Sahinkaya, Erkan
2009-05-15
Sulfidogenic treatment of sulfate (2-10g/L) and zinc (65-677mg/L) containing simulated wastewater was studied in a mesophilic (35 degrees C) CSTR. Ethanol was supplemented (COD/sulfate=0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83+/-13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R=0.998), COD (R=0.993), acetate (R=0.976) and zinc (R=0.827) in the CSTR effluent.
Gislason, Sigurdur Reynir; Torssander, Peter
2006-02-01
This study presents the changes in dissolved sulfate concentration and isotope composition of Icelandic river waters between the peak of SO2 emissions in the United States and Europe and the present. Chloride concentration in Icelandic rivers has not changed much since 1972. The overall average change from 1972-1973 to 1996-2004 was -3%, indicating insignificant sea-salt contribution changes. More than 99% of the river-dissolved sulfur was in the form of sulfate. There are three main sources for dissolved sulfate in the rivers: rocks, sea-salts, and anthropogenic. Total dissolved sulfate, tdSO4(2-), and non-sea-salt sulfate, nssSO4(2-), decreased in all of the rivers from the early 1970s to 1996-2004. The percentage decrease varies from 13% to 65%. The decrease is smallest in rivers were there is considerable rock-derived dissolved SO4(2-). The overall average decrease was 39% for tdSO4(2-) and 46% for nssSO4(2-). The anthropogenic sulfate fraction has declined making most of the river waters delta34S values of sulfate higherthrough time. The overall decline in river sulfate and increase in delta34S, while SO2 emissions from Iceland has been increasing, demonstrates the response of river chemistry in the remote North Atlantic to the decline in man-made emissions of SO2 in North America and Europe.
Alnsour, Mohammad; Kleinwächter, Maik; Böhme, Julia; Selmar, Dirk
2013-03-15
Horseradish plants (Armoracia rusticana) contain high concentrations of glucosinolates. Former studies have revealed that Armoracia plants cultivated in vitro have markedly lower glucosinolate concentrations than those grown in soils. Yet, these studies neglected that the sulfate concentration in the growth medium may have had a strong impact on glucosinolate metabolism. Accordingly, in this study horseradish in vitro plants were cultivated with differing sulfate concentrations and the glucosinolate concentrations were quantified by ion pair HPLC. Cultivation in 1.7 mmol L(-1) sulfate (as used in the prior studies) resulted in the accumulation of 16.2 µmol g(-1) DW glucosinolates, while the glucosinolate concentration increased to more than 23 µmol g(-1) DW when 23.5 mmol L(-1) sulfate was used in the medium. Correspondingly, the glucosinolate concentration decreased to 1.6 µmol g(-1) DW when sulfate concentration was lowered to 0.2 mmol L(-1). Since the glucosinolate accumulation in relation to the sulfate concentration follows a typical saturation curve, we deduce that the availability of sulfate determines the glucosinolate concentration in horseradish in vitro plants. © 2012 Society of Chemical Industry.
Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R
2011-01-01
Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds.
NASA Astrophysics Data System (ADS)
Malm, William C.; Schichtel, Bret A.; Hand, Jenny L.; Collett, Jeffrey L.
2017-10-01
Recent modeling and field studies have highlighted a relationship between sulfate concentrations and secondarily formed organic aerosols related to isoprene and other volatile biogenic gaseous emissions. The relationship between these biogenic emissions and sulfate is thought to be primarily associated with the effect of sulfate on aerosol acidity, increased aerosol water at high relative humidities, and aerosol volume. The Interagency Monitoring of Protected Visual Environments (IMPROVE) program provides aerosol concentration levels of sulfate (SO4) and organic carbon (OC) at 136 monitoring sites in rural and remote areas of the United States over time periods of between 15 and 28 years. This data set allows for an examination of relationships between these variables over time and space. The relative decreases in SO4 and OC were similar over most of the eastern United States, even though concentrations varied dramatically from one region to another. The analysis implied that for every unit decrease in SO4 there was about a 0.29 decrease in organic aerosol mass (OA = 1.8 × OC). This translated to a 2 μg/m3 decrease in biogenically derived secondary organic aerosol over 15 years in the southeastern United States. The analysis further implied that 35% and 27% in 2001 and 2015, respectively, of average total OA may be biogenically derived secondary organic aerosols and that there was a small but significant decrease in OA not linked to changes in SO4 concentrations. The analysis yields a constraint on ambient SO4-OC relationships that should help to refine and improve regional-scale chemical transport models.
Rodgers, Allen; Gauvin, Daniel; Edeh, Samuel; Allie-Hamdulay, Shameez; Jackson, Graham; Lieske, John C
2014-01-01
Urinary sulfate (SO4(2-)) and thiosulfate (S2O3(2-)) can potentially bind with calcium and decrease kidney stone risk. We modeled the effects of these species on the concentration of ionized calcium (iCa) and on supersaturation (SS) of calcium oxalate (CaOx) and calcium phosphate (CaP), and measured their in vitro effects on iCa and the upper limit of stability (ULM) of these salts. Urine data from 4 different types of stone patients were obtained from the Mayo Nephrology Clinic (Model 1). A second data set was obtained from healthy controls and hypercalciuric stone formers in the literature who had been treated with sodium thiosulfate (STS) (Model 2). The Joint Expert Speciation System (JESS) was used to calculate iCa and SS. In Model 1, these parameters were calculated as a function of sulfate and thiosulfate concentrations. In Model 2, data from pre- and post STS urines were analyzed. ULM and iCa were determined in human urine as a function of sulfate and thiosulfate concentrations. Calculated iCa and SS values for all calcium salts decreased with increasing sulfate concentration. Thiosulfate had no effect on these parameters. In Model 2, calculated iCa and CaOx SS increased after STS treatment, but CaP SS decreased, perhaps due to a decrease in pH after STS treatment. In confirmatory in vitro experiments supplemental sulfate, but not thiosulfate, significantly increased the calcium needed to achieve the ULM of CaP and tended to increase the oxalate needed to reach the ULM of CaOx. Sulfate also significantly decreased iCa in human urine, while thiosulfate had no effect. Increasing urinary sulfate could theoretically reduce CaOx and CaP stone risk. Although STS may reduce CaP stone risk by decreasing urinary pH, it might also paradoxically increase iCa and CaOx SS. As such, STS may not be a viable treatment option for stone disease.
Changes in cat urinary glycosaminoglycans with age and in feline urologic syndrome.
Pereira, Daionety A; Aguiar, Jair A K; Hagiwara, Mitika K; Michelacci, Yara M
2004-04-07
The aim of the present study was to characterize the urinary excretion of glycosaminoglycans in kittens and adult healthy cats, as well as in cats with a low urinary tract disease, the feline urologic syndrome (FUS). The main urinary glycosaminoglycan in cats was found to be chondroitin sulfate, with smaller amounts of dermatan sulfate and heparan sulfate. There was no difference in the urinary glycosaminoglycan concentration with sex, but a marked decrease occurred with age, due to chondroitin sulfate. Trace amounts of keratan sulfate were also detected in the urine of kittens, but not of healthy adult cats. Dermatan sulfate and heparan sulfate were the only glycosaminoglycans found in the urinary tract and kidney, and chondroitin sulfate was the only glycosaminoglycan found in the plasma. These data suggest that the main urinary glycosaminoglycan chondroitin sulfate is of systemic origin and filtered in the kidney, while the minor components dermatan sulfate and heparan sulfate may come from the urinary tract. The urinary glycosaminoglycan concentration was greatly decreased in animals with FUS, as compared to normal adults. We hypothesize that these low glycosaminoglycan levels reflect a damage to the bladder surface, resulting in absorption and/or degradation of the endogenous urinary glycosaminoglycans.
Rasool, Kashif; Lee, Dae Sung
2016-05-01
The increasing use of silver nanoparticles (AgNPs) in commercial products and industrial processes raises issues regarding the toxicity of sludge biomass in biological wastewater treatment plants, due to potential antimicrobial properties. This study investigated the effects of AgNPs on removal of organic pollutants and sulfate in an anaerobic biological sulfate reduction process. At AgNPs concentrations of up to 10 mg/L, no significant inhibition of sulfate and COD removal was observed. However, at higher concentrations (50-200 mg/L) sulfate and COD removal efficiencies were significantly decreased to 51.8% and 33.6%, respectively. Sulfate and COD reduction followed first-order kinetics at AgNPs concentrations of up to 10 mg/L and second-order kinetics at AgNPs concentrations of 50-200 mg/L. Lactate dehydrogenase release profiles showed increases in cytotoxicity at AgNPs concentrations greater than 50 mg/L suggesting cell membrane disruption. Analysis of extracellular polymeric substances (EPS) from sulfidogenic sludge biomass and of Fourier transform infrared (FT-IR) spectra showed a decrease in concentrations of carbohydrates, proteins, humic substances, and lipids in the presence of AgNPs. Moreover, the interaction of AgNPs with sludge biomass and the damage caused to cell walls were confirmed through scanning electron microscopy with energy dispersive X-ray spectroscopy.
Bonilla, José Oscar; Callegari, Eduardo Alberto; Delfini, Claudio Daniel; Estevez, María Cristina; Villegas, Liliana Beatriz
2016-11-01
The purpose of this study was to investigate the influence of increasing sulfate concentrations on chromium removal, to evaluate the effect of the presence of Cr(VI) on sulfate removal by Streptomyces sp. MC1 and to analyze the differential protein expression profile in the presence of this metal for the identification of proteins repressed or overexpressed. In the presence of Cr(VI) but in the absence of sulfate ions, bacterial growth was negligible, showing the Cr(VI) toxicity for this bacterium. However, the sulfate presence stimulated bacterium growth and Cr(VI) removal, regardless of its concentrations. Streptomyces sp. MC1 showed ability to remove chromium and sulfate simultaneously. Also, the sulfate presence favored the decrease of total chromium concentration from supernatants reaching a decrease of 50% at 48 h. In presence of chromium, seven proteins were down-expressed and showed homology to proteins involved in protein biosynthesis, energy production and free radicals detoxification while two proteins involved in oxidation-reduction processes identified as dihydrolipoamide dehydrogenase and S-adenosyl-l-methionine synthase were overexpressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bashir, Wasim; McGovern, Frank; O'Brien, Phillip; Ryan, Margaret; Burke, Liam; Paull, Brett
2008-06-01
A major Irish study, based upon more than 8000 samples collected over the measurement period of 22 years, for sulfur dioxide (SO2-S), sulfate (SO4-S) and nitrogen dioxide (NO2-N) concentrations (microg m(-3)) within air, and the ionic composition of precipitation samples based on sodium (Na+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), chloride (Cl-), sulfate (SO4-S), non-sea salt sulfate (nssSO4-S), ammonium (NH4-N), and nitrate (NO3-N) weighted mean concentrations (mg l(-1)), has been completed. For the air samples, the sulfur dioxide and sulfate concentrations decreased over the sampling period (1980-2004) by 75% and 45%, respectively, whereas no significant trend was observed for nitrogen dioxide. The highest concentrations for sulfur dioxide, sulfate and nitrogen dioxide were associated with wind originating from the easterly and northeasterly directions i.e. those influenced by Irish and European sources. The lowest concentrations were associated with the westerly directions i.e. for air masses originating in the North Atlantic region. This was further verified with the use of backward (back) trajectory analysis, which allowed tracing the movement of air parcels using the European Centre for Medium range Weather Forecasting (ECMWF) ERA-40 re-analysis data. High non-sea salt sulfate levels were being associated with air masses originating from Europe (easterlies) with lower levels from the Atlantic (westerlies). With the precipitation data, analysis of the non-sea salt sulfate concentrations showed a decrease by 47% since the measurements commenced.
Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.
2011-01-01
Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.
Mast, M.A.; Turk, J.T.; Clow, D.W.; Campbell, D.H.
2011-01-01
Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 ??eq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 ??eq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93??C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering. ?? 2010 US Government.
Localized sulfate-reducing zones in a coastal plain aquifer
Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.
1999-01-01
High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.
Arrizon, J; Gschaedler, A
2007-04-01
To study the effect of the addition of different nitrogen sources at high sugar concentration in the tequila fermentation process. Fermentations were performed at high sugar concentration (170 g l(-1)) using Agave tequilana Weber blue variety with and without added nitrogen from different sources (ammonium sulfate; glutamic acid; a mixture of ammonium sulfate and amino acids) during the exponential phase of growth. All the additions increased the fermentation rate and alcohol efficiency. The level of synthesis of volatile compounds depended on the source added. The concentration of amyl alcohols and isobutanol were decreased while propanol and acetaldehyde concentration increased. The most efficient nitrogen sources for fermentation rate were ammonium sulfate and the mixture of ammonium sulfate and amino acids. The level of volatile compounds produced depended upon types of nitrogen. The synthesis of some volatile compounds increased while others decreased with nitrogen addition. The addition of nitrogen could be a strategy for improving the fermentation rate and efficiency in the tequila fermentation process at high sugar Agave tequilana concentration. Furthermore, the sensory quality of the final product may change because the synthesis of the volatile compounds is modified.
METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS
Bohlmann, E.G.; Griess, J.C. Jr.
1960-08-23
A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.
Sams, James I.; Beer, Kevin M.
2000-01-01
In 1980, the Allegheny and Monongahela Rivers transported a sulfate load of 1.2 million and 1.35 million tons, respectively, to the Ohio River at Pittsburgh. The Monongahela River Basin had a sulfate yield of 184 tons per square mile per year compared to 105 tons per square mile per year for the Allegheny River Basin. Within the large Allegheny and Monongahela River Basins, the subbasins with the highest sulfate yields in tons per square mile per year were those of Redstone Creek (580), Blacklick Creek (524), Conemaugh River (292), Buffalo Creek (247), Stonycreek River (239), Two Lick Creek (231), Dunkard Creek (212), and Loyalhanna Creek (196). These basins have been extensively mined. The sulfate yields of Brokenstraw and Conewango Creeks, which are outside the area underlain by coal and thus contain no coal mines, were 25 and 24 tons per square mile per year, respectively.Within the Allegheny and Monongahela River Basins, seven sites showed significant trends in sulfate concentration from 1965 to 1995. Dunkard Creek and Stonycreek River show significant upward trends in sulfate concentration. These trends appear to be related to increases in coal production in the two basins from 1965 to 1995. Blacklick Creek at Josephine and Loyalhanna Creek at Loyalhanna Dam show significant downward trends in sulfate concentration between 1965 and 1995. Blacklick Creek had a 50-percent decrease in sulfate concentration. Coal production in the Blacklick Creek Basin, which reached its peak at almost 4 million tons per year in the 1940's, dropped to less than 1 million tons per year by 1995. In the Loyalhanna Creek Basin, which had a 41-percent decrease in sulfate concentration, coal-production rates dropped steadily from more than 1.5 million tons per year in the 1940's to less than 200,000 tons per year in 1995.
Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.
Hulshof, Andrea H M; Blowes, David W; Gould, W Douglas
2006-05-01
Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1a-1, (5.2 mmol L-1a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased delta13CDIC values from -3 per thousand to as low as -12 per thousand indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1a-1 (52 mmol L-1a-1), Fe concentrations decreased by 80-99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased delta13CDIC values, to as low as -22 per thousand, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.
Application of Biostimulation for Remediation of Sulfate-Contaminated Groundwater at a Mining Site
NASA Astrophysics Data System (ADS)
Miao, Z.; Carroll, K. C.; Carreon, C.; Brusseau, M. L.
2011-12-01
There is growing concern regarding sulfate contamination of groundwater. One innovative in-situ remediation option under investigation is biostimulation through addition of electron-donor amendments to enhance sulfate reduction. Two pilot-scale ethanol-injection tests were conducted at a former uranium mining site that is contaminated with sulfate and nitrate (with a lack of heavy metals), and for which there appears to be minimal natural attenuation of sulfate. The first test was a push-pull test that had a limited zone of influence, while the second test was a single-well injection test in which additional downgradient wells were monitored. For both tests, sulfate concentrations began to decline within a few weeks of injection, after nitrate concentrations were significantly reduced. Concomitantly, aqueous concentrations of manganese, iron, and hydrogen sulfide increased from background. Monitoring over many months revealed that the declines in sulfate concentration conformed to exponential decay, with first-order decay rates of approximately 0.01 /d. Analysis of sulfur stable isotope data indicated that the decrease in sulfate concentrations was microbially mediated. The results also indicated that sulfides formed during sulfate reduction may have undergone partial re-oxidation. This study illustrates the feasibility of using ethanol injection for remediation of sulfate-contaminated groundwater. However, re-oxidation of sulfides (both metal sulfide precipitates and hydrogen sulfide gas) is a potential issue of significance that would need to be addressed.
Glycosaminoglycans of abdominal skin after massive weight loss in post-bariatric female patients.
Veiga, Daniela Francescato; Bussolaro, Rodolpho A; Kobayashi, Elsa Y; Medeiros, Valquíria P; Martins, João R M; Garcia, Elvio B; Novo, Neil F; Nader, Helena B; Ferreira, Lydia M
2011-06-01
The number of post-bariatric patients had a significant increase over the last years, and a better understanding of the consequences of massive weight loss on skin is imperative. Despite weight-loss-related changes in collagen and elastin have been reported, less is known about changes in another of the matrix components of the skin, the glycosaminoglycans. The objective of this study is to evaluate abdominal skin glycosaminoglycans concentrations and perlecan and collagen III expression in post-bariatric female patients. Skin tissue samples from the abdomen of lean (n = 19) and post-bariatric (n = 24) female patients were compared. Sulfated glycosaminoglycans and hyaluronic acid were extracted, characterized and quantified. Perlecan and collagen III expression was assessed by immunofluorescence. The major glycosaminoglycans found were dermatan sultafe and hyaluronic acid; the others were found in smaller amounts. The skin of the post-bariatric patients had lower concentrations of heparan sulfate (p = 0.002) while hyaluronic acid, dermatan sulfate, and chondroitin sulfate concentrations were similar to the lean women's skin. Post-bariatric skin showed decreased expression of perlecan and increased expression of collagen III. No correlation was found among glycosaminoglycans concentrations and age, body mass index, frequency of pregnancies, or skin types, but it was observed in higher skin heparan sulfate concentrations in post-bariatric patients who had their weights stabilized for over than 24 months (p = 0.000). Abdominal skin of post-bariatric women presented decreased heparan sulfate concentrations and perlecan expression and increased expression of collagen III.
Chen, Yong; Wang, Zejian; Chu, Ju; Zhuang, Yingping; Zhang, Siliang; Yu, Xiaoguang
2013-04-01
In this study, the effects of nitrogen sources on broth viscosity and glucose consumption in erythromycin fermentation were investigated. By controlling ammonium sulfate concentration, broth viscosity and glucose consumption were decreased by 18.2% and 61.6%, respectively, whereas erythromycin biosynthesis was little affected. Furthermore, erythromycin A production was increased by 8.7% still with characteristics of low broth viscosity and glucose consumption through the rational regulations of phosphate salt, soybean meal and ammonium sulfate. It was found that ammonium sulfate could effectively control proteinase activity, which was correlated with the utilization of soybean meal as well as cell growth. The pollets formation contributed much to the decrease of broth viscosity. The accumulation of extracellular propionate and succinate under the new regulation strategy indicated that higher propanol consumption might increase the concentration of methylmalonyl-CoA and propionyl-CoA and thus could increase the flux leading to erythromycin A. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chan, Elizabeth A. W.; Gantt, Brett; McDow, Stephen
2018-02-01
Exposure to particulate matter air pollution with a nominal mean aerodynamic diameter less than or equal to 2.5 μm (PM2.5) has been associated with health effects including cardiovascular disease and death. Here, we add to the understanding of urban and rural PM2.5 concentrations over large spatial and temporal scales in recent years. We used high-quality, publicly-available air quality monitoring data to evaluate PM2.5 concentration patterns and changes during the years 2000-2015. Compiling and averaging measurements collected across the U.S. revealed that PM2.5 concentrations from urban sites experienced seasonal maxima in both winter and summer. Within each year from 2000 to 2008, the maxima of urban summer peaks were greater than winter peaks. However, from 2012 to 2015, the maxima of urban summertime PM2.5 peaks were smaller than the urban wintertime PM2.5 maxima, due to a decrease in the magnitude of summertime maxima with no corresponding decrease in the magnitude of winter maxima. PM2.5 measurements at rural sites displayed summer peaks with magnitudes relatively similar to those of urban sites, and negligible to no winter peaks through the time period analyzed. Seasonal variations of urban and rural PM2.5 sulfate, PM2.5 nitrate, and PM2.5 organic carbon (OC) were also assessed. Summer peaks in PM2.5 sulfate decreased dramatically between 2000 and 2015, whereas seasonal PM2.5 OC and winter PM2.5 nitrate concentration maxima remained fairly consistent. These findings demonstrate that PM2.5 concentrations, especially those occurring in the summertime, have declined in the U.S. from 2000 to 2015. In addition, reduction strategies targeting sulfate have been successful and the decrease in PM2.5 sulfate contributed to the decline in total PM2.5.
Separation of proteins by hydrophobic interaction chromatography at low salt concentration.
Kato, Yoshio; Nakamura, Koji; Kitamura, Takashi; Moriyama, Hiroyuki; Hasegawa, Masazumi; Sasaki, Hiroo
2002-09-20
We investigated protein separation by hydrophobic interaction chromatography (HIC) at low salt concentration on the supports of various hydrophobicities. Hydrophobic proteins could be successfully separated with more than 90% recovery by gradient elution of ammonium sulfate from 0.3-0.5 M to 0 in 50 mM phosphate buffer (pH 6.8) by using supports whose hydrophobicities were properly adjusted individually for each protein. Satisfactory results were also obtained by isocratic elution without ammonium sulfate and gradient elution of ethanol from 0 to 10%. HIC at low salt concentration was compatible with other modes of liquid chromatography like ion-exchange chromatography. On the other hand, it was not successful to separate hydrophilic proteins at low salt concentration. Recoveries of hydrophilic proteins decreased before they were retained enough as support hydrophobicity increased. Therefore, it is inevitable to use a higher concentration of salt, e.g., 1-2 M ammonium sulfate, on hydrophilic or moderately hydrophobic support in order to retain hydrophilic proteins without decrease in recovery.
Sagawa, K; DuBois, D C; Almon, R R; Murer, H; Morris, M E
1998-12-01
The renal transport and fractional reabsorption of inorganic sulfate is altered under conditions of sulfate deficiency or excess. The objective of this study was to examine the cellular mechanisms of adaptation of renal sodium/sulfate cotransport after varying dietary intakes of a sulfur containing amino acid, methionine. Female Lewis rats were divided into four groups and fed diets containing various concentrations of methionine (0, 0.3, 0.82 and 2.46%) for 8 days. Urinary excretion rates and renal clearance of sulfate were significantly decreased in the animals fed a 0% methionine diet or a 0.3% methionine diet, and significantly increased in the animals fed a 2.46% methionine diet when evaluated on days 4 and 7. Serum sulfate concentrations were unchanged by diet treatment in all animals. The fractional reabsorption of sulfate was significantly increased in the animals fed the 0% methionine diet and the 0.3% methionine diets, and decreased in the animals fed the 2.46% methionine diet. Increased mRNA and protein levels for the sodium/sulfate transporter (NaSi-1) were found in the kidney cortex following treatment with the 0 and 0.3% methionine diet groups. Sulfate homeostasis by renal reabsorption is maintained by an up-regulation of steady state levels of NaSi-1 mRNA and protein when the diet is low in methionine.
Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W
2008-09-16
When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.
Temporal trends in the acidity of precipitation and surface waters of New York
Peters, Norman E.; Schroeder, Roy A.; Troutman, David E.
1982-01-01
Statistical analyses of precipitation data from a nine-station monitoring network indicate little change in pH from 1965-78 within New York State as a whole but suggest that pH of bulk precipitation has decreased in the western part of the State by approximately 0.2 pH units since 1965 and increased in the eastern part by a similar amount. This trend is equivalent to an annual change in hydrogen-ion concentration of 0.2 microequivalents per liter. An average annual increase in precipitation quantity of 2 to 3 percent since 1965 has resulted in an increased acid load in the western and central parts of the State. During 1965-78, sulfate concentration in precipitation decreased an average of 1-4 percent annually. In general, no trend in nitrate was detected. Calculated trends in hydrogen-ion concentration do not correlate with measured trends of sulfate and nitrate, which suggests variable neutralization of hydrogen ion, possibly by particles from dry deposition. Neutralization has produced an increase of about 0.3 pH units in nonurban areas and 0.7 pH units in urban areas. Statistical analyses of chemical data from several streams throughout New York suggest that sulfate concentrations decreased an average of 1 to 4 percent per year. This decrease is comparable to the sulfate decrease in precipitation during the same period. In most areas of the State, chemical contributions from urbanization and farming, as well as the neutralizing effect of carbonate soils, conceal whatever effects acid precipitation may have on pH of streams.
Rhodamine-123: a p-glycoprotein marker complex with sodium lauryl sulfate.
Al-Mohizea, Abdullah M; Al-Jenoobi, Fahad Ibrahim; Alam, Mohd Aftab
2015-03-01
Aim of this study was to investigate the role of sodium lauryl sulfate (SLS) as P-glycoprotein inhibitor. The everted rat gut sac model was used to study in-vitro mucosal to serosal transport of Rhodamine-123 (Rho-123). Surprisingly, SLS decreases the serosal absorption of Rho-123 at all investigated concentrations. Investigation reveals complex formation between Rhodamine-123 and sodium lauryl sulfate. Interaction profile of SLS & Rho-123 was studied at variable SLS concentrations. The SLS concentration higher than critical micelle concentration (CMC) increases the solubility of Rho-123 but could not help in serosal absorption, on the contrary the absorption of Rho-123 decreased. Rho-123 and SLS form pink color complex at sub-CMC. The SLS concentrations below CMC decrease the solubility of Rho-123. For further studies, Rho-123 & SLS complex was prepared by using solvent evaporation technique and characterized by using differential scanning calorimeter (DSC). Thermal analysis also proved the formation of complex between SLS & Rho-123. The P values were found to be significant (<0.05) except group comprising 0.0001% SLS, and that is because 0.0001% SLS is seems to be very low to affect the solubility or complexation of Rho-123.
Zeng, Jianrong; Zhang, Guilin; Bao, Liangman; Long, Shilei; Tan, Mingguang; Li, Yan; Ma, Chenyan; Zhao, Yidong
2013-03-01
Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmental biology. A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy was established to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs), which were sampled from 5 local fields in Shanghai, China. Annual SO2 concentration, SO4(2-) concentration in atmospheric particulate, SO4(2-) and sulfur concentration in soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs. Total sulfur concentration in mature camphor tree leaves was 766-1704 mg/kg. The mainly detected sulfur states and their corresponding compounds were +6 (sulfate, include inorganic sulfate and organic sulfate), +5.2 (sulfonate), +2.2 (suloxides), +0.6 (thiols and thiothers), +0.2 (organic sulfides). Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlation coefficient up to 0.977, which suggested that sulfur accumulated in CTLs as sulfate form. Reduced sulfur compounds (organic sulfides, thiols, thioethers, sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced level around 526 mg/kg. The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulate instead of soil contamination. From urban to suburb place, sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced, but a dramatic increase presented near the seashore, where the marine sulfate emission and maritime activity pollution were significant. The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmospheric sulfur pollution in local environment.
Saber, Ali; Tafazzoli, Milad; Mortazavian, Soroosh; James, David E
2018-02-01
Two common wetland plants, Pampas Grass (Cortaderia selloana) and Lucky Bamboo (Dracaena sanderiana), were used in hydroponic cultivation systems for the treatment of simulated high-sulfate wastewaters. Plants in initial experiments at pH 7.0 removed sulfate more efficiently compared to the same experimental conditions at pH 6.0. Results at sulfate concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L during three consecutive 7-day treatment periods with 1-day rest intervals, showed decreasing trends of both removal efficiencies and uptake rates with increasing sulfate concentrations from the first to the second to the third 7-day treatment periods. Removed sulfate masses per unit dry plant mass, calculated after 23 days, showed highest removal capacity at 600 mg/L sulfate for both plants. A Langmuir-type isotherm best described sulfate uptake capacity of both plants. Kinetic studies showed that compared to pseudo first-order kinetics, pseudo-second order kinetic models slightly better described sulfate uptake rates by both plants. The Elovich kinetic model showed faster rates of attaining equilibrium at low sulfate concentrations for both plants. The dimensionless Elovich model showed that about 80% of sulfate uptake occurred during the first four days' contact time. Application of three 4-day contact times with 2-day rest intervals at high sulfate concentrations resulted in slightly higher uptakes compared to three 7-day contact times with 1-day rest intervals, indicating that pilot-plant scale treatment systems could be sized with shorter contact times and longer rest-intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ionic and secretory response of pancreatic islet cells to minoxidil sulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoine, M.H.; Hermann, M.; Herchuelz, A.
Minoxidil sulfate is an antihypertensive agent belonging to the new class of vasodilators, the K+ channel openers. The present study was undertaken to characterize the effects of minoxidil sulfate on ionic and secretory events in rat pancreatic islets. The drug unexpectedly provoked a concentration-dependent decrease in 86Rb outflow. This inhibitory effect was reduced in a concentration-dependent manner by glucose and tolbutamide. Minoxidil sulfate did not affect 45Ca outflow from islets perfused in the presence of extracellular Ca++ and absence or presence of glucose. However, in islets exposed to a medium deprived of extracellular Ca++, the drug provoked a rise inmore » 45Ca outflow. Whether in the absence or presence of extracellular Ca++, minoxidil sulfate increased the cytosolic free Ca++ concentration of islet cells. Lastly, minoxidil sulfate increased the release of insulin from glucose-stimulated pancreatic islets. These results suggest that minoxidil sulfate reduces the activity of the ATP-sensitive K+ channels and promotes an intracellular translocation of Ca++. The latter change might account for the effect of the drug on the insulin-releasing process. However, the secretory response to minoxidil sulfate could also be mediated, at least in part, by a modest Ca++ entry.« less
NASA Astrophysics Data System (ADS)
Geng, Guannan; Zhang, Qiang; Tong, Dan; Li, Meng; Zheng, Yixuan; Wang, Siwen; He, Kebin
2017-07-01
In this work, we presented the characteristics of PM2. 5 chemical composition over China for the period of 2005-2012 by synthesis of in situ measurement data collected from literatures and satellite-based estimates using aerosol optical depth (AOD) data and the GEOS-Chem chemical transport model. We revealed the spatiotemporal variations in PM2. 5 composition during 2005-2012 and investigated the driving forces behind the variations by examining the changes in precursor emissions using a bottom-up emission inventory. Both in situ observations and satellite-based estimates identified that secondary inorganic aerosols (i.e., sulfate, nitrate, and ammonium; SNA) ranked as the highest fraction of dust-free PM2. 5 concentrations, followed by organic matter (OM) and black carbon (BC). For instance, satellite-based estimates found that SNA, OM, and BC contributed to 59, 33, and 8 %, respectively, of national population-weighted mean dust-free PM2. 5 concentrations during 2005-2012. National population-weighted mean PM2. 5 concentration increased from 63.9 µg m-3 in 2005 to 75.2 µg m-3 in 2007 and subsequently decreased to 66.9 µg m-3 from 2007 to 2012. Variations in PM2. 5 concentrations are mainly driven by the decrease in sulfate and the increase in nitrate. Population-weighted mean sulfate concentration decreased by 2.4 % yr-1 during 2005-2012 (from 14.4 to 12.9 µg m-3), while population-weighted mean nitrate concentration increased by 3.4 % yr-1 during 2005-2012 (from 9.8 to 12.2 µg m-3), largely offsetting the decrease in sulfate concentrations. By examining the emission data from the Multi-resolution Emission Inventory for China (MEIC), we found that the changes in sulfate and nitrate concentrations were in line with the decrease in SO2 emissions and the increase in NOx emissions during the same period. The desulfurization regulation in power plants enforced around 2005 has been the primary contributor to the SO2 emission reduction since 2006. In contrast, growth of energy consumption and lack of control measures for NOx resulted in a persistent increase in NOx emissions until the installation of denitrification devices on power plants late in 2011, which began to take effect in 2012. The results of this work indicate that the synchronized abatement of emissions for multipollutants is necessary for reducing ambient PM2. 5 concentrations over China.
The preparation and antioxidant activity of glucosamine sulfate
NASA Astrophysics Data System (ADS)
Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng
2009-05-01
Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.
Arkhipova, Viktoriya V; Apyari, Vladimir V; Dmitrienko, Stanislava G
2015-03-15
Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Correlation of second virial coefficient with solubility for proteins in salt solutions.
Mehta, Chirag M; White, Edward T; Litster, James D
2012-01-01
In this work, osmotic second virial coefficients (B(22)) were determined and correlated with the measured solubilities for the proteins, α-amylase, ovalbumin, and lysozyme. The B(22) values and solubilities were determined in similar solution conditions using two salts, sodium chloride and ammonium sulfate in an acidic pH range. An overall decrease in the solubility of the proteins (salting out) was observed at high concentrations of ammonium sulfate and sodium chloride solutions. However, for α-amylase, salting-in behavior was also observed in low concentration sodium chloride solutions. In ammonium sulfate solutions, the B(22) are small and close to zero below 2.4 M. As the ammonium sulfate concentrations were further increased, B(22) values decreased for all systems studied. The effect of sodium chloride on B(22) varies with concentration, solution pH, and the type of protein studied. Theoretical models show a reasonable fit to the experimental derived data of B(22) and solubility. B(22) is also directly proportional to the logarithm of the solubility values for individual proteins in salt solutions, so the log-linear empirical models developed in this work can also be used to rapidly predict solubility and B(22) values for given protein-salt systems. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
de Oliveira, Letúzia M; Gress, Julia; De, Jaysankar; Rathinasabapathi, Bala; Marchi, Giuliano; Chen, Yanshan; Ma, Lena Q
2016-03-01
We investigated the effects of chromate (CrVI) and sulfate on their uptake and translocation in As-hyperaccumulator Pteris vittata. Plants were exposed to 1) 0.1 mM CrVI and 0, 0.25, 1.25 or 2.5 mM sulfate or 2) 0.25 mM sulfate and 0, 0.5, 2.5 or 5.0 mM CrVI for 1 d in hydroponics. P. vittata accumulated 26 and 1261 mg kg(-1) Cr in the fronds and roots at CrVI0.1, and 2197 and 1589 mg kg(-1) S in the fronds and roots at S0.25. Increasing sulfate concentrations increased Cr root concentrations by 16-66% and helped CrVI reduction to CrIII whereas increasing CrVI concentrations increased frond sulfate concentrations by 3-27%. Increasing sulfate concentrations enhanced TBARS concentrations in the biomass, indicating oxidative stress caused lipid peroxidation in plant cell membranes. However, addition of 0.25-2.5 mM sulfate alleviated CrVI's toxic effects and decreased TBARS from 23.5 to 9.46-12.3 μmol g(-1) FW. Though CrVI was supplied, 78-96% of CrIII was in the biomass, indicating efficient CrVI reduction to CrIII by P. vittata. The data indicated the amazing ability of P. vittata in Cr uptake at 289 mg kg(-1) h(-1) with little translocation to the fronds. These results indicated that P. vittata had potential in Cr phytoremediation in contaminated sites but further studies are needed to evaluate this potential. The facts that CrVI and sulfate helped each other in uptake by P. vittata suggest that CrVI was not competing with sulfate uptake in P. vittata. However, the mechanisms of how sulfate and CrVI enhance each other's accumulation in P. vittata need further investigation. Published by Elsevier Ltd.
KEIMOWITZ, A. R.; MAILLOUX, B. J.; COLE, P.; STUTE, M.; SIMPSON, H. J.; CHILLRUD, S. N.
2011-01-01
Landfills have the potential to mobilize arsenic via induction of reducing conditions in groundwater and subsequent desorption from or dissolution of arsenic-bearing iron phases. Laboratory incubation experiments were conducted with materials from a landfill where such processes are occurring. These experiments explored the potential for induced sulfate reduction to immobilize dissolved arsenic in situ. The native microbial community at this site reduced sulfate in the presence of added acetate. Acetate respiration and sulfate reduction were observed concurrent with dissolved iron concentrations initially increasing from 0.6 μM (0.03 mg L−1) to a maximum of 111 μM (6.1 mg L−1) and subsequently decreasing to 0.74 μM (0.04 mg L−1). Dissolved arsenic concentrations initially covaried with iron but subsequently increased again as sulfide accumulated, consistent with the formation of soluble thioarsenite complexes. Dissolved arsenic concentrations subsequently decreased again from a maximum of 2 μM (148 μg L−1) to 0.3 μM (22 μg L−1), consistent with formation of sulfide mineral phases or increased arsenic sorption at higher pH values. Disequilibrium processes may also explain this second arsenic peak. The maximum iron and arsenic concentrations observed in the lab represent conditions most equivalent to the in situ conditions. These findings indicate that enhanced sulfate reduction merits further study as a potential in situ groundwater arsenic remediation strategy at landfills and other sites with elevated arsenic in reducing groundwater. PMID:17969686
Low-Sulfate Seawater Injection into Oil Reservoir to Avoid Scaling Problem
NASA Astrophysics Data System (ADS)
Merdhah, Amer Badr Bin; Mohd Yassin, Abu Azam
This study presents the results of laboratory experiments carried out to investigate the formation of calcium, strontium and barium sulfates from mixing Angsi seawater or low sulfate seawater with the following sulfate contents (75, 50, 25, 5 and 1%) and formation water contain high concentration of calcium, strontium and barium ions at various temperatures (40-90°C) and atmospheric pressure. The knowledge of solubility of common oil field scale formation and how their solubilities are affected by changes in salinity and temperatures is also studied. Results show a large of precipitation occurred in all jars containing seawater while the amount of precipitation decreased when the low sulfate seawater was used. At higher temperatures the mass of precipitation of CaSO4 and SrSO4 scales increases and the mass of precipitation of BaSO4 scale decreases since the solubilities of CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. It can be concluded that even at sulfate content of 1% there may still be a scaling problem.
van Det, N F; van den Born, J; Tamsma, J T; Verhagen, N A; Berden, J H; Bruijn, J A; Daha, M R; van der Woude, F J
1996-04-01
Changes in heparan sulfate metabolism may be important in the pathogenesis of diabetic nephropathy. Recent studies performed on renal biopsies from patients with diabetic nephropathy revealed a decrease in heparan sulfate glycosaminoglycan staining in the glomerular basement membrane without changes in staining for heparan sulfate proteoglycan-core protein. To understand this phenomenon at the cellular level, we investigated the effect of high glucose conditions on the synthesis of heparan sulfate proteoglycan by glomerular cells in vitro. Human adult mesangial and glomerular visceral epithelial cells were cultured under normal (5 mM) and high glucose (25 mM) conditions. Immunofluorescence performed on cells cultured in 25 mM glucose confirmed and extended the in vivo histological observations. Using metabolic labeling we observed an altered proteoglycan production under high glucose conditions, with predominantly a decrease in heparan sulfate compared to dermatan sulfate or chondroitin sulfate proteoglycan. N-sulfation analysis of heparan sulfate proteoglycan produced under high glucose conditions revealed less di- and tetrasaccharides compared to larger oligosaccharides, indicating an altered sulfation pattern. Furthermore, with quantification of glomerular basement membrane heparan sulfate by ELISA, a significant decrease was observed when mesangial and visceral epithelial cells were cultured in high glucose conditions. We conclude that high glucose concentration induces a significant alteration of heparan sulfate production by mesangial cells and visceral epithelial cells. Changes in sulfation and changes in absolute quantities are both observed and may explain the earlier in vivo observations. These changes may be of importance for the altered integrity of the glomerular charge-dependent filtration barrier and growth-factor matrix interactions in diabetic nephropathy.
The fate of sulfate in chronic heart failure
Koning, Anne M.; Meijers, Wouter C.; Minović, Isidor; Post, Adrian; Feelisch, Martin; Pasch, Andreas; Leuvenink, Henri G. D.; de Boer, Rudolf A.; Bakker, Stephan J. L.
2017-01-01
New leads to advance our understanding of heart failure (HF) pathophysiology are urgently needed. Previous studies have linked urinary sulfate excretion to a favorable cardiovascular risk profile. Sulfate is not only the end product of hydrogen sulfide metabolism but is also directly involved in various (patho)physiological processes, provoking scientific interest in its renal handling. This study investigates sulfate clearance in chronic HF (CHF) patients and healthy individuals and considers its relationship with disease outcome. Parameters related to renal sulfate handling were determined in and compared between 96 previously characterized CHF patients and sex-matched healthy individuals. Among patients, sulfate clearance was analyzed for associations with clinical and outcome parameters. In CHF patients, plasma sulfate concentrations are significantly higher, whereas 24-h urinary excretion, fractional excretion, and clearance of sulfate are significantly lower, compared with healthy individuals. Among patients, sulfate clearance is independently associated with diuretics use, creatinine clearance and 24-h urinary sodium excretion. Sulfate clearance is associated with favorable disease outcome [hazard ratio per SD increase 0.38 (95% confidence interval 0.23–0.63), P < 0.001]. Although significance was lost after adjustment for creatinine clearance, the decrease of sulfate clearance in patients is independent of this parameter, indicating that sulfate clearance is not merely a reflection of renal function. This exploratory study reveals aberrant sulfate clearance as a potential contributor to CHF pathophysiology, with reduced levels in patients and a positive association with favorable disease outcome. Further research is needed to unravel the nature of its involvement and to determine its potential as a biomarker and target for therapy. NEW & NOTEWORTHY Sulfate clearance is decreased in chronic heart failure patients compared with healthy individuals. Among patients, sulfate clearance is positively associated with favorable disease outcome, i.e., a decreased rehospitalization rate and increased patient survival. Hence, decreased sulfate clearance may be involved in the pathophysiology of heart failure. PMID:27923792
Kim, Hyejeong; Kim, Moon-Moo
2017-11-01
The purpose of this study was to investigate the mechanism by which agmatine sulfate induces an anti-metastatic effect in human HT1080 fibrosarcoma cells, by affecting matrix metalloproteinases (MMPs). For the experiments, we used a non-toxic concentration of agmatine, below 512 μM, that was determined using an MTT assay. The effect of agmatine sulfate on metastasis was gelatin zymography, western blot, immunofluorescence staining and cell invasion assay. Agmatine sulfate inhibited MMP-2 activity stimulated by phenazine methosulfate (PMS). Furthermore, the expression level of MMP-2 stimulated by PMS, was decreased, but the expression level of TIMP-1 was increased in the presence of agmatine sulfate. Moreover, it was observed that the expression levels of ERK and p38 were increased, but those of PI3K and Akt-1 associated with the modulation of MMP-2 were decreased in this study. Furthermore, agmatine sulfate decreased the invasion level of human fibrosarcoma cells stimulated by VEGF. These results suggest that agmatine sulfate could inhibit metastasis through inhibition of MMP-2 via the PI3K/Akt-1 signaling pathway. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Sigalevich, Pavel; Cohen, Yehuda
2000-01-01
A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae and the facultatively aerobic heterotroph Marinobacter sp. strain MB was grown for 1 week under anaerobic conditions at a dilution rate of 0.05 h−1. It was then exposed to an oxygen flux of 223 μmol min−1 by gassing the growth vessel with 5% O2. Sulfate reduction persisted under these conditions, though the amount of sulfate reduced decreased by 45% compared to the amount reduced during the initial anaerobic mode. After 1 week of growth under these conditions, sulfate was excluded from the incoming medium. The sulfate concentration in the growth vessel decreased exponentially from 4.1 mM to 2.5 μM. The coculture consumed oxygen effectively, and no residual oxygen was detected during either growth mode in which oxygen was supplied. The proportion of D. oxyclinae cells in the coculture as determined by in situ hybridization decreased from 86% under anaerobic conditions to 70% in the microaerobic sulfate-reducing mode and 34% in the microaerobic sulfate-depleted mode. As determined by the most-probable-number (MPN) method, the numbers of viable D. oxyclinae cells during the two microaerobic growth modes decreased compared to the numbers during the anaerobic growth mode. However, there was no significant difference between the MPN values for the two modes when oxygen was supplied. The patterns of consumption of electron donors and acceptors suggested that when oxygen was supplied in the absence of sulfate and thiosulfate, D. oxyclinae performed incomplete aerobic oxidation of lactate to acetate. This is the first observation of oxygen-dependent growth of a sulfate-reducing bacterium in the absence of either sulfate or thiosulfate. Cells harvested during the microaerobic sulfate-depleted stage and exposed to sulfate and thiosulfate in a respiration chamber were capable of anaerobic sulfate and thiosulfate reduction. PMID:11055958
NASA Astrophysics Data System (ADS)
Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.
Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce 4+ may not be well suited for use in RFB technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivan, M.; Veira, D.M.
1985-01-01
Each of four groups of six wethers were fed one of a low molybdenum, high molybdenum, high molybdenum plus copper sulfate, or high molybdenum plus copper sulfate corn silage-based diet for ad libitum intake for 221 days. Average daily gains and ratios of feed/gain were depressed for the high molybdenum diet as compared with the low molybdenum diet suggesting molybdenum toxicity in sheep fed the high molybdenum diet. This was alleviated partly by the copper sulfate supplement. The supplement also decreased solubility of both copper and molybdenum in the rumen but had no effect on copper concentration in blood plasma.more » Concentration of molybdenum was higher in both liver and kidney in sheep fed high-molybdenum diets as compared with low-molybdenum diets. Copper concentration was higher in kidneys of sheep fed high-molybdenum diets, but no difference was significant in liver copper between sheep fed diets high or low in molybdenum.« less
Li, Ya-Ru; Gibson, Jacqueline MacDonald
2014-09-02
We analyzed sulfur dioxide (SO2) emissions and fine particulate sulfate (PM2.5 sulfate) concentrations in the southeastern United States during 2002-2012, in order to evaluate the health impacts in North Carolina (NC) of the NC Clean Smokestacks Act of 2002. This state law required progressive reductions (beyond those mandated by federal rules) in pollutant emissions from NC's coal-fired power plants. Although coal-fired power plants remain NC's leading SO2 source, a trend analysis shows significant declines in SO2 emissions (-20.3%/year) and PM2.5 sulfate concentrations (-8.7%/year) since passage of the act. Emissions reductions were significantly greater in NC than in neighboring states, and emissions and PM2.5 sulfate concentration reductions were highest in NC's piedmont region, where 9 of the state's 14 major coal-fired power plants are located. Our risk model estimates that these air quality improvements decreased the risk of premature death attributable to PM2.5 sulfate in NC by about 63%, resulting in an estimated 1700 (95% CI: 1500, 1800) deaths prevented in 2012. These findings lend support to recent studies predicting that implementing the proposed federal Cross-State Air Pollution Rule (recently upheld by the U.S. Supreme Court) could substantially decrease U.S. premature deaths attributable to coal-fired power plant emissions.
Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.
2015-01-01
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M
2015-05-19
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Articular chondrocyte metabolism and osteoarthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leipold, H.R.
The three main objectives of this study were: (1) to determine if depletion of proteoglycans from the cartilage matrix that occurs during osteoarthritis causes a measurable increase of cartilage proteoglycan components in the synovial fluid and sera, (2) to observe what effect intracellular cAMP has on the expression of matrix components by chondrocytes, and (3) to determine if freshly isolated chondrocytes contain detectable levels of mRNA for fibronectin. Canine serum keratan sulfate and hyaluronate were measured to determine if there was an elevation of these serum glycosaminoglycans in a canine model of osteoarthritis. A single intra-articular injection of chymopapain intomore » a shoulder joint increased serum keratan sulfate 10 fold and hyaluronate less than 2 fold in 24 hours. Keratan sulfate concentrations in synovial fluids of dogs about one year old were unrelated to the presence of spontaneous cartilage degeneration in the joints. High keratan sulfate in synovial fluids correlated with higher keratan sulfate in serum. The mean keratan sulfate concentration in sera of older dogs with osteoarthritis was 37% higher than disease-free controls, but the difference between the groups was not statistically significant. Treatment of chondrocytes with 0.5 millimolar (mM) dibutyryl cAMP (DBcAMP) caused the cells to adopt a more rounded morphology. There was no difference between the amount of proteins synthesized by cultures treated with DBcAMP and controls. The amount of fibronectin (FN) in the media of DBcAMP treated cultures detected by an ELISA was specifically reduced, and the amount of {sup 35}S-FN purified by gelatin affinity chromatography decreased. Moreover, the percentage of FN containing the extra domain. A sequence was reduced. Concomitant with the decrease in FN there was an increase in the concentration of keratan sulfate.« less
NASA Astrophysics Data System (ADS)
Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin
2016-12-01
We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.
Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin
2015-01-01
In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768
NASA Astrophysics Data System (ADS)
Aksoyoglu, Sebnem; Ciarelli, Giancarlo; El-Haddad, Imad; Baltensperger, Urs; Prévôt, André S. H.
2017-06-01
Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns, February-March 2009 and June 2006, which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations, leading to significant changes, especially in the formation of ammonium nitrate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two), while particulate inorganic nitrate concentrations decreased by up to 35 %, leading to a better agreement between the model results and measurements. Sulfate concentrations decreased as well; the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe, indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7; see Table 1 for a description of the categories), whereas combustion in energy and transformation industries (SNAP1) was the most important contributor to sulfate particulate mass. Emissions from international shipping were also found to be very important for both nitrate and sulfate formation in Europe. In addition, we also examined contributions from the geographical source regions to SIA concentrations in the most densely populated region of Switzerland, the Swiss Plateau.
Lemna paucicostata Hegelm. 6746
Datko, Anne H.; Mudd, S. Harvey; Giovanelli, John
1980-01-01
Photoautotrophic and mixotrophic growth of Lemna paucicostata Hegelm. 6746 (formerly Lemna perpusilla Torr. 6746) was investigated to establish standardized conditions for biochemical studies. Optimal temperature for growth was 29 to 30 C. The medium used previously (Datko AH, Mudd SH, Giovanelli J 1977 J Biol Chem 252: 3436-3445) was modified by inclusion of NH4Cl, decreasing macronutrient and ethylenediamine tetraacetate concentration, increasing micronutrient concentration, and inclusion of bicarbonate (for photoautotrophic growth) or 2-(N-morpholino)ethanesulfonic acid (for mixotrophic growth) buffers. Varying the sulfate concentration between 14 and 1 millimolar had no effect on growth. For photoautotrophic growth in the new medium (medium 4), the effects of CO2 concentration, light intensity, and pH were measured. Under the optimal conditions, a multiplication rate (MR) of 300 to 315, equivalent to a doubling time of 23 to 24 hours was obtained. Addition of glutamine or asparagine did not increase this MR. For mixotrophic growth in low light, the effects of sucrose concentration and pH were determined. Under optimal conditions, MR was 210. A concentration of sucrose less than maximal for growth was chosen for the medium for experiments which will include 14C-labeling of intermediates. MR under these conditions was 184. Growth was equally good in medium 4 and in half-strength Hutner's medium when sulfate was high (0.4 to 1 millimolar), but better in medium 4 when sulfate was low (20 micromolar). Growth rates could be restored to normal in half-strength Hutner's with low sulfate by decreasing the molybdate concentration. By modifying medium 4 to contain very low amounts of sulfate, and by preconditioning medium and plants, it was shown that there was an increment in plant protein of approximately 2.5 micrograms per nanomole of added MgSO4. Colonies undergoing sulfur limitation exhibited a slow growth rate and a high frond to colony ratio. Molybdate and selenate produced growth inhibition reversible by sulfate. Conditions were developed in which the plants could be maintained indefinitely in the presence of either molybdate or selenate in altered metabolic steady-states with lowered growth rates and protein per frond. Images PMID:16661306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, M.E.; Yuen, V.; Tang, B.K.
1988-05-01
Sulfation and glucuronidation are two parallel pathways for the metabolism of phenolic substrates. Gentisamide (GAM) was used as a model compound to examine the effects of parallel competing pathways on drug disappearance and metabolite formation in the once-through perfused rat liver preparation. GAM was found to form one glucuronide (GAM-5G) and two sulfate (GAM-2S and GAM-5S) conjugates. These GAM conjugates were biosynthesized in recirculating rat liver preparations, and were isolated by preparative high-performance liquid chromatography. Specific incorporation of 35S-sodium sulfate and (14C)glucose into GAM sulfate and glucuronide conjugates revealed corresponding elution patterns as labeled GAM metabolites. Their identities were characterizedmore » by enzymatic and acid hydrolyses and by NMR spectroscopy. Gentisamide-5-sulfate (GAM-5S) and gentisamide-5-glucuronide (GAM-5G) are major metabolites, and gentisamide-2-sulfate (GAM-2S) is a minor metabolite. Single-pass rat liver perfusions were used to examine the effect of stepwise increases/decreases of input GAM concentration (CIn) on the extraction ratio (E) of GAM and formation of metabolites. The E of GAM remained constant (about 0.89) at input concentrations from 0.9 to 120 microM and decreased at CIn greater than 120 microM. Metabolite patterns, however, changed with GAM CIn, even when E was constant at CIn up to 120 microM. GAM-5S was present as the major metabolite of GAM at all GAM CInS in most liver preparations but the proportions of GAM-5S and GAM-2S decreased at increasing CIn; the proportion of GAM-5G, a minor metabolite at low CIn, increased with increasing CIn. Biliary excretion rates at steady state accounted for 5.3 +/- 2.7% (mean +/- S.D.) of the input rate: GAM-5G was the predominant metabolite found.« less
Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung
2015-12-15
This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. Copyright © 2015 Elsevier B.V. All rights reserved.
Impacts of stratospheric sulfate geoengineering on tropospheric ozone
NASA Astrophysics Data System (ADS)
Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan
2017-10-01
A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly dependent on the SRM scheme. Due to the health and economic impacts of surface ozone, all these impacts should be taken into account in evaluations of possible consequences of SRM.
Bailey, Logan T; Mitchell, Carl P J; Engstrom, Daniel R; Berndt, Michael E; Coleman Wasik, Jill K; Johnson, Nathan W
2017-02-15
In low-sulfate and sulfate-limited freshwater sediments, sulfate loading increases the production of methylmercury (MeHg), a potent and bioaccumulative neurotoxin. Sulfate loading to anoxic sediments leads to sulfide production that can inhibit mercury methylation, but this has not been commonly observed in freshwater lakes and wetlands. In this study, sediments were collected from sulfate-impacted, neutral pH, surface water bodies located downstream from ongoing and historic mining activities to examine how chronic sulfate loading produces porewater sulfide, and influences MeHg production and transport. Sediments were collected over two years, during several seasons from lakes with a wide range of overlying water sulfate concentration. Samples were characterized for in-situ solid phase and porewater MeHg, Hg methylation potentials via incubations with enriched stable Hg isotopes, and sulfur, carbon, and iron content and speciation. Porewater sulfide reflected historic sulfur loading and was strongly related to the extractable iron content of sediment. Overall, methylation potentials were consistent with the accumulation of MeHg on the solid phase, but both methylation potentials and MeHg were significantly lower at chronically sulfate-impacted sites with a low solid-phase Fe:S ratio. At these heavily sulfate-impacted sites that also contained elevated porewater sulfide, both MeHg production and partitioning are influenced: Hg methylation potentials and sediment MeHg concentrations are lower, but occasionally porewater MeHg concentrations in sediment are elevated, particularly in the spring. The dual role of sulfide as a ligand for inorganic mercury (decreasing bioavailability) and methylmercury (increasing partitioning into porewater) means that elucidating the role of iron and sulfur loads as they define porewater sulfide is key to understanding sulfate's influence on MeHg production and partitioning in sulfate-impacted freshwater sediment. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of zinc and cholesterol/choleate on serum lipoproteins and the liver in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, C.H.; Chen, S.M.; Ogle, C.W.
1989-01-01
The effects of short-term treatment with orally-administered zinc sulfate and/or a mixture of cholesterol/choleate on serum lipoprotein and hepatic enzyme levels were studied. Administration of graded doses of zinc sulfate for 5 days, dose-dependently increased serum and hepatic zinc levels but depressed the serum high-density lipoprotein-cholesterol (HDL-C) concentration and liver cytochrome P-450 activity. However, it did not affect hepatic concentrations of malondialdehyde and free {beta}-glucuronidase. Cholesterol/choleate treatment for 5 days markedly damaged the liver, as reflected by elevations of hepatic concentrations of malondialdehyde (both in the mitochondrial and microsomal fractions) and of free {beta}-glucuronidase; total cholesterol and low-density lipoprotein-cholesterol inmore » the blood were increased, whereas HDL-C was decreased significantly. Concomitant administration of zinc sulfate with cholesterol/choleate further lowered HDL-C levels, but reversed the high hepatic concentrations of both malondialdehyde and free {beta}-glucuronidase. The present study indicates that both zinc ions and cholesterol can decrease circulatory HDL-C levels and that zinc protects against cholesterol-induced hepatic damage by reducing lysosomal enzyme release and preventing lipid peroxidation in the liver.« less
Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi.
DePasquale, D A; Montville, T J
1990-01-01
In this study we examined the mechanism by which ammonium bicarbonate inhibits mycotoxigenic fungi. Elevated extracellular pH, alone, was not responsible for the antifungal activity. Although conidia of Penicillium griseofulvum and Fusarium graminearum had internal pH (pHi) values as high as 8.0 in buffer at an external pH (pHo) of 9.5, their viability was not markedly affected. The pHi values from conidia equilibrated in glycine-NaOH-buffered treatments without ammonium bicarbonate or ammonium sulfate were similar to values obtained from buffered treatments containing the ammonium salts. Thus, inhibition did not appear to be directly related to increased pHi. Ammonium sulfate in buffered media at pH greater than or equal to 8.7 was as inhibitory as ammonium bicarbonate, but was completely ineffective at pH less than or equal to 7.8. The hypothesis that free ammonia caused the fungal inhibition was tested by using ammonium sulfate as a model for ammonium bicarbonate. Viability, expressed as log CFU/ml, and percent germination of P. griseofulvum and F. graminearum decreased dramatically as the free ammonia concentration increased. Germination rate ratios (the germination rate in buffered ammonium sulfate divided by the germination rate in buffer alone) decreased linearly as the free ammonia concentration increased, further establishing NH3 as the toxic agent. Ammonium bicarbonate inhibits fungi because the bicarbonate anion supplies the alkalinity necessary to establish an antifungal concentration of free ammonia. PMID:2082821
Barker, J.L.
1986-01-01
Trend analyses of 20 years or more of chemical quality and streamflow data for four streams in eastern Pennsylvania indicate that sulfate has decreased significantly in three of the four basins studied, while sodium and chloride have generally increased. The majority of chemical quality changes occurred in the late 1950 's and early 1960 's coincident with significant cultural changes. It is believed that these chemical quality changes are presently of little or no environmental consequence, as the concentrations are well within the range of those found in natural waters. Decreases in sulfate follow a regional trend concurrent with the conversion of home and industrial heating units from high to low sulfur coal, gas, and oil. The most significant decreases were observed in those basins severely affected by mine-drainage where pumpage has decreased significantly in the past 25 years, thereby further reducing the sulfur content of the streams. The observed increases in chloride and sodium are attributed to population increases and shifts from rural to suburban communities with concurrent increase in the percentage of the population using municipal waste treatment facilities and the increased use of salt on roadways. The concentrations of dissolved chloride, which are from two to three times higher in recent years, reach a peak in January, coincident with the application of salt to melt ice on the roadways. (USGS)
Methylmercury declines in a boreal peatland when experimental sulfate deposition decreases
Jill K. Coleman Wasik; Carl P.J. Mitchell; Daniel R. Engstrom; Edward B. Swain; Bruce A. Monson; Steven J. Balogh; Jeffrey D. Jeremiason; Brian A. Branfireun; Susan L. Eggert; Randall K. Kolka; James E. Almendinger
2012-01-01
Between 2001 and 2008 we experimentally manipulated atmospheric sulfate-loading to a small boreal peatland and monitored the resulting short and long-term changes in methylmercury (MeHg) production. MeHg concentrations and %MeHg (fraction of total-Hg (HgT) present as MeHg) in the porewaters of the experimental treatment reached peak values within...
Akan, Pinar; Kizildag, Servet; Ormen, Murat; Genc, Sermin; Oktem, Mehmet Ali; Fadiloglu, Meral
2009-01-15
Pregnenolone (P), the main precursor of the steroids, and its sulfate ester, pregnenolone sulfate (PS), are the major neurosteroids produced in the neural tissue. Many neuroendocrinological studies stressed the neuroprotective role of neurosteroids although it has been suggested that the inhibition of P and PS synthesis can delay neuronal cell death. The potential roles of P and PS in vital neuronal functions and in amyloid beta peptide (Abeta) toxicity are not clearly identified. This work aims to investigate the effects of P and PS on cell viability and Abeta peptide toxicity in a concentration and exposure time-dependent manner in rat PC-12 cells. The cells were treated with 20muM Abeta peptide 25-35 and variable concentrations of P and PS ranging from 0.5muM to 100muM. To examine the effects of steroid treatment on Abeta peptide toxicity, 0.5muM (low) and 50muM (high) neurosteroids were used. The cell viability and lactate dehydrogenase release of cells were evaluated after 24, 48 and 72h. Morphological changes of cells were also examined. The treatment with higher than 1muM concentrations of P and PS significantly decreased the cell viability comparing to untreated cells. At lower concentrations, P and PS had no toxic actions until 72h. The Abeta treatment resulted in a significant decrease in cell viability comparing to untreated cells. P showed a dose-dependent protective effect against Abeta peptide in PC-12 cells. But its sulfate ester did not have the same effect on Abeta peptide toxicity, even it significantly decreased cell viability in Abeta-treated cells. Consequently, the discrepant effects of P and PS on Abeta peptide toxicity may provide insight on the pathogenesis of Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Fathy, Mahmoud; Moghny, Th. Abdel; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.
2017-03-01
In response to rising concerns about the effect of sulfate on water quality, human health, and agriculture, many jurisdictions around the world are imposing tighter regulations for sulfate discharge. This is driving the need for environmental compliance in industries like mining, metal processing, pulp and paper, sewage treatment, and chemical manufacturing. The sulfate removal from synthetic water by high cross-linked polystyrene divinylbenzene resin was studied at batch experiments in this study. The effect of pH, contact time, sulfates concentration, and adsorbent dose on the sulfate sequestration was investigated. The optimum conditions were studied on Saline water as a case study. The results showed that with increasing of the absorbent amount; contact time, and pH improve the efficiency of sulfate removal. The maximum sulfates uptake was obtained in pH and contact time 3.0 and 120 min, respectively. Also, with increasing initial concentration of sulfates in water, the efficiency of sulfate removal decreased. The obtained results in this study were matched with Freundlich isotherm and pseudo-second-order kinetic. The maximum adsorption capacity (Qm) and constant rate were found 0.318 (mg/g) and 0.21 (mg/g.min), respectively. This study also showed that in the optimum conditions, the sulfate removal efficiency from Saline water by 0.1 mg/L sulfates was 65.64 %. Eventually, high cross-linked polystyrene divinylbenzene resin is recommended as a suitable and low cost absorbent to sulfate removal from aqueous solutions.
Budsberg, Steven C; Lenz, Mary Ellen; Thonar, Eugene J-M A
2006-03-01
To examine longitudinal changes in serum and synovial fluid concentrations of keratan sulfate (KS) and hyaluronan (HA) after cranial cruciate ligament (CCL) transection in dogs. 12 clinically normal adult mixed-breed dogs. Following CCL transection in the right stifle joint, KS and HA concentrations were determined in serum and neat (undiluted) synovial fluid prior to and 1, 2, 3, and 12 months after surgery. Postsurgical dilution of synovial fluid was corrected by use of urea as a passive marker. Synovial fluid KS and HA concentrations decreased at 1, 2, and 3 months after surgery in operated stifle joints, compared with baseline values. Synovial fluid KS concentration decreased in unoperated stifle joints at 1 month. A decrease in synovial fluid KS concentration was found in operated stifle joints, compared with unoperated stifle joints, at 2 and 3 months, and a decrease in synovial fluid HA concentrations was also found in operated stifle joints, compared with unoperated stifle joints, at 1, 2, and 3 months. Serum KS concentrations increased from baseline values at 3 months after surgery. Hyaluronan concentrations in operated stifle joints were lower than baseline values at 1, 2, and 3 months. Urea-adjusted synovial fluid concentrations revealed that dilution did not account for the decline in biomarker concentrations. The initial decrease and subsequent increase in synovial fluid concentrations of HA and KS may be caused by an acute inflammatory response to surgical intervention that negatively affects cartilage metabolism or an increase in production of immature proteoglycans.
Guimarães, Damaris; Leão, Versiane A
2014-12-01
Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guo, X J; Lu, Z Y; Wang, P; Li, H; Huang, Z Z; Lin, K F; Liu, Y D
2015-10-01
Petrochemical wastewater often contains high concentrations of phenol and sulfate that must be properly treated to meet discharge standards. This study acclimated anaerobic-activated sludge to treat saline phenolic wastewater with sulfate reduction and clarified the diversity and degradation mechanism of the microbial community. The active sludge in an upflow anaerobic sludge blanket (UASB) reactor could remove 90 % of phenol and maintain the effluent concentration of SO4 (2-) below 400 mg/L. Cloning and sequencing showed that Clostridium spp. and Desulfotomaculum spp. were major phenol-degrading bacteria. Phenol was probably degraded through the carboxylation pathway and sulfate reduction catalyzed by adenosine-5'-phosphosulfate (APS) reductase and dissimilatory sulfite reductase (DSR). A real-time polymerase chain reaction (RT-PCR) showed that as phenol concentration increased, the quantities of 16S rRNA gene, dsrB, and mcrA in the sludge all decreased. The relative abundance of dsrB dropped to 12.46 %, while that of mcrA increased to 56.18 %. The change in the electron flow ratio suggested that the chemical oxygen demand (COD) was removed mainly by sulfate-reducing bacteria under a phenol concentration of 420 mg/L, whereas it was removed mainly by methanogens above 630 mg/L.
A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012
NASA Astrophysics Data System (ADS)
Lv, Baolei; Zhang, Bin; Bai, Yuqi
2016-01-01
Particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) is the main air pollutant in Beijing. To have a comprehensive understanding of concentrations, compositions and sources of PM2.5 in Beijing, recent studies reporting ground-based observations and source apportionment results dated from 2000 to 2012 in this typical large city of China are reviewed. Statistical methods were also used to better enable data comparison. During the last decade, annual average concentrations of PM2.5 have decreased and seasonal mean concentrations declined through autumn and winter. Generally, winter is the most polluted season and summer is the least polluted one. Seasonal variance of PM2.5 levels decreased. For diurnal variance, PM2.5 generally increases at night and decreases during the day. On average, organic matters, sulfate, nitrate and ammonium are the major compositions of PM2.5 in Beijing. Fractions of organic matters increased from 2000 to 2004, and decreased afterwards. Fractions of sulfate, nitrate and ammonium decreased in winter and remained largely unchanged in summer. Concentrations of organic carbon and elemental carbon were always higher in winter than in summer and they barely changed during the last decade. Concentrations of sulfate, nitrate and ammonium exhibited significant increasing trend in summer but in reverse in winter. On average they were higher in winter than in summer before 2005, and took a reverse after 2005. Receptor model results show that vehicle, dust, industry, biomass burning, coal combustion and secondary products were major sources and they all increased except coal combustions and secondary products. The growth was decided both changing social and economic activities in Beijing, and most likely growing emissions in neighboring Hebei province. Explicit descriptions of the spatial variations of PM2.5 concentration, better methods to estimate secondary products and ensemble source apportionments models to reduce uncertainties would remain being open questions for future studies.
Maest, Ann S.; Nordstrom, D. Kirk; LoVetere, Sara H.
2004-01-01
Historical water-quality samples collected from the Red River over the past 35 years were compiled, reviewed for quality, and evaluated to determine influences on water quality over time. Hydrologic conditions in the Red River were found to have a major effect on water quality. The lowest sulfate concentrations were associated with the highest flow events, especially peak, rising limb, and falling limb conditions. The highest sulfate concentrations were associated with the early part of the rising limb of summer thunderstorm events and early snowmelt runoff, transient events that can be difficult to capture as part of planned sampling programs but were observed in some of the data. The first increase in flows in the spring, or during summer thunderstorm events, causes a flushing of sulfide oxidation products from scars and mine-disturbed areas to the Red River before being diluted by rising river waters. A trend of increasing sulfate concentrations and loads over long time periods also was noted at the Questa Ranger Station gage on the Red River, possibly related to mining activities, because the same trend is not apparent for concentrations upstream. This trend was only apparent when the dynamic events of snowmelt and summer rainstorms were eliminated and only low-flow concentrations were considered. An increase in sulfate concentrations and loads over time was not seen at locations upstream from the Molycorp, Inc., molybdenum mine and downstream from scar areas. Sulfate concentrations and loads and zinc concentrations downstream from the mine were uniformly higher, and alkalinity values were consistently lower, than those upstream from the mine, suggesting that additional sources of sulfate, zinc, and acidity enter the river in the vicinity of the mine. During storm events, alkalinity values decreased both upstream and downstream of the mine, indicating that natural sources, most likely scar areas, can cause short-term changes in the buffering capacity of the Red River. The major-element water chemistry of the Red River is controlled by dissolution of calcite and gypsum and the oxidation of pyrite, and the river is generally not well buffered with respect to pH. During higher-flow periods, Red River water was diluted by calcium-carbonate waters, most likely from unmineralized Red River tributaries and areas upstream from scars. The effect of pyrite oxidation on Red River water chemistry was more pronounced after the early 1980's. Elevated zinc concentrations were most apparent during summer thunderstorm and rising limb times, which also were associated with a decrease in alkalinity and an increase in sulfate concentrations and conductivity. The water-quality results demonstrate that it is critical to consider hydrologic conditions when interpreting water chemistry in naturally mineralized or mined drainages.
Oak Bole-Wood Chemistry Response to Fertilization at Two Ozark Sites
David R. DeWalle; William E. Sharpe; Bryan R. Swistock
2004-01-01
Bole-wood chemistry can be a useful indicator of the nutrient status of trees. Liming generally increases Ca and/or Mg and decreases Mn concentrations in bole-wood. Acidifying treatments, such as ammonium sulfate or nitrogen fertilizers without lime, generally cause Mn increases and concomitant decreases in Ca and Mg. Bole-wood concentration ratios of Ca/Mn have been...
Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)
In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...
NASA Astrophysics Data System (ADS)
Myrbo, A.; Swain, E. B.; Johnson, N. W.; Engstrom, D. R.; Pastor, J.; Dewey, B.; Monson, P.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.
2017-11-01
Microbial sulfate reduction (MSR) in both freshwater and marine ecosystems is a pathway for the decomposition of sedimentary organic matter (OM) after oxygen has been consumed. In experimental freshwater wetland mesocosms, sulfate additions allowed MSR to mineralize OM that would not otherwise have been decomposed. The mineralization of OM by MSR increased surface water concentrations of ecologically important constituents of OM: dissolved inorganic carbon, dissolved organic carbon, phosphorus, nitrogen, total mercury, and methylmercury. Increases in surface water concentrations, except for methylmercury, were in proportion to cumulative sulfate reduction, which was estimated by sulfate loss from the surface water into the sediments. Stoichiometric analysis shows that the increases were less than would be predicted from ratios with carbon in sediment, indicating that there are processes that limit P, N, and Hg mobilization to, or retention in, surface water. The highest sulfate treatment produced high levels of sulfide that retarded the methylation of mercury but simultaneously mobilized sedimentary inorganic mercury into surface water. As a result, the proportion of mercury in the surface water as methylmercury peaked at intermediate pore water sulfide concentrations. The mesocosms have a relatively high ratio of wall and sediment surfaces to the volume of overlying water, perhaps enhancing the removal of nutrients and mercury to periphyton. The presence of wild rice decreased sediment sulfide concentrations by 30%, which was most likely a result of oxygen release from the wild rice roots. An additional consequence of the enhanced MSR was that sulfate additions produced phytotoxic levels of sulfide in sediment pore water.
Effects of sulfur dioxide emissions on stream chemistry in the western United States
Campbell, D.H.; Turk, J.T.
1988-01-01
A 20-year record of water chemistry for seven headwater streams in the Rocky Mountain region of the western United States is compared to estimates of local and regional sulfur dioxide emissions for the same period. Emissions from smelters in the region comprise a significant part of sulfur dioxide emissions for the 11 states upwind of acid-sensitive watersheds in the Rocky Mountains, but smelter emissions have steadily decreased since 1970. Analysis of stream chemistry indicates conservative behavior of watershed sulfate, with atmospheric deposition as the dominant source of sulfate. No relation between regional stream chemistry and smelter or regional sulfur dioxide emissions is detected for the watersheds. Local emissions trends, however, do appear to affect sulfate concentrations in the streams. Year-to-year variability in stream sulfate concentration is much greater than any long-term trends that might be inferred.
Chapelle, Francis H.; McMahon, Peter B.; Dubrovsky, Neil M.; Fujii, Roger F.; Oaksford, Edward T.; Vroblesky, Don A.
1995-01-01
The distribution of microbially mediated terminal electron-accepting processes (TEAPs( was investigated in four hydrologically diverse groundwater systems by considering patterns of electron acceptor (nitrate, sulfate) consumption, intermediate product (hydrogen (H2)) concentrations, and final product (ferrous iron, sulfide, and methane) production. In each hydrologic system a determination of predominant TEAPs could be arrived at, but the level of confidence appropriate for each determination differed. In a portion of the lacustrine aquifer of the San Joaquin Valley, for example, all three indicators (sulfate concentrations decreasing, H2concentrations in the 1–2 nmol range, and sulfide concentrations increasing along flow paths identified sulfate reduction as the predominant TEAP, leading to a high degree of confidence in the determination. In portions of the Floridan aquifer and a petroleum hydrocarbon-contaminated aquifer, sulfate reduction and methanogenesis are indicated by production of sulfide and methane, and hydrogen oncentrations in the 1–4 nmol and 5–14 nmol range, respectively. However, because electron acceptor consumption could not be documented in these systems, less confidence is warranted in the TEAP determination. In the Black Creek aquifer, no pattern of sulfate consumption and sulfide production were observed, but H2 concentrations indicated sulfate reduction as the predominant TEAP. In this case, where just a single line of evidence is available, the least confidence in the TEAP diagnosis is justified. Because this methodology is based on measurable water chemistry parameters and upon the physiology of microbial electron transfer processes, it provides a better description of predominant redox processes in groundwater systems than more traditional Eh-based methods.
A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)
NASA Astrophysics Data System (ADS)
Holmkvist, Lars; Ferdelman, Timothy G.; Jørgensen, Bo Barker
2011-06-01
Sulfate reduction and sulfur-iron geochemistry were studied in 5-6 m deep gravity cores of Holocene mud from Aarhus Bay (Denmark). A goal was to understand whether sulfate is generated by re-oxidation of sulfide throughout the sulfate and methane zones, which might explain the abundance of active sulfate reducers deep below the main sulfate zone. Sulfate penetrated down to 130 cm where methane started to build up and where the concentration of free sulfide peaked at 5.5 mM. Below this sulfate-methane transition, sulfide diffused downwards to a sulfidization front at 520 cm depth, below which dissolved iron, Fe 2+, accumulated in the pore water. Sulfate reduction rates measured by 35S-tracer incubations in the sulfate zone were high due to high concentrations of reactive organic matter. Within the sulfate-methane transition, sulfate reduction was distinctly stimulated by the anaerobic oxidation of methane. In the methane zone below, sulfate remained at positive "background" concentrations of <0.5 mM down to the sulfidization front. Sulfate reduction decreased steeply to rates which at 300-500 cm depth were 0.2-1 pmol SO 42- cm -3 d -1, i.e., 4-5 orders of magnitude lower than rates measured near the sediment surface. The turn-over time of sulfate increased from 3 years at 12 cm depth to 100-1000 years down in the methane zone. Sulfate reduction in the methane zone accounted for only 0.1% of sulfate reduction in the entire sediment column and was apparently limited by the low pore water concentration of sulfate and the low availability of organic substrates. Amendment of the sediment with both sulfate and organic substrates immediately caused a 10- to 40-fold higher, "potential sulfate reduction" which showed that a physiologically intact community of sulfate reducing bacteria was present. The "background" sulfate concentration appears to be generated from the reaction of downwards diffusing sulfide with deeply buried Fe(III) species, such as poorly-reactive iron oxides or iron bound in reactive silicates. The oxidation of sulfide to sulfate in the sulfidic sediment may involve the formation of elemental sulfur and thiosulfate and their further disproportionation to sulfide and sulfate. The net reaction of sulfide and Fe(III) to form pyrite requires an additional oxidant, irrespective of the formation of sulfate. This could be CO 2 which is reduced with H 2 to methane. The methane subsequently diffuses upwards to become re-oxidized at the sulfate-methane transition and thereby removes excess reducing power and enables the formation of excess sulfate. We show here how the combination of these well-established sulfur-iron-carbon reactions may lead to the deep formation of sulfate and drive a cryptic sulfur cycle. The iron-rich post-glacial sediments underlying Holocene marine mud stimulate the strong sub-surface sulfide reoxidation observed in Aarhus Bay and are a result of the glacial to interglacial history of the Baltic Sea area. Yet, processes similar to the ones described here probably occur widespread in marine sediments, in particular along the ocean margins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DE Kurath; JR Bontha; DL Blanchard
BNFL Inc. is evaluating various pretreatment technologies to mitigate the impacts of sulfate on the LAW vitrification system. One pretreatment technology for separating sulfate from LAW solutions involves the use of SuperLig{reg_sign} 655 (SL-655), a proprietary ion exchange material developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. This report describes testing of SL-655 with diluted ([Na] {approximately} 5 M) waste from Hanford Tank 241-AN-107 at Battelle, Pacific Northwest Division. Batch contact studies were conducted from 4 to 96 hours to determine the sulfate distribution coefficient and reaction kinetics. A small-scale ion exchange column test was conducted tomore » evaluate sulfate removal, loading, breakthrough, and elution from the SL-655. In all of these tests, an archived 241-AN-107 tank waste sample (pretreated to remove Cs, Sr, and transuranics elements) was used. The experimental details and results are described in this report. Under the test conditions, SL-655 was found to have no significant ion exchange affinity for sulfate in this matrix. The batch contact study resulted in no measurable difference in the aqueous sulfate concentration following resin contact (K{sub d} {approximately} 0). The column test also demonstrated SL-655 had no practical affinity for sulfate in the tested matrix. Within experimental error, the sulfate concentration in the column effluent was equal to the concentration in the feed after passing 3 bed volumes of sample through the columns. Furthermore, some, if not all, of the decreased sulfate concentration in these first three column volumes of effluent can be ascribed to mixing and dilution of the 241-AN-107 feed with the interstitial liquid present in the column at the start of the loading cycle. Finally, ICP-AES measurements on the eluate solutions showed the presence of barium as soon as contact with the feed solution is completed. Barium is a metal not detected in the feed solution. Should the loss of barium be correlated with the resin's ability to selectively complex sulfate, then maintaining even the current limited resin characteristics for sulfate complexation over multiple cycles becomes questionable.« less
Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.
2005-01-01
Precipitation, snowpack, and surface-water samples collected during 1995-2003 were analyzed to evaluate the effects of emission reductions at the Hayden powerplant on water chemistry in the Mount Zirkel Wilderness Area. The Hayden powerplant, one of two large coal-fired powerplants in the Yampa Valley, was retrofitted with control systems during late 1998 and 1999 to reduce emissions of sulfur dioxide and nitrogen oxide--the primary precursors of haze and acidic precipitation. The U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, evaluated three water-chemistry data sets: wet-only precipitation chemistry from the National Atmospheric Deposition Program, snowpack chemistry from the Rocky Mountain snowpack network, and surface-water chemistry from a U.S. Geological Survey long-term lakes monitoring program. Concentrations and deposition rates of selected constituents were compared for the periods before and after emission reductions at the Hayden powerplant. Data collected during 1995-98 were used to represent the pre-control period, and data collected during 2000-2003 were used to represent the post-control period. Ten stations in the National Atmospheric Deposition Program were evaluated including two that were directly downwind from the Hayden powerplant (Dry Lake and Buffalo Pass) and eight that were upwind or more distant (more than 100 kilometers) from the powerplant. Precipitation amount at all 10 precipitation stations was lower in the post-control period than the pre-control period as a result of a regional drought that persisted during the post-control period. In contrast to precipitation amount, there was no consistent pattern of change in sulfate concentrations between periods, indicating that the drought did not have a concentrating effect on sulfate or that trends in regional sulfur dioxide emissions masked its influence. Sulfate concentrations increased at three stations between periods, remained the same at three stations, and decreased at four stations. The largest change in average annual sulfate concentrations occurred at the two precipitation stations downwind from the Hayden powerplant, decreasing by 3.3 microequivalents per liter at Dry Lake and by 2.2 microequivalents per liter at Buffalo Pass. Declines in annual sulfate deposition also were greater at Dry Lake (3.4 kilograms per hectare) and Buffalo Pass (3.3 kilograms per hectare) than at the other stations, which ranged from 0.2 to 1.7 kilograms per hectare. These results indicate that emission reductions at the Hayden powerplant have been a factor in declines in atmospheric deposition of sulfate downwind from the powerplant. Nitrate, ammonium, and base-cation concentrations, in contrast to sulfate, were higher in the post-control period than the pre-control period at all 10 stations, most likely due to a concentrating effect of the drought. Twenty-two snowpack sites in the Rocky Mountain snowpack network were evaluated including 4 sites that were located directly downwind from the Hayden powerplant and 18 sites that were upwind or more distant (as much as 200 kilometers) from the powerplant. The water content of the snowpack at maximum accumulation was lower in the post-control period than the pre-control period, reflecting the regional drought. Although there were small declines in snowpack sulfate concentrations at the downwind stations between the pre- and post-control periods, the difference was not statistically significant, indicating emission reductions had a weaker effect on snowpack chemistry than precipitation chemistry. Sulfate deposition decreased at all four downwind sites in the post-control period, primarily reflecting both lower water content and concentrations in the snowpack. As observed at the precipitation stations, nitrate, ammonium, and base-cation concentrations at all 22 sites were significantly higher in the post-control period than the pre-control period, reflecting d
NASA Astrophysics Data System (ADS)
Lukawska-Matuszewska, Katarzyna; Kielczewska, Joanna
2016-04-01
Sediments from four sampling sites in the Gulf of Gdansk were sampled to test how different oxygen concentrations in near-bottom water affects biogeochemical cycling of C, N and S. Vertical distributions of content of organic carbon (OC), total nitrogen (TN) and total sulfur (TS) and number of sulfate-reducing bacteria (SRB) in sediments were determined. Pore water total alkalinity (TA), dissolved inorganic carbon (DIC), sulfate, hydrogen sulfide, ammonium and phosphate were analyzed and benthic fluxes of DIC, hydrogen sulfide and ammonium were calculated. Concentrations of OC and TN decreased and concentration of TS increased with sediment depth. Highest concentrations of OC, TN and TS were observed in silty clay sediments from hypoxic and anoxic sediments below the permanent halocline. Organic matter (OM) accumulation in sediments and oxygen deficiency in near-bottom water stimulate preservation of OC and burial of TS in this area. Concentrations of TA, DIC, hydrogen sulfide, ammonium and phosphate in pore water increased, while concentration of sulfate decreased with sediment depth. Hydrogen sulfide, ammonium and phosphate was a significant additional source of TA in pore water under hypoxic and anoxic conditions. Mineralization of OM at oxygen concentrations <2 ml l-1 occurred mainly via bacterial sulfate reduction. Diurnal hydrogen sulfide fluxes under hypoxic conditions ranged from 400 to 1240 μmol m-2 d-1. Ammonium fluxes were estimated on 534 - 924 μmol m-2 d-1. Corresponding fluxes measured under anoxic conditions were 266 μmol m-2 d-1 and 106 μmol m-2 d-1. Sediments under oxic conditions became a place of the intensive regeneration of carbon - DIC flux from sediment reached 2775 μmol m-2 day-1. Sediment-water DIC fluxes under hypoxic and anoxic conditions were much lower and ranged from 1015 to 1208 μmol m-2 d-1.
Glombitza, Clemens; Jaussi, Marion; Røy, Hans; Seidenkrantz, Marit-Solveig; Lomstein, Bente A.; Jørgensen, Bo B.
2015-01-01
Volatile fatty acids (VFAs) are key intermediates in the anaerobic mineralization of organic matter in marine sediments. We studied the role of VFAs in the carbon and energy turnover in the sulfate reduction zone of sediments from the sub-arctic Godthåbsfjord (SW Greenland) and the adjacent continental shelf in the NE Labrador Sea. VFA porewater concentrations were measured by a new two-dimensional ion chromatography-mass spectrometry method that enabled the direct analysis of VFAs without sample pretreatment. VFA concentrations were low and surprisingly constant (4–6 μmol L−1 for formate and acetate, and 0.5 μmol L−1 for propionate) throughout the sulfate reduction zone. Hence, VFAs are turned over while maintaining a stable concentration that is suggested to be under a strong microbial control. Estimated mean diffusion times of acetate between neighboring cells were <1 s, whereas VFA turnover times increased from several hours at the sediment surface to several years at the bottom of the sulfate reduction zone. Thus, diffusion was not limiting the VFA turnover. Despite constant VFA concentrations, the Gibbs energies (ΔGr) of VFA-dependent sulfate reduction decreased downcore, from −28 to −16 kJ (mol formate)−1, −68 to −31 kJ (mol acetate)−1, and −124 to −65 kJ (mol propionate)−1. Thus, ΔGr is apparently not determining the in-situ VFA concentrations directly. However, at the bottom of the sulfate zone of the shelf station, acetoclastic sulfate reduction might operate at its energetic limit at ~ −30 kJ (mol acetate)−1. It is not clear what controls VFA concentrations in the porewater but cell physiological constraints such as energetic costs of VFA activation or uptake could be important. We suggest that such constraints control the substrate turnover and result in a minimum ΔGr that depends on cell physiology and is different for individual substrates. PMID:26379631
Williams, K.H.; Long, P.E.; Davis, J.A.; Wilkins, M.J.; N'Guessan, A. L.; Steefel, Carl; Yang, L.; Newcomer, D.; Spane, F.A.; Kerkhof, L.J.; Mcguinness, L.; Dayvault, R.; Lovley, D.R.
2011-01-01
Field biostimulation experiments at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agency's (EPA) drinking water standard (0.126??M).During successive summer experiments - referred to as "Winchester" (2007) and "Big Rusty" (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM),and the extent to which iron reduction ("Winchester") or sulfate reduction("Big Rusty") was the predominant metabolic process. In both cases, rapid removal of U(VI) from groundwater occurred at calcium concentrations (6 mM) and carbonate alkalinities (8 meq/L) where Ca-UO2-CO3 ternary complexes constitute >90% of uranyl species in groundwater. Complete consumption of acetate and increased alkalinity (>30 meq/L) accompanying the onset of sulfate reduction corresponded to temporary increases in U(VI);however, by increasing acetate concentrations in excess of available sulfate (10 mM), low U(VI) concentrations (0.1-0.05 ??M) were achieved for extended periods of time (>140 days). Uniform delivery of acetate during "Big Rusty" was impeded due to decreases in injection well permeability, likely resulting from biomass accumulation and carbonate and sulfide mineral precipitation. Such decreases were not observed during the short-duration "Winchester" experiment. Terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes demonstrated that Geobacter sp. and Geobacter-like strains dominated the groundwater community profile during iron reduction, with 13C stable isotope probing (SIP) results confirming these strains were actively utilizing acetate to replicate their genome during the period of optimal U(VI) removal. Gene transcript levels during "Big Rusty" were quantified for Geobacter-specific citrate synthase (gltA), with ongoing transcription during sulfate reduction indicating that members of the Geobacteraceae were still active and likely contributing to U(VI) removal. The persistence of reducible Fe(III) in sediments recovered from an area of prolonged (110-day) sulfate reduction is consistent with this conclusion. These results indicate that acetate availability and its ability to sustain the activity of iron- and uranyl-respiring Geobacter strains during sulfate reduction exerts a primary control on optimized U(VI) removal from groundwater at the Rifle IFRC site over extended time scales (>50 days). ?? Taylor & Francis Group, LLC.
Varel, V H; Robinson, I M; Pond, W G
1987-01-01
The predominant ureolytic bacteria in the pig large intestine were determined while growing pigs were fed a basal diet or basal diet plus copper sulfate, Aureo SP250, or clinoptilolite. Fecal samples were collected from four pigs fed each diet at 3, 9, and 14 weeks and analyzed for total colony counts and percent ureolytic bacteria. Fecal urease activity, ammonia nitrogen, and identity of the ureolytic bacteria were determined at 14 weeks. Copper sulfate and Aureo SP250 reduced the number of ureolytic organisms, with a marked decrease occurring in the Streptococcus spp., which made up 74% of the ureolytic isolates from the pigs on the basal diet. Other ureolytic species detected at lower concentrations were Staphylococcus spp., Selenomonas ruminantium, Bacteroides multiacidus, and Eubacterium limosum. Copper sulfate also reduced fecal urease activity (P less than 0.10). Fecal ammonia concentrations were not different between pigs fed the various diets. These data suggest that the streptococci are the most numerous ureolytic species in the pig intestinal tract and are significantly reduced by copper sulfate and Aureo SP250; however, only copper sulfate reduced intestinal urease activity. PMID:2823707
Geochemistry of sulfur in the Florida Everglades; 1994 through 1999
Bates, Anne L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.
2000-01-01
In this report, we present data on the geochemistry of sulfur in sediments and in surface water, groundwater, and rainwater in the Everglades region in south Florida. The results presented here are part of a larger study intended to determine the roles played by the cycling of carbon, nitrogen, phosphorus, and sulfur in the ecology of the south Florida wetlands. The geochemistry of sulfur in the region is particularly important because of its link to the production of toxic methylmercury through processes mediated by sulfate reducing bacteria. Sediment cores were collected from the Everglades Agricultural Area (EAA), Water Conservation Areas (WCAs) 1A and 2A, from Lake Okeechobee, and from Taylor Slough in the southern Everglades. Water collection was more widespread and includes surface water from WCAs 1A, 2A, 3A, 2B, the EAA, Taylor Slough, Lake Okeechobee, and the Kissimmee River. Groundwater was collected from The Everglades Nutrient Removal Area (ENR) and from WCA 2A. Rainwater was collected at two month intervals over a period of one year from the ENR and from WCA 2A. Water was analyzed for sulfate concentration and sulfate sulfur stable isotopic ratio (34S/32S). Sediment cores were analyzed for total sulfur concentration and/or for concentrations of sulfur species (sulfate, organic sulfur, disulfides, and acid volatile sulfides (AVS)) and for their stable sulfur isotopic ratio. Results show a decrease in total sulfur content (1.57 to 0.61 percent dry weight) with depth in two sediment cores collected in WCA 2A, indicating that there has been an increase in total sulfur content in recent times. A sediment core from the center of Lake Okeechobee shows a decrease in total sulfur content with depth (0.28 to 0.08 percent dry weight). A core from the periphery of the lake (South Bay) likewise shows a decrease in total sulfur content with depth (1.00 to 0.69 percent dry weight), however, the overall sulfur content is greater than that near the center at all depths. This suggests input of sulfur in recent times, especially near the lake margins. Sediments show a general decrease in sulfur concentration with depth, probably because of increases in sulfur input to the marshes in recent times. Regional differences in the concentrations and stable isotopic ratios of sulfate sulfur in surface water show that sulfur contamination to the northern Everglades likely originates from canals draining the EAA.
Effect of coniine on the developing chick embryo.
Forsyth, C S; Frank, A A; Watrous, B J; Bohn, A A
1994-04-01
Coniine, an alkaloid from Conium maculatum (poison hemlock), has been shown to be teratogenic in livestock. The major teratogenic outcome is arthrogryposis, presumably due to nicotinic receptor blockade. However, coniine has failed to produce arthrogryposis in rats or mice and is only weakly teratogenic in rabbits. The purpose of this study was to evaluate and compare the effects of coniine and nicotine in the developing chick. Concentrations of coniine and nicotine sulfate were 0.015%, 0.03%, 0.075%, 0.15%, 0.75%, 1.5%, 3%, and 6% and 1%, 5%, and 10%, respectively. Both compounds caused deformations and lethality in a dose-dependent manner. All concentrations of nicotine sulfate caused some lethality but a no effect level for coniine lethality was 0.75%. The deformations caused by both coniine and nicotine sulfate were excessive flexion or extension of one or more toes. No histopathological alterations or differences in bone formation were seen in the limbs or toes of any chicks from any group; however, extensive cranial hemorrhage occurred in all nicotine sulfate-treated chicks. There was a statistically significant (P < or = 0.01) decrease in movement in coniine and nicotine sulfate treated chicks as determined by ultrasound. Control chicks were in motion an average of 33.67% of the time, while coniine-treated chicks were only moving 8.95% of a 5-min interval, and no movement was observed for nicotine sulfate treated chicks. In summary, the chick embryo provides a reliable and simple experimental animal model of coniine-induced arthrogryposis. Data from this model support a mechanism involving nicotinic receptor blockade with subsequent decreased fetal movement.
Spatial and temporal source apportionment of PM2.5 in Georgia, 2002 to 2013
NASA Astrophysics Data System (ADS)
Zhai, Xinxin; Mulholland, James A.; Russell, Armistead G.; Holmes, Heather A.
2017-07-01
The Chemical Mass Balance (CMB) receptor model was applied to estimate PM2.5 source impacts over Georgia from 2002 to 2013 using ambient PM2.5 species concentration data from 13 sites. Measurements of 19 PM2.5 species were used as inputs along with measurement-based source profiles to estimate the impacts of nine sources, including both primary components (from heavy duty diesel vehicle, light duty gasoline vehicle, biomass burning, coal combustion, and suspended dust sources) and secondary pollutants (ammonium sulfate, ammonium bisulfate, ammonium nitrate, and secondary organic carbon). From 2002 to 2013, PM2.5 total mass decreased from 13.8 μg/m3 to 9.2 μg/m3 averaged across all sites, a 33% decrease. Largest decreases were observed for secondary sulfate and nitrate species (58% and 44%, respectively). The amount of neutralization by ammonium did not change substantially over the time period in spite of substantial decreases in sulfate and nitrate concentrations. Total mobile source impacts decreased more at urban sites (39%) than rural sites (23%), whereas biomass burning decreased more at rural sites (34%) than urban sites (27%). The estimated central-site source impacts are found to spatially represent large areas for secondary pollutants, smaller areas for biomass burning and dust, and very local areas for mobile sources and coal combustion. Trends from the National Emissions Inventory were compared with the annual trends of mobile source impacts, coal combustion impacts, and sulfate concentrations, resulting in statistically significant positive trends with Pearson R2 of 0.80, 0.64, and 0.79, respectively. Results presented here suggest that PM2.5 reductions in Georgia and the Southeast have been achieved by control of both stationary and mobile sources, and that PM2.5 is comprised of increasing fractions of biomass burning emissions and suspended dust. The temporal trends of source impacts at each site adds information about source changes beyond the every-three-year emission inventories for evaluation of emission-based model results.
de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro; ...
2017-06-06
The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro
The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less
Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xin; Song, Yu; Zhao, Chun
2014-12-27
China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³more » and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.« less
Schwend, Tyler; Deaton, Ryan J.; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W.
2012-01-01
Purpose. Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM–GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. Methods. Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. Results. At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C–rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. Conclusions. Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea. PMID:23132805
Oxygen Reduction Reaction on PtCo Nanocatalyst: (Bi)sulfate Anion Poisoning
NASA Astrophysics Data System (ADS)
Liu, Jie; Huang, Yan
2018-05-01
Pt alloy electrocatalysts are susceptible to anion adsorption in the working environment of fuel cells. In this work, the unavoidable bisulfate and sulfate ((bi)sulfate) poisoning of the oxygen reduction reaction (ORR) on a common PtCo nanocatalyst was studied by the rotating disk electrode (RDE) technique, for the first time to the best of our knowledge. The specific activity decreases linearly with the logarithm of (bi)sulfate concentration under various high potentials. This demonstrates that the (bi)sulfate adsorption does not affect the free energy of ORR activation at a given potential. Moreover, it is speculated that these two conditions, the adsorption of one O2 molecule onto two Pt sites and this adsorption as a rate-determining step of ORR reaction, are unlikely to exist simultaneously.
The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater
NASA Astrophysics Data System (ADS)
Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.
2014-08-01
The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides within the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction.
THE IMPACT OF BIOSTIMULATION ON THE FATE OF SULFATE AND ASSOCIATED SULFUR DYNAMICS IN GROUNDWATER
Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.
2014-01-01
The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides associated with the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction. PMID:25016586
The effects of acid deposition on sulfate reduction and methane production in peatlands
NASA Technical Reports Server (NTRS)
Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.
1992-01-01
Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.
Trends in the extremes of sulfur concentration distributions.
Iyer, H; Patterson, P; Malm, W C
2000-05-01
Understanding the response of air quality parameters such as visibility to the implementation of new air quality regulations, population growth and redistribution, and federal land managing practices is essential to the evaluation of air quality management plans on air quality in federal Class I areas. For instance, the reduction of SO2 emissions from large single point sources should result in the decrease of extreme sulfate concentrations, while population growth in geographic areas outside of urban centers could cause a slow widespread increase of sulfate and organic concentrations. The change in federal land managing practice of increased prescribed fire on a year-round basis in lieu of large naturally occurring wild fires could have the same effect; that is, the frequency of high sulfur days increase and low sulfur days decrease as the result of the management practice. Therefore, it is of interest to examine the trends associated with the proportion of days during which the concentration of some aerosol species is above or below a certain threshold and decide whether this proportion of days is increasing or decreasing or shows a lack of trend. This is a direct indication of whether the quality of the environment is improving or worsening, or neither.
Trends in PM2.5 emissions, concentrations and apportionments in Detroit and Chicago
NASA Astrophysics Data System (ADS)
Milando, Chad; Huang, Lei; Batterman, Stuart
2016-03-01
PM2.5 concentrations throughout much of the U.S. have decreased over the last 15 years, but emissions and concentration trends can vary by location and source type. Such trends should be understood to inform air quality management and policies. This work examines trends in emissions, concentrations and source apportionments in two large Midwest U.S. cities, Detroit, Michigan, and Chicago, Illinois. Annual and seasonal trends were investigated using National Emission Inventory (NEI) data for 2002 to 2011, speciated ambient PM2.5 data from 2001 to 2014, apportionments from positive matrix factorization (PMF) receptor modeling, and quantile regression. Over the study period, county-wide data suggest emissions from point sources decreased (Detroit) or held constant (Chicago), while emissions from on-road mobile sources were constant (Detroit) or increased (Chicago), however changes in methodology limit the interpretation of inventory trends. Ambient concentration data also suggest source and apportionment trends, e.g., annual median concentrations of PM2.5 in the two cities declined by 3.2-3.6%/yr (faster than national trends), and sulfate concentrations (due to coal-fired facilities and other point source emissions) declined even faster; in contrast, organic and elemental carbon (tracers of gasoline and diesel vehicle exhaust) declined more slowly or held constant. The PMF models identified nine sources in Detroit and eight in Chicago, the most important being secondary sulfate, secondary nitrate and vehicle emissions. A minor crustal dust source, metals sources, and a biomass source also were present in both cities. These apportionments showed that the median relative contributions from secondary sulfate sources decreased by 4.2-5.5% per year in Detroit and Chicago, while contributions from metals sources, biomass sources, and vehicles increased from 1.3 to 9.2% per year. This first application of quantile regression to trend analyses of speciated PM2.5 data reveals that source contributions to PM2.5 varied as PM2.5 concentrations decreased, and that the fraction of PM2.5 due to emissions from vehicles and other local emissions has increased. Each data source has uncertainties, but emissions, monitoring and PMF data provide complementary information that can help to discern trends and identify contributing sources. Study results emphasize the need to target specific sources in policies and regulations aimed at decreasing PM2.5 concentrations in urban areas.
Fan, Wenhong; Jia, Yingying; Li, Xiaomin; Jiang, Wei; Lu, Lin
2012-07-01
A microorganism was isolated from oil field injection water and identified as Rhodobacter sphaeroides. It was used for the remediation of simulated cadmium-contaminated soil. The phytoavailability of Cd was investigated through wheat seedling method to determine the efficiency of remediation. It was found that after remediation, the accumulation of Cd in wheat roots and leaves decreased by 67% and 53%, respectively. The Cd speciation in soil was determined with Tessier extraction procedure. It was found that the total Cd content in soil did not change during the experiments, but the geo-speciation of Cd changed remarkably. Among the five fractions, the concentration of exchangeable phases decreased by 27-46% and that of the phases bound to Fe-Mn oxides increased by 22-44%. The decrease of Cd accumulation in wheat showed significant positive correlation with the decrease of exchangeable phases. It could be concluded that the remediation of R. sphaeroides was carried out through the conversion of Cd to more stable forms. The decrease of sulfate concentration in supernatant indicated that the R. sphaeroides consumed sulfate. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiba, Takahiro, E-mail: takahiro-shiba@yakult.co.jp; Kawakami, Koji; Sasaki, Takashi
2014-01-15
Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effectsmore » of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-γ was suppressed by pCS. Further, pCS decreased the percentage of IFN-γ-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. - Highlights: • Mice fed a tyrosine-rich diet accumulated p-cresyl sulfate in their blood. • p-Cresyl sulfate negatively correlated with contact hypersensitivity response. • The in vitro production of IFN-γ was suppressed by p-cresyl sulfate. • p-Cresyl sulfate decreased the percentage of IFN-γ-producing Th1 cells in vitro.« less
Geomicrobiological Features of Ferruginous Sediments from Lake Towuti, Indonesia
Vuillemin, Aurèle; Friese, André; Alawi, Mashal; Henny, Cynthia; Nomosatryo, Sulung; Wagner, Dirk; Crowe, Sean A.; Kallmeyer, Jens
2016-01-01
Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site—a feature we attribute to the availability of labile organic matter (OM) and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA (eDNA) provided information on aerobic and anaerobic heterotrophs related to Nitrospirae, Chloroflexi, and Thermoplasmatales. These taxa apparently played a significant role in the degradation of sinking OM. However, eDNA concentrations rapidly decreased with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales, and Methanomicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments showed that microbial populations perform successive metabolisms related to sulfur, iron, and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments. PMID:27446046
Czarnik, T.S.; Kozinski, Jane
1994-01-01
Ground-water samples were collected from 71 wells screened in or open to three aquifers in the central part of the Passaic River basin during 1959-88. Water samples from aquifers in glacial sediments and aquifers in sedimentary and igneous bedrock of the Newark Supergroup were analyzed for major ions. Most samples were analyzed for metals, nutrients, and tritium; 38 samples were analyzed for purgeable organic compounds. Calcium and bicarbonate were the predominant ions in ground water in the study area. Ground water was dilute (median dissolved-solids concentration 239 milligrams per liter) and slightly basic (median pH 7.89). Concentrations of inorganic constituents were within U.S. Environmental Protection Agency (USEPA) primary drinking-water regulations. Concentrations of benzene, tetrachloroethylene, and trichloroethylene, however, were greater than USEPA primary drinking-water regulations in six samples. Ground-water samples from aquifers in sedimentary bedrock were enriched in barium, calcium, magnesium, strontium,and sulfate relative to samples form the other aquifers. Such ion enrichment can be attributed either to disolution of carbonate and sulfate-containing minerals or to human activities. Ground-water samples from two wells screened in glacial sediments near swamps contained sulfate in concentrations higher than the median for the aquifer. Sulfate enrichment could result from downward leaching of water enriched in sulfur from the decay of organic matter in the swamps, from the disolution of sulfate-containing minerals, or from human activities. No regional trends in the chemical composition of the ground water in the study area were identified. Sulfate concentrations in ground- water samples from the sedimentary bedrock tended to increase with decreasing altitude of the deepest opening of the well; the correlation coefficient for the ranks of sulfate concentration and the altitude of the deepest opening of the well for 17 pairs of data is -0.690. Concentrations of tritium were greater than the detection limit in 33 of 35 ground-water samples, indicating that most ground water in the study area is more recent than 1953.
Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination.
Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, Thomas M
2010-01-01
Combining food antimicrobials can enhance inhibition of Listeria monocytogenes in ready-to-eat (RTE) meats. A broth dilution assay was used to compare the inhibition of L. monocytogenes resulting from exposure to nisin, acidic calcium sulfate, ε-poly-L-lysine, and lauric arginate ester applied singly and in combination. Minimum inhibitory concentrations (MICs) were the lowest concentrations of single antimicrobials producing inhibition following 24 h incubation at 35 °C. Minimum bactericidal concentrations (MBCs) were the lowest concentrations that decreased populations by ≥3.0 log(10) CFU/mL. Combinations of nisin with acidic calcium sulfate, nisin with lauric arginate ester, and ɛ-poly-L-lysine with acidic calcium sulfate were prepared using a checkerboard assay to determine optimal inhibitory combinations (OICs). Fractional inhibitory concentrations (FICs) were calculated from OICs and were used to create FIC indices (FIC(I)s) and isobolograms to classify combinations as synergistic (FIC(I) < 1.00), additive/indifferent (FIC(I)= 1.00), or antagonistic (FIC(I) > 1.00). MIC values for nisin ranged from 3.13 to 6.25 μg/g with MBC values at 6.25 μg/g for all strains except for Natl. Animal Disease Center (NADC) 2045. MIC values for ε-poly-L-lysine ranged from 6.25 to 12.50 μg/g with MBCs from 12.50 to 25.00 μg/g. Lauric arginate ester at 12.50 μg/g was the MIC and MBC for all strains; 12.50 mL/L was the MIC and MBC for acidic calcium sulfate. Combining nisin with acidic calcium sulfate synergistically inhibited L. monocytogenes; nisin with lauric arginate ester produced additive-type inhibition, while ε-poly-L-lysine with acidic calcium sulfate produced antagonistic-type inhibition. Applying nisin along with acidic calcium sulfate should be further investigated for efficacy on RTE meat surfaces. © 2010 Institute of Food Technologists®
Methane Production by Microbial Mats Under Low Sulfate Concentrations
NASA Technical Reports Server (NTRS)
Bebout, Brad M.; Hoehler, Tori M.; Thamdrup, Bo; Albert, Dan; Carpenter, Steven P.; Hogan, Mary; Turk, Kendra; DesMarais, David J.
2003-01-01
Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulfate concentrations ([SO4]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm paleoclemates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulfate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [SO4=] (ca. 70 mM) and "Archean" [SO4] (less than 0.2 mM). At low [SO4], primary production in the mats was essentially unaffected, while rates of sulfate reduction decreased by a factor of three, and methane fluxes increased by up to ten-fold. However, remineralization by methanogenesis still amounted to less than 0.4 % of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats w-ere probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low- environmental levels oxygen and sulfate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guyette, R.P.; Cutter, B.E.; Henderson, G.S.
Molybdenum and S concentrations were determined in growth increments of 13 eastern redcedar (Juniperus virginana L.) trees from the Ozark region of Missouri. Chonologies were constructed, which dated from 1280 to 1960 for Mo, and from 1580 to 1960 for S.A 45% increase in Mo concentrations occurred between 1720 and 1860 when compared with the previous 440 yr. A decline in heartwood Mo concentration, beginning in 1860, is hypothesized to be due to increasing soil sulfate from the atmospheric deposition of S compounds. There was a 65% reduction in Mo concentration concomitant with a 44% increase in S concentrations inmore » redcedar heartwood formed after 1860. Sulfur and Mo concentrations were found to be negatively correlated in serial heartwood increments. Competition between sulfate and molybdate ions in soil solutions are thought to have decreased Mo in recent heartwood growth increments.« less
Peck, Mika R; Klessa, David A; Baird, Donald J
2002-04-01
The wetlands of the Magela floodplain of northern Australia, which is the major sink for dissolved metals transported in the Magela Creek system, contain acid-sulfate sediments. The rewetting of oxidized acid-sulfate soil each wet season produces acidic pulses that have the potential to alter the bioavailability of sediment-associated metal contaminants. Acute toxicity tests (72-h mean lethal concentration [LC50]) using the tropical chironomid Chironomus crassiforceps Kieffer showed that copper toxicity decreased from 0.64 mg/L at pH 6 to 2.30 mg/L at pH 4. Uranium toxicity showed a similar trend (36 mg/L at pH 6 and 58 mg/L at pH 4). Sediment toxicity tests developed using C. crassiforceps also showed that both metals were less toxic at the lower sediment pH with pore-water copper toxicity having a lowest-observed-effect concentration of 4.73 mg/L at pH 4 compared to 1.72 mg/L at pH 6. However, a lower pH increased pore-water metal concentrations and overlying water concentrations in bioassays. Hydrogen ion competition on metal receptor sites in C. crassiforceps was proposed to explain the decrease in toxicity in response to increased H+ activity. This study highlights the need to consider site-specific physicochemical conditions before applying generic risk assessment methods.
NASA Astrophysics Data System (ADS)
Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.
2015-12-01
pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.
Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.
Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L
2014-03-01
Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.
Evidence for acid-precipitation-induced trends in stream chemistry at hydrologic bench-mark stations
Smith, Richard A.; Alexander, Richard B.
1983-01-01
Ten- to 15-year water-quality records from a network of headwater sampling stations show small declines in stream sulfate concentrations at stations in the northeastern quarter of the Nation and small increases in sulfate at most southeastern and western sites. The regional pattern of stream sulfate trends is similar to that reported for trends in S02 emissions to the atmosphere during the same period. Trends in the ratio of alkalinity to total major cation concentrations at the stations follow an inverse pattern of small increases in the Northeast and small, but widespread decreases elsewhere. The undeveloped nature of the sampled basins and the magnitude and direction of observed changes in relation to SO2 emissions support the hypothesis that the observed patterns in water quality trends reflect regional changes in the rates of acid deposition.
NASA Astrophysics Data System (ADS)
Pi, Kunfu; Wang, Yanxin; Postma, Dieke; Ma, Teng; Su, Chunli; Xie, Xianjun
2018-06-01
High spatial variability of arsenic (As) concentration in geogenic As-contaminated groundwater has been commonly observed worldwide, but the underlying reasons remain not well understood. Selecting a sulfate-containing, As-affected aquifer at the Datong Basin, northern China as the study area and combining hydrogeochemical investigation and sediment extraction with reactive transport modeling, this work elucidated the roles of Fe-S-As interactions in regulating the vertical variation of As concentration in the groundwater. Dissolved As concentration varied between 0.05 and 18 μmol/L, but generally increased in the depth of 20-25 m and then decreased in 25-30 m. The high-As groundwater contained low Fe(II) (<0.007 mmol/L) and up to 15 μmol/L sulfide, in contrary to the S/SE Asian deltas/floodplains where high Fe(II) and As jointly occur in the groundwater devoid of sulfate reduction. The reductive dissolution of As-bearing Fe(III) oxides coupled to the degradation of organic matter with an estimated maximum rate of 0.22 mmol C/L/yr, mainly accounted for the depth-dependent increase of As concentration in the upper part of the shallow aquifer (<25 m deep). However, the decreasing reactivity of Fe(III) oxides together with the increase of pH over depth rendered the majority of electrons being transferred to sulfate reduction. The Fe(II) sulfides formed as a consequence not only helped to restrict the build-up of Fe(II) in the groundwater but also probably co-precipitated As to prompt As decrease in the depth of 25-30 m. Arsenite adsorbed on remaining Fe(III) oxides and newly-formed Fe(II) sulfides is another important pool of As in the aquifer, which varies in response to the extents of Fe(III)-oxide and sulfate reduction and consequently alters As distribution coefficient between the solid and the aqueous phases. This study highlights the importance of coupled geochemical cycling of Fe, S and As for As mobilization and reveals how it regulates As partitioning between groundwater and sediments.
2009-01-01
Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30−3000 μM) and the presence of acidic sulfate (0−840 μM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 μM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930
Solubility and crystallization of xylose isomerase from Streptomyces rubiginosus
NASA Astrophysics Data System (ADS)
Vuolanto, Antti; Uotila, Sinikka; Leisola, Matti; Visuri, Kalevi
2003-10-01
We have studied the crystallization and crystal solubility of xylose isomerase (XI) from Streptomyces rubiginosus. In this paper, we show a rational approach for developing a large-scale crystallization process for XI. Firstly, we measured the crystal solubility in salt solutions with respect to salt concentration, temperature and pH. In ammonium sulfate the solubility of XI decreased logarithmically when increasing the salt concentration. Surprisingly, the XI crystals had a solubility minimum at low concentration of magnesium sulfate. The solubility of XI in 0.17 M magnesium sulfate was less than 0.5 g l -1. The solubility of XI increased logarithmically when increasing the temperature. We also found a solubility minimum around pH 7. This is far from the isoelectric point of XI (pH 3.95). Secondly, based on the solubility study, we developed a large-scale crystallization process for XI. In a simple and economical cooling crystallization of XI from 0.17 M magnesium sulfate solution, the recovery of crystalline active enzyme was over 95%. Moreover, we developed a process for production of uniform crystals and produced homogenous crystals with average crystal sizes between 12 and 360 μm.
Flohr, J R; Tokach, M D; Dritz, S S; DeRouchey, J M; Goodband, R D; Nelssen, J L
2014-08-01
Two experiments were conducted to investigate the effects of sodium sulfate water and the efficacy of nonnutritive feed additives in nursery pig diets. In Exp. 1, 320 barrows (5.4 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 8 treatments for 24 d in a 2 × 4 factorial with 2 levels of sodium sulfate water (control or 3,000 mg sodium sulfate/L added), and 4 dietary zeolite (clinoptilolite) levels (0, 0.25, 0.50, or 1%). Fecal samples were collected on d 5, 9, 16, and 23; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. No interactions of sodium sulfate × zeolite were observed for any response criteria. Overall (d 0 to 24), pigs drinking sodium sulfate water had decreased (P < 0.01) ADG, ADFI, and G:F compared with pigs drinking control water. Pigs drinking sodium sulfate water also had increased (P < 0.01) fecal scores and lower (P < 0.04) fecal DM on d 5, 9, and 16 compared with pigs drinking control water. Increasing dietary zeolite increased (linear; P < 0.05) ADG and ADFI but had no effect on G:F. In Exp. 2, 350 barrows (5.7 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 10 treatments in a 2 × 5 factorial for 21 d with 2 levels of sodium sulfate water (control or 2,000 mg sodium sulfate/L added) and 5 dietary treatments (control, 1 or 2% zeolite, 1% humic acid substance [HA], and 1% humic and fulvic acid substance [HFB]). Fecal samples were collected on d 5, 8, 15, and 21; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. Overall (d 0 to 21), a water source × diet interaction was observed for ADG and G:F because pigs fed the 1% HA had decreased (P < 0.01) ADG and G:F when drinking sodium sulfate water compared with other treatments but increased ADG and G:F when drinking control water. Pigs drinking sodium sulfate water had decreased (P < 0.01) ADG and G:F and tended (P < 0.08) to have decreased ADFI compared with pigs drinking control water. Pigs drinking sodium sulfate water had increased (P < 0.01) fecal scores and decreased (P < 0.01) fecal DM on d 5 and 8. In conclusion, water high in sodium sulfate concentrations decreased growth performance and increased fecal moisture in newly weaned pigs. Although zeolite improved growth performance in the first experiment, it did not influence growth in the second study. The nonnutritive feed additives used in both experiments were unsuccessful in ameliorating the increased osmotic diarrhea observed from high sodium sulfate water.
Impact of sulfation and desulfation on NO x reduction using Cu-chabazite SCR catalysts
Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; ...
2015-06-05
This bench reactor study investigates the impact of gaseous sulfur on the NO x reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO 2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO 2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NO x reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples.more » Interestingly, BET measurements reveal that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NO x/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO 2 exposure also results in an increase in NH 3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NO x reduction activity of the Cu-CHA catalyst to that of the fresh condition.« less
Ambient aerosols remain highly acidic despite dramatic sulfate reductions
NASA Astrophysics Data System (ADS)
Nenes, Athanasios; Weber, Rodney; Guo, Hongyu; Russell, Armistead
2016-04-01
The pH of fine particles has many vital environmental impacts. By affecting aerosol concentrations, chemical composition and toxicity, particle pH is linked to regional air quality and climate, and adverse effects on human health. Sulfate is often the main acid component that drives pH of fine particles (i.e., PM2.5) and is neutralized to varying degrees by gas phase ammonia. Sulfate levels have decreased by approximately 70% over the Southeastern United States in the last fifteen years, but measured ammonia levels have been fairly steady implying the aerosol may becoming more neutral. Using a chemically comprehensive data set, combined with a thermodynamic analysis, we show that PM2.5 in the Southeastern U.S. is highly acidic (pH between 0 and 2), and that pH has remained relatively unchanged throughout the past decade and a half of decreasing sulfate. Even with further sulfate reductions, pH buffering by gas-particle partitioning of ammonia is expected to continue until sulfate drops to near background levels, indicating that fine particle pH will remain near current levels into the future. These results are non-intuitive and reshape expectations of how sulfur emission reductions impact air quality in the Southeastern U.S. and possibly other regions across the globe.
Lv, Junping; Guo, Junyan; Feng, Jia; Liu, Qi; Xie, Shulian
2017-06-01
Sulfate is a primary sulfur source and can be available in wastewaters. Nevertheless, effect of sulfate ions on growth and pollutants removal of microalgae seems to be less investigated. At the present study, self-flocculating microalga Chlorococcum sp. GD was grown in synthetic municipal wastewater with different sulfate concentrations. Results indicated that Chlorococcum sp. GD grew better in synthetic municipal wastewater with 18, 45, 77, 136 and 271mg/L SO 4 2- than in wastewater without SO 4 2- . Chlorococcum sp. GD had also excellent removal efficiencies of nitrogen and phosphorus and effectively flocculated in sulfate wastewater. Sulfate deprivation weakened the growth, pollutants removal and self-flocculation of Chlorococcum sp. GD in wastewater. Antioxidative enzymes activity significantly increased and photosynthetic activity significantly decreased when Chlorococcum sp. GD was cultivated in sulfate-free wastewater. Sulfate deprivation probably reduced cell activity of growth, pollutants removal and flocculation via inducing the over-accumulation of reactive oxygen species (ROS). Copyright © 2017 Elsevier Ltd. All rights reserved.
De Yan, Hong; Zhang, Yin Jun; Liu, Hong Cai; Zheng, Jian Yong; Wang, Zhao
2013-01-01
p-Nitrophenyl esters with a short-chain carboxylic group, such as p-nitrophenyl acetate (p-NPA) and p-nitrophenyl butyrate (p-NPB), could be effectively hydrolyzed by ammonium salts. p-Nitrophenyl esters were usually used as substrates to assay the lipase/esterase activity. Ammonium sulfate precipitation was often used to purify proteins, and some ammonium salts were usually used as nitrogen sources or inorganic salts for the lipase/esterase production. To study the effect of ammonium salts on the assay of the lipase/esterase activity, the contributing factors of hydrolysis of p-NPA/p-NPB catalyzed by ammonium salts were investigated. The lipase activities were compared in the presence and absence of ammonium sulfate. The hydrolysis reaction could be catalyzed under neutral and alkaline circumstances. The hydrolysis rate increased with the increase in the reaction temperature or the concentration of ammonium ion. When p-NPA was employed as the substrate for the analysis of the lipase/esterase activity, the effect of ammonium sulfate on the analysis could be neutralized by setting a control when the concentration of ammonium sulfate was less than 40% saturation. However, when the concentration of ammonium sulfate increased from 40% to 100% saturation, the enzyme activities decreased about 13-40%, which could not be ignored for accurate analysis of the enzyme activity. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Ingersoll, G.P.; Mast, M.A.; Campbell, D.H.; Clow, D.W.; Nanus, L.; Turk, J.T.
2008-01-01
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993-2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites. Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999-2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for wetfall, snowpack, and snow-telemetry data for the central and southern rockies subregions (p<0.03), while no trends were noted for the Northern Rockies subregion.
Rocky Mountain snowpack chemistry at selected sites for 2001
Ingersoll, George P.; Mast, M. Alisa; Clow, David W.; Nanus, Leora; Campbell, Donald H.; Handran, Heather
2003-01-01
Because regional-scale atmospheric deposition data in the Rocky Mountains are sparse, a program was designed by the U.S. Geological Survey, in cooperation with the National Park Service, U.S. Department of Agriculture Forest Service, and other agencies, to more thoroughly determine the chemical composition of precipitation and to identify sources of atmospherically deposited contaminants in a network of high-elevation sites. Samples of seasonal snowpacks at 57 geographically distributed sites, in a regional network from New Mexico to Montana, were collected and analyzed for major ions (including ammonium, nitrate, and sulfate), alkalinity, and dissolved organic carbon during 2001. Sites selected in this report have been sampled annually since 1993, enabling identification of increases or decreases in chemical concentrations from year to year. Spatial patterns in snowpack-chemical data for concentrations of ammonium, nitrate, and sulfate indicate that concentrations of these acid precursors in less developed areas of the region are lower than concentrations in the heavily developed areas. Results for the 2001 snowpack-chemistry analyses, however, indicate increases in concentrations of ammonium and nitrate in particular at sites where past concentrations typically were lower. Since 1993, concentrations of nitrate and sulfate were highest from snowpack samples in northern Colorado that were collected from sites adjacent to the Denver metropolitan area to the east and the coal-fired powerplants to the west. In 2001, relatively high concentrations of nitrate (12.3 to 23.0 microequivalents per liter (?eq/L) and sulfate (7.7 to 12.5 ?eq/L) were detected in Montana and Wyoming. Ammonium concentrations were highest in north-central Colorado (14.5 to 16.9 ?eq/L) and southwestern Montana (12.8 to 14.2 ?eq/L).
The effects of non-ionic polymeric surfactants on the cleaning of biofouled hydrogel materials.
Guan, Allan; Li, Zhenyu; Phillips, K Scott
2015-01-01
Block co-polymer surfactants have been used for cleaning hydrogel medical devices that contact the body (e.g., contact lenses) because of their biocompatibility. This work examined the relationship between concentration and detergency of two non-ionic polymeric surfactants (Pluronic F127 and Triton X-100) for cleaning protein soil, with anionic surfactants (sodium dodecyl sulfate and sodium laureth sulfate) as positive controls. Surface plasmon resonance was used to quantify removal of simulated tear soil from self-assembled monolayer surfaces, and a microplate format was used to study the removal of fluorescently labeled soil proteins from contact lenses. While detergency increased as a function of concentration for anionic surfactants, it decreased with concentration for the two polymeric surfactants. The fact that the protein detergency of some non-ionic polymeric surfactants did not increase with concentration above the critical micelle concentration could have implications for optimizing the tradeoff between detergency and biocompatibility.
Zhang, Yi-fan; Dai, Xiao-jian; Wang, Ting; Chen, Xiao-yan; Liang, Li; Qiao, Hua; Tsai, Cheng-yuan; Chang, Li-wen; Huang, Ping-ting; Hsu, Chiung-yuan; Chang, Yu-ting; Tsai, Chen-en; Zhong, Da-fang
2014-01-01
Aim: To evaluate the effects of an Al3+- and Mg2+-containing antacid, ferrous sulfate, and calcium carbonate on the absorption of nemonoxacin in healthy humans. Methods: Two single-dose, open-label, randomized, crossover studies were conducted in 24 healthy male Chinese volunteers (12 per study). In Study 1, the subjects orally received nemonoxacin (500 mg) alone, or an antacid (containing 318 mg of Al3+ and 496 mg of Mg2+) plus nemonoxacin administered 2 h before, concomitantly or 4 h after the antacid. In Study 2, the subjects orally received nemonoxacin (500 mg) alone, or nemonoxacin concomitantly with ferrous sulfate (containing 60 mg of Fe2+) or calcium carbonate (containing 600 mg of Ca2+). Results: Concomitant administration of nemonoxacin with the antacid significantly decreased the area under the concentration-time curve from time 0 to infinity (AUC0–∞) for nemonoxacin by 80.5%, the maximum concentration (Cmax) by 77.8%, and urine recovery (Ae) by 76.3%. Administration of nemonoxacin 4 h after the antacid decreased the AUC0–∞ for nemonoxacin by 58.0%, Cmax by 52.7%, and Ae by 57.7%. Administration of nemonoxacin 2 h before the antacid did not affect the absorption of nemonoxacin. Administration of nemonoxacin concomitantly with ferrous sulfate markedly decreased AUC0–∞ by 63.7%, Cmax by 57.0%, and Ae by 59.7%, while concomitant administration of nemonoxacin with calcium carbonate mildly decreased AUC0–∞ by 17.8%, Cmax by 14.3%, and Ae by 18.4%. Conclusion: Metal ions, Al3+, Mg2+, and Fe2+ markedly decreased the absorption of nemonoxacin in healthy Chinese males, whereas Ca2+ had much weaker effects. To avoid the effects of Al3+ and Mg2+-containing drugs, nemonoxacin should be administered ≥2 h before them. PMID:25327812
Rapid colorimetric assay for gentamicin injection.
Tarbutton, P
1987-01-01
A rapid colorimetric method for determining gentamicin concentration in commercial preparations of gentamicin sulfate injection was developed. Methods currently available for measuring gentamicin concentration via its colored complex with cupric ions in alkaline solution were modified to reduce the time required for a single analysis. The alkaline copper tartrate (ACT) reagent solution was prepared such that each milliliter contained 100 mumol cupric sulfate, 210 mumol potassium sodium tartrate, and 1.25 mmol sodium hydroxide. The assay involves mixing 0.3 mL gentamicin sulfate injection 40 mg/mL (of gentamicin), 1.0 mL ACT reagent, and 0.7 mL water; the absorbance of the resulting solution at 560 nm was used to calculate the gentamicin concentration in the sample. For injections containing 10 mg/mL of gentamicin, the amount of the injection was increased to 0.5 mL and water decreased to 0.5 mL. The concentration of gentamicin in samples representing 11 lots of gentamicin sulfate injection 40 mg/mL and 8 lots of gentamicin sulfate injection 10 mg/mL was determined. The specificity, reproducibility, and accuracy of the assay were assessed. The colored complex was stable for at least two hours. Gentamicin concentration ranged from 93.7 to 108% and from 95 to 109% of the stated label value of the 40 mg/mL and the 10 mg/mL injections, respectively. No components of the preservative system present in the injections interfered with the assay. Since other aminoglycosides produced a colored complex, the assay is not specific for gentamicin. The assay was accurate and reproducible over the range of 4-20 mg of gentamicin. This rapid and accurate assay can be easily applied in the hospital pharmacy setting.
NASA Astrophysics Data System (ADS)
Hu, Ching-Yi; Frank Yang, Tsanyao; Burr, George S.; Chuang, Pei-Chuan; Chen, Hsuan-Wen; Walia, Monika; Chen, Nai-Chen; Huang, Yu-Chun; Lin, Saulwood; Wang, Yunshuen; Chung, San-Hsiung; Huang, Chin-Da; Chen, Cheng-Hong
2017-11-01
In this study, we used pore water dissolved inorganic carbon (DIC), SO42-, Ca2+ and Mg2+ gradients at the sulfate-methane transition zone (SMTZ) to estimate biogeochemical fluxes for cored sediments collected offshore SW Taiwan. Net DIC flux changes (ΔDIC-Prod) were applied to determine the proportion of sulfate consumption by organic matter oxidation (heterotrophic sulfate reduction) and anaerobic oxidation of methane (AOM), and to determine reliable CH4 fluxes at the SMTZ. Our results show that SO42- profiles are mainly controlled by AOM rather than heterotrophic sulfate reduction. Refinement of CH4 flux estimates enhance our understanding of methane abundance from deep carbon reservoirs to the SMTZ. Concentrations of chloride (Cl-), bromide (Br-) and iodide (I-) dissolved in pore water were used to identify potential sources that control fluid compositions and the behavior of dissolved ions. Constant Cl- concentrations throughout ∼30 m sediment suggest no influence of gas hydrates for the compositions within the core. Bromide (Br-) and Iodine (I-) concentrations increase with sediment depth. The I-/Br- ratio appears to reflect organic matter degradation. SO42- concentrations decrease with sediment depth at a constant rate, and sediment depth profiles of Br- and I- concentrations suggests diffusion as the main transport mechanism. Therefore diffusive flux calculations are reasonable. Coring sites with high CH4 fluxes are more common in the accretionary wedge, amongst thrust faults and fractures, than in the passive continental margin offshore southwestern Taiwan. AOM reactions are a major sink for CH4 passing upward through the SMTZ and prevent high methane fluxes in the water column and to the atmosphere.
NASA Astrophysics Data System (ADS)
Antweiler, R.; Andrews, E. D.
2010-12-01
Tenaya and Murphy Creeks are two small, intermittent streams with drainage basins adjacent to each other in the Tenaya Lake region of Yosemite National Park. Tenaya Creek has a drainage basin area of 3.49 km2 ranging in elevation from 2491 to 3012 m; Murphy Creek has a drainage basin size of 7.07 km2 ranging in elevation from 2485 to 2990 m. Both basins are underlain by the Half Dome and Cathedral Peak Granodiorites (Bateman et al, 1983), with chemical compositions that are practically indistinguishable (Bateman et al, 1988). Both streams derive all of their water from snowmelt and rainfall, normally going dry by early August each year. Tenaya Creek flows primarily south-southwest, whereas Murphy Creek predominantly flows south. For nearly all of Tenaya Creek’s length it is bordered by the Tioga Pass Road, the only highway in Yosemite National Park which crosses the Sierras; on the other hand, all of Murphy Creek (except its mouth) is wilderness. During the summers of 2009 and 2010, both creeks were sampled along most of their lengths for major and trace elements. In addition, both streams have been sampled near their mouths periodically during the spring and summer (until they go dry) since 2007. Water discharge has been continuously monitored during this time. Because these streams derive all of their water from snowmelt and rainfall, the water chemistry of each must originate from atmospheric deposition, weathering of the bedrock and/or human or animal inputs. These factors, along with the similarity of the geology, topography and basin orientation, suggest that the water chemistries of the creeks should be similar. Instead, while measured sulfate concentrations in Tenaya and Murphy Creeks are similar in their upper reaches, Tenaya Creek sulfate values are almost double in the lower reaches. No other major or trace element showed a similar pattern, although sodium, potassium, calcium and rubidium showed modest increases. Other concentration differences between the two streams were mostly in magnitude rather than in downstream trends. For example, concentrations of beryllium, cobalt, lithium, niobium, silica and the rare earth elements (REE) were uniformly higher in Tenaya Creek whereas concentrations of iodide, molybdenum, tellurium, and tungsten were higher in Murphy Creek. During each water year, chloride concentrations increase as discharge decreases in both streams, a pattern seen for most elements. In contrast, aluminum, niobium, thorium and the REE decrease with decreasing flow for both streams, indicating that basin export of these is dominated by snowmelt runoff. Although most chemical constituents show similar patterns between drainages over the course of a water year, sulfate is exceptional: concentrations tend to decrease with decreasing flow in Murphy Creek, whereas sulfate increases at a greater rate than does chloride in Tenaya Creek.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, L.; Ntarlagiannis, D.; Yee, N.
2008-10-01
There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupledmore » with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.« less
Baldys, Stanley; Churchill, Christopher J.; Mobley, Craig A.; Coffman, David K.
2010-01-01
The U.S. Geological Survey, in cooperation with the City of Dallas Water Utilities Division, did a study to characterize bromide, chloride, and sulfate concentrations and loads at three U.S. Geological Survey streamflow-gaging stations on the reach of the Red River from Denison Dam, which impounds Lake Texoma, to the U.S. Highway 259 bridge near DeKalb, Texas. Bromide, chloride, and sulfate concentrations and loads were computed for streamflow-gaging stations on the study reach of the Red River. Continuous streamflow and specific conductance data and discrete samples for bromide, chloride, sulfate, and specific conductance were collected at three main-stem streamflow-gaging stations on the Red River: 07331600 Red River at Denison Dam near Denison, Texas (Denison Dam gage), 07335500 Red River at Arthur City, Texas (Arthur City gage), and 07336820 Red River near DeKalb, Texas (DeKalb gage). At each of these streamflow-gaging stations, discrete water-quality data were collected during January 2007-February 2009; continuous water-quality data were collected during March 2007-February 2009. Two periods of high flow resulted from floods during the study; floods during June-July 2007 resulted in elevated flow during June-September 2007 and smaller floods during March-April 2008 resulted in elevated flow during March-April 2008. Bromide, chloride, and sulfate concentrations in samples collected at the three gages decreased downstream. Median bromide concentrations ranged from 0.32 milligram per liter at the Denison Dam gage to 0.19 milligram per liter at the DeKalb gage. Median chloride concentrations ranged from 176 milligrams per liter at the Denison Dam gage to 108 milligrams per liter at the DeKalb gage, less than the 300-milligrams per liter secondary maximum contaminant level established by the Texas Commission on Environmental Quality. Median sulfate concentrations ranged from 213 milligrams per liter at the Denison Dam gage to 117 milligrams per liter at the DeKalb gage, also less than the 300-milligrams per liter secondary maximum contaminant level. Kruskal-Wallis analyses indicated statistically significant differences among bromide, chloride, and sulfate concentrations at the three gages. Regression equations to estimate bromide, chloride, and sulfate loads were developed for each of the three gages. The largest loads were estimated for a period of relatively large streamflow, June-September 2007, when about 50 percent of the load for the study period occurred at each gage. Adjusted R-squared values were largest for regression equations for the DeKalb gage, ranging from .957 for sulfate to .976 for chloride. Adjusted R-squared values for all regression equations developed to estimate loads of bromide, chloride, and sulfate at the three gages were .899 or larger.
Horiguchi, Ikki; Urabe, Yusuke; Kimura, Keiichi; Sakai, Yasuyuki
2018-01-01
Pluripotent stem cells (PSCs) are one of the promising cell sources for tissue engineering and drug screening. However, mass production of induced pluripotent stem cells (iPSCs) is still developing. Especially, a huge amount of culture medium usage causes expensive cost in the mass production process. In this report, we reduced culture medium usage by extending interval of changing culture medium. In parallel, we also increased glucose concentration and supplied heparan sulfate to avoid depletion of glucose and bFGF, respectively. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses showed that reducing medium change frequency increased differentiation marker expressions but high glucose concentration downregulated these expressions. In contrast, heparan sulfate did not prevent differentiation marker expressions. According to analyses of growth rate, cell growth with extended medium change interval was decreased in later stage of log growth phase despite the existence of high glucose concentration and heparan sulfate. This result and culturing iPSCs with lactate showed that the accumulation of excreted lactate decreased the growth rate regardless of pH control. Conclusively, these experiments show that adding glucose and removing lactate are important to expand iPSCs with reduced culture medium usage. This knowledge should be useful to design economical iPSC mass production and differentiation system. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Guswa, John H.; Siegel, Donald I.; Gillies, Daniel C.
1982-01-01
Areal distribution of calcium, sodium, sulfate, and chloride concentrations were analyzed to provide information on the hydrologic and geochemical relationships between aquifers. Ground water is generally of the calcium magnesium bicarbonate type. Concentration of dissolved solids in water from the Jordan Sandstone and Mount Simon-Hinckley aquifer generally decreases from southwest to northeast across the study area. This decrease probably reflects differences in the quality of recharge water and geochemical processes within the aquifers, such as ion exchange.
Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer
Ulrich, G.A.; Breit, G.N.; Cozzarelli, I.M.; Suflita, J.M.
2003-01-01
Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 ??M SO4-2??day-1, respectively. The concentration of sulfate in the core of the leachate plume was well below 20 ??M and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (???100 ??M) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide in this zone. This suggests that the current and past distributions of sulfate-reducing activity are similar and that the supply of sulfate has been sustained at these sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavrieli, I.; Starinsky, A.; Spiro, B.
1995-09-01
The evolution of the Ca-chloride brines in the Heletz Formation, Lower Cretaceous, in the southern coastal plain of Israel was reconstructed through the study of its sulfate concentration and isotopic composition. Particular emphasis was given to the brine-oil interaction in the oilfields and to the sulfate depletion and lower SO{sub 4}/Cl ratio in brines in contact with hydrocarbons (oil brines) relative to {open_quotes}oil-free{close_quotes} from dry wells in the same oilfields. A method is presented for a calculation of the amount of sulfate removed from the original seawater in the various stages of its evolution to Ca-chloride brine. Eastward migration ofmore » the Messinian Ca-Chloride brine into the Heletz Formation was accompanied by dolomitization of the country rock. Final depletion of sulfate from the brines took place, and possibly still occurs, in the presence of crude oil in the oilfields. The two oil-producing fields, Heletz and Kokhav, occupy different areas on a Rayleigh distillation diagram. Sulfate depletion in both fields is accompanied by an increase in {delta}{sup 34}S{sub SO}{sub 4}, which reaches a maximum values of 59{per_thousand}. The above correlation is explained by bacterial sulfate reduction facilitated by the contact with the crude. Samples collected from the same boreholes at time intervals of several months show two opposing trends: sulfate concentration decrease accompanied by increase in {delta}{sup 34}S{sub SO}{sub 4}, and vice versa. While the first can be explained as in situ bacterial sulfate reduction, the latter attest to subsurface brine migration, as would be expected in oil-producing fields.« less
Shanley, James B.; Mayer, Bernhard; Mitchell, Myron J.; Bailey, Scott W.
2008-01-01
Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The δ34S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5‰ in early spring to about 10‰ in early fall. During high-flow events, δ34S values typically decreased by 1 to 3‰ from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (δ34S ~ 6–14‰); (2) contributions of pedogenic sulfate (δ34S ~ 5–6‰) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.
Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldys, S.
1990-01-01
Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less
NASA Astrophysics Data System (ADS)
Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.
2017-03-01
Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.
Sulfide oxidation under chemolithoautotrophic denitrifying conditions.
Cardoso, Ricardo Beristain; Sierra-Alvarez, Reyes; Rowlette, Pieter; Flores, Elias Razo; Gómez, Jorge; Field, Jim A
2006-12-20
Chemolithoautotrophic denitrifying microorganisms oxidize reduced inorganic sulfur compounds coupled to the reduction of nitrate as an electron acceptor. These denitrifiers can be applied to the removal of nitrogen and/or sulfur contamination from wastewater, groundwater, and gaseous streams. This study investigated the physiology and kinetics of chemolithotrophic denitrification by an enrichment culture utilizing hydrogen sulfide, elemental sulfur, or thiosulfate as electron donor. Complete oxidation of sulfide to sulfate was observed when nitrate was supplemented at concentrations equal or exceeding the stoichiometric requirement. In contrast, sulfide was only partially oxidized to elemental sulfur when nitrate concentrations were limiting. Sulfide was found to inhibit chemolithotrophic sulfoxidation, decreasing rates by approximately 21-fold when the sulfide concentration increased from 2.5 to 10.0 mM, respectively. Addition of low levels of acetate (0.5 mM) enhanced denitrification and sulfate formation, suggesting that acetate was utilized as a carbon source by chemolithotrophic denitrifiers. The results of this study indicate the potential of chemolithotrophic denitrification for the removal of hydrogen sulfide. The sulfide/nitrate ratio can be used to control the fate of sulfide oxidation to either elemental sulfur or sulfate. Copyright 2006 Wiley Periodicals, Inc.
[Serum glycosaminoglycans in Graves' disease patients].
Winsz-Szczotka, Katarzyna B; Olczyk, Krystyna Z; Koźma, Ewa M; Komosińska-Vassev, Katarzyna B; Wisowski, Grzegorz R; Marcisz, Czesław
2006-01-01
The aim of the study was to determine the blood serum sulfated glycosaminoglycans (GAGs) and hyaluronic acid (HA) concentration of Graves' disease patients before treatment and after attainment of the euthyroid state. The study was carried out on the blood serum obtained from 17 patients with newly recognised Graves' disease and from the same patients after attainment of the euthyroid state. Graves' patients had not any clinical symptoms neither of ophthalmopathy nor pretibial myxedema. GAGs were isolated from the blood serum by the multistage extraction and purification using papaine hydrolysis, alkali elimination, as well as cetylpyridium chloride binding. Total amount of GAGs was quantified by the hexuronic acids assay. HA content in obtained GAGs sample was evaluated by the ELISA method. Increased serum concentration of sulfated GAGs in non-treated Graves' disease patients was found. Similarly, serum HA level in untreated patients was significantly elevated. The attainment of euthyroid state was accompanied by the decreased serum sulfated GAGs level and by normalization of serum HA concentration. In conclusion, the results obtained demonstrate that the alterations of GAGs metabolism connected with Graves' disease can lead to systemic changes of the extracellular matrix properties.
Welsch, D.L.; Burns, Douglas A.; Murdoch, Peter S.
2004-01-01
The effects of disturbance on the biogeochemical processes that affect the sulfur (S) cycle in forested ecosystems are important, but have been studied in only a few locations. In this investigation, the mechanisms that caused large decreases in stream SO42- concentrations after clearcutting a small forested catchment in the Catskill Mountains of southeastern New York in 1997 were identified through an examination of pH and SO42- concentrations in soil solutions, bulk deposition of SO42- in throughfall collectors, adsorbed SO 42- concentrations in buried soil bags, and spatial variations in SO42- concentrations in shallow groundwater. The load of SO42- -S in stream water during the first 2 years after clearcutting was about 2 kg ha-1.year-1 less than the background value of 8-10 kg ha-1 year-1. The 10 and 19% decrease in net throughfall flux of SO42- -S during the 2nd and 3rd year after the clearcut, respectively, reflects reduced dry deposition of S after removal of the canopy, but this decrease accounts for 0 and 43%, respectively, of the decrease in SO42- load in streamflow for these 2 years. The pH of B-horizon soil water decreased from 4.5 to 4.0 within 8 months after the clearcut, and SO42- concentrations decreased from 45 ??mol L-1 to less than 20 ??mol L-1 during this time. A strong correlation between SO 42- concentrations and pH values (r2=0.71, p<0.01) in B-horizon soil water during the post-harvest period (1997-1999) reflects increased SO42- adsorption in response to soil acidification. Sulfate concentrations in groundwater from 21 spatially distributed wells were inversely related to a topographic index that served as a surrogate for soil wetness; thus, providing additional evidence that SO 42- adsorption was the dominant cause of the decreased SO42- concentrations in the stream after clearcutting. These results are consistent with those from a 1985 whole-tree harvest at the Hubbard Brook Experimental Forest in New Hampshire in which increased SO 42- adsorption resulting from decreased soil pH was the primary cause of decreased SO42- concentrations in stream water.
Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine
Cravotta, C.A.
1998-01-01
Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (<5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.
Hydrology of an abandoned coal-mining area near McCurtain, Haskell County, Oklahoma
Slack, L.J.
1983-01-01
Water quality was investigated from October 1980 to May 1983 in an area of abandoned coal mines in Haskell county, Oklahoma. Bedrock in the area is shale, siltstone, sandstone, and the McAlester (Stigler) and Hartshorne coals of the McAlester Formation and Hartshorne Sandstone of Pennsylvanian age. The two coal beds, upper and lower Hartshorne, associated with the Hartshorne Sandstone converge or are separated by a few feet or less of bony coal or shale in the McCurtain area. Many small faults cut the Hartshorne coal in all the McCurtain-area mines. The main avenues of water entry to and movement through the bedrock are the exposed bedding-plane openings between layers of sandstone, partings between laminae of shale, fractures and joints developed during folding and faulting laminae of shale, fractures and joints developed during folding and faulting of the brittle rocks, and openings caused by surface mining--the overburden being shattered and broken to form spoil. Water-table conditions exist in bedrock and spoil in the area. Mine pond water is in direct hydraulic connections with water in the spoil piles and the underlying Hartshorne Sandstone. Sulfate is the best indicator of the presence of coal-mine drainage in both surface and ground water in the Oklahoma coal field. Median sulfate concentrations for four sites on Mule Creek ranged from 26 to 260 milligrams per liter. Median sulfate concentrations increased with increased drainage from unreclaimed mined areas. The median sulfate concentration in Mule Creek where it drains the reclaimed area is less than one-third of that at the next site downstream where the stream begins to drain abandoned (unreclaimed) mine lands. Water from Mule Creek predominantly is a sodium sulfate type. Maximum and median values for specific conductance and concentrations of calcium, magnesium, sodium, sulfate, chloride, dissolved solids, and alkalinity increase as Mule Creek flows downstream and drains increasing areas of abandoned (unreclaimed) mining lands. Constituent concentrations in Mule Creek, except those for dissolved solids, iron, manganese, and sulfate, generally do not exceed drinking-water limits. Reclamation likely would result in decreased concentrations of dissolved solids, calcium, magnesium, sodium, sulfate, and alkalinity in Mule Creek in the vicinity of the reclaimed area. Ground water in the area is moderately hard to very hard alkaline water with a median pH of 7.2 to 7.6. It predominately is a sodium sulfate type and, except for dissolved solids, iron manganese, and sulfate, constituent concentrations generally do not exceed drinking-water limits. Ground-water quality would likely be unchanged by reclamation. The quality of water in the two mine ponds is quite similar to that of the shallow ground water in the area. Constituents in water from both ponds generally do not exceed drinking-water limits and the water quality is unlikely to be changed by reclamation in the area.
Cravotta, Charles A.; Brightbill, Robin A.; Langland, Michael J.
2010-01-01
Acidic mine drainage (AMD) from legacy anthracite mines has contaminated Swatara Creek in eastern Pennsylvania. Intermittently collected base-flow data for 1959–1986 indicate that fish were absent immediately downstream from the mined area where pH ranged from 3.5 to 7.2 and concentrations of sulfate, dissolved iron, and dissolved aluminum were as high as 250, 2.0, and 4.7 mg/L, respectively. However, in the 1990s, fish returned to upper Swatara Creek, coinciding with the implementation of AMD treatment (limestone drains, limestone diversion wells, limestone sand, constructed wetlands) in the watershed. During 1996–2006, as many as 25 species of fish were identified in the reach downstream from the mined area, with base-flow pH from 5.8 to 7.6 and concentrations of sulfate, dissolved iron, and dissolved aluminum as high as 120, 1.2, and 0.43 mg/L, respectively. Several of the fish taxa are intolerant of pollution and low pH, such as river chub (Nocomis icropogon) and longnose dace (Rhinichthys cataractae). Cold-water species such as brook trout (Salvelinus fontinalis) and warm-water species such as rock bass (Ambloplites rupestris) varied in predominance depending on stream flow and stream temperature. Storm flow data for 1996–2007 indicated pH, alkalinity, and sulfate concentrations decreased as the stream flow and associated storm-runoff component increased, whereas iron and other metal concentrations were poorly correlated with stream flow because of hysteresis effects (greater metal concentrations during rising stage than falling stage). Prior to 1999, pH\\5.0 was recorded during several storm events; however, since the implementation of AMD treatments, pH has been maintained near neutral. Flow-adjusted trends for1997–2006 indicated significant increases in calcium; decreases in hydrogen ion, dissolved aluminum, dissolved and total manganese, and total iron; and no change in sulfate or dissolved iron in Swatara Creek immediately downstream from the mined area. The increased pH and calcium from limestone in treatment systems can be important for mitigating toxic effects of dissolved metals. Thus, treatment of AMD during the 1990s improved pH buffering, reduced metals transport, and helped to decrease metals toxicity to fish.
NASA Astrophysics Data System (ADS)
Millage, K.; Galloway, M. M.; De Haan, D. O.
2012-12-01
Atmospheric aerosol can interact with clouds in many ways, often resulting in the redistribution or absorption of solar energy or changes in precipitation efficiency. Secondary organic aerosol (SOA) in particular has been linked to climate change and a reduction in the number and size of cloud particles. The reactions of nitrogen containing compounds (primary amines, amino acids and ammonium sulfate) with carbonyl compounds (such as formaldehyde and glycolaldehyde) are potential sources of SOA. Aerosol containing formaldehyde and nitrogen-containing compounds (glycine, methylamine, arginine, or ammonium sulfate) was generated from buffered solutions (pH 5.4) using a nebulizer. The aerosol was then equilibrated into a chamber containing humid air (82-84% RH), and particle sizes were measured using a SMPS system over a period of 1 hour in order to examine how the size and volume of the aerosol particles changed. Formaldehyde concentrations were varied over multiple experiments. Arginine displayed a trend of increasing relative particle size with increasing formaldehyde concentration. Ammonium sulfate and formaldehyde displayed a decrease in relative particle sizes from 0:1 to 2:1 ratios of formaldehyde to ammonium sulfate, but then an increase in relative particle sizes with increasing amounts of formaldehyde. Similarly, glycine and methylamine initially displayed decreasing relative particle sizes, until reaching a 1:1 ratio of each to formaldehyde at which point the relative particle sizes steadily increased. These effects were likely caused by the evaporation of first-generation imine products.
Yu, Hao; Chen, Chuan; Ma, Jincai; Xu, Xijun; Fan, Ronggui; Wang, Aijie
2014-05-01
Limited oxygen supply to anaerobic wastewater treatment systems had been demonstrated as an effective strategy to improve elemental sulfur (S(0)) recovery, coupling sulfate reduction and sulfide oxidation. However, little is known about the impact of dissolved oxygen (DO) on the microbial functional structures in these systems. We used a high throughput tool (GeoChip) to evaluate the microbial community structures in a biological desulfurization reactor under micro-aerobic conditions (DO: 0.02-0.33 mg/L). The results indicated that the microbial community functional compositions and structures were dramatically altered with elevated DO levels. The abundances of dsrA/B genes involved in sulfate reduction processes significantly decreased (p < 0.05, LSD test) at relatively high DO concentration (DO: 0.33 mg/L). The abundances of sox and fccA/B genes involved in sulfur/sulfide oxidation processes significantly increased (p < 0.05, LSD test) in low DO concentration conditions (DO: 0.09 mg/L) and then gradually decreased with continuously elevated DO levels. Their abundances coincided with the change of sulfate removal efficiencies and elemental sulfur (S(0)) conversion efficiencies in the bioreactor. In addition, the abundance of carbon degradation genes increased with the raising of DO levels, showing that the heterotrophic microorganisms (e.g., fermentative microorganisms) were thriving under micro-aerobic condition. This study provides new insights into the impacts of micro-aerobic conditions on the microbial functional structure of sulfate-reducing sulfur-producing bioreactors, and revealed the potential linkage between functional microbial communities and reactor performance. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Windham-Myers, L.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.; Agee, J.L.; Cox, M.H.; Heredia-Middleton, P.; Coates, C.; Kakouros, E.
2009-01-01
We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4-8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.
Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Krabbenhoft, David P.; Agee, Jennifer L.; Cox, Marisa H.; Heredia-Middleton, Pilar; Coates, Carolyn; Kakouros, Evangelos
2009-01-01
We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4–8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.
USDA-ARS?s Scientific Manuscript database
A two-year field experiment was carried out to investigate the effectiveness of soil and foliar applications of zinc sulfate and soil application of waste rubber ash to increase Zn and decrease cadmium (Cd) concentration in grain of 10 wheat genotypes with different Zn-efficiency. Foliar spray of zi...
Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis
NASA Astrophysics Data System (ADS)
Meshoulam, Alexander; Ellis, Geoffrey S.; Said Ahmad, Ward; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Liu, Jinzhong; Gilhooly, William P.; Aizenshtat, Zeev; Amrani, Alon
2016-09-01
The sulfur isotopic fractionation associated with the formation of organic sulfur compounds (OSCs) during thermochemical sulfate reduction (TSR) was studied using gold-tube pyrolysis experiments to simulate TSR. The reactants used included n-hexadecane (n-C16) as a model organic compound with sulfate, sulfite, or elemental sulfur as the sulfur source. At the end of each experiment, the S-isotopic composition and concentration of remaining sulfate, H2S, benzothiophene, dibenzothiophene, and 2-phenylthiophene (PT) were measured. The observed S-isotopic fractionations between sulfate and BT, DBT, and H2S in experimental simulations of TSR correlate well with a multi-stage model of the overall TSR process. Large kinetic isotope fractionations occur during the first, uncatalyzed stage of TSR, 12.4‰ for H2S and as much as 22.2‰ for BT. The fractionations decrease as the H2S concentration increases and the reaction enters the second, catalyzed stage. Once all of the oxidizable hydrocarbons have been consumed, sulfate reduction ceases and equilibrium partitioning then dictates the fractionation between H2S and sulfate (∼17‰). Experiments involving sparingly soluble CaSO4 show that during the second catalytic phase of TSR the rate of sulfate reduction exceeds that of sulfate dissolution. In this case, there is no apparent isotopic fractionation between source sulfate and generated H2S, as all of the available sulfate is effectively reduced at all reaction times. When CaSO4 is replaced with fully soluble Na2SO4, sulfate dissolution is no longer rate limiting and significant S-isotopic fractionation is observed. This supports the notion that CaSO4 dissolution can lead to the apparent lack of fractionation between H2S and sulfate produced by TSR in nature. The S-isotopic composition of individual OSCs record information related to geochemical reactions that cannot be discerned from the δ34S values obtained from bulk phases such as H2S, oil, and sulfate minerals, and provide important mechanistic details about the overall TSR process.
Testing the sulfate-phosphorous hypothesis for initiation of the early Aptian OAE1a
NASA Astrophysics Data System (ADS)
Mills, J. V.; Gomes, M. L.; Sageman, B. B.; Hurtgen, M. T.
2012-12-01
Oceanic anoxic events (OAEs) were short-lived (<1-myr) episodes of widespread marine organic carbon burial and anoxia that occurred during the Mesozoic. Several hypotheses have been proposed to explain these intervals of increased organic carbon production and preservation, yet none have satisfactorily accounted for the short-term character and widespread effects of the events. Some recent work has focused on the role of sulfur in the initiation/termination mechanism of these events, specifically the potential impact of a large increase in marine sulfate levels upon a very low sulfate background. Previous authors have suggested that a large pulse of volcanic-derived sulfur could have initiated widespread anoxia through a positive feedback cycle of enhanced phosphorous recycling and increased primary production. In this model, a sudden pulse of sulfur upon a low sulfate background impacts the biogeochemical cycles of sulfur and iron, leading to an escalation in phosphorous (P) release from sediments during organic matter degradation. The resulting sulfate-P feedback cycle, recognized in modern lake systems, continues until sulfate levels are drawn down by pyrite burial, thus ending the anoxic event. To test this hypothesis, we examine sulfur and carbon isotopes through the early Aptian OAE1a (~120 Ma) from Resolution Guyot in the Mid-Pacific Mountains (ODP Site 866). We present sulfur isotope records of carbonate-associated sulfate (CAS), which provide a higher resolution record than other sulfate records (e.g. marine barites), to infer how sulfate concentrations changed through the event. A decrease of ~5 permil in the CAS sulfur isotope composition through the event suggests either that massive volcanism delivered 34S-depleted sulfate to the oceans and/or that large-scale evaporite (calcium sulfate) deposition forced a reduction in marine sulfate levels and associated rates of pyrite burial. These results will be discussed within the context of evolving δ34Spyrite values in order to better constrain the evolution of marine sulfate concentrations through this time period and evaluate the importance of the sulfate-P feedback mechanism in regulating OAE1a.
NASA Astrophysics Data System (ADS)
Zhu, Shupeng; Horne, Jeremy R.; Montoya-Aguilera, Julia; Hinks, Mallory L.; Nizkorodov, Sergey A.; Dabdub, Donald
2018-03-01
Ammonium salts such as ammonium nitrate and ammonium sulfate constitute an important fraction of the total fine particulate matter (PM2.5) mass. While the conversion of inorganic gases into particulate-phase sulfate, nitrate, and ammonium is now well understood, there is considerable uncertainty over interactions between gas-phase ammonia and secondary organic aerosols (SOAs). Observations have confirmed that ammonia can react with carbonyl compounds in SOA, forming nitrogen-containing organic compounds (NOCs). This chemistry consumes gas-phase NH3 and may therefore affect the amount of ammonium nitrate and ammonium sulfate in particulate matter (PM) as well as particle acidity. In order to investigate the importance of such reactions, a first-order loss rate for ammonia onto SOA was implemented into the Community Multiscale Air Quality (CMAQ) model based on the ammonia uptake coefficients reported in the literature. Simulations over the continental US were performed for the winter and summer of 2011 with a range of uptake coefficients (10-3-10-5). Simulation results indicate that a significant reduction in gas-phase ammonia may be possible due to its uptake onto SOA; domain-averaged ammonia concentrations decrease by 31.3 % in the winter and 67.0 % in the summer with the highest uptake coefficient (10-3). As a result, the concentration of particulate matter is also significantly affected, with a distinct spatial pattern over different seasons. PM concentrations decreased during the winter, largely due to the reduction in ammonium nitrate concentrations. On the other hand, PM concentrations increased during the summer due to increased biogenic SOA (BIOSOA) production resulting from enhanced acid-catalyzed uptake of isoprene-derived epoxides. Since ammonia emissions are expected to increase in the future, it is important to include NH3 + SOA chemistry in air quality models.
NASA Astrophysics Data System (ADS)
Amundson, Ronald; Barnes, Jaime D.; Ewing, Stephanie; Heimsath, Arjun; Chong, Guillermo
2012-12-01
Halite (NaCl) and gypsum or anhydrite (CaSO4) are water-soluble minerals found in soils of the driest regions of Earth, and only modest attention has been given to the hydrological processes that distribute these salts vertically in soil profiles. The two most notable chloride and sulfate-rich deserts on earth are the Dry Valleys of Antarctica and the Atacama Desert of Chile. While each is hyperarid, they possess very different hydrological regimes. We first show, using previously published S and O isotope data for sulfate minerals, that downward migration of water and sulfate is the primary mechanism responsible for depth profiles of sulfate concentration, and S and O isotopes, in both deserts. In contrast, we found quite different soluble Cl concentration and Cl isotope profiles between the two deserts. For Antarctic soils with an ice layer near the soil surface, the Cl concentrations increase with decreasing soil depth, whereas the ratio of 37Cl/35Cl increases. Based on previous field observations by others, we found that thermally driven upward movement of brine during the winter, described by an advection/diffusion model, qualitatively mimics the observed profiles. In contrast, in the Atacama Desert where rare but relatively large rains drive Cl downward through the profiles, Cl concentrations and 37Cl/35Cl ratios increased with depth. The depth trends in Cl isotopes are more closely explained by a Rayleigh-like model of downward fluid flow. The isotope profiles, and our modeling, reveal the similarities and differences between these two very arid regions on Earth, and are relevant for constraining models of fluid flow in arid zone soil and vadose zone hydrology.
Wang, Wei; Chen, Jun; Cai, Bao-Chang; Fang, Yun
2008-09-01
To study the influencing factors in preparation of brucine liposomes by ammonium sulfate transmembrane gradients. The brucine liposomes were separated by Sephadex G-50, and the influence of various factors on the entrapment efficiencies were investigated. The entrapment efficiency was enhanced by increased ammonium sulfate concentration, ethanol volume and PC concentration. Burcine liposomes prepared by ammonium sulfate transmembrance gradients can get a high entrapment efficiency, the main influencing factors were ammonium sulfate concentration, ethanol volume and PC concentration.
Hassan, Refat M; Ibrahim, Samia M; Takagi, Hideo D; Sayed, Suzan A
2018-07-15
Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyelectrolyte chondroitin-4-sulfate (CS) polysaccharide has been studied using both gasometrical and weight-loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing the inhibitor concentration and decreased with increasing temperature. The inhibition action of CS on Al metal surface was found to obey both of Langmuir and Freundlich isotherms. The factors affecting the corrosion rates such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and the temperature were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the results obtained is discussed. Copyright © 2018. Published by Elsevier Ltd.
Chandler, Carol J.; Segel, Irwin H.
1978-01-01
Pyrithione is a general inhibitor of membrane transport processes in fungi. A brief preincubation of Penicillium mycelia with pyrithione resulted in a marked decrease in the activities of a variety of independently regulated transport systems, including those for inorganic sulfate, inorganic phosphate, methylamine (actually, the NH4+ permease), choline-O-sulfate, glucose, l-methionine (a specific system), and several hydrophobic l-α-amino acids (the general amino acid permease). The degree of inhibition at any fixed pyrithione concentration and exposure time increased as the pH of the incubation medium was decreased. This result strongly suggests that the active species is the un-ionized molecule and that pyrithione acts by collapsing a transmembrane ΔpH driving force. The degree of transport inhibition caused by a given concentration of pyrithione increased with increasing time of exposure to the inhibitor. However, exposure time and pyrithione concentration were not reciprocally related. At “low” pyrithione concentrations, transport inhibition plateaued at some finite value. This observation suggests that the fungi can detoxify low levels of the inhibitor. The concentration of pyrithione required for a given degree of growth inhibition increased as the experimental mycelial density increased. This phenomenon was consistent with the suggestion that the fungi are capable of inactivating pyrithione. PMID:28693
Predicting watershed acidification under alternate rainfall conditions
Huntington, T.G.
1996-01-01
The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, U.S.A. using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soil water flux will result in larger increases in soil- adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distribution of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading.
Xi, Jing-Ru; Liu, Su-Qin; Li, Lin; Liu, Jun-Xin
2014-12-01
The greenhouse effect of methane is 26 times worse than that of carbon dioxide, and wastewater containing high concentrations of sulfate is harmful to water, soil and plants. Therefore, anaerobic oxidation of methane driven by sulfate is one of the effective ways for methane reduction. In this paper, with sulfate as the electron accepter, a microbial consortium capable of oxidating methane under anaerobic condition was cultured. The diversity and characteristics of bacterial and archaeal community were investigated by PCR-DGGE, and phylogenetic analysis of the dominant microorganisms was also carried out. The DGGE fingerprints showed that microbial community structure changed distinctly, and the abundance of methane-oxidizing archea and sulfate-reducing bacteria increased in the acclimatization system added sulfate. After acclimatization, the bacterial diversity increased, while archaea diversity decreased slightly. The representative bands in the DGGE profiles were excised and sequenced. Results indicated that the dominant species in the acclimatization system were Spirochaetes, Desulfuromonadales, Methanosarcinales, Methanosaeta. Methane converted into carbon dioxide while sulfate transformed into hydrogen sulfide and sulfur in the process of anaerobic methane oxidation accompanied by sulphate reduction.
Mehta, Chirag M; White, Edward T; Litster, James D
2013-01-01
Interactions measurement is a valuable tool to predict equilibrium phase separation of a desired protein in the presence of unwanted macromolecules. In this study, cross-interactions were measured as the osmotic second virial cross-coefficients (B23 ) for the three binary protein systems involving lysozyme, ovalbumin, and α-amylase in salt solutions (sodium chloride and ammonium sulfate). They were correlated with solubility for the binary protein mixtures. The cross-interaction behavior at different salt concentrations was interpreted by either electrostatic or hydrophobic interaction forces. At low salt concentrations, the protein surface charge dominates cross-interaction behavior as a function of pH. With added ovalbumin, the lysozyme solubility decreased linearly at low salt concentration in sodium chloride and increased at high salt concentration in ammonium sulfate. The B23 value was found to be proportional to the slope of the lysozyme solubility against ovalbumin concentration and the correlation was explained by preferential interaction theory. © 2013 American Institute of Chemical Engineers.
Salting out of proteins using ammonium sulfate precipitation.
Duong-Ly, Krisna C; Gabelli, Sandra B
2014-01-01
Protein solubility is affected by ions. At low ion concentrations (<0.5 M), protein solubility increases along with ionic strength. Ions in the solution shield protein molecules from the charge of other protein molecules in what is known as 'salting-in'. At a very high ionic strength, protein solubility decreases as ionic strength increases in the process known as 'salting-out'. Thus, salting out can be used to separate proteins based on their solubility in the presence of a high concentration of salt. In this protocol, ammonium sulfate will be added incrementally to an E. coli cell lysate to isolate a recombinantly over-expressed protein of 20 kDa containing no cysteine residues or tags. © 2014 Elsevier Inc. All rights reserved.
Microbiological Leaching of Metallic Sulfides
Razzell, W. E.; Trussell, P. C.
1963-01-01
The percentage of chalcopyrite leached in percolators by Thiobacillus ferrooxidans was dependent on the surface area of the ore but not on the amount. Typical examples of ore leaching, which demonstrate the role of the bacteria, are presented. In stationary fermentations, changes in KH2PO4 concentration above or below 0.1% decreased copper leaching as did reduction in the MgSO4·7H2O and increase in the (NH4)2SO4 concentration. Bacterial leaching of chalcopyrite was more effective than nonbiological leaching with ferric sulfate; ferric sulfate appeared to retard biological leaching, but this effect was likely caused by formation of an insoluble copper-iron complex. Ferrous sulfate and sodium chloride singly accentuated both bacterial and nonbiological leaching of chalcocite but jointly depressed bacterial action. Sodium chloride appeared to block bacterial iron oxidation without interfering with sulfide oxidation. Bacterial leaching of millerite, bornite, and chalcocite was greatest at pH 2.5. The economics of leaching a number of British Columbia ore bodies was discussed. PMID:16349627
Lorah, M.M.; Olsen, L.D.
2001-01-01
Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.
Sherwood, Donald A.
1999-01-01
Irondequoit Creek, which drains 169 square miles in the eastern part of Monroe County, has been recognized as a source of contaminants that contribute to the eutrophication of Irondequoit Bay on Lake Ontario. The discharge from sewage-treatment plants to the creek and its tributaries was eliminated in 1979 by diversion to another wastewater-treatment facility, but sediment and nonpoint-source pollution remain a concern. This report presents data from five surface-water sites in the Irondequoit Creek basin. Irondequoit Creek at Railroad Mills, East Branch Allen Creek, Allen Creek near Rochester, Irondequoit Creek at Blossom Road, and Irondequoit Creek at Empire Boulevard, to supplement published data from 1984-88. Data from Northrup Creek, which drains 11.7 square miles in western Monroe County, provide information on surface-water quality west of the Genesee River. Also presented are water-level and water-quality data from 12 observation-well sites in Ellison and Powdermill Parks and atmospheric-deposition data from 1 site (Mendon Ponds). Concentrations of several chemical constituents in streams of the Irondequoit Creek basin showed statistically significant trends during 1989-93. Concentrations of total suspended-solids and volatile suspended-solids in Irondequoit Creek at Blossom Road decreased 13.5 and 12.5 percent per year, respectively, and those at Empire Boulevard decreased 33.5 and 22 percent per year, respectively. Concentrations of ammonia plus organic nitrogen increased 17.6 percent per year at one site in the basin, but decreased 8.5 and 22.3 percent per year at two sites. Nitrite plus nitrate decreased at only one site (3.5 percent per year). Concentrations of total phosphorus increased at two sites (about 7 percent per year) and decreased at two other sites (7.6 and 29.9 percent per year), and orthophosphate concentrations increased at one site (10.8 percent per year). Dissolved chloride increased at three sites (1.7 to 10.9 percent per year), and dissolved sulfate decreased at one site (2.1 percent per year) and increased at one site (6.8 percent per year). Median concentrations of constituents were significantly lower in atmospheric deposition than in streamflow, although annual deposition of ammonia nitrogen, nitrite plus nitrate, total phosphorus, and orthophosphate in the basin exceeded the amounts removed by streamflow. Atmospheric deposition of chloride and sulfate, by contrast, represented only 1 and 12 percent, respectively, of the loads transported by Irondequoit Creek (Blossom Road site). Comparison of water-quality data from the Allen Creek site and Irondequoit Creek at Blossom Road from water years 1989-93 with corresponding data from 1984-88 indicates significant changes in median concentrations of several constituents. The concentration of dissolved chloride increased at Blossom Road and was unchanged at Allen Creek, whereas sulfate decreased at both sites. Concentrations of ammonia plus organic nitrogen, and nitrite plus nitrate, were significantly lower during 1989-93 than during 1984-88 at both sites. Total phosphorus concentration was lower during 1984-88 than during 1989-93 at Blossom Road but showed no change at Allen Creek, and orthophosphate concentration for 1989-93 was lower than in 1984-88 at both sites. Comparison of chemical loads in atmospheric deposition also indicates significant changes in many constituents. Five-year-mean loads of sodium, sulfate, and lead in atmospheric deposition for 1989-93 exceeded those for 1984-88, whereas 5-year-mean loads of calcium, magnesium, potassium, chloride, nitrite plus nitrate, ammonia nitrogen, and orthophosphate for 1989-93 were lower than in 1984-88. The changes in surface-water quality resulted from several factors within the basin, including land-use changes, annual and seasonal variations in streamflow, and year-to-year variations in the application of deicing salts on area roads. Statistical analyses of long-term (9 years or more) flow rec
Szynkiewicz, Anna; Modelska, Magdalena; Jedrysek, Mariusz Orion; Mastalerz, Maria
2008-01-01
Sulfate content, δ34S(SO42−), δ18O(SO42−), and δ18O(H2O) values revealed a remarkable dependence on the altitude. The calculated altitude effects for five season averages of these parameters were − 1.00 mg/l/100 m, − 0.18‰/100 m, − 0.27‰/100 m, and − 0.17‰/100 m, respectively. This dependence on the altitude resulted mainly from the mixing of sulfates of different origins such as anthropogenic sulfate, sulfate produced in the soil within the weathered zone of the massif, and that one from the tree canopy. The oxygen isotope mass balance indicates that, in the study area, about one third of the sulfate delivered to the surface and groundwater by modern precipitation comes from anthropogenic pollution. Further interaction of meteoric water within the weathered rocks causes a continuous decrease of δ18O(SO42−) values resulting from biological transformation of the sulfate due to plant vegetation and decomposition of organic matter.
Origin of rainwater acidity near the Los Azufres geothermal field, Mexico
Verma, M.P.; Quijano, J.L.; Johnson, Chad; Gerardo, J.Y.; Arellano, V.
2000-01-01
The chemical and isotopic compositions of rainwater were monitored at Los Azufres geothermal field (88 MWe) and its surroundings during May - September 1995, which is the rainy season. Samples were collected from eight sites: three within the field, three in its surroundings and two sufficiently far from the field such that they have no geothermal input. The concentrations of Cl-, SO42- and NO3- were measured in about 350 samples and found to be generally <5 ppm. Chloride concentrations remained constant with time, but sulfate and nitrate concentrations decreased, which suggests a nearby industrial source for the sulfate and nitrate. A mixing model for Cl-, SO42- and ??34S also suggests an industrial source for the rainwater sulfur. The determination of pH was found to be necessary, but is not sufficient to characterize rainwater acidity. The Gran titration method was used to determine alkalinity with respect to equivalence point of H2CO3(*). Values of alkalinity were found to range from 10-4 to 10-6 eq/L, and were negative only for some samples from Vivero and Guadalajara. Thus, SO42- and NO3- are in general not in acidic form (i.e. balanced by Na+, Ca2+, etc. rather than H+). Sulfate ??34S values were about -1.5??? in Los Azufres and its surroundings, and in Morelia, but differed from the value of -0.2??? for Guadalajara. The ??34S values for H2S from the Los Azufres geothermal wells are in the range -3.4 to 0.0???. The ??34S ranges for the natural and anthropogenic sources for environmental sulfur overlap, making it difficult to differentiate between the contribution of different sources. However, a similarity of values of ??34S at Los Azufres and Morelia (85 km distant) suggest a regional source of sulfate that is not associated with geothermal emissions from Los Azufres. (C) 2000 Published by Elsevier Science Ltd on behalf of CNR.The chemical compositions of rainwater were analyzed at Los Azufres geothermal field in Spain from May-September 1995. The concentrations of Cl-, SO42- and NO3- were measured and found to be generally <5 ppm. Chloride concentrations remained constant with time, but sulfate and nitrate concentrations decreased, suggesting a nearby industrial source. A mixing model for Cl-, SO42-, and ??34S also suggested an industrial source for the rainwater sulfur.
Inhibitory and bactericidal action of the biocorrosion agents «INCORGAS» and «AMDOR».
Tsygankova, L E; Vigdorovich, V I; Esina, M N; Nazina, T N; Dubinskaya, E V
2014-06-01
Inhibiting action of A, B and M-X compositions against hydrosulfide corrosion of carbon steel, hydrogen diffusion through the steel membrane has been studied along with their bactericidal effect with respect to sulfate-reducing bacteria of Desulfomicrobium type. Bactericidal properties of the compositions have been studied in the Postgate medium. Corrosion tests have been made in the NACE medium saturated by hydrogen sulfide and carbon dioxide separately and together by methods of gravimetrical measurements and linear polarization resistance (LRP). Potentiodynamic polarization and electrochemical diffusion method have been used. Steel protection is determined in the inhibited solutions by combined action of corrosion products film and inhibitor. Presence of sulfate-reducing bacteria in medium increases hydrogen diffusion flux through the steel membrane by 2-3 times and essentially stimulates effect of the inhibitors. The inhibiting compositions decrease quantity of sulfate-reducing bacteria (SRB) by 95-98%. The obtained results testify about predominately bacteriostatic action of the inhibiting compositions, which has influence on the enzymatic systems of SRB cells responsible directly for the sulfate reduction because of substantially decreasing the biogenic hydrogen sulfide concentration in the system. © 2013 Elsevier B.V. All rights reserved.
Wu, Hao; Meng, Qingxiang; Yu, Zhongtang
2015-06-01
The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bandy, A. R.
1973-01-01
Laser-Raman light scattering is a technique for determining sulfate concentrations in sea and estuarine waters with apparently none of the interferences inherent in the gravimetric and titrametric methods. The Raman measurement involved the ratioing of the peak heights of an unknown sulfate concentration and a nitrate internal standard. This ratio was used to calculate the unknown sulfate concentration from a standard curve. The standard curve was derived from the Raman data on prepared nitrate-sulfate solutions. At the 99.7% confidence level, the accuracy of the Raman technique was 7 to 8.6 percent over the concentration range of the standard curve. The sulfate analyses of water samples collected at the mouth of the James River, Hampton, Virginia, demonstrated that in most cases sulfate had a constant concentration relative to salinity in this area.
Sacks, Laura A.
1996-01-01
In inland areas of northwest central Florida, sulfate concentrations in the Upper Floridan aquifer are extremely variable and sometimes exceed drinking water standards (250 milligrams per liter). This is unusual because the aquifer is unconfined and near the surface, allowing for active recharge. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated in this area. Water was sampled from thirty-three wells in parts of Marion, Sumter, and Citrus Counties, within the Southwest Florida Water Management District; these included at least a shallow and a deep well at fifteen separate locations. Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (sulfur-34 of sulfate and sulfide, carbon-13 of inorganic carbon, deuterium, and oxygen-18). Sulfate concentrations ranged from less than 0.2 to 1,400 milligrams per liter, with higher sulfate concentrations usually in water from deeper wells. The samples can be categorized into a low sulfate group (less than 30 milligrams per liter) and a high sulfate group (greater than 30 milligrams per liter). For the high sulfate water, concentrations of calcium and magnesium increased concurrently with sulfate. Chemical and isotopic data and mass-balance modeling indicate that the composition of high sulfate waters is controlled by dedolomitization reactions (dolomite dissolution and calcite precipitation, driven by dissolution of gypsum). Gypsum occurs deeper in the aquifer than open intervals of sampled wells. Upward flow has been documented in deeper parts of the aquifer in the study area, which may be driven by localized discharge areas or rapid flow in shallow parts of the aquifer. Mixing between shallow ground water and sulfate-rich water that dissolved gypsum at the base of the aquifer is probably responsible for the range of concentrations observed in the study area. Other solutes that increased with sulfate apparently originate from the gypsum itself, from other mineral assemblages found deeper in the aquifer in association with gypsum, and from residual seawater from less- flushed, deeper parts of the aquifer. These ions are subsequently transported with sulfate to shallower parts of the aquifer where gypsum is not present. The composition of low sulfate ground water is controlled by differences in the extent of microbially mediated reactions, which produce carbon dioxide. This, in turn, influences the extent of calcite dissolution. Ground waters which underwent limited microbial reactions contained dissolved oxygen and were usually in ridge areas where recharge typically is rapid. Anaerobic waters were in lower lying areas of Sumter County, where soils are poorly drained and aquifer recharge is slow. Anaerobic waters had higher concentrations of calcium, bicarbonate, sulfide, dissolved organic carbon, iron, manganese, and silica, and had lower concentrations of nitrate than aerobic ground waters. For low sulfate waters, sulfate generally originates from meteoric sources (atmospheric precipitation), with variable amounts of oxidation of reduced sulfur and sulfate reduction. Sulfide is sometimes removed from solution, probably by precipitation of a sulfide minerals such as pyrite. In areas where deep ground water has low sulfate concentrations, the shallow flow system is apparently deeper than where high sulfate concentrations occur, and upwelling sulfate-rich water is negligible. The range of sulfate concentrations observed in the study areas and differences in sulfate concentrations with depth indicate a complex interaction between shallow and deep ground-water flow systems.
NASA Astrophysics Data System (ADS)
Hoek, J.; Reysenbach, A.; Habicht, K.; Canfield, D. E.
2004-12-01
Sulfate-reducing bacteria fractionate sulfur isotopes during dissimilatory sulfate reduction, producing sulfide depleted in 34S. Although isotope fractionation during sulfate reduction of pure cultures has been extensively studied, most of the research to date has focused on mesophilic sulfate reducers, particularly for the species Desulfovibrio desulfuricans. Results from these studies show that: 1) fractionations range from 3-46‰ with an average around 18‰ , 2) when organic electron donors are utilized, the extent of fractionation is dependent on the rate of sulfate reduction, with decreasing fractionations observed with higher specific rates, 3) fractionations are suppressed with low sulfate concentrations, and when hydrogen is used as the electron donor. High specific sulfate-reduction rates are encountered when sulfate-reducing bacteria metabolize at their optimal temperature and under non-limiting substrate conditions. Changes in both temperature and substrate availability could shift fractionations from those expressed under optimal growth conditions. Sulfate reducers may frequently experience substrate limitation and sub-optimal growth temperatures in the environment. Therefore it is important to understand how sulfate-reducing bacteria fractionate sulfur isotopes under conditions that more closely resemble the restrictions imposed by the environment. In this study the fractionation of sulfur isotopes by Thermodesulfatator indicus was explored during sulfate reduction under a wide range of temperatures and with both hydrogen-saturating and hydrogen-limited conditions. T. indicus is a thermophilic (temperature optimum = 70° C) chemolithotrophic sulfate-reducing bacterium, which was recently isolated from a deep-sea hydrothermal vent on the Central Indian Ridge. This bacterium represents the type species of a new genus and to date is the most deeply branching sulfate-reducing bacterium known. T. indicus was grown in carbonate-buffered salt-water medium with H2 as the sole electron donor, and CO2 as primary carbon source. The fractionation of sulfur isotopes was measured in batch cultures and in a thermal gradient block over the full temperature range of growth (40-80° C). For experiments in the gradient block, cell-specific rates of sulfate reduction increased with increasing temperatures to 70° C after which sulfate-reduction rates rapidly decreased. The range of fractionations (1.5-10‰ ) was typical for growth with hydrogen as the electron donor. Fractionations decreased with increasing temperature from 40--60° C, and increased with increasing temperatures from 60-80° C. Growth under H2-limited conditions in a fed-batch culture revealed high fractionations of 24-37‰ . This is the first report of sulfur isotope fractionation under H2 limited growth and indicates that large fractionations are produced when H2 is supplied as a limiting substrate. Our results suggest that fractionation is controlled by the competition of forward and reverse enzymatic reaction rates during sulfate reduction and by sulfate transport into the cell.
Sulfate was a trace constituent of Archean seawater.
Crowe, Sean A; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L; Nomosatryo, Sulung; Fowle, David A; Adkins, Jess F; Sessions, Alex L; Farquhar, James; Canfield, Donald E
2014-11-07
In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans. Copyright © 2014, American Association for the Advancement of Science.
Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R
2001-12-01
Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the heavy metals at concentrations below EC100. The 7-d EC50 values obtained from the difference between the dissolved metal concentrations for the control tubes (tubes not containing copper or zinc) and tubes containing metals were found to be 10.5 mg/L for copper and 16.5 mg/L for zinc. Measurements of the turbidity and pH, bacterial population estimations by means of a most-probable number technique, and metal recovery in the sulfide precipitate were found to have only a limited applicability in these determinations.
Atashgahi, Siavash; Lu, Yue; Zheng, Ying; Saccenti, Edoardo; Suarez-Diez, Maria; Ramiro-Garcia, Javier; Eisenmann, Heinrich; Elsner, Martin; J M Stams, Alfons; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke
2017-03-01
Biostimulation is widely used to enhance reductive dechlorination of chlorinated ethenes in contaminated aquifers. However, the knowledge on corresponding biogeochemical responses is limited. In this study, glycerol was injected in an aquifer contaminated with cis-dichloroethene (cDCE), and geochemical and microbial shifts were followed for 265 days. Consistent with anoxic conditions and sulfate reduction after biostimulation, MiSeq 16S rRNA gene sequencing revealed temporarily increased relative abundance of Firmicutes, Bacteriodetes and sulfate reducing Deltaproteobacteria. In line with 13 C cDCE enrichment and increased Dehalococcoides mccartyi (Dcm) numbers, dechlorination was observed toward the end of the field experiment, albeit being incomplete with accumulation of vinyl chloride. This was concurrent with (i) decreased concentrations of dissolved organic carbon (DOC), reduced relative abundances of fermenting and sulfate reducing bacteria that have been suggested to promote Dcm growth by providing electron donor (H 2 ) and essential corrinoid cofactors, (ii) increased sulfate concentration and increased relative abundance of Epsilonproteobacteria and Deferribacteres as putative oxidizers of reduced sulfur compounds. Strong correlations of DOC, relative abundance of fermenters and sulfate reducers, and dechlorination imply the importance of syntrophic interactions to sustain robust dechlorination. Tracking microbial and environmental parameters that promote/preclude enhanced reductive dechlorination should aid development of sustainable bioremediation strategies. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Powers, Jacquelyn M; Buchanan, George R; Adix, Leah; Zhang, Song; Gao, Ang; McCavit, Timothy L
2017-06-13
Iron-deficiency anemia (IDA) affects millions of persons worldwide, and is associated with impaired neurodevelopment in infants and children. Ferrous sulfate is the most commonly prescribed oral iron despite iron polysaccharide complex possibly being better tolerated. To compare the effect of ferrous sulfate with iron polysaccharide complex on hemoglobin concentration in infants and children with nutritional IDA. Double-blind, superiority randomized clinical trial of infants and children aged 9 to 48 months with nutritional IDA (assessed by history and laboratory criteria) that was conducted in an outpatient hematology clinic at a US tertiary care hospital from September 2013 through November 2015; 12-week follow-up ended in January 2016. Three mg/kg of elemental iron once daily as either ferrous sulfate drops or iron polysaccharide complex drops for 12 weeks. Primary outcome was change in hemoglobin over 12 weeks. Secondary outcomes included complete resolution of IDA (defined as hemoglobin concentration >11 g/dL, mean corpuscular volume >70 fL, reticulocyte hemoglobin equivalent >25 pg, serum ferritin level >15 ng/mL, and total iron-binding capacity <425 μg/dL at the 12-week visit), changes in serum ferritin level and total iron-binding capacity, adverse effects. Of 80 randomized infants and children (median age, 22 months; 55% male; 61% Hispanic white; 40 per group), 59 completed the trial (28 [70%] in ferrous sulfate group; 31 [78%] in iron polysaccharide complex group). From baseline to 12 weeks, mean hemoglobin increased from 7.9 to 11.9 g/dL (ferrous sulfate group) vs 7.7 to 11.1 g/dL (iron complex group), a greater difference of 1.0 g/dL (95% CI, 0.4 to 1.6 g/dL; P < .001) with ferrous sulfate (based on a linear mixed model). Proportion with a complete resolution of IDA was higher in the ferrous sulfate group (29% vs 6%; P = .04). Median serum ferritin level increased from 3.0 to 15.6 ng/mL (ferrous sulfate) vs 2.0 to 7.5 ng/mL (iron complex) over 12 weeks, a greater difference of 10.2 ng/mL (95% CI, 6.2 to 14.1 ng/mL; P < .001) with ferrous sulfate. Mean total iron-binding capacity decreased from 501 to 389 μg/dL (ferrous sulfate) vs 506 to 417 μg/dL (iron complex) (a greater difference of -50 μg/dL [95% CI, -86 to -14 μg/dL] with ferrous sulfate; P < .001). There were more reports of diarrhea in the iron complex group than in the ferrous sulfate group (58% vs 35%, respectively; P = .04). Among infants and children aged 9 to 48 months with nutritional iron-deficiency anemia, ferrous sulfate compared with iron polysaccharide complex resulted in a greater increase in hemoglobin concentration at 12 weeks. Once daily, low-dose ferrous sulfate should be considered for children with nutritional iron-deficiency anemia. clinicaltrials.gov Identifier: NCT01904864.
NASA Astrophysics Data System (ADS)
Jeen, S.; Bain, J. G.; Blowes, D. W.
2007-12-01
A column experiment has been conducted to evaluate the performance of three reactive mixtures which may be used in a permeable reactive barrier (PRB) for the treatment of low quality mine drainage water from a waste rock storage area in northern Saskatchewan, Canada. The key element of concern in the drainage water is dissolved Ni, which occurs at approximately 13 mg/L. The water is low pH ~4.3, oxidized, contains high concentrations of dissolved sulfate (4400-4750 mg/L), Al (45 mg/L), Zn (3 mg/L), Co (3 mg/L) and relatively low concentrations of other dissolved heavy metals and iron. Three columns, each containing one of the mixtures, were constructed: column A (peat/lime/limestone/gravel), column B (peat/zero valent iron (ZVI) filings (20%/vol)/limestone/gravel), and column C (peat/ZVI filings (10%/vol)/limestone/gravel). The experimental results have shown that the mixtures promote bacterially-mediated sulfate reduction and metal removal by precipitation of metal sulfides, metal precipitation, and adsorption under relatively high pH conditions (pH of 7 to 8). Reducing conditions (Eh of 0 to -200 mV) have developed in all of the columns, from the highly oxidized influent water (Eh of +500 to +600 mV). Hydrogen sulfide is detected in the effluent water, and dissolved sulfate concentrations decrease by several hundred mg/L. Based on sulfate removal, sulfate reduction occurs more strongly in columns B and C than column A. All of the columns are removing Ni to below the limit of detection (typically < 0.01 mg/L); however, the removal rate in column A is slower than in columns B and C and has decreased over time. Most other metals are removed to low concentrations in all of the columns. The results suggest that while the longevity of mixtures including ZVI will be much longer than mixtures containing only peat, considering economic aspects, the PRB consisting of only peat could also be an alternative option, if breakthrough time can be predicted and replacement of peat can be conducted in a timely manner. This study shows that the use of reactive mixtures that facilitate microbial activities and redox reactions in subsurface could be a valuable means to remove various metal contaminants originated from mine drainage sites.
Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian
2017-01-01
The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets. PMID:28704517
NASA Astrophysics Data System (ADS)
Wang, H.; Zhang, R.; Yang, Y.; Smith, S.; Rasch, P. J.
2017-12-01
The Arctic has warmed dramatically in recent decades. As one of the important short-lived climate forcers, aerosols affect the Arctic radiative budget directly by interfering radiation and indirectly by modifying clouds. Light-absorbing particles (e.g., black carbon) in snow/ice can reduce the surface albedo. The direct radiative impact of aerosols on the Arctic climate can be either warming or cooling, depending on their composition and location, which can further alter the poleward heat transport. Anthropogenic emissions, especially, BC and SO2, have changed drastically in low/mid-latitude source regions in the past few decades. Arctic surface observations at some locations show that BC and sulfate aerosols had a decreasing trend in the recent decades. In order to understand the impact of long-term emission changes on aerosols and their radiative effects, we use the Community Earth System Model (CESM) equipped with an explicit BC and sulfur source-tagging technique to quantify the source-receptor relationships and decadal trends of Arctic sulfate and BC and to identify variations in their atmospheric transport pathways from lower latitudes. The simulation was conducted for 36 years (1979-2014) with prescribed sea surface temperatures and sea ice concentrations. To minimize potential biases in modeled large-scale circulations, wind fields in the simulation are nudged toward an atmospheric reanalysis dataset, while atmospheric constituents including water vapor, clouds, and aerosols are allowed to evolve according to the model physics. Both anthropogenic and open fire emissions came from the newly released CMIP6 datasets, which show strong regional trends in BC and SO2 emissions during the simulation time period. Results show that emissions from East Asia and South Asia together have the largest contributions to Arctic sulfate and BC concentrations in the upper troposphere, which have an increasing trend. The strong decrease in emissions from Europe, Russia and North America contributed significantly to the overall decreasing trend in Arctic BC and sulfate, especially, in the lower troposphere. The long-term changes in the spatial distributions of aerosols, their radiative impacts and source attributions, along with implications for the Arctic warming trend, will be discussed.
Wang, Chao; Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian
2017-01-01
The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets.
Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F
2010-05-01
Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.
NASA Astrophysics Data System (ADS)
Morgounova, Ekaterina; Shao, Qi; Hackel, Benjamin J.; Thomas, David D.; Ashkenazi, Shai
2013-05-01
Activatable photoacoustic probes efficiently combine the high spatial resolution and penetration depth of ultrasound with the high optical contrast and versatility of molecular imaging agents. Our approach is based on photoacoustic probing of the excited-state lifetime of methylene blue (MB), a fluorophore widely used in clinical therapeutic and diagnostic applications. Upon aggregation, static quenching between the bound molecules dramatically shortens their lifetime by three orders of magnitude. We present preliminary results demonstrating the ability of photoacoustic imaging to probe the lifetime contrast between monomers and dimers with high sensitivity in cylindrical phantoms. Gradual dimerization enhancement, driven by the addition of increasing concentrations of sodium sulfate to a MB solution, showed that lifetime-based photoacoustic probing decreases linearly with monomer concentration. Similarly, the addition of 4 mM sodium dodecyl sulfate, a concentration that amplifies MB aggregation and reduces the monomer concentration by more than 20-fold, led to a signal decrease of more than 20 dB compared to a solution free of surfactant. These results suggest that photoacoustic imaging can be used to selectively detect the presence of monomers. We conclude by discussing the implementation of the monomer-dimer contrast mechanism for the development of an enzyme-specific activatable probe.
Galloway, Joel M.
2011-01-01
In 2010, a two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Lake Ashtabula, North Dakota, was developed by the U.S. Geological Survey in cooperation with the North Dakota State Water Commission to understand the dynamics of chemical constituents in the reservoir and to provide a tool for the management and operation of the Devils Lake State Outlet in meeting the water-quality standards downstream from Baldhill Dam. The Lake Ashtabula model was calibrated for hydrodynamics, sulfate concentrations, and total dissolved-solids concentrations to ambient conditions from June 2006 through June 2010. The calibrated model then was used to simulate four scenarios that represent various Devils Lake outlet options that have been considered for reducing the water levels in Devils Lake. Simulated water temperatures compared well with measured temperatures and differences varied spatially in Lake Ashtabula from June 2006 through June 2010. The absolute mean error ranged from 0.7 degrees Celsius to 1.0 degrees Celsius and the root mean square error ranged from 0.7 degrees Celsius to 1.1 degrees Celsius. Simulated sulfate concentrations compared well with measured concentrations in Lake Ashtabula. In general, simulated sulfate concentrations were slightly overpredicted with mean differences between simulated and measured sulfate concentrations ranging from -2 milligram per liter to 18 milligrams per liter. Differences between simulated and measured sulfate concentrations varied temporally in Lake Ashtabula from June 2006 through June 2010. In 2006, sulfate concentrations were overpredicted in the lower part of the reservoir and underpredicted in the upper part of the reservoir. Simulated total dissolved solids generally were greater than measured total dissolved-solids concentrations in Lake Ashtabula from June 2006 through June 2010. The mean difference between simulated and measured total dissolved-solids concentrations ranged from -3 milligrams per liter to 15 milligrams per liter, the absolute mean error ranged from 58 milligrams per liter to 100 milligrams per liter, and the root mean square error ranged from 73 milligrams per liter to 114 milligrams per liter. Simulated sulfate concentrations from four scenarios were compared to simulated ambient concentrations from June 2006 through June 2009. For scenario 1, the same location, outflow capacity, and sulfate concentration as the current (2010) Devils Lake State Outlet were assumed. The increased flow and sulfate concentration in scenario 1, beginning on May 31 and extending to October 31 each year, resulted in an increase in sulfate concentrations to greater than 450 milligrams per liter in the reservoir at site 7T (approximately the middle of the reservoir), starting July 5 in 2006, July 28 in 2007, and July 15 in 2008. Sulfate concentrations increased to greater than 450 milligrams per liter considerably later at site 1T (near the dam), starting October 8 in 2006, October 29 in 2007, and October 3 in 2008. For scenario 2, the same Devils Lake State Outlet sulfate concentration as scenario 1 was assumed, but the flow through the Devils Lake State Outlet was doubled, which resulted in a more rapid increase in sulfate concentrations in the lower part of the reservoir and slightly greater values at all four sites compared to scenario 1. Sulfate concentrations increased to greater than 450 milligrams per liter 61 days earlier in 2006, 67 days earlier in 2007, and 41 days earlier in 2008 at site 1T. For scenarios 3 and 4, possible increases in flow and concentration from the current outlet location (from the West Bay of Devils Lake) and from a proposed outlet from East Devils Lake were simulated. Conditions for scenario 3 resulted in a relatively rapid increase in sulfate concentrations in the reservoir, and concentrations were greater than 750 milligrams per liter in most years at all four sites. As expected, scenario 4 resulted in greater sulfate concentr
Schulz, H; Neue, H-U
2005-03-01
The sorption potential for SO4(2-) in humus layer samples from field sites along a deposition gradient was determined experimentally in batch experiments. The Freundlich equation was used to quantify the sorption of added SO4(2-) in humus layer samples and to determine site-dependent sorption parameters. SO4(2-) sorption in humus layers is a concentration-dependent process. The linearity of isotherms reveals that SO4(2-) is reversibly bound in the organic surface layer, as long as soil solution concentrations remain above 26 to 44 mg SO4(2-) L(-1). Natural isotope variations of sulfur in SO4(2-) were analysed to investigate the degree of sorption of dissolved atmospheric and added SO4(2-). Both sulfate species differed significantly in their isotope composition. The pattern of delta34S values for SO4(2-) in all equilibrium solutions confirm the findings from sorption isotherms, showing a close relationship between the sulfur isotope ratios of SO4(2-) in soil solutions and the amount of SO4(2-) sorbed at the humus layer matrix. Stored atmospheric SO4(2-) in humus layers is released at sites where sulfate concentration in throughfall drops below 26 mg SO4(2-) L(-1). Concentration of soluble Fe decreased with increasing sulfate sorption, thus supporting the assumption that active Fe for example is important. Iron probably stabilizes the reactive surface of humus complexes and therefore has a positive influence on the SO4(2-) sorption in humus layers.
Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.
2004-01-01
As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas samples with larger concentrations generally were calcium-sodium-sulfate, calcium-sulfate, or sodium-sulfate-type waters. In the lower Tertiary aquifers, samples with fresh waters generally were sodium-bicarbonate or sodium-bicarbonate-sulfate type waters, whereas samples with larger concentrations were sodium-sulfate or calcium-sodium-sulfate types. Concentrations of most trace elements in both types of aquifers generally were small and most were less than applicable USEPA standards. The trace elements that most often did not meet USEPA secondary drinking-water standards were iron and manganese. In fact, the SMCL for manganese was the most frequently exceeded standard; 68 percent of the samples from the Quaternary aquifers and 31 percent of the samples from the lower Tertiary aquifers exceeded the manganese standard. Geochemical conditions may control manganese in both aquifers as concentrations in Quaternary aquifers were negatively correlated with dissolved oxygen concentrations and concentrations in lower Tertiary aquifers decreased with increasing pH. Elevated nitrate concentrations, in addition to detection of pesticides and VOCs in both aquifers, indicated some effects of human activities on ground-water quality. Nitrate concentrations in 36 percent of the wells in Quaternary aquifers and 28 percent of the wells in lower Tertiary aquifers were greater than 1 mg/L, which may indicate ground-water contamination from human sources. The USEPA drinking-water Maximum Contaminant Level (MCL) for nitrate, 10 mg/L, was exceeded in 8 percent of samples collected from Quaternary aquifers and 3 percent from lower Tertiary aquifers. Nitrate concentrations in Quaternary aquifers were positively correlated with the percentage of cropland and other agricultural land (non-cropland), and negatively correlated with rangeland and riparian land. In the lower Tertiary aquifers, nitrate concentrations only were correlated with the percentage of cropland. Concentratio
Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata) in hydroponics.
Ali, Sajid; Shahbaz, Muhammad; Shahzad, Ahmad Naeem; Khan, Hafiz Azhar Ali; Anees, Moazzam; Haider, Muhammad Saleem; Fatima, Ammara
2015-01-01
Arable soils are frequently subjected to contamination with copper as the consequence of imbalanced fertilization with manure and organic fertilizers and/or extensive use of copper-containing fungicides. In the present study, the exposure of stone-head cabbage (Brassica oleracea var. capitata) to elevated Cu(2+) levels resulted in leaf chlorosis and lesser biomass yield at ≥2 µ M. Root nitrate content was not statistically affected by Cu(2+) levels, although it was substantially decreased at ≥5 µ M Cu(2+) in the shoot. The decrease in nitrate contents can be related to lower nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate content increased strongly at ≥2 µ M Cu(2+) indicating an increase in demand for sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of water-soluble non-protein thiol increased markedly in the roots and to a smaller level in the shoot. When exposed to elevated concentrations of Cu(2+) the improved sulfate and water-soluble non-protein thiols need further studies for the evaluation of their direct relation with the synthesis of metal-chelating compounds (i.e., phytochelatins).
NASA Astrophysics Data System (ADS)
Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao
2018-04-01
Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.
Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice.
Deplancke, Bart; Finster, Kai; Graham, W Vallen; Collier, Chad T; Thurmond, Joel E; Gaskins, H Rex
2003-04-01
There is increasing evidence that hydrogen sulfide (H2S), produced by intestinal sulfate-reducing bacteria (SRB), may be involved in the etiopathogenesis of chronic diseases such as ulcerative colitis and colorectal cancer. The activity of SRB, and thus H2S production, is likely determined by the availability of sulfur-containing compounds in the intestine. However, little is known about the impact of dietary or inorganic sulfate on intestinal sulfate and SRB-derived H2S concentrations. In this study, the effects of short-term (7 day) and long-term (1 year) inorganic sulfate supplementation of the drinking water on gastrointestinal (GI) sulfate and H2S concentrations (and thus activity of resident SRBs), and the density of large intestinal sulfomucin-containing goblet cells, were examined in C3H/HeJBir mice. Additionally, a PCR-denaturing gradient gel electrophoresis (DGGE)-based molecular ecology technique was used to examine the impact of sulfate-amended drinking water on microbial community structure throughout the GI tract. Average H2S concentrations ranged from 0.1 mM (stomach) to 1 mM (cecum). A sulfate reduction assay demonstrated in situ production of H2S throughout the GI tract, confirming the presence of SRB. However, H2S generation and concentrations were greatest in the cecum and colon. Sulfate supplementation of drinking water did not significantly increase intestinal sulfate or H2S concentrations, suggesting that inorganic sulfate is not an important modulator of intestinal H2S concentrations, although it altered the bacterial profiles of the stomach and distal colon of 1-year-old mice. This change in colonic bacterial profiles may reflect a corresponding increase in the density of sulfomucin-containing goblet cells in sulfate-supplemented compared with control mice.
Crystallization of Chicken Egg White Lysozyme from Sulfate Salts
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth; Pusey, Marc
1998-01-01
It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot solubility determinations have suggested that in some cases the solubility increases with increasing salt concentrations.
A 10-year spatial and temporal trend of sulfate across the United States
NASA Astrophysics Data System (ADS)
Malm, William C.; Schichtel, Bret A.; Ames, Rodger B.; Gebhart, Kristi A.
2002-11-01
Legislative and regulatory mandates have resulted in reduced sulfur dioxide (SO2) emissions in both the eastern and western United States with anticipation that concurrent levels of ambient SO2, SO42-, and rainwater acidity would decrease. This paper examines spatial and temporal trends in ambient SO42- concentration from 1988 to 1999, SO2 emissions from 1990 to 1999, and the relationship between these two variables. The SO42- concentration data came from combining data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Clean Air Status and Trends Network (CASTNet). Over 70 sites spread across the continental United States are considered in this analysis. From a spatial perspective, the 90th percentile summer sulfate concentrations are highest along the Ohio River Valley and in central Tennessee where the emission density of SO2 is greatest. These concentrations are a factor of 2 greater than the Northeast, northern Michigan, and coastal areas of the Southeast and about a factor of 15 greater than the central western United States. In the East, the largest SO42- decreases in the 80th percentile concentrations occurred north of the Ohio River Valley, while most monitoring sites south of Kentucky and Virginia showed increasing and decreasing trends that were not statistically significant. Big Bend National Park, Texas, Cranberry, North Carolina, and Lassen Volcanic National Park, California, are the only areas that show a statistically significant increase in SO42- mass concentrations. The 1990-1999 annual 80th percentile SO42- time series were compared to the annual SO2 emissions over four broad United States regions. Each region had a unique time series pattern with the SO42- concentrations and SO2 emissions closely tracking each other over the 10-year period. Both the SO42- and SO2 emissions decreased in the Northeast (28%) and the West (15%), while there was little change in the Southeast and a 15% increase over Texas, New Mexico, and Colorado.
Belisle, A.A.; Swineford, D.M.
1988-01-01
A simple, specific procedure was developed for the analysis of organophosphorus and carbamate pesticides in sediment. The wet soil was mixed with anhydrous sodium sulfate to bind water and the residues were column extracted in acetone:methylene chloride (1:l,v/v). Coextracted water was removed by additional sodium sulfate packed below the sample mixture. The eluate was concentrated and analyzed directly by capillary gas chromatography using phosphorus and nitrogen specific detectors. Recoveries averaged 93 % for sediments extracted shortly after spiking, but decreased significantly as the samples aged.
Oxygen isotope constraints on the sulfur cycle over the past 10 million years.
Turchyn, Alexandra V; Schrag, Daniel P
2004-03-26
Oxygen isotopes in marine sulfate (delta18O(SO4)) measured in marine barite show variability over the past 10 million years, including a 5 per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.
Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.
1994-01-01
This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large measure by chemical weathering as a result of episodes of low rain rate and decreased rainfall pH during a storm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonne-Hansen, J.; Ahring, B.K.; Westermann, P.
1999-03-01
Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds whenever sulfate is present in sufficient concentrations. Half-saturation constants (K{sub m}), maximum uptake rates (V{sub max}), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. K{sub m} valuesmore » determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.« less
NASA Technical Reports Server (NTRS)
Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.;
2016-01-01
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (gamma) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx = NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate 42 on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.
NASA Technical Reports Server (NTRS)
Canfield, D. E.; DeVincenzi, D. L. (Principal Investigator)
1989-01-01
Compilations have been made of sulfate reduction rates and oxic respiration rates over the entire range of marine sedimentation rates, and sedimentary environments, including several euxinic sites. These data show, consistent with the findings of Jorgensen (1982, Nature, 296, 643-645), that sulfate reduction and oxic respiration oxidize equal amounts of organic carbon in nearshore sediments. As sedimentation rates decrease, oxic respiration, becomes progressively more important, and in deep-sea sediments 100-1000 times more organic carbon is oxidized by oxic respiration than by sulfate reduction. By contrast, nearly as much organic carbon is oxidized by sulfate reduction in euxinic sediments as is oxidized by the sum of sulfate reduction and oxic respiration in normal marine sediments of similar deposition rate. This observation appears at odds with the enhanced preservation of organic carbon observed in euxinic sediments. However, only small reductions in (depth-integrated) organic carbon decomposition rates (compared to normal marine) are required to give both high organic carbon concentrations and enhanced carbon preservation in euxinic sediments. Lower rates of organic carbon decomposition (if only by subtle amounts) are explained by the diminished ability of anaerobic bacteria to oxidize the full suite of sedimentary organic compounds.
Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele
2015-01-01
Recent studies identified PCB sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific congener PCB 11, and sulfate monoesters of two HO-PCBs reported to interact with sulfotransferases (PCB 39, no ortho chlorines, and PCB 53, 3 ortho chlorines). We tested these PCB sulfates and 4’-HO-PCB 3 as positive control for estrogenic, androgenic, anti-estrogenic and anti-androgenic activity in the E- and A-screen with human breast cancer MCF7 derived cells at 100 μM – 1 pM concentrations. Only 4’-HO-PCB 3 was highly cytotoxic at 100 μM. We observed structure-activity relationships: compounds with a sulfate group in the chlorine-containing ring of PCB 3 (2PCB 3 and 3PCB 3 sulfate) showed no interaction with the estrogen (ER) and androgen (AR) receptor. The 4’-HO-PCB 3 and its sulfate ester had the highest estrogenic effect, but at 100 fold different concentrations, i.e. 1 μM and 100 μM, respectively. Four of the PCB sulfates were estrogenic (2’PCB 3, 4’PCB 3, 4PCB 39, 4PCB 53 sulfates; at 100 μM). These sulfates and 3’PCB 3 sulfate also exhibited anti-estrogenic activity, but at nM and pM concentrations. The 4’PCB 3 sulfate (para-para’ substituted) had the strongest androgenic activity, followed by 3’PCB 3, 4PCB 53, 4PCB11, and 4PCB 39 sulfates and the 4’HO-PCB 3. In contrast, anti-androgenicity was only observed with the two compounds that have the sulfate group in ortho- or meta- position in the second ring (2’PCB 3 and 3’PCB 3 sulfate). No dose-response was observed in any screen, but, with exception of estrogenic activity (only seen at 100 μM), endocrine activity was often displayed at several concentrations and even at 1 pM concentration. These data suggest that sulfation of HO-PCBs is indeed reducing their cytotoxicity and estrogenicity, but may produce other endocrine disruptive activities at very low concentrations. PMID:26300354
Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele
2016-02-01
Recent studies identified polychlorinated biphenyl (PCB) sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific congener PCB 11, and sulfate monoesters of two HO-PCBs reported to interact with sulfotransferases (PCB 39, no ortho chlorines, and PCB 53, 3 ortho chlorines). We tested these PCB sulfates and 4'-HO-PCB 3 as positive control for estrogenic, androgenic, anti-estrogenic, and anti-androgenic activity in the E- and A-screen with human breast cancer MCF7-derived cells at 100 μM-1 pM concentrations. Only 4'-HO-PCB 3 was highly cytotoxic at 100 μM. We observed structure-activity relationships: compounds with a sulfate group in the chlorine-containing ring of PCB 3 (2PCB 3 and 3PCB 3 sulfate) showed no interaction with the estrogen (ER) and androgen (AR) receptor. The 4'-HO-PCB 3 and its sulfate ester had the highest estrogenic effect, but at 100-fold different concentrations, i.e., 1 and 100 μM, respectively. Four of the PCB sulfates were estrogenic (2'PCB 3, 4'PCB 3, 4'PCB 39, and 4'PCB 53 sulfates; at 100 μM). These sulfates and 3'PCB 3 sulfate also exhibited anti-estrogenic activity, but at nM and pM concentrations. The 4'PCB 3 sulfate (para-para' substituted) had the strongest androgenic activity, followed by 3'PCB 3, 4'PCB 53, 4PCB11, and 4PCB 39 sulfates and the 4'HO-PCB 3. In contrast, anti-androgenicity was only observed with the two compounds that have the sulfate group in ortho- or meta- position in the second ring (2'PCB 3 and 3'PCB 3 sulfate). No dose-response was observed in any screen, but, with exception of estrogenic activity (only seen at 100 μM), endocrine activity was often displayed at several concentrations and even at 1 pM concentration. These data suggest that sulfation of HO-PCBs is indeed reducing their cytotoxicity and estrogenicity, but may produce other endocrine disruptive activities at very low concentrations.
Determination of parotid sulfate secretion in sheep by means of ultrasonic flow probes.
Méot, F; Bonnet, J-M; Boivin, R; Cirio, A
2006-05-01
The bilateral output of sulfate in parotid saliva, the relationship with its plasma level and with parotid flow, and its variation according to feeding behavior were determined in ad libitum, normal-sulfate (0.28% DM)-fed sheep (n = 6) using a transit time ultrasonic flow meter system to measure salivary flow. Ultrasonic flow meter probes were bilaterally implanted, under general anesthesia, around parotid ducts previously fitted through their oral ends with nonobstructive sampling catheters. Salivary flows were continuously recorded during 24 h, and saliva and blood samples for sulfate determinations were obtained hourly. Jaw movements were monitored with the submandibular balloon technique. The sulfate concentration in parotid saliva (mean of the group = 4.9 +/- 3.7 microg/mL) showed high variability between sheep (individual means from 0.4 +/- 0.3 to 9.3 +/- 5.9 microg/mL) and averaged 12.3% of the more stable plasma level (41.2 +/- 8.1 microg/mL). Pronounced intraindividual variations were also evident (0.1 to 26.3 microg of sulphate/mL of parotid saliva), in strong association with the fluctuations of salivary output. In 4 sheep, a decreasing exponential relationship was observed between parotid sulfate concentration and salivary secretion rate (r2 = 0.36, P < 0.01). This fact and the absence of a relationship between sulfate levels in plasma and in saliva suggest a sulfate secretory process during the passage of primary saliva through the ductal tree of the gland. The greatest rates of bilateral salivary sulfate output were observed during feeding (14.1 +/- 14.0 microg/min) and rumination (12.7 +/- 11.0 microg/min). Nevertheless, 49% of the sulfate output in parotid saliva was present during rest, as a result of the length of the resting times. The contribution of parotid sulfate to the ruminal S pool was highly variable and averaged 13.2 mg/d, representing less than 1% of the S intake. In conclusion, the accurate, reliable, nonobstructive, and bilateral salivary flow monitoring, using a previously characterized ultrasonic flow meter technique, allowed a detailed determination of the secretory dynamics of sulfate in parotid saliva, without disturbing the animal's routine or altering the physiological regulation of salivary output. The results indicated that, in the absence of S deficiency, the recycling of sulfate via saliva seems not to be a major factor in sheep nutrition.
Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen
2015-02-02
The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.
Bacterially Induced Dolomite Formation in the Presence of Sulfate Ions under Aerobic Conditions
NASA Astrophysics Data System (ADS)
Sanchez-Roman, M.; McKenzie, J. A.; Vasconcelos, C.; Rivadeneyra, M.
2005-12-01
The origin of dolomite remains a long-standing enigma in sedimentary geology because, although thermodynamically favorable, precipitation of dolomite from modern seawater does not occur. Experiments conducted at elevated temperatures (200 oC) indicated that the presence of small concentrations of sulfate ions inhibits the transformation of calcite to dolomite [1]. Indeed, sulfate ions appeared to inhibit dolomite formation above 2 mM concentration (versus 28 mM in modern seawater). Recently, culture experiments have demonstrated that sulfate-reducing bacteria mediate the precipitation of dolomite at Earth surface conditions in the presence of sustained sulfate ion concentrations [2,3]. Additionally, in a number of modern hypersaline environments, dolomite forms from solutions with high sulfate ion concentrations (2 to 70 times seawater). These observations suggest that the experimentally observed sulfate-ion inhibition [1] may not apply to all ancient dolomite formation. Here, we report aerobic culture experiments conducted at low temperatures (25 and 35 oC) and variable sulfate ion concentrations (0, 0.5, 1 and 2 x seawater values) using moderately halophilic bacteria, Halomonas meridiana. After an incubation period of 15 days, experiments at 35 oC with variable sulfate ion concentrations (0, 0.5 x and seawater values) contained crystals of Ca-dolomite and stochiometric dolomite. The experiment at 35 oC with 2 x seawater sulfate ion concentration produced dolomite crystals after 20 days of incubation. In a parallel set of experiments at 25 oC, precipitation of dolomite was observed after 25 days of incubation in cultures with variable sulfate ion concentrations (0, 0.5 x and seawater values). In the culture with 2 x seawater sulfate ion concentration, dolomite crystals were observed after 30 days. Our study demonstrates that halophilic bacteria (or heterotrophic microorganisms), which do not require sulfate ions for metabolism, can mediate dolomite precipitation in the presence of sulfate ions. Apparently, microbial dolomite precipitation is not intrinsically linked to any particular group of organisms or specific metabolic processes or even specific environment. Furthermore, because heterotrophic microorganisms appear to be able to mediate microbial dolomite precipitation with or without sulfate ions in the media, our results indicate that the kinetic inhibition effect of sulfate ions can be overcome under specific sedimentary conditions. The present study adds a new insight to the dolomite problem, which could lead to a better clarification of the mechanism(s) involved in the massive dolomite formation observed in the geological record. References: [1] Baker, P.A., and Kastner, M., (1981), Science, 213, 214-216. [2] Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D. and Tien, A.J., (1995), Nature 377, 220-222.. [3] Warthmann R., van Lith Y., Vasconcelos C., McKenzie J.A. and Karpoff A.M., (2000), Geology 28, 1091-1094.
Sulfur, a Key Water Quality Issue in the Everglades
NASA Astrophysics Data System (ADS)
Orem, W. H.; Lerch, H. E.; Bates, A. L.; Corum, M.; Beck, M.; Kleckner, S.
2002-05-01
Sulfur is an important water quality issue in the Everglades because of its role in microbial sulfate reduction and the methylation of mercury. Methylmercury (MeHg), a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Sulfur appears to play a key role in regulating both the magnitude and distribution of MeHg in the Everglades. Freshwater wetlands typically have low sulfur concentrations, but marshes in portions of the northern Everglades have average surface water sulfate concentrations of 60 mg/l, compared to 1 mg/l or less at background sites. Marsh areas with excess sulfate are concentrated near sites of canal discharge and along canal levees. The canal water that is discharged into the marshes appears to be the major source of excess sulfate entering the Everglades. This canal water drains the Everglades Agricultural Area (EAA) and has sulfate concentrations averaging over 70 mg/l and periodically approaching 200 mg/l. We used sulfate concentration data and the sulfur (d34S) isotopic composition of sulfate in marsh surface water, canal water, rainwater, and groundwater to trace the source of the excess sulfate entering the Everglades. Results show that canal water from the EAA is the major source of excess sulfate entering the Everglades. Furthermore, canal water with the highest sulfate concentrations had d34S values of +16 per mil, similar to the d34S signature of agricultural sulfur used as a soil amendment in the EAA. Rainwater has too little sulfate to account for the high sulfate concentrations observed in the canals and in large portions of the Everglades. Groundwater beneath the present day Everglades generally has either too low a sulfate concentration or a d34S signature that is inconsistent with that of surface water in the Everglades. The excess sulfate entering the Everglades from canal discharge stimulates sulfate reduction and sulfide buildup in the sediments. This lowers redox potentials in sulfur-contaminated areas to values more reducing than natural, which may affect macrophyte growth in the Everglades by limiting oxygen penetration to roots. Excess sulfur has two differential effects with respect to MeHg production: stimulation through increased sulfate reduction, and inhibition through buildup of excess sulfide in sediment porewater. The balance between these two effects influences the magnitude and distribution of MeHg production in the Everglades. Results from this study and research of others suggest that the MeHg problem in the Everglades results largely from two factors: (1) increased fallout of mercury on the ecoxyxtem, and (2) sulfur contamination of the ecosystem from agricultural runoff.
Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact
NASA Astrophysics Data System (ADS)
Wang, T.; Nie, W.; Gao, J.; Xue, L. K.; Gao, X. M.; Wang, X. F.; Qiu, J.; Poon, C. N.; Meinardi, S.; Blake, D.; Ding, A. J.; Chai, F. H.; Zhang, Q. Z.; Wang, W. X.
2010-05-01
This paper presents the first results of the atmospheric measurements of trace gases and aerosols at three surface sites in and around Beijing before and during the 2008 Olympics. We focus on secondary pollutants including ozone, fine sulfate and nitrate, and the contribution of regional sources in summer 2008. The results reveal different responses of secondary pollutants to the control measures from primary pollutants. Ambient concentrations of vehicle-related nitrogen oxides (NOx) and volatile organic compounds (VOCs) at an urban site dropped by 25% and 20-45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants) improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions). A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed 34%-88% to the peak ozone concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv), indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2), total sulfur (SO2+PM2.5 sulfate), carbon monoxide (CO), reactive aromatics (toluene and xylenes) sharply decreased (by 8-64%) in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy), and longer lived alkanes and benzene. We suggest that these results indicate the success of the government's efforts in reducing emissions