Subsequently, it was rapidly engulfed by the Middle Cambrian marine transgression, which filled it with shallow marine carbonates and evaporites. The crater formed a protected but restricted microenvironment in which sediments four times the thickness of the nearby basinal succession accumulated. Similar structures, common on the martian surface, may well have acted as biospheric refuges as the planet's water resources declined. Low-pH aqueous environments on Earth similar to those on Mars, while extreme, support diverse ecologies. The architecture of the eolian crater fill would have been defined by long-term ground water cycles resulting from intermittent precipitation in an extremely arid climate. Nutrient recycling, critical to a closed lacustrine sub-ice biosphere, could be provided by eolian transport onto the frozen water surface.

  11. Effect of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of amorphous solid dispersions.

    PubMed

    Sun, Weiwei; Pan, Baoliang

    2017-06-15

    This study investigates the effects of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of micro-environment pH modifying solid dispersions (pH M -SD) for the poorly water-soluble model drug Toltrazuril (TOL). Various pH M -SDs were prepared using Ca(OH) 2 as a pH-modifier in hydrophilic polymers, including polyethylene glycol 6000 (PEG6000), polyvinylpyrrolidone k30 (PVPk30) and hydroxypropyl methylcellulose (HPMC). Based on the results of physicochemical characterizations and in-vitro dissolution testing, the representative ternary (Ca(OH) 2 :TOL:PEG6000/HPMC/PVPk30=1:8:24, w/w/w) and binary (TOL:PVPk30=1:3, w/w) solid dispersions were selected and optimized to perform in-vivo pharmacokinetic study. The micro-environment pH modification improved the in-vitro water-solubility and in-vivo bioavailability of parent drug TOL. Furthermore, the addition of alkalizers not only enhanced the release and absorption of prototype drug, but also promoted the generation of active metabolites, including toltrazuril sulfoxide (TOLSO) and toltrazuril sulfone (TOLSO 2 ). The in-vitro dissolution profiles and in-vivo absorption, distribution and metabolism behaviors of the pH M -SDs varied with polymer type. Moreover, in-vivo bioavailability of three active pharmaceutical ingredients increased with an increase in in-vitro dissolution rates of the drug from the pH M -SDs prepared with various polymers. Therefore, a non-sink in-vitro dissolution method can be used to predict the in-vivo performance of pH M -SDs formulated with various polymers with trend consistency. In-vitro and in-vivo screening procedures revealed that the pH M -SD composed of Ca(OH) 2 , TOL and PVPk30 at a weight ratio of 1:8:24, of which the safety was adequately proved via histopathological examination, may be a promising candidate for providing better clinical outcomes. Copyright © 2017. Published by Elsevier B.V.

  12. A biotherapy based on PSCs-in-3D spheroid-ameliorated biologics depletes in vivo cancer-sustaining stem cells

    PubMed Central

    Zhou, Tianlin; Li, Meng; Wen, Yanjun; Lin, Xiaojuan; Xiang, Rong; Chen, Xiancheng

    2015-01-01

    CSCs are able to survive routine anticancer procedures and peripheral-immune attack. Here we develop and detail a framework of CSC elimination governed by 3D-biologics. Pluripotent cells-engineered 3D-biologics (PMSB) and control non-3D-biologics were prepared from placenta-based somatic stem cells (PSCs) and inoculated respectively into senile hosts bearing progressive mammary, lung, colon carcinomas and melanoma. We demonstrate that PMSB evokes in vivo central-immune microenvironment with subsequent re-expression of thymosin-α1 ~ β4 in thymic cortex-medulla borderline for rapid MHC-unrestricted renewal of γδT-dominated immunocompetence. The post-renewal γδT-subsets could accurately bind and drive CSCs into apoptosis. Finally, with central/peripheral integral microenvironment renewal and TERT/Wnt/β-catenin pathway blockade, the CSC-subsets are fully depleted, leading to substantial cure of diverse tumors by PMSB inoculation (P < 0.01), yet not by non-3D-biologics. Thus, our study may contribute to open up a new avenue for tumor remission via pluripotent cells-engineered 3D-biologics addressing quick renewal of central-thymus and peripheral immune-microenvironment. PMID:26512920

  13. Macrophage Efferocytosis and Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2015-10-01

    prostate cancer bone metastasis through the phagocytosis of apoptotic tumor cells (efferocytosis). Specific Aims: 1. To identify the phagocytic ...2: To identify the phagocytic /efferocytic macrophage population in the tumor microenvironment of prostate bone metastases and determine its ability...preparation for Cancer Research. We obtained an array of prostate cancer tissue including bone metastasis (N=72) and stained the tissue for the phagocytic

  14. Alkaline biodegradable implants for osteoporotic bone defects--importance of microenvironment pH.

    PubMed

    Liu, W; Wang, T; Yang, C; Darvell, B W; Wu, J; Lin, K; Chang, J; Pan, H; Lu, W W

    2016-01-01

    Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects. Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time. The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner's trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning. In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate 'apatitic' layer in vivo. EDX suggested that residual material may influence μe-pH even 9 weeks post-surgery. The pH microelectrode is suitable for in vivo μe-pH detection. Alkaline biodegradable materials generate an in vivo microenvironmental pH which is higher than the normal physiological value and show promising healing effects in the context of osteoporotic bone defects.

  15. Targeting Hypoxia-Inducible Factor 1α in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment.

    PubMed

    Nigim, Fares; Cavanaugh, Jill; Patel, Anoop P; Curry, William T; Esaki, Shin-ichi; Kasper, Ekkehard M; Chi, Andrew S; Louis, David N; Martuza, Robert L; Rabkin, Samuel D; Wakimoto, Hiroaki

    2015-07-01

    Tissue hypoxia and necrosis represent pathophysiologic and histologic hallmarks of glioblastoma (GBM). Although hypoxia inducible factor 1α (HIF-1α) plays crucial roles in the malignant phenotypes of GBM, developing HIF-1α-targeted agents has been hampered by the lack of a suitable preclinical model that recapitulates the complex biology of clinical GBM. We present a new GBM model, MGG123, which was established from a recurrent human GBM. Orthotopic xenografting of stem-like MGG123 cells reproducibly generated lethal tumors that were characterized by foci of palisading necrosis, hypervascularity, and robust stem cell marker expression. Perinecrotic neoplastic cells distinctively express HIF-1α and are proliferative in both xenografts and the patient tissue. The xenografts contain scattered hypoxic foci that were consistently greater than 50 μm distant from blood vessels, indicating intratumoral heterogeneity of oxygenation. Hypoxia enhanced HIF-1α expression in cultured MGG123 cells, which was abrogated by the HIF-1α inhibitors digoxin or ouabain. In vivo, treatment of orthotopic MGG123 xenografts with digoxin decreased HIF-1α expression, vascular endothelial growth factor mRNA levels, and CD34-positive vasculature within the tumors, and extended survival of mice bearing the aggressive MGG123 GBM. This preclinical tumor model faithfully recapitulates the GBM-relevant hypoxic microenvironment and stemness and is a suitable platform for studying disease biology and developing hypoxia-targeted agents.

  16. Targeting the Prometastatic Microenvironment of the Involuting Mammary Gland

    DTIC Science & Technology

    2017-11-01

    Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland. 21702-5012 DISTRIBUTION STATEMENT: Approved for... Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved...5 days. Knockdown was assessed by PCR. Efficient knockdown of LTBP1 was observed within 24 hours and maintained throughout the time course

  17. Exploiting the superior protein resistance of polymer brushes to control single cell adhesion and polarisation at the micron scale

    PubMed Central

    Gautrot, Julien E.; Trappmann, Britta; Oceguera-Yanez, Fabian; Connelly, John; He, Ximin; Watt, Fiona M.; Huck, Wilhelm T.S.

    2010-01-01

    The control of the cell microenvironment on model patterned substrates allows the systematic study of cell biology in well defined conditions, potentially using automated systems. The extreme protein resistance of poly(oligo(ethylene glycol methacrylate)) (POEGMA) brushes is exploited to achieve high fidelity patterning of single cells. These coatings can be patterned by soft lithography on large areas (a microscope slide) and scale (substrates were typically prepared in batches of 200). The present protocol relies on the adsorption of extra-cellular matrix (ECM) proteins on unprotected areas using simple incubation and washing steps. The stability of POEGMA brushes, as examined via ellipsometry and SPR, is found to be excellent, both during storage and cell culture. The impact of substrate treatment, brush thickness and incubation protocol on ECM deposition, both for ultra-thin gold and glass substrates, is investigated via fluorescence microscopy and AFM. Optimised conditions result in high quality ECM patterns at the micron scale, even on glass substrates, that are suitable for controlling cell spreading and polarisation. These patterns are compatible with state-of-the-art technologies (fluorescence microscopy, FRET) used for live cell imaging. This technology, combined with single cell analysis methods, provides a platform for exploring the mechanisms that regulate cell behaviour. PMID:20347135

  18. Study of NiFe2O4 nanoparticles using Mössbauer spectroscopy with a high velocity resolution

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Ushakov, M. V.; Senthilkumar, B.; Selvan, R. Kalai; Sanjeeviraja, C.; Felner, I.; Semionkin, V. A.

    2013-04-01

    The nanocrystalline NiFe2O4 particles prepared by solution combustion synthesis technique using different fuels such as ethylene-diamine-tetra-acetic acid (NA sample) and urea (NB sample) were studied using magnetic measurement and 57Fe Mössbauer spectroscopy with a high velocity resolution. The temperature dependence of magnetization is different for the two samples. Mössbauer spectra demonstrate the necessity to use more than two magnetic sextets, usually used to fit the NiFe2O4 nanoparticles spectra. Evaluation of the different local microenvironments for Fe in both tetrahedral (A) and octahedral (B) sites, caused by different Ni2 + occupation of octahedral sites, demonstrates at least five different local microenvironments for both A and B sites. Therefore, the Mössbauer spectra were fitted by using ten magnetic sextets which are related to the spread 57Fe location in octahedral and tetrahedral sites.

  19. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy

    PubMed Central

    Roma-Rodrigues, Catarina; Raposo, Luís R.; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V.; Fernandes, Alexandra R.

    2017-01-01

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression. PMID:28098821

  20. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy.

    PubMed

    Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R

    2017-01-14

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  1. Multiparametric Analysis of the Tumor Microenvironment: Hypoxia Markers and Beyond.

    PubMed

    Mayer, Arnulf; Vaupel, Peter

    2017-01-01

    We have established a novel in situ protein analysis pipeline, which is built upon highly sensitive, multichannel immunofluorescent staining of paraffin sections of human and xenografted tumor tissue. Specimens are digitized using slide scanners equipped with suitable light sources and fluorescence filter combinations. Resulting digital images are subsequently subjected to quantitative image analysis using a primarily object-based approach, which comprises segmentation of single cells or higher-order structures (e.g., blood vessels), cell shape approximation, measurement of signal intensities in individual fluorescent channels and correlation of these data with positional information for each object. Our approach could be particularly useful for the study of the hypoxic tumor microenvironment as it can be utilized to systematically explore the influence of spatial factors on cell phenotypes, e.g., the distance of a given cell type from the nearest blood vessel on the cellular expression of hypoxia-associated biomarkers and other proteins reflecting their specific state of activation or function. In this report, we outline the basic methodology and provide an outlook on possible use cases.

  2. Tenascin-C Is a Major Component of the Fibrogenic Niche in Kidney Fibrosis

    PubMed Central

    Fu, Haiyan; Tian, Yuan; Zhou, Lili; Zhou, Dong; Tan, Roderick J.; Stolz, Donna B.

    2017-01-01

    Kidney fibrosis initiates at certain focal sites in which the fibrogenic niche provides a specialized microenvironment that facilitates fibroblast activation and proliferation. However, the molecular identity of these fibrogenic niches is poorly characterized. Here, we determined whether tenascin-C (TNC), an extracellular matrix glycoprotein, is a component of the fibrogenic niche in kidney fibrosis. In vivo, TNC expression increased rapidly in kidneys subjected to unilateral ureteral obstruction or ischemia/reperfusion injury and predominantly localized at the foci rich in fibroblasts in renal interstitium. In vitro, TNC selectively promoted renal interstitial fibroblast proliferation, bromodeoxyuridine incorporation, and the expression of proliferation-related genes. The mitogenic activity of TNC required the integrin/focal adhesion kinase/mitogen-activated protein kinase signaling cascade. Using decellularized extracellular matrix scaffolds, we found that TNC-enriched scaffolds facilitated fibroblast proliferation, whereas TNC-deprived scaffolds inhibited proliferation. Matrix scaffold prepared from fibrotic kidney also promoted greater ex vivo fibroblast proliferation than did scaffolds prepared from healthy kidney. Conversely, small interfering RNA-mediated knockdown of TNC in vivo repressed injury-induced fibroblast expansion and renal fibrosis. These studies identify TNC as a major constituent of the fibrogenic niche that promotes fibroblast proliferation, and illustrate a pivotal role for the TNC-enriched microenvironment in kidney fibrogenesis. PMID:27612995

  3. STAT3:FOXM1 and MCT1 drive uterine cervix carcinoma fitness to a lactate-rich microenvironment.

    PubMed

    Silva, Lidia Santos; Goncalves, Luis Gafeira; Silva, Fernanda; Domingues, Germana; Maximo, Valdemar; Ferreira, Joana; Lam, Eric W-F; Dias, Sergio; Felix, Ana; Serpa, Jacinta

    2016-04-01

    Uterine cervix cancer is the second most common malignancy in women worldwide with human papillomavirus (HPV) as the etiologic factor. The two main histological variants, squamous cell carcinomas (SCC) and adenocarcinomas (AC), resemble the cell morphology of exocervix and endocervix, respectively. Cancer metabolism is a cancer hallmark conditioned by the microenvironment. As uterine cervix homeostasis is dependent on lactate, we hypothesized lactate plays a role in uterine cervix cancer progression. Using in vitro (SiHa-SCC and HeLa-AC) and BALB-c/SCID models, we demonstrated that lactate metabolism is linked to histological types, with SCC predominantly consuming and AC producing lactate. MCT1 is a key factor, allowing lactate consumption and being regulated in vitro by lactate through the FOXM1:STAT3 pathway. In vivo models showed that SCC (SiHa) expresses MCT1 and is dependent on lactate to grow, whereas AC (HeLa) expresses MCT1 and MCT4, with higher growth capacities. Immunohistochemical analysis of tissue microarrays (TMA) from human cervical tumors showed that MCT1 expression associates with the SCC type and metastatic behavior of AC, whereas MCT4 expression concomitantly increases from in situ SCC to invasive SCC and is significantly associated with the AC type. Consistently, FOXM1 expression is statistically associated with MCT1 positivity in SCC, whereas the expression of FOXO3a, a FOXM1 functional antagonist, is linked to MCT1 negativity in AC. Our study reinforces the role of the microenvironment in the metabolic adaptation of cancer cells, showing that cells that retain metabolic features of their normal counterparts are positively selected by the organ's microenvironment and will survive. In particular, MCT1 was shown to be a key element in uterine cervix cancer development; however, further studies are needed to validate MCT1 as a suitable therapeutic target in uterine cervix cancer.

  4. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy

    PubMed Central

    Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew

    2017-01-01

    Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique. PMID:28904839

  5. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy.

    PubMed

    Fiala, Petra; Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew

    2017-01-01

    Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO 2 coated substrates confirmed the suitability of this technique.

  6. Preparation of three-dimensional macroporous chitosan-gelatin B microspheres and HepG2-cell culture.

    PubMed

    Huang, Fang; Cui, Long; Peng, Cheng-Hong; Wu, Xu-Bo; Han, Bao-San; Dong, Ya-Dong

    2016-12-01

    Chitosan-gelatin B microspheres with an open, interconnected, highly macroporous (100-200 µm) structure were prepared via a three-step protocol combining freeze-drying with an electrostatic and ionic cross-linking method. Saturated tripolyphosphate ethanol solution (85% ethanol) was chosen as the crosslinking agent to prevent destruction of the porous structure and to improve the biostability of the chitosan-gelatin B microspheres, with N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide/N-hydroxysuccinimide as a second crosslinking agent to react with gelatin A and fixed chitosan-gelatin B microspheres to attain improved biocompatibility. Water absorption of the three-dimensional macroporous chitosan-gelatin B microspheres (3D-P-CGMs) was 12.84, with a porosity of 85.45%. In vitro lysozyme degradation after 1, 3, 5, 7, 10, 14, and 21 days showed improved biodegradation in the 3D-P-CGMs. The morphology of human hepatoma cell lines (HepG2 cells) cultured on the 3D-P-CGMs was spherical, unlike that of cells cultured under traditional two-dimensional conditions. Scanning electron microscopy and paraffin sections were used to confirm the porous structure of the 3D-P-CGMs. HepG2 cells were able to migrate inside through the pore. Cell proliferation and levels of albumin and lactate dehydrogenase suggested that the 3D-P-CGMs could provide a larger specific surface area and an appropriate microenvironment for cell growth and survival. Hence, the 3D-P-CGMs are eminently suitable as macroporous scaffolds for cell cultures in tissue engineering and cell carrier studies. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Impact of the ovarian microenvironment on serous cancer

    DTIC Science & Technology

    2017-10-01

    CONTRACTING ORGANIZATION : University of Illinois at Chicago Chicago, IL 60607-4067 REPORT DATE: October 2017 TYPE OF REPORT: Final PREPARED FOR: U.S. Army...AUTHOR(S) Joanna E. Burdette 5d. PROJECT NUMBER 5e. TASK NUMBER EMAIL joannab@uic.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER University of Illinois at Chicago 809 S. Marshfield, Room 520 Chicago IL 60612 9. SPONSORING

  8. Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies

    PubMed Central

    2014-01-01

    We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function. PMID:24598026

  9. Liquid precursor for deposition of copper selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; Franciscus Antonius Maria Van Hest, Marinus; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-08

    Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.

  10. Tumor Microenvironment and Progression to Invasion after a Diagnosis of Ductal Carcinoma In Situ

    DTIC Science & Technology

    2013-11-01

    disease, in which the disease of interest is treated as a single outcome. However, many human diseases, including colon cancer, type II diabetes mellitus ...Wisconsin Madison, WI 53715-1218 REPORT DATE: November 2013 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel...not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE November 2013 2 . REPORT

  11. Coordination-Induced Assembly of Intelligent Polysaccharide-Based Phototherapeutic Nanoparticles for Cancer Treatment.

    PubMed

    Tian, Ye; Guo, Ranran; Wang, Yajun; Yang, Wuli

    2016-12-01

    Smart polysaccharide-based anticancer phototherapeutic nanoparticles are prepared via a coordination-induced assembly process. Upon irradiated with a near infrared laser, the nanoparticles are not only able to simultaneously generate reactive oxygen species and hyperthermia that ablate tumors, but also possess tumor microenvironment-responsive off/on near infrared fluorescence and enhancement in photothermal effect, making them promising theranostic platform of cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cell laden hydrogel construct on-a-chip for mimicry of cardiac tissue in-vitro study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghiaseddin, Ali; Pouri, Hossein; Soleimani, Masoud

    Since the leading cause of death are cardiac diseases, engineered heart tissue (EHT) is one of the most appealing topics defined in tissue engineering and regenerative medicine fields. The importance of EHT is not only for heart regeneration but also for in vitro developing of cardiology. Cardiomyocytes could grow and commit more naturally in their microenvironment rather than traditional cultivation. Thus, this research tried to develop a set up on-a-chip to produce EHT based on chitosan hydrogel. Micro-bioreactor was hydrodynamically designed and simulated by COMSOL and produced via soft lithography process. Chitosan hydrogel was also prepared, adjusted, and assessed by XRD,more » FTIR and also its degradation rate and swelling ratio were determined. Finally, hydrogels in which mice cardiac progenitor cells (CPC) were loaded were injected into the micro-device chambers and cultured. Each EHT in every chamber was evaluated separately. Prepared EHTs showed promising results that expanded in them CPCs and work as an integrated syncytium. High cell density culture was the main accomplishment of this study. - Highlights: • An engineered heart tissue in its microenvironment at a perfused micro-bioreactor is proposed. • Cell proliferation of cardiac cells in high cell density is achievable in setup while sacrificing hydrogel is degrading. • 16 distinct heart tissue constructs in each run reduce the time and cost and increase the test results accuracy.« less

  13. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.

    PubMed

    Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing

    2015-10-01

    In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application.

    PubMed

    Huang, Xiaowei; Bai, Shumeng; Lu, Qiang; Liu, Xi; Liu, Shanshan; Zhu, Hesun

    2015-10-01

    Osteoinductive silk/hydroxyapatite (HA) composite scaffolds for bone regeneration were prepared by combining silk with HA/silk core-shell nanoparticles. The HA/silk nanoparticles were directly dispersed in silk solution to form uniform silk/HA blend and then composite scaffolds after a freeze-drying process. The HA/silk nanoparticles uniformly distributed in silk scaffolds at nanometer scale at varying HA content up to 40%, and substantially improved the compressive strength of the scaffolds produced. Rat bone mesenchymal stem cells (rBMSCs) were cultured in these scaffolds and cell proliferation was analyzed by confocal microscopy and DNA assay. Gene expression and biochemical assays were employed to study the influence of increasing HA/silk nanoparticles on in vitro osteogenic differentiation of rBMSCs. Increasing HA/silk nanoparticles inside silk scaffolds improved the growth and osteogenic capability of rBMSCs in the absence of osteogenic growth factors, and also significantly increased the calcium and collagen I deposition. In addition, compared to silk/HA composite scaffolds containing HA aggregates, the scaffolds loaded with HA/silk nanoparticles showed remarkably higher stiffness and better osteogenic property at same HA content, implying a preferable microenvironment for rBMSCs. These results suggest that the osteogenic property as well as mechanical property of silk/HA scaffolds could be further improved through fabricating their structure and topography at nanometer scale, providing more suitable systems for bone regeneration. © 2014 Wiley Periodicals, Inc.

  15. Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering.

    PubMed

    Mellati, Amir; Kiamahalleh, Meisam Valizadeh; Madani, S Hadi; Dai, Sheng; Bi, Jingxiu; Jin, Bo; Zhang, Hu

    2016-11-01

    Providing a controllable and definable three-dimensional (3D) microenvironment for chondrogenic differentiation of mesenchymal stem cells (MSCs) remains a great challenge for cartilage tissue engineering. In this work, poly(N-isopropylacrylamide) (PNIPAAm) polymers with the degrees of polymerization of 100 and 400 (NI100 and NI400) were prepared and the polymer solutions were introduced into the preprepared chitosan porous scaffolds (CS) to form hybrids (CSNI100 and CSNI400, respectively). SEM images indicated that the PNIPAAm gel partially occupied chitosan pores while the interconnected porous structure of chitosan was preserved. MSCs were incorporated within the hybrid and cell proliferation and chondrogenic differentiation were monitored. After 7-day incubation of the cell-laden constructs in a growth medium, the cell viability in CSNI100 and CSNI400 were 54 and 108% higher than that in CS alone, respectively. Glycosaminoglycan and total collagen contents increased 2.6- and 2.5-fold after 28-day culture of cell-laden CSNI400 in the chondrogenic medium. These results suggest that the hybrid structure composed of the chitosan porous scaffold and the well-defined PNIPAAm hydrogel, in particular CSNI400, is suitable for 3D stem cell culture and cartilage tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2764-2774, 2016. © 2016 Wiley Periodicals, Inc.

  16. Liquid precursor for deposition of indium selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-22

    Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.

  17. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  18. Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems.

    PubMed

    Popilski, Hen; Stepensky, David

    2015-05-01

    Solid tumors are characterized by complex morphology. Numerous factors relating to the composition of the cells and tumor stroma, vascularization and drainage of fluids affect the local microenvironment within a specific location inside the tumor. As a result, the intratumoral drug/drug delivery system (DDS) disposition following systemic or local administration is non-homogeneous and its complexity reflects the differences in the local microenvironment. Mathematical models can be used to analyze the intratumoral drug/DDS disposition and pharmacological effects and to assist in choice of optimal anticancer treatment strategies. The mathematical models that have been applied by different research groups to describe the intratumoral disposition of anticancer drugs/DDSs are summarized in this article. The properties of these models and of their suitability for prediction of the drug/DDS intratumoral disposition and pharmacological effects are reviewed. Currently available mathematical models appear to neglect some of the major factors that govern the drug/DDS intratumoral disposition, and apparently possess limited prediction capabilities. More sophisticated and detailed mathematical models and their extensive validation are needed for reliable prediction of different treatment scenarios and for optimization of drug treatment in the individual cancer patients.

  19. The Roles of Mesenchymal Stromal/Stem Cells in Tumor Microenvironment Associated with Inflammation

    PubMed Central

    Krstić, Jelena; Djordjević, Ivana Okić; Jauković, Aleksandra

    2016-01-01

    State of tumor microenvironment (TME) is closely linked to regulation of tumor growth and progression affecting the final outcome, refractoriness, and relapse of disease. Interactions of tumor, immune, and mesenchymal stromal/stem cells (MSCs) have been recognized as crucial for understanding tumorigenesis. Due to their outstanding features, stem cell-like properties, capacity to regulate immune response, and dynamic functional phenotype dependent on microenvironmental stimuli, MSCs have been perceived as important players in TME. Signals provided by tumor-associated chronic inflammation educate MSCs to alter their phenotype and immunomodulatory potential in favor of tumor-biased state of MSCs. Adjustment of phenotype to TME and acquisition of tumor-promoting ability by MSCs help tumor cells in maintenance of permissive TME and suppression of antitumor immune response. Potential utilization of MSCs in treatment of tumor is based on their inherent ability to home tumor tissue that makes them suitable delivery vehicles for immune-stimulating factors and vectors for targeted antitumor therapy. Here, we review data regarding intrusive effects of inflammatory TME on MSCs capacity to affect tumor development through modification of their phenotype and interactions with immune system. PMID:27630452

  20. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  1. Tetronic Star Block Copolymer Micelles: Photophysical Characterisation of Microenvironments and Applicability for Tuning Electron Transfer Reactions.

    PubMed

    Samanta, Papu; Rane, Sonal; Bahadur, Pratap; Dutta Choudhury, Sharmistha; Pal, Haridas

    2018-05-10

    Detailed photophysical investigations have been carried out using a probe dye, Coumarin-153 (C153), to understand the microenvironments of micelles formed by the newly introduced Tetronic star block copolymers, T1304 and T1307, having the same polypropylene oxide (PPO) block size but different polyethylene oxide (PEO) block sizes. Ground state absorption, steady-state fluorescence and time-resolved fluorescence measurements have been used to estimate the micropolarity, microviscosity and solvation dynamics within the two micelles. To the best of our knowledge this is the first report on these important physicochemical parameters for this new class of the star block copolymer micelles. Our results indicate that T1307 micelle offers a relatively more polar and less viscous microenvironment in the corona region, compared to T1304. The effect of the two micellar systems has subsequently been investigated on the bimolecular photoinduced electron transfer (ET) reactions between coumarin dyes (electron acceptors) and aromatic amines (electron donors). On correlating the energetics and kinetics of the ET reactions, clear Marcus Inversion (MI) behavior is observed in both the micellar media. Interestingly, the ET rates for all the donor-acceptor pairs are much higher in T1307 than in T1304, and the onset of MI also appears at a relatively higher exergenocity (-Δ G 0 ) in the former micelle (~0.45 eV for T1307) than the latter (~0.37 eV for T1304). Effect of added NaCl salt studied selectively in T1307 micelle, shows that the ET rate decreases significantly along with a shift in the onset of MI toward lower exergenocity region, so that in the presence of 2 M NaCl the system becomes quite comparable to T1304. Based on the observed results, it is realized that the micropolarity and hence the dynamics of ET process can be tuned very effectively either by changing the constitution of the star block copolymer or by using a suitable additive as a modifier of the micellar microenvironment.

  2. Physics of Cancer

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2015-09-01

    Physics of Cancer focuses on the mechanical properties of cancer cells and their role in cancer disease and metastasis. It discusses the role of the mechanical properties of interacting cells and the connective tissue microenvironment and describes the role of an inflammation during cancer disease. This outstanding book is the first to describe cancer disease from a biophysical point of view without being incomplete in describing the biological site of cancer. Originating in part from the author's own courses on tumor biology and cellular biophysics, this book is suitable for both students and researchers in this dynamic interdisciplinary field, be they from a physical, biological or medical sciences background.

  3. ZnO-Based Amperometric Enzyme Biosensors

    PubMed Central

    Zhao, Zhiwei; Lei, Wei; Zhang, Xiaobing; Wang, Baoping; Jiang, Helong

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization) and biosensor performances. PMID:22205864

  4. Making microenvironments: A look into incorporating macromolecular crowding into in vitro experiments, to generate biomimetic microenvironments which are capable of directing cell function for tissue engineering applications.

    PubMed

    Benny, Paula; Raghunath, Michael

    2017-01-01

    Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.

  5. 25 CFR 63.16 - Who conducts the background investigation and prepares the determination of suitability for...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who conducts the background investigation and prepares the determination of suitability for employment? 63.16 Section 63.16 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR TRIBAL GOVERNMENT INDIAN CHILD PROTECTION AND FAMILY VIOLENCE PREVENTION Minimum...

  6. Tumor microenvironment: Sanctuary of the devil.

    PubMed

    Hui, Lanlan; Chen, Ye

    2015-11-01

    Tumor cells constantly interact with the surrounding microenvironment. Increasing evidence indicates that targeting the tumor microenvironment could complement traditional treatment and improve therapeutic outcomes for these malignancies. In this paper, we review new insights into the tumor microenvironment, and summarize selected examples of the cross-talk between tumor cells and their microenvironment, which have enhanced our understanding of pathophysiology of the microenvironment. We believe that this rapidly moving field promises many more to come, and they will guide the rational design of combinational therapies for success in cancer eradication. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The immunological contribution of NF-κB within the tumor microenvironment: A potential protective role of zinc as an anti-tumor agent

    PubMed Central

    Bao, Bin; Thakur, Archana; Li, Yiwei; Ahmad, Aamir; Azmi, Asfar S.; Banerjee, Sanjeev; Kong, Dejuan; Ali, Shadan; Lum, Lawrence G.; Sarkar, Fazlul H.

    2013-01-01

    Over decades, cancer treatment has been mainly focused on targeting cancer cells and not much attention to host tumor microenvironment. Recent advances suggest that the tumor microenvironment requires in-depth investigation for understanding the interactions between tumor cell biology and immunobiology in order to optimize therapeutic approaches. Tumor microenvironment consists of cancer cells and tumor associated reactive fibroblasts, infiltrating non-cancer cells, secreted soluble factors or molecules, and non-cellular support materials. Tumor associated host immune cells such as Th1, Th2, Th17, regulatory cells, dendritic cells, macrophages, and myeloid-derived suppressor cells are major components of the tumor microenvironment. Accumulating evidence suggests that these tumor associated immune cells may play important roles in cancer development and progression. However, the exact functions of these cells in the tumor microenvironment are poorly understood. In the tumor microenvironment, NF-κB plays an important role in cancer development and progression because this is a major transcription factor which regulates immune functions within the tumor microenvironment. In this review, we will focus our discussion on the immunological contribution of NF-κB in tumor associated host immune cells within the tumor microenvironment. We will also discuss the potential protective role of zinc, a well-known immune response mediator, in the regulation of these immune cells and cancer cells in the tumor microenvironment especially because zinc could be useful for conditioning the tumor microenvironment toward innovative cancer therapy. PMID:22155217

  8. The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer

    PubMed Central

    Senthebane, Dimakatso Alice; Rowe, Arielle; Shipanga, Hendrina; Munro, Daniella; Al Mazeedi, Mohammad A. M.; Almazyadi, Hashim A. M.; Kallmeyer, Karlien

    2017-01-01

    Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially ‘omics’ technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously ‘unsupportive’ microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix. PMID:28754000

  9. Microenvironmental independence associated with tumor progression.

    PubMed

    Anderson, Alexander R A; Hassanein, Mohamed; Branch, Kevin M; Lu, Jenny; Lobdell, Nichole A; Maier, Julie; Basanta, David; Weidow, Brandy; Narasanna, Archana; Arteaga, Carlos L; Reynolds, Albert B; Quaranta, Vito; Estrada, Lourdes; Weaver, Alissa M

    2009-11-15

    Tumor-microenvironment interactions are increasingly recognized to influence tumor progression. To understand the competitive dynamics of tumor cells in diverse microenvironments, we experimentally parameterized a hybrid discrete-continuum mathematical model with phenotypic trait data from a set of related mammary cell lines with normal, transformed, or tumorigenic properties. Surprisingly, in a resource-rich microenvironment, with few limitations on proliferation or migration, transformed (but not tumorigenic) cells were most successful and outcompeted other cell types in heterogeneous tumor simulations. Conversely, constrained microenvironments with limitations on space and/or growth factors gave a selective advantage to phenotypes derived from tumorigenic cell lines. Analysis of the relative performance of each phenotype in constrained versus unconstrained microenvironments revealed that, although all cell types grew more slowly in resource-constrained microenvironments, the most aggressive cells were least affected by microenvironmental constraints. A game theory model testing the relationship between microenvironment resource availability and competitive cellular dynamics supports the concept that microenvironmental independence is an advantageous cellular trait in resource-limited microenvironments.

  10. Biomimetic collagen I and IV double layer Langmuir-Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells.

    PubMed

    Sorkio, Anni E; Vuorimaa-Laukkanen, Elina P; Hakola, Hanna M; Liang, Huamin; Ujula, Tiina A; Valle-Delgado, Juan José; Österberg, Monika; Yliperttula, Marjo L; Skottman, Heli

    2015-05-01

    The environmental cues received by the cells from synthetic substrates in vitro are very different from those they receive in vivo. In this study, we applied the Langmuir-Schaefer (LS) deposition, a variant of Langmuir-Blodgett technique, to fabricate a biomimetic microenvironment mimicking the structure and organization of native Bruch's membrane for the production of the functional human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells. Surface pressure-area isotherms were measured simultaneously with Brewster angle microscopy to investigate the self-assembly of human collagens type I and IV on air-subphase interface. Furthermore, the structure of the prepared collagen LS films was characterized with scanning electron microscopy, atomic force microscopy, surface plasmon resonance measurements and immunofluorescent staining. The integrity of hESC-RPE on double layer LS films was investigated by measuring transepithelial resistance and permeability of small molecular weight substance. Maturation and functionality of hESC-RPE cells on double layer collagen LS films was further assessed by RPE-specific gene and protein expression, growth factor secretion, and phagocytic activity. Here, we demonstrated that the prepared collagen LS films have layered structure with oriented fibers corresponding to architecture of the uppermost layers of Bruch's membrane and result in increased barrier properties and functionality of hESC-RPE cells as compared to the commonly used dip-coated controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Intravital imaging of multicolor-labeled tumor immune microenvironment through skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2015-03-01

    Tumor immune microenvironment became very important for the tumor immunotherapy. There were several kinds of immune cells in tumor stromal, and they played very different roles in tumor growth. In order to observe the behaviors of multiple immune cells in tumor microenvironment and the interaction between immune cells and tumor cells at the same time, we generated a multicolor-labeled tumor immune microenvironment model. The tumor cells and immune cells were labeled by different fluorescent proteins. By using of skin-fold window chamber implanted into mice and intravital imaging technology, we could dynamically observe the different immune cells in tumor microenvironment. After data analysis from the video, we could know the behavior of TILs, DCs and Tregs in tumor immune microenvironment; furthermore, we could know these immune cells play different roles in the tumor microenvironment.

  12. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach.

    PubMed

    Krishnamoorthy, Kannan; Mahalingam, Manikandan

    2015-03-01

    The present study is aimed to select the suitable method for preparation of camptothecin loaded polymeric nanoparticles by utilizing the multi-criteria decision making method. Novel approaches of drug delivery by formulation using nanotechnology are revolutionizing the future of medicine. Recent years have witnessed unprecedented growth of research and application in the area of nanotechnology. Nanoparticles have become an important area of research in the field of drug delivery because they have the ability to deliver a wide range of drug to varying areas of body. Despite of extensive research and development, polymeric nanoparticles are frequently used to improve the therapeutic effect of drugs. A number of techniques are available for the preparation of polymeric nanoparticles. The Analytical Hierarchy Process (AHP) is a method for decision making, which are derived from individual judgements for qualitative factors, using the pair-wise comparison matrix. In AHP, a decision hierarchy is constructed with a goal, criteria and alternatives. The model uses three main criteria 1) Instrument, 2) Process and Output and 3) Cost. In addition, there are eight sub-criteria's as well as eight alternatives. Pair-wise comparison matrixes are used to obtain the overall priority weight and ranking for the selection of suitable method. Nanoprecipitation technique is the most suitable method for the preparation of camptothecin loaded polymeric nanoparticles with the highest overall priority weight of 0.297 CONCLUSION: In particular, the result indicates that the priority weights obtained from AHP could be defined as a multiple output for finding out the most suitable method for preparation of camptothecin loaded polymeric nanoparticles.

  13. Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro

    NASA Astrophysics Data System (ADS)

    Wu, H.-M.; Lee, T.-A.; Ko, P.-L.; Chiang, H.-J.; Peng, C.-C.; Tung, Y.-C.

    2018-04-01

    Gaseous microenvironments play important roles in various biological activities in vivo. However, it is challenging to precisely control gaseous microenvironments in vitro for cell culture due to the high diffusivity nature of gases. In recent years, microfluidics has paved the way for the development of new types of cell culture devices capable of manipulating cellular microenvironments, and provides a powerful tool for in vitro cell studies. This paper reviews recent developments of microfluidic cell culture devices for the control of gaseous microenvironments, and discusses the advantages and limitations of current devices. We conclude with suggestions for the future development of microfluidic cell culture devices for the control of gaseous microenvironments.

  14. Effects of Micro-environmental pH of Liposome on Chemical Stability of Loaded Drug

    NASA Astrophysics Data System (ADS)

    Shao, Xiao-Ru; Wei, Xue-Qin; Zhang, Shu; Fu, Na; Lin, Yun-Feng; Cai, Xiao-Xiao; Peng, Qiang

    2017-08-01

    Liposome is a promising carrier system for delivering bioactive molecules. However, the successful delivery of pH-sensitive molecules is still limited by the intrinsic instability of payloads in physiological environment. Herein, we developed a special liposome system that possesses an acidic micro-environment in the internal aqueous chamber to improve the chemical stability of pH-sensitive payloads. Curcumin-loaded liposomes (Cur-LPs) with varied internal pH values (pH 2.5, 5.0, or 7.4) were prepared. These Cur-LPs have similar particle size of 300 nm, comparable physical stabilities and analogous in vitro release profiles. Interestingly, the chemical stability of liposomal curcumin in 50% fetal bovine serum and its anticancer efficacy in vitro are both micro-environmental pH-dependent (Cur-LP-2.5 > Cur-LP-5.0 > Cur-LP-7.4). This serum stability still has space to be further enhanced to improve the applicability of Cur-LP. In conclusion, creating an acidic micro-environment in the internal chamber of liposome is feasible and efficient to improve the chemical stability of pH-sensitive payloads.

  15. Optical imaging of tumor microenvironment

    PubMed Central

    Wu, Yihan; Zhang, Wenjie; Li, Jinbo; Zhang, Yan

    2013-01-01

    Tumor microenvironment plays important roles in tumor development and metastasis. Features of the tumor microenvironment that are significantly different from normal tissues include acidity, hypoxia, overexpressed proteases and so on. Therefore, these features can serve as not only biomarkers for tumor diagnosis but also theraputic targets for tumor treatment. Imaging modalities such as optical, positron emission tomography (PET) and magnetic resonance imaging (MRI) have been intensively applied to investigate tumor microenvironment. Various imaging probes targeting pH, hypoxia and proteases in tumor microenvironment were thus well developed. In this review, we will focus on recent examples on fluorescent probes for optical imaging of tumor microenvironment. Construction of these fluorescent probes were based on characteristic feature of pH, hypoxia and proteases in tumor microenvironment. Strategies for development of these fluorescent probes and applications of these probes in optical imaging of tumor cells or tissues will be discussed in this review paper. PMID:23342297

  16. 3D‐Bioprinted Osteoblast‐Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo

    PubMed Central

    Zhai, Xinyun; Ma, Yufei; Cheng, Delin; Wu, Mingming; Liu, Wenguang; Zhao, Xiaoli

    2017-01-01

    Abstract An osteoblast‐laden nanocomposite hydrogel construct, based on polyethylene glycol diacrylate (PEGDA)/laponite XLG nanoclay ([Mg5.34Li0.66Si8O20(OH)4]Na0.66, clay)/hyaluronic acid sodium salt (HA) bio‐inks, is developed by a two‐channel 3D bioprinting method. The novel biodegradable bio‐ink A, comprised of a poly(ethylene glycol) (PEG)–clay nanocomposite crosslinked hydrogel, is used to facilitate 3D‐bioprinting and enables the efficient delivery of oxygen and nutrients to growing cells. HA with encapsulated primary rat osteoblasts (ROBs) is applied as bio‐ink B with a view to improving cell viability, distribution uniformity, and deposition efficiency. The cell‐laden PEG–clay constructs not only encapsulated osteoblasts with more than 95% viability in the short term but also exhibited excellent osteogenic ability in the long term, due to the release of bioactive ions (magnesium ions, Mg2+ and silicon ions, Si4+), which induces the suitable microenvironment to promote the differentiation of the loaded exogenous ROBs, both in vitro and in vivo. This 3D‐bioprinting method holds much promise for bone tissue regeneration in terms of cell engraftment, survival, and ultimately long‐term function. PMID:29593958

  17. Mesenchymal Stromal Cells for Antineoplastic Drug Loading and Delivery.

    PubMed

    Petrella, Francesco; Rimoldi, Isabella; Rizzo, Stefania; Spaggiari, Lorenzo

    2017-11-23

    Mesenchymal stromal cells are a population of undifferentiated multipotent adult cells possessing extensive self-renewal properties and the potential to differentiate into a variety of mesenchymal lineage cells. They express broad anti-inflammatory and immunomodulatory activity on the immune system and after transplantation can interact with the surrounding microenvironment, promoting tissue healing and regeneration. For this reason, mesenchymal stromal cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Another clinical application of mesenchymal stromal cells is the targeted delivery of chemotherapeutic agents to neoplastic cells, maximizing the cytotoxic activity against cancer cells and minimizing collateral damage to non-neoplastic tissues. Mesenchymal stem cells are home to the stroma of several primary and metastatic neoplasms and hence can be used as vectors for targeted delivery of antineoplastic drugs to the tumour microenvironment, thereby reducing systemic toxicity and maximizing antitumour effects. Paclitaxel and gemcitabine are the chemotherapeutic drugs best loaded by mesenchymal stromal cells and delivered to neoplastic cells, whereas other agents, like pemetrexed, are not internalized by mesenchymal stromal cells and therefore are not suitable for advanced antineoplastic therapy. This review focuses on the state of the art of advanced antineoplastic cell therapy and its future perspectives, emphasizing in vitro and in vivo preclinical results and future clinical applications.

  18. Bone biomaterials and interactions with stem cells

    PubMed Central

    Gao, Chengde; Peng, Shuping; Feng, Pei; Shuai, Cijun

    2017-01-01

    Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed. PMID:29285402

  19. Pharmacokinetic behavior of intravitreal triamcinolone acetonide prepared by a hospital pharmacy.

    PubMed

    Oishi, Masako; Maeda, Shinichiro; Hashida, Noriyasu; Ohguro, Nobuyuki; Tano, Yasuo; Kurokawa, Nobuo

    2008-01-01

    We developed a new hospital pharmaceutical preparation of triamcinolone acetonide (TA) for intravitreal injections using sodium hyaluronate as the vehicle. The purpose of this study was to compare the pharmacokinetic behavior of this hospital pharmacy preparation of TA (HPP-TA) to that of a commercial preparation of TA (CP-TA) in rats. We injected the two preparations of TA into the vitreous humor of male Wistar rats. The rats were killed between days 1 and 21, and the concentration of TA in the vitreous was measured by high-performance liquid chromatography to determine the pharmacokinetic parameters. We also examined the microscopic appearance of the TA particles in these preparations. The elimination half-life was 6.08 days for the CP-TA and 5.78 days for the HPP-TA. A two-compartment model was suitable to approximate the pharmacokinetic behavior of HPP-TA in the vitreous body, but this model was not suitable for CP-TA, because its pharmacokinetic behavior was not sufficiently stable. The particle size of CP-TA was largest, followed by TA powder and HPP-TA. Many particles were agglutinated in the CP-TA preparation, whereas the TA particles were fine and dispersed in the HPP-TA medium. The TA particle size and the suspension medium are likely important factors in the preparation of a safe and stable suspension of TA. HPP-TA satisfied these requirements and should be suitable for clinical use.

  20. Stem Cell Niche, the Microenvironment and Immunological Crosstalk

    PubMed Central

    Sujata, Law; Chaudhuri, S

    2008-01-01

    The concept of stem cells, their physiological existence, the intricate anatomical localization, the known and the unknown functions, and their exclusive utility for the purpose of regenerative medicine, are all now encompassed within an emergent question, ‘how compatible these cells are immunologically?' Indeed, the medical aspects of stem cells are dependent on a large number of queries based on the basic properties of the cells. It has greatly been emphasized to probe into the basic research on stem cells before any successful therapeutic attempts are made. One of the intricate aspects of the adult stem cells is its immunological behavior in relation to the microenvironmental associates, the stromal cells in the presence of a suitable target. PMID:18445340

  1. Stem cell niche, the microenvironment and immunological crosstalk.

    PubMed

    Sujata, Law; Chaudhuri, S

    2008-04-01

    The concept of stem cells, their physiological existence, the intricate anatomical localization, the known and the unknown functions, and their exclusive utility for the purpose of regenerative medicine, are all now encompassed within an emergent question, 'how compatible these cells are immunologically?' Indeed, the medical aspects of stem cells are dependent on a large number of queries based on the basic properties of the cells. It has greatly been emphasized to probe into the basic research on stem cells before any successful therapeutic attempts are made. One of the intricate aspects of the adult stem cells is its immunological behavior in relation to the microenvironmental associates, the stromal cells in the presence of a suitable target.

  2. Injectable thermosensitive chitosan/β-glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability.

    PubMed

    Ding, Ke; Yang, Zhong; Zhang, Yu-Long; Xu, Jian-Zhong

    2013-09-01

    A cell carrier plays an important role in the maintenance, growth and engraftment of specific cells aimed for defined therapeutic uses in many tissue engineering strategies. A suitable microenvironment for the cells allows for the maximum efficacy of the hybrid device. We have prepared an injectable thermosensitive chitosan/β-glycerophosphate/collagen (C/GP/Co) gel and investigated its potential application as a support for the culture of skeletal muscle satellite cells (SMSCs). A cell viability assay was used to evaluate the in vitro cytocompatibility of the gel. Cell growth was assessed by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and histological analysis. The influence of the C/GP/Co gel on the plasticity of SMSCs seeded at the surface of the gel was assessed by induction of the myogenic, osteogenic and adipogenic differentiation. C/GP/Co gel provided the appropriate environment for the culture of SMSCs in vitro. In addition, the C/GP/Co gel supported SMSC plasticity. In vivo testing of the SMSC-seeded gel was investigated by subcutaneous injection into the dorsum of nude mice. Cell viability was assessed both by in vivo imaging and histological examination of the explants. In conclusion, C/GP/Co hydrogel is a cytocompatible carrier for the in vivo delivery of SMSCs and supportive for SMSC plasticity. Thus, this gel has potential applications in tissue engineering and regenerative medicine. © 2013 International Federation for Cell Biology.

  3. Extemporaneous (magistral) preparation of oral medicines for children in European hospitals.

    PubMed

    Brion, F; Nunn, A J; Rieutord, A

    2003-04-01

    To evaluate methods of preparation of oral medicines in European children's hospitals when drugs prescribed are unlicensed or off-label, and to determine whether such extemporaneously prepared medicines are available as suitable, authorized products in other countries. A questionnaire was distributed to 41 hospital pharmacists in 18 European countries, requesting information on the most frequent extemporaneously prepared oral liquid, powder and capsule medicines, and on their formulation and stability. Information was gathered on the availability of suitable authorized forms of these medicines in other European countries, the USA and Australia. 21 questionnaires from 16 countries returned showed that the methods of extemporaneous preparation vary in different European countries with, for example, liquid preparations predominating in England and Sweden, capsules in France and Spain, and powders in Finland and Italy. The top 20 preparations are made in many different strengths and formulations. The same drug may be prepared in liquid, capsule or powder form, depending on the country. Many of the extemporaneous preparations were available as suitable authorized paediatric medicines in other countries. The quality of information available on formulation and stability was limited, and there was concern about the availability and quality of chemical ingredients. Preparation of children's oral medicines is subject to much variation in hospitals throughout Europe and there is little harmonization of formulations or information on stability of products. The European Union could be the focus for improving the availability of appropriate authorized medicines for children and ensuring that when extemporaneous preparation is necessary it is of a common high standard.

  4. Effect of erythropoietin on mesenchymal stem cell differentiation and secretion in vitro in an acute kidney injury microenvironment.

    PubMed

    Liu, N M; Tian, J; Wang, W W; Han, G F; Cheng, J; Huang, J; Zhang, J Y

    2013-02-28

    We investigated the effect of erythropoietin (EPO) on differentiation and secretion of bone marrow-derived mesenchymal stem cells in an acute kidney injury microenvironment. Acute kidney injury mouse models were prepared. Both renal cortices were then immediately collected to produce the ischemia/reperfusion kidney homogenate supernatant. The morphological and ultrastructural changes in the cells were observed using an inverted microscope and a transmission electron microscope. Cytokeratin-18 was detected using flow cytometry. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor in the culture medium were detected using an enzyme-linked immunosorbent assay. The cells had high CD29 and CD44 expression, as well as low CD34 and CD45 expression. More round and oval cells with cobble-like appearances were observed after EPO treatment. In addition, an increase in the number of rough endoplasmic reticula, lysosomes, and mitochondria was observed in the cytoplasm; the intercellular junction peculiar to epithelial cells was also seen on the cell surface. After treatment with ischemia/reperfusion kidney homogenate supernatant, cytokeratin-18 expression increased significantly and EPO could magnify its expression. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor levels after treatment with ischemia/reperfusion kidney homogenate supernatant significantly decreased, whereas EPO increased the cytokine secretion. The acute kidney injury microenvironment can induce the bone marrow-derived mesenchymal stem cells to partially differentiate into renal tubular epithelium-shaped cells, but weaken their secretion function. EPO intervention can boost up their differentiation function and reverse their low secretion effect.

  5. Molecular deconstruction, detection, and computational prediction of microenvironment-modulated cellular responses to cancer therapeutics

    PubMed Central

    LaBarge, Mark A; Parvin, Bahram; Lorens, James B

    2014-01-01

    The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments has revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes, and in a number of cases has revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. PMID:24582543

  6. Selection of a Suitable Method for the Preparation of Polymeric Nanoparticles: Multi-Criteria Decision Making Approach

    PubMed Central

    Krishnamoorthy, Kannan; Mahalingam, Manikandan

    2015-01-01

    Purpose: The present study is aimed to select the suitable method for preparation of camptothecin loaded polymeric nanoparticles by utilizing the multi-criteria decision making method. Novel approaches of drug delivery by formulation using nanotechnology are revolutionizing the future of medicine. Recent years have witnessed unprecedented growth of research and application in the area of nanotechnology. Nanoparticles have become an important area of research in the field of drug delivery because they have the ability to deliver a wide range of drug to varying areas of body. Methods: Despite of extensive research and development, polymeric nanoparticles are frequently used to improve the therapeutic effect of drugs. A number of techniques are available for the preparation of polymeric nanoparticles. The Analytical Hierarchy Process (AHP) is a method for decision making, which are derived from individual judgements for qualitative factors, using the pair-wise comparison matrix. In AHP, a decision hierarchy is constructed with a goal, criteria and alternatives. Results: The model uses three main criteria 1) Instrument, 2) Process and Output and 3) Cost. In addition, there are eight sub-criteria’s as well as eight alternatives. Pair-wise comparison matrixes are used to obtain the overall priority weight and ranking for the selection of suitable method. Nanoprecipitation technique is the most suitable method for the preparation of camptothecin loaded polymeric nanoparticles with the highest overall priority weight of 0.297 Conclusion: In particular, the result indicates that the priority weights obtained from AHP could be defined as a multiple output for finding out the most suitable method for preparation of camptothecin loaded polymeric nanoparticles. PMID:25789220

  7. Microcosmic mechanisms for protein incomplete release and stability of various amphiphilic mPEG-PLA microspheres.

    PubMed

    Wei, Yi; Wang, Yu Xia; Wang, Wei; Ho, Sa V; Qi, Feng; Ma, Guang Hui; Su, Zhi Guo

    2012-10-02

    The microcosmic mechanisms of protein (recombinant human growth hormone, rhGH) incomplete release and stability from amphiphilic poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres were investigated. PELA with different hydrophilicities (PELA-1, PELA-2, and PELA-3) based on various ratios of mPEG to PLA were employed to prepare microspheres exhibiting a narrow size distribution using a combined double emulsion and premix membrane emulsification method. The morphology, rhGH encapsulation efficiency, in vitro release profile, and rhGH stability of PELA microspheres during the release were characterized and compared in detail. It was found that increasing amounts of PLA enhanced the encapsulation efficiency of PELA microspheres but reduced both the release rate of rhGH and its stability. Contact angle, atomic force microscope (AFM), and quartz crystal microbalance with dissipation (QCM-D) techniques were first combined to elucidate the microcosmic mechanism of incomplete release by measuring the hydrophilicity of the PELA film and its interaction with rhGH. In addition, the pH change within the microsphere microenvironment was monitored by confocal laser scanning microscopy (CLSM) employing a pH-sensitive dye, which clarified the stability of rhGH during the release. These results suggested that PELA hydrophilicity played an important role in rhGH incomplete release and stability. Thus, the selection of suitable hydrophilic polymers with adequate PEG lengths is critical in the preparation of optimum protein drug sustained release systems. This present work is a first report elucidating the microcosmic mechanisms responsible for rhGH stability and its interaction with the microspheres. Importantly, this research demonstrated the application of promising new experimental methods in investigating the interaction between biomaterials and biomacromolecules, thus opening up a range of exciting potential applications in the biomedical field including drug delivery and tissue regeneration.

  8. Preparation of a micropatterned rigid-soft composite substrate for probing cellular rigidity sensing.

    PubMed

    Wong, Stephanie; Guo, Wei-hui; Hoffecker, Ian; Wang, Yu-li

    2014-01-01

    Substrate rigidity has been recognized as an important property that affects cellular physiology and functions. While the phenomenon has been well recognized, understanding the underlying mechanism may be greatly facilitated by creating a microenvironment with designed rigidity patterns. This chapter describes in detail an optimized method for preparing substrates with micropatterned rigidity, taking advantage of the ability to dehydrate polyacrylamide gels for micropatterning with photolithography, and subsequently rehydrate the gel to regain the original elastic state. While a wide range of micropatterns may be prepared, typical composite substrates consist of micron-sized islands of rigid photoresist grafted on the surface of polyacrylamide hydrogels of defined rigidity. These islands are displaced by cellular traction forces, for a distance determined by the size of the island, the rigidity of the underlying hydrogel, and the magnitude of traction forces. Domains of rigidity may be created using this composite material to allow systematic investigations of rigidity sensing and durotaxis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Endosteal-like extracellular matrix expression on melt electrospun written scaffolds.

    PubMed

    Muerza-Cascante, Maria Lourdes; Shokoohmand, Ali; Khosrotehrani, Kiarash; Haylock, David; Dalton, Paul D; Hutmacher, Dietmar W; Loessner, Daniela

    2017-04-01

    Tissue engineering technology platforms constitute a unique opportunity to integrate cells and extracellular matrix (ECM) proteins into scaffolds and matrices that mimic the natural microenvironment in vitro. The development of tissue-engineered 3D models that mimic the endosteal microenvironment enables researchers to discover the causes and improve treatments for blood and immune-related diseases. The aim of this study was to establish a physiologically relevant in vitro model using 3D printed scaffolds to assess the contribution of human cells to the formation of a construct that mimics human endosteum. Melt electrospun written scaffolds were used to compare the suitability of primary human osteoblasts (hOBs) and placenta-derived mesenchymal stem cells (plMSCs) in (non-)osteogenic conditions and with different surface treatments. Using osteogenic conditions, hOBs secreted a dense ECM with enhanced deposition of endosteal proteins, such as fibronectin and vitronectin, and osteogenic markers, such as osteopontin and alkaline phosphatase, compared to plMSCs. The expression patterns of these proteins were reproducibly identified in hOBs derived from three individual donors. Calcium phosphate-coated scaffolds induced the expression of osteocalcin by hOBs when maintained in osteogenic conditions. The tissue-engineered endosteal microenvironment supported the growth and migration of primary human haematopoietic stem cells (HSCs) when compared to HSCs maintained using tissue culture plastic. This 3D testing platform represents an endosteal bone-like tissue and warrants future investigation for the maintenance and expansion of human HSCs. This work is motivated by the recent interest in melt electrospinning writing, a 3D printing technique used to produce porous scaffolds for biomedical applications in regenerative medicine. Our team has been among the pioneers in building a new class of melt electrospinning devices for scaffold-based tissue engineering. These scaffolds allow structural support for various cell types to invade and deposit their own ECM, mimicking a characteristic 3D microenvironment for experimental studies. We used melt electrospun written polycaprolactone scaffolds to develop an endosteal bone-like tissue that promotes the growth of HSCs. We combine tissue engineering concepts with cell biology and stem cell research to design a physiologically relevant niche that is of prime interest to the scientific community. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.

    PubMed

    Taubenberger, Anna V; Bray, Laura J; Haller, Barbara; Shaposhnykov, Artem; Binner, Marcus; Freudenberg, Uwe; Guck, Jochen; Werner, Carsten

    2016-05-01

    Interactions between tumour cells and extracellular matrix proteins of the tumour microenvironment play crucial roles in cancer progression. So far, however, there are only a few experimental platforms available that allow us to study these interactions systematically in a mechanically defined three-dimensional (3D) context. Here, we have studied the effect of integrin binding motifs found within common extracellular matrix (ECM) proteins on 3D breast (MCF-7) and prostate (PC-3, LNCaP) cancer cell cultures, and co-cultures with endothelial and mesenchymal stromal cells. For this purpose, matrix metalloproteinase-degradable biohybrid poly(ethylene) glycol-heparin hydrogels were decorated with the peptide motifs RGD, GFOGER (collagen I), or IKVAV (laminin-111). Over 14days, cancer spheroids of 100-200μm formed. While the morphology of poorly invasive MCF-7 and LNCaP cells was not modulated by any of the peptide motifs, the aggressive PC-3 cells exhibited an invasive morphology when cultured in hydrogels comprising IKVAV and GFOGER motifs compared to RGD motifs or nonfunctionalised controls. PC-3 (but not MCF-7 and LNCaP) cell growth and endothelial cell infiltration were also significantly enhanced in IKVAV and GFOGER presenting gels. Taken together, we have established a 3D culture model that allows for dissecting the effect of biochemical cues on processes relevant to early cancer progression. These findings provide a basis for more mechanistic studies that may further advance our understanding of how ECM modulates cancer cell invasion and how to ultimately interfere with this process. Threedimensional in vitro cancer models have generated great interest over the past decade. However, most models are not suitable to systematically study the effects of environmental cues on cancer development and progression. To overcome this limitation, we have developed an innovative hydrogel platform to study the interactions between breast and prostate cancer cells and extracellular matrix ligands relevant to the tumour microenvironment. Our results show that hydrogels with laminin- and collagen-derived adhesive peptides induce a malignant phenotype in a cell-line specific manner. Thus, we have identified a method to control the incorporation of biochemical cues within a three dimensional culture model and anticipate that it will help us in better understanding the effects of the tumour microenvironment on cancer progression. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Preparation of nitrogen-doped carbon tubes

    DOEpatents

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  12. Suitability of human Tenon's fibroblasts as feeder cells for culturing human limbal epithelial stem cells.

    PubMed

    Scafetta, Gaia; Tricoli, Eleonora; Siciliano, Camilla; Napoletano, Chiara; Puca, Rosa; Vingolo, Enzo Maria; Cavallaro, Giuseppe; Polistena, Andrea; Frati, Giacomo; De Falco, Elena

    2013-12-01

    Corneal epithelial regeneration through ex vivo expansion of limbal stem cells (LSCs) on 3T3-J2 fibroblasts has revealed some limitations mainly due to the corneal microenvironment not being properly replicated, thus affecting long term results. Insights into the feeder cells that are used to expand LSCs and the mechanisms underlying the effects of human feeder cells have yet to be fully elucidated. We recently developed a standardized methodology to expand human Tenon's fibroblasts (TFs). Here we aimed to investigate whether TFs can be employed as feeder cells for LSCs, characterizing the phenotype of the co-cultures and assessing what human soluble factors are secreted. The hypothesis that TFs could be employed as alternative human feeder layer has not been explored yet. LSCs were isolated from superior limbus biopsies, co-cultured on TFs, 3T3-J2 or dermal fibroblasts (DFs), then analyzed by immunofluorescence (p63α), colony-forming efficiency (CFE) assay and qPCR for a panel of putative stem cell and epithelial corneal differentiation markers (KRT3). Co-cultures supernatants were screened for a set of soluble factors. Results showed that the percentage of p63α(+)LSCs co-cultured onto TFs was significantly higher than those on DFs (p = 0.032) and 3T3-J2 (p = 0.047). Interestingly, LSCs co-cultures on TFs exhibited both significantly higher CFE and mRNA expression levels of ΔNp63α than on 3T3-J2 and DFs (p < 0.0001), showing also significantly greater levels of soluble factors (IL-6, HGF, b-FGF, G-CSF, TGF-β3) than LSCs on DFs. Therefore, TFs could represent an alternative feeder layer to both 3T3-J2 and DFs, potentially providing a suitable microenvironment for LSCs culture.

  13. Preparing a poster.

    PubMed

    White, Adrian; White, Leon

    2003-06-01

    Well prepared posters are an effective means to communicate a simple message and stimulate discussion. A good poster requires considerable effort in identifying the vital ingredients and rejecting any superfluous material. The conventional structure for papers and abstracts is a suitable basis for posters on many subjects, with modification if necessary. Suitable topics include clinical trials, surveys, qualitative studies and case reports. Suggestions are made for contents that should be considered for each section. Careful planning of size, shape, flow and content will save time in preparation, and several technical graphical points are made, which may improve the attractiveness and readability of the poster.

  14. Molecular deconstruction, detection, and computational prediction of microenvironment-modulated cellular responses to cancer therapeutics.

    PubMed

    Labarge, Mark A; Parvin, Bahram; Lorens, James B

    2014-04-01

    The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments have revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes and in a number of cases have revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus, introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. AFRRI (Armed Forces Radiobiology Research Institute) Reports, October, November, December 1986

    DTIC Science & Technology

    1986-12-01

    Acta Chemica Scandinavica, 20, 494-504. RUPPRECHT, A., 1970a, A wet spinning apparatus and auxiliary equipment suitable for preparing samples of...Acta Chemica Scandinavica, B33, 779-780. SEVILLA, M. D., FAILOR, R., CLARK, C, HOLROYD, R. A., and PETTEI, M., 1976, Electron transfer in dinucleoside...spinning. Acta Chemica Scandinavica, 20, 494-504. RUPPRECHT, A., 1970a, A wet spinning apparatus and auxiliary equipment suitable for preparing samples

  16. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.

    PubMed

    Stabile, Luca; Cauda, Emanuele; Marini, Sara; Buonanno, Giorgio

    2014-08-01

    Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory-based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS-likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem with a condensation particle counter in order to verify and correct the particle size distribution data. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  17. Carbon nanothermometer containing gallium.

    PubMed

    Gao, Yihua; Bando, Yoshio

    2002-02-07

    Many applications have been found for carbon nanotubes, and we can now add a role as a 'nanothermometer' to this list. We describe how the height of a continuous, unidimensional column of liquid gallium inside a carbon nanotube (up to about 10 micrometres long and about 75 nanometres in diameter) varies linearly and reproducibly in the temperature range 50-500 degrees C, with an expansion coefficient that is the same as for gallium in the macroscopic state. We chose gallium as our thermal indicator because it has one of the greatest liquid ranges of any metal (29.78-2,403 degrees C) and a low vapour pressure even at high temperatures. This nanothermometer should be suitable for use in a wide variety of microenvironments.

  18. The epididymal microenvironment: a site of attack for a male contraceptive?

    PubMed

    Hinton, B T

    1980-07-01

    During their development, spermatozoa are continually bathed in fluid provided by epithelial secretions of the seminiferous tubule and the epididymal duct. This fluid or microenvironment is probably very important for spermatozoal maturation and survival. Micropuncture and microanalytic studies have revealed the occurrence of several biochemical changes of this specialized microenvironment along the epididymal duct; these changes seem to be linked to sperm maturation. The interactions between maturing spermatozoa and their microenvironment must be understood before interference in sperm maturation through intervention of the formation of the microenvironment is possible. Several compounds have been shown to interfere in spermatozoal maturation in the epididymis although their use as male contraceptives requires further investigation.

  19. The influence of the microenvironment on the malignant phenotype

    NASA Technical Reports Server (NTRS)

    Park, C. C.; Bissell, M. J.; Barcellos-Hoff, M. H.

    2000-01-01

    Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. As tissue becomes cancerous, there are reciprocal interactions between neoplastic cells, adjacent normal cells such as stroma and endothelium, and their microenvironments. The current dominant paradigm wherein multiple genetic lesions provide both the impetus for, and the Achilles heel of, cancer might be inadequate to understand cancer as a disease process. In the following brief review, we will use selected examples to illustrate the influence of the microenvironment in the evolution of the malignant phenotype. We will also discuss recent studies that suggest novel therapeutic interventions might be derived from focusing on microenvironment and tumor cells interactions.

  20. [Prostate cancer microenvironment: Its structure, functions and therapeutic applications].

    PubMed

    Lorion, R; Bladou, F; Spatz, A; van Kempen, L; Irani, J

    2016-06-01

    In the field of prostate cancer there is a growing tendency for more and more studies to emphasise the predominant role of the zone situated between the tumour and the host: the tumour microenvironment. The aim of this article is to describe the structure and the functions of the prostate cancer microenvironment as well as the principal treatments that are being applied to it. PubMed and ScienceDirect databases have been interrogated using the association of keywords "tumour microenvironment" and "neoplasm therapy" along with "microenvironnement tumoral" and "traitements". Of the 593 articles initially found, 50 were finally included. The tumour microenvironment principally includes host elements that are diverted from their primary functions and encourage the development of the tumour. In it we find immunity cells, support tissue as well as vascular and lymphatic neovascularization. Highlighting the major role played by this microenvironment has led to the development of specific treatments, notably antiangiogenic therapy and immunotherapy. The tumour microenvironment, the tumour and the host influence themselves mutually and create a variable situation over time. Improvement of the knowledge of the prostate cancer microenvironment gradually enables us to pass from an approach centred on the tumour to a broader approach to the whole tumoral ecosystem. This enabled the emergence of new treatments whose place in the therapeutic arsenal still need to be found. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. The effect of environmental chemicals on the tumor microenvironment

    PubMed Central

    Casey, Stephanie C.; Vaccari, Monica; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Barcellos-Hoff, Mary Helen; Brown, Dustin G.; Chapellier, Marion; Christopher, Joseph; Curran, Colleen S.; Forte, Stefano; Hamid, Roslida A.; Heneberg, Petr; Koch, Daniel C.; Krishnakumar, P.K.; Laconi, Ezio; Maguer-Satta, Veronique; Marongiu, Fabio; Memeo, Lorenzo; Mondello, Chiara; Raju, Jayadev; Roman, Jesse; Roy, Rabindra; Ryan, Elizabeth P.; Ryeom, Sandra; Salem, Hosni K.; Scovassi, A.Ivana; Singh, Neetu; Soucek, Laura; Vermeulen, Louis; Whitfield, Jonathan R.; Woodrick, Jordan; Colacci, Anna Maria; Bisson, William H.; Felsher, Dean W.

    2015-01-01

    Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis. PMID:26106136

  2. Four dimensional optoacoustic imaging of perfusion in preclinical breast tumor model in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Deán-Ben, Xosé Luís.; Ermolayev, Vladimir; Mandal, Subhamoy; Ntziachristos, Vasilis; Razansky, Daniel

    2016-03-01

    Imaging plays an increasingly important role in clinical management and preclinical studies of cancer. Application of optical molecular imaging technologies, in combination with highly specific contrast agent approaches, eminently contributed to understanding of functional and histological properties of tumors and anticancer therapies. Yet, optical imaging exhibits deterioration in spatial resolution and other performance metrics due to light scattering in deep living tissues. High resolution molecular imaging at the whole-organ or whole-body scale may therefore bring additional understanding of vascular networks, blood perfusion and microenvironment gradients of malignancies. In this work, we constructed a volumetric multispectral optoacoustic tomography (vMSOT) scanner for cancer imaging in preclinical models and explored its capacity for real-time 3D intravital imaging of whole breast cancer allografts in mice. Intrinsic tissue properties, such as blood oxygenation gradients, along with the distribution of externally administered liposomes carrying clinically-approved indocyanine green dye (lipo-ICG) were visualized in order to study vascularization, probe penetration and extravasation kinetics in different regions of interest within solid tumors. The use of v-MSOT along with the application of volumetric image analysis and perfusion tracking tools for studies of pathophysiological processes within microenvironment gradients of solid tumors demonstrated superior volumetric imaging system performance with sustained competitive resolution and imaging depth suitable for investigations in preclinical cancer models.

  3. Ultra-fast laser microprocessing of medical polymers for cell engineering applications.

    PubMed

    Ortiz, R; Moreno-Flores, S; Quintana, I; Vivanco, MdM; Sarasua, J R; Toca-Herrera, J L

    2014-04-01

    Picosecond laser micromachining technology (PLM) has been employed as a tool for the fabrication of 3D structured substrates. These substrates have been used as supports in the in vitro study of the effect of substrate topography on cell behavior. Different micropatterns were PLM-generated on polystyrene (PS) and poly-L-lactide (PLLA) and employed to study cellular proliferation and morphology of breast cancer cells. The laser-induced microstructures included parallel lines of comparable width to that of a single cell (which in this case is roughly 20μm), and the fabrication of square-like compartments of a much larger area than a single cell (250,000μm(2)). The results obtained from this in vitro study showed that though the laser treatment altered substrate roughness, it did not noticeably affect the adhesion and proliferation of the breast cancer cells. However, pattern direction directly affected cell proliferation, leading to a guided growth of cell clusters along the pattern direction. When cultured in square-like compartments, cells remained confined inside these for eleven incubation days. According to these results, laser micromachining with ultra-short laser pulses is a suitable method to directly modify the cell microenvironment in order to induce a predefined cellular behavior and to study the effect of the physical microenvironment on cell proliferation. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size

    PubMed Central

    Loh, Qiu Li

    2013-01-01

    Tissue engineering applications commonly encompass the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the incorporation of cells or growth factors to regenerate damaged tissues or organs. These scaffolds serve to mimic the actual in vivo microenvironment where cells interact and behave according to the mechanical cues obtained from the surrounding 3D environment. Hence, the material properties of the scaffolds are vital in determining cellular response and fate. These 3D scaffolds are generally highly porous with interconnected pore networks to facilitate nutrient and oxygen diffusion and waste removal. This review focuses on the various fabrication techniques (e.g., conventional and rapid prototyping methods) that have been employed to fabricate 3D scaffolds of different pore sizes and porosity. The different pore size and porosity measurement methods will also be discussed. Scaffolds with graded porosity have also been studied for their ability to better represent the actual in vivo situation where cells are exposed to layers of different tissues with varying properties. In addition, the ability of pore size and porosity of scaffolds to direct cellular responses and alter the mechanical properties of scaffolds will be reviewed, followed by a look at nature's own scaffold, the extracellular matrix. Overall, the limitations of current scaffold fabrication approaches for tissue engineering applications and some novel and promising alternatives will be highlighted. PMID:23672709

  5. [Development of Sediment Micro-Interface Under Physical and Chironomus plumosus Combination Disturbance].

    PubMed

    Wang, Ren; Li, Da-peng; Huang, Yong; Liu, Yan-jian; Chen, Jun

    2015-11-01

    Synergistic effect of physical and Chironomus plumosus combination disturbance on the characteristics of the micro-environment and micro-interface was investigated by the Rhizon samplers and Unisense micro sensor system. The results showed that the oxygen penetration depth (OPD), total oxygen exchange (TOE), water content and total microbial activity increased under the combination disturbance and bioturbation and were kept at the higher level, compared with the control. These parameters increased with the physical intensity under combination disturbance. However, the content of Fe2+ decreased under the combination disturbance and bioturbation and the decrease was more obvious than that in the control. The changes of the Fe2+, the water content and the total microbial activity were large at 0-4 cm depth in the sediments. Therefore, the area might be the active area for the transformation of internal sedimentary phosphorus forms. The curve fitting was used for the OPD, TOE, the content of Fe2+, the water content and the total microbial activity with the physical intensity under combination disturbance. It was observed that the second-order polynomial equation was suitable for the curve fitting. In addition, jump type synergistic effect was presented in the above mentioned parameters under combination disturbance when the physical intensity was higher than 34 r x min(-1). The remodeling on the sediment micro-interface and micro-environment might be the main inducing mechanism for the transformation of internal phosphorus.

  6. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells

    PubMed Central

    Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Castro, Eloísa Dognani; Batista, Fabricio Pereira; Paredes-Gamero, Edgar; Oliveira, Lilian Carolina; Guerra, Izabel Monastério; Peres, Giovani Bravin; Cavalheiro, Renan Pelluzzi; Juliano, Luiz; Nazário, Afonso Pinto; Facina, Gil; Tsai, Siu Mui; Oliva, Maria Luiza Vilela; Girão, Manoel João Batista Castello

    2017-01-01

    Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment. PMID:28187434

  7. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells.

    PubMed

    Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Castro, Eloísa Dognani; Batista, Fabricio Pereira; Paredes-Gamero, Edgar; Oliveira, Lilian Carolina; Guerra, Izabel Monastério; Peres, Giovani Bravin; Cavalheiro, Renan Pelluzzi; Juliano, Luiz; Nazário, Afonso Pinto; Facina, Gil; Tsai, Siu Mui; Oliva, Maria Luiza Vilela; Girão, Manoel João Batista Castello

    2017-03-07

    Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.

  8. Development and characterization of a microfluidic model of the tumour microenvironment.

    PubMed

    Ayuso, Jose M; Virumbrales-Muñoz, María; Lacueva, Alodia; Lanuza, Pilar M; Checa-Chavarria, Elisa; Botella, Pablo; Fernández, Eduardo; Doblare, Manuel; Allison, Simon J; Phillips, Roger M; Pardo, Julián; Fernandez, Luis J; Ochoa, Ignacio

    2016-10-31

    The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live 'window' into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device's potential to enable more physiological in vitro drug screening.

  9. Controlled preparation of Ag–Cu{sub 2}O nanocorncobs and their enhanced photocatalytic activity under visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Siyuan; Zhang, Shengsen; College of Science, South China Agricultural University, Guangzhou 510642

    Graphical abstract: The corncob-like Ag–Cu{sub 2}O nanostructure with suitably exposed Ag surface exhibited much higher photocatalytic activity than Ag@Cu{sub 2}O nanocables and Cu{sub 2}O nanowires. - Highlights: • Ag–Cu{sub 2}O nanocorncobs have been controllably prepared by a simple synthesis. • The possible formation mechanism of Ag–Cu{sub 2}O has been studied. • Ag–Cu{sub 2}O exhibits noticeable improved photocurrent compared with the pure Cu{sub 2}O NWs. • Ag–Cu{sub 2}O with suitably exposed Ag surface shows much higher photocatalytic activity. - Abstract: Novel corncob-like nano-heterostructured Ag–Cu{sub 2}O photocatalyst has been controllably prepared by adjusting the synthetic parameters, and the possible formation mechanism hasmore » been also studied. The photoelectrochemical and photocatalytic performances demonstrated that the as-prepared Ag–Cu{sub 2}O nanocorncobs exhibited higher photocatalytic activity than both pure Cu{sub 2}O nanowires and cable-like Ag@Cu{sub 2}O nano-composites. It was concluded that Ag–Cu{sub 2}O nanocorncobs with suitably exposed Ag surface not only effectively inhibit the recombination of electron–hole pairs but also suitably increase the active sites of electronic conduction, and thus increasing the photocatalytic activity under visible light irradiation.« less

  10. Active pharmaceutical ingredients available as substances for extemporaneous preparation in veterinary medicine in the Czech Republic.

    PubMed

    Sklenář, Zbyněk; Horáčková, Kateřina; Bakhouche, Hana

    2014-04-01

    In veterinary medicine, extemporaneously prepared drugs can be also used in therapy. In the recent four years the selection of suitable compounds for extemporaneous (magistral) preparation has been expanded and new possibilities for the creation of formulas have appeared. The paper reports on the substances available for compounding that can be used in veterinary medicine, in the pharmacotherapeutic classes antibiotics, antimycotics, antiseptics, corticosteroids, emollients and epithelizing agents, anti-inflammatory drugs, local anesthetics, decongestives, beta-blockers and calcium channel blockers, antiemetics and prokinetics, sedatives and hypnotics. The emphasis has been placed on newly available substances. Examples of suitable magistral formulas are presented that can replace mass-produced drug products which are not readily obtainable. The aim of the paper is to inform pharmacists and veterinarians about new possibilities of drug compounding. compounded preparations extemporaneous preparation compounding of drugs possibilities magistral formulas in veterinary medicine.

  11. On the microenvironment of polymers in solution. Pt. 2. Polarity of the polymer microenvironment in binary solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strop, P.; Mikes, F.; Kalal, J.

    1976-03-25

    In Pt. 1 of this work, solvatochromic compounds embedded in polymer chains were used for measuring the polarity of their microenvironment. The semiempirical expression of the polarity of solvents by means of the energy of the charge-transfer (C-T) absorption band of 1-ethyl-4-carbomethylpyridinium iodide, as proposed by Kosower, was shown to be applicable in principle for measuring the polarity of the polymer microenvironment. In this present work, this approach was employed to measure the polarity of microenvironments of the synthetic polymers polymethacrylamide (PMA), poly(2-hydroxethyl methacrylate) (PHEMA), poly(2-vinylpyridine) (P-2VP), poly(4-vinylpyridine) (P-4VP), poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA), and polystyrene (PS) in binarymore » solvents and to compare them with the polarities of these solvents. It is concluded that comparisons with a solution with the same polarity expressed by the semi-empirical scale represents only the first approximation for characterizing the polymer microenvironment. (12 refs.)« less

  12. Microenvironmental regulation of the progression of oral potentially malignant disorders towards malignancy

    PubMed Central

    Ai, Ruixue; Tao, Yan; Hao, Yilong; Jiang, Lu; Dan, Hongxia; Ji, Ning; Zeng, Xin; Zhou, Yu; Chen, Qianming

    2017-01-01

    Oral potentially malignant disorders (OPMD) develop in a complex tissue microenvironment where they grow sustainably, acquiring oral squamous cell carcinoma (OSCC) characteristics. The malignant tumor depends on interactions with the surrounding microenvironment to achieve loco-regional invasion and distant metastases. Unlike abnormal cells, the multiple cell types in the tissue microenvironment are relatively stable at the genomic level and, thus, become therapeutic targets with lower risk of resistance, decreasing the risk of OPMD acquiring cancer characteristics and carcinoma recurrence. However, deciding how to disrupt the OPMD and OSCC microenvironments is itself a daunting challenge, since their microenvironments present opposite capacities, resulting in diverse consequences. Furthermore, recent studies revealed that tumor-associated immune cells also participate in the process of differentiation from OPMD to OSCC, suggesting that reeducating stromal cells may be a new strategy to prevent OPMD from acquiring OSCC characteristics and to treat OSCC. In this review, we discuss the characteristics of the microenvironment of OPMD and OSCC as well as new therapeutic strategies. PMID:29113419

  13. Free radical scavenging injectable hydrogels for regenerative therapy.

    PubMed

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-02-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Automated Quantification of Hematopoietic Cell – Stromal Cell Interactions in Histological Images of Undecalcified Bone

    PubMed Central

    Zehentmeier, Sandra; Cseresnyes, Zoltan; Escribano Navarro, Juan; Niesner, Raluca A.; Hauser, Anja E.

    2015-01-01

    Confocal microscopy is the method of choice for the analysis of localization of multiple cell types within complex tissues such as the bone marrow. However, the analysis and quantification of cellular localization is difficult, as in many cases it relies on manual counting, thus bearing the risk of introducing a rater-dependent bias and reducing interrater reliability. Moreover, it is often difficult to judge whether the co-localization between two cells results from random positioning, especially when cell types differ strongly in the frequency of their occurrence. Here, a method for unbiased quantification of cellular co-localization in the bone marrow is introduced. The protocol describes the sample preparation used to obtain histological sections of whole murine long bones including the bone marrow, as well as the staining protocol and the acquisition of high-resolution images. An analysis workflow spanning from the recognition of hematopoietic and non-hematopoietic cell types in 2-dimensional (2D) bone marrow images to the quantification of the direct contacts between those cells is presented. This also includes a neighborhood analysis, to obtain information about the cellular microenvironment surrounding a certain cell type. In order to evaluate whether co-localization of two cell types is the mere result of random cell positioning or reflects preferential associations between the cells, a simulation tool which is suitable for testing this hypothesis in the case of hematopoietic as well as stromal cells, is used. This approach is not limited to the bone marrow, and can be extended to other tissues to permit reproducible, quantitative analysis of histological data. PMID:25938636

  15. Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation.

    PubMed

    Oh, Myeong-Jin; Ryu, Tae-Kyoung; Choi, S-W

    2013-11-01

    Based on a water-in-oil-in-water emulsion system, porous and hollow polydimethylsiloxane (PDMS) beads containing cells using a simple fluidic device with three flow channels are fabricated. Poly(ethylene glycol) (PEG) in the PDMS oil phase is served as a porogen for pore development. The feasibility of the porous PDMS beads prepared with different PEG concentrations (10, 20, and 30 wt%) for cell encapsulation in terms of pore size, protein diffusion, and cell proliferation inside the PDMS beads is evaluated. The PDMS beads prepared with PEG 30 wt% are exhibited a highly porous structure and facilitated fast diffusion of protein from the core domain to the outer phase, eventually leading to enhanced cell proliferation. The results clearly indicate that hollow PDMS beads with a porous structure could provide a favorable microenvironment for cell survival due to the large porous structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls.

    PubMed

    Dettori, Maria Antonietta; Fabbri, Davide; Pisano, Marina; Rozzo, Carla; Palmieri, Giuseppe; Dess, Alessandro; Dallocchio, Roberto; Delogu, Giovanna

    2015-02-01

    A small collection of eugenol- and curcumin-analog hydroxylated biphenyls was prepared by straightforward methods starting from natural 4-substituted-2-methoxyphenols and their antitumoral activity was evaluated in vitro . Two curcumin-biphenyl derivatives showed interesting growth inhibitory activities on different malignant melanoma cell lines with IC 50 ranging from 13 to 1 µM. Preliminary molecular modeling studies were carried out to evaluate conformations and dihedral angles suitable for antiproliferative activity in hydroxylated biphenyls bearing a side aliphatic chain.

  17. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment.

    PubMed

    Huang, Guoyou; Li, Fei; Zhao, Xin; Ma, Yufei; Li, Yuhui; Lin, Min; Jin, Guorui; Lu, Tian Jian; Genin, Guy M; Xu, Feng

    2017-10-25

    The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.

  18. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    PubMed Central

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  19. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  20. Development and characterization of a microfluidic model of the tumour microenvironment

    PubMed Central

    Ayuso, Jose M.; Virumbrales-Muñoz, María; Lacueva, Alodia; Lanuza, Pilar M.; Checa-Chavarria, Elisa; Botella, Pablo; Fernández, Eduardo; Doblare, Manuel; Allison, Simon J.; Phillips, Roger M.; Pardo, Julián; Fernandez, Luis J.; Ochoa, Ignacio

    2016-01-01

    The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live ‘window’ into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device’s potential to enable more physiological in vitro drug screening. PMID:27796335

  1. Investigations related to evaluation of ultramicrofluorometer

    NASA Technical Reports Server (NTRS)

    Whitcomb, B.

    1981-01-01

    High resolution emission and excitation fluorescent spectra were obtained for several samples in an effort to determine the optimum operational design for the instrument. The instrument was used to determine the required nature of a sample which could be detected, and in so doing, several different sample preparation techniques were considered. Numerous experiments were performed to determine the capabilities of the instrument with regard to the detection of suitably prepared virus specimens. Significant results were obtained in several areas. The fluorescent spectra indicated that substantial changes in the laser might be used advantageously to greatly improve the performance of the instrument. In the existing configuration, the instrument was shown to be capable of detecting the presence of suitably prepared virus samples.

  2. Preparation of a standardised faecal slurry for ex-vivo microbiota studies which reduces inter-individual donor bias.

    PubMed

    O'Donnell, Michelle M; Rea, Mary C; O'Sullivan, Órla; Flynn, Cal; Jones, Beth; McQuaid, Albert; Shanahan, Fergus; Ross, R Paul

    2016-10-01

    In-vitro gut fermentation systems provide suitable models for studying gut microbiota composition and functionality. However, such methods depend on the availability of donors and the assumption of reproducibility between microbial communities before experimental treatments commence. The aim of this study was to develop a frozen standardised inoculum (FSI) which minimizes inter-individual variation and to determine its stability over time using culture-dependent and culture-independent techniques. A method for the preparation difference of a FSI is described which involves pooling the faecal samples, centrifugation and pelleting of the cell biomass and finally homogenising the cell pellets with phosphate buffer and glycerol. Using this approach, no significant difference in total anaerobe cell viability was observed between the fresh standardised inoculum (before freezing) and the 12days post freezing FSI. Moreover, Quantitative PCR revealed no significant alterations in the estimated bacterial numbers in the FSI preparations for any of the phyla. MiSeq sequencing revealed minute differences in the relative abundance at phylum, family and genus levels between the FSI preparations. Differences in the microbiota denoted as significant were limited between preparations in the majority of cases to changes in percentage relative abundance of ±0.5%. The independently prepared FSIs revealed a high degree of reproducibility in terms of microbial composition between the three preparations. This study provides a method to produce a standardised human faecal inoculum suitable for freezing. Based on culture-dependent and independent analysis, the method ensures a degree of reproducibility between preparations by lessening the effect of inter-individual variation among the donors, thereby making the system more suitable for the accurate interpretation of the effects of experimental treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Orodispersible films in individualized pharmacotherapy: The development of a formulation for pharmacy preparations.

    PubMed

    Visser, J Carolina; Woerdenbag, Herman J; Crediet, Stefan; Gerrits, Edwin; Lesschen, Marjan A; Hinrichs, Wouter L J; Breitkreutz, Jörg; Frijlink, Henderik W

    2015-01-15

    Orodispersible films (ODFs) are promising drug delivery systems for customized small scale pharmacy preparations. The aim of the present study was to develop a versatile casting solution suitable for the extemporaneous production of ODFs to which active pharmaceutical ingredients (APIs) can be added. Different combinations of film forming agents and other excipients and different casting heights were tested for their suitability for production of ODFs. The best suitable casting solution contained hypromellose, carbomer, glycerol, disodium EDTA and trometamol. This casting solution was used to prepare ODFs containing water-soluble APIs (enalapril maleate and prednisolone disodium phosphate) and a poorly water-soluble API (diazepam) for which ethanol 96% was used as co-solvent.The water-soluble APIs as well as ethanol influenced the viscosity of the casting solution, mechanical properties and disintegration time of the ODFs. All ODFs containing API met the requirements on uniformity of mass and uniformity of content set by the European Pharmacopoeia (2014) (Ph. Eur.) 8th edition. In conclusion, ODFs of good pharmaceutical quality can be prepared on small scale. Hereby opening the perspective of using ODFs for individualized pharmacotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. 9 CFR 108.4 - Preparation of blueprints.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Preparation of blueprints. 108.4 Section 108.4 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... LICENSED ESTABLISHMENTS § 108.4 Preparation of blueprints. (a) Blueprints, drawn to any suitable scale, on...

  5. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints

    PubMed Central

    Llosa, Nicolas J.; Cruise, Michael; Tam, Ada; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Taube, Janis M.; Blosser, Lee; Fan, Hongni; Wang, Hao; Luber, Brandon; Zhang, Ming; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Sears, Cynthia L.; Anders, Robert A.; Pardoll, Drew M.; Housseau, Franck

    2014-01-01

    We examined the immune microenvironment of primary colorectal cancer (CRC) using immunohistochemistry, laser capture microdissection/qRT-PCR, flow cytometry and functional analysis of tumor infiltrating lymphocytes. A subset of CRC displayed high infiltration with activated CD8+ CTL as well as activated Th1 cells characterized by IFN-γ production and the Th1 transcription factor Tbet. Parallel analysis of tumor genotypes revealed that virtually all of the tumors with this active Th1/CTL microenvironment had defects in mismatch repair, as evidenced by microsatellite instability (MSI). Counterbalancing this active Th1/CTL microenvironment, MSI tumors selectively demonstrated highly up-regulated expression of multiple immune checkpoints, including five – PD-1, PD-L1, CTLA-4, LAG-3 and IDO – currently being targeted clinically with inhibitors. These findings link tumor genotype with the immune microenvironment, and explain why MSI tumors are not naturally eliminated despite a hostile Th1/CTL microenvironment. They further suggest that blockade of specific checkpoints may be selectively efficacious in the MSI subset of CRC. PMID:25358689

  6. Key Features of the Intragraft Microenvironment that Determine Long-Term Survival Following Transplantation

    PubMed Central

    Bruneau, Sarah; Woda, Craig Bryan; Daly, Kevin Patrick; Boneschansker, Leonard; Jain, Namrata Gargee; Kochupurakkal, Nora; Contreras, Alan Gabriel; Seto, Tatsuichiro; Briscoe, David Michael

    2012-01-01

    In this review, we discuss how changes in the intragraft microenvironment serve to promote or sustain the development of chronic allograft rejection. We propose two key elements within the microenvironment that contribute to the rejection process. The first is endothelial cell proliferation and angiogenesis that serve to create abnormal microvascular blood flow patterns as well as local tissue hypoxia, and precedes endothelial-to-mesenchymal transition. The second is the overexpression of local cytokines and growth factors that serve to sustain inflammation and, in turn, function to promote a leukocyte-induced angiogenesis reaction. Central to both events is overexpression of vascular endothelial growth factor (VEGF), which is both pro-inflammatory and pro-angiogenic, and thus drives progression of the chronic rejection microenvironment. In our discussion, we focus on how inflammation results in angiogenesis and how leukocyte-induced angiogenesis is pathological. We also discuss how VEGF is a master control factor that fosters the development of the chronic rejection microenvironment. Overall, this review provides insight into the intragraft microenvironment as an important paradigm for future direction in the field. PMID:22566935

  7. Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells.

    PubMed

    Cao, Jun-Tao; Zhu, Ying-Di; Rana, Rohit Kumar; Zhu, Jun-Jie

    2014-01-15

    A novel microfluidic platform integrated with a flexible PDMS-based electrochemical cytosensor was developed for real-time monitoring of the proliferation and apoptosis of HeLa cells. The PDMS-gold film, which had a conductive smooth surface and was semi-transparent, facilitated electrochemical measurements and optical microscope observations. We observed distinct increases and decreases in peak current intensity, corresponding to cell proliferation in culture medium and apoptosis in the presence of an anticancer drug, respectively. This electrochemical analysis method permitted real-time, label-free monitoring of cell behavior, and the electrochemical results were confirmed with optical microscopy. The flexible microfluidic electrochemical platform presented here is suitable for on-site monitoring of cell behavior in microenvironments. © 2013 Elsevier B.V. All rights reserved.

  8. A fluorescent pH probe for acidic organelles in living cells.

    PubMed

    Chen, Jyun-Wei; Chen, Chih-Ming; Chang, Cheng-Chung

    2017-09-26

    A water-soluble pH sensor, 2-(6-(4-aminostyryl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N, N-dimethylethanamine (ADA), was synthesized based on the molecular design of photoinduced electron transfer (PET) and intramolecular charge transfer (ICT). The fluorescence emission response against a pH value is in the range 3-6, which is suitable for labelling intracellular pH-dependent microenvironments. After biological evolution, ADA is more than a pH biosensor because it is also an endocytosis pathway tracking biosensor that labels endosomes, late endosomes, and lysosome pH gradients. From this, the emissive aggregates of ADA and protonated-ADA in these organs were evaluated to explore how this probe stresses emission colour change to cause these unique cellular images.

  9. Applications of carbon nanotubes in stem cell research.

    PubMed

    Ramón-Azcón, Javier; Ahadian, Samad; Obregón, Raquel; Shiku, Hitoshi; Ramalingam, Murugan; Matsue, Tomokazu

    2014-10-01

    Stem cells are a key element in tissue engineering and regenerative medicine. However, they require a suitable microenvironment to grow and regenerate. Carbon nanotubes (CNTs) have attracted much attention as promising materials for stem cell research due to their extraordinary properties, such as their extracellular matrix-like structure, high mechanical strength, optical properties, and high electrical conductivity. Of particular interest is the use of CNTs as biomimetic substrates to control the differentiation of stem cells. CNTs have also been combined with commonly used scaffolds to fabricate functional scaffolds to direct stem cell fate. CNTs can also be used for stem cell labeling due to their high optical absorbance in the near-infrared regime. In this paper, we review and discuss the applications of CNTs in stem cell research along with CNT toxicity issues.

  10. Integrating the glioblastoma microenvironment into engineered experimental models

    PubMed Central

    Xiao, Weikun; Sohrabi, Alireza; Seidlits, Stephanie K

    2017-01-01

    Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion – both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed. PMID:28883992

  11. Bone marrow micro-environment is a crucial player for myelomagenesis and disease progression

    PubMed Central

    Mondello, Patrizia; Cuzzocrea, Salvatore; Navarra, Michele; Mian, Michael

    2017-01-01

    Despite the advent of many therapeutic agents, such as bortezomib and lenalidomide that have significantly improved the overall survival, multiple myeloma remains an incurable disease. Failure to cure is multifactorial and can be attributed to the underlying genetic heterogeneity of the cancer and to the surrounding micro-environment. Understanding the mutual interaction between myeloma cells and micro-environment may lead to the development of novel treatment strategies able to eradicate this disease. In this review we discuss the principal molecules involved in the micro-environment network in multiple myeloma and the currently available therapies targeting them. PMID:28099912

  12. Porcine spermatogonial stem cells self-renew effectively in a three dimensional culture microenvironment.

    PubMed

    Park, Ji Eun; Park, Min Hee; Kim, Min Seong; Park, Yeo Reum; Yun, Jung Im; Cheong, Hee Tae; Kim, Minseok; Choi, Jung Hoon; Lee, Eunsong; Lee, Seung Tae

    2017-12-01

    Generally, self-renewal of spermatogonial stem cells (SSCs) is maintained in vivo in a three-dimensional (3D) microenvironment consisting of the seminiferous tubule basement membrane, indicating the importance of the 3D microenvironment for in vitro culture of SSCs. Here, we report a 3D culture microenvironment that effectively maintains porcine SSC self-renewal during culture. Porcine SSCs were cultured in an agarose-based 3D hydrogel and in 2D culture plates either with or without feeder cells. Subsequently, the effects of 3D culture on the maintenance of undifferentiated SSCs were identified by analyzing cell colony formation and morphology, AP activity, and transcriptional and translational regulation of self-renewal-related genes and the effects on proliferation by analyzing cell viability and single cell-derived colony number. The 3D culture microenvironment constructed using a 0.2% (w/v) agarose-based 3D hydrogel showed the strongest maintenance of porcine SSC self-renewal and induced significant improvements in proliferation compared with 2D culture microenvironments. These results demonstrate that self-renewal of porcine SSCs can be maintained more effectively in a 3D than in a 2D culture microenvironment. Moreover, this will play a significant role in developing novel culture systems for SSCs derived from diverse species in the future, which will contribute to SSC-related research. © 2017 International Federation for Cell Biology.

  13. Measuring personal exposure from 900MHz mobile phone base stations in Australia and Belgium using a novel personal distributed exposimeter.

    PubMed

    Bhatt, Chhavi Raj; Thielens, Arno; Redmayne, Mary; Abramson, Michael J; Billah, Baki; Sim, Malcolm R; Vermeulen, Roel; Martens, Luc; Joseph, Wout; Benke, Geza

    2016-01-01

    The aims of this study were to: i) measure personal exposure in the Global System for Mobile communications (GSM) 900MHz downlink (DL) frequency band with two systems of exposimeters, a personal distributed exposimeter (PDE) and a pair of ExpoM-RFs, ii) compare the GSM 900MHz DL exposures across various microenvironments in Australia and Belgium, and iii) evaluate the correlation between the PDE and ExpoM-RFs measurements. Personal exposure data were collected using the PDE and two ExpoM-RFs simultaneously across 34 microenvironments (17 each in Australia and Belgium) located in urban, suburban and rural areas. Summary statistics of the electric field strengths (V/m) were computed and compared across similar microenvironments in Australia and Belgium. The personal exposures across urban microenvironments were higher than those in the rural or suburban microenvironments. Likewise, the exposure levels across the outdoor were higher than those for indoor microenvironments. The five highest median exposure levels were: city centre (0.248V/m), bus (0.124V/m), railway station (0.105V/m), mountain/forest (rural) (0.057V/m), and train (0.055V/m) [Australia]; and bicycle (urban) (0.238V/m), tram station (0.238V/m), city centre (0.156V/m), residential outdoor (urban) (0.139V/m) and park (0.124V/m) [Belgium]. Exposures in the GSM900 MHz frequency band across most of the microenvironments in Australia were significantly lower than the exposures across the microenvironments in Belgium. Overall correlations between the PDE and the ExpoM-RFs measurements were high. The measured exposure levels were far below the general public reference levels recommended in the guidelines of the ICNIRP and the ARPANSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Critical assessment of day time traffic noise level at curbside open-air microenvironment of Kolkata City, India.

    PubMed

    Kundu Chowdhury, Anirban; Debsarkar, Anupam; Chakrabarty, Shibnath

    2015-01-01

    The objective of the research work is to assess day time traffic noise level at curbside open-air microenvironment of Kolkata city, India under heterogeneous environmental conditions. Prevailing traffic noise level in terms of A-weighted equivalent noise level (Leq) at the microenvironment was in excess of 12.6 ± 2.1 dB(A) from the day time standard of 65 dB(A) for commercial area recommended by the Central Pollution Control Board (CPCB) of India. Noise Climate and Traffic Noise Index of the microenvironment were accounted for 13 ± 1.8 dB(A) and 88.8 ± 6.1 dB(A) respectively. A correlation analysis explored that prevailing traffic noise level of the microenvironment had weak negative (-0.21; p < 0.01) and very weak positive (0.19; p < 0.01) correlation with air temperature and relative humidity. A Varimax rotated principal component analysis explored that motorized traffic volume had moderate positive loading with background noise component (L90, L95, L99) and prevailing traffic noise level had very strong positive loading with peak noise component (L1, L5, L10). Background and peak noise component cumulatively explained 80.98 % of variance in the data set. Traffic noise level at curbside open-air microenvironment of Kolkata City was higher than the standard recommended by CPCB of India. It was highly annoying also. Air temperature and relative humidity had little influence and the peak noise component had the most significant influence on the prevailing traffic noise level at curbside open-air microenvironment. Therefore, traffic noise level at the microenvironment of the city can be reduced with careful honking and driving.

  15. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    PubMed

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Specimen preparation for high-resolution cryo-EM

    PubMed Central

    Passmore, Lori A.; Russo, Christopher J.

    2016-01-01

    Imaging a material with electrons at near-atomic resolution requires a thin specimen that is stable in the vacuum of the transmission electron microscope. For biological samples, this comprises a thin layer of frozen aqueous solution containing the biomolecular complex of interest. The process of preparing a high-quality specimen is often the limiting step in the determination of structures by single-particle electron cryomicroscopy (cryo-EM). Here we describe a systematic approach for going from a purified biomolecular complex in aqueous solution to high-resolution electron micrographs that are suitable for 3D structure determination. This includes a series of protocols for the preparation of vitrified specimens on various specimen supports, including all-gold and graphene. We also describe techniques for troubleshooting when a preparation fails to yield suitable specimens, and common mistakes to avoid during each part of the process. Finally, we include recommendations for obtaining the highest quality micrographs from prepared specimens with current microscope, detector and support technology. PMID:27572723

  17. Tumor microenvironment indoctrination: an emerging hallmark of cancer.

    PubMed

    Goetz, Jacky G

    2012-01-01

    Nastiness of cancer does not only reside in the corruption of cancer cells by genetic aberrations that drive their sustained proliferative power--the roots of malignancy--but also in its aptitude to reciprocally sculpt its surrounding environment and cellular stromal ecosystem, in such a way that the corrupted tumor microenvironment becomes a full pro-tumorigenic entity. Such a contribution had been appreciated three decades ago already, with the discovery of tumor angiogenesis and extracellular matrix remodeling. Nevertheless, the recent emergence of the tumor microenvironment as the critical determinant in cancer biology is paralleled by the promising therapeutic potential it carries, opening alternate routes to fight cancer. The study of the tumor microenvironment recruited numerous lead-scientists over the years, with distinct perspectives, and some of them have kindly accepted to contribute to the elaboration of this special issue entitled Tumor microenvironment indoctrination: An emerging hallmark of cancer.

  18. Tumor microenvironment indoctrination

    PubMed Central

    2012-01-01

    Nastiness of cancer does not only reside in the corruption of cancer cells by genetic aberrations that drive their sustained proliferative power—the roots of malignancy—but also in its aptitude to reciprocally sculpt its surrounding environment and cellular stromal ecosystem, in such a way that the corrupted tumor microenvironment becomes a full pro-tumorigenic entity. Such a contribution had been appreciated three decades ago already, with the discovery of tumor angiogenesis and extracellular matrix remodeling. Nevertheless, the recent emergence of the tumor microenvironment as the critical determinant in cancer biology is paralleled by the promising therapeutic potential it carries, opening alternate routes to fight cancer. The study of the tumor microenvironment recruited numerous lead-scientists over the years, with distinct perspectives, and some of them have kindly accepted to contribute to the elaboration of this special issue entitled Tumor microenvironment indoctrination: An emerging hallmark of cancer. PMID:22863738

  19. Dry Eye Management: Targeting the Ocular Surface Microenvironment.

    PubMed

    Zhang, Xiaobo; M, Vimalin Jeyalatha; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo; Li, Wei

    2017-06-29

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment.

  20. Dry Eye Management: Targeting the Ocular Surface Microenvironment

    PubMed Central

    Zhang, Xiaobo; Jeyalatha M, Vimalin; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo

    2017-01-01

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment. PMID:28661456

  1. Biodegradable Hollow Mesoporous Silica Nanoparticles for Regulating Tumor Microenvironment and Enhancing Antitumor Efficiency

    PubMed Central

    Kong, Miao; Tang, Jiamin; Qiao, Qi; Wu, Tingting; Qi, Yan; Tan, Songwei; Gao, Xueqin; Zhang, Zhiping

    2017-01-01

    There is accumulating evidence that regulating tumor microenvironment plays a vital role in improving antitumor efficiency. Herein, to remodel tumor immune microenvironment and elicit synergistic antitumor effects, lipid-coated biodegradable hollow mesoporous silica nanoparticle (dHMLB) was constructed with co-encapsulation of all-trans retinoic acid (ATRA), doxorubicin (DOX) and interleukin-2 (IL-2) for chemo-immunotherapy. The nanoparticle-mediated combinational therapy provided a benign regulation on tumor microenvironment through activation of tumor infiltrating T lymphocytes and natural killer cells, promotion of cytokines secretion of IFN-γ and IL-12, and down-regulation of immunosuppressive myeloid-derived suppressor cells, cytokine IL-10 and TGF-β. ATRA/DOX/IL-2 co-loaded dHMLB demonstrated significant tumor growth and metastasis inhibition, and also exhibited favorable biodegradability and safety. This nanoplatform has great potential in developing a feasible strategy to remodel tumor immune microenvironment and achieve enhanced antitumor effect. PMID:28900509

  2. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments.

    PubMed

    Kwakwa, Kristin A; Vanderburgh, Joseph P; Guelcher, Scott A; Sterling, Julie A

    2017-08-01

    Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes.

  3. Enduring epigenetic landmarks define the cancer microenvironment

    PubMed Central

    Pidsley, Ruth; Lawrence, Mitchell G.; Zotenko, Elena; Niranjan, Birunthi; Statham, Aaron; Song, Jenny; Chabanon, Roman M.; Qu, Wenjia; Wang, Hong; Richards, Michelle; Nair, Shalima S.; Armstrong, Nicola J.; Nim, Hieu T.; Papargiris, Melissa; Balanathan, Preetika; French, Hugh; Peters, Timothy; Norden, Sam; Ryan, Andrew; Pedersen, John; Kench, James; Daly, Roger J.; Horvath, Lisa G.; Stricker, Phillip; Frydenberg, Mark; Taylor, Renea A.; Stirzaker, Clare; Risbridger, Gail P.; Clark, Susan J.

    2018-01-01

    The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples. PMID:29650553

  4. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    DOEpatents

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  5. Arc-melting preparation of single crystal LaB.sub.6 cathodes

    DOEpatents

    Gibson, Edwin D.; Verhoeven, John D.

    1977-06-21

    A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).

  6. Application of miniaturized near-infrared spectroscopy for quality control of extemporaneous orodispersible films.

    PubMed

    Foo, Wen Chin; Widjaja, Effendi; Khong, Yuet Mei; Gokhale, Rajeev; Chan, Sui Yung

    2018-02-20

    Extemporaneous oral preparations are routinely compounded in the pharmacy due to a lack of suitable formulations for special populations. Such small-scale pharmacy preparations also present an avenue for individualized pharmacotherapy. Orodispersible films (ODF) have increasingly been evaluated as a suitable dosage form for extemporaneous oral preparations. Nevertheless, as with all other extemporaneous preparations, safety and quality remain a concern. Although the United States Pharmacopeia (USP) recommends analytical testing of compounded preparations for quality assurance, pharmaceutical assays are typically not routinely performed for such non-sterile pharmacy preparations, due to the complexity and high cost of conventional assay methods such as high performance liquid chromatography (HPLC). Spectroscopic methods including Raman, infrared and near-infrared spectroscopy have been successfully applied as quality control tools in the industry. The state-of-art benchtop spectrometers used in those studies have the advantage of superior resolution and performance, but are not suitable for use in a small-scale pharmacy setting. In this study, we investigated the application of a miniaturized near infrared (NIR) spectrometer as a quality control tool for identification and quantification of drug content in extemporaneous ODFs. Miniaturized near infrared (NIR) spectroscopy is suitable for small-scale pharmacy applications in view of its small size, portability, simple user interface, rapid measurement and real-time prediction results. Nevertheless, the challenge with miniaturized NIR spectroscopy is its lower resolution compared to state-of-art benchtop equipment. We have successfully developed NIR spectroscopy calibration models for identification of ODFs containing five different drugs, and quantification of drug content in ODFs containing 2-10mg ondansetron (OND). The qualitative model for drug identification produced 100% prediction accuracy. The quantitative model to predict OND drug content in ODFs was divided into two calibrations for improved accuracy: Calibration I and II covered the 2-4mg and 4-10mg ranges respectively. Validation was performed for method accuracy, linearity and precision. In conclusion, this study demonstrates the feasibility of miniaturized NIR spectroscopy as a quality control tool for small-scale, pharmacy preparations. Due to its non-destructive nature, every dosage unit can be tested thus affording positive impact on patient safety. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)

    1988-01-01

    A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, in which a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd(sub 1-x)Mn(sub x)Te, in which 0 is less than or equal to x less than or equal to 0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) manganese (TCPMn) is employed. To prevent TCPMn condensation during its introduction into the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, in which the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.

  8. Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)

    1990-01-01

    A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, wherein a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd.sub.1-x Mn.sub.x Te, wherein 0.ltoreq..times..ltoreq.0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) maganese (TCPMn) is employed. To prevent TCPMn condensation during the introduction thereof int the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, wherein the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.

  9. Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.

    PubMed

    Kim, Jaeyun; Bencherif, Sidi A; Li, Weiwei Aileen; Mooney, David J

    2014-09-01

    Three-dimensional macroporous scaffolds have extensively been studied for cell-based tissue engineering but their use is mostly limited to mechanical support for cell adhesion and growth on the surface of macropores. Here, a templated fabrication method is described to prepare cell-friendly inverse opal-like hydrogels (IOHs) allowing both cell encapsulation within the hydrogel matrix and cell seeding on the surface of macropores. Ionically crosslinked alginate microbeads and photocrosslinkable biocompatible polymers are used as a sacrificial template and as a matrix, respectively. The alginate microbeads are easily removed by a chelating agent, with minimal toxicity for the encapsulated cells during template removal. The outer surface of macropores in IOHs can also provide a space for cell adherence. The cells encapsulated or attached in IOHs are able to remain viable and to proliferate over time. The elastic modulus and cell-adhesion properties of IOHs can be easily controlled and tuned. Finally, it is demonstrated that IOH can be used to co-culture two distinct cell populations in different spatial positions. This cell-friendly IOH system provides a 3D scaffold for organizing different cell types in a controllable microenvironment to investigate biological processes such as stem cell niches or tumor microenvironments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Designing degradable hydrogels for orthogonal control of cell microenvironments

    PubMed Central

    Kharkar, Prathamesh M.

    2013-01-01

    Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications. PMID:23609001

  11. An innovative three-dimensional gelatin foam culture system for improved study of glioblastoma stem cell behavior.

    PubMed

    Yang, Meng-Yin; Chiao, Ming-Tsang; Lee, Hsu-Tung; Chen, Chien-Min; Yang, Yi-Chin; Shen, Chiung-Chyi; Ma, Hsin-I

    2015-04-01

    Three-dimensional (3-D) tissue engineered constructs provide a platform for examining how the local extracellular matrix contributes to the malignancy of various cancers, including human glioblastoma multiforme. Here, we describe a simple and innovative 3-D culture environment and assess its potential for use with glioblastoma stem cells (GSCs) to examine the diversification inside the cell mass in the 3-D culture system. The dissociated human GSCs were cultured using gelatin foam. These cells were subsequently identified by immunohistochemical staining, reverse transcriptase-polymerase chain reaction, and Western blot assay. We demonstrate that the gelatin foam provides a suitable microenvironment, as a 3-D culture system, for GSCs to maintain their stemness. The gelatin foam culture system contributes a simplified assessment of cell blocks for immunohistochemistry assay. We show that the significant transcription activity of hypoxia and the protein expression of inflammatory responses are detected at the inside of the cell mass in vitro, while robust expression of PROM1/CD133 and hypoxia-induced factor-1 alpha are detected at the xenografted tumor in vivo. We also examine the common clinical trials under this culture platform and characterized a significant difference of drug resistance. The 3-D gelatin foam culture system can provide a more realistic microenvironment through which to study the in vivo behavior of GSCs to evaluate the role that biophysical factors play in the hypoxia, inflammatory responses and subsequent drug resistance. © 2014 Wiley Periodicals, Inc.

  12. Commensal bacteria modulate the tumor microenvironment.

    PubMed

    Poutahidis, Theofilos; Erdman, Susan E

    2016-09-28

    It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The intestinal microenvironment in sepsis.

    PubMed

    Fay, Katherine T; Ford, Mandy L; Coopersmith, Craig M

    2017-10-01

    The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients. Published by Elsevier B.V.

  14. Modeling the Spatiotemporal Evolution of the Melanoma Tumor Microenvironment

    NASA Astrophysics Data System (ADS)

    Signoriello, Alexandra; Bosenberg, Marcus; Shattuck, Mark; O'Hern, Corey

    The tumor microenvironment, which includes tumor cells, tumor-associated macrophages (TAM), cancer-associated fibroblasts, and endothelial cells, drives the formation and progression of melanoma tumors. Using quantitative analysis of in vivo confocal images of melanoma tumors in three spatial dimensions, we examine the physical properties of the melanoma tumor microenvironment, including the numbers of different cells types, cell size, and morphology. We also compute the nearest neighbor statistics and measure intermediate range spatial correlations between different cell types. We also calculate the step size distribution, mean-square displacement, and non-Gaussian parameter from the spatial trajectories of different cell types in the tumor microenvironment.

  15. Recapitulation of complex transport and action of drugs at tumor microenvironment using tumor-microenvironment-on-chip

    PubMed Central

    Han, Bumsoo; Qu, Chunjing; Park, Kinam; Konieczny, Stephen F.; Korc, Murray

    2016-01-01

    Targeted delivery aims to selectively distribute drugs to targeted tumor tissue but not to healthy tissue. This can address many of clinical challenges by maximizing the efficacy but minimizing the toxicity of anti-cancer drugs. However, complex tumor microenvironment poses various barriers hindering the transport of drugs and drug delivery systems. New tumor models that allow for the systematic study of these complex environments are highly desired to provide reliable test beds to develop drug delivery systems for targeted delivery. Recently, research efforts have yielded new in vitro tumor models, the so called tumor-microenvironment-on-chip, that recapitulate certain characteristics of the tumor microenvironment. These new models show benefits over other conventional tumor models, and have the potential to accelerate drug discovery and enable precision medicines. However, further research is warranted to overcome their limitations and to properly interpret the data obtained from these models. In this article, key features of the in vivo tumor microenvironment that are relevant to drug transport processes for targeted delivery was discussed, and the current status and challenges for developing in vitro transport model systems was reviewed. PMID:26688098

  16. One microenvironment does not fit all: heterogeneity beyond cancer cells.

    PubMed

    Kim, Ik Sun; Zhang, Xiang H-F

    2016-12-01

    Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.

  17. Engineering cancer microenvironments for in vitro 3-D tumor models

    PubMed Central

    Asghar, Waseem; El Assal, Rami; Shafiee, Hadi; Pitteri, Sharon; Paulmurugan, Ramasamy; Demirci, Utkan

    2017-01-01

    The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell–cell, cell–matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing. PMID:28458612

  18. Method of preparation of uranium nitride

    DOEpatents

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  19. Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen

    PubMed Central

    Spurgeon, Megan E.; den Boon, Johan A.; Horswill, Mark; Barthakur, Sonalee; Forouzan, Omid; Rader, Janet S.; Beebe, David J.; Roopra, Avtar; Ahlquist, Paul; Lambert, Paul F.

    2017-01-01

    High-risk human papillomaviruses (HPVs) infect epithelial cells and are causally associated with cervical cancer, but HPV infection is not sufficient for carcinogenesis. Previously, we reported that estrogen signaling in the stromal tumor microenvironment is associated with cervical cancer maintenance and progression. We have now determined how HPV oncogenes and estrogen treatment affect genome-wide host gene expression in laser-captured regions of the cervical epithelium and stroma of untreated or estrogen-treated nontransgenic and HPV-transgenic mice. HPV oncogene expression in the cervical epithelium elicited significant gene-expression changes in the proximal stromal compartment, and estrogen treatment uniquely affected gene expression in the cervical microenvironment of HPV-transgenic mice compared with nontransgenic mice. Several potential estrogen-induced paracrine-acting factors were identified in the expression profile of the cervical tumor microenvironment. The microenvironment of estrogen-treated HPV-transgenic mice was significantly enriched for chemokine/cytokine activity and inflammatory and immune functions associated with carcinogenesis. This inflammatory signature included several proangiogenic CXCR2 receptor ligands. A subset of the same CXCR2 ligands was likewise increased in cocultures of early-passage cells from human cervical samples, with levels highest in cocultures of cervical fibroblasts and cancer-derived epithelial cells. Our studies demonstrate that high-risk HPV oncogenes profoundly reprogram the tumor microenvironment independently of and synergistically with estrogen. These observations illuminate important means by which HPVs can cause cancer through alterations in the tumor microenvironment. PMID:29073104

  20. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation.

    PubMed

    Rençber, Seda; Karavana, Sinem Yaprak; Şenyiğit, Zeynep Ay; Eraç, Bayri; Limoncu, Mine Hoşgör; Baloğlu, Esra

    2017-06-01

    The purpose of this study was to develop a suitable mucoadhesive in situ gel formulation of clotrimazole (CLO) for the treatment of vaginal candidiasis. For this aim, the mixture of poloxamer (PLX) 407 and 188 were used to prepare in situ gels. Hydroxypropyl methylcellulose (HPMC) K100M or E50 was added to in situ gels in 0.5% ratio to improve the mucoadhesive and mechanical properties of formulations and to prolong the residence time in vaginal cavity. After the preparation of mucoadhesive in situ gels; gelation temperature/time, viscosity, mechanical, mucoadhesive, syringeability, spreadibility and rheological properties, in vitro release behavior, and anticandidal activities were determined. Moreover vaginal retention of mucoadhesive in situ gels was investigated with in vivo distribution studies in rats. Based on the obtained results, it was found that gels prepared with 20% PLX 407, 10% PLX 188 and 0.5% HPMC K100M/E50 might be suitable for vaginal administration of CLO. In addition, the results of in vivo distribution studies showed that gel formulations remained on the vaginal mucosa even 24 h after application. In conclusion, the mucoadhesive in situ gels of CLO would be alternative candidate for treatment of vaginal candidiasis since it has suitable gel properties with good vaginal retention.

  1. Identification of Suitable Reference Genes for mRNA Studies in Bone Marrow in a Mouse Model of Hematopoietic Stem Cell Transplantation.

    PubMed

    Li, H; Chen, C; Yao, H; Li, X; Yang, N; Qiao, J; Xu, K; Zeng, L

    2016-10-01

    Bone marrow micro-environment changes during hematopoietic stem cell transplantation (HSCT) with subsequent alteration of genes expression. Quantitative polymerase chain reaction (q-PCR) is a reliable and reproducible technique for the analysis of gene expression. To obtain more accurate results, it is essential to find a reference during HSCT. However, which gene is suitable during HSCT remains unclear. This study aimed to identify suitable reference genes for mRNA studies in bone marrow after HSCT. C57BL/6 mice were treated with either total body irradiation (group T) or busulfan/cyclophosphamide (BU/CY) (group B) followed by infusion of bone marrow cells. Normal mice without treatments were served as a control. All samples (group T + group B + control) were defined as group G. On days 7, 14, and 21 after transplantation, transcription levels of 7 candidate genes, ACTB, B2M, GAPDH, HMBS, HPRT, SDHA, and YWHAZ, in bone marrow cells were measured by use of real-time quantitative PCR. The expression stability of these 7 candidate reference genes were analyzed by 2 statistical software programs, GeNorm and NormFinder. Our results showed that ACTB displayed the highest expression in group G, with lowest expression of PSDHA in group T and HPRT in groups B and G. Analysis of expression stability by use of GeNorm or NormFinder demonstrated that expression of B2M in bone marrow were much more stable during HSCT, compared with other candidate genes including commonly used reference genes GAPDH and ACTB. ACTB could be used as a suitable reference gene for mRNA studies in bone marrow after HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. NFAT Signaling and the Tumorigenic Microenvironment of the Prostate

    DTIC Science & Technology

    2017-12-01

    ABSTRACT Although the importance of microenvironment in prostate cancer is widely recognized, the molecular and cellular processes leading from genetic ...non-invasive clinical tests. Second, the illustration of the main cellular and molecular components in the tumorigenic microenvironment provides new...potential of NFATc1 as a novel biomarker for prostate cancer diagnosis/prognosis. We will take advantage of the cellular precision, genetic manipulability

  3. Process for the synthesis of iron powder

    DOEpatents

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  4. Process for the synthesis of iron powder

    DOEpatents

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  5. Preparation of four 1,4-dihydropyridine derivatives (DHPs) labeled with carbon-14.

    PubMed

    Ahmadi Faghih, Mohammad Amin; Moslemin, Mohammad Hossein; Shirvani, Gholamhossein; Javaheri, Mohsen

    2018-05-23

    The importance of DHPs compounds and the need for examining the mechanism of their effect, mandated us to synthesize a number of carbon-14 labeled 1,4-dihydropyridine derivatives for pharmacological studies. Simple preparation and suitable radiochemical yield were advantages of this preparation. This article is protected by copyright. All rights reserved.

  6. Bone Marrow Stem Cells in Response to Intervertebral Disc-Like Matrix Acidity and Oxygen Concentration: Implications for Cell-based Regenerative Therapy.

    PubMed

    Naqvi, Syeda M; Buckley, Conor T

    2016-05-01

    In vitro culture of porcine bone marrow stem cells (BMSCs) in varying pH microenvironments in a three-dimensional hydrogel system. To characterize the response of BMSCs to varying pH environments (blood [pH 7.4], healthy intervertebral disc (IVD) (pH 7.1), mildly degenerated IVD (pH 6.8), and severely degenerated IVD (pH 6.5) in three-dimensional culture under normoxic (20%) and hypoxic (5%) conditions. The IVD is an avascular organ relying on diffusion of essential nutrients through the cartilaginous endplates (CEPs) thereby creating a challenging microenvironment. Within a degenerated IVD, oxygen and glucose concentrations decrease further (<5% oxygen, <5 mmol/L glucose) and matrix acidity (

  7. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.

    PubMed

    Brancato, Virginia; Garziano, Alessandro; Gioiella, Filomena; Urciuolo, Francesco; Imparato, Giorgia; Panzetta, Valeria; Fusco, Sabato; Netti, Paolo A

    2017-01-01

    We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor tissue is composed by malignant cells surviving in a microenvironment, or stroma. Stroma plays a pivotal role in cancer progression. Current in vitro models, i.e. spheroids, can't replicate the phenomena related to the tumor stroma remodeling. For this reason, to better replicate the tumor physiology in vitro that include functional and morphological changes, a novel 3D cancer model is proposed. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. An in vitro model demonstrates the potential of neoplastic human germ cells to influence the tumour microenvironment.

    PubMed

    Klein, B; Schuppe, H-C; Bergmann, M; Hedger, M P; Loveland, B E; Loveland, K L

    2017-07-01

    Testicular germ cell tumours (TGCT) typically contain high numbers of infiltrating immune cells, yet the functional nature and consequences of interactions between GCNIS (germ cell neoplasia in situ) or seminoma cells and immune cells remain unknown. A co-culture model using the seminoma-derived TCam-2 cell line and peripheral blood mononuclear cells (PBMC, n = 7 healthy donors) was established to investigate how tumour and immune cells each contribute to the cytokine microenvironment associated with TGCT. Three different co-culture approaches were employed: direct contact during culture to simulate in situ cellular interactions occurring within seminomas (n = 9); indirect contact using well inserts to mimic GCNIS, in which a basement membrane separates the neoplastic germ cells and immune cells (n = 3); and PBMC stimulation prior to direct contact during culture to overcome the potential lack of immune cell activation (n = 3). Transcript levels for key cytokines in PBMC and TCam-2 cell fractions were determined using RT-qPCR. TCam-2 cell fractions showed an immediate increase (within 24 h) in several cytokine mRNAs after direct contact with PBMC, whereas immune cell fractions did not. The high levels of interleukin-6 (IL6) mRNA and protein associated with TCam-2 cells implicate this cytokine as important to seminoma physiology. Use of PBMCs from different donors revealed a robust, repeatable pattern of changes in TCam-2 and PBMC cytokine mRNAs, independent of potential inter-donor variation in immune cell responsiveness. This in vitro model recapitulated previous data from clinical TGCT biopsies, revealing similar cytokine expression profiles and indicating its suitability for exploring the in vivo circumstances of TGCT. Despite the limitations of using a cell line to mimic in vivo events, these results indicate how neoplastic germ cells can directly shape the surrounding tumour microenvironment, including by influencing local immune responses. IL6 production by seminoma cells may be a practical target for early diagnosis and/or treatment of TGCT. © 2017 American Society of Andrology and European Academy of Andrology.

  9. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

  10. Spatial variability of soil and vegetation characteristics in an urban park in Tel-Aviv

    NASA Astrophysics Data System (ADS)

    Sarah, Pariente; Zhevelev, Helena M.; Oz, Atar

    2010-05-01

    Mosaic-like spatial patterns, consisting of divers soil microenvironments, characterize the landscapes of many urban parks. These microenvironments may differ in their pedological, hydrological and floral characteristics, and they play important roles in urban ecogeomorphic system functioning. In and around a park covering 50 ha in Tel Aviv, Israel, soil properties and herbaceous vegetation were measured in eight types of microenvironments. Six microenvironments were within the park: area under Ceratonia siliqua (Cs-U), area under Ficus sycomorus (Fi-U), a rest area under F. sycomorus (Re-U), an open area with bare soil (Oa-S), an open area with biological crusts (Oa-C), and an open area with herbaceous vegetation (Oa-V). Outside the park were two control microenvironments, located, respectively, on a flat area (Co-P) and an inclined open area (Co-S). The soil was sampled from two depths (0-2 and 5-10 cm), during the peak of the growing season (March). For each soil sample, moisture content, organic matter content, CaCO3 content, texture, pH, electrical conductivity, and soluble ions contents were determined in 1:1 water extraction. In addition, prior to the soil sampling, vegetation cover, number of species, and species diversity of herbaceous vegetation were measured. The barbecue fires and visitors in each of the microenvironments were counted. Whereas the soil organic matter and vegetation in Fi-U differed from those in the control(Co-P, Co-S), those in Oa-V were similar to those in the control. Fi-U was characterized by higher values of soil moisture, organic matter, penetration depth, and vegetation cover than Cs-U. Open microenvironments within the park (Oa-S, Oa-C, Oa-V) showed lower values of soil penetration than the control microenvironments. In Oa-V unique types of plants such as Capsella bursa-pastoris and Anagallis arvensis, which did not appear in the control microenvironments, were found. This was true also for Fi-U, in which species like Oxalis pes-caprae were found. Significant differences in soil and vegetation properties were found between Re-U and the rest of microenvironments. Differences in levels of human activities, in addition to differences in vegetation types, increased the spatial heterogeneity of soil properties. The rest microenvironment (Re-U) exhibited degraded soil conditions and can be regarded as forming the fragile areas of the park. An urban park offers potential for presence and growth of natural vegetation and, therefore, also for preservation of biodiversity. Natural vegetation, in its role as a part of the urban park, enriches the landscape diversity and thereby may contribute to the enjoyment of the visitors in the park.

  11. Brucite microbialites in living coral skeletons: Indicators of extreme microenvironments in shallow-marine settings

    USGS Publications Warehouse

    Nothdurft, L.D.; Webb, G.E.; Buster, N.A.; Holmes, C.W.; Sorauf, J.E.; Kloprogge, J.T.

    2005-01-01

    Brucite [Mg(OH)2] microbialites occur in vacated interseptal spaces of living scleractinian coral colonies (Acropora, Pocillopora, Porites) from subtidal and intertidal settings in the Great Barrier Reef, Australia, and subtidal Montastraea from the Florida Keys, United States. Brucite encrusts microbial filaments of endobionts (i.e., fungi, green algae, cyanobacteria) growing under organic biofilms; the brucite distribution is patchy both within interseptal spaces and within coralla. Although brucite is undersaturated in seawater, its precipitation was apparently induced in the corals by lowered pCO 2 and increased pH within microenvironments protected by microbial biofilms. The occurrence of brucite in shallow-marine settings highlights the importance of microenvironments in the formation and early diagenesis of marine carbonates. Significantly, the brucite precipitates discovered in microenvironments in these corals show that early diagenetic products do not necessarily reflect ambient seawater chemistry. Errors in environmental interpretation may arise where unidentified precipitates occur in microenvironments in skeletal carbonates that are subsequently utilized as geochemical seawater proxies. ?? 2005 Geological Society of America.

  12. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments

    PubMed Central

    Kwakwa, Kristin A.; Vanderburgh, Joseph P.; Guelcher, Scott A.

    2018-01-01

    Purpose of Review Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. Recent Findings 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. Summary 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes. PMID:28646444

  13. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges

    PubMed Central

    Montanez-Sauri, Sara I.; Beebe, David J.; Sung, Kyung Eun

    2015-01-01

    The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g. spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments. PMID:25274061

  14. Astronaut training manual

    NASA Technical Reports Server (NTRS)

    Coleman, E. A.

    1980-01-01

    Scientific information from previous space flights, space medicine, exercise physiology, and sports medicine was used to prepare a physical fitness manual suitable for use by members of the NASA astronaut population. A variety of scientifically valid exercise programs and activities suitable for the development of physical fitness are provided. Programs, activities, and supportive scientific data are presented in a concise, easy to read format so as to permit the user to select his or her mode of training with confidence and devote time previously spent experimenting with training routines to preparation for space flight. The programs and activities included were tested and shown to be effective and enjoyable.

  15. Protein crystal screening and characterization for serial femtosecond nanocrystallography

    PubMed Central

    Darmanin, Connie; Strachan, Jamie; Adda, Christopher G.; Ve, Thomas; Kobe, Bostjan; Abbey, Brian

    2016-01-01

    The recent development of X-ray free electron lasers (XFELs) has spurred the development of serial femtosecond nanocrystallography (SFX) which, for the first time, is enabling structure retrieval from sub-micron protein crystals. Although there are already a growing number of structures published using SFX, the technology is still very new and presents a number of unique challenges as well as opportunities for structural biologists. One of the biggest barriers to the success of SFX experiments is the preparation and selection of suitable protein crystal samples. Here we outline a protocol for preparing and screening for suitable XFEL targets. PMID:27139248

  16. Platelet-rich plasma, an adjuvant biological therapy to assist peripheral nerve repair

    PubMed Central

    Sánchez, Mikel; Garate, Ane; Delgado, Diego; Padilla, Sabino

    2017-01-01

    Therapies such as direct tension-free microsurgical repair or transplantation of a nerve autograft, are nowadays used to treat traumatic peripheral nerve injuries (PNI), focused on the enhancement of the intrinsic regenerative potential of injured axons. However, these therapies fail to recreate the suitable cellular and molecular microenvironment of peripheral nerve repair and in some cases, the functional recovery of nerve injuries is incomplete. Thus, new biomedical engineering strategies based on tissue engineering approaches through molecular intervention and scaffolding offer promising outcomes on the field. In this sense, evidence is accumulating in both, preclinical and clinical settings, indicating that platelet-rich plasma products, and fibrin scaffold obtained from this technology, hold an important therapeutic potential as a neuroprotective, neurogenic and neuroinflammatory therapeutic modulator system, as well as enhancing the sensory and motor functional nerve muscle unit recovery. PMID:28250739

  17. [Elucidating the molecular mechanism of prostate cancer progression under chronic hypoxia and development of the novel therapeutic approach].

    PubMed

    Nomura, Takeo; Yamasaki, Mutsushi; Mimata, Hiromitsu

    2014-12-01

    Cancer cells encounter a hypoxic microenvironment during tumor growth and progression. In addition, androgen-deprivation therapy against prostate cancer can develop secondary to a hypoxic condition caused by drastic blood supply reduction because androgen drives angiogenic inducers including vascular endothelial growth factor (VEGF) and inhibits angiogenesis inhibitor prostatic pigment epithelium-derived factor (PEDF). Extreme hypoxic conditions are not suitable for cancer survival, however, cancer cells soon adapt to a hypoxic environment and survive. We established a prostate cancer cell line cultured under chronic hypoxia and analyzed a castration-resistant phenotype. Here, the Vav3 was identified as a key oncogenic molecule associated with castration-resistance under chronic hypoxia. We analyzed the functions of Vav3 and Vav3-mediated signaling to establish a novel therapeutic target for castration-resistant prostate cancer.

  18. Standardised animal models of host microbial mutualism

    PubMed Central

    Macpherson, A J; McCoy, K D

    2015-01-01

    An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions. PMID:25492472

  19. Orchestrating the Tumor Microenvironment to Improve Survival for Patients With Pancreatic Cancer: Normalization, Not Destruction.

    PubMed

    Whatcott, Clifford J; Han, Haiyong; Von Hoff, Daniel D

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. The microenvironment of pancreatic cancer could be one of the "perfect storms" that support the growth of a cancer. Indeed, pancreatic cancer may be the poster child of a problem with the microenvironment. In this article, we review the rationale and attempts to date on modifying or targeting structural proteins in the microenvironment including hyaluronan (HA) (in primary and metastases), collagen, and SPARC (secreted protein, acidic, and rich in cysteine). Indeed, working in this area has produced a regimen that improves survival for patients with advanced pancreatic cancer (nab-paclitaxel + gemcitabine). In addition, in initial clinical trials, PEGylated hyaluronidase appears promising. We also review a new approach that is different than targeting/destroying the microenvironment and that is orchestrating, reengineering, reprogramming, or normalizing the microenvironment (including normalizing structural proteins, normalizing an immunologically tumor-friendly environment to a less friendly environment, reversing epithelial-to-mesenchymal transition, and so on). We believe this will be most effectively done by agents that have global effects on transcription. There is initial evidence that this can be done by agents such as vitamin D derivatives and other new agents. There is no doubt these opportunities can now be tried in the clinic with hopefully beneficial effects.

  20. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?

    PubMed

    Hoarau-Véchot, Jessica; Rafii, Arash; Touboul, Cyril; Pasquier, Jennifer

    2018-01-18

    An area that has come to be of tremendous interest in tumor research in the last decade is the role of the microenvironment in the biology of neoplastic diseases. The tumor microenvironment (TME) comprises various cells that are collectively important for normal tissue homeostasis as well as tumor progression or regression. Seminal studies have demonstrated the role of the dialogue between cancer cells (at many sites) and the cellular component of the microenvironment in tumor progression, metastasis, and resistance to treatment. Using an appropriate system of microenvironment and tumor culture is the first step towards a better understanding of the complex interaction between cancer cells and their surroundings. Three-dimensional (3D) models have been widely described recently. However, while it is claimed that they can bridge the gap between in vitro and in vivo, it is sometimes hard to decipher their advantage or limitation compared to classical two-dimensional (2D) cultures, especially given the broad number of techniques used. We present here a comprehensive review of the different 3D methods developed recently, and, secondly, we discuss the pros and cons of 3D culture compared to 2D when studying interactions between cancer cells and their microenvironment.

  1. Cabozantinib Affects Osteosarcoma Growth Through A Direct Effect On Tumor Cells and Modifications In Bone Microenvironment.

    PubMed

    Fioramonti, M; Fausti, V; Pantano, F; Iuliani, M; Ribelli, G; Lotti, F; Pignochino, Y; Grignani, G; Santini, D; Tonini, G; Vincenzi, B

    2018-03-08

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone. Due to its high heterogeneity and to survival signals from bone microenvironment, OS can resist to standard treatments, therefore novel therapies are needed. c-MET oncogene, a tyrosine-kinase receptor, plays a crucial role in OS initiation and progression. The present study aimed to evaluate the effect of c-MET inhibitor cabozantinib (CBZ) on OS both directly and through its action on bone microenvironment. We tested different doses of CBZ in in vitro models of OS alone or in co-culture with bone cells in order to reproduce OS-tumor microenvironment interactions. CBZ is able to decrease proliferation and migration of OS cells, inhibiting ERK and AKT signaling pathways. Furthermore, CBZ leads to the inhibition of the proliferation of OS cells expressing receptor activator of nuclear factor κB (RANK), due to its effect on bone microenvironment, where it causes an overproduction of osteoprotegerin and a decrease of production of RANK ligand by osteoblasts. Overall, our data demonstrate that CBZ might represent a new potential treatment against OS, affecting both OS cells and their microenvironment. In this scenario, RANK expression in OS cells could represent a predictive factor of better response to CBZ treatment.

  2. Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models

    PubMed Central

    Rejniak, Katarzyna A.; Gerlee, Philip

    2013-01-01

    Summary In this review we summarize our recent efforts using mathematical modeling and computation to simulate cancer invasion, with a special emphasis on the tumor microenvironment. We consider cancer progression as a complex multiscale process and approach it with three single-cell based mathematical models that examine the interactions between tumor microenvironment and cancer cells at several scales. The models exploit distinct mathematical and computational techniques, yet they share core elements and can be compared and/or related to each other. The overall aim of using mathematical models is to uncover the fundamental mechanisms that lend cancer progression its direction towards invasion and metastasis. The models effectively simulate various modes of cancer cell adaptation to the microenvironment in a growing tumor. All three point to a general mechanism underlying cancer invasion: competition for adaptation between distinct cancer cell phenotypes, driven by a tumor microenvironment with scarce resources. These theoretical predictions pose an intriguing experimental challenge: test the hypothesis that invasion is an emergent property of cancer cell populations adapting to selective microenvironment pressure, rather than culmination of cancer progression producing cells with the “invasive phenotype”. In broader terms, we propose that fundamental insights into cancer can be achieved by experimentation interacting with theoretical frameworks provided by computational and mathematical modeling. PMID:18524624

  3. Final Report for X-ray Diffraction Sample Preparation Method Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; Meznarich, H. K.; Valero, T.

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  4. Engineering Breast Cancer Microenvironments and 3D Bioprinting

    PubMed Central

    Belgodere, Jorge A.; King, Connor T.; Bursavich, Jacob B.; Burow, Matthew E.; Martin, Elizabeth C.; Jung, Jangwook P.

    2018-01-01

    The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal–cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments. PMID:29881724

  5. Longitudinal measurement of extracellular matrix rigidity in 3D tumor models using particle-tracking microrheology.

    PubMed

    Jones, Dustin P; Hanna, William; El-Hamidi, Hamid; Celli, Jonathan P

    2014-06-10

    The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic screening assays or molecular imaging to gain new insights into impact of treatments or biochemical stimuli on the mechanical microenvironment.

  6. Proliferative endocrine effects of adipose tissue from obese animals on MCF7 cells are ameliorated by resveratrol supplementation.

    PubMed

    Theriau, Christopher F; Sauvé, O'Llenecia S; Beaudoin, Marie-Soleil; Wright, David C; Connor, Michael K

    2017-01-01

    Obesity is clearly associated with an increased risk of breast cancer in postmenopausal women. The purpose was to determine if obesity alters the adipocyte adipokine secretion profile, thereby altering the adipose-dependent paracrine/endocrine growth microenvironment surrounding breast cancer cells (MCF7). Additionally, we determined whether resveratrol (RSV) supplementation can counteract any obesity-dependent effects on breast cancer tumor growth microenvironment. Obese ZDF rats received standard chow diet or diet supplemented with 200 mg/kg body weight RSV. Chow-fed Zucker rats served as lean controls. After 6 weeks, conditioned media (CM) prepared from inguinal subcutaneous adipose tissue (scAT) was added to MCF7 cells for 24 hrs. Experiments were also conducted using purified isolated adipocytes to determine whether any endocrine effects could be attributed specifically to the adipocyte component of adipose tissue. scAT from ZDF rats promoted cell cycle entry in MCF7 cells which was counteracted by RSV supplementation. RSV-CM had a higher ratio of ADIPO:LEP compared to ZDF-CM. This altered composition of the CM led to increased levels of pAMPKT172, p27, p27T198 and AdipoR1 while decreasing pAktT308 in MCF7 cells grown in RSV-CM compared to ZDF-CM. RSV-CM increased number of cells in G0/G1 and decreased cells in S-phase compared to ZDF-CM. Co-culture experiments revealed that these obesity-dependent effects were driven by the adipocyte component of the adipose tissue. Obesity decreased the ratio of adiponectin:leptin secreted by adipocytes, altering the adipose-dependent growth microenvironment resulting in increased breast cancer cell proliferation. Supplementation with RSV reversed these adipose-dependent effects suggesting a potential for RSV as a nutritional supplementation to improve breast cancer treatment in obese patients.

  7. Process for the synthesis of iron powder

    DOEpatents

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  8. 21 CFR 113.81 - Product preparation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Production and Process Controls § 113.81 Product preparation. (a) Before using raw materials and ingredients susceptible to microbiological contamination, the processor shall ensure that those materials and ingredients... by receiving the raw materials and ingredients under a supplier's guarantee that they are suitable...

  9. Microenvironments and Signaling Pathways Regulating Early Dissemination, Dormancy, and Metastasis

    DTIC Science & Technology

    2016-09-01

    regulators of branching morphogenesis during mammary gland development 17,18, arguing that normal mammary epithelial cells cooperate with these innate ...CD45+CD11b+F4/80+ cells lacking lymphoid and granulocytic markers (Supplementary Fig.3B). viSNE plots 30 of myelo- monocytic cells (Fig.5A) showed that...cancer cells and how the microenvironment in these primary sites named P-TMEM (Primary Tumor Microenvironment of Metastases) contribute to early

  10. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy

    PubMed Central

    Nagarsheth, Nisha; Wicha, Max S.; Zou, Weiping

    2017-01-01

    The tumour microenvironment is the primary location in which tumour cells and the host immune system interact. Different immune cell subsets are recruited into the tumour microenvironment via interactions between chemokines and chemokine receptors, and these populations have distinct effects on tumour progression and therapeutic outcomes. In this Review, we focus on the main chemokines that are found in the human tumour microenvironment; we elaborate on their patterns of expression, their regulation and their roles in immune cell recruitment and in cancer and stromal cell biology, and we consider how they affect cancer immunity and tumorigenesis. We also discuss the potential of targeting chemokine networks, in combination with other immunotherapies, for the treatment of cancer. PMID:28555670

  11. [Advances in nanoparticle-targeting tumor associated macrophages for cancer imaging and therapy].

    PubMed

    Fengliang, Guo; Guping, Tang; Qinglian, H U

    2017-03-25

    Tumor tissues are composed of tumor cells and complicate microenvironment. Tumor associated macrophages (TAMs) as an important component in tumor microenvironment, play fundamental roles in tumor progression, metastasis and microenvironment regulation. Recently, studies have found that nanotechnology, as an emerging platform, provides unique potential for cancer imaging and therapy. With the nanotechnology, TAMs imaging presents direct evidence for cancer development, progression, and the effectiveness of cancer treatments; it also can regulate the immunosuppression of tumor microenvironment and improve therapeutic efficiency through TAMs targeted killing or phenotypic transformation. In this article, we illustrate the function of TAMs and review the latest development in nano-carriers and their applications in tumor associated macrophage targeting cancer imaging and therapy.

  12. Establishment of the first international standard for PEGylated granulocyte colony stimulating factor (PEG-G-CSF): Report of an international collaborative study

    PubMed Central

    Wadhwa, Meenu; Bird, Chris; Dougall, Thomas; Rigsby, Peter; Bristow, Adrian; Thorpe, Robin

    2015-01-01

    We assessed the feasibility of developing a suitable international reference standard for determination of in vitro biological activity of human sequence recombinant PEG-G-CSF products with a 20 kD linear PEG linked to the N-terminal methionyl residue of G-CSF (INN Filgrastim), produced using a conjugation process and coupling chemistry similar to that employed for the lead PEGfilgrastim product. Based on initial data which showed that the current WHO 2nd international standard, IS for G-CSF (09/136) or alternatively, a PEG-G-CSF standard with a unitage traceable to the G-CSF IS may potentially serve as the IS for PEG-G-CSF products, two candidate preparations of PEG-G-CSF were formulated and lyophilized at NIBSC. These preparations were tested by 23 laboratories using in vitro bioassays in a multi-centre collaborative study. Results indicated that on the basis of parallelism, the current WHO 2nd IS for G-CSF or any of the PEG-G-CSF samples could be used as the international standard for PEG-G-CSF preparations. However, because of the variability in potency estimates seen when PEG-G-CSF preparations were compared with the current WHO 2nd IS for G-CSF, a candidate PEG-G-CSF was suitable as the WHO IS. The preparation 12/188 was judged suitable to serve as the WHO IS based on in vitro biological activity data. Therefore, the preparation coded 12/188 was established by the WHO Expert Committee on Biological Standardization (ECBS) in 2013 as the WHO 1st IS for human PEGylated G-CSF with an assigned in vitro bioactivity of 10,000 IU per ampoule. PMID:25450254

  13. Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis

    NASA Astrophysics Data System (ADS)

    Sasidharan, Abhilash; Chandran, Parwathy; Menon, Deepthy; Raman, Sreerekha; Nair, Shantikumar; Koyakutty, Manzoor

    2011-09-01

    The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in acidic (pH ~5-6) cancer microenvironment causing elevated ROS stress, mitochondrial superoxide formation, depolarization of mitochondrial membrane, and cell cycle arrest at S/G2 phase leading to apoptosis. In effect, by elucidating the unique toxicity mechanism of ZnO NCs, we show that ZnO NCs can destabilize cancer cells by utilizing its own hostile acidic microenvironment, which is otherwise critical for its survival.The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in acidic (pH ~5-6) cancer microenvironment causing elevated ROS stress, mitochondrial superoxide formation, depolarization of mitochondrial membrane, and cell cycle arrest at S/G2 phase leading to apoptosis. In effect, by elucidating the unique toxicity mechanism of ZnO NCs, we show that ZnO NCs can destabilize cancer cells by utilizing its own hostile acidic microenvironment, which is otherwise critical for its survival. Electronic supplementary information (ESI) available: FTIR data, MTT assay and zinc ion release. See DOI: 10.1039/c1nr10272a

  14. Preparation of Emulsifying Wax/GMO Nanoparticles and Evaluation as a Delivery System for Repurposing Simvastatin in Bone Regeneration.

    PubMed

    Eskinazi-Budge, Aaron; Manickavasagam, Dharani; Czech, Tori; Novak, Kimberly; Kunzler, James; Oyewumi, Moses O

    2018-05-30

    Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia that has attracted so much attention in bone regeneration based on its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0-500 µg/mL) were prepared and showed an average particle size of about 150 nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy simvastatin-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.

  15. Differential vitamin D 24-hydroxylase/CYP24A1 gene promoter methylation in endothelium from benign and malignant human prostate

    PubMed Central

    Karpf, Adam R; Omilian, Angela R; Bshara, Wiam; Tian, Lili; Tangrea, Michael A; Morrison, Carl D; Johnson, Candace S

    2011-01-01

    Epigenetic alterations occur in tumor-associated vessels in the tumor microenvironment. Methylation of the CYP24A1 gene promoter differs in endothelial cells isolated from tumors and non-tumor microenvironments in mice. The epigenetic makeup of endothelial cells of human tumor-associated vasculature is unknown due to difficulty of isolating endothelial cells populations from a heterogeneous tissue microenvironment. To ascertain CYP24A1 promoter methylation in tumor-associated endothelium, we utilized laser microdissection guided by CD31 immunohistochemistry to procure endothelial cells from human prostate tumor specimens. Prostate tissues were obtained following robotic radical prostatectomy from men with clinically localized prostate cancer. Adjacent histologically benign prostate tissues were used to compare endothelium from benign versus tumor microenvironments. Sodium bisulfite sequencing of CYP24A1 promoter region showed that the average CYP24A1 promoter methylation in the endothelium was 20% from the tumor microenvironment compared with 8.2% in the benign microenvironment (p < 0.05). A 2-fold to 17-fold increase in CYP24A1 promoter methylation was observed in the prostate tumor endothelium compared with the matched benign prostate endothelium in four patient samples, while CYP24A1 promoter methylation remained unchanged in two patient samples. In addition, there is no correlation of the level of CYP24A1 promoter methylation in prostate tumor-associated endothelium with that of epithelium/stroma. This study demonstrates that the CYP24A1 promoter is methylated in tumor-associated endothelium, indicating that epigenetic alterations in CYP24A1 may play a role in determining the phenotype of tumor-associated vasculature in the prostate tumor microenvironment. PMID:21725204

  16. Pelletizing/reslurrying as a means of distributing and firing clean coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less

  17. Choosing suitable times for prescribed burning in southern New Jersey

    Treesearch

    S. Little; H. A. Somes; J. P. Allen

    1952-01-01

    Prescribed burning is useful in managing pine-oak forests in the Pine Region of southern New Jersey. It favors reproduction of pine by preparing suitable seed beds; it checks the development of hardwood reproduction; and it protects against wild fires by reducing the amount of fuel on the forest floor.

  18. Assembly of hydrogel units for 3D microenvironment in a poly(dimethylsiloxane) channel

    NASA Astrophysics Data System (ADS)

    Cho, Chang Hyun; Kwon, Seyong; Park, Je-Kyun

    2017-12-01

    Construction of three-dimensional (3D) microenvironment become an important issue in recent biological studies due to their biological relevance compared to conventional two-dimensional (2D) microenvironment. Various fabrication techniques have been employed to construct a 3D microenvironment, however, it is difficult to fully satisfy the biological and mechanical properties required for the 3D cell culture system, such as heterogeneous tissue structures generated from the functional differences or diseases. We propose here an assembly method for facile construction of 3D microenvironment in a poly(dimethylsiloxane) (PDMS) channel using hydrogel units. The high-aspect-ratio of hydrogel units was achieved by fabricating these units using a 2D mold. With this approach, 3D heterogeneous hydrogel units were produced and assembled in a PDMS channel by structural hookup. In vivo-like 3D heterogeneous microenvironment in a precisely controllable fluidic system was also demonstrated using a controlled assembly of different types of hydrogel units, which was difficult to obtain from previous methods. By regulating the flow condition, the mechanical stability of the assembled hydrogel units was verified by the flow-induced deformation of hydrogel units. In addition, in vivo-like cell culture environment was demonstrated using an assembly of cell-coated hydrogel units in the fluidic channel. Based on these features, our method expects to provide a beneficial tool for the 3D cell culture module and biomimetic engineering.

  19. High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease.

    PubMed

    Palacios, Florencia; Moreno, Pilar; Morande, Pablo; Abreu, Cecilia; Correa, Agustín; Porro, Valentina; Landoni, Ana Ines; Gabus, Raul; Giordano, Mirta; Dighiero, Guillermo; Pritsch, Otto; Oppezzo, Pablo

    2010-06-03

    Interaction of chronic lymphocytic leukemia (CLL) B cells with tissue microenvironment has been suggested to favor disease progression by promoting malignant B-cell growth. Previous work has shown expression in peripheral blood (PB) of CLL B cells of activation-induced cytidine deaminase (AID) among CLL patients with an unmutated (UM) profile of immunoglobulin genes and with ongoing class switch recombination (CSR) process. Because AID expression results from interaction with activated tissue microenvironment, we speculated whether the small subset with ongoing CSR is responsible for high levels of AID expression and could be derived from this particular microenvironment. In this work, we quantified AID expression and ongoing CSR in PB of 50 CLL patients and characterized the expression of different molecules related to microenvironment interaction. Our results show that among UM patients (1) high AID expression is restricted to the subpopulation of tumoral cells ongoing CSR; (2) this small subset expresses high levels of proliferation, antiapoptotic and progression markers (Ki-67, c-myc, Bcl-2, CD49d, and CCL3/4 chemokines). Overall, this work outlines the importance of a cellular subset in PB of UM CLL patients with a poor clinical outcome, high AID levels, and ongoing CSR, whose presence might be a hallmark of a recent contact with the microenvironment.

  20. Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China

    NASA Astrophysics Data System (ADS)

    Tang, Jianhui; Chan, C. Y.; Wang, Xinming; Chan, L. Y.; Sheng, Guoying; Fu, Jiamo

    Volatile organic compounds (VOCs) specified in the USEPA TO-14 list were analysed in microenvironments of a multi-storey shopping mall in Guangzhou city, South China. The microenvironments studied include both indoor (department store, supermarket, fast-food court, electronic games room, children's playground, gallery and book store) and outdoor ones (rooftop and ground level entrance). The characteristics and concentration of VOCs varied widely in differing microenvironments. The average concentrations of the total VOCs in the indoor microenvironments ranged from 178.5 to 457.7 μg m -3 with a maximum of 596.8 μg m -3. The fast-food court and a leather products department store had the highest concentrations of benzene, toluene, ethylbenzene, xylenes and chlorinated hydrocarbons. A high level of 1,4-dichlorobenzene was found in all indoor microenvironments with an average of 12.3 μg m -3 and a maximum of 44.3 μg m -3. The ratios of average indoor to outdoor concentrations (I/O ratio) in all indoor microenvironments fell between 1 and 3, except an average of 24.6 and a maximum of 77.8 in the fashion department store for 1,4-dichlorobenzene. Indoor emission sources of monocyclic aromatic hydrocarbons in the shopping mall might include cooking stoves, leather products and building materials. Chlorinated hydrocarbons, however, were possibly connected with their use as cleaning agents or deodorizers.

  1. Fetal Membranes-Derived Stem Cells Microenvironment.

    PubMed

    Favaron, Phelipe Oliveira; Miglino, Maria Angelica

    2017-01-01

    Recently, the regenerative medicine has been trying to congregate different areas such as tissue engineering and cellular therapy, in order to offer effective treatments to overcome several human and veterinary medical problems. In this regard, fetal membranes have been proposed as a powerful source for obtainment of multipotent stem cells with low immunogenicity, anti-inflammatory properties and nontumorigenicity properties for the treatment of several diseases, including replacing cells lost due to tissue injuries or degenerative diseases. Morpho-physiological data have shown that fetal membranes, especially the yolk sac and amnion play different functions according to the gestational period, which are direct related to the features of the microenvironment that their cells are subject. The characteristics of the microenvironment affect or controls important cellular events involved with proliferation, division and maintenance of the undifferentiated stage or differentiation, especially acting on the extracellular matrix components. Considering the importance of the microenvironment and the diversity of embryonic and fetal membrane-derived stem cells, this chapter will addressed advances in the isolation, phenotyping, characteristics of the microenvironment, and applications of yolk sac and amniotic membrane-derived stem cells for human and veterinary regenerative medicine.

  2. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow

    NASA Astrophysics Data System (ADS)

    Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan

    2016-12-01

    Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.

  3. Pirfenidone normalizes the tumor microenvironment to improve chemotherapy

    PubMed Central

    Papageorgis, Panagiotis; Voutouri, Chrysovalantis; Stylianopoulos, Triantafyllos

    2017-01-01

    Normalization of the tumor microenvironment by selectively targeting components of the tumor extracellular matrix has been recently proposed to have the potential to decompress tumor blood vessels, increase vessel perfusion and thus, improve drug delivery and the efficacy of cancer therapy. Therefore, we now need to identify safe and well tolerated pharmaceutical agents that are able to remodel the microenvironment of solid tumors and enhance chemotherapy. In this study, we repurposed Pirfenidone, a clinically approved anti-fibrotic drug for the treatment of idiopathic pulmonary fibrosis, to investigate its possible role on tumor microenvironment normalization. Using two orthotopic mammary tumor models we demonstrate that Pirfenidone reduces collagen and hyaluronan levels and, as a result, significantly increases blood vessel functionality and perfusion and improves the anti-tumor efficacy of doxorubicin. Reduction of extracellular matrix components were mediated via TGFβ signaling pathway inhibition due to downregulation of TGFβ1, COL1A1, COL3A1, HAS2, HAS3 expression levels. Our findings provide evidence that repurposing Pirfenidone could be used as a promising strategy to enhance drug delivery to solid tumors by normalizing the tumor microenvironment. PMID:28445938

  4. Cancer prevention and therapy through the modulation of the tumor microenvironment

    PubMed Central

    Casey, Stephanie C.; Amedei, Amedeo; Aquilano, Katia; Benencia, Fabian; Bhakta, Dipita; Boosani, Chandra S.; Chen, Sophie; Ciriolo, Maria Rosa; Crawford, Sarah; Fujii, Hiromasa; Georgakilas, Alexandros G.; Guha, Gunjan; Halicka, Dorota; Helferich, William G.; Heneberg, Petr; Honoki, Kanya; Kerkar, Sid P.; Mohammed, Sulma I.; Niccolai, Elena; Nowsheen, Somaira; Rupasinghe, H. P. Vasantha; Samadi, Abbas; Singh, Neetu; Talib, Wamidh H.; Venkateswaran, Vasundara; Whelan, Richard; Yang, Xujuan; Felsher, Dean W.

    2015-01-01

    Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adapative immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2, 3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer. PMID:25865775

  5. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.

    PubMed

    Reddy, M Venkateswar; Mohan, S Venkata

    2012-01-01

    The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Tumor-associated mesenchymal stem-like cells provide extracellular signaling cue for invasiveness of glioblastoma cells

    PubMed Central

    Yoo, Ki-Chun; Lee, Ji-Hyun; Kim, In-Gyu; Kim, Min-Jung; Chang, Jong Hee; Kang, Seok-Gu; Lee, Su-Jae

    2017-01-01

    Hyaluronic acid (HA) is abundant in tumor microenvironment and closely associated with invasiveness of glioblastoma (GBM) cells. However, the cellular mechanism underlying HA-rich microenvironment in GBM remains unexplored. Here, we show that tumor-associated mesenchymal stem-like cells (tMSLCs) contribute to abundance of hyaluronic acid (HA) in tumor microenvironment through HA synthase-2 (HAS2) induction, and thereby enhances invasiveness of GBM cells. In an autocrine manner, C5a secreted by tMSLCs activated ERK MAPK for HAS2 induction in tMSLCs. Importantly, HA acted as a signaling ligand of its cognate receptor RHAMM for intracellular signaling activation underlying invasiveness of GBM cells. Taken together, our study suggests that tMSLCs contribute to HA-rich proinvasive ECM microenvironment in GBM. PMID:27903965

  7. Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging

    PubMed Central

    Williams, James K.; Entenberg, David; Wang, Yarong; Avivar-Valderas, Alvaro; Padgen, Michael; Clark, Ashley; Aguirre-Ghiso, Julio A.; Castracane, James; Condeelis, John S.

    2016-01-01

    ABSTRACT The tumor microenvironment is recognized as playing a significant role in the behavior of tumor cells and their progression to metastasis. However, tools to manipulate the tumor microenvironment directly, and image the consequences of this manipulation with single cell resolution in real time in vivo, are lacking. We describe here a method for the direct, local manipulation of microenvironmental parameters through the use of an implantable Induction Nano Intravital Device (iNANIVID) and simultaneous in vivo visualization of the results at single-cell resolution. As a proof of concept, we deliver both a sustained dose of EGF to tumor cells while intravital imaging their chemotactic response as well as locally induce hypoxia in defined microenvironments in solid tumors. PMID:27790386

  8. Nanowired Drug Delivery Across the Blood-Brain Barrier in Central Nervous System Injury and Repair.

    PubMed

    Sharma, Aruna; Menon, Preeti; Muresanu, Dafin F; Ozkizilcik, Asya; Tian, Z Ryan; Lafuente, José V; Sharma, Hari S

    2016-01-01

    The blood-brain barrier (BBB) is a physiological regulator of transport of essential items from blood to brain for the maintenance of homeostasis of the central nervous system (CNS) within narrow limits. The BBB is also responsible for export of harmful or metabolic products from brain to blood to keep the CNS fluid microenvironment healthy. However, noxious insults to the brain caused by trauma, ischemia or environmental/chemical toxins alter the BBB function to small as well as large molecules e.g., proteins. When proteins enter the CNS fluid microenvironment, development of brain edema occurs due to altered osmotic balance between blood and brain. On the other hand, almost all neurodegenerative diseases and traumatic insults to the CNS and subsequent BBB dysfunction lead to edema formation and cell injury. To treat these brain disorders suitable drug therapy reaching their brain targets is needed. However, due to edema formation or only a focal disruption of the BBB e.g., around brain tumors, many drugs are unable to reach their CNS targets in sufficient quantity. This results in poor therapeutic outcome. Thus, new technology such as nanodelivery is needed for drugs to reach their CNS targets and be effective. In this review, use of nanowires as a possible novel tool to enhance drug delivery into the CNS in various disease models is discussed based on our investigations. These data show that nanowired delivery of drugs may have superior neuroprotective ability to treat several CNS diseases effectively indicating their role in future therapeutic strategies.

  9. 21 CFR 606.122 - Circular of information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... collecting the Whole Blood from each product is prepared. (e) A statement that the product was prepared from... and administration recommendations. (j) [Reserved] (k) For Red Blood Cells, the circular of information must contain: (1) Instructions to administer a suitable plasma volume expander if Red Blood Cells...

  10. Physical micro-environment interventions for healthier eating in the workplace: protocol for a stepped wedge randomised controlled pilot trial.

    PubMed

    Vasiljevic, Milica; Cartwright, Emma; Pechey, Rachel; Hollands, Gareth J; Couturier, Dominique-Laurent; Jebb, Susan A; Marteau, Theresa M

    2017-01-01

    An estimated one third of energy is consumed in the workplace. The workplace is therefore an important context in which to reduce energy consumption to tackle the high rates of overweight and obesity in the general population. Altering environmental cues for food selection and consumption-physical micro-environment or 'choice architecture' interventions-has the potential to reduce energy intake. The first aim of this pilot trial is to estimate the potential impact upon energy purchased of three such environmental cues (size of portions, packages and tableware; availability of healthier vs. less healthy options; and energy labelling) in workplace cafeterias. A second aim of this pilot trial is to examine the feasibility of recruiting eligible worksites, and identify barriers to the feasibility and acceptability of implementing the interventions in preparation for a larger trial. Eighteen worksite cafeterias in England will be assigned to one of three intervention groups to assess the impact on energy purchased of altering (a) portion, package and tableware size ( n  = 6); (b) availability of healthier options ( n  = 6); and (c) energy (calorie) labelling ( n  = 6). Using a stepped wedge design, sites will implement allocated interventions at different time periods, as randomised. This pilot trial will examine the feasibility of recruiting eligible worksites, and the feasibility and acceptability of implementing the interventions in preparation for a larger trial. In addition, a series of linear mixed models will be used to estimate the impact of each intervention on total energy (calories) purchased per time frame of analysis (daily or weekly) controlling for the total sales/transactions adjusted for calendar time and with random effects for worksite. These analyses will allow an estimate of an effect size of each of the three proposed interventions, which will form the basis of the sample size calculations necessary for a larger trial. ISRCTN52923504.

  11. Real-Time Cellular Exometabolome Analysis with a Microfluidic-Mass Spectrometry Platform

    PubMed Central

    Marasco, Christina C.; Enders, Jeffrey R.; Seale, Kevin T.; McLean, John A.; Wikswo, John P.

    2015-01-01

    To address the challenges of tracking the multitude of signaling molecules and metabolites that is the basis of biological complexity, we describe a strategy to expand the analytical techniques for dynamic systems biology. Using microfluidics, online desalting, and mass spectrometry technologies, we constructed and validated a platform well suited for sampling the cellular microenvironment with high temporal resolution. Our platform achieves success in: automated cellular stimulation and microenvironment control; reduced non-specific adsorption to polydimethylsiloxane due to surface passivation; real-time online sample collection; near real-time sample preparation for salt removal; and real-time online mass spectrometry. When compared against the benchmark of “in-culture” experiments combined with ultraperformance liquid chromatography-electrospray ionization-ion mobility-mass spectrometry (UPLC-ESI-IM-MS), our platform alleviates the volume challenge issues caused by dilution of autocrine and paracrine signaling and dramatically reduces sample preparation and data collection time, while reducing undesirable external influence from various manual methods of manipulating cells and media (e.g., cell centrifugation). To validate this system biologically, we focused on cellular responses of Jurkat T cells to microenvironmental stimuli. Application of these stimuli, in conjunction with the cell’s metabolic processes, results in changes in consumption of nutrients and secretion of biomolecules (collectively, the exometabolome), which enable communication with other cells or tissues and elimination of waste. Naïve and experienced T-cell metabolism of cocaine is used as an exemplary system to confirm the platform’s capability, highlight its potential for metabolite discovery applications, and explore immunological memory of T-cell drug exposure. Our platform proved capable of detecting metabolomic variations between naïve and experienced Jurkat T cells and highlights the dynamics of the exometabolome over time. Upregulation of the cocaine metabolite, benzoylecgonine, was noted in experienced T cells, indicating potential cellular memory of cocaine exposure. These metabolomics distinctions were absent from the analogous, traditional “in-culture” UPLC-ESI-IM-MS experiment, further demonstrating this platform’s capabilities. PMID:25723555

  12. [Regulating effect of pineal gland peptides on development of T-lymphocytes in CBA aging mice: role of microenvironment of immune system organs and neuroendocrine factors].

    PubMed

    Labunets, I F; Butenko, G M; Khavinson, V Kh; Magdich, L V; Dragunova, V A; Pishel', I N; Azarskova, M V

    2003-01-01

    Studies were undertaken on the development of T-lymphocytes in adult and old CBA mice and its changes at aging after injections of pineal gland peptides. It was shown that in old mice the disturbances of T-cells differentiation are registered in bone marrow, thymus, spleen and characterized by the changes of lymphocyte markers expression, migration and proliferation of cells. In old mice FTS titer, melatonin and testosterone levels decreased, the balance of noradrenalin and serotonin in hypothalamus and the cell composition of microenvironment immune systems organs impaired. After chronic (18 mo) administration of the pineal gland preparation epithalamin the amount of stromal cells-precursors, CD4+ and Mac-1(+)-cells in old bone marrow increased, improved the migration of T-cell precursors from bone marrow to thymus and their proliferative potential. The proportion of CD3+, CD4+CD8-, CD4-CD8+, Mac-1(+)-cells in old thymus increased, while that of CD44(+)-cells decreased. The proportion of CD4-CD8(+)-cells in spleen increased. The most number of indices and their balance showed a pattern of adult mice. In old mice after epithalamin the balance of amines in hypothalamus improved, concentration of melatonin in pineal gland, testosterone and FTS titer in blood increased. Epithalon has also the possibility to increase of thymic endocrine function.

  13. Mussel-inspired nano-building block assemblies for mimicking extracellular matrix microenvironments with multiple functions.

    PubMed

    Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping

    2017-08-03

    The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe 3 O 4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.

  14. A pH-Sensing Optode for Mapping Spatiotemporal Gradients in 3D Paper-Based Cell Cultures.

    PubMed

    Kenney, Rachael M; Boyce, Matthew W; Whitman, Nathan A; Kromhout, Brenden P; Lockett, Matthew R

    2018-02-06

    Paper-based cultures are an emerging platform for preparing 3D tissue-like structures. Chemical gradients can be imposed upon these cultures, generating microenvironments similar to those found in poorly vascularized tumors. There is increasing evidence that the tumor microenvironment is responsible for promoting drug resistance and increased invasiveness. Acidosis, or the acidification of the extracellular space, is particularly important in promoting these aggressive cancer phenotypes. To better understand how cells respond to acidosis there is a need for 3D culture platforms that not only model relevant disease states but also contain sensors capable of quantifying small molecules in the extracellular environment. In this work, we describe pH-sensing optodes that are capable of generating high spatial and temporal resolution maps of pH gradients in paper-based cultures. This sensor was fabricated by suspending microparticles containing pH-sensitive (fluorescein) and pH-insensitive (diphenylanthracene) dyes in a polyurethane hydrogel, which was then coated onto a transparent film. The pH-sensing films have a fast response time, are reversible, stable in long-term culture environments, have minimal photobleaching, and are not cytotoxic. These films have a pK a of 7.61 ± 0.04 and are sensitive in the pH range corresponding to normal and tumorigenic tissues. With these optodes, we measured the spatiotemporal evolution of pH gradients in paper-based tumor models.

  15. Micropost microenvironments for studying luminal-basal lineage commitment of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Kesavaraju, Anand; Qing, Bo; Jabart, Eric; Labarge, Mark; Sohn, Lydia

    2013-03-01

    MCF-7 breast cancer cells were plated onto polydimethylsiloxane (PDMS) microposts in order to examine the effects of the microenvironment on cell lineage. Different stiffnesses and sizes of the microposts are postulated to impact cell surface marker expression levels. We will provide preliminary results analyzing CD271 and focal adhesion markers such as vinculin. 3D shear flow will also be applied to the microposts to study how external mechanical stimuli affect cancer cells within their microenvironment.

  16. Dynamic microenvironments: the fourth dimension.

    PubMed

    Tibbitt, Mark W; Anseth, Kristi S

    2012-11-14

    The extracellular space, or cell microenvironment, choreographs cell behavior through myriad controlled signals, and aberrant cues can result in dysfunction and disease. For functional studies of human cell biology or expansion and delivery of cells for therapeutic purposes, scientists must decipher this intricate map of microenvironment biology and develop ways to mimic these functions in vitro. In this Perspective, we describe technologies for four-dimensional (4D) biology: cell-laden matrices engineered to recapitulate tissue and organ function in 3D space and over time.

  17. The effect of commuting microenvironment on commuter exposures to vehicular emission in Hong Kong

    NASA Astrophysics Data System (ADS)

    Chan, L. Y.; Chan, C. Y.; Qin, Y.

    Vehicular exhaust emission has gradually become the major air pollution source in modern cities and traffic related exposure is found to contribute significantly to total human exposure level. A comprehensive survey was conducted from November 1995 to July 1996 in Hong Kong to assess the effect of traffic-induced air pollution inside different commuting microenvironments on commuter exposure. Microenvironmental monitoring is performed for six major public commuting modes (bus, light bus, MTR, railway, tram, ferry), plus private car and roadside pavement. Traffic-related pollutants, CO, NO x, THC and O 3 were selected as the target pollutants. The results indicate that commuter exposure is highly influenced by the choice of commuting microenvironment. In general, the exposure level in decreasing order of measured pollutant level for respective commuting microenvironments are: private car, the group consisting light bus, bus, tram and pavement, MTR and train, and finally ferry. In private car, the CO level is several times higher than that in the other microenvironments with a trip averaged of 10.1 ppm and a maximum of 24.9 ppm. Factors such as the body position of the vehicle, intake point of the ventilation system, fuel used, ventilation, transport mode, road and driving conditions were used in the analysis. Inter-microenvironment, intra-microenvironment and temporal variation of CO concentrations were used as the major indicator. The low body position and low intake point of the ventilation system of the private car are believed to be the cause of higher intake of exhaust of other vehicles and thus result in high pollution level in this microenvironment. Compared with other metropolis around the world and the Hong Kong Air Quality Objectives (HKAQO), exposure levels of commuter to traffic-related air pollution in Hong Kong are relatively low for most pollutants measured. Only several cases of exceedence of HKAQO by NO 2 were recorded. The strong prevailing wind plus the channeling effect created by the harbor, the fuel used, the relative abundance of new cars and the successful implementation of the vehicle emission control program are factors that compensate the effect of the emission source strength and thus lead to low exposure levels.

  18. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1980-01-01

    The alkali-borosilicate system was selected as the glass system for the preparation of ultrapure low loss glasses suitable for optical communication. The effect of different oxide contents on the absorption loss was critically reviewed. One composition was chosen to develop the gel preparation procedure in the alkali-borosilicate system. In addition, several procedures for the preparation of gels based on two different approaches were developed. The influence of different preparation parameters were investigated qualitatively. Several conclusions are drawn from the results.

  19. Materials for storage and release of hydrogen and methods for preparing and using same

    DOEpatents

    Autrey, Thomas S [West Richland, WA; Gutowska, Anna [Richland, WA; Shin, Yongsoon [Richland, WA; Li, Liyu [Richland, WA

    2008-01-08

    The invention relates to materials for storing and releasing hydrogen and methods for preparing and using same. The materials exhibit fast release rates at low release temperatures and are suitable as fuel and/or hydrogen sources for a variety of applications such as automobile engines.

  20. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    ERIC Educational Resources Information Center

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where…

  1. A Paradigm for EST Materials Preparation.

    ERIC Educational Resources Information Center

    Carreon, Edwina S.; Balarbar, Corazon V.

    In many countries, suitable English for special purposes (ESP) textbooks and materials are difficult to find. ESP teachers and program coordinators often must develop their own materials, but preparing such materials requires training. One model that has served as a guide to numerous ESP materials projects is the Hutchinson and Waters' model. This…

  2. Improving a Lecture-Size Molecular Model Set by Repurposing Used Whiteboard Markers

    ERIC Educational Resources Information Center

    Dragojlovic, Veljko

    2015-01-01

    Preparation of an inexpensive model set from whiteboard markers and either HGS molecular model set or atoms made of wood is described. The model set is relatively easy to prepare and is sufficiently large to be suitable as an instructor set for use in lectures.

  3. Tumor Biology and Microenvironment Research

    Cancer.gov

    Part of NCI's Division of Cancer Biology's research portfolio, research in this area seeks to understand the role of tumor cells and the tumor microenvironment (TME) in driving cancer initiation, progression, maintenance and recurrence.

  4. Concentration-dependent effects of carbon nanotubes on growth and biphenyl degradation of Dyella ginsengisoli LA-4.

    PubMed

    Qu, Yuanyuan; Wang, Jingwei; Zhou, Hao; Ma, Qiao; Zhang, Zhaojing; Li, Duanxing; Shen, Wenli; Zhou, Jiti

    2016-02-01

    To enrich the understanding on interactions between carbon nanotubes (CNTs) and microbes, the responses of a biphenyl-degrading bacterium to single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and carboxyl single-walled carbon nanotubes (SWCNT-COOHs) were investigated. Electron microscopy, viability test, cellular membrane integrity, and oxidative stress analyses indicated that CNT toxicity was mainly caused by physical piercing. Apart from antibacterial activities, the experimental results showed that CNTs enhanced cell growth and biphenyl degradation at certain concentrations (1.0-1.5 mg/L). The CNTs aggregated and adsorbed cells and biphenyl to form a CNTs-cells-biphenyl coexisting system, thus it created a suitable microenvironment for cell attachment and proliferation where the cells could utilize biphenyl easier for their growth. To the best of our knowledge, this is the first report about CNTs' impact on biodegradation efficacy and growth of aromatic-degrading bacterium.

  5. Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering.

    PubMed

    Sang, Yonghuan; Li, Meirong; Liu, Jiejie; Yao, Yuling; Ding, Zhaozhao; Wang, Lili; Xiao, Liying; Lu, Qiang; Fu, Xiaobing; Kaplan, David L

    2018-03-21

    Fine tuning physical cues of silk fibroin (SF) biomaterials to match specific requirements for different soft tissues would be advantageous. Here, amorphous SF nanofibers were used to fabricate scaffolds with better hierarchical extracellular matrix (ECM) mimetic microstructures than previous silk scaffolds. Kinetic control was introduced into the scaffold forming process, resulting in the direct production of water-stable scaffolds with tunable secondary structures and thus mechanical properties. These biomaterials remained with amorphous structures, offering softer properties than prior scaffolds. The fine mechanical tunability of these systems provides a feasible way to optimize physical cues for improved cell proliferation and enhanced neovascularization in vivo. Multiple physical cues, such as partly ECM mimetic structures and optimized stiffness, provided suitable microenvironments for tissue ingrowth, suggesting the possibility of actively designing bioactive SF biomaterials. These systems suggest a promising strategy to develop novel SF biomaterials for soft tissue repair and regenerative medicine.

  6. Co-Culture of Human Endothelial Cells and Foreskin Fibroblasts on 3D Silk-Fibrin Scaffolds Supports Vascularization.

    PubMed

    Samal, Juhi; Weinandy, Stefan; Weinandy, Agnieszka; Helmedag, Marius; Rongen, Lisanne; Hermanns-Sachweh, Benita; Kundu, Subhas C; Jockenhoevel, Stefan

    2015-10-01

    A successful strategy to enhance the in vivo survival of engineered tissues would be to prevascularize them. In this study, fabricated silk fibroin scaffolds from mulberry and non-mulberry silkworms are investigated and compared for supporting the co-culture of human umbilical vein endothelial cells and human foreskin fibroblasts. Scaffolds are cytocompatible and when combined with fibrin gel support capillary-like structure formation. Density and interconnectivity of the formed structures are found to be better in mulberry scaffolds. ELISA shows that levels of vascular endothelial growth factor (VEGF) released in co-cultures with fibrin gel are significantly higher than in co-cultures without fibrin gel. RT PCR shows an increase in VEGFR2 expression in mulberry scaffolds indicating these scaffolds combined with fibrin provide a suitable microenvironment for the development of capillary-like structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Leonardite char adsorbents

    DOEpatents

    Knudson, Curtis L.

    1993-01-01

    A process of preparing lignite (low rank) coal filter material, suitable for use in lieu of more expensive activated carbon filter materials, is disclosed. The process comprises size reducing Leonardite coal material to a suitable filtering effective size, and thereafter heating the size reduced Leonardite preferably to at least 750.degree. C. in the presence of a flow of an inert gas.

  8. Leonardite char adsorbents

    DOEpatents

    Knudson, C.L.

    1993-10-19

    A process of preparing lignite (low rank) coal filter material, suitable for use in lieu of more expensive activated carbon filter materials, is disclosed. The process comprises size reducing Leonardite coal material to a suitable filtering effective size, and thereafter heating the size reduced Leonardite preferably to at least 750 C in the presence of a flow of an inert gas. 1 figure.

  9. The Tumor Microenvironment: A Pitch for Multiple Players

    PubMed Central

    Schiavoni, Giovanna; Gabriele, Lucia; Mattei, Fabrizio

    2013-01-01

    The cancer microenvironment may be conceptually regarded as a pitch where the main players are resident and non-resident cellular components, each covering a defined role and interconnected by a complex network of soluble mediators. The crosstalk between these cells and the tumor cells within this environment crucially determines the fate of tumor progression. Immune cells that infiltrate the tumor bed are transported there by blood circulation and exert a variety of effects, either counteracting or favoring tumor outgrowth. Here, we review and discuss the multiple populations composing the tumor bed, with special focus on immune cells subsets that positively or negatively dictate neoplastic progression. In this scenario, the contribution of cancer stem cells within the tumor microenvironment will also be discussed. Finally, we illustrate recent advances on new integrated approaches to investigate the tumor microenvironment in vitro. PMID:23616948

  10. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  11. Lung microenvironment promotes the metastasis of human hepatocellular carcinoma cells to the lungs.

    PubMed

    Jin, Yun; Ai, Junhua; Shi, Jun

    2015-01-01

    Cancer metastasis is a highly tissue-specific and organ-selective process. It has been shown that the affected tissues and/or organs play a major role in this complex process. The lung is the most common target organ of extrahepatic hepatocellular carcinoma (HCC) metastasis, but the precise molecular mechanism underlying this organ-specific metastasis remains unclear. We hypothesized that lung microenvironment was able to promote the metastasis of HCC cells to the lungs leading to distant metastases. In support of our hypothesis, we provided evidence from targeted metastasis in various types of cancer and contributing factors in the microenvironment of targeted tissues/organs. A better understanding of the steps involved in the interplay between HCC cells and lung microenvironment may offer new perspectives for the medical management of lung metastases of HCC.

  12. [Design of an anesthesia and micro-environment information management system in mobile operating room].

    PubMed

    Wang, Xianwen; Liu, Zhiguo; Zhang, Wenchang; Wu, Qingfu; Tan, Shulin

    2013-08-01

    We have designed a mobile operating room information management system. The system is composed of a client and a server. A client, consisting of a PC, medical equipments, PLC and sensors, provides the acquisition and processing of anesthesia and micro-environment data. A server is a powerful computer that stores the data of the system. The client gathers the medical device data by using the C/S mode, and analyzes the obtained HL7 messages through the class library call. The client collects the micro-environment information with PLC, and finishes the data reading with the OPC technology. Experiment results showed that the designed system could manage the patient anesthesia and micro-environment information well, and improve the efficiency of the doctors' works and the digital level of the mobile operating room.

  13. Neutrophils and the Inflammatory Tissue Microenvironment in the Mucosa

    PubMed Central

    Campbell, Eric L.; Kao, Daniel J.; Colgan, Sean P.

    2016-01-01

    The interaction of neutrophils (PMNs) and epithelial cells are requisite lines of communication during mucosal inflammatory responses. Consequences of such interactions often determine endpoint organ function, and for this reason, much interest has developed around defining the constituents of the tissue microenvironment of inflammatory lesions. Physiologic in vitro and in vivo models have aided in discovery of components that define the basic inflammatory machinery that mold the inflammatory tissue microenvironment. Here, we will review the recent literature related to the contribution of PMNs to molding of the tissue microenvironment, with an emphasis on the gastrointestinal (GI) tract. We focus on endogenous pathways for promoting tissue homeostasis and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation. PMID:27558331

  14. Multimodal imaging of lung cancer and its microenvironment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hariri, Lida P.; Niederst, Matthew J.; Mulvey, Hillary; Adams, David C.; Hu, Haichuan; Chico Calero, Isabel; Szabari, Margit V.; Vakoc, Benjamin J.; Hasan, Tayyaba; Bouma, Brett E.; Engelman, Jeffrey A.; Suter, Melissa J.

    2016-03-01

    Despite significant advances in targeted therapies for lung cancer, nearly all patients develop drug resistance within 6-12 months and prognosis remains poor. Developing drug resistance is a progressive process that involves tumor cells and their microenvironment. We hypothesize that microenvironment factors alter tumor growth and response to targeted therapy. We conducted in vitro studies in human EGFR-mutant lung carcinoma cells, and demonstrated that factors secreted from lung fibroblasts results in increased tumor cell survival during targeted therapy with EGFR inhibitor, gefitinib. We also demonstrated that increased environment stiffness results in increased tumor survival during gefitinib therapy. In order to test our hypothesis in vivo, we developed a multimodal optical imaging protocol for preclinical intravital imaging in mouse models to assess tumor and its microenvironment over time. We have successfully conducted multimodal imaging of dorsal skinfold chamber (DSC) window mice implanted with GFP-labeled human EGFR mutant lung carcinoma cells and visualized changes in tumor development and microenvironment facets over time. Multimodal imaging included structural OCT to assess tumor viability and necrosis, polarization-sensitive OCT to measure tissue birefringence for collagen/fibroblast detection, and Doppler OCT to assess tumor vasculature. Confocal imaging was also performed for high-resolution visualization of EGFR-mutant lung cancer cells labeled with GFP, and was coregistered with OCT. Our results demonstrated that stromal support and vascular growth are essential to tumor progression. Multimodal imaging is a useful tool to assess tumor and its microenvironment over time.

  15. Expanding Applications of the Nano Intravital Device as a Platform for Exploring Tumor Microenvironments

    NASA Astrophysics Data System (ADS)

    Padgen, Michael R.

    The tumor microenvironment has been demonstrated to be a key determinant in the progression of cancer. Unfortunately, the mechanisms behind the different microenvironments (cytokine gradients, hypoxia, hypoglycemia, etc) have not been fully elucidated. Identifying these mechanisms can lead to targeted, individualized therapy to prevent metastasis. The Nano Intravital Device (NANIVID) is a microfabricated, implantable device designed to initiate specific microenvironments in vivo so that the time course of the effects can be observed. With both spatial and temporal control over the induced environments, the affected regions of the tumor can be compared to the rest of the tumor. The NANIVID was first used to establish cytokine gradients to monitor the migration of invasive cancer cells. The three projects that comprise this work expand the applications of the NANIVID to establish the device as a robust platform for investigating tumor microenvironment interactions. The first project released chemical mimics from the device to induce the cellular hypoxic response in tumors to determine how hypoxia affects the fate of disseminated tumor cells. The second project used the NANIVID in combination with an atomic force microscope to investigate the altered mechanics of migrating invasive cancer cells. The final project was to develop a cell counter to monitor the isolation of the invasive subpopulation of cells that were drawn into the device using a chemoattractant. These three projects demonstrate the potential of the NANIVID as a platform for investigating the tumor microenvironment.

  16. Natural product derivative BIO promotes recovery after myocardial infarction via unique modulation of the cardiac microenvironment

    PubMed Central

    Kim, Yong Sook; Jeong, Hye-yun; Kim, Ah Ra; Kim, Woong-Hee; Cho, Haaglim; Um, JungIn; Seo, Youngha; Kang, Wan Seok; Jin, Suk-Won; Kim, Min Chul; Kim, Yong-Chul; Jung, Da-Woon; Williams, Darren R.; Ahn, Youngkeun

    2016-01-01

    The cardiac microenvironment includes cardiomyocytes, fibroblasts and macrophages, which regulate remodeling after myocardial infarction (MI). Targeting this microenvironment is a novel therapeutic approach for MI. We found that the natural compound derivative, BIO ((2′Z,3′E)-6-Bromoindirubin-3′-oxime) modulated the cardiac microenvironment to exert a therapeutic effect on MI. Using a series of co-culture studies, BIO induced proliferation in cardiomyocytes and inhibited proliferation in cardiac fibroblasts. BIO produced multiple anti-fibrotic effects in cardiac fibroblasts. In macrophages, BIO inhibited the expression of pro-inflammatory factors. Significantly, BIO modulated the molecular crosstalk between cardiac fibroblasts and differentiating macrophages to induce polarization to the anti-inflammatory M2 phenotype. In the optically transparent zebrafish-based heart failure model, BIO induced cardiomyocyte proliferation and completely recovered survival rate. BIO is a known glycogen synthase kinase-3β inhibitor, but these effects could not be recapitulated using the classical inhibitor, lithium chloride; indicating novel therapeutic effects of BIO. We identified the mechanism of BIO as differential modulation of p27 protein expression and potent induction of anti-inflammatory interleukin-10. In a rat MI model, BIO reduced fibrosis and improved cardiac performance. Histological analysis revealed modulation of the cardiac microenvironment by BIO, with increased presence of anti-inflammatory M2 macrophages. Our results demonstrate that BIO produces unique effects in the cardiac microenvironment to promote recovery post-MI. PMID:27510556

  17. Royal Society Scientific Meeting: Extracellular vesicles in the tumour microenvironment.

    PubMed

    Pink, Ryan Charles; Elmusrati, Areeg A; Lambert, Daniel; Carter, David Raul Francisco

    2018-01-05

    Cancer cells do not grow as an isolated homogeneous mass; tumours are, in fact, complex and heterogeneous collections of cancer and surrounding stromal cells, collectively termed the tumour microenvironment. The interaction between cancer cells and stromal cells in the tumour microenvironment has emerged as a key concept in the regulation of cancer progression. Understanding the intercellular dialogue in the tumour microenvironment is therefore an important goal. One aspect of this dialogue that has not been appreciated until recently is the role of extracellular vesicles (EVs). EVs are small vesicles released by cells under both normal and pathological conditions; they can transfer biological molecules between cells leading to changes in phenotype. EVs have emerged as important regulators of biological processes and can be dysregulated in diseases such as cancer; rapidly growing interest in their biology and therapeutic potential led to the Royal Society hosting a Scientific Meeting to explore the roles of EVs in the tumour microenvironment. This cross-disciplinary meeting explored examples of how aberrant crosstalk between tumour and stromal cells can promote cancer progression, and how such signalling can be targeted for diagnostic, prognostic and therapeutic benefit. In this review, and the special edition of Philosophical Transactions of the Royal Society B that follows, we will provide an overview of the content and outcomes of this exciting meeting.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'. © 2017 The Author(s).

  18. Copper speciation in the gill microenvironment of carp (Cyprinus carpio) at various levels of pH.

    PubMed

    Tao, Shu; Long, Aimin; Xu, Fuliu; Dawson, R W

    2002-07-01

    The fish gill microenvironment of Cyprinus carpio under stress of copper exposure was investigated. pH and other parameters including free copper activity, alkalinity, and inorganic and organic carbons in the surrounding water (inspired water) and in the gill microenvironment (expired water) were measured or calculated at various levels of pH and varying total copper concentrations. The chemical equilibrium calculation (from MINEQA2) and complexation modeling (mucus-copper) were coupled to calculate both species distribution. The results indicate that the pH in the fish gill microenvironment was different from that in the surrounding water with a balance point around 6.9. The secretion of both CO(2) and mucus was affected in both linear and nonlinear ways when the fish were exposed to elevated concentrations of copper. The complexation capacity of the gill mucus was characterized by a conditional stability constant (logk(Cu-mucus)) of 5.37 along with a complexation equivalent concentration (L(Cu-mucus)) of 0.96 mmol Cu/mg C. For both the fish microenvironment and the surrounding water, the dominant copper species shifted from Cu(2+) to CuCO(3)(0) and to Cu(OH)(2)(0) when the pH of the surrounding water changed from 6.12 to 8.11. The change in copper speciation in the gill microenvironment is smaller than that in the surrounding water due to the pH buffering capacity of the fish gills.

  19. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.

    PubMed

    Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet

    2011-02-01

    We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.

  20. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 5, July 1, 1991--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less

  1. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: implications for disease pathogenesis and treatment

    PubMed Central

    ten Hacken, Elisa; Burger, Jan A.

    2015-01-01

    Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. PMID:26193078

  2. First steps to define murine amniotic fluid stem cell microenvironment.

    PubMed

    Bertin, E; Piccoli, M; Franzin, C; Spiro, G; Donà, S; Dedja, A; Schiavi, F; Taschin, E; Bonaldo, P; Braghetta, P; De Coppi, P; Pozzobon, M

    2016-11-15

    Stem cell niche refers to the microenvironment where stem cells reside in living organisms. Several elements define the niche and regulate stem cell characteristics, such as stromal support cells, gap junctions, soluble factors, extracellular matrix proteins, blood vessels and neural inputs. In the last years, different studies demonstrated the presence of cKit + cells in human and murine amniotic fluid, which have been defined as amniotic fluid stem (AFS) cells. Firstly, we characterized the murine cKit + cells present both in the amniotic fluid and in the amnion. Secondly, to analyze the AFS cell microenvironment, we injected murine YFP + embryonic stem cells (ESC) into the amniotic fluid of E13.5 wild type embryos. Four days after transplantation we found that YFP + sorted cells maintained the expression of pluripotency markers and that ESC adherent to the amnion were more similar to original ESC in respect to those isolated from the amniotic fluid. Moreover, cytokines evaluation and oxygen concentration analysis revealed in this microenvironment the presence of factors that are considered key regulators in stem cell niches. This is the first indication that AFS cells reside in a microenvironment that possess specific characteristics able to maintain stemness of resident and exogenous stem cells.

  3. Parallel Aspects of the Microenvironment in Cancer and Autoimmune Disease

    PubMed Central

    Rahat, Michal A.

    2016-01-01

    Cancer and autoimmune diseases are fundamentally different pathological conditions. In cancer, the immune response is suppressed and unable to eradicate the transformed self-cells, while in autoimmune diseases it is hyperactivated against a self-antigen, leading to tissue injury. Yet, mechanistically, similarities in the triggering of the immune responses can be observed. In this review, we highlight some parallel aspects of the microenvironment in cancer and autoimmune diseases, especially hypoxia, and the role of macrophages, neutrophils, and their interaction. Macrophages, owing to their plastic mode of activation, can generate a pro- or antitumoral microenvironment. Similarly, in autoimmune diseases, macrophages tip the Th1/Th2 balance via various effector cytokines. The contribution of neutrophils, an additional plastic innate immune cell population, to the microenvironment and disease progression is recently gaining more prominence in both cancer and autoimmune diseases, as they can secrete cytokines, chemokines, and reactive oxygen species (ROS), as well as acquire an enhanced ability to produce neutrophil extracellular traps (NETs) that are now considered important initiators of autoimmune diseases. Understanding the contribution of macrophages and neutrophils to the cancerous or autoimmune microenvironment, as well as the role their interaction and cooperation play, may help identify new targets and improve therapeutic strategies. PMID:26997761

  4. A High-Throughput Microenvironment for Single-Cell Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, A T; Buckley, P; Miles, R R

    2003-01-07

    This project was conducted as a feasibility study, in preparation for including this work in the forthcoming ''Instrumented Cell'' (IC) Strategic Initiative. The goal of the IC is to study individual cells; the goal of this feasibility study was to determine the best method for isolating large numbers of individual cells in a way that facilitates various types of environmental changes and intracellular measurements. We have the capability to do this with one cell, and sought to expand the number of cells that we could study simultaneously. Our specific goal for this feasibility study was to discover a way tomore » isolate individual cells, and impale them on a nanopipette. This would enable samples to be introduced into and removed from a cell.« less

  5. Magnetic nanoparticle drug delivery systems for targeting tumor

    NASA Astrophysics Data System (ADS)

    Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

    2014-04-01

    Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

  6. Microenvironment Tracker (MicroTrac) Model helps track air quality

    EPA Pesticide Factsheets

    MicroTrac is a model that uses global positioning system (GPS) data to estimate time of day and duration that people spend in different microenvironments (e.g., indoors and outdoors at home, work, school).

  7. Microenvironment Tracker (MicroTrac) Factsheet

    EPA Pesticide Factsheets

    MicroTrac is a model developed by EPA that uses GPS data to estimate time of day and duration that people spend in different microenvironments, such as indoors and outdoors at home, work, school, and inside vehicles.

  8. The reaction pathway of membrane-bound rat liver mitochondrial monoamine oxidase

    PubMed Central

    Houslay, Miles D.; Tipton, Keith F.

    1973-01-01

    1. A preparation of a partly purified mitochondrial outer-membrane fraction suitable for kinetic investigations of monoamine oxidase is described. 2. An apparatus suitable for varying the O2 concentration in a spectrophotometer cuvette is described. 3. The reaction catalysed by the membrane-bound enzyme is shown to proceed by a double-displacement (Ping Pong) mechanism, and a formal mechanism is proposed. 4. KCN, NaN3, benzyl cyanide and 4-cyanophenol are shown to be reversible inhibitors of the enzyme. 5. The non-linear reciprocal plot obtained with impure preparations of benzylamine, which is typical of high substrate inhibition, is shown to be due to aldehyde contamination of the substrate. PMID:4778271

  9. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.

    PubMed

    Oyola, Samuel O; Otto, Thomas D; Gu, Yong; Maslen, Gareth; Manske, Magnus; Campino, Susana; Turner, Daniel J; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Swerdlow, Harold P; Quail, Michael A

    2012-01-03

    Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.

  10. High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway.

    PubMed

    Liu, Na; Shi, Songtao; Deng, Manjing; Tang, Liang; Zhang, Guangjing; Liu, Ning; Ding, Bofu; Liu, Wenjia; Liu, Yali; Shi, Haigang; Liu, Luchuan; Jin, Yan

    2011-09-01

    Periodontal ligament stem cells (PDLSCs), a new population of mesenchymal stem cells (MSCs), have been isolated from the periodontal ligament (PDL). The capacity of multipotency and self-renewal makes them an excellent cell source for bone regeneration and repair. However, their bone-regeneration ability could be awakened in inflammatory microenvironments, which may be the result of changes in their differentiation potential. Recently, genetic evidences has shown that the Wnt pathway plays an important role in bone homeostasis. In this study we have determined the specific role of β-catenin in osteogenic differentiation of PDLSCs obtained from inflammatory microenvironments (P-PDLSCs). The inflammatory microenvironment, while inhibiting osteogenic differentiation potential, promotes proliferation of MSCs. A higher the level of β-catenin in P-PDLSCs than in H-PDLSCs (PDLSCs obtained from a healthy microenvironment) resulted in the same disparity in canonical Wnt signaling pathway activation between each cell type. Here we show that activation of β-catenin suppresses the noncanonical Wnt/Ca(2+) pathway, leading to increased proliferation but reduced osteogenic differentiation of P-PDLSCs. Downregulation of the levels of β-catenin by treatment with dickkopf-1 (DKK-1) leads to activation of the noncanonical Wnt/Ca(2+) pathway, which, in turn, results in the promotion of osteogenic differentiation in P-PDLSCs. Interestingly, β-catenin can affect both the canonical Wnt/β-catenin pathway and the noncanonical Wnt/Ca(2+) pathway. Our data indicate that β-catenin plays a central role in regulating osteogenic differentiation of MSCs in inflammatory microenvironments. Given the important role of Wnt signaling in osteogenic differentiation, it is possible that agents that can modify this pathway may be of value in bone regeneration by MSCs in chronic inflammatory microenvironments. Copyright © 2011 American Society for Bone and Mineral Research.

  11. Comparison of radiofrequency electromagnetic field exposure levels in different everyday microenvironments in an international context.

    PubMed

    Sagar, Sanjay; Adem, Seid M; Struchen, Benjamin; Loughran, Sarah P; Brunjes, Michael E; Arangua, Lisa; Dalvie, Mohamed Aqiel; Croft, Rodney J; Jerrett, Michael; Moskowitz, Joel M; Kuo, Tony; Röösli, Martin

    2018-05-01

    The aim of this study was to quantify RF-EMF exposure applying a tested protocol of RF-EMF exposure measurements using portable devices with a high sampling rate in different microenvironments of Switzerland, Ethiopia, Nepal, South Africa, Australia and the United States of America. We used portable measurement devices for assessing RF-EMF exposure in 94 outdoor microenvironments and 18 public transport vehicles. The measurements were taken either by walking with a backpack with the devices at the height of the head and a distance of 20-30 cm from the body, or driving a car with the devices mounted on its roof, which was 170-180 cm above the ground. The measurements were taken for about 30 min while walking and about 15-20 min while driving in each microenvironment, with a sampling rate of once every 4 s (ExpoM-RF) and 5 s (EME Spy 201). Mean total RF-EMF exposure in various outdoor microenvironments varied between 0.23 V/m (non-central residential area in Switzerland) and 1.85 V/m (university area in Australia), and across modes of public transport between 0.32 V/m (bus in rural area in Switzerland) and 0.86 V/m (Auto rickshaw in urban area in Nepal). For most outdoor areas the major exposure contribution was from mobile phone base stations. Otherwise broadcasting was dominant. Uplink from mobile phone handsets was generally very small, except in Swiss trains and some Swiss buses. This study demonstrates high RF-EMF variability between the 94 selected microenvironments from all over the world. Exposure levels tended to increase with increasing urbanity. In most microenvironments downlink from mobile phone base stations is the most relevant contributor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  13. Standards for electron probe microanalysis of silicates prepared by convenient method

    NASA Technical Reports Server (NTRS)

    Walter, L. S.

    1966-01-01

    Standard compositions suitable for electron probe microanalysis of various silicates are prepared by coprecipitation of specified salts with colloidal silica to form a gel which is decomposed into a powdered oxide mixture and compressed into thin pellets. These pellets of predetermined standard are compared with a silicate sample to determine its composition.

  14. Equation typing: Guidelines for Mass-11 users and others

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, C.L.

    1989-06-01

    A number of problems have been experienced by Sandia secretaries and others in the preparation of equations. This report is a self- paced/''how-to'' manual designed to provide detailed explanations on the preparation of equations using Mass-11 and the typewriter and is suitable for either classroom training or on-the-job use.

  15. Preparation and evaluation of Apollo 14 composite experiments

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1971-01-01

    An account is given of the work aimed at flight experiments on Apollo 14, in relation to space manufacturing processes. Evaluation of suitable materials, definition of in-flight processing procedures, preparation of preprocessed materials and delivery, and evaluation of the space-processed samples after return from the Apollo 14 flight are presented.

  16. 38 CFR 61.80 - General operation requirements for supportive housing and service centers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provided to permit use of essential electrical appliances while assuring safety from fire; (10) All food preparation areas must contain suitable space and equipment to store, prepare, and serve food in a sanitary... program's ability to provide a successful outcome for veterans. (7) Corrective Action(s): When necessary...

  17. 38 CFR 61.80 - General operation requirements for supportive housing and service centers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provided to permit use of essential electrical appliances while assuring safety from fire; (10) All food preparation areas must contain suitable space and equipment to store, prepare, and serve food in a sanitary... program's ability to provide a successful outcome for veterans. (7) Corrective Action(s): When necessary...

  18. Isotopically pure magnesium isotope-24 is prepared from magnesium-24 oxide

    NASA Technical Reports Server (NTRS)

    Chellew, N. R.; Schilb, J. D.; Steunenberg, R. K.

    1968-01-01

    Apparatus is used to prepare isotopically pure magnesium isotope-24, suitable for use in neutron scattering and polarization experiments. The apparatus permits thermal reduction of magnesium-24 oxide with aluminum and calcium oxide, and subsequent vaporization of the product metal in vacuum. It uses a resistance-heated furnace tube and cap assembly.

  19. Artemisinin nanoformulation suitable for intravenous injection: Preparation, characterization and antimalarial activities.

    PubMed

    Ibrahim, Nehal; Ibrahim, Hany; Sabater, Alicia Moreno; Mazier, Dominique; Valentin, Alexis; Nepveu, Françoise

    2015-11-30

    More than 40 years after its discovery, artemisinin has become the most promising antimalarial agent. However, no intravenous formulation is available due to its poor aqueous solubility. Here, we report the preparation, characterization, and in vitro and in vivo biological evaluation of biodegradable albumin-bound artemisinin nanoparticles. The nanoparticles were prepared by a combination of a bottom-up and a top-down processes and characterized by different spectroscopic techniques. The preparation process was optimized to develop a nanoformulation with the smallest possible diameter and good homogeneity suitable for intravenous injection enabling direct contact of artemisinin with infected erythrocytes. Chemically and physically stable artemisinin nanoparticles were obtained with excellent entrapment efficiency. In in vitro experiments, the artemisinin nanoformulation was interestingly more effective than non-formulated artemisinin. In Plasmodiumm falciparum-infected 'humanized' mice, the nanoparticles proved to be highly effective with 96% parasitemia inhibition at 10mg/kg/day, prolonging mean survival time without recrudescence. This nanoparticulate albumin-bound system allows the intravenous administration of artemisinin for the first time without harsh organic solvents or cosolvents with 100% bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Preparation and in vitro function of granulocyte concentrates for transfusion to neonates using the IBM 2991 blood processor.

    PubMed

    Goldfinger, D; Medici, M A; Hsi, R; McPherson, J; Connelly, M

    1983-01-01

    Clinical studies have suggested that granulocyte transfusions may be of value in the treatment of septic neonatal patients who present with severe granulocytopenia. We have developed a protocol for the preparation of granulocyte concentrates from freshly collected units of whole blood, using an automated blood cell processor. The red cells were washed with saline. Then, the buffy coats were collected from the washed red cells and studied for their suitability as granulocyte concentrates for neonatal transfusion. The mean number of granulocytes per concentrate was 1.6 X 10(9) in a mean volume of 25 ml. Studies of granulocyte function, including viability, random mobility, chemotaxis, phagocytosis and nitro-blue tetrazolium reduction, demonstrated that the granulocytes were functionally unimpaired following preparation of the concentrates. These studies suggest that concentrates of functional granulocytes, suitable for transfusion to neonatal patients, can be prepared from fresh units of whole blood, using a cell processor. This procedure is more cost-effective than leukapheresis and allows for delivery of granulocytes for transfusion in a more timely fashion.

  1. Microleakage and antibacterial properties of ZnO and ZnO:Ag nanopowders prepared via a sol-gel method for endodontic sealer application

    NASA Astrophysics Data System (ADS)

    Shayani Rad, M.; Kompany, A.; Khorsand Zak, A.; Javidi, M.; Mortazavi, S. M.

    2013-09-01

    One of the most important problems in dentistry is the microleakage, whether apical or coronal, which may cause failure of root canal therapy. The aim of this study is to prepare suitable sealer to decrease the microleakage of the root canals as well as having good antibacterial property. Pure ZnO and ZnO:Ag nanopowders were synthesized via sol gel method using gelatin as polymerization agent calcined at different temperatures of 500, 600, and 700 °C for 8 h. The prepared samples were characterized using X-ray diffraction and transition electron microscopy. The microleakage and antibacterial properties of the prepared samples were investigated and compared with zinc oxide eugenol (ZOE) and epoxy resin sealer (AH26), which are commonly used in dentistry as sealers. The results showed that the synthesized pure ZnO and ZnO:Ag nanopowders exhibit better microleakage and antibacterial properties in comparison with ZOE and AH26 sealers, and therefore are more suitable filling materials to be used as sealer in root canal treatment.

  2. Self-nanoemulsifying performance of two grades of Lauroglycol (Lauroglycol-90 and Lauroglycol-FCC) in the presence of mixed nonionic surfactants.

    PubMed

    Shakeel, Faiyaz; Haq, Nazrul; Alanazi, Fars K; Alsarra, Ibrahim A

    2014-11-01

    The present study was undertaken to evaluate the impact of various combinations of nonionic surfactants on self-nanoemulsifying performance of two grades of Lauroglycol (Lauroglycol-90 and Lauroglycol-FCC) in glibenclamide (GBN) nanoemulsion. Formulations (L1-L30) were prepared by spontaneous emulsification method. Prepared formulations were subjected to thermodynamic stability and self-nanoemulsification test. Results of thermodynamic stability and self-nanoemulsification tests were confirmed by further characterization of these formulations in terms of droplet size, viscosity, refractive index and % transmittance. Formulations prepared with Labrasol, HCO-60 and Gelucire-44/14 were found to be suitable for self-emulsifying drug delivery system only whereas those prepared with Tween-80 and Cremophor-EL were found to be suitable for self-nanoemulsifying or self-microemulsifying drug delivery system of GBN with respect to Lauroglycol-90 or Lauroglycol-FCC. Formulation L24 (Lauroglycol-FCC/Tween-80/ethanol/water) was optimized as best formulation for self-nanoemulsifying drug delivery system of GBN. These results indicated that Tween-80 could be the best surfactant in terms of self-nanoemulsification.

  3. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.

    PubMed

    Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment.

    PubMed

    Yu, Hua; Kortylewski, Marcin; Pardoll, Drew

    2007-01-01

    Immune cells in the tumour microenvironment not only fail to mount an effective anti-tumour immune response, but also interact intimately with the transformed cells to promote oncogenesis actively. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activated both in tumour cells and in immune cells in the tumour microenvironment. Constitutively activated STAT3 inhibits the expression of mediators necessary for immune activation against tumour cells. Furthermore, STAT3 activity promotes the production of immunosuppressive factors that activate STAT3 in diverse immune-cell subsets, altering gene-expression programmes and, thereby, restraining anti-tumour immune responses. As such, STAT3 propagates several levels of crosstalk between tumour cells and their immunological microenvironment, leading to tumour-induced immunosuppression. Consequently, STAT3 has emerged as a promising target for cancer immunotherapy.

  5. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment.

    PubMed

    Yeku, Oladapo O; Purdon, Terence J; Koneru, Mythili; Spriggs, David; Brentjens, Renier J

    2017-09-05

    Chimeric antigen receptor (CAR) T cell therapy has shown limited efficacy for the management of solid tumor malignancies. In ovarian cancer, this is in part due to an immunosuppressive cytokine and cellular tumor microenvironment which suppresses adoptively transferred T cells. We engineered an armored CAR T cell capable of constitutive secretion of IL-12, and delineate the mechanisms via which these CAR T cells overcome a hostile tumor microenvironment. In this report, we demonstrate enhanced proliferation, decreased apoptosis and increased cytotoxicity in the presence of immunosuppressive ascites. In vivo, we show enhanced expansion and CAR T cell antitumor efficacy, culminating in improvement in survival in a syngeneic model of ovarian peritoneal carcinomatosis. Armored CAR T cells mediated depletion of tumor associated macrophages and resisted endogenous PD-L1-induced inhibition. These findings highlight the role of the inhibitory microenvironment and how CAR T cells can be further engineered to maintain efficacy.

  6. Methylation status regulates lipoprotein lipase expression in chronic lymphocytic leukemia.

    PubMed

    Abreu, Cecilia; Moreno, Pilar; Palacios, Florencia; Borge, Mercedes; Morande, Pablo; Landoni, Ana Inés; Gabus, Raul; Dighiero, Guillermo; Giordano, Mirta; Gamberale, Romina; Oppezzo, Pablo

    2013-08-01

    Among different prognostic factors in chronic lymphocytic leukemia (CLL), we previously demonstrated that lipoprotein lipase (LPL) is associated with an unmutated immunoglobulin profile and clinical poor outcome. Despite the usefulness of LPL for CLL prognosis, its functional role and the molecular mechanism regulating its expression are still open questions. Interaction of CLL B-cells with the tissue microenvironment favors disease progression by promoting malignant B-cell growth. Since tissue methylation can be altered by environmental factors, we investigated the methylation status of the LPL gene and the possibility that overexpression could be associated with microenvironment signals. Our results show that a demethylated state of the LPL gene is responsible for its anomalous expression in unmutated CLL cases and that this expression is dependent on microenvironment signals. Overall, this work proposes that an epigenetic mechanism, triggered by the microenvironment, regulates LPL expression in CLL disease.

  7. Using Gold Nanoparticles To Disrupt the Tumor Microenvironment: An Emerging Therapeutic Strategy.

    PubMed

    Melamed, Jilian R; Riley, Rachel S; Valcourt, Danielle M; Day, Emily S

    2016-12-27

    Gold nanoparticles have received much attention recently as carriers for anticancer drugs and therapeutic oligonucleotides, but little research has investigated their potential to act as stand-alone therapeutics. Previous studies interrogating their short- and long-term systemic toxicity have found that although gold nanoparticles accumulate within and clear slowly from the liver and spleen, they do not appear to exert toxic effects in these organs. Interestingly, gold nanoparticles innately exhibit the ability to modulate the tumor microenvironment specifically by interfering with crosstalk between tumor cells and stromal cells. In this issue of ACS Nano, Mukherjee and colleagues demonstrate that bare gold nanoparticles can disturb crosstalk between pancreatic stellate cells and pancreatic cancer cells by modulating the cellular secretome to reduce the growth of desmoplastic tissue and inhibit tumor growth. In this Perspective, we highlight opportunities for anticancer targeting within the tumor microenvironment and discuss gold nanoparticles as potential mediators of microenvironment-targeted therapy.

  8. Exosomes Function in Tumor Immune Microenvironment.

    PubMed

    Huang, Yin; Liu, Keli; Li, Qing; Yao, Yikun; Wang, Ying

    2018-01-01

    Immune cells and mesenchymal stem/stromal cells are the major cellular components in tumor microenvironment that actively migrate to tumor sites by sensing "signals" released from tumor cells. Together with other stromal cells, they form the soil for malignant cell progression. In the crosstalk between tumor cells and its surrounded microenvironment, exosomes exert multiple functions in shaping tumor immune responses. In tumor cells, their exosomes can lead to pro-tumor immune responses, whereas in immune cells, their derived exosomes can operate on tumor cells and regulate their ability to growth, metastasis, even reaction to chemotherapy. Employing exosomes as vehicles for the delivery products to initiate anti-tumor immune responses has striking therapeutic effects on tumor progression. Thus, exosomes are potential therapeutic targets in tumor-related clinical conditions. Here we discuss the role of exosomes in regulating tumor immune microenvironment and future indications for the clinical application of exosomes.

  9. Astro Academy: Principia--Using Tracker to Analyse Experiments Undertaken by Tim Peake on the International Space Station

    ERIC Educational Resources Information Center

    Mobbs, Robin

    2016-01-01

    While on the International Space Station, Tim Peake undertook and recorded video files of experiments suitable for physics teaching coordinated by the National Space Academy. This article describes how the video of these experiments was prepared for use with tracking software. The tracking files of the videos are suitable for use by teachers or…

  10. 3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro.

    PubMed

    Mannino, Robert G; Santiago-Miranda, Adriana N; Pradhan, Pallab; Qiu, Yongzhi; Mejias, Joscelyn C; Neelapu, Sattva S; Roy, Krishnendu; Lam, Wilbur A

    2017-01-31

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that affects ∼22 000 people in the United States yearly. Understanding the complex cellular interactions of the tumor microenvironment is critical to the success and development of DLBCL treatment strategies. In vitro platforms that successfully model the complex tumor microenvironment without introducing the variability of in vivo systems are vital for understanding these interactions. To date, no such in vitro model exists that can accurately recapitulate the interactions that occur between immune cells, cancer cells, and endothelial cells in the tumor microenvironment of DLBCL. To that end, we developed a lymphoma-on-chip model consisting of a hydrogel based tumor model traversed by a vascularized, perfusable, round microchannel that successfully recapitulates key complexities and interactions of the in vivo tumor microenvironment in vitro. We have shown that the perfusion capabilities of this technique allow us to study targeted treatment strategies, as well as to model the diffusion of infused reagents spatiotemporally. Furthermore, this model employs a novel fabrication technique that utilizes common laboratory materials, and allows for the microfabrication of multiplex microvascular environments without the need for advanced microfabrication facilities. Through our facile microfabrication process, we are able to achieve micro vessels within a tumor model that are highly reliable and precise over the length of the vessel. Overall, we have developed a tool that enables researchers from many diverse disciplines to study previously inaccessible aspects of the DLBCL tumor microenvironment, with profound implications for drug delivery and design.

  11. 3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro

    PubMed Central

    Mannino, Robert G.; Santiago-Miranda, Adriana N.; Pradhan, Pallab; Qiu, Yongzhi; Mejias, Joscelyn C.; Neelapu, Sattva S.; Roy, Krishnendu; Lam, Wilbur A.

    2017-01-01

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that affects ~22,000 people in the United States yearly. Understanding the complex cellular interactions of the tumor microenvironment is critical to the success and development of DLBCL treatment strategies. In vitro platforms that successfully model the complex tumor microenvironment without introducing the variability of in vivo systems are vital for understanding these interactions. To date, no such in vitro model exists that can accurately recapitulate the interactions that occur between immune cells, cancer cells, and endothelial cells in the tumor microenvironment of DLBCL. To that end, we developed a lymphoma-on-chip model consisting of a hydrogel based tumor model traversed by a vascularized, perfusable, round microchannel that successfully recapitulates key complexities and interactions of the in vivo tumor microenvironment in vitro. We have shown that the perfusion capabilities of this technique allow us to study targeted treatment strategies, as well as to model the diffusion of infused reagents spatiotemporally. Furthermore, this model employs a novel fabrication technique that utilizes common laboratory materials, and allows for the microfabrication of multiplex microvascular environments without the need for advanced microfabrication facilities. Through our facile microfabrication process, we are able to achieve micro vessels within a tumor model that are highly reliable and precise over the length of the vessel. Overall, we have developed a tool that enables researchers from many diverse disciplines to study previously inaccessible aspects of the DLBCL tumor microenvironment, with profound implications for drug delivery and design. PMID:28054086

  12. Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2014-02-01

    Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.

  13. Evaluation of transportation microenvironments through assessment of cyclists' exposure to traffic related particulate matter.

    DOT National Transportation Integrated Search

    2011-03-01

    Urban residents spend a considerable amount of outdoor time in transportation microenvironments as pedestrians, bicycle commuters, public transit users, residents and workers situated along roadways, and commuters within vehicles. Within these transp...

  14. Analysis of land suitability for urban development in Ahwaz County in southwestern Iran using fuzzy logic and analytic network process (ANP).

    PubMed

    Malmir, Maryam; Zarkesh, Mir Masoud Kheirkhah; Monavari, Seyed Masoud; Jozi, Seyed Ali; Sharifi, Esmail

    2016-08-01

    The ever-increasing development of cities due to population growth and migration has led to unplanned constructions and great changes in urban spatial structure, especially the physical development of cities in unsuitable places, which requires conscious guidance and fundamental organization. It is therefore necessary to identify suitable sites for future development of cities and prevent urban sprawl as one of the main concerns of urban managers and planners. In this study, to determine the suitable sites for urban development in the county of Ahwaz, the effective biophysical and socioeconomic criteria (including 27 sub-criteria) were initially determined based on literature review and interviews with certified experts. In the next step, a database of criteria and sub-criteria was prepared. Standardization of values and unification of scales in map layers were done using fuzzy logic. The criteria and sub-criteria were weighted by analytic network process (ANP) in the Super Decision software. Next, the map layers were overlaid using weighted linear combination (WLC) in the GIS software. According to the research findings, the final land suitability map was prepared with five suitability classes of very high (5.86 %), high (31.93 %), medium (38.61 %), low (17.65 %), and very low (5.95 %). Also, in terms of spatial distribution, suitable lands for urban development are mainly located in the central and southern parts of the Ahwaz County. It is expected that integration of fuzzy logic and ANP model will provide a better decision support tool compared with other models. The developed model can also be used in the land suitability analysis of other cities.

  15. Centrifugal partition chromatography: A preparative tool for isolation and purification of xylindein from Chlorociboria aeruginosa.

    PubMed

    Boonloed, Anukul; Weber, Genevieve L; Ramzy, Kelly M; Dias, Veronica R; Remcho, Vincent T

    2016-12-23

    A centrifugal partition chromatography (CPC) method was developed for the preparative-scale isolation and purification of xylindein from the wood-staining fungi, Chlorociboria aeruginosa. Xylindein, a blue-green pigment naturally secreted from the hyphae and fruiting bodies of the fungus, has great value in the decorative wood industry and textile coloration. Xylindein has great potential for use as a fluorescent labeling agent as well as in organic semiconductor applications. However, a primary limitation of xylindein is its poor solubility in most common HPLC solvents. Consequently, it is arduous to purify using preparative liquid chromatography or solid-phase extraction (SPE). Support-free, liquid-liquid chromatographic methods, including CPC, where solutes are separated based on their different distribution coefficients (K D ) between two immiscible solvent systems, are promising alternatives for the purification of the compound on a preparative scale. In this work, a new biphasic solvent system suitable for CPC separation of xylindein was developed. Various groups of solvents were assessed for their suitability as xylindein extractants. A new solvent system suitable for CPC separation of xylindein, composed of heptane/THF/MEK/acetonitrile/acetic acid/water, was developed. This solvent system yielded a K D value for xylindein of 1.54±0.04, as determined by HPLC (n=3). The compositions of the upper phase and lower phase of the solvent system were determined by Heteronuclear Single Quantum Correlation (HSQC) NMR and proton NMR. A CPC system, equipped with a fraction collector, was used for the isolation of xylindein from crude extracts. The xylindein fractions isolated by the CPC were then analyzed using HPLC and presented as a fractogram. Based on the CPC fractogram, the purified xylindein fractions were achieved after 30min CPC separation time, yielding 71% extraction efficiency. The developed CPC method allowed for isolation of this naturally sourced xylindein in amounts suitable for further study. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Immunosuppression associated with chronic inflammation in the tumor microenvironment

    PubMed Central

    Wang, Dingzhi; DuBois, Raymond N.

    2015-01-01

    Chronic inflammation contributes to cancer development via multiple mechanisms. One potential mechanism is that chronic inflammation can generate an immunosuppressive microenvironment that allows advantages for tumor formation and progression. The immunosuppressive environment in certain chronic inflammatory diseases and solid cancers is characterized by accumulation of proinflammatory mediators, infiltration of immune suppressor cells and activation of immune checkpoint pathways in effector T cells. In this review, we highlight recent advances in our understanding of how immunosuppression contributes to cancer and how proinflammatory mediators induce the immunosuppressive microenvironment via induction of immunosuppressive cells and activation of immune checkpoint pathways. PMID:26354776

  17. [Advances in the effects of pH value of micro-environment on wound healing].

    PubMed

    Tian, Ruirui; Li, Na; Wei, Li

    2016-04-01

    Wound healing is a complex regeneration process, which is affected by lots of endogenous and exogenous factors. Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation, promoting oxygen release, affecting keratinocyte proliferation and migration, etc. In this article, we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing, and summarize the clinical application of variation of pH value of micro-environment in wound healing, thereby to provide new treatment strategy for wound healing.

  18. Nesting of colon and ovarian cancer cells in the endothelial niche is associated with alterations in glycan and lipid metabolism.

    PubMed

    Halama, Anna; Guerrouahen, Bella S; Pasquier, Jennifer; Satheesh, Noothan J; Suhre, Karsten; Rafii, Arash

    2017-01-04

    The metabolic phenotype of a cancer cell is determined by its genetic makeup and microenvironment, which dynamically modulates the tumor landscape. The endothelial cells provide both a promoting and protective microenvironment - a niche for cancer cells. Although metabolic alterations associated with cancer and its progression have been fairly defined, there is a significant gap in our understanding of cancer metabolism in context of its microenvironment. We deployed an in vitro co-culture system based on direct contact of cancer cells with endothelial cells (E4 + EC), mimicking the tumor microenvironment. Metabolism of colon (HTC15 and HTC116) and ovarian (OVCAR3 and SKOV3) cancer cell lines was profiled with non-targeted metabolic approaches at different time points in the first 48 hours after co-culture was established. We found significant, coherent and non-cell line specific changes in fatty acids, glycerophospholipids and carbohydrates over time, induced by endothelial cell contact. The metabolic patterns pinpoint alterations in hexosamine biosynthetic pathway, glycosylation and lipid metabolism as crucial for cancer - endothelial cells interaction. We demonstrated that "Warburg effect" is not modulated in the initial stage of nesting of cancer cell in the endothelial niche. Our study provides novel insight into cancer cell metabolism in the context of the endothelial microenvironment.

  19. Strategies of Mesenchymal Invasion of Patient-derived Brain Tumors: Microenvironmental Adaptation.

    PubMed

    Cha, Junghwa; Kang, Seok-Gu; Kim, Pilnam

    2016-04-25

    The high mortality in glioblastoma multiforme (GBM) patients is primarily caused by extensive infiltration into adjacent tissue and subsequent rapid recurrence. There are no clear therapeutic strategies that target the infiltrative subpopulation of GBM mass. Using mesenchymal mode of invasion, the GBM is known to widely infiltrate by interacting with various unique components within brain microenvironment such as hyaluronic acid (HA)-rich matrix and white matter tracts. However, it is unclear how these GBM microenvironments influence the strategies of mesenchymal invasion. We hypothesize that GBM has different strategies to facilitate such invasion through adaptation to their local microenvironment. Using our in vitro biomimetic microenvironment platform for three-dimensional GBM tumorspheres (TSs), we found that the strategies of GBM invasion were predominantly regulated by the HA-rich ECM microenvironment, showing marked phenotypic changes in the presence of HA, which were mainly mediated by HA synthase (HAS). Interestingly, after inhibition of the HAS gene, GBM switched their invasion strategies to a focal adhesion (FA)-mediated invasion. These results demonstrate that the microenvironmental adaptation allowed a flexible invasion strategy for GBM. Using our model, we suggest a new inhibitory pathway for targeting infiltrative GBM and propose an importance of multi-target therapy for GBM, which underwent microenvironmental adaptation.

  20. Effect of Microenvironment on Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Hepatocytes In Vitro and In Vivo

    PubMed Central

    Xue, Gai; Han, Xiaolei; Ma, Xin; Wu, Honghai; Qin, Yabin; Liu, Jianfang; Hu, Yuqin; Hong, Yang; Hou, Yanning

    2016-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo. PMID:27088093

  1. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment

    PubMed Central

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M.; Hao, Hongying

    2016-01-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  2. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis

    PubMed Central

    Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode

    2016-01-01

    ABSTRACT Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy. PMID:26743180

  3. Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment

    PubMed Central

    Kasemeier-Kulesa, Jennifer C.; Teddy, Jessica M.; Postovit, Lynne-Marie; Seftor, Elisabeth A.; Seftor, Richard E.B.; Hendrix, Mary J.C.; Kulesa, Paul M.

    2008-01-01

    The embryonic microenvironment is an important source of signals that program multipotent cells to adopt a particular fate and migratory path, yet its potential to reprogram and restrict multipotent tumor cell fate and invasion is unrealized. Aggressive tumor cells share many characteristics with multipotent, invasive embryonic progenitors, contributing to the paradigm of tumour cell plasticity. In the vertebrate embryo, multiple cell types originate from a highly invasive cell population called the neural crest. The neural crest and the embryonic microenvironments they migrate through represent an excellent model system to study cell diversification during embryogenesis and phenotype determination. Recent exciting studies of tumor cells transplanted into various embryo models, including the neural crest rich chick microenvironment, have revealed the potential to control and revert the metastatic phenotype, suggesting further work may help to identify new targets for therapeutic intervention derived from a convergence of tumorigenic and embryonic signals. In this mini-review, we summarize markers that are common to the neural crest and highly aggressive human melanoma cells. We highlight advances in our understanding of tumor cell behaviors and plasticity studied within the chick neural crest rich microenvironment. In so doing, we honor the tremendous contributions of Professor Elizabeth D. Hay towards this important interface of developmental and cancer biology. PMID:18629870

  4. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits.

    PubMed

    Chang, N-J; Lam, C-F; Lin, C-C; Chen, W-L; Li, C-F; Lin, Y-T; Yeh, M-L

    2013-10-01

    Repairing articular cartilage is clinically challenging. We investigated a simple, effective and clinically feasible cell-based therapeutic approach using a poly(lactide-co-glycolide) (PLGA) scaffold seeded with autologous endothelial progenitor cells (EPC) to repair a full-thickness osteochondral defect in rabbits using a one-step surgery. EPC obtained by purifying a small amount of peripheral blood from rabbits were seeded into a highly porous, biocompatible PLGA scaffold, namely, EPC-PLGA, and implanted into the osteochondral defect in the medial femoral condyle. Twenty two rabbits were randomized into one of three groups: the empty defect group (ED), the PLGA-only group or the EPC-PLGA group. The defect sites were evaluated 4 and 12 weeks after implantation. At the end of testing, only the EPC-PLGA group showed the development of new cartilage tissue with a smooth, transparent and integrated articular surface. Moreover, histological analysis showed obvious differences in cartilage regeneration. At week 4, the EPC-PLGA group showed considerably higher TGF-β2 and TGF-β3 expression, a greater amount of synthesized glycosaminoglycan (GAG) content, and a higher degree of osteochondral angiogenesis in repaired tissues. At week 12, the EPC-PLGA group showed enhanced hyaline cartilage regeneration with a normal columnar chondrocyte arrangement, higher SOX9 expression, and greater GAG and collagen type II (COLII) content. Moreover, the EPC-PLGA group showed organized osteochondral integration, the formation of vessel-rich tubercular bone and significantly higher bone volume per tissue volume and trabecular thickness (Tb.Th). The present EPC-PLGA cell delivery system generates a suitable in situ microenvironment for osteochondral regeneration without the supplement of exogenous growth factors. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    PubMed Central

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D.; Wilkinson, Martin G.; Panek, Jiri; Auty, Mark A. E.; Periasamy, Ammasi; Sheehan, Jeremiah J.

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening. PMID:25798136

  6. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging.

    PubMed

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D; Wilkinson, Martin G; Panek, Jiri; Auty, Mark A E; Periasamy, Ammasi; Sheehan, Jeremiah J

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  7. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells.

    PubMed

    Mattei, Fabrizio; Schiavoni, Giovanna; De Ninno, Adele; Lucarini, Valeria; Sestili, Paola; Sistigu, Antonella; Fragale, Alessandra; Sanchez, Massimo; Spada, Massimo; Gerardino, Annamaria; Belardelli, Filippo; Businaro, Luca; Gabriele, Lucia

    2014-10-01

    A full elucidation of events occurring inside the cancer microenvironment is fundamental for the optimization of more effective therapies. In the present study, the cross-talk between cancer and immune cells was examined by employing mice deficient (KO) in interferon regulatory factor (IRF)-8, a transcription factor essential for induction of competent immune responses. The in vivo results showed that IRF-8 KO mice were highly permissive to B16.F10 melanoma growth and metastasis due to failure of their immune cells to exert proper immunosurveillance. These events were found to be dependent on soluble factors released by cells of the immune system capable of shaping the malignant phenotype of melanoma cells. An on-chip model was then generated to further explore the reciprocal interactions between the B16.F10 and immune cells. B16.F10 and immune cells were co-cultured in a microfluidic device composed of three culturing chambers suitably inter-connected by an array of microchannels; mutual interactions were then followed using time-lapse microscopy. It was observed that WT immune cells migrated through the microchannels towards the B16.F10 cells, establishing tight interactions that in turn limited tumor spread. In contrast, IRF-8 KO immune cells poorly interacted with the melanoma cells, resulting in a more invasive behavior of the B16.F10 cells. These results suggest that IRF-8 expression plays a key role in the cross-talk between melanoma and immune cells, and under-score the value of cell-on-chip approaches as useful in vitro tools to reconstruct complex in vivo microenvironments on a microscale level to explore cell interactions such as those occurring within a cancer immunoenvironment.

  8. Asymmetric Cationic Porphyrin as a New G-Quadruplex Probe with Wash-Free Cancer-Targeted Imaging Ability Under Acidic Microenvironments.

    PubMed

    Zhang, Ran; Cheng, Meng; Zhang, Li-Ming; Zhu, Li-Na; Kong, De-Ming

    2018-04-25

    Porphyrins are promising candidates for nucleic acid G-quadruplex-specific optical recognition. We previously demonstrated that G-quadruplex recognition specificity of porphyrins could be improved by introducing bulky side arm substituents, but the enhanced protonation tendency limits their applications in some cases, such as under acidic conditions. Here, we demonstrated that the protonation tendency of porphyrin derivatives could be efficiently overcome by increasing molecular asymmetry. To validate this, an asymmetric, water-soluble, cationic porphyrin FA-TMPipEOPP (5-{4-[2-[[(2 E)-3-[3-methoxy-4-[2-(1-methyl-1-piperidinyl)ethoxy]phenyl]-1-oxo-2-propenyl]oxy]ethoxy]phenyl},10,15,20-tri{4-[2-(1-methyl-1-piperidinyl)ethoxy]-phenyl}porphyrin) was synthesized by introducing a ferulic acid (FA) unit at one side arm, and its structure was well-characterized. Unlike its symmetric counterpart TMPipEOPP that has a tendency to protonate under acidic conditions, FA-TMPipEOPP remained in the unprotonated monomeric form under the pH range of 2.0-8.0. Correspondingly, FA-TMPipEOPP showed better G-quadruplex recognition specificity than TMPipEOPP and thus might be used as a specific optical probe for colorimetric and fluorescent recognition of G-quadruplexes under acidic conditions. The feasibility was demonstrated by two proof-of-concept studies: probing structural competition between G-quadruplexes and duplexes and label-free and wash-free cancer cell-targeted bioimaging under an acidic tumor microenvironment. As G-quadruplex optical probes, FA-TMPipEOPP works well under acidic conditions, whereas TMPipEOPP works well under neutral conditions. This finding provides useful information for G-quadruplex probe research. That is, porphyrin-based G-quadruplex probes suitable for different pH conditions might be obtained by adjusting the molecular symmetry.

  9. Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2

    PubMed Central

    Kang, Yunqing; Kim, Sungwoo; Khademhosseini, Ali; Yang, Yunzhi

    2011-01-01

    Extracellular matrix (ECM) comprises a rich meshwork of proteins and proteoglycans, which not only contains biological cues for cell behavior, but is also a reservoir for binding growth factors and controlling their release. Here we aimed to create a suitable bony microenvironment with cell-derived ECM and biodegradable β-tricalcium phosphate (β-TCP). More specifically, we investigated whether the ECM produced by bone marrow-derived mesenchymal stem cells (hBMSC) on a β-TCP scaffold can bind bone morphogenetic protein-2 (BMP-2) and control its release in a sustained manner, and further examined the effect of ECM and the BMP-2 released from ECM on cell behaviors. The ECM was obtained through culturing the hBMSC on a β-TCP porous scaffold and performing decellularization and sterilization. SEM, XPS, FTIR, and immunofluorescent staining results indicated the presence of ECM on the β-TCP and the amount of ECM increased with the incubation time. BMP-2 was loaded onto the β-TCP with and without ECM by immersing the scaffolds in the BMP-2 solution. The loading and release kinetics of the BMP-2 on the β-TCP/ECM were significantly slower than those on the β-TCP. The β-TCP/ECM exhibited a sustained release profile of the BMP-2, which was also affected by the amount of ECM. This is probably because the β-TCP/ECM has different binding mechanisms with BMP-2. The β-TCP/ECM promoted cell proliferation. Furthermore, the BMP-2-loaded β-TCP/ECM stimulated reorganization of the actin cytoskeleton, increased expression of alkaline phosphatase and calcium deposition by the cells compared to those without BMP-2 loading and the β-TCP with BMP-2 loading. PMID:21632105

  10. Combinatorial Solid-Phase Synthesis of Aromatic Oligoamides: A Research-Based Laboratory Module for Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Fuller, Amelia A.

    2016-01-01

    A five-week, research-based experiment suitable for second-semester introductory organic laboratory students is described. Each student designs, prepares, and analyzes a combinatorial array of six aromatic oligoamides. Molecules are prepared on solid phase via a six-step synthetic sequence, and purities and identities are determined by analysis of…

  11. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOEpatents

    Jothimurugesan, Kandaswamy [Ponca City, OK; Goodwin, Jr., James G.; Gangwal, Santosh K [Cary, NC

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  12. Survival and growth response of white spruce stock types to site preparation in Alaska

    Treesearch

    Andrew Youngblood; Elizabeth Cole; Michael Newton

    2011-01-01

    To identify suitable methods for reforestation, we evaluated the interacting effects of past disturbance, stock types, and site preparation treatments on white spruce (Picea glauca (Moench) Voss) seedling survival and growth across a range of sites in Alaska. Replicated experiments were established in five regions. At each site, two complete...

  13. Polymeric Systems for Amorphous Δ9-Tetrahydrocannabinol Produced by a Hot-Melt Method. Part II: Effect of Oxidation Mechanisms and Chemical Interactions on Stability

    PubMed Central

    MUNJAL, MANISH; ELSOHLY, MAHMOUD A.; REPKA, MICHAEL A.

    2010-01-01

    The objectives of the present research investigations were to (i) elucidate the mechanism for the oxidative degradation of Δ9-tetrahydrocannabinol (THC) in polymer matrix systems prepared by a hot-melt fabrication procedure, and (ii) study the potential for controlling these mechanisms to reduce the degradation of THC in solid dosage formulations. Various factors considered and applied included drug-excipient compatibility, use of antioxidants, cross-linking in polymeric matrices, microenvironment pH, and moisture effect. Instability of THC in polyethylene oxide (PEO)-vitamin E succinate (VES) patches was determined to be due to chemical interaction between the drug and the vitamin as well as with the atmospheric oxygen. Of the different classes and mechanisms of antioxidants studied, quenching of oxygen by reducing agents, namely, ascorbic acid was the most effective in stabilizing THC in PEO-VES matrices. Only 5.8% of the drug degraded in the ascorbic acid-containing patch as compared to the control (31.6%) after 2 months of storage at 40°C. This coupled with the cross-linking extent and adjustment of the pH microenvironment, which seemed to have an impact on the THC degradation, might be effectively utilized towards stabilization of the drug in these polymeric matrices and other pharmaceutical dosage forms. These studies are relevant to the development of a stable transmucosal matrix system for the therapeutic delivery of amorphous THC. PMID:16886199

  14. pH-Responsive Nanoscale Covalent Organic Polymers as a Biodegradable Drug Carrier for Combined Photodynamic Chemotherapy of Cancer.

    PubMed

    Wang, Hairong; Zhu, Wenwen; Liu, Jingjing; Dong, Ziliang; Liu, Zhuang

    2018-05-02

    Covalent organic polymers (COPs) are a promising class of cross-linked polymeric networks and porous structures composed of covalent organic molecules that attract extensive attention. Despite increasing interest in applying COPs for applications in nanomedicine, the pH-sensitive COPs that are able to sensitively respond to the slightly acidic tumor microenvironment for tumor-specific drug delivery and therapy remain to be explored to our best knowledge. Herein, a new style of pH-responsive COPs were prepared using acryloyl meso-tetra( p-hydroxyphenyl) porphine (acryloyl-THPP) to react with 4,4'-trimethylene dipiperidine to form the pH-responsive cross-linked biodegradable β-amino esters (BAEs). Amine-modified poly(ethylene glycol) (PEG) was then introduced to terminate the reaction and form the PEG shell. The formulated pH-responsive THPP-BAE-PEG COPs can be utilized to encapsulate anticancer drug doxorubicin (DOX) due to their porous structure. Upon intravenous injection, such DOX-loaded COPs show a prolonged blood circulation as well as an efficient tumor accumulation. Along with the pH-triggered drug release for chemotherapy, the singlet oxygen produced by THPP under light exposure for photodynamic therapy would further endow us a combined treatment strategy, which offers synergistic antitumor effects in our in vivo tumor model experiments. Our study illustrates that COPs fabricated with tumor microenvironment responsive linkers may be a promising type of materials for applications in cancer nanomedicine.

  15. How Landscape Plants Modify the Environment.

    ERIC Educational Resources Information Center

    Blankenship, Sylvia; Wise, Kevin

    1993-01-01

    Presents three experiments that provide examples of how plants modify their surroundings and create microenvironments. Examples demonstrate (1) how types of ground cover influence water quality; (2) how plants can create a thermal microenvironment; and (3) how plants can serve as barriers to wind. (MDH)

  16. Preparation of giant myelin vesicles and proteoliposomes to register ionic channels.

    PubMed

    Regueiro, P; Monreal, J; Díaz, R S; Sierra, F

    1996-11-01

    Myelin vesicles, reconstituted liposomes with proteolipid protein (PLP), the main protein component of myelin, and electrophysiological patch-clamp are potentially powerful tools to study the role of myelin in functional ionic channels. However, technical difficulties in the vesiculation of myelin and the small size of the vesicles obtained do not permit the application of micropipettes for current recordings. From a suspension of purified myelin we have prepared oligolamellar vesicles (mean diameter of 144 nm) using the so-called French pressure system. From this preparation we obtained giant myelin vesicles approximately 10 microns in mean diameter, using a dehydration-rehydration procedure. Qualitative analysis of proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed no significant loss of any component in these vesicles due to pressure, in comparison with non-vesiculated myelin. A way of preparing giant liposomes of approximately 80-100 microns and proteoliposomes of approximately 30 microns in mean diameter, using the same dehydration-rehydration procedure, is also reported. Reconstitution of purified PLP in giant liposomes was confirmed by fluorescent labeling of PLP and by fluorescence microscopy. The current recordings from these vesicles prove the validity of these methods and provide significant evidence of the existence of ionic channels in myelin membranes and the possibility that PLP functions as a channel. The physiological significance and characterization of these channels remain yet unresolved. These results have a special significance for elucidating the molecular role of myelin in the regulation of neural activity and in the brain ion microenvironment.

  17. Pi (Spleen)-deficiency syndrome in tumor microenvironment is the pivotal pathogenesis of colorectal cancer immune escape.

    PubMed

    Sun, Xue-Gang; Lin, Xiao-Chang; Diao, Jian-Xin; Yu, Zhi-Ling; Li, Kun

    2016-10-01

    Cancer immunoediting consists of three sequential phases: elimination, equilibrium, and escape. For colorectal adenoma-carcinoma sequence, the adenoma dysplastic progression may represent an equilibrium phase and the cancer stage as escape phase. Immune system eliminates transformed enterocytes by destroying them at first, sculpts them at the same time and selects the variants subsequently that are no longer recognized and insensitive to immune effectors, and finally induces immunosuppressive state within the tumor microenvironment that facilitates immune escape and tumor outgrowth. Immunosuppression and inflammation are the two crucial features of Pi (Spleen)-deficiency. Classic quotations, immune evidence and clinical observations suggest that Spleen (but not other organs) deficiency is the key pathogenesis of colorectal cancer (CRC) microenvironment. Weakness of old age, immunosuppressive cytokines from chronic inflammation, tumor-derived immunosuppressive factors and surrendered immune cells-regulatory T cells, myeloid-derived suppressor cells and tumor associated macrophages (TAMs) constitutes CRC microenvironment of Pi-deficiency. Furthermore, excess in superficiality, such as phlegm stagnation, blood stasis and toxin accumulation are induced by chronic inflammation on the basis of asthenia in origin, an immunosuppressive state. Great masters of Chinese medicine emphasize that strengthen Pi is the chief therapeutic principle for CRC which receives good therapeutic effects. So, Pi-deficiency based syndrome is the pivotal pathogenesis of tumor microenvironment. The immunosuppressive microenvironment facilitates immune escape which play an important role in the transition from adenoma to adenocarcinoma. There are some signs that strengthen Pi based treatment has potential capacity to ameliorate tumor environment. It might be a novel starting point to explore the mechanism of strengthen Pi based therapy in the prevention and treatment of CRC through regulation of tumor environment and immunoediting.

  18. S100A8 facilitates the migration of colorectal cancer cells through regulating macrophages in the inflammatory microenvironment.

    PubMed

    Zha, He; Sun, Hui; Li, Xueru; Duan, Liang; Li, Aifang; Gu, Yue; Zeng, Zongyue; Zhao, Jiali; Xie, Jiaqing; Yuan, Shimei; Li, Huan; Zhou, Lan

    2016-07-01

    Previous studies have shown that S100 calcium-binding protein A8 (S100A8) contributes to the survival and migration of colorectal cancer (CRC) cells. However, whether S100A8 participates in the progression and metastasis of CRC via the regulation of macrophages in the tumor inflammatory microenvironment remains unknown. In this study, phorbol myristate acetate (PMA) was used to induce the differentiation of THP-1 monocytes to macrophages. MTT assay, western blot analysis, immunofluorescence staining, semi-quantitative RT-PCR (semi-PCR), quantitative real-time PCR (qPCR), Gaussia luciferase activity assay and ELISA were performed to analyze the roles and molecular mechanisms of S100A8 in the modulation of macrophages. MTT assay, flow cytometric analysis, Hoechst staining, wound healing and Transwell migration assay were used to test the effect of S100A8 on the viability and migration of CRC cells co-cultured with macrophages in the inflammatory microenvironment. We found that THP-1 monocytes were induced by PMA and differentiated to macrophages. S100A8 activated the NF-κB pathway in the macrophages and promoted the expression of miR-155 and inflammatory cytokines IL-1β and TNF-α in the inflammatory microenvironment mimicked by lipopolysaccharides (LPS). Furthermore, S100A8 contributed to augment the migration but not the viability of the CRC cells co-cultured with the macrophages in the inflammatory microenvironment. Altogether, our study demonstrated that S100A8 facilitated the migration of CRC cells in the inflammatory microenvironment, and the underlying molecular mechanisms may be partially attributed to the overexpression of miR-155, IL-1β and TNF-α through activation of the NF-κB pathway in macrophages.

  19. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.

    PubMed

    Liu, C Tony; Layfield, Joshua P; Stewart, Robert J; French, Jarrod B; Hanoian, Philip; Asbury, John B; Hammes-Schiffer, Sharon; Benkovic, Stephen J

    2014-07-23

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and (13)C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor-acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for significant electrostatic changes in the active site microenvironments due to conformational motion occurring over the catalytic cycle of ecDHFR.

  20. Probing the Electrostatics of Active Site Microenvironments along the Catalytic Cycle for Escherichia coli Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and 13C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor–acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for significant electrostatic changes in the active site microenvironments due to conformational motion occurring over the catalytic cycle of ecDHFR. PMID:24977791

  1. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    PubMed

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  2. Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect.

    PubMed

    Köse, Sevil; Yersal, Nilgün; Önen, Selin; Korkusuz, Petek

    2018-06-08

    Recent advances require a dual evaluation of germ and somatic stem cell niches with a regenerative medicine perspective. For a better point of view of the niche concept, it is needed to compare the microenvironments of those niches in respect to several components. The cellular environment of spermatogonial stem cells' niche consists of Sertoli cells, Leydig cells, vascular endothelial cells, epididymal fat cells, peritubular myoid cells while hematopoietic stem cells have mesenchymal stem cells, osteoblasts, osteoclasts, megacaryocytes, macrophages, vascular endothelial cells, pericytes and adipocytes in their microenvironment. Not only those cells', but also the effect of the other factors such as hormones, growth factors, chemokines, cytokines, extracellular matrix components, biomechanical forces (like shear stress, tension or compression) and physical environmental elements such as temperature, oxygen level and pH will be clarified during the chapter. Because it is known that the microenvironment has an important role in the stem cell homeostasis and disease conditions, it is crucial to understand the details of the microenvironment and to be able to compare the niche concepts of the different types of stem cells from each other, for the regenerative interventions. Indeed, the purpose of this chapter is to point out the usage of niche engineering within the further studies in the regenerative medicine field. Decellularized, synthetic or non-synthetic scaffolds may help to mimic the stem cell niche. However, the shared or different characteristics of germ and somatic stem cell microenvironments are necessary to constitute a proper niche model. When considered from this aspect, it is possible to produce some strategies on the personalized medicine by using those artificial models of stem cell microenvironment.

  3. The species origin of the cellular microenvironment influences markers of beta cell fate and function in EndoC-βH1 cells.

    PubMed

    Jeffery, N; Richardson, S; Beall, C; Harries, L W

    2017-12-15

    Interaction between islet cell subtypes and the extracellular matrix influences beta-cell function in mammals. The tissue architecture of rodent islets is very different to that of human islets; cell-to-cell communication and interaction with the extracellular matrix may vary between species. In this work, we have compared the responses of the human EndoC-βH1 cell line to non-human and human-derived growth matrices in terms of growth morphology, gene expression and glucose-stimulated insulin secretion (GSIS). EndoC-βH1 cells demonstrated a greater tendency to form cell clusters when cultured in a human microenvironment and exhibited reduced alpha cell markers at the mRNA level; mean expression difference - 0.23 and - 0.51; p = 0.009 and 0.002 for the Aristaless-related homeobox (ARX) and Glucagon (GCG) genes respectively. No differences were noted in the protein expression of mature beta cell markers such as Pdx1 and NeuroD1 were noted in EndoC-βH1 cells grown in a human microenvironment but cells were however more sensitive to glucose (4.3-fold increase in insulin secretion following glucose challenge compared with a 1.9-fold increase in cells grown in a non-human microenvironment; p = 0.0003). Our data suggests that the tissue origin of the cellular microenvironment has effects on the function of EndoC-βH1 cells in vitro, and the use of a more human-like culture microenvironment may bring benefits in terms of increased physiological relevance. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Surface display of roGFP for monitoring redox status of extracellular microenvironments in Shewanella oneidensis biofilms.

    PubMed

    Sivakumar, Krishnakumar; Mukherjee, Manisha; Cheng, Hsin-I; Zhang, Yingdan; Ji, Lianghui; Cao, Bin

    2015-03-01

    Biofilms are the most ubiquitous and resilient form of microbial life on earth. One most important feature of a biofilm is the presence of a self-produced matrix, which creates highly heterogeneous and dynamic microenvironments within biofilms. Redox status in biofilm microenvironments plays a critical role in biofilm development and function. However, there is a lack of non-intrusive tools to quantify extracellular redox status of microenvironments within a biofilm matrix. In this study, using Shewanella oneidensis as a model organism, we demonstrated a novel approach to monitor extracellular redox status in biofilm microenvironments. Specifically, we displayed a redox sensitive fluorescence protein roGFP onto the cell surface of S. oneidensis by fusing it to the C-terminus of BpfA, a large surface protein, and used the surface displayed roGFP as a sensor to quantify the extracellular redox status in the matrix of S. oneidensis biofilms. The fusion of roGFP into BpfA has no negative impacts on cell growth and biofilm formation. Upon exposure to oxidizing agents such as H2 O2 , Ag(+) , and SeO3 (2-) , S. oneidensis BpfA-roGFP cells exhibited a characteristic fluorescence of roGFP. Proteinase treatment assay and super-resolution structured illumination microscopy confirmed the surface localization of BpfA-roGFP. We further used the surface displayed roGFP monitored the extracellular redox status in the matrix at different depths of a biofilm exposed to H2 O2 . This study provides a novel approach to non-invasively monitor extracellular redox status in microenvironments within biofilms, which can be used to understand redox responses of biofilms to environmental perturbations. © 2014 Wiley Periodicals, Inc.

  5. The effect of neighboring cells on the stiffness of cancerous and non-cancerous human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Guo, Xinyi; Bonin, Keith; Scarpinato, Karin; Guthold, Martin

    2014-10-01

    Using an Atomic Force Microscope (AFM) with a 5.3 μm diameter spherical probe, we determined mechanical properties of individual human mammary epithelial cells. The cells were derived from a pair of cell lines that mimic cell progression through four phases of neoplastic transformation: normal (non-transformed), immortal, tumorigenic, and metastatic. Measurements on cells in all four phases were taken over both the cytoplasmic and nuclear regions. Moreover, the measurements were made for cells in different microenvironments as related to cell-cell contacts: isolated cells; cells residing on the periphery of a contiguous cell monolayer; and cells on the inside of a contiguous cell monolayer. By fitting the AFM force versus indentation curves to a Hertz model, we determined the pseudo-elastic Young’s modulus, E. Combining all data for the cellular subregions (over nucleus and cytoplasm) and the different cell microenvironments, we obtained stiffness values for normal, immortal, tumorigenic, and metastatic cells of 870 Pa, 870 Pa, 490 Pa, and 580 Pa, respectively. That is, cells become softer as they advance to the tumorigenic phase and then stiffen somewhat in the final step to metastatic cells. We also found a distinct contrast in the influence of a cell’s microenvironment on cell stiffness. Normal mammary epithelial cells inside a monolayer are stiffer than peripheral cells, which are stiffer than isolated cells. However, the microenvironment had a slight, opposite effect on tumorigenic and little effect on immortal and metastatic cell stiffness. Thus, the stiffness of cancer cells is less sensitive to the microenvironment than normal cells. Our results show that the mechanical properties of a cell can depend on cancer progression and microenvironment (cell-cell interactions).

  6. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guneta, Vipra; Tan, Nguan Soon; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP)more » and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.« less

  7. [Experimental study of glioma stem cell-mediated immune tolerance in tumor microenvironment].

    PubMed

    Xie, T; Ma, J W; Liu, B; Dong, J; Huang, Q

    2017-11-23

    Objective: To investigate the tumor microenvironment of immune tolerance induced by glioma stem cells (GSC). Methods: Human GSC SU3 cells transfected with red fluorescent protein (SU3-RFP) gene were implanted into the brain, subcutis (armpit and foot), liver and abdominal cavity of transgenic green fluorescence protein (GFP) nude mice to establish RFP(+) /GFP(+) dual fluorescence solid tumor model. The re-cultured cells derived from implanted tumor tissues, SU3-RFP cells co-cultured with peritoneal fluid of transgenic GFP nude mice and malignant ascites of tumor-bearing mice were observed by fluorescence microscopy and real-time video image tracing to analyze the microenvironment of immune tolerance mediated by RFP(+) /GFP(+) implanted tumor. Results: Dual fluorescence labeled frozen section showed that all of cells in the tumor microenvironment were GFP(+) , while the pressed tissue-patch showed that the tumor blood vessels exhibited a RFP(+) /GFP(+) double-positioning yellow. In the GFP single fluorescence labeled tumor tissue, all of cells in the microenvironment were green, including tumor edge, necrotic foci and blood vessel. Among them, CD68(+) , F4/80(+) , CD11c(+) , CD11b(+) and CD80(+) cells were observed. In the dual fluorescence labeled co-cultured cells, the phagocytosis and fusion between green host cells and red tumor cells were also observed, and these fusion cells might transfer to the malignant dendritic cells and macrophages. Conclusions: The tumor microenvironment of immune tolerance induced by GSC is not affected by the tissue types of tumor-inoculated sites, and the immune tolerance mediated by inflammatory cells is associated with the inducible malignant transformation, which may be driven by cell fusion.

  8. Quantifying the thermal heat requirement of Brassica in assessing biophysical parameters under semi-arid microenvironments

    NASA Astrophysics Data System (ADS)

    Adak, Tarun; Chakravarty, N. V. K.

    2010-07-01

    Evaluation of the thermal heat requirement of Brassica spp. across agro-ecological regions is required in order to understand the further effects of climate change. Spatio-temporal changes in hydrothermal regimes are likely to affect the physiological growth pattern of the crop, which in turn will affect economic yields and crop quality. Such information is helpful in developing crop simulation models to describe the differential thermal regimes that prevail at different phenophases of the crop. Thus, the current lack of quantitative information on the thermal heat requirement of Brassica crops under debranched microenvironments prompted the present study, which set out to examine the response of biophysical parameters [leaf area index (LAI), dry biomass production, seed yield and oil content] to modified microenvironments. Following 2 years of field experiments on Typic Ustocrepts soils under semi-arid climatic conditions, it was concluded that the Brassica crop is significantly responsive to microenvironment modification. A highly significant and curvilinear relationship was observed between LAI and dry biomass production with accumulated heat units, with thermal accumulation explaining ≥80% of the variation in LAI and dry biomass production. It was further observed that the economic seed yield and oil content, which are a function of the prevailing weather conditions, were significantly responsive to the heat units accumulated from sowing to 50% physiological maturity. Linear regression analysis showed that growing degree days (GDD) could indicate 60-70% variation in seed yield and oil content, probably because of the significant response to differential thermal microenvironments. The present study illustrates the statistically strong and significant response of biophysical parameters of Brassica spp. to microenvironment modification in semi-arid regions of northern India.

  9. Differential immune microenvironments and response to immune checkpoint blockade amongst molecular subtypes of murine medulloblastoma

    PubMed Central

    Pham, Christina D.; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M.; Yearley, Jennifer H.; Sayour, Elias J.; Pei, Yanxin; Moore, Colin; McLendon, Roger E.; Huang, Jianping; Sampson, John H.; Wechsler-Reya, Robert; Mitchell, Duane A.

    2016-01-01

    PURPOSE Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma (MB), the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and Group 3 MB for preclinical evaluation in immunocompetent C57BL/6 mice. METHODS AND RESULTS Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid derived suppressor cells and tumor-associated macrophages in murine SHH model tumors compared with Group 3 tumors. However, murine Group 3 tumors had higher percentages of CD8+ PD-1+ T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial Group 3 tumors compared to SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1+ peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3+ T cells within the tumor microenvironment. CONCLUSIONS This is the first immunologic characterization of preclinical models of molecular subtypes of MB and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. PMID:26405194

  10. Disruption of in vivo chronic lymphocytic leukemia tumor-microenvironment interactions by ibrutinib – findings from an investigator initiated phase 2 study

    PubMed Central

    Niemann, Carsten U.; Herman, Sarah E. M.; Maric, Irina; Gomez-Rodriguez, Julio; Biancotto, Angelique; Chang, Betty Y.; Martyr, Sabrina; Stetler-Stevenson, Maryalice; Yuan, Constance; Calvo, Katherine R.; Braylan, Raul C.; Valdez, Janet; Lee, Yuh Shan; Wong, Deanna H.; Jones, Jade; Sun, Clare C. L.; Marti, Gerald E.; Farooqui, Mohammed Z.; Wiestner, Adrian

    2016-01-01

    Purpose Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental interactions for proliferation and survival that are at least partially mediated through B cell receptor (BCR) signaling. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, disrupts BCR signaling and leads to the egress of tumor cells from the microenvironment. While the on-target effects on CLL cells are well defined, the impact on the microenvironment is less well studied. We therefore sought to characterize the in vivo effects of ibrutinib on the tumor microenvironment. Experimental Design Patients received single agent ibrutinib on an investigator-initiated phase 2 trial. Serial blood and tissue samples were collected pre-treatment and during treatment. Changes in cytokine levels, cellular subsets and microenvironmental interactions were assessed. Results Serum levels of key chemokines and inflammatory cytokines decreased significantly in patients on ibrutinib. Further, ibrutinib treatment decreased circulating tumor cells and overall T cell numbers. Most notably, a reduced frequency of the Th17 subset of CD4+ T cells was observed concurrent with reduced activation markers and expression of PD-1 on T cells. Consistent with direct inhibition of T cells, ibrutinib inhibited Th17 differentiation of murine CD4+ T cells in vitro. Lastly, in the bone marrow microenvironment, we found that ibrutinib disaggregated the interactions of macrophages and CLL cells, inhibited secretion of CXCL13 and decreased the chemoattraction of CLL cells. Conclusions In conjunction with inhibition of BCR signaling, these changes in the tumor microenvironment likely contribute to the anti-tumor activity of ibrutinib and may impact the efficacy of immunotherapeutic strategies in patients with CLL. PMID:26660519

  11. Disruption of in vivo Chronic Lymphocytic Leukemia Tumor-Microenvironment Interactions by Ibrutinib--Findings from an Investigator-Initiated Phase II Study.

    PubMed

    Niemann, Carsten U; Herman, Sarah E M; Maric, Irina; Gomez-Rodriguez, Julio; Biancotto, Angelique; Chang, Betty Y; Martyr, Sabrina; Stetler-Stevenson, Maryalice; Yuan, Constance M; Calvo, Katherine R; Braylan, Raul C; Valdez, Janet; Lee, Yuh Shan; Wong, Deanna H; Jones, Jade; Sun, Clare; Marti, Gerald E; Farooqui, Mohammed Z H; Wiestner, Adrian

    2016-04-01

    Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental interactions for proliferation and survival that are at least partially mediated through B-cell receptor (BCR) signaling. Ibrutinib, a Bruton tyrosine kinase inhibitor, disrupts BCR signaling and leads to the egress of tumor cells from the microenvironment. Although the on-target effects on CLL cells are well defined, the impact on the microenvironment is less well studied. We therefore sought to characterize the in vivo effects of ibrutinib on the tumor microenvironment. Patients received single-agent ibrutinib on an investigator-initiated phase II trial. Serial blood and tissue samples were collected pretreatment and during treatment. Changes in cytokine levels, cellular subsets, and microenvironmental interactions were assessed. Serum levels of key chemokines and inflammatory cytokines decreased significantly in patients on ibrutinib. Furthermore, ibrutinib treatment decreased circulating tumor cells and overall T-cell numbers. Most notably, a reduced frequency of the Th17 subset of CD4(+)T cells was observed concurrent with reduced expression of activation markers and PD-1 on T cells. Consistent with direct inhibition of T cells, ibrutinib inhibited Th17 differentiation of murine CD4(+)T cells in vitro Finally, in the bone marrow microenvironment, we found that ibrutinib disaggregated the interactions of macrophages and CLL cells, inhibited secretion of CXCL13, and decreased the chemoattraction of CLL cells. In conjunction with inhibition of BCR signaling, these changes in the tumor microenvironment likely contribute to the antitumor activity of ibrutinib and may impact the efficacy of immunotherapeutic strategies in patients with CLL. See related commentary by Bachireddy and Wu, p. 1547. ©2015 American Association for Cancer Research.

  12. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    USDA-ARS?s Scientific Manuscript database

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  13. Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas.

    PubMed

    Xu, Yong-Quan; Zou, Chun; Gao, Ying; Chen, Jian-Xin; Wang, Fang; Chen, Gen-Sheng; Yin, Jun-Feng

    2017-12-01

    The physicochemical characteristics, sensory quality, and antioxidant activity of tea infusions prepared with purified water (PW), mineral water (MW), mountain spring water (MSW), and tap water (TW) from Hangzhou were investigated. The results showed that the taste quality, catechin concentration, and antioxidant capacity of green, oolong, and black tea infusions prepared using MW and TW were significantly lower than those prepared using PW. Extraction of catechins and caffeine was reduced with high-conductivity water, while high pH influenced the stability of catechins. PW and MSW were more suitable for brewing green and oolong teas, while MSW, with low pH and moderate ion concentration, was the most suitable water for brewing black tea. Lowering the pH of mineral water partially improved the taste quality and increased the concentration of catechins in the infusions. These results aid selection of the most appropriate water for brewing Chinese teas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Targeting the tumour microenvironment in ovarian cancer.

    PubMed

    Hansen, Jean M; Coleman, Robert L; Sood, Anil K

    2016-03-01

    The study of cancer initiation, growth, and metastasis has traditionally been focused on cancer cells, and the view that they proliferate due to uncontrolled growth signalling owing to genetic derangements. However, uncontrolled growth in tumours cannot be explained solely by aberrations in cancer cells themselves. To fully understand the biological behaviour of tumours, it is essential to understand the microenvironment in which cancer cells exist, and how they manipulate the surrounding stroma to promote the malignant phenotype. Ovarian cancer is the leading cause of death from gynaecologic cancer worldwide. The majority of patients will have objective responses to standard tumour debulking surgery and platinum-taxane doublet chemotherapy, but most will experience disease recurrence and chemotherapy resistance. As such, a great deal of effort has been put forth to develop therapies that target the tumour microenvironment in ovarian cancer. Herein, we review the key components of the tumour microenvironment as they pertain to this disease, outline targeting opportunities and supporting evidence thus far, and discuss resistance to therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of laser immunotherapy on tumor microenvironment

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Wood, Ethan W.; Hasanjee, Aamr; Chen, Wei R.; Vaughan, Melville B.

    2014-02-01

    The microenvironments of tumors are involved in a complex and reciprocal dialog with surrounding cancer cells. Any novel treatment must consider the impact of the therapy on the microenvironment. Recently, clinical trials with laser immunotherapy (LIT) have proven to effectively treat patients with late-stage, metastatic breast cancer and melanoma. LIT is the synergistic combination of phototherapy (laser irradiation) and immunological stimulation. One prominent cell type found in the tumor stroma is the fibroblast. Fibroblast cells can secrete different growth factors and extracellular matrix modifying molecules. Furthermore, fibroblast cells found in the tumor stroma often express alpha smooth muscle actin. These particular fibroblasts are coined cancer-associated fibroblast cells (CAFs). CAFs are known to facilitate the malignant progression of tumors. A collagen lattice assay with human fibroblast cells is used to elucidate the effects LIT has on the microenvironment of tumors. Changes in the contraction of the lattice, the differentiation of the fibroblast cells, as well as the proliferation of the fibroblast cells will be determined.

  16. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment.

    PubMed

    Ito, Koichi; Stannard, Kimberley; Gabutero, Elwyn; Clark, Amanda M; Neo, Shi-Yong; Onturk, Selda; Blanchard, Helen; Ralph, Stephen J

    2012-12-01

    The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a β-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.

  17. TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation.

    PubMed

    Ni, Xiao Yan; Sui, Hua Xiu; Liu, Yao; Ke, Shi Zhong; Wang, Yi Nan; Gao, Feng Guang

    2012-08-01

    The effects of TGF-β on dendritic cells (DCs) on the tumor microenvironment are not well understood. We report, here, the establishment of an in vitro lung cancer microenvironment by co-incubation of seminaphtharhodafluor (SNARF) labeled Lewis lung cancer (LLC) cells, carboxyfluorescein succinimidyl ester (CFSE) labeled fibroblasts and 4-chloromethyl-7-hydroxycoumarin (CMHC) labeled DCs. Raw 264.7, EL4 and NCI-H446 cells were able to synthesize TGF-β which was determined by flow cyto-metry and western blotting, respectively. Furthermore, TGF-β efficiently increased regulatory T-cell (Treg) expansion and upregulated DC B7H1 and GITRL expression. TGF-β and the co-incubation of LLC cells, fibroblasts with DCs could augment the expression of B7H1 and GITRL molecules of DCs. The data presented here indicate that the B7H1 and GITRL molecules may play an important role in TGF-β-induced Treg expansion of lung cancer microenvironment.

  18. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment.

    PubMed

    Kryczek, Ilona; Wei, Shuang; Zou, Linhua; Altuwaijri, Saleh; Szeliga, Wojciech; Kolls, Jay; Chang, Alfred; Zou, Weiping

    2007-06-01

    Th17 cells play an active role in inflammation and autoimmune diseases. However, the nature and regulation of Th17 in the context of tumor immunity remain unknown. In this study, we show that parallel to regulatory T (Treg) cells, IL-17(+) CD4(+) and CD8(+) T cells are kinetically induced in multiple tumor microenvironments in mice and humans. Treg cells play a crucial role in tumor immune pathogenesis and temper immune therapeutic efficacy. IL-2 is crucial for the production and function of Treg cells. We now show that IL-2 reduces IL-17(+) T cell differentiation in the tumor microenvironment accompanied with an enhanced Treg cell compartment in vitro and in vivo. Altogether, our work demonstrates a dynamic differentiation of IL-17(+) T cells in the tumor microenvironment, reveals a novel role for IL-2 in controlling the balance between IL-17(+) and Treg cells, and provides new insight of IL-17(+) T cells in tumor immune pathology and therapy.

  19. The role of tumor microenvironment in development and progression of malignant melanomas - a systematic review.

    PubMed

    Gurzu, Simona; Beleaua, Marius Alexandru; Jung, Ioan

    2018-01-01

    To reveal the particular aspects of the tumor microenvironment of malignant melanomas, a systematic review including 34 representative papers was performed. The review took into account the aspects related the Wnt/β-catenin pathway-related epithelial-mesenchymal transition (EMT) versus mesenchymal-epithelial transition (MET) of keratinocytes, fibroblasts and melanoma cells, as possible tools for understanding genesis and evolution of malignant melanoma. The possible reversible features of EMT and the role of tumor microenvironment in the metastatic process were also analyzed. A particular issue was related on the cancer stem cells that include melanocyte stem cells (McSCs) and multipotent mesenchymal stem/stromal cells (MSCs). As the McSCs embryological development in mouse is not similar to human development, the role of stem cells in genesis and development of human melanoma should be proved in human melanoma cells only. For further development of targeted therapy, a better understanding of melanomagenesis pathways and its microenvironment particularities is necessary.

  20. Manipulation of Microenvironment with a Built-in Electrochemical Actuator in Proximity of a Dissolved Oxygen Microsensor

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Lee, Cae-Hyang; Fiering, Jason O.; Ufer, Stefan; Scarantino, Charles W.; Nagle, H. Troy; Fiering, Jason O.; Ufer, Stefan; Nagle, H. Troy; Scarantino, Charles W.

    2004-01-01

    Abstract - Biochemical sensors for continuous monitoring require dependable periodic self- diagnosis with acceptable simplicity to check its functionality during operation. An in situ self- diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built- in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen- depleting phases. The use of these microenvironments for in situ self-calibration is discussed to achieve functional integration as well as structural integration of the microsensor system.

  1. Molecular Pathways: microRNAs, Cancer Cells, and Microenvironment

    PubMed Central

    Berindan-Neagoe, Ioana; Calin, George A.

    2015-01-01

    One of the most unexpected discoveries in molecular oncology over the last decade is the interplay between abnormalities in protein-coding genes and short non-coding microRNAs (miRNAs) that are causally involved in cancer initiation, progression, and dissemination. This phenomenon was initially defined in malignant cells; however, in recent years, more data have accumulated describing the participation of miRNAs produced by microenvironment cells. As hormones, miRNAs are released by a donor cell in various forms of vesicles or as ‘free’ molecules secreted by active mechanisms. These miRNAs spread as signaling molecules that are uptaken either as exosomes or as ‘free’ RNAs by cells located in other parts of the organism. Here, we discuss the communication between cancer cells and the microenvironment through miRNAs. We further expand this in the context of translational consequences and present miRNAs as predictors of therapeutic response and as targeted therapeutics and therapeutic targets in either malignant cells or microenvironment cells. PMID:25512634

  2. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling.

    PubMed

    Wang, Nan; Wei, Fang; Qi, Yuhang; Li, Hongxiang; Lu, Xin; Zhao, Guoqiang; Xu, Qun

    2014-11-26

    MoS2 nanosheets with polydispersity of the lateral dimensions from natural mineral molybdenite have been prepared in the emulsions microenvironment built by the water/surfactant/CO2 system. The size, thickness, and atomic structure are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and laser-scattering particle size analysis. Meanwhile, by the analysis of photoluminescence spectroscopy and microscope, the MoS2 nanosheets with smaller lateral dimensions exhibit extraordinary photoluminescence properties different from those with relatively larger lateral dimensions. The discovery of the excitation dependent photoluminescence for MoS2 nanosheets makes them potentially of interests for the applications in optoelectronics and biology. Moreover, we demonstrate that the fabricated MoS2 nanosheets can be a nontoxic fluorescent label for cell-targeted labeling application.

  3. Effect of fiber orientation of collagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications.

    PubMed

    Full, Sean Michael; Delman, Connor; Gluck, Jessica M; Abdmaulen, Raushan; Shemin, Richard J; Heydarkhan-Hagvall, Sepideh

    2015-01-01

    Within the past two decades polylactic-co-glycolic acid (PLGA) has gained considerable attention as a biocompatible and biodegradable polymer that is suitable for tissue engineering and regenerative medicine. In this present study, we have investigated the potential of PLGA, collagen I (ColI), and polyurethane (PU) scaffolds for ligament tissue regeneration. Two different ratios of PLGA (50:50 and 85:15) were used to determine the effects on mechanical tensile properties and cell adhesion. The Young's modulus, tensile stress at yield, and ultimate tensile strain of PLGA(50:50)-ColI-PU scaffolds demonstrated similar tensile properties to that of ligaments found in the knee. Whereas, scaffolds composed of PLGA(85:15)-ColI-PU had lower tensile properties than that of ligaments. Furthermore, we investigated the effect of fiber orientation on mechanical properties and our results indicate that aligned fiber scaffolds demonstrate higher tensile properties than scaffolds with random fiber orientation. Also, human fibroblasts attached and proliferated with no need for additional surface modifications to the presented electrospun scaffolds in both categories. Collectively, our investigation demonstrates the effectiveness of electrospun PLGA scaffolds as a suitable candidate for regenerative medicine, capable of being manipulated and combined with other polymers to create three-dimensional microenvironments with adjustable tensile properties to mimic native tissues. © 2014 Wiley Periodicals, Inc.

  4. Macromolecular Crowding Amplifies Adipogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells by Enhancing the Pro-Adipogenic Microenvironment

    PubMed Central

    Ang, Xiu Min; Lee, Michelle H.C.; Blocki, Anna; Chen, Clarice; Ong, L.L. Sharon; Asada, H. Harry; Sheppard, Allan

    2014-01-01

    The microenvironment plays a vital role in both the maintenance of stem cells in their undifferentiated state (niche) and their differentiation after homing into new locations outside this niche. Contrary to conventional in-vitro culture practices, the in-vivo stem cell microenvironment is physiologically crowded. We demonstrate here that re-introducing macromolecular crowding (MMC) at biologically relevant fractional volume occupancy during chemically induced adipogenesis substantially enhances the adipogenic differentiation response of human bone marrow-derived mesenchymal stem cells (MSCs). Both early and late adipogenic markers were significantly up-regulated and cells accumulated 25–40% more lipid content under MMC relative to standard induction cocktails. MMC significantly enhanced deposition of extracellular matrix (ECM), notably collagen IV and perlecan, a heparan sulfate proteoglycan. As a novel observation, MMC also increased the presence of matrix metalloproteinase −2 in the deposited ECM, which was concomitant with geometrical ECM remodeling typical of adipogenesis. This suggested a microenvironment that was richer in both matrix components and associated ligands and was conducive to adipocyte maturation. This assumption was confirmed by seeding undifferentiated MSCs on decellularized ECM deposited by adipogenically differentiated MSCs, Adipo-ECM. On Adipo-ECM generated under crowding, MSCs differentiated much faster under a classical differentiation protocol. This was evidenced throughout the induction time course, by a significant up-regulation of both early and late adipogenic markers and a 60% higher lipid content on MMC-generated Adipo-ECM in comparison to standard induction on tissue culture plastic. This suggests that MMC helps build and endow the nascent microenvironment with adipogenic cues. Therefore, MMC initiates a positive feedback loop between cells and their microenvironment as soon as progenitor cells are empowered to build and shape it, and, in turn, are informed by it to respond by attaining a stable differentiated phenotype if so induced. This work sheds new light on the utility of MMC to tune the microenvironment to augment the generation of adipose tissue from differentiating human MSCs. PMID:24147829

  5. PREPARATION OF HIGH-DENSITY, COMPACTIBLE THORIUM OXIDE PARTICLES

    DOEpatents

    McCorkle, K.H.; Kleinsteuber, A.T.; Schilling, C.E.; Dean, O.C.

    1962-05-22

    A method is given for preparing millimeter-size, highdensity thorium oxide particles suitable for fabrication into nuclear reactor feel elements by means of vibratory compaction. A thorium oxide gel containing 3.7 to 7 weight per cent residual volatile nitrate and water is prepared by drying a thorium oxide sol. The gel is then slowly heated to a temperature of about 450DEC, and the resulting gel fragments are calcined. The starting sol is prepared by repeated dispersion of oxalate-source thorium oxide in a nitrate system or by dispersion of steam-denitrated thorium oxide in water. (AEC)

  6. It takes a tissue to make a tumor: epigenetics, cancer and the microenvironment

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    How do normal tissues limit the development of cancer? This review discusses the evidence that normal cells effectively restrict malignant behavior, and that such tissue forces must be subjugated to establish a tumor. The action of ionizing radiation will be specifically discussed regarding the disruption of the microenvironment that promotes the transition from preneoplastic to neoplastic growth. Unlike the highly unpredictable nature of genetic mutations, the response of normal cells to radiation damage follows an epigenetic program similar to wound healing and other damage responses. Our hypothesis is that the persistent disruption of the microenvironment in irradiated tissue compromises its ability to suppress carcinogenesis.

  7. Roles of stromal microenvironment in colon cancer progression.

    PubMed

    Taketo, Makoto Mark

    2012-05-01

    Although our understanding of epithelial cancer cells has advanced significantly, our understanding of the cancer microenvironment is still fragmentary. In contrast to our intuitive impression that our body always suppresses cancer growth, recent pieces of evidence show that cancer often exploits our body reactions to expand, invade local tissues and metastasize to distant organs. Accordingly, investigations of such body reactions in the tumour microenvironment should help us to design novel therapeutic strategies that can be combined with the traditional therapeutics targeted at the cancer cells themselves. In this article, I am going to review our recent efforts in search of novel therapeutic strategies against colon cancer using mouse models.

  8. [Study on sweat gland regeneration induced by microenvironment of three-dimensional bioprinting].

    PubMed

    Yao, B; Xie, J F; Huang, S; Fu, X B

    2017-01-20

    Sweat glands are abundant in the body surface and essential for thermoregulation. Sweat glands fail to conduct self-repair in patients with large area of burn and trauma, and the body temperature of patients increases in hot climate, which may cause shock or even death. Now, co-culture system, reprogramming, and tissue engineering have made progresses in inducing sweat gland regeneration, but the inductive efficiency and duration need to be improved. Cellular microenvironment can regulate cell biological behavior, including cell migration and cell differentiation. This article reviews the studies of establishment of microenvironment in vitro by three-dimensional bioprinting technology to induce sweat gland regeneration.

  9. Tumor Microenvironment Metabolism: A New Checkpoint for Anti-Tumor Immunity

    PubMed Central

    Scharping, Nicole E.; Delgoffe, Greg M.

    2016-01-01

    When a T cell infiltrates a tumor, it is subjected to a variety of immunosuppressive and regulatory signals in the microenvironment. However, it is becoming increasingly clear that due to the proliferative and energetically-deregulated nature of tumor cells, T cells also operate at a metabolic disadvantage. The nutrient dearth of the tumor microenvironment (TME) creates “metabolic checkpoints” upon infiltrating T cells, impacting their ability to survive, proliferate and function effectively. In this review, we summarize the basics of tumor cell and T cell metabolism and discuss recent advances elucidating the individual metabolic checkpoints exerted on T cells that drive their dysfunction in the TME. PMID:27929420

  10. Journeys to School Leadership: How Action Learning Identified What Participants Valued in a Year-Long Australian Leadership Development Program Centered on Principles of Good Practice

    ERIC Educational Resources Information Center

    McCulla, Norman; Degenhardt, Leoni

    2016-01-01

    The need to identify and suitably prepare teachers to undertake school leadership roles especially as principals is now well documented in the literature. Similarly documented is the general concern about the lack of suitable applicants willing to consider the role. This study raised the question of what might be learnt when a…

  11. Development and in vitro/in vivo evaluation of a novel benznidazole liquid dosage form using a quality-by-design approach.

    PubMed

    Santos Souza, Higo Fernando; Real, Daniel; Leonardi, Darío; Rocha, Sandra Carla; Alonso, Victoria; Serra, Esteban; Silber, Ariel Mariano; Salomon, Claudio Javier

    2017-12-01

    To develop an alcohol-free solution suitable for children of benznidazole, the drug of choice for treatment of Chagas disease. In a quality-by-design approach, a systematic optimisation procedure was carried out to estimate the values of the factors leading to the maximum drug concentration. The formulations were analysed in terms of chemical and physical stability and drug content. The final preparation was subjected to an in vivo palatability assay. Mice were infected and treated orally in a murine model. The results showed that benznidazole solubility increased up to 18.38 mg/ml in the optimised co-solvent system. The final formulation remained stable at all three temperatures tested, with suitable drug content and no significant variability. Palatability of the preparation was improved by taste masking of BZL. In vivo studies showed that both parasitaemia and mortality diminished, particularly at a dose of 40 mg/kg/day. Quality by design was a suitable approach to formulate a co-solvent system of benznidazole. The in vivo studies confirmed the suitability of the optimised such solutions to diminish both parasitaemia and mortality. Thus, this novel alternative should be taken into account for further clinical evaluation in all age ranges. © 2017 John Wiley & Sons Ltd.

  12. Role of PTEN in the Tumor Microenvironment

    DTIC Science & Technology

    2009-06-01

    OS, Boers M, Molthoff CF, van Diest PJ. (2008). Hexokinase III, cyclin A and galectin - 3 are overexpressed in malignant follicular thyroid nodules...2009 2. REPORT TYPE Annual 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE Role of PTEN in the Tumor Microenvironment 5a. CONTRACT NUMBER...

  13. Role of PTEN in the Tumor Microenvironment

    DTIC Science & Technology

    2010-06-01

    like tumor macro- phages modulate the extracellular microenvironment to pro- mote tumor growth and angiogenesis at both primary and tumor sites. A key...median lobe with a saline-moistened cotton tip. The median and left lateral lobe will be held against the diaphragm/thorax with a moistened cotton

  14. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    USDA-ARS?s Scientific Manuscript database

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  15. Rodent repellent studies. IV. Preparation and properties of trinitrobenzene-aryl amine complexes

    USGS Publications Warehouse

    DeWitt, J.B.; Bellack, E.; Welch, J.F.

    1953-01-01

    Data are presented on methods of preparation, chemical arid physical characteristics, toxicity, and repellency to rodents of complexes of symmetrical trinitrohenzene with various aromatic amines: When applied in suitable carriers or incorporated in plastic .films, members of this series ofmaterials were shown to offer significant increases in time required by wild rodents to damage common packaging materials.

  16. Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies.

    PubMed

    Okegawa, Yuki; Koshino, Masanori; Okushima, Teruya; Motohashi, Ken

    2016-02-01

    Specific antibodies are a reliable tool to examine protein expression patterns and to determine the protein localizations within cells. Generally, recombinant proteins are used as antigens for specific antibody production. However, recombinant proteins from mammals and plants are often overexpressed as insoluble inclusion bodies in Escherichia coli. Solubilization of these inclusion bodies is desirable because soluble antigens are more suitable for injection into animals to be immunized. Furthermore, highly purified proteins are also required for specific antibody production. Plastidic acetyl-CoA carboxylase (ACCase: EC 6.4.1.2) from Arabidopsis thaliana, which catalyzes the formation of malonyl-CoA from acetyl-CoA in chloroplasts, formed inclusion bodies when the recombinant protein was overexpressed in E. coli. To obtain the purified protein to use as an antigen, we applied preparative disk gel electrophoresis for protein purification from inclusion bodies. This method is suitable for antigen preparation from inclusion bodies because the purified protein is recovered as a soluble fraction in electrode running buffer containing 0.1% sodium dodecyl sulfate that can be directly injected into immune animals, and it can be used for large-scale antigen preparation (several tens of milligrams). Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An Efficient Covalent Coating on Glass Slides for Preparation of Optical Oligonucleotide Microarrays

    PubMed Central

    Pourjahed, Atefeh; Rabiee, Mohammad; Tahriri, Mohammadreza

    2013-01-01

    Objective(s): Microarrays are potential analyzing tools for genomics and proteomics researches, which is in needed of suitable substrate for coating and also hybridization of biomolecules. Materials and Methods: In this research, a thin film of oxidized agarose was prepared on the glass slides which previously coated with poly-L-lysine (PLL). Some of the aldehyde groups of the activated agarose linked covalently to PLL amine groups; also bound to the amino groups of biomolecules. These linkages were fixed by UV irradiation. The prepared substrates were compared to only agarose-coated and PLL-coated slides. Results: Results on atomic force microscope (AFM) demonstrated that agarose provided three-dimensional surface which had higher loading and bindig capacity for biomolecules than PLL-coated surface which had two-dimensional surface. In addition, the signal-to-noise ratio in hybridization reactions performed on the agarose-PLL coated substrates increased two fold and four fold compared to agarose and PLL coated substrates, respectively. Conclusion: The agarose-PLL microarrays had the highest signal (2546) and lowest background signal (205) in hybridization, suggesting that the prepared slides are suitable in analyzing wide concentration range of analytes. PMID:24570832

  18. Microenvironments and microscale productivity of cyanobacterial desert crusts

    USGS Publications Warehouse

    Garcia-Pichel, F.; Belnap, Jayne

    1996-01-01

    We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4a??9.4 mmol O2A?ma??2A?ha??1) and dark respiration (0.81a??3.1 mmol Oa??2A?ma??2A?ha??1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2a??3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.

  19. Nesting of colon and ovarian cancer cells in the endothelial niche is associated with alterations in glycan and lipid metabolism

    PubMed Central

    Halama, Anna; Guerrouahen, Bella S.; Pasquier, Jennifer; Satheesh, Noothan J.; Suhre, Karsten; Rafii, Arash

    2017-01-01

    The metabolic phenotype of a cancer cell is determined by its genetic makeup and microenvironment, which dynamically modulates the tumor landscape. The endothelial cells provide both a promoting and protective microenvironment – a niche for cancer cells. Although metabolic alterations associated with cancer and its progression have been fairly defined, there is a significant gap in our understanding of cancer metabolism in context of its microenvironment. We deployed an in vitro co-culture system based on direct contact of cancer cells with endothelial cells (E4+EC), mimicking the tumor microenvironment. Metabolism of colon (HTC15 and HTC116) and ovarian (OVCAR3 and SKOV3) cancer cell lines was profiled with non-targeted metabolic approaches at different time points in the first 48 hours after co-culture was established. We found significant, coherent and non-cell line specific changes in fatty acids, glycerophospholipids and carbohydrates over time, induced by endothelial cell contact. The metabolic patterns pinpoint alterations in hexosamine biosynthetic pathway, glycosylation and lipid metabolism as crucial for cancer – endothelial cells interaction. We demonstrated that “Warburg effect” is not modulated in the initial stage of nesting of cancer cell in the endothelial niche. Our study provides novel insight into cancer cell metabolism in the context of the endothelial microenvironment. PMID:28051182

  20. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    PubMed

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-12-05

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  1. Molecular imaging of the tumor microenvironment for precision medicine and theranostics.

    PubMed

    Penet, Marie-France; Krishnamachary, Balaji; Chen, Zhihang; Jin, Jiefu; Bhujwalla, Zaver M

    2014-01-01

    Morbidity and mortality from cancer and their associated conditions and treatments continue to extract a heavy social and economic global burden despite the transformative advances in science and technology in the twenty-first century. In fact, cancer incidence and mortality are expected to reach pandemic proportions by 2025, and costs of managing cancer will escalate to trillions of dollars. The inability to establish effective cancer treatments arises from the complexity of conditions that exist within tumors, the plasticity and adaptability of cancer cells coupled with their ability to escape immune surveillance, and the co-opted stromal cells and microenvironment that assist cancer cells in survival. Stromal cells, although destroyed together with cancer cells, have an ever-replenishing source that can assist in resurrecting tumors from any residual cancer cells that may survive treatment. The tumor microenvironment landscape is a continually changing landscape, with spatial and temporal heterogeneities that impact and influence cancer treatment outcome. Importantly, the changing landscape of the tumor microenvironment can be exploited for precision medicine and theranostics. Molecular and functional imaging can play important roles in shaping and selecting treatments to match this landscape. Our purpose in this review is to examine the roles of molecular and functional imaging, within the context of the tumor microenvironment, and the feasibility of their applications for precision medicine and theranostics in humans. © 2014 Elsevier Inc. All rights reserved.

  2. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments

    PubMed Central

    Albritton, Jacob L.

    2017-01-01

    ABSTRACT Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo. Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. PMID:28067628

  3. The mechanical microenvironment in cancer: How physics affects tumours.

    PubMed

    Nagelkerke, Anika; Bussink, Johan; Rowan, Alan E; Span, Paul N

    2015-12-01

    The tumour microenvironment contributes greatly to the response of tumour cells. It consists of chemical gradients, for example of oxygen and nutrients. However, a physical environment is also present. Apart from chemical input, cells also receive physical signals. Tumours display unique mechanical properties: they are a lot stiffer than normal tissue. This may be either a cause or a consequence of cancer, but literature suggests it has a major impact on tumour cells as will be described in this review. The mechanical microenvironment may cause malignant transformation, possibly through activation of oncogenic pathways and inhibition of tumour suppressor genes. In addition, the mechanical microenvironment may promote tumour progression by influencing processes such as epithelial-to-mesenchymal transition, enhancing cell survival through autophagy, but also affects sensitivity of tumour cells to therapeutics. Furthermore, multiple intracellular signalling pathways prove sensitive to the mechanical properties of the microenvironment. It appears the increased stiffness is unlikely to be caused by increased stiffness of the tumour cells themselves. However, there are indications that tumours display a higher cell density, making them more rigid. In addition, increased matrix deposition in the tumour, as well as increased interstitial fluid pressure may account for the increased stiffness of tumours. Overall, tumour mechanics are significantly different from normal tissue. Therefore, this feature should be further explored for use in cancer prevention, detection and treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. Introduction of a multi-institutional research project.

    PubMed

    Zips, Daniel; Adam, Markus; Flentje, Michael; Haase, Axel; Molls, Michael; Mueller-Klieser, Wolfgang; Petersen, Cordula; Philbrook, Christine; Schmitt, Peter; Thews, Oliver; Walenta, Stefan; Baumann, Michael

    2004-10-01

    Recent developments in imaging technology and tumor biology have led to new techniques to detect hypoxia and related alterations of the metabolic microenvironment in tumors. However, whether these new methods can predict radiobiological hypoxia and outcome after fractionated radiotherapy still awaits experimental evaluation. The present article will introduce a multi-institutional research project addressing the impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. The four laboratories involved are situated at the universities of Dresden, Mainz, Munich and Würzburg, Germany. The joint scientific project started to collect data obtained on a set of ten different human tumor xenografts growing in nude mice by applying various imaging techniques to detect tumor hypoxia and related parameters of the metabolic microenvironment. These techniques include magnetic resonance imaging and spectroscopy, metabolic mapping with quantitative bioluminescence and single-photon imaging, histological multiparameter analysis of biochemical hypoxia, perfusion and vasculature, and immunohistochemistry of factors related to angiogenesis, invasion and metastasis. To evaluate the different methods, baseline functional radiobiological data including radiobiological hypoxic fraction and outcome after fractionated irradiation will be determined. Besides increasing our understanding of tumor biology, the project will focus on new, clinically applicable strategies for microenvironment profiling and will help to identify those patients that might benefit from targeted interventions to improve tumor oxygenation.

  5. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments.

    PubMed

    Albritton, Jacob L; Miller, Jordan S

    2017-01-01

    Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. © 2017. Published by The Company of Biologists Ltd.

  6. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

    PubMed

    Angelova, Assia L; Barf, Milena; Geletneky, Karsten; Unterberg, Andreas; Rommelaere, Jean

    2017-12-15

    Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  7. Improved Dielectric Properties via Mechano-Chemical Activation in Ba0.80Pb0.20TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Rani, Renu; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    2011-12-01

    The present report is about the preparation and dielectric properties of commonly used Ba0.80Pb0.20TiO3 (BPT) ferroelectric ceramic via Mechano-Chemical Activation (MCA). Results were compared by the BPT sample prepared by conventional solid state method. The BPT sample prepared via MCA technique was found to have decreased tetragonality, dielectric constant value (ɛRT = 450 and ɛmax = 6170) approximately double the value for sample prepared by conventional method (ɛRT = 260 and ɛmax = 3275). Also, the sample prepared by MCA was found to be less frequency dependent. Thus, the BPT sample prepared via MCA is more suitable for capacitor applications requiring lesser frequency dependency than the conventionally prepared BPT sample.

  8. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  9. Operation of the computer model for microenvironment atomic oxygen exposure

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.

    1995-01-01

    A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.

  10. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth

    USDA-ARS?s Scientific Manuscript database

    Reactive stromal cells are an integral part of tumor microenvironment (TME) and interact with cancer cells to regulate their growth. Although targeting stromal cells could be a viable therapy to regulate the communication between TME and cancer cells, identification of stromal targets that make canc...

  11. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach.

    PubMed

    Agrawal, Anjali; Dudhedia, Mayur; Deng, Weibin; Shepard, Kevin; Zhong, Li; Povilaitis, Edward; Zimny, Ewa

    2016-02-01

    The objective of the study was to identify the extragranular component requirements (level and type of excipients) to develop an immediate release tablet of solid dispersions prepared by hot melt extrusion (HME) process using commonly used HME polymers. Solid dispersions of compound X were prepared using polyvinyl pyrrolidone co-vinyl acetate 64 (PVP VA64), Soluplus, and hypromellose acetate succinate (HPMCAS-LF) polymers in 1:2 ratio by HME through 18 mm extruder. A mixture design was employed to study effect of type of polymer, filler (microcrystalline cellulose (MCC), lactose, and dicalcium phosphate anhydrous (DCPA)), and disintegrant (Crospovidone, croscarmellose sodium, and sodium starch glycolate (SSG)) as well as level of extrudates, filler, and disintegrant on tablet properties such as disintegration time (DT), tensile strength (TS), compactibility, and dissolution. Higher extrudate level resulted in longer DT and lower TS so 60-70% was the maximum amount of acceptable extrudate level in tablets. Fast disintegration was achieved with HPMCAS-containing tablets, whereas Soluplus- and PVP VA64-containing tablets had higher TS. Crospovidone and croscarmellose sodium were more suitable disintegrant than SSG to achieve short DT, and MCC was a suitable filler to prepare tablets with acceptable TS for each studied HME polymer. The influence of extragranular components on dissolution from tablets should be carefully evaluated while finalizing tablet composition, as it varies for each HME polymer. The developed statistical models identified suitable level of fillers and disintegrants for each studied HME polymer to achieve tablets with rapid DT (<15 min) and acceptable TS (≥1 MPa at 10-15% tablet porosity), and their predictivity was confirmed by conducting internal and external validation studies.

  12. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging

    PubMed Central

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K.; Wells, Sam; Wikswo, John P.; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    ABSTRACT We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment. PMID:28243517

  13. Engineering mechanical microenvironment of macrophage and its biomedical applications.

    PubMed

    Li, Jing; Li, Yuhui; Gao, Bin; Qin, Chuanguang; He, Yining; Xu, Feng; Yang, Hui; Lin, Min

    2018-03-01

    Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.

  14. It takes a tissue to make a tumor: Epigenetics, cancer and the microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcellos-Hoff, Mary Helen

    How do normal tissues limit the development of cancer? This review discusses the evidence that normal cells effectively restrict malignant behavior, and that such tissue forces must be subjugated to establish a tumor. The action of ionizing radiation will be specifically discussed regarding the disruption of the microenvironment that promotes the transition from preneoplastic to neoplastic growth. Unlike the highly unpredictable nature of genetic mutations, the response of normal cells to radiation damage follows an epigenetic program similar to wound healing and other damage responses. Our hypothesis is that the persistent disruption of the microenvironment in irradiated tissue compromises itsmore » ability to suppress carcinogenesis.« less

  15. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    PubMed

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  16. Landfill site selection using combination of GIS and fuzzy AHP, a case study: Iranshahr, Iran.

    PubMed

    Torabi-Kaveh, M; Babazadeh, R; Mohammadi, S D; Zaresefat, M

    2016-03-09

    One of the most important recent challenges in solid waste management throughout the world is site selection of sanitary landfill. Commonly, because of simultaneous effects of social, environmental, and technical parameters on suitability of a landfill site, landfill site selection is a complex process and depends on several criteria and regulations. This study develops a multi-criteria decision analysis (MCDA) process, which combines geographic information system (GIS) analysis with a fuzzy analytical hierarchy process (FAHP), to determine suitable sites for landfill construction in Iranshahr County, Iran. The GIS was used to calculate and classify selected criteria and FAHP was used to assess the criteria weights based on their effectiveness on selection of potential landfill sites. Finally, a suitability map was prepared by overlay analyses and suitable areas were identified. Four suitability classes within the study area were separated, including high, medium, low, and very low suitability areas, which represented 18%, 15%, 55%, and 12% of the study area, respectively. © The Author(s) 2016.

  17. Microglia energy metabolism in metabolic disorder.

    PubMed

    Kalsbeek, Martin J T; Mulder, Laurie; Yi, Chun-Xia

    2016-12-15

    Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This non-signaling energy demand increases after activation by pathogens, neuronal damage or other kinds of stimulation. Of the three major energy substrates - glucose, fatty acids and glutamine - glucose is crucial for microglia survival and several glucose transporters are expressed to supply sufficient glucose influx. Fatty acids are another source of energy for microglia and have also been shown to strongly influence microglial immune activity. Glutamine, although possibly suitable for use as an energy substrate by microglia, has been shown to have neurotoxic effects when overloaded. Microglial fuel metabolism might be associated with microglial reactivity under different pathophysiological conditions and a microglial fuel switch may thus be the underlying cause of hypothalamic dysregulation, which is associated with obesity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Building health: The need for electromagnetic hygiene?

    NASA Astrophysics Data System (ADS)

    Jamieson, Isaac A.; Holdstock, Paul; ApSimon, Helen M.; Bell, J. Nigel B.

    2010-04-01

    Whilst the electromagnetic nature of the built environment has changed considerably over the past century, little thought is at present given to the possible advantages of creating electromagnetic microenvironments that more closely resemble those found in nature and/or developing biologically-friendly technology aligned more closely to its operating principles. This review paper examines how more natural exposures to a variety of electromagnetic phenomena could be re-introduced into the built environment, possible benefits that might arise, and discusses the extent to which there may be tangible benefits obtainable from introducing more rigorous properly considered electromagnetic hygiene measures. Amongst the matters discussed are: the effects of different materials, finishes and electrical items on charge generation (and the effects of excess charge on contaminant deposition); the possible benefits of suitably grounding conductive objects (including humans) in order to reduce excess charge and contaminant deposition; how the presence of vertical electric field regimes, similar to those found in nature, may enhance biological performance; and possible pitfalls to avoid when seeking to introduce appropriate electromagnetic hygiene regimes.

  19. Denitrification by the mix-culturing of fungi and bacteria with shell.

    PubMed

    Liu, Deli; Zhang, Shan; Zheng, Yongliang; Shoun, Hirofumi

    2006-01-01

    Denitrification by pure and mixed culture of Fusarium oxysporum and Pseudomonas stutzeri in different mineral medium and in synthetic wastewater were examined. The results obtained revealed that a rapid N2 evolution by F. oxysporum and P. stutzeri in mineral medium and synthetic wastewater was observed. In co-cultures of F. oxysporum and P. stutzeri, N2O produced by F. oxysporum was rapidly consumed by P. stutzeri. This indicated that mixed culture of F. oxysporum and P. stutzeri could be used for efficient nitrate and nitrite removal. Using synthetic wastewater, about 87% of nitrate was reduced by co-denitrification of F. oxysporum and P. stutzeri after incubation for 6 days. In the further denitrification tests, the interaction of shell and mixed culture of F. oxysporum and P. stutzeri was investigated. The dinitrogen was rapidly evolved (442.48 micromol N2 produced from 1.0 mmol of NO3(-) in 36 h). These results clearly showed that shell provide a suitable microenvironment for P. stutzeri, which is beneficial to the denitrification.

  20. Taenia solium metacestode preparation in rural areas of sub-Saharan Africa: a source for diagnosis and research on cysticercosis.

    PubMed

    Schmidt, V; Sikasunge, C S; Odongo-Aginya, E; Simukoko, C; Mwanjali, G; Alarakol, S; Ovuga, E; Matuja, W; Kihamia, C; Löscher, T; Winkler, A S; Bretzel, G

    2015-03-01

    Taenia solium metacestodes/cysts obtained from pig carcasses constitute a primary source for diagnostic tools used for the detection of human cysticercosis. Data on T. solium cyst preparation in Africa is still scarce but required to establish independent reference laboratories. The aim of the present study is a) to present the likely yield of T. solium cyst material by the use of two different preparation methods in the field and b) to investigate its suitability for immunodiagnosis of human cysticercosis. In Zambia, Uganda and Tanzania 670 pigs were screened for T. solium infection. Cysts were prepared by 'shaking method' and 'washing method'. Generated crude antigens were applied in a standard western blot assay. 46 out of 670 pigs (6.9%) were found positive for T. solium (Zambia: 12/367, 3.3%; Uganda: 11/217, 5.1%; Tanzania 23/86, 26.7%). Mean values of 77.7 ml whole cysts, 61.8 ml scolices/membranes and 10.9 ml cyst fluid were obtained per pig. Suitability of collected material for the use as crude antigen and molecular diagnostic techniques was demonstrated. This study clearly shows that T. solium cyst preparation in African settings by simple field methods constitutes an effective way to obtain high quality material as source for diagnostic tools and research purposes.

  1. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2015-01-06

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  2. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2013-02-19

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  3. Process for preparing fine-grain metal carbide powder

    DOEpatents

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  4. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  5. A membraneless biofuel cell powered by ethanol and alcoholic beverage.

    PubMed

    Deng, Liu; Shang, Li; Wen, Dan; Zhai, Junfeng; Dong, Shaojun

    2010-09-15

    In this study, we reported on the construction of a stable single-chamber ethanol/O(2) biofuel cell harvesting energy from the ethanol and alcoholic beverage. We prepared a composite film which consisted of partially sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) and chitosan (CHI). The combination of ion-exchange capacity sol-gel and biopolymer chitosan not only provided the attached sites for mediator MDB and AuNPs to facilitate the electron transfer along the substrate reaction, but also gave the suitable microenvironment to retain the enzyme activity in long term. The ethanol bioanode was constructed with the film coimmobilized dehydrogenase (ADH), Meldola's blue (MDB) and gold nanoparticles (AuNPs). The MDB/AuNPs/PSSG-CHI-ADH composite modified electrode showed prominent electrocatalytic activity towards the oxidation of ethanol. The oxygen biocathode consisted of laccase and AuNPs immobilized on the PSSG-CHI composite membrane. The AuNPs/PSSG-CHI-laccase modified electrode catalyzed four-electron reduction of O(2) to water, without any mediator. The assembled single-chamber biofuel cell exhibited good stability and power output towards ethanol. The open-circuit voltage of this biofuel cell was 860 mV. The maximum power density of the biofuel cell was 1.56 mWcm(-2) at 550 mV. Most interestingly, this biofuel cell showed the similar performance when the alcoholic beverage acted as the fuel. When this biofuel cell ran with wine as the fuel, the maximum power output density was 3.21 mAcm(-2) and the maximum power density was 1.78 mWcm(-2) at 680 mV of the cell voltage. Our system exhibited stable and high power output in the multi-component substrate condition. This cell has great potential for the development and practical application of bioethanol fuel cell. Copyright 2010 Elsevier B.V. All rights reserved.

  6. GPS-based Microenvironment Tracker (MicroTrac) Model to Estimate Time-Location of Individuals for Air Pollution Exposure Assessments: Model Evaluation in Central North Carolina

    EPA Science Inventory

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure...

  7. Calculated values of atomic oxygen fluences and solar exposure on selected surfaces of LDEF

    NASA Technical Reports Server (NTRS)

    Gillis, J. R.; Pippin, H. G.; Bourassa, R. J.; Gruenbaum, P. E.

    1995-01-01

    Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.

  8. Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1

    PubMed Central

    Catena, Raúl; Bhattacharya, Nandita; Rayes, Tina El; Wang, Suming; Choi, Hyejin; Gao, Dingcheng; Ryu, Seongho; Joshi, Natasha; Bielenberg, Diane; Lee, Sharrell B.; Haukaas, Svein A.; Gravdal, Karsten; Halvorsen, Ole J.; Akslen, Lars A.; Watnick, Randolph S.; Mittal, Vivek

    2013-01-01

    Metastatic tumors have been shown to establish permissive microenvironments for metastases via recruitment of bone marrow (BM)- derived cells. Here, we show that metastasis-incompetent tumors are also capable of generating such microenvironments. However, in these situations the otherwise pro-metastatic Gr1+ myeloid cells create a metastasis-refractory microenvironment via the induction of thrombospondin-1 (Tsp-1) by tumor-secreted prosaposin. (BM)-specific genetic deletion of Tsp-1 abolished the inhibition of metastasis, which was restored by BM transplant from Tsp-1+ donors. We also developed a 5-amino acid peptide from prosaposin as a pharmacological inducer of Tsp-1 in Gr1+ BM cells, which dramatically suppresses metastasis. These results provide mechanistic insights into why certain tumors are deficient in metastatic potential and implicate recruited Gr1+ myeloid cells as the main source of Tsp-1. The results underscore the plasticity of Gr1+ cells, which, depending on the context, promote or inhibit metastasis, and suggest that the peptide could be a potential therapeutic agent against metastatic cancer. PMID:23633432

  9. Chemical and physical microenvironments at the Viking landing sites

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1979-01-01

    Physical and chemical considerations permit the division of the near-surface regolith on Mars into at least six zones of distinct microenvironments. The zones are euphotic, duricrust/peds, tempofrost, permafrost, endolithic, and interfacial/transitional. Microenvironments vary significantly in temperature extremes, mean temperature, salt content, relative pressure of water vapor, UV and visible light irradiance, and exposure to ionizing radiation events (100 Mrad) and oxidative molecular species. From what is known of the chemistry of the atmosphere and regolith fines (soil), limits upon the aqueous chemistry of soil pastes may be estimated. Heat of wetting could reach 45 cal/g dry soil; initial pH is indeterminate between 1 and 10; ionic strength and salinity are predicted to be extremely high; freezing point depression is inadequate to provide quantities of liquid water except in special cases. The prospects for biotic survival are grim by terrestrial standards, but the extremes of biological resiliency are inaccessible to evaluation. Second-generation in situ experiments which will better define Martian microenvironments are clearly possible. Antarctic dry valleys are approximations to Martian conditions, but deviate significantly by at least half-a-dozen criteria.

  10. Intraportal islet transplantation: the impact of the liver microenvironment.

    PubMed

    Delaune, Vaihere; Berney, Thierry; Lacotte, Stéphanie; Toso, Christian

    2017-03-01

    The portal vein remains the preferred site for pancreatic islet transplantation due to its easy access and low morbidity. However, despite great progress in isolation and transplantation protocols over the past few years, it is still associated with the early loss of some 50-70% of transplanted islets. The complex liver microenvironment itself presumably plays an important role in this loss. The present review focuses on the specifics of the liver microenvironment, notably the localized hepatic ischemia/reperfusion injury following transplantation, the low oxygenation of the portal vein, the instant blood-mediated inflammatory reaction, the endogenous liver immune system, and the gut-liver axis, and how they can each have an impact on the transplanted islets. It identifies the potential, or already applied, clinical interventions for improving intraportal islet survival, and pinpoints those promising areas still lacking preclinical research. Future interventions on clinical intraportal islet transplantation need to take into account the global context of the liver microenvironment, with multi-point interventions being most likely to improve early islet survival and engraftment. © 2017 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT.

  11. Modeling microenvironmental regulation of glioblastoma stem cells: a biomaterials perspective

    NASA Astrophysics Data System (ADS)

    Heffernan, John M.; Sirianni, Rachael W.

    2018-02-01

    Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, chemotherapy and radiation together yield a median patient survival of only 15 months. Importantly, standard treatments fail to address the dynamic regulation of the brain tumor microenvironment that actively supports tumor progression and treatment resistance. It is becoming increasingly recognized that specialized niches within the tumor microenvironment maintain a population of highly malignant glioblastoma stem-like cells (GSCs). GSCs are resistant to traditional chemotherapy and radiation therapy, suggesting that they may be responsible for the near universal rates of tumor recurrence and associated morbidity in GBM. Thus, disrupting microenvironmental support for GSCs could be critical to developing more effective GBM therapies. Three-dimensional (3D) culture models of the tumor microenvironment are powerful tools for identifying key biochemical and biophysical inputs that impact malignant behaviors. Such systems have been used effectively to identify conditions that regulate GSC proliferation, invasion, stem-specific phenotypes, and treatment resistance. Considering the significant role that GSC microenvironments play in regulating this tumorigenic sub-population, these models may be essential for uncovering mechanisms that limit GSCs malignancy.

  12. Tumor cell migration in complex microenvironments

    PubMed Central

    Polacheck, William J.; Zervantonakis, Ioannis K.; Kamm, Roger D.

    2012-01-01

    Tumor cell migration is essential for invasion and dissemination from primary solid tumors and for the establishment of lethal secondary metastases at distant organs. In vivo and in vitro models enabled identification of different factors in the tumor microenvironment that regulate tumor progression and metastasis. However, the mechanisms by which tumor cells integrate these chemical and mechanical signals from multiple sources to navigate the complex microenvironment remain poorly understood. In this review, we discuss the factors that influence tumor cell migration with a focus on the migration of transformed carcinoma cells. We provide an overview of the experimental and computational methods that allow the investigation of tumor cell migration, and we highlight the benefits and shortcomings of the various assays. We emphasize that the chemical and mechanical stimulus paradigms are not independent and that crosstalk between them motivates the development of new assays capable of applying multiple, simultaneous stimuli and imaging the cellular migratory response in real-time. These next-generation assays will more closely mimic the in vivo microenvironment to provide new insights into tumor progression, inform techniques to control tumor cell migration, and render cancer more treatable. PMID:22926411

  13. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment

    PubMed Central

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects. PMID:28255348

  14. Chemical and physical microenvironments at the Viking landing sites.

    PubMed

    Clark, B C

    1979-12-01

    Physical and chemical considerations permit the division of the near-surface regolith on Mars into at least six zones of distinct microenvironments. The zones are euphotic, duricrust/peds, tempofrost, permafrost, endolithic, and interfacial/transitional. Microenvironments vary significantly in temperature extremes, mean temperature, salt content, relative pressure of water vapor, UV and visible light irradiance, and exposure to ionizing radiation events (100 Mrad) and oxidative molecular species. From what is known of the chemistry of the atmosphere and regolith fines (soil), limits upon the aqueous chemistry of soil pastes may be estimated. Heat of wetting could reach 45 cal/g dry soil; initial pH is indeterminate between 1 and 10; ionic strength and salinity are predicted to be extremely high; freezing point depression is inadequate to provide quantities of liquid water except in special cases. The prospects for biotic survival are grim by terrestrial standards, but the extremes of biological resiliency are inaccessible to evaluation. Second-generation in situ experiments which will better define Martian microenvironments are clearly possible. Antarctic dry valleys are approximations to Martian conditions, but deviate significantly by at least half-a-dozen criteria.

  15. Global niche of marine anaerobic metabolisms expanded by particle microenvironments

    NASA Astrophysics Data System (ADS)

    Bianchi, Daniele; Weber, Thomas S.; Kiko, Rainer; Deutsch, Curtis

    2018-04-01

    In ocean waters, anaerobic microbial respiration should be confined to the anoxic waters found in coastal regions and tropical oxygen minimum zones, where it is energetically favourable. However, recent molecular and geochemical evidence has pointed to a much broader distribution of denitrifying and sulfate-reducing microbes. Anaerobic metabolisms are thought to thrive in microenvironments that develop inside sinking organic aggregates, but the global distribution and geochemical significance of these microenvironments is poorly understood. Here, we develop a new size-resolved particle model to predict anaerobic respiration from aggregate properties and seawater chemistry. Constrained by observations of the size spectrum of sinking particles, the model predicts that denitrification and sulfate reduction can be sustained throughout vast, hypoxic expanses of the ocean, and could explain the trace metal enrichment observed in particles due to sulfide precipitation. Globally, the expansion of the anaerobic niche due to particle microenvironments doubles the rate of water column denitrification compared with estimates based on anoxic zones alone, and changes the sensitivity of the marine nitrogen cycle to deoxygenation in a warming climate.

  16. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.

    PubMed

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.

  17. 21 CFR 184.1324 - Glyceryl monostearate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... esters of fatty acids present in commercial stearic acid. Glyceryl monostearate is prepared by..., of stearic acid that is derived from edible sources. (b) The ingredient must be of a purity suitable...

  18. 21 CFR 184.1324 - Glyceryl monostearate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... esters of fatty acids present in commercial stearic acid. Glyceryl monostearate is prepared by..., of stearic acid that is derived from edible sources. (b) The ingredient must be of a purity suitable...

  19. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  20. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles.

    PubMed

    Behling, Katja; Maguire, William F; Di Gialleonardo, Valentina; Heeb, Lukas E M; Hassan, Iman F; Veach, Darren R; Keshari, Kayvan R; Gutin, Philip H; Scheinberg, David A; McDevitt, Michael R

    2016-11-01

    Tumors escape antiangiogenic therapy by activation of proangiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We previously investigated targeted α-particle therapy with 225 Ac-E4G10 as an antivascular approach and showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here, we investigated changes in tumor vascular morphology and functionality caused by 225 Ac-E4G10. We investigated remodeling of the tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4-kBq dose of 225 Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphologic changes in the tumor blood-brain barrier microenvironment. Multicolor flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted MR imaged functional changes in the tumor vascular network. The mechanism of drug action is a combination of remodeling of the glioblastoma vascular microenvironment, relief of edema, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis were lessened, resulting in increased perfusion and reduced diffusion. Pharmacologic uptake of dasatinib into tumor was enhanced after α-particle therapy. Targeted antivascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of platelet-derived growth factor-driven glioblastoma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Ex vivo Live Imaging of Lung Metastasis and Their Microenvironment

    PubMed Central

    Maynard, Carrie; Plaks, Vicki

    2016-01-01

    Metastasis is a major cause for cancer-related morbidity and mortality. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular processes that govern metastatic dissemination and growth are still elusive. Live imaging allows visualization of the dynamic and spatial interactions of cells and their microenvironment. Solid tumors commonly metastasize to the lungs. However, the anatomical location of the lungs poses a challenge to intravital imaging. This protocol provides a relatively simple and quick method for ex vivo live imaging of the dynamic interactions between tumor cells and their surrounding stroma within lung metastasis. Using this method, the motility of cancer cells as well as interactions between cancer cells and stromal cells in their microenvironment can be visualized in real time for several hours. By using transgenic fluorescent reporter mice, a fluorescent cell line, injectable fluorescently labeled molecules and/or antibodies, multiple components of the lung microenvironment can be visualized, such as blood vessels and immune cells. To image the different cell types, a spinning disk confocal microscope that allows long-term continuous imaging with rapid, four-color image acquisition has been used. Time-lapse movies compiled from images collected over multiple positions and focal planes show interactions between live metastatic and immune cells for at least 4 hr. This technique can be further used to test chemotherapy or targeted therapy. Moreover, this method could be adapted for the study of other lung-related pathologies that may affect the lung microenvironment. PMID:26862704

  2. Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver.

    PubMed

    Decker, Ningling Kang; Abdelmoneim, Soha S; Yaqoob, Usman; Hendrickson, Helen; Hormes, Joe; Bentley, Mike; Pitot, Henry; Urrutia, Raul; Gores, Greg J; Shah, Vijay H

    2008-10-01

    Tumor progression is regulated through paracrine interactions between tumor cells and stromal cells in the microenvironment, including endothelial cells and myofibroblasts. Nitric oxide (NO) is a key molecule in the regulation of tumor-microenvironment interactions, although its precise role is incompletely defined. By using complementary in vitro and in vivo approaches, we studied the effect of endothelial NO synthase (eNOS)-derived NO on liver tumor growth and metastasis in relation to adjacent stromal myofibroblasts and matrix because liver tumors maintain a rich, vascular stromal network enriched with phenotypically heterogeneous myofibroblasts. Mice with an eNOS deficiency developed liver tumors more frequently in response to carcinogens compared with control animals. In a surgical model of pancreatic cancer liver metastasis, eNOS overexpression in the tumor microenvironment attenuated both the number and size of tumor implants. NO promoted anoikis of tumor cells in vitro and limited their invasive capacity. Because tumor cell anoikis and invasion are both regulated by myofibroblast-derived matrix, we explored the effect of NO on tumor cell protease expression. Both microarray and Western blot analysis revealed eNOS-dependent down-regulation of the matrix protease cathepsin B within tumor cells, and silencing of cathepsin B attenuated tumor cell invasive capacity in a similar manner to that observed with eNOS overexpression. Thus, a NO gradient within the tumor microenvironment influences tumor progression through orchestrated molecular interactions between tumor cells and stroma.

  3. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia

    PubMed Central

    Sui, Bing-Dong; Hu, Cheng-Hu; Zheng, Chen-Xi; Shuai, Yi; He, Xiao-Ning; Gao, Ping-Ping; Zhao, Pan; Li, Meng; Zhang, Xin-Yi; He, Tao; Xuan, Kun; Jin, Yan

    2017-01-01

    Therapeutic effects of mesenchymal stem cell (MSC) infusion have been revealed in various human disorders, but impacts of diseased micro-environments are only beginning to be noticed. Donor diabetic hyperglycemia is reported to impair therapeutic efficacy of stem cells. However, whether recipient diabetic condition also affects MSC-mediated therapy is unknown. We and others have previously shown that MSC infusion could cure osteopenia, particularly in ovariectomized (OVX) mice. Here, we discovered impaired MSC therapeutic effects on osteopenia in recipient type 1 diabetes (T1D). Through intensive glycemic control by daily insulin treatments, therapeutic effects of MSCs on osteopenia were maintained. Interestingly, by only transiently restoration of recipient euglycemia using single insulin injection, MSC infusion could also rescue T1D-induced osteopenia. Conversely, under recipient hyperglycemia induced by glucose injection in OVX mice, MSC-mediated therapeutic effects on osteopenia were diminished. Mechanistically, recipient hyperglycemic micro-environments reduce anti-inflammatory capacity of MSCs in osteoporotic therapy through suppressing MSC interaction with T cells via the Adenosine monophosphate-activated protein kinase (AMPK) pathway. We further revealed in diabetic micro-environments, double infusion of MSCs ameliorated osteopenia by anti-inflammation, attributed to the first transplanted MSCs which normalized the recipient glucose homeostasis. Collectively, our findings uncover a previously unrecognized role of recipient glycemic conditions controlling MSC-mediated therapy, and unravel that fulfillment of potent therapeutic effects of MSCs requires tight control of recipient micro-environments. PMID:28435461

  4. Evolution and morphology of microenvironment-enhanced malignancy of three-dimensional invasive solid tumors

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Torquato, Salvatore

    2013-05-01

    The emergence of invasive and metastatic behavior in malignant tumors can often lead to fatal outcomes for patients. The collective malignant tumor behavior resulting from the complex tumor-host interactions and the interactions between the tumor cells is currently poorly understood. In this paper, we employ a cellular automaton (CA) model to investigate microenvironment-enhanced malignant behaviors and morphologies of in vitro avascular invasive solid tumors in three dimensions. Our CA model incorporates a variety of microscopic-scale tumor-host interactions, including the degradation of the extracellular matrix by the malignant cells, nutrient-driven cell migration, pressure buildup due to the deformation of the microenvironment by the growing tumor, and its effect on the local tumor-host interface stability. Moreover, the effects of cell-cell adhesion on tumor growth are explicitly taken into account. Specifically, we find that while strong cell-cell adhesion can suppress the invasive behavior of the tumors growing in soft microenvironments, cancer malignancy can be significantly enhanced by harsh microenvironmental conditions, such as exposure to high pressure levels. We infer from the simulation results a qualitative phase diagram that characterizes the expected malignant behavior of invasive solid tumors in terms of two competing malignancy effects: the rigidity of the microenvironment and cell-cell adhesion. This diagram exhibits phase transitions between noninvasive and invasive behaviors. We also discuss the implications of our results for the diagnosis, prognosis, and treatment of malignant tumors.

  5. Intermediate Command and Staff Course (Maritime)--a guide to preparation.

    PubMed

    Butterworth, S; Rawlinson, K

    2014-01-01

    The Intermediate Command and Staff Course (Maritime) is an eight-week residential course held at the Joint Services Command and Staff College, Shrivenham. It is designed to prepare mid-late-seniority Lieutenants and newly-promoted Lieutenant Commanders of the Royal Navy for command, charge and staff appointments, and also to assess their suitability for further staff training. This paper aims to assist officers in the Royal Navy Medical Services in their preparation for attending this course, and also to familiarise them with aspects of the course.

  6. Preparation and flow cytometry of uniform silica-fluorescent dye microspheres.

    PubMed

    Bele, Marjan; Siiman, Olavi; Matijević, Egon

    2002-10-15

    Uniform fluorescent silica-dye microspheres have been prepared by coating preformed monodispersed silica particles with silica layers containing rhodamine 6G or acridine orange. The resulting dispersions exhibit intense fluorescent emission between 500 and 600 nm, over a broad excitation wavelength range of 460 to 550 nm, even with exceedingly small amounts of dyes incorporated into the silica particles (10-30 ppm, expressed as weight of dye relative to weight of dry particles). The fluorescent particles can be prepared in micrometer diameters suitable for analyses using flow cytometry with 488-nm laser excitation.

  7. Experience with a commercial preparation of 125I-labelled human albumin for study of albumin metabolism

    PubMed Central

    Ballantyne, Fiona C.; Fleck, A.

    1973-01-01

    Evaluation of a commercial preparation of 125I-labelled albumin for use in the study of albumin metabolism is described. In eight subjects with normal albumin metabolism the proportion of the dose of radioiodide excreted was stable throughout a period of 17 days, indicating that there was no excessive denaturation of the iodinated albumin. Characteristics of albumin metabolism—pool sizes, catabolic rate, etc—were in agreement with currently accepted normal values. It is concluded that this preparation of iodinated albumin is suitable for metabolic use. PMID:4727059

  8. Critical evaluation of sample pretreatment techniques.

    PubMed

    Hyötyläinen, Tuulia

    2009-06-01

    Sample preparation before chromatographic separation is the most time-consuming and error-prone part of the analytical procedure. Therefore, selecting and optimizing an appropriate sample preparation scheme is a key factor in the final success of the analysis, and the judicious choice of an appropriate procedure greatly influences the reliability and accuracy of a given analysis. The main objective of this review is to critically evaluate the applicability, disadvantages, and advantages of various sample preparation techniques. Particular emphasis is placed on extraction techniques suitable for both liquid and solid samples.

  9. Preparation and mechanical properties of edible rapeseed protein films.

    PubMed

    Jang, Sung-Ae; Lim, Geum-Ok; Song, Kyung Bin

    2011-03-01

    Edible films were manufactured from rapeseed oil extraction residues. To prepare rapeseed protein (RP) films, various concentrations of plasticizers and emulsifiers were incorporated into the preparation of a film-forming solution. The optimal conditions for the preparation of the RP film were 2% sorbitol/0.5% sucrose as plasticizer and 1.5% polysorbate 20 as an emulsifier. In addition, RP blend films were prepared. Gelidium corneum or gelatin was added to improve the physical properties of the RP film, and the highest tensile strength value of the films was 53.45 MPa for the 3% RP/4% gelatin film. Our results suggest that the RP-gelatin blend film is suitable for applications in food packaging. Edible RP films prepared in the present investigation can be applied in food packaging.

  10. [Comparative protein analytic studies of various intravenous 7S-immunoglobulin preparations].

    PubMed

    Fateh-Moghadam, A; Wick, M; Simon, H

    1984-02-01

    Seven different commercial intravenous 7S-immunoglobulin preparations have been examined by electrophoresis, immunoelectrophoresis, quantitative determination of immunoglobulins and other proteins, gel chromatography and analytical ultracentrifugation. No significant difference concerning IgG and monomeric immunoglobulin concentrations was observed. The content of IgM, dimers and polymers showed slight, that of IgA considerable differences. All immunoglobulin preparations comply with the European Pharmacopoea requirements. The rate of adverse reactions should be equally low due to similar dimer and polymer contents. IgA-free preparations are considered to be more suitable in primary hypogammaglobulinaemia whereas IgA-containing preparations could be of benefit in acquired hypogammaglobulinaemia. While the presence of an intact immunoglobulin molecule is thought to be essential for its full therapeutic efficacy, the influence of the preparation method is still in debate.

  11. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    PubMed Central

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  12. Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT.

    PubMed

    Buhrmann, Constanze; Kraehe, Patricia; Lueders, Cora; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2014-01-01

    Interaction of stromal and tumor cells plays a dynamic role in initiating and enhancing carcinogenesis. In this study, we investigated the crosstalk between colorectal cancer (CRC) cells with stromal fibroblasts and the anti-cancer effects of curcumin and 5-Fluorouracil (5-FU), especially on cancer stem cell (CSC) survival in a 3D-co-culture model that mimics in vivo tumor microenvironment. Colon carcinoma cells HCT116 and MRC-5 fibroblasts were co-cultured in a monolayer or high density tumor microenvironment model in vitro with/without curcumin and/or 5-FU. Monolayer tumor microenvironment co-cultures supported intensive crosstalk between cancer cells and fibroblasts and enhanced up-regulation of metastatic active adhesion molecules (β1-integrin, ICAM-1), transforming growth factor-β signaling molecules (TGF-β3, p-Smad2), proliferation associated proteins (cyclin D1, Ki-67) and epithelial-to-mesenchymal transition (EMT) factor (vimentin) in HCT116 compared with tumor mono-cultures. High density tumor microenvironment co-cultures synergistically increased tumor-promoting factors (NF-κB, MMP-13), TGF-β3, favored CSC survival (characterized by up-regulation of CD133, CD44, ALDH1) and EMT-factors (increased vimentin and Slug, decreased E-cadherin) in HCT116 compared with high density HCT116 mono-cultures. Interestingly, this synergistic crosstalk was even more pronounced in the presence of 5-FU, but dramatically decreased in the presence of curcumin, inducing biochemical changes to mesenchymal-epithelial transition (MET), thereby sensitizing CSCs to 5-FU treatment. Enrichment of CSCs, remarkable activation of tumor-promoting factors and EMT in high density co-culture highlights that the crosstalk in the tumor microenvironment plays an essential role in tumor development and progression, and this interaction appears to be mediated at least in part by TGF-β and EMT. Modulation of this synergistic crosstalk by curcumin might be a potential therapy for CRC and suppress metastasis.

  13. Contribution to volatile organic compound exposures from time spent in stores and restaurants and bars.

    PubMed

    Loh, Miranda M; Houseman, E Andres; Levy, Jonathan I; Spengler, John D; Bennett, Deborah H

    2009-11-01

    Many people spend time in stores and restaurants, yet there has been little investigation of the influence of these microenvironments on personal exposure. Relative to the outdoors, transportation, and the home, these microenvironments have high concentrations of several volatile organic compounds (VOCs). We developed a stochastic model to examine the effect of VOC concentrations in these microenvironments on total personal exposure for (1) non-smoking adults working in offices who spend time in stores and restaurants or bars and (2) non-smoking adults who work in these establishments. We also compared the effect of working in a smoking versus non-smoking restaurant or bar. Input concentrations for each microenvironment were developed from the literature whereas time activity inputs were taken from the National Human Activity Patterns Survey. Time-averaged exposures were simulated for 5000 individuals over a weeklong period for each analysis. Mean contributions to personal exposure from non-working time spent in stores and restaurants or bars range from <5% to 20%, depending on the VOC and time-activity patterns. At the 95th percentile of the distribution of the proportion of personal exposure attributable to time spent in stores and restaurants or bars, these microenvironments can be responsible for over half of a person's total exposure to certain VOCs. People working in restaurants or bars where smoking is allowed had the highest fraction of exposure attributable to their workplace. At the median, people who worked in stores or restaurants tended to have 20-60% of their total exposures from time spent at work. These results indicate that stores and restaurants can be large contributors to personal exposure to VOCs for both workers in those establishments and for a subset of people who visit these places, and that incorporation of these non-residential microenvironments can improve models of personal exposure distributions.

  14. Curcumin Suppresses Crosstalk between Colon Cancer Stem Cells and Stromal Fibroblasts in the Tumor Microenvironment: Potential Role of EMT

    PubMed Central

    Buhrmann, Constanze; Kraehe, Patricia; Lueders, Cora; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2014-01-01

    Objective Interaction of stromal and tumor cells plays a dynamic role in initiating and enhancing carcinogenesis. In this study, we investigated the crosstalk between colorectal cancer (CRC) cells with stromal fibroblasts and the anti-cancer effects of curcumin and 5-Fluorouracil (5-FU), especially on cancer stem cell (CSC) survival in a 3D-co-culture model that mimics in vivo tumor microenvironment. Methods Colon carcinoma cells HCT116 and MRC-5 fibroblasts were co-cultured in a monolayer or high density tumor microenvironment model in vitro with/without curcumin and/or 5-FU. Results Monolayer tumor microenvironment co-cultures supported intensive crosstalk between cancer cells and fibroblasts and enhanced up-regulation of metastatic active adhesion molecules (β1-integrin, ICAM-1), transforming growth factor-β signaling molecules (TGF-β3, p-Smad2), proliferation associated proteins (cyclin D1, Ki-67) and epithelial-to-mesenchymal transition (EMT) factor (vimentin) in HCT116 compared with tumor mono-cultures. High density tumor microenvironment co-cultures synergistically increased tumor-promoting factors (NF-κB, MMP-13), TGF-β3, favored CSC survival (characterized by up-regulation of CD133, CD44, ALDH1) and EMT-factors (increased vimentin and Slug, decreased E-cadherin) in HCT116 compared with high density HCT116 mono-cultures. Interestingly, this synergistic crosstalk was even more pronounced in the presence of 5-FU, but dramatically decreased in the presence of curcumin, inducing biochemical changes to mesenchymal-epithelial transition (MET), thereby sensitizing CSCs to 5-FU treatment. Conclusion Enrichment of CSCs, remarkable activation of tumor-promoting factors and EMT in high density co-culture highlights that the crosstalk in the tumor microenvironment plays an essential role in tumor development and progression, and this interaction appears to be mediated at least in part by TGF-β and EMT. Modulation of this synergistic crosstalk by curcumin might be a potential therapy for CRC and suppress metastasis. PMID:25238234

  15. Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI

    NASA Astrophysics Data System (ADS)

    Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.

    Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental characterizations for the chemicals of interest. Consistent with many earlier studies, personal exposures are difficult to predict using data from regional outdoor monitors.

  16. Importance of the stem cell microenvironment for ophthalmological cell-based therapy

    PubMed Central

    Wan, Peng-Xia; Wang, Bo-Wen; Wang, Zhi-Chong

    2015-01-01

    Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue in vitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although iPS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore how to reconstruct the stem cell microenvironment and strengthen its combination with the transplanted cells are key steps to successful cell therapy. In this review, we will describe the interactions of the stem cell microenvironment with the stem cells, discuss the importance of the stem cell microenvironment for cell-based therapy in ocular diseases, and introduce the progress of stem cell-based therapy for ocular diseases. PMID:25815128

  17. [Effect of trichostatin A on the osteogenic differentiation potential of periodontal ligament stem cells in inflammatory microenvironment induced by tumor necrosis factor-α stimulation].

    PubMed

    Wang, H; Chen, Q; Liu, W J; Yang, Z H; Li, D; Jin, F

    2016-04-09

    To compare the expression of histone deacetylase(HDAC)1-11 of human periodontal ligament stem cells(PDLSC)in normal and inflammatory microenvironments, and to investigate the effect of histone deacetylase inhibitor trichostatin A(TSA)on the osteogenic differentiation potential of PDLSC in inflammatory microenvironment induced by tumor necrosis factor-α(TNF-α)stimulation. PDLSC were isolated from periodontal ligament tissues obtained from the surgically extracted human teeth and cultured by single-colony selection. The expression of HDAC1-11 in cells with or without TNF-α(10 μg/L)stimulation was evaluated by quantitative real time-PCR(RT-PCR). The effect of TSA on cell proliferation was investigated by methyl thiazolyl tetrazolium(MTT)assay. The influence of TSA on osteogenic differentiation of PDLSC in inflammatory microenvironment with TNF-α stimulation was assessed by alizarin red staining, quantitative RT-PCR and Western blotting, respectively. The expression of HDAC in PDLSC with TNF-α stimulation was significantly higher than that in normal PDLSC(P<0.05)(except HDAC7, P=0.243). TSA had no significant effect on PDLSC proliferation at the concentration of 50 nmol/L(P=0.232). The alizarin red staining showed that PDLSC in TNF-α group generated less mineralized nodule than the control group, while the cell matrix mineralization in TSA group was improved obviously. TNF-α had an inhibitory effect on the expression of osteogenesis related genes, runt-related transcription factor-2(RUNX2)and alkaline phosphatase(ALP), with relative gene expression ratio(experimental/control)decreased to 0.17 ± 0.02 and 0.32 ± 0.03, while TSA could significantly increase the genes' expression to 0.67±0.03 and 0.89±0.02(P<0.01). Western blotting test showed that in TNF-α group the expression of osteogenesis related proteins was obviously reduced, and compared with the TNF-α group, TSA could significantly promote the expression of proteinsin inflammatory microenvironment. PDLSC in inflammatory microenvironment by TNF-α stimulation had a higher expression of HDAC than that in normal conditions. TSA, as a histone deacetylase inhibitor, could significantly promote the osteogenic differentiation potential of PDLSC in inflammatory microenvironment by suppressing HDAC.

  18. CLU "in and out": looking for a link.

    PubMed

    Pucci, Sabina; Mazzarelli, P; Nucci, C; Ricci, F; Spagnoli, L G

    2009-01-01

    Cancer cells need to interact synergistically with their surrounding microenvironment to form a neoplasm and to progress further to colonize distant organs. The microenvironment can exert profound epigenetic effects on cells through cell-derived interactions between cells, or through cell-derived factors deposited into the microenvironment. Tumor progression implies immune-escaping and triggers several processes that synergistically induce a cooperation among transformed and stromal cells, that compete for space and resources such as oxygen and nutrients. Therefore, the extra cellular milieu and tissue microenvironment heterotypic interactions cooperate to promote tumor growth, angiogenesis, and cancer cell motility, through elevated secretion of pleiotropic cytokines and soluble factors. Clusterin (CLU), widely viewed as an enigmatic protein represents one of the numerous cellular factors sharing the intracellular information with the microenvironment and it has also a systemic diffusion, tightly joining the "In and the Out" of the cell with a still debated variety of antagonistic functions. The multiplicity of names for CLU is an indication of the complexity of the problem and could reflect, on one hand its multifunctionality, or alternatively could mask a commonality of function. The posited role for CLU, further supported as a cytoprotective prosurvival chaperone-like molecule, seems compelling, in contrast its tumor suppressor function, as a guide of the guardians of the genome (DNA-repair proteins Ku70/80, Bax cell death inducer), could really reflect the balanced expression of its different forms, most certainly depending on the intra- and extracellular microenvironment cross talk. The complicated balance of cytokines network and the regulation of CLU forms production in cancer and stromal cells undoubtedly represent a potential link among adaptative responses, genomic stability, and bystander effect after oxidative stresses and damage. This review focuses on the tumor-microenvironment interactions strictly involved in controlling local cancer growth, invasion, and distant metastases that play a decisive role in the regulation of CLU different forms expression and release. In addition, we focus on the pleiotropic action of the extracellular form of this protein, sCLU, that may play a crucial role in redirecting stromal changes, altering intercellular communications binding cell surface receptors and contributing to influence the secretion of chemokines in paracrine and autocrine fashion. Further elucidation of CLU functions inside and outside ("in and out") of cancer cell are warranted for a deeper understanding of the interplay between tumor and stroma, suggesting new therapeutic cotargeting strategies.

  19. Polyimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.

    1990-01-01

    Experiments show variety of polyimidazoles prepared by aromatic nucleophilic displacement, from reactions of bisphenol imidazoles with activated difluoro compounds. Polyimidazoles have good mechanical properties making them suitable for use as films, moldings, and adhesives.

  20. Introduction: understanding mechanisms of the actions of rifaximin in selected gastrointestinal diseases.

    PubMed

    DuPont, H L

    2016-01-01

    Historically, the beneficial effects of the nonsystemic oral agent rifaximin on various gastrointestinal (GI) disorders have been attributed to direct antibiotic activity on gut microbiota. However, data are accumulating to suggest that other nonantibacterial effects may be involved in rifaximin efficacy. To explore the mechanisms of action of rifaximin that may underlie its clinical benefits in travellers' diarrhoea, hepatic encephalopathy and other cirrhosis complications, inflammatory bowel diseases, and irritable bowel syndrome with diarrhoea. Gastroenterology experts convened a round-table discussion to address clinical and pre-clinical rifaximin data pertaining to select GI diseases and the potential mechanisms of action that underlie rifaximin efficacy profiles. As preparation, the literature was searched for publications related to rifaximin, its mechanisms of action, and its efficacy in travellers' diarrhoea, hepatic encephalopathy and other cirrhosis-related complications, inflammatory bowel diseases and irritable bowel syndrome. Gut microbiota dysbiosis and proinflammatory activities are thought to significantly contribute to disease pathophysiology of these conditions. Rifaximin may resolve gut microbiota dysbiosis by promoting GI colonisation of beneficial bacterial species without drastic alterations in overall diversity. Rifaximin-induced changes in the production and metabolism of bacteria-produced agents (e.g. deoxycholic acid, lipopolysaccharides) also may help preserve normal gut microbiota. Rifaximin may suppress local and systemic inflammatory processes by preserving epithelial function (e.g. limiting bacterial translocation), modulating bacterial virulence and reducing proinflammatory cytokine production. The commonality of pathological mechanisms underlying multiple GI diseases and the ability of rifaximin to modulate the gut microenvironment (i.e. gut microenvironment modulator) may explain its diverse efficacy profile. © 2015 John Wiley & Sons Ltd.

  1. Preparing the “Soil”: The Premetastatic Niche

    PubMed Central

    Kaplan, Rosandra N.; Rafii, Shahin; Lyden, David

    2010-01-01

    Current focus on cancer metastasis has centered on the intrinsic factors regulating the cell autonomous homing of the tumor cells to the metastatic site. Specific up-regulation of fibronectin and clustering of bone marrow–derived cellular infiltrates coexpressing matrix metalloproteinases in distant tissue sites before tumor cell arrival are proving to be indispensable for the initial stages of metastasis. These bone marrow–derived hematopoietic progenitors that express vascular endothelial growth factor receptor 1 mobilize in response to the unique array of growth factors produced by the primary tumor. Their arrival in distant sites represents early changes in the local microenvironment, termed the “premetastatic niche,” which dictate the pattern of metastatic spread. Focus on the early cellular and molecular events in cancer dissemination and selectivity will likely lead to new approaches to detect and prevent metastasis at its earliest inception. PMID:17145848

  2. Assembled microcapsules by doxorubicin and polysaccharide as high effective anticancer drug carriers.

    PubMed

    Du, Cuiling; Zhao, Jie; Fei, Jinbo; Cui, Yue; Li, Junbai

    2013-09-01

    Doxorubicin, together with the modified polysaccharide (alginate dialdehyde), was used as a wall material to fabricate microcapsules through self-cross-linking by a template method. The microcapsules as-prepared are pH-responsive. Relevant scanning electronic microscopy, atom force microscopy and confocal laser scanning microscopy confirm the morphology of the uniform microcapsules. The spectroscopic results show that the microcapsules are assembled through electrostatic interaction and Schiff's base covalent bonding. Doxorubicin can be released sustainably from the capsules in buffer solution at a lower pH value. The cellular uptake of the microcapsules and drug release induced by acidic microenvironment are time-dependent processes. The cell cytotoxicity experiments in vitro demonstrate that the doxorubicin-based microcapsules have high efficiency to kill the cancer cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Telomere sister chromatid exchange in telomerase deficient murine cells.

    PubMed

    Wang, Yisong; Giannone, Richard J; Liu, Yie

    2005-10-01

    We have recently demonstrated that several types of genomic rearrangements (i.e., telomere sister chromatid exchange (T-SCE), genomic-SCE, or end-to-end fusions) were more often detected in long-term cultured murine telomerase deficient embryonic stem (ES) cells than in freshly prepared murine splenocytes, even through they possessed similar frequencies of critically short telomeres. The high rate of genomic rearrangements in telomerase deficient ES cells, when compared to murine splenocytes, may reflect the cultured cells' gained ability to protect chromosome ends with eroded telomeres allowing them to escape "end crisis". However, the possibility that ES cells were more permissive to genomic rearrangements than other cell types or that differences in the microenvironment or genetic background of the animals might consequentially determine the rate of T-SCEs or other genomic rearrangements at critically short telomeres could not be ruled out.

  4. Malaria surveillance-response strategies in different transmission zones of the People's Republic of China: preparing for climate change.

    PubMed

    Yang, Guo-Jing; Tanner, Marcel; Utzinger, Jürg; Malone, John B; Bergquist, Robert; Chan, Emily Y Y; Gao, Qi; Zhou, Xiao-Nong

    2012-12-21

    A sound understanding of malaria transmission patterns in the People's Republic of China (P.R. China) is crucial for designing effective surveillance-response strategies that can guide the national malaria elimination programme (NMEP). Using an established biology-driven model, it is expected that one may design and refine appropriate surveillance-response strategies for different transmission zones, which, in turn, assist the NMEP in the ongoing implementation period (2010-2020) and, potentially, in the post-elimination stage (2020-2050). Environmental data obtained from 676 locations across P.R. China, such as monthly temperature and yearly relative humidity (YRH), for the period 1961-2000 were prepared. Smoothed surface maps of the number of months suitable for parasite survival derived from monthly mean temperature and YRH were generated. For each decade, the final malaria prediction map was overlaid by two masked maps, one showing the number of months suitable for parasite survival and the other the length of YRH map in excess of 60%. Considering multiple environmental factors simultaneously, the environmental variables suitable for malaria transmission were found to have shifted northwards, which was especially pronounced in northern P.R. China. The unstable suitable regions (transmission periods between five and six months) showed increased transmission intensity due to prolonged suitable periods, especially in the central part of the country. Adequate and effective surveillance-response strategies for NMEP should be designed to achieve the goal of malaria elimination in P.R. China by 2020, especially in the zones predicted to be the most vulnerable for climate change.

  5. Preparation, Characterization and Performances of Powdered Polycarboxylate Superplasticizer with Bulk Polymerization.

    PubMed

    Liu, Xiao; Wang, Ziming; Zheng, Yunsheng; Cui, Suping; Lan, Mingzhang; Li, Huiqun; Zhu, Jie; Liang, Xu

    2014-08-29

    A polycarboxylate superplasticizer (PCE) was synthesized in a non-solvent system with bulk polymerization and then was pulverized into powdered form to achieve a rapid transportation and convenient preparation. PCE synthesized by using isopentenyl polyethylene glycol (TPEG) or isobutenyl polyethylene glycol (IPEG) as a macromonomer exhibited the best fluidities and retaining properties at 80 °C and 75 °C, respectively. Besides, azobisisobutyronitrile (AIBN) was suitable as an initiator, and the fumaric acid was suitable as the third monomer. The test results of ¹H nuclear magnetic resonance (¹H NMR) confirmed the occurrences of polymerization, and the measurement results of molecular weight and distribution showed that PCE molecular weight characteristics were in accordance with their fluidity properties in cement paste. The application performances in cement showed that PCEs with the best paste fluidity retentions had the longest final setting time and the shortest setting time interval, and the PCEs with good fluidity properties can obviously delay the hydration process and lower the hydration heat. Accordingly, this is a novel, energy-saving and economical method to prepare powdered PCE in the field of concrete admixtures.

  6. Preparation, Characterization and Performances of Powdered Polycarboxylate Superplasticizer with Bulk Polymerization

    PubMed Central

    Liu, Xiao; Wang, Ziming; Zheng, Yunsheng; Cui, Suping; Lan, Mingzhang; Li, Huiqun; Zhu, Jie; Liang, Xu

    2014-01-01

    A polycarboxylate superplasticizer (PCE) was synthesized in a non-solvent system with bulk polymerization and then was pulverized into powdered form to achieve a rapid transportation and convenient preparation. PCE synthesized by using isopentenyl polyethylene glycol (TPEG) or isobutenyl polyethylene glycol (IPEG) as a macromonomer exhibited the best fluidities and retaining properties at 80 °C and 75 °C, respectively. Besides, azobisisobutyronitrile (AIBN) was suitable as an initiator, and the fumaric acid was suitable as the third monomer. The test results of 1H nuclear magnetic resonance (1H NMR) confirmed the occurrences of polymerization, and the measurement results of molecular weight and distribution showed that PCE molecular weight characteristics were in accordance with their fluidity properties in cement paste. The application performances in cement showed that PCEs with the best paste fluidity retentions had the longest final setting time and the shortest setting time interval, and the PCEs with good fluidity properties can obviously delay the hydration process and lower the hydration heat. Accordingly, this is a novel, energy-saving and economical method to prepare powdered PCE in the field of concrete admixtures. PMID:28788184

  7. Synthesis mechanism and preparation of LaMgAl11O19 powder for plasma spraying

    NASA Astrophysics Data System (ADS)

    He, Mingtao; Meng, Huimin; Wang, Yuchao; Ren, Pengwei

    2018-06-01

    Lanthanide magnesium hexaaluminate (LaMgAl11O19) powders were successfully synthesized by the solid-state reaction method. The objective of this study was to investigate the synthesis mechanism of LaMgAl11O19 and prepare LaMgAl11O19 powders suitable for plasma spraying. The results show that LaAlO3 reacts with MgAl2O4 and Al2O3 to form LaMgAl11O19 at approximately 1300 °C. Single-phase LaMgAl11O19 powders were prepared successfully by solid-state reaction at a synthesis temperature of 1600 °C for 6 h. Unlike the particles in the synthesized powders, those of the centrifugally spray-dried powders have a spherical shape with uniform granularity and good flowability, density, and particle size distribution, making them suitable for plasma spraying. The synthesized powders and centrifugally spray-dried powders remained as a single phase after heat treatment at 1300 °C for 100 h, indicating that LaMgAl11O19 has excellent high-temperature stability.

  8. An investigation of the mechanism of release of the amphoteric drug amoxycillin from poly(D,L-lactide-co-glycolide) matrices.

    PubMed

    Mollo, A Rosario; Corrigan, Owen I

    2002-01-01

    Amoxycillin-poly (D,L-lactide-co-glycolide) (PLGA) compacts were prepared by direct compression of both powder mixtures or films in a pre-heated press. Release profiles generally showed two phases separated by an induction period. Thus, both diffusion and polymer degradation mechanisms were involved in drug release, the relative importance of each depending on processing type and drug loading. Drug release parameters for each phase were determined. The fraction of total drug released, in the initial release phase, increased with drug loading and was much larger for compressed physical mixtures than for compressed composites prepared from co-evaporate films. Comparison of the polymer mass loss profiles of drug-loaded and drug-free discs indicated that the presence of the amphoteric drug amoxycillin had little impact on the polymer degradation rate, in contrast to the marked acceleration previously reported for basic drugs. Significant drug degradation occurred and was associated with release at later times. Release data was fitted to an equation accounting for degradation of the drug on release and suggested accelerated amoxycillin degradation during the polymer degradation controlled release phase, consistent with changes in pH in the microenvironment of the eroding compact.

  9. A New Route to Liposil Formation by an Interfacial Sol-Gel Process Confined by Lipid Bilayer.

    PubMed

    Shen, Shukun; Yang, Lu; Lu, Yaxing; Chen, Jian-Gang; Song, Shaofei; Hu, Daodao; Parikh, Atul

    2015-11-18

    We report a new and simple approach to prepare a class of silica-reinforced liposomes with hybrid core-shell nanostructures. The amphiphilic natural structure of lipids was exploited to sequester hydrophobic molecules, namely precursor TEOS and pyrene, in the hydrophobic midplane of liposomal bilayer assemblies in the aqueous phase. Subsequent interfacial hydrolysis of TEOS at the bilayer/water interface and ensuing condensation within the hydrophobic interstices of the lipid bilayer drives silica formation in situ, producing a novel class of silica-lipid hybrid liposils. Structural characterization by scanning- and transmission electron microscopy confirm that the liposils so generated preserve closed topologies and size-monodipersity of the parent lecithin liposomes, and DSC-TGA and XRD measurements provide evidence for the silica coating. Monitoring fluorescence measurements using embedded pyrene yield detailed information on microenvironment changes, which occur during sol-gel process and shed light on the structural evolution during silica formation. We envisage that liposils formed by this simple, new approach, exploiting the hydrophobic core of the lipid bilayer to spatially localize silica-forming precursors enables preparation of stable liposils exhibiting capacity for cargo encapsulation, bicompatibility, and fluorescence monitoring, more generally opening a window for construction of stable, functional hybrid materials.

  10. 7 CFR 201.58a - Indistinguishable seeds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hydroxide may cause eye irritation. (2) Preparation of seeds: To insure imbibition, scratch, prick, or... may be used. Remove and place the dry seed coat from seeds into individual test tubes or suitable...

  11. 21 CFR 172.811 - Glyceryl tristearate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... 555-43-1) is prepared by reacting stearic acid with glycerol in the presence of a suitable catalyst. (b) The food additive meets the following specifications: Acid number: Not to exceed 1.0. Iodine...

  12. 28 CFR 0.181 - Requirements for orders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Attorney General § 0.181 Requirements for orders. Each order prepared for issuance by or approval of the Attorney General shall be given a suitable title, shall contain a clear and concise statement...

  13. Center for Hydrogen Storage.

    DOT National Transportation Integrated Search

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  14. β-Glucuronidase-coupled assays of glucuronoyl esterases.

    PubMed

    Fraňová, Lucia; Puchart, Vladimír; Biely, Peter

    2016-10-01

    Glucuronoyl esterases (GEs) are microbial enzymes with potential to cleave the ester bonds between lignin alcohols and xylan-bound 4-O-methyl-d-glucuronic acid in plant cell walls. This activity renders GEs attractive research targets for biotechnological applications. One of the factors impeding the progress in GE research is the lack of suitable substrates. In this work, we report a facile preparation of methyl esters of chromogenic 4-nitrophenyl and 5-bromo-4-chloro-3-indolyl β-D-glucuronides for qualitative and quantitative GE assay coupled with β-glucuronidase as the auxiliary enzyme. The indolyl derivative affording a blue indigo-type product is suitable for rapid and sensitive assay of GE in commercial preparations as well as for high throughput screening of microorganisms and genomic and metagenomic libraries. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A microenvironment approach to reducing sedentary time and increasing physical activity of children and adults at a playground

    USDA-ARS?s Scientific Manuscript database

    Objective. Test whether a micro-environment park intervention in Grand Forks, ND, movement of seating away from a playground, would increase the physical activity and length of stay of park users. Method. STUDY 1, summer 2012: physical activity of children and adults was assessed during baseline (...

  16. Lysophosphatidate Signaling: The Tumor Microenvironment's New Nemesis.

    PubMed

    Benesch, Matthew G K; Yang, Zelei; Tang, Xiaoyun; Meng, Guanmin; Brindley, David N

    2017-11-01

    Lysophosphatidate (LPA) is emerging as a potent mediator of cancer progression in the tumor microenvironment. Strategies for targeting LPA signaling have recently entered clinical trials for fibrosis. These therapies have potential to improve the efficacies of existing chemotherapies and radiotherapy by attenuating chronic inflammation, irrespective of diverse mutations within cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Tumor-associated macrophages: implications in cancer immunotherapy.

    PubMed

    Petty, Amy J; Yang, Yiping

    2017-03-01

    Tumor-associated macrophages (TAMs), representing most of the leukocyte population in solid tumors, demonstrate great phenotypic heterogeneity and diverse functional capabilities under the influence of the local tumor microenvironment. These anti-inflammatory and protumorigenic macrophages modulate the local microenvironment to facilitate tumor growth and metastasis. In this review, we examine the origin of TAMs and the complex regulatory networks within the tumor microenvironment that facilitate the polarization of TAMs toward a protumoral phenotype. More extensively, we evaluate the mechanisms by which TAMs mediate angiogenesis, metastasis, chemotherapeutic resistance and immune evasion. Lastly, we will highlight novel interventional strategies targeting TAMs in preclinical studies and in early clinical trials that have significant potential in improving efficacy of current chemotherapeutic and/or immunotherapeutic approaches.

  18. Neuronal activity in ontogeny and oncology

    PubMed Central

    Venkatesh, Humsa; Monje, Michelle

    2017-01-01

    The nervous system plays a central role in regulating the stem cell niche in many organs and thereby critically modulates development, homeostasis and plasticity. A similarly powerful role for neural regulation of the cancer microenvironment is emerging. Neurons promote the growth of cancers of the brain, skin, prostate, pancreas and stomach. Parallel mechanisms shared in development and cancer suggest that neural modulation of the tumor microenvironment may prove a universal theme, although the mechanistic details of such modulation remain to be discovered for many malignancies. Here, we review what is known about the influences of active neurons on stem cell and cancer microenvironments across a broad range of tissues and discuss emerging principles of neural regulation of development and cancer. PMID:28718448

  19. Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy.

    PubMed

    Achard, Carole; Surendran, Abera; Wedge, Marie-Eve; Ungerechts, Guy; Bell, John; Ilkow, Carolina S

    2018-05-01

    Oncolytic virus (OV) therapy is potentially a game-changing cancer treatment that has garnered significant interest due to its versatility and multi-modal approaches towards tumor eradication. In the field of cancer immunotherapy, the immunological phenotype of the tumor microenvironment (TME) is an important determinant of disease prognosis and therapeutic success. There is accumulating data that OVs are capable of dramatically altering the TME immune landscape, leading to improved antitumor activity alone or in combination with assorted immune modulators. Herein, we review how OVs disrupt the immunosuppressive TME and can be used strategically to create a "pro-immune" microenvironment that enables and promotes potent, long-lasting host antitumor immune responses. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Instructions and format of a camera-ready paper for direct photo-offset reproduction.

    PubMed

    Alpha, X X; Beta, Y

    1983-03-01

    These instructions are presented to assist you in preparing a typescript (Chomsky, 1977) which is suitable for direct photo-offset reproduction. Your manuscript (Rome and Rome, 1971) should be prepared on special paper (Freed et at., 1975) provided by the publisher. It will be photographically reproduced, whereby a reduction to 75% of its original size will be applied. Copyright © 1983. Published by Elsevier B.V.

  1. Comparative evaluation of ibuprofen/beta-cyclodextrin complexes obtained by supercritical carbon dioxide and other conventional methods.

    PubMed

    Hussein, Khaled; Türk, Michael; Wahl, Martin A

    2007-03-01

    The preparation of drug/cyclodextrin complexes is a suitable method to improve the dissolution of poor soluble drugs. The efficacy of the Controlled Particle Deposition (CPD) as a new developed method to prepare these complexes in a single stage process using supercritical carbon dioxide is therefore compared with other conventional methods. Ibuprofen/beta-cyclodextrin complexes were prepared with different techniques and characterized using FTIR-ATR spectroscopy, powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In addition, the influences of the processing technique on the drug content (HPLC) and the dissolution behavior were studied. Employing the CPD-process resulted in a drug content of 2.8+/-0.22 wt.% in the carrier. The material obtained by CPD showed an improved dissolution rate of ibuprofen at pH 5 compared with the pure drug and its physical mixture with beta-cyclodextrin. In addition CPD material displays the highest dissolution (93.5+/- 2.89% after 75 min) compared to material obtained by co-precipitation (61.3 +/-0.52%) or freeze-drying (90.6 +/-2.54%). This study presents the CPD-technique as a well suitable method to prepare a drug/beta-cyclodextrin complex with improved drug dissolution compared to the pure drug and materials obtained by other methods.

  2. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan

    2014-06-01

    Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment. Electronic supplementary information (ESI) available: Elemental analysis results of coal samples, FTIR spectra of CoalA and CoalB, ECL responses of CoalA/S2O82-. See DOI: 10.1039/c4nr01482k

  3. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    PubMed

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p < 0.05) under elevated CO 2 relative to ambient CO 2 ; however, l-asparaginase activity decreased. Addionally, elevated CO 2 alone affected soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p < 0.05) enhanced the removal ratio of Cd and Pb in rhizosphere soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Intra-operative label-free multimodal multiphoton imaging of breast cancer margins and microenvironment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Yi; You, Sixian; Tu, Haohua; Spillman, Darold R.; Marjanovic, Marina; Chaney, Eric J.; Liu, George Z.; Ray, Partha S.; Higham, Anna; Boppart, Stephen A.

    2017-02-01

    Label-free multi-photon imaging has been a powerful tool for studying tissue microstructures and biochemical distributions, particularly for investigating tumors and their microenvironments. However, it remains challenging for traditional bench-top multi-photon microscope systems to conduct ex vivo tumor tissue imaging in the operating room due to their bulky setups and laser sources. In this study, we designed, built, and clinically demonstrated a portable multi-modal nonlinear label-free microscope system that combined four modalities, including two- and three- photon fluorescence for studying the distributions of FAD and NADH, and second and third harmonic generation, respectively, for collagen fiber structures and the distribution of micro-vesicles found in tumors and the microenvironment. Optical realignments and switching between modalities were motorized for more rapid and efficient imaging and for a light-tight enclosure, reducing ambient light noise to only 5% within the brightly lit operating room. Using up to 20 mW of laser power after a 20x objective, this system can acquire multi-modal sets of images over 600 μm × 600 μm at an acquisition rate of 60 seconds using galvo-mirror scanning. This portable microscope system was demonstrated in the operating room for imaging fresh, resected, unstained breast tissue specimens, and for assessing tumor margins and the tumor microenvironment. This real-time label-free nonlinear imaging system has the potential to uniquely characterize breast cancer margins and the microenvironment of tumors to intraoperatively identify structural, functional, and molecular changes that could indicate the aggressiveness of the tumor.

  5. CXCR7 maintains osteosarcoma invasion after CXCR4 suppression in bone marrow microenvironment.

    PubMed

    Han, Yan; Wu, Chunlei; Wang, Jing; Liu, Na

    2017-05-01

    The major cause of death in osteosarcoma is the invasion and metastasis. Better understanding of the molecular mechanism of osteosarcoma invasion is essential in developing effective tumor-suppressive therapies. Interaction between chemokine receptors plays a crucial role in regulating osteosarcoma invasion. Here, we investigated the relationship between CXCR7 and CXCR4 in osteosarcoma invasion induced by bone marrow microenvironment. Human bone marrow mesenchymal stem cells were co-cultured with osteosarcoma cells to mimic actual bone marrow microenvironment. Osteosarcoma cell invasion and CXCL12/CXCR4 activation were observed within this co-culture model. Interestingly, in this co-culture model, osteosarcoma cell invasion was not inhibited by suppressing CXCR4 expression with neutralizing antibody or specific inhibitor AMD3100. Downstream signaling extracellular signal-regulated kinase and signal transducer and activator of transcription 3 were not significantly affected by CXCR4 inhibition. However, suppressing CXCR4 led to CXCR7 upregulation. Constitutive expression of CXCR7 could maintain osteosarcoma cell invasion when CXCR4 was suppressed. Simultaneously, inhibiting CXCR4 and CXCR7 compromised osteosarcoma invasion in co-culture system and suppressed extracellular signal-regulated kinase and signal transducer and activator of transcription 3 signals. Moreover, bone marrow microenvironment, not CXCL12 alone, is required for CXCR7 activation after CXCR4 suppression. Taken together, suppressing CXCR4 is not enough to impede osteosarcoma invasion in bone marrow microenvironment since CXCR7 is activated to sustain invasion. Therefore, inhibiting both CXCR4 and CXCR7 could be a promising strategy in controlling osteosarcoma invasion.

  6. The effects of chronic binge alcohol on the genital microenvironment of simian immunodeficiency virus-infected female rhesus macaques.

    PubMed

    Loganantharaj, Nisha; Nichols, Whitney A; Bagby, Gregory J; Volaufova, Julia; Dufour, Jason; Martin, David H; Nelson, Steve; Amedee, Angela M

    2014-08-01

    Alcohol abuse is a widespread problem among those at risk for and living with HIV and can impact transmission and disease progression. In this study we sought to use the simian immunodeficiency virus (SIV)-macaque model to evaluate the immunological and virological changes in the genital microenvironment of females exposed to chronic alcohol. Female rhesus macaques were treated with alcohol (n=6) or isocaloric sucrose (n=6) for 3 months and then inoculated with SIVmac251. To assess the effects of chronic alcohol on SIV disease and the genital microenvironment, we quantified plasma and genital SIV levels, measured inflammatory cells in genital fluids, and characterized microbial flora by gram stains over 10 weeks post-SIV infection. Following 3 months of alcohol/sucrose treatment, significant differences were observed in the vaginal microenvironment of alcohol-treated animals as compared to controls. Microbial flora of alcohol-treated animals had decreased levels of lactobacillus morphotypes and increased levels of gram-positive cocci relative to sucrose controls. Alcohol-treated animals were also more likely to have white blood cells in vaginal fluids prior to SIV inoculation, which persisted through viral set point. Similar levels of cell-free SIV were observed in plasma and vaginal fluids of both groups, but alcohol-treated animals had a higher incidence and levels of cell-associated SIV shed in vaginal secretions. Chronic alcohol treatment negatively impacts the genital microenvironment prior to and over the course of SIV infection and may increase the risk of genital virus shedding and transmission.

  7. Development of a Sitting MicroEnvironment Simulator for wheelchair cushion assessment.

    PubMed

    Freeto, Tyler; Cypress, Allissa; Amalraj, Sarah; Yusufishaq, Mohamed Shaif; Bogie, Kath M

    2016-08-01

    Pressure ulcers (PU) are a common comorbidity among wheelchair users. An appropriate wheelchair cushion is essential to relieve pressure and reduce PU development during sitting. The microenvironment, specifically excessive heat and moisture, impacts risk for PU development. An effective wheelchair cushion should maintain a healthy microenvironment at the seating interface. Measurement of heat and moisture can characterize microenvironmental conditions at the wheelchair cushion interface under load. We describe the development of a Sitting MicroEnvironment Simulator (SMES) for the reliable assessment of wheelchair cushion microenvironments. The prototype SMES was developed for use mounted on a Materials Testing Systems (MTS) 810(®) uniaxial servo-hydraulic loading rig and used to assess microenvironmental conditions for Jay Medical Jay 2(®), Roho High Profile Dry Floatation(®) and Low Profile Dry Floatation(®) cushions and a novel modular gel cushion. Each cushion was assessed for two hours in triplicate. The SMES was used to load the cushions to 300N ± 10N, with an interface surface temperature of 37 °C±1 °C and fluid delivery of 13 mL/h±1 mL/h of water. Interface temperature and humidity were measured at the left ischial tuberosity (IT) region every five minutes. Heat and moisture responses were similar for the three commercial cushions. The modular gel cushion stayed cooler for at least 15 min longer than any commercial cushion. The SMES maintained performance to technical specifications for over one hundred hours of total testing and is a reliable tool for characterizing the microenvironmental conditions of wheelchair cushions. Published by Elsevier Ltd.

  8. VOC source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS-Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Edwards, Rufus D.; Jurvelin, J.; Koistinen, K.; Saarela, K.; Jantunen, M.

    Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.

  9. Human Breast Cancer Cells Are Redirected to Mammary Epithelial Cells upon Interaction with the Regenerating Mammary Gland Microenvironment In-Vivo

    PubMed Central

    Bussard, Karen M.; Smith, Gilbert H.

    2012-01-01

    Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo. PMID:23155468

  10. Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis.

    PubMed

    Salerno, Simona; Messina, Antonietta; Giordano, Francesca; Bader, Augustinus; Drioli, Enrico; De Bartolo, Loredana

    2017-02-01

    Dermal-epidermal membrane systems were developed by co-culturing human keratinocytes with Skin derived Stem Cells (SSCs), which are Mesenchymal Stem Cells (MSCs) isolated from dermis, on biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT and PCL. The membranes display physico-chemical, morphological, mechanical and biodegradation properties that could satisfy and fulfil specific requirements in skin tissue engineering. CHT membrane exhibits an optimal biodegradation rate for acute wounds; CHT-PCL for the chronic ones. On the other hand, PCL membrane in spite of its very slow biodegradation rate exhibits mechanical properties similar to in vivo dermis, a lower hydrophilic character, and a surface roughness, all properties that make it able to sustain cell adhesion and proliferation for in vitro skin models. Both CHT-PCL and PCL membranes guided epidermal and dermal differentiation of SSCs as pointed out by the expression of cytokeratins and the deposition of the ECM protein fibronectin, respectively. In the dermal-epidermal membrane systems, a more suitable microenvironment for the SSCs differentiation was promoted by the interactions and the mutual interplay with keratinocytes. Being skin tissue-biased stem cells committed to their specific final dermal and/or epidermal cell differentiation, SSCs are more suitable for skin tissue engineering than other adult MSCs with different origin. For this reason, they represent a useful autologous cell source for engineering skin substitutes for both in vivo and in vitro applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine.

    PubMed

    Jahan, Sheikh Tasnim; Sadat, Sams Ma; Haddadi, Azita

    2018-01-01

    The aim of this research was to develop a targeted antigen-adjuvant assembled delivery system that will enable dendritic cells (DCs) to efficiently mature to recognize antigens released from tumor cells. It is important to target the DCs with greater efficiency to prime T cell immune responses. In brief, model antigen, ovalbumin (OV), and monophosphoryl lipid A adjuvant were encapsulated within the nanoparticle (NP) by double emulsification solvent evaporation method. Targeted NPs were obtained through ligand incorporation via physical adsorption or chemical conjugation process. Intracellular uptake of the NPs and the maturation of DCs were evaluated with flow cytometry. Remarkably, the developed delivery system had suitable physicochemical properties, such as particle size, surface charge, OV encapsulation efficiency, biphasic OV release pattern, and safety profile. The ligand modified formulations had higher targeting efficiency than the non-tailored NPs. This was also evident when the targeted formulations expressed comparatively higher fold increase in surface activation markers such as CD40, CD86, and major histocompatibility complex class II molecules. The maturation of DCs was further confirmed through secretion of extracellular cytokines compared to control cells in the DC microenvironment. Physicochemical characterization of NPs was performed based on the polymer end groups, their viscosities, and ligand-NP bonding type. In conclusion, the DC stimulatory response was integrated to develop a relationship between the NP structure and desired immune response. Therefore, the present study narrates a comparative evaluation of some selected parameters to choose a suitable formulation useful for in vivo cancer immunotherapy.

  12. Polymer delineation system. [Patent application: traffic lane lines

    DOEpatents

    Woolman, S.; Steinberg, M.

    1975-06-24

    A delineation system (traffic lane lines) for highways is described in which polymerizable substances are applied to existing or newly prepared highway pavements. The substances would contain a suitable pigment and may incorporate reflective elements.

  13. 29 CFR 1915.51 - Ventilation and protection in welding, cutting and heating.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from the exposed arc, and surfaces prepared with chlorinated solvents shall be thoroughly dry before... heating shall be protected by suitable eye protective equipment in accordance with the requirements of...

  14. 21 CFR 184.1140 - Ammonium citrate, dibasic.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... No. 3012-65-5) is the diammonium salt of citric acid. It is prepared by partially neutralizing citric acid with ammonia. (b) The ingredient must be of a purity suitable for its intended use. (c) In...

  15. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its intended use. (c) In accordance...

  16. Suitability of a Group Behavioural Therapy Module for Workplace Smoking Cessation Programs in Malaysia: a Pilot Study.

    PubMed

    Maarof, Muhammad Faizal; Ali, Adliah Mhd; Amit, Noh; Bakry, Mohd Makmor; Taha, Nur Akmar

    2016-01-01

    In Malaysia, data on components suitability the established smoking cessation module is limited. This exploratory study aimed to evaluate the suitability of the components developed in the module for group behavioural therapy in workplace smoking cessation programs. Twenty staff were identified but only eight individuals were selected according to the study criteria during the recruitment period in May 2014. Focus group discussion was conducted to identify themes relevant to the behavioural issues among smokers. Thematic analysis yielded seven major themes which were reasons for regular smoking, reasons for quitting, comprehending smoking characteristics, quit attempt experiences, support and encouragement, learning new skills and behaviour, and preparing for lapse/relapse or difficult situations. As a result, the developed module was found to be relevant and suitable for use based on these themes.

  17. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2016-12-01

    2: Evaluation of 18F-DCFPyL labelling and tracking of PSMA+ CAR T cells Title: PSMA Directed Imaging of Prostate Cancer Focus on Androgen Receptor ... receptors to treat cancer Title: Plasmid Selection and Characterisation Time Commitments: 1.20 calendar months Supporting Agency: Cancer Targeting...AWARD NUMBER: W81XWH-12-1-0556 TITLE: Imaging Prostate Cancer Microenvironment by Collagen Hybridization PRINCIPAL INVESTIGATOR: Martin

  18. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2016-10-01

    affinity to denatured collagens and collagens undergoing remodeling which simulate the microenvironment of metastatic tumors. We will focus on previously...specifically target digested collagens with unfolded and partially denatured collagen triple helices. 2. Demonstration of ex vivo and in vivo targeting...invasive prostate cancer due to the absence of non-specific affinity and high propensity to hybridize with denatured collagen strand (Aim 1). We

  19. Biophysics and dynamics of natural and engineered stem cell microenvironments.

    PubMed

    Keung, Albert J; Healy, Kevin E; Kumar, Sanjay; Schaffer, David V

    2010-01-01

    Stem cells are defined by their ability to self-renew and to differentiate into one or more mature lineages, and they reside within natural niches in many types of adult and embryonic tissues that present them with complex signals to regulate these two hallmark properties. The diverse nature of these in vivo microenvironments raises important questions about the microenvironmental cues regulating stem cell plasticity, and the stem cell field has built a strong foundation of knowledge on the biochemical identities and regulatory effects of the soluble, cellular, and extracellular matrix factors surrounding stem cells through the isolation and culture of stem cells in vitro within microenvironments that, in effect, emulate the properties of the natural niche. Recent work, however, has expanded the field's perspective to include biophysical and dynamic characteristics of the microenvironment. These include biomechanical characteristics such as elastic modulus, shear force, and cyclic strain; architectural properties such as geometry, topography, and dimensionality; and dynamic structures and ligand profiles. We will review how these microenvironmental characteristics have been shown to regulate stem cell fate and discuss future research directions that may help expand our current understanding of stem cell biology and aid its application to regenerative medicine.

  20. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations.

    PubMed

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2016-08-16

    A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management.

  1. Physiologically relevant organs on chips

    PubMed Central

    Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.

    2015-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624

  2. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    PubMed Central

    Zhang, Bo; Hu, Yu; Pang, Zhiqing

    2017-01-01

    Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents. PMID:29311946

  3. Evidence-based support for the use of proton pump inhibitors in cancer therapy.

    PubMed

    Fais, Stefano

    2015-11-24

    'We can only cure what we can understand first', said Otto H. Warburg, the 1931 Nobel laureate for his discovery on tumor metabolism. Unfortunately, we still don't know too much the mechanisms underlying of cancer development and progression. One of the unsolved mystery includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery, that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. One of the most mechanism to survive to the acidic tumor microenvironment are proton exchangers not allowing intracellular acidification through a continuous elimination of H(+) either outside the cells or within the internal vacuoles. This article wants to comment a translational process through which from the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed chemosensitizers as well, we have got to the clinical proof of concept that PPI may well be included in new anti-cancer strategies, and with a solid background and rationale.

  4. Investigation of Tumor Cell Behaviors on a Vascular Microenvironment-Mimicking Microfluidic Chip

    PubMed Central

    Huang, Rong; Zheng, Wenfu; Liu, Wenwen; Zhang, Wei; Long, Yunze; Jiang, Xingyu

    2015-01-01

    The extravasation of tumor cells is a key event in tumor metastasis. However, the mechanism underlying tumor cell extravasation remains unknown, mainly hindered by obstacles from the lack of complexity of biological tissues in conventional cell culture, and the costliness and ethical issues of in vivo experiments. Thus, a cheap, time and labor saving, and most of all, vascular microenvironment-mimicking research model is desirable. Herein, we report a microfluidic chip-based tumor extravasation research model which is capable of simultaneously simulating both mechanical and biochemical microenvironments of human vascular systems and analyzing their synergistic effects on the tumor extravasation. Under different mechanical conditions of the vascular system, the tumor cells (HeLa cells) had the highest viability and adhesion activity in the microenvironment of the capillary. The integrity of endothelial cells (ECs) monolayer was destroyed by tumor necrosis factor-α (TNF-α) in a hemodynamic background, which facilitated the tumor cell adhesion, this situation was recovered by the administration of platinum nanoparticles (Pt-NPs). This model bridges the gap between cell culture and animal experiments and is a promising platform for studying tumor behaviors in the vascular system. PMID:26631692

  5. Composite alginate gels for tunable cellular microenvironment mechanics

    NASA Astrophysics Data System (ADS)

    Khavari, Adele; Nydén, Magnus; Weitz, David A.; Ehrlicher, Allen J.

    2016-08-01

    The mechanics of the cellular microenvironment can be as critical as biochemistry in directing cell behavior. Many commonly utilized materials derived from extra-cellular-matrix create excellent scaffolds for cell growth, however, evaluating the relative mechanical and biochemical effects independently in 3D environments has been difficult in frequently used biopolymer matrices. Here we present 3D sodium alginate hydrogel microenvironments over a physiological range of stiffness (E = 1.85 to 5.29 kPa), with and without RGD binding sites or collagen fibers. We use confocal microscopy to measure the growth of multi-cellular aggregates (MCAs), of increasing metastatic potential in different elastic moduli of hydrogels, with and without binding factors. We find that the hydrogel stiffness regulates the growth and morphology of these cell clusters; MCAs grow larger and faster in the more rigid environments similar to cancerous breast tissue (E = 4-12 kPa) as compared to healthy tissue (E = 0.4-2 kpa). Adding binding factors from collagen and RGD peptides increases growth rates, and change maximum MCA sizes. These findings demonstrate the utility of these independently tunable mechanical/biochemistry gels, and that mechanical confinement in stiffer microenvironments may increase cell proliferation.

  6. Dynamic formation of microenvironments at the myotendinous junction correlates with muscle fiber morphogenesis in zebrafish

    PubMed Central

    Snow, Chelsi J.; Henry, Clarissa A.

    2009-01-01

    Muscle development involves the specification and morphogenesis of muscle fibers that attach to tendons. After attachment, muscles and tendons then function as an integrated unit to transduce force to the skeletal system and stabilize joints. The attachment site is the myotendinous junction, or MTJ, and is the primary site of force transmission. We find that attachment of fast-twitch myofibers to the MTJ correlates with the formation of novel microenvironments within the MTJ. The expression or activation of two proteins involved in anchoring the intracellular cytoskeleton to the extracellular matrix, Focal adhesion kinase (Fak) and β-dystroglycan is up-regulated. Conversely, the extracellular matrix protein Fibronectin (Fn) is down-regulated. This degradation of Fn as fast-twitch fibers attach to the MTJ results in Fn protein defining a novel microenvironment within the MTJ adjacent to slow-twitch, but not fast-twitch, muscle. Interestingly, however, Fak, laminin, Fn and β-dystroglycan concentrate at the MTJ in mutants that do not have slow-twitch fibers. Taken together, these data elucidate novel and dynamic microenvironments within the MTJ and indicate that MTJ morphogenesis is spatially and temporally complex. PMID:18783736

  7. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells.

    PubMed

    Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Toro, Lenka; Durinikova, Erika; Tyciakova, Silvia; Demkova, Lucia; Gursky, Jan; Kucerova, Lucia

    2016-01-12

    Cells of the tumor microenvironment are recognized as important determinants of the tumor biology. The adjacent non-malignant cells can regulate drug responses of the cancer cells by secreted paracrine factors and direct interactions with tumor cells. Human mesenchymal stromal cells (MSC) actively contribute to tumor microenvironment. Here we focused on their response to chemotherapy as during the treatment these cells become affected. We have shown that the secretory phenotype and behavior of mesenchymal stromal cells influenced by cisplatin differs from the naïve MSC. MSC were more resistant to the concentrations of cisplatin, which was cytotoxic for tumor cells. They did not undergo apoptosis, but a part of MSC population underwent senescence. However, MSC pretreatment with cisplatin led to changes in phosphorylation profiles of many kinases and also increased secretion of IL-6 and IL-8 cytokines. These changes in cytokine and phosphorylation profile of MSC led to increased chemoresistance and stemness of breast cancer cells. Taken together here we suggest that the exposure of the chemoresistant cells in the tumor microenvironment leads to substantial alterations and might lead to promotion of acquired microenvironment-mediated chemoresistance and stemness.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Socha, Aaron; Singh, Seema; Simmons, Blake A.

    Methods and compositions are provided for synthesizing ionic liquids from lignin derived compounds comprising: contacting a starting material comprising lignin with a depolymerization agent to depolymerize the lignin and form a mixture of aldehyde containing compounds; contacting the mixture of aldehyde containing compounds with an amine under conditions suitable to convert the mixture of aldehyde containing compounds to a mixture of amine containing compounds; and contacting the mixture of amine containing compounds with an acid under conditions suitable to form an ammonium salt, thereby preparing the ionic liquid.

  9. Electrochemistry in ethanol. I. Reference electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, A.J.; de S. Bulhoes, L.O.

    1982-01-01

    The silver/silver nitrate electrode was found to be a suitable reference electrode in ethanolic solutions (2% v/v in water). The concentration of Ag/sup +/ inside the reference electrode is satisfactory in teh 0.1 to 10 mM concentration range. The liquid junction potential is minimized with sufficient supporting electrolyte (e.g., 0.1 to 0.5 M sodium perchlorate). The electrode is suitable for use as reference electrode in potentiometry and in polarography. Preparation is uncomplicated and the product is stable. 4 figures.

  10. A cometary ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Simpson, D. A.

    1984-01-01

    The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.

  11. An outer membrane protein (porin) as an eliciting antigen for delayed-type hypersensitivity in murine salmonellosis.

    PubMed Central

    Udhayakumar, V; Muthukkaruppan, V R

    1987-01-01

    The porin, an outer membrane protein of Salmonella typhimurium, was found to be a suitable antigen for eliciting delayed-type hypersensitivity in mouse salmonellosis. Histological examination of the reaction site revealed that the porin was superior to other antigenic preparations in eliciting a typical delayed-type hypersensitivity reaction consisting of mononuclear cell infiltration without polymorphonuclear cell contamination. This study indicates the importance of using a suitable protein antigen from S. typhi for human application. Images PMID:3028963

  12. Method of preparing nuclear wastes for tansportation and interim storage

    DOEpatents

    Bandyopadhyay, Gautam; Galvin, Thomas M.

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  13. Carbons for lithium batteries prepared using sepiolite as an inorganic template

    DOEpatents

    Sandi, Giselle; Winans, Randall E.; Gregar, K. Carrado

    2000-01-01

    A method of preparing an anode material using sepiolite clay having channel-like interstices in its lattice structure. Carbonaceous material is deposited in the channel-like interstices of the sepiolite clay and then the sepiolite clay is removed leaving the carbonaceous material. The carbonaceous material is formed into an anode. The anode is combined with suitable cathode and electrolyte materials to form a battery of the lithium-ion type.

  14. Immune microenvironment in colorectal cancer: a new hallmark to change old paradigms.

    PubMed

    de la Cruz-Merino, Luis; Henao Carrasco, Fernando; Vicente Baz, David; Nogales Fernández, Esteban; Reina Zoilo, Juan José; Codes Manuel de Villena, Manuel; Pulido, Enrique Grande

    2011-01-01

    Impact of immune microenvironment in prognosis of solid tumors has been extensively studied in the last few years. Specifically in colorectal carcinoma, increased knowledge of the immune events around these tumors and their relation with clinical outcomes have led to consider immune microenvironment as one of the most important prognostic factors in this disease. In this review we will summarize and update the current knowledge with respect to this intriguing and complex new hallmark of cancer, paying special attention to infiltration by T-infiltrating lymphocytes and their subtypes in colorectal cancer, as well as its eventual clinical translation in terms of long-term prognosis. Finally, we suggest some possible investigational approaches based on combinatorial strategies to trigger and boost immune reaction against tumor cells.

  15. Immunological dysregulation in multiple myeloma microenvironment.

    PubMed

    Romano, Alessandra; Conticello, Concetta; Cavalli, Maide; Vetro, Calogero; La Fauci, Alessia; Parrinello, Nunziatina Laura; Di Raimondo, Francesco

    2014-01-01

    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target.

  16. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis.

    PubMed

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C; Villares, Gabriel J; Bar-Eli, Menashe

    2011-11-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients. ©2011 AACR.

  17. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.

    PubMed

    Jusoh, Norhana; Oh, Soojung; Kim, Sudong; Kim, Jangho; Jeon, Noo Li

    2015-10-21

    Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.

  18. Obesity-induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease

    PubMed Central

    Fuster, Jose J.; Ouchi, Noriyuki; Gokce, Noyan; Walsh, Kenneth

    2016-01-01

    Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the “collateral damage” of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of pro-inflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines. PMID:27230642

  19. [Recent research advance on bone marrow microenvironment-mediated leukemia drug resistant mechanism].

    PubMed

    Fu, Bing; Ling, Yan-Juan

    2011-06-01

    The bone marrow microenvironment consists of bone marrow stromal cells, osteoblasts and osteoclasts which facilities the survival, differentiation and proliferation of hematopoietic cells through secreting soluble factors and extracellular matrix proteins that mediate these functions. This environment not only supports the growth of normal and malignant hematopoietic cells, but also protects them against the damage from chemotherapeutic agents through the secretion of soluble cytokines, cell adhesion, up-regulation of resistant genes and changes of cell cycle. In this review, the research advances on drug-resistance mechanisms mediated by bone marrow microenvironment are summarized briefly, including soluble factors mediating drug resistance, intercellular adhesion inducing drug resistance, up-regulation of some drug resistance genes, regulation in metabolism of leukemic cells, changes in cell cycles of tumor cells and so on.

  20. Understanding the tumor immune microenvironment (TIME) for effective therapy

    PubMed Central

    Binnewies, Mikhail; Roberts, Edward W.; Kersten, Kelly; Chan, Vincent; Fearon, Douglas F.; Merad, Miriam; Coussens, Lisa M.; Gabrilovich, Dmitry I.; Ostrand-Rosenberg, Suzanne; Hedrick, Catherine C.; Vonderheide, Robert H.; Pittet, Mikael J.; Jain, Rakesh K.; Zou, Weiping; Howcroft, T. Kevin; Woodhouse, Elisa C.; Weinberg, Robert A.; Krummel, Matthew F.

    2018-01-01

    The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed. PMID:29686425

  1. Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives.

    PubMed

    He, Guangwei; Li, Zhen; Zhao, Jing; Wang, Shaofei; Wu, Hong; Guiver, Michael D; Jiang, Zhongyi

    2015-09-23

    Polymer-based materials with tunable nanoscale structures and associated microenvironments hold great promise as next-generation ion-exchange membranes (IEMs) for acid or alkaline fuel cells. Understanding the relationships between nanostructure, physical and chemical microenvironment, and ion-transport properties are critical to the rational design and development of IEMs. These matters are addressed here by discussing representative and important advances since 2011, with particular emphasis on aromatic-polymer-based nanostructured IEMs, which are broadly divided into nanostructured polymer membranes and nanostructured polymer-filler composite membranes. For each category of membrane, the core factors that influence the physical and chemical microenvironments of the ion nanochannels are summarized. In addition, a brief perspective on the possible future directions of nanostructured IEMs is presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tumor Microenvironment and Immune Effects of Antineoplastic Therapy in Lymphoproliferative Syndromes

    PubMed Central

    Álvaro, Tomás; de la Cruz-Merino, Luis; Henao-Carrasco, Fernando; Villar Rodríguez, José Luis; Vicente Baz, David; Codes Manuel de Villena, Manuel; Provencio, Mariano

    2010-01-01

    Lymphomas represent a wide group of heterogenic diseases with different biological and clinical behavior. The underlying microenvironment-specific composition seems to play an essential role in this scenario, harboring the ability to develop successful immune responses or, on the contrary, leading to immune evasion and even promotion of tumor growth. Depending on surrounding lymphoid infiltrates, lymphomas may have different prognosis. Moreover, recent evidences have emerged that confer a significant impact of main lymphoma's treatment over microenvironment, with clinical consequences. In this review, we summarize these concepts from a pathological and clinical perspective. Also, the state of the art of lymphoma's anti-idiotype vaccine development is revised, highlighting the situations where this strategy has proven to be successful and eventual clues to obtain better results in the future. PMID:20814546

  3. Vascular normalization as an emerging strategy to enhance cancer immunotherapy.

    PubMed

    Huang, Yuhui; Goel, Shom; Duda, Dan G; Fukumura, Dai; Jain, Rakesh K

    2013-05-15

    The recent approval of Provenge has brought new hope for anticancer vaccine therapies. However, the immunosuppressive tumor microenvironment seems to impair the efficacy of vaccine therapies. The abnormal tumor vasculature creates a hypoxic microenvironment that polarizes inflammatory cells toward immune suppression. Moreover, tumors systemically alter immune cells' proliferation, differentiation, and function via secretion of growth factors and cytokines. For example, VEGF, a major proangiogenic cytokine induced by hypoxia, plays a critical role in immunosuppression via these mechanisms. Hence, antiangiogenic treatment may be an effective modality to potentiate immunotherapy. Here, we discuss the local and systemic effects of VEGF on tumor immunity and propose a potentially translatable strategy to re-engineer the tumor-immune microenvironment and improve cancer immunotherapy by using lower "vascular normalizing" doses of antiangiogenic agents. ©2013 AACR.

  4. Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment

    PubMed Central

    Justus, Calvin R.; Sanderlin, Edward J.; Yang, Li V.

    2015-01-01

    Cancer cells preferentially utilize glycolysis, instead of oxidative phosphorylation, for metabolism even in the presence of oxygen. This phenomenon of aerobic glycolysis, referred to as the “Warburg effect”, commonly exists in a variety of tumors. Recent studies further demonstrate that both genetic factors such as oncogenes and tumor suppressors and microenvironmental factors such as spatial hypoxia and acidosis can regulate the glycolytic metabolism of cancer cells. Reciprocally, altered cancer cell metabolism can modulate the tumor microenvironment which plays important roles in cancer cell somatic evolution, metastasis, and therapeutic response. In this article, we review the progression of current understandings on the molecular interaction between cancer cell metabolism and the tumor microenvironment. In addition, we discuss the implications of these interactions in cancer therapy and chemoprevention. PMID:25988385

  5. Automated clinical system for chromosome analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Friedan, H. J.; Johnson, E. T.; Rennie, P. A.; Wall, R. J. (Inventor)

    1978-01-01

    An automatic chromosome analysis system is provided wherein a suitably prepared slide with chromosome spreads thereon is placed on the stage of an automated microscope. The automated microscope stage is computer operated to move the slide to enable detection of chromosome spreads on the slide. The X and Y location of each chromosome spread that is detected is stored. The computer measures the chromosomes in a spread, classifies them by group or by type and also prepares a digital karyotype image. The computer system can also prepare a patient report summarizing the result of the analysis and listing suspected abnormalities.

  6. 29 CFR 1926.353 - Ventilation and protection in welding, cutting, and heating.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and surfaces prepared with chlorinated solvents shall be thoroughly dry before welding is permitted on... suitable eye protective equipment in accordance with the requirements of subpart E of this part. [44 FR...

  7. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its...

  8. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its...

  9. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its...

  10. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its...

  11. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  12. Nanostructured giant magneto-impedance multilayers deposited onto flexible substrates for low pressure sensing

    PubMed Central

    2012-01-01

    Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Ω/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors. PMID:22525096

  13. Malaria surveillance-response strategies in different transmission zones of the People's Republic of China: preparing for climate change

    PubMed Central

    2012-01-01

    Background A sound understanding of malaria transmission patterns in the People’s Republic of China (P.R. China) is crucial for designing effective surveillance-response strategies that can guide the national malaria elimination programme (NMEP). Using an established biology-driven model, it is expected that one may design and refine appropriate surveillance-response strategies for different transmission zones, which, in turn, assist the NMEP in the ongoing implementation period (2010–2020) and, potentially, in the post-elimination stage (2020–2050). Methods Environmental data obtained from 676 locations across P.R. China, such as monthly temperature and yearly relative humidity (YRH), for the period 1961–2000 were prepared. Smoothed surface maps of the number of months suitable for parasite survival derived from monthly mean temperature and YRH were generated. For each decade, the final malaria prediction map was overlaid by two masked maps, one showing the number of months suitable for parasite survival and the other the length of YRH map in excess of 60%. Results Considering multiple environmental factors simultaneously, the environmental variables suitable for malaria transmission were found to have shifted northwards, which was especially pronounced in northern P.R. China. The unstable suitable regions (transmission periods between five and six months) showed increased transmission intensity due to prolonged suitable periods, especially in the central part of the country. Conclusion Adequate and effective surveillance-response strategies for NMEP should be designed to achieve the goal of malaria elimination in P.R. China by 2020, especially in the zones predicted to be the most vulnerable for climate change. PMID:23256579

  14. Analytical Chemistry in Microenvironments: Single Nerve Cells.

    DTIC Science & Technology

    1992-03-16

    length of the capillary (34). Electroosmotic flow offers three key advantages for separation of small biological samples. First, this flow, if not...from microenvironments (ie. single cells). Indeed, volumes as low as 270 femtoliters have been injected using electroosmotic flow (15). Finally... electroosmotic flow provides a flat flow profile, since there is no stationary support between the origin of flow (capillary wall) and the bulk of solution

  15. Modeling time-location patterns of inner-city high school students in New York and Los Angeles using a longitudinal approach with generalized estimating equations.

    PubMed

    Decastro, B Rey; Sax, Sonja N; Chillrud, Steven N; Kinney, Patrick L; Spengler, John D

    2007-05-01

    The TEACH Project obtained subjects' time-location information as part of its assessment of personal exposures to air toxics for high school students in two major urban areas. This report uses a longitudinal modeling approach to characterize the association between demographic and temporal predictors and the subjects' time-location behavior for three microenvironments--indoor-home, indoor-school, and outdoors. Such a longitudinal approach has not, to the knowledge of the authors, been previously applied to time-location data. Subjects were 14- to 19-year-old, self reported non-smokers, and were recruited from high schools in New York, NY (31 subjects: nine male, 22 female) and Los Angeles, CA (31 subjects: eight male, 23 female). Subjects reported their time-location in structured 24-h diaries with 15-min intervals for three consecutive weekdays in each of winter and summer-fall seasons in New York and Los Angeles during 1999-2000. The data set contained 15,009 observations. A longitudinal logistic regression model was run for each microenvironment where the binary outcome indicated the subject's presence in a microenvironment during a 15-min period. The generalized estimating equation (GEE) technique with alternating logistic regressions was used to account for the correlation of observations within each subject. The multivariate models revealed complex time-location patterns, with subjects predominantly in the indoor-home microenvironment, but also with a clear influence of the school schedule. The models also found that a subject's presence in a particular microenvironment may be significantly positively correlated for as long as 45 min before the current observation. Demographic variables were also predictive of time-location behavior: for the indoor-home microenvironment, having an after school job (OR=0.67 [95% confidence interval: 0.54:0.85]); for indoor-school, living in New York (0.42 [0.29:0.59]); and for outdoor, being 16-year-old (0.80 [0.67:0.96]), 17-year-old (0.71 [0.54:0.92]), and having an after school job (1.29 [1.07:1.56]).

  16. Minimum specific cost control of technological processes realized in a living objects-containing microenvironment.

    PubMed

    Amelkin, Alexander A; Blagoveschenskaya, Margarita M; Lobanov, Yury V; Amelkin, Anatoly K

    2003-01-01

    The purpose of the present work is to work out an approach for the development of software and the choice of hardware structures when designing subsystems for automatic control of technological processes realized in living objects containing limited space (microenvironment). The subsystems for automatic control of the microenvironment (SACME) under development use the Devices for Air Prophylactic Treatment, Aeroionization, and Purification (DAPTAP) as execution units for increasing the level of safety and quality of agricultural raw material and foodstuffs, for reducing the losses of agricultural produce during storage and cultivation, as well as for intensifying the processes of activation of agricultural produce and industrial microorganisms. A set of interconnected SACMEs works within the framework of a general microenvironmental system (MES). In this research, the population of baker's yeast is chosen as a basic object of control under the industrial fed-batch cultivation in a bubbling bioreactor. This project is an example of a minimum cost automation approach. The microenvironment optimal control problem for baker's yeast cultivation is reduced from a profit maximum to the maximization of overall yield by the reason that the material flow-oriented specific cost correlates closely with the reciprocal value of the overall yield. Implementation of the project partially solves a local sustainability problem and supports a balance of microeconomical, microecological and microsocial systems within a technological subsystem realized in a microenvironment maintaining an optimal value of economical criterion (e.g. minimum material, flow-oriented specific cost) and ensuring: (a) economical growth (profit increase, raw material saving); (b) high security, safety and quality of agricultural raw material during storage process and of food produce during a technological process; elimination of the contact of gaseous harmful substances with a subproduct during various technological stages; (c) improvement of labour conditions for industrial personnel from an ecological point of view (positive effect of air aeroionization and purification on human organism promoting strengthened health and an increase in life duration, pulverent and gaseous chemical and biological impurity removal). An alternative aspect of a controlled living microenvironment forming is considered.

  17. Formulation development and evaluation of metformin chewing gum with bitter taste masking

    PubMed Central

    Mostafavi, Sayed Abolfazl; Varshosaz, Jaleh; Arabian, Saber

    2014-01-01

    Background: Medicated gums are intended to be chewed and act either locally, absorbed via the buccal mucosa or swallowed with saliva. We prepared the metformin gum to overcome its side effects including vomiting, diarrhea, and abdomen discomfort. Furthermore, it could be useful for those who have swallowing problems. Materials and Methods: Metformin hydrochloride (250 mg) with suitable sweeteners was mixed manually for 5 min. This mixture was spray dried, freeze dried, or directly mixed with chewing gum base. Glycerin, xylitol, and menthol were added and the produced paste was kept in the freezer for 2 h to be stable. As the metformin shows bitter taste, we tried to mask this unpleasant taste with using different methods explained. The releasing pattern was evaluated by using a mechanical chewing machine. The best formulation with the optimized releasing pattern, suitable physicochemical properties and pleasant taste were selected. Content uniformity, releasing percent, and other physicochemical properties were identified as well. Taste, flavor, and appearance characteristics were evaluated by using a self-made questionnaire based on the hedonic test method. Results: The chewing gum dosage content was about 86.2%. The release rate of metformin chewing gum was about 70% after 5 min of mastication. Masking the bitter taste of drug was achieved by using acesulfame-isomalt as sweeteners and prepared it by freeze drying equipment. Conclusion: Metfornin chewing gum had suitable appearance and appropriate invitro characteristics that fallow the pharmacopeia suggestions. This chewable gum showed bitterness suppression with a suitable release rate. PMID:24800181

  18. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview.

    PubMed

    Pandey, Ravi P; Shukla, Geetanjali; Manohar, Murli; Shahi, Vinod K

    2017-02-01

    In the context of many applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), and biomedical applications, chemically modified graphene was broadly studied during the last decade, due to its excellent electrical, mechanical, and thermal properties. The presence of reactive oxygen functional groups in the grapheme oxide (GO) responsible for chemical functionalization makes it a good candidate for diversified applications. The main objectives for developing a GO based nanohybrid proton exchange membrane (PEM) include: improved self-humidification (water retention ability), reduced fuel crossover (electro-osmotic drag), improved stabilities (mechanical, thermal, and chemical), enhanced proton conductivity, and processability for the preparation of membrane-electrode assembly. Research carried on this topic may be divided into protocols for covalent grafting of functional groups on GO matrix, preparation of free-standing PEM or choice of suitable polymer matrix, covalent or hydrogen bonding between GO and polymer matrix etc. Herein, we present a brief literature survey on GO based nano-hybrid PEM for fuel cell applications. Different protocols were adopted to produce functionalized GO based materials and prepare their free-standing film or disperse these materials in various polymer matrices with suitable interactions. This review article critically discussed the suitability of these PEMs for fuel cell applications in terms of the dependency of the intrinsic properties of nanohybrid PEMs. Potential applications of these nanohybrid PEMs, and current challenges are also provided along with future guidelines for developing GO based nanohybrid PEMs as promising materials for fuel cell applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Performance of fly ash based geopolymer incorporating palm kernel shell for lightweight concrete

    NASA Astrophysics Data System (ADS)

    Razak, Rafiza Abd; Abdullah, Mohd Mustafa Al Bakri; Yahya, Zarina; Jian, Ang Zhi; Nasri, Armia

    2017-09-01

    A concrete which cement is totally replaced by source material such as fly ash and activated by highly alkaline solutions is known as geopolymer concrete. Fly ash is the most common source material for geopolymer because it is a by-product material, so it can get easily from all around the world. An investigation has been carried out to select the most suitable ingredients of geopolymer concrete so that the geopolymer concrete can achieve the desire compressive strength. The samples were prepared to determine the suitable percentage of palm kernel shell used in geopolymer concrete and cured for 7 days in oven. After that, other samples were prepared by using the suitable percentage of palm kernel shell and cured for 3, 14, 21 and 28 days in oven. The control sample consisting of ordinary Portland cement and palm kernel shell and cured for 28 days were prepared too. The NaOH concentration of 12M, ratio Na2SiO3 to NaOH of 2.5, ratio fly ash to alkaline activator solution of 2.0 and ratio water to geopolymer of 0.35 were fixed throughout the research. The density obtained for the samples were 1.78 kg/m3, water absorption of 20.41% and the compressive strength of 14.20 MPa. The compressive strength of geopolymer concrete is still acceptable as lightweight concrete although the compressive strength is lower than OPC concrete. Therefore, the proposed method by using fly ash mixed with 10% of palm kernel shell can be used to design geopolymer concrete.

  20. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.

    PubMed

    Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-30

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  1. Telomere sister chromatid exchange in telomerase deficient murine cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yisong; Giannone, Richard J; Liu, Yie

    2005-01-01

    We have recently demonstrated that several types of genomic rearrangements (i.e., telomere sister chromatid exchange (T-SCE), genomic-SCE, or end-to-end fusions) were more often detected in long-term cultured murine telomerase deficient embryonic stem (ES) cells than in freshly prepared murine splenocytes, even through they possessed similar frequencies of critically short telomeres. The high rate of genomic rearrangements in telomerase deficient ES cells, when compared to murine splenocytes, may reflect the cultured cells' gained ability to protect chromosome ends with eroded telomeres allowing them to escape 'end crisis'. However, the possibility that ES cells were more permissive to genomic rearrangements than othermore » cell types or that differences in the microenvironment or genetic background of the animals might consequentially determine the rate of T-SCEs or other genomic rearrangements at critically short telomeres could not be ruled out.« less

  2. Sex Steroid-Mediated Control of Oviductal Function in Cattle

    PubMed Central

    Binelli, Mario; Gonella-Diaza, Angela Maria; Mesquita, Fernando Silveira; Membrive, Claudia Maria Bertan

    2018-01-01

    In cattle, the oviduct is a tubular organ that connects the ovary and the uterus. The oviduct lumen stages a dynamic set of cellular and molecular interactions to fulfill the noble role of generating a new individual. Specific anatomical niches along the oviduct lumen provide the appropriate microenvironment for final sperm capacitation, oocyte capture and fertilization, and early embryo development and transport. To accomplish such complex tasks, the oviduct undergoes spatially and temporally-regulated morphological, biochemical, and physiological changes that are associated with endocrine events of the estrous cycle. Specifically, elevated periovulatory concentrations of estradiol (E2) and progesterone (P4) influence gene expression and morphological changes that have been associated positively to fertility in beef cattle. In this review, we explore how E2 and P4 influence oviductal function in the beginning of the estrous cycle, and prepare the oviductal lumen for interactions with gametes and embryos. PMID:29393864

  3. Androgens and endometrium: New insights and new targets.

    PubMed

    Simitsidellis, Ioannis; Saunders, Philippa T K; Gibson, Douglas A

    2018-04-15

    Androgens are synthesised in both the ovary and adrenals in women and play an important role in the regulation of female fertility, as well as in the aetiology of disorders such as polycystic ovarian syndrome, endometriosis and endometrial cancer. The endometrium is an androgen target tissue and the impact of AR-mediated effects has been studied using human endometrial tissue samples and rodent models. In this review we highlight recent evidence that endometrial androgen biosynthesis and intracrine action is important in preparation of a tissue microenvironment that can support implantation and establishment of pregnancy. The impact of androgens on endometrial cell proliferation, in repair of the endometrial wound at the time of menstruation and in endometrial disorders is discussed. Future directions for research focused on AR function as a therapeutic target are considered. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Heterogeneity of Vaginal Microbial Communities within Individuals▿ #

    PubMed Central

    Kim, Tae Kyung; Thomas, Susan M.; Ho, Mengfei; Sharma, Shobha; Reich, Claudia I.; Frank, Jeremy A.; Yeater, Kathleen M.; Biggs, Diana R.; Nakamura, Noriko; Stumpf, Rebecca; Leigh, Steven R.; Tapping, Richard I.; Blanke, Steven R.; Slauch, James M.; Gaskins, H. Rex; Weisbaum, Jon S.; Olsen, Gary J.; Hoyer, Lois L.; Wilson, Brenda A.

    2009-01-01

    Recent culture-independent studies have revealed that a healthy vaginal ecosystem harbors a surprisingly complex assemblage of microorganisms. However, the spatial distribution and composition of vaginal microbial populations have not been investigated using molecular methods. Here, we evaluated site-specific microbial composition within the vaginal ecosystem and examined the influence of sampling technique in detection of the vaginal microbiota. 16S rRNA gene clone libraries were prepared from samples obtained from different locations (cervix, fornix, outer vaginal canal) and by different methods (swabbing, scraping, lavaging) from the vaginal tracts of eight clinically healthy, asymptomatic women. The data reveal that the vaginal microbiota is not homogenous throughout the vaginal tract but differs significantly within an individual with regard to anatomical site and sampling method used. Thus, this study illuminates the complex structure of the vaginal ecosystem and calls for the consideration of microenvironments when sampling vaginal microbiota as a clinical predictor of vaginal health. PMID:19158255

  5. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.

    PubMed

    Pati, Falguni; Cho, Dong-Woo

    2017-01-01

    Bioprinting provides an exciting opportunity to print and pattern all the components that make up a tissue-cells and extracellular matrix (ECM) material-in three dimensions (3D) to generate tissue analogues. A large number of materials have been used for making bioinks; however, majority of them cannot represent the complexity of natural ECM and thus are unable to reconstitute the intrinsic cellular morphologies and functions. We present here a method for making of bioink from decellularized extracellular matrices (dECMs) and a protocol for bioprinting of cell-laden constructs with this novel bioink. The dECM bioink is capable of providing an optimized microenvironment that is conducive to the growth of 3D structured tissue. We have prepared bioinks from different tissues, including adipose, cartilage and heart tissues and achieved high cell viability and functionality of the bioprinted tissue structures using our novel bioink.

  6. Deterministic Joint Remote Preparation of an Arbitrary Sevenqubit Cluster-type State

    NASA Astrophysics Data System (ADS)

    Ding, MengXiao; Jiang, Min

    2017-06-01

    In this paper, we propose a scheme for joint remotely preparing an arbitrary seven-qubit cluster-type state by using several GHZ entangled states as the quantum channel. The coefficients of the prepared states can be not only real, but also complex. Firstly, Alice performs a three-qubit projective measurement according to the amplitude coefficients of the target state, and then Bob carries out another three-qubit projective measurement based on its phase coefficients. Next, one three-qubit state containing all information of the target state is prepared with suitable operation. Finally, the target seven-qubit cluster-type state can be prepared by introducing four auxiliary qubits and performing appropriate local unitary operations based on the prepared three-qubit state in a deterministic way. The receiver's all recovery operations are summarized into a concise formula. Furthermore, it's worth noting that our scheme is more novel and feasible with the present technologies than most other previous schemes.

  7. The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis.

    PubMed

    Maletzki, Claudia; Beyrich, Franziska; Hühns, Maja; Klar, Ernst; Linnebacher, Michael

    2016-08-16

    Mice lines homozygous negative for one of the four DNA mismatch repair (MMR) genes (MLH1, MSH2, PMS2, MSH6) were generated as models for MMR deficient (MMR-D) diseases. Clinically, hereditary forms of MMR-D include Lynch syndrome (characterized by a germline MMR gene defect) and constitutional MMR-D, the biallelic form. MMR-D knockout mice may be representative for both diseases. Here, we aimed at characterizing the MLH1-/- model focusing on tumor-immune microenvironment and identification of coding microsatellite mutations in lymphomas and gastrointestinal tumors (GIT).All tumors showed microsatellite instability (MSI) in non-coding mononucleotide markers. Mutational profiling of 26 coding loci in MSI+ GIT and lymphomas revealed instability in half of the microsatellites, two of them (Rfc3 and Rasal2) shared between both entities. MLH1-/- tumors of both entities displayed a similar phenotype (high CD71, FasL, PD-L1 and CTLA-4 expression). Additional immunofluorescence verified the tumors' natural immunosuppressive character (marked CD11b/CD200R infiltration). Vice versa, CD3+ T cells as well as immune checkpoints molecules were detectable, indicative for an active immune microenvironment. For functional analysis, a permanent cell line from an MLH1-/- GIT was established. The newly developed MLH1-/- A7450 cells exhibit stable in vitro growth, strong invasive potential and heterogeneous drug response. Moreover, four additional MSI target genes (Nktr1, C8a, Taf1b, and Lig4) not recognized in the primary were identified in this cell line.Summing up, molecular and immunological mechanisms of MLH1-/- driven carcinogenesis correlate well with clinical features of MMR-D. MLH1-/- knockout mice combine characteristics of Lynch syndrome and constitutional MMR-D, making them suitable models for preclinical research aiming at MMR-D related diseases.

  8. The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis

    PubMed Central

    Hühns, Maja; Klar, Ernst; Linnebacher, Michael

    2016-01-01

    Mice lines homozygous negative for one of the four DNA mismatch repair (MMR) genes (MLH1, MSH2, PMS2, MSH6) were generated as models for MMR deficient (MMR-D) diseases. Clinically, hereditary forms of MMR-D include Lynch syndrome (characterized by a germline MMR gene defect) and constitutional MMR-D, the biallelic form. MMR-D knockout mice may be representative for both diseases. Here, we aimed at characterizing the MLH1-/- model focusing on tumor-immune microenvironment and identification of coding microsatellite mutations in lymphomas and gastrointestinal tumors (GIT). All tumors showed microsatellite instability (MSI) in non-coding mononucleotide markers. Mutational profiling of 26 coding loci in MSI+ GIT and lymphomas revealed instability in half of the microsatellites, two of them (Rfc3 and Rasal2) shared between both entities. MLH1-/- tumors of both entities displayed a similar phenotype (high CD71, FasL, PD-L1 and CTLA-4 expression). Additional immunofluorescence verified the tumors’ natural immunosuppressive character (marked CD11b/CD200R infiltration). Vice versa, CD3+ T cells as well as immune checkpoints molecules were detectable, indicative for an active immune microenvironment. For functional analysis, a permanent cell line from an MLH1-/- GIT was established. The newly developed MLH1-/- A7450 cells exhibit stable in vitro growth, strong invasive potential and heterogeneous drug response. Moreover, four additional MSI target genes (Nktr1, C8a, Taf1b, and Lig4) not recognized in the primary were identified in this cell line. Summing up, molecular and immunological mechanisms of MLH1-/- driven carcinogenesis correlate well with clinical features of MMR-D. MLH1-/- knockout mice combine characteristics of Lynch syndrome and constitutional MMR-D, making them suitable models for preclinical research aiming at MMR-D related diseases. PMID:27447752

  9. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering.

    PubMed

    Kim, Byoung Soo; Kwon, Yang Woo; Kong, Jeong-Sik; Park, Gyu Tae; Gao, Ge; Han, Wonil; Kim, Moon-Bum; Lee, Hyungseok; Kim, Jae Ho; Cho, Dong-Woo

    2018-06-01

    3D cell-printing technique has been under spotlight as an appealing biofabrication platform due to its ability to precisely pattern living cells in pre-defined spatial locations. In skin tissue engineering, a major remaining challenge is to seek for a suitable source of bioink capable of supporting and stimulating printed cells for tissue development. However, current bioinks for skin printing rely on homogeneous biomaterials, which has several shortcomings such as insufficient mechanical properties and recapitulation of microenvironment. In this study, we investigated the capability of skin-derived extracellular matrix (S-dECM) bioink for 3D cell printing-based skin tissue engineering. S-dECM was for the first time formulated as a printable material and retained the major ECM compositions of skin as well as favorable growth factors and cytokines. This bioink was used to print a full thickness 3D human skin model. The matured 3D cell-printed skin tissue using S-dECM bioink was stabilized with minimal shrinkage, whereas the collagen-based skin tissue was significantly contracted during in vitro tissue culture. This physical stabilization and the tissue-specific microenvironment from our bioink improved epidermal organization, dermal ECM secretion, and barrier function. We further used this bioink to print 3D pre-vascularized skin patch able to promote in vivo wound healing. In vivo results revealed that endothelial progenitor cells (EPCs)-laden 3D-printed skin patch together with adipose-derived stem cells (ASCs) accelerates wound closure, re-epithelization, and neovascularization as well as blood flow. We envision that the results of this paper can provide an insightful step towards the next generation source for bioink manufacturing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Persistent injury-associated anemia: the role of the bone marrow microenvironment.

    PubMed

    Millar, Jessica K; Kannan, Kolenkode B; Loftus, Tyler J; Alamo, Ines G; Plazas, Jessica; Efron, Philip A; Mohr, Alicia M

    2017-06-15

    The regulation of erythropoiesis involves hematopoietic progenitor cells, bone marrow stroma, and the microenvironment. Following severe injury, a hypercatecholamine state develops that is associated with increased mobilization of hematopoietic progenitor cells to peripheral blood and decreased growth of bone marrow erythroid progenitor cells that manifests clinically as a persistent injury-associated anemia. Changes within the bone marrow microenvironment influence the development of erythroid progenitor cells. Therefore, we sought to determine the effects of lung contusion, hemorrhagic shock, and chronic stress on the hematopoietic cytokine response. Bone marrow was obtained from male Sprague-Dawley rats (n = 6/group) killed 7 d after lung contusion followed by hemorrhagic shock (LCHS) or LCHS followed by daily chronic restraint stress (LCHS/CS). End point polymerase chain reaction was performed for interleukin-1β, interleukin-10, stem cell factor, transforming growth factor-β, high-mobility group box-1 (HMGB-1), and B-cell lymphoma-extra large. Seven days following LCHS and LCHS/CS, bone marrow expression of prohematopoietic cytokines (interleukin-1β, interleukin-10, stem cell factor, and transforming growth factor-β) was significantly decreased, and bone marrow expression of HMGB-1 was significantly increased. B-cell lymphoma-extra large bone marrow expression was not affected by LCHS or LCHS/CS (naïve: 44 ± 12, LCHS: 44 ± 12, LCHS/CS: 37 ± 1, all P > 0.05). The bone marrow microenvironment was significantly altered following severe trauma in a rodent model. Prohematopoietic cytokines were downregulated, and the proinflammatory cytokine HMGB-1 had increased bone marrow expression. Modulation of the bone marrow microenvironment may represent a therapeutic strategy following severe trauma to alleviate persistent injury-associated anemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Modelling the buried human body environment in upland climes using three contrasting field sites.

    PubMed

    Wilson, Andrew S; Janaway, Robert C; Holland, Andrew D; Dodson, Hilary I; Baran, Eve; Pollard, A Mark; Tobin, Desmond J

    2007-06-14

    Despite an increasing literature on the decomposition of human remains, whether buried or exposed, it is important to recognise the role of specific microenvironments which can either trigger or delay the rate of decomposition. Recent casework in Northern England involving buried and partially buried human remains has demonstrated a need for a more detailed understanding of the effect of contrasting site conditions on cadaver decomposition and on the microenvironment created within the grave itself. Pigs (Sus scrofa) were used as body analogues in three inter-related taphonomy experiments to examine differential decomposition of buried human remains. They were buried at three contrasting field sites (pasture, moorland, and deciduous woodland) within a 15 km radius of the University of Bradford, West Yorkshire, UK. Changes to the buried body and the effect of these changes on hair and associated death-scene textile materials were monitored as was the microenvironment of the grave. At recovery, 6, 12 and 24 months post-burial, the extent of soft tissue decomposition was recorded and samples of fat and soil were collected for gas chromatography mass spectrometry (GCMS) analysis. The results of these studies demonstrated that (1) soil conditions at these three burial sites has a marked effect on the condition of the buried body but even within a single site variation can occur; (2) the process of soft tissue decomposition modifies the localised burial microenvironment in terms of microbiological load, pH, moisture and changes in redox status. These observations have widespread application for the investigation of clandestine burial and time since deposition, and in understanding changes within the burial microenvironment that may impact on biomaterials such as hair and other associated death scene materials.

  12. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a "Watch-and-Wait" Approach to Cancer.

    PubMed

    Li, Shengwen Calvin; Vu, Long T; Luo, Jane Jianying; Zhong, Jiang F; Li, Zhongjun; Dethlefs, Brent A; Loudon, William G; Kabeer, Mustafa H

    2017-01-01

    Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cellspecific manner. Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a "watchand- wait" approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology - a balance that needs to be maintained for the "watch-and-wait" approach to cancer. This review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a “Watch-and-Wait” Approach to Cancer

    PubMed Central

    Li, Shengwen Calvin; Vu, Long T.; Luo, Jane Jianying; Zhong, Jiang F.; Li, Zhongjun; Dethlefs, Brent A; Loudon, William G.; Kabeer, Mustafa H.

    2017-01-01

    Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open up new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME-driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cell-specific manner. Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a “watch-and-wait” approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology – a balance that needs to be maintained for the “watch-and-wait” approach to cancer. Thus, this review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application. PMID:28270089

  14. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER

    PubMed Central

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment. PMID:28382153

  15. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER.

    PubMed

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment.

  16. Arrhenius parameter determination as a function of heating method and cellular microenvironment based on spatial cell viability analysis.

    PubMed

    Whitney, Jon; Carswell, William; Rylander, Nichole

    2013-06-01

    Predictions of injury in response to photothermal therapy in vivo are frequently made using Arrhenius parameters obtained from cell monolayers exposed to laser or water bath heating. However, the impact of different heating methods and cellular microenvironments on Arrhenius predictions has not been thoroughly investigated. This study determined the influence of heating method (water bath and laser irradiation) and cellular microenvironment (cell monolayers and tissue phantoms) on Arrhenius parameters and spatial viability. MDA-MB-231 cells seeded in monolayers and sodium alginate phantoms were heated with a water bath for 3-20 min at 46, 50, and 54 °C or laser irradiated (wavelength of 1064 nm and fluences of 40 W/cm(2) or 3.8 W/cm(2) for 0-4 min) in combination with photoabsorptive carbon nanohorns. Spatial viability was measured using digital image analysis of cells stained with calcein AM and propidium iodide and used to determine Arrhenius parameters. The influence of microenvironment and heating method on Arrhenius parameters and capability of parameters derived from more simplistic experimental conditions (e.g. water bath heating of monolayers) to predict more physiologically relevant systems (e.g. laser heating of phantoms) were assessed. Arrhenius predictions of the treated area (<1% viable) under-predicted the measured areas in photothermally treated phantoms by 23 mm(2) using water bath treated cell monolayer parameters, 26 mm(2) using water bath treated phantom parameters, 27 mm(2) using photothermally treated monolayer parameters, and 0.7 mm(2) using photothermally treated phantom parameters. Heating method and cellular microenvironment influenced Arrhenius parameters, with heating method having the greater impact.

  17. Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments.

    PubMed

    Kornartit, C; Sokhi, R S; Burton, M A; Ravindra, Khaiwal

    2010-01-01

    People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO(2)), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO(2) concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO(2) personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO(2) levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO(2) concentrations in winter but not for summer. In winter, indoor NO(2) concentrations were found to be strongly correlated with personal exposure levels. NO(2) concentration in houses using a gas cooker was higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference noticed in summer. The average NO(2) levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO(2) concentrations. Interestingly, for our particular study higher NO(2) personal exposure levels were found during summer (14.0+/-1.5) than winter (9.5+/-2.4).

  18. An HCG-rich microenvironment contributes to ovarian cancer cell differentiation into endothelioid cells in a three-dimensional culture system.

    PubMed

    Su, Min; Fan, Chao; Gao, Sainan; Shen, Aiguo; Wang, Xiaoying; Zhang, Yuquan

    2015-11-01

    We investigated the expression of human chorionic gonadotropin (HCG) and its effects on vasculogenic mimicry (VM) formation in ovarian cancer cells under normoxic and hypoxic conditions in three-dimensional matrices preconditioned by an endothelial-trophoblast cell co-culture system. The co-culture model was established using human umbilical vein endothelial cells (HUVECs) and HTR-8 trophoblast cells in a three-dimensional culture system. The co-cultured cells were removed with NH4OH, and ovarian cancer cells were implanted into the preconditioned matrix. VM was identified morphologically and by detecting vascular markers expressed by cancer cells. The specificity of the effects of exogenous HCG in the microenvironment was assessed by inhibition with a neutralizing anti-HCG antibody. HCG siRNA was used to knock down endogenous HCG expression in OVCAR-3 ovarian cancer cells. HTR-8 cells 'fingerprinted' HUVECs to form capillary-like tube structures in co-cultures. In the preconditioned HCG-rich microenvironment, the number of vessel-like network structures formed by HCG receptor-positive OVCAR-3 cells and the expression levels of CD31, VEGF and factor VIII were significantly increased. The preconditioned HCG-rich microenvironment significantly increased the expression of hypoxia inducible factor-1α (HIF‑1α) and VM formation in OVCAR-3 cells under hypoxic conditions. Treatment with a neutralizing anti-HCG antibody but not HCG siRNA significantly inhibited the formation of vessel-like network structures. HCG in the microenvironment contributes to OVCAR-3 differentiation into endothelioid cells in three-dimensional matrices preconditioned with an endothelial-trophoblast cell co-culture system. HCG may synergistically enhance hypoxia-induced vascular markers and HIF-1α expression. These findings would provide perspectives on new therapeutic targets for ovarian cancer.

  19. Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study.

    PubMed

    Koistinen, Kimmo J; Edwards, Rufus D; Mathys, Patrick; Ruuskanen, Juhani; Künzli, Nino; Jantunen, Matti J

    2004-01-01

    This study assessed the source contributions to the mass concentrations of fine particles (PM2.5) in personal exposures and in residential indoor, residential outdoor, and workplace indoor microenvironments of the nonsmoking adult population unexposed to environmental tobacco smoke in Helsinki, Finland. The elemental composition of 48-hour personal exposure and residential indoor, residential outdoor, and workplace indoor PM2.5 was analyzed by energy-dispersive X-ray fluorescence spectrometry for 76 participants not exposed to environmental tobacco smoke and 102 participating residences with no smoking in Helsinki as a part of the EXPOLIS study. Subsequently, a principal component analysis was used to identify the emission sources of PM2.5-bound elements and black smoke in each microenvironment, and this information was used to identify the corresponding sources in personal exposures. Finally, source reconstruction was done to determine the relative contributions of each source type to the total PM2.5 mass concentrations. Inorganic secondary particles, primary combustion, and soil were the dominant source types for the PM2.5 mass concentration in all the microenvironments and personal exposures. The ratio of the residential indoor-to-outdoor PM2.5 concentration was close to unity, but the corresponding elemental ratios and source contributions varied. Resuspension of soil dust tracked indoors was a much larger contributor to residential and workplace indoor PM2.5 than soil dust to residential outdoor PM2.5. Source contributions to personal PM2.5 exposures were best approximated by data from residential and workplace indoor microenvironments. Population exposure assessment of PM2.5, based on outdoor fixed-site monitoring, overestimates exposures to outdoor sources like traffic and long-range transport and does not account for the contribution of significant indoor sources.

  20. Inhibition of Siah2 Ubiquitin Ligase by Vitamin K3 Attenuates Chronic Myeloid Leukemia Chemo-Resistance in Hypoxic Microenvironment.

    PubMed

    Huang, Jixian; Lu, Ziyuan; Xiao, Yajuan; He, Bolin; Pan, Chengyun; Zhou, Xuan; Xu, Na; Liu, Xiaoli

    2018-02-05

    BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.

Top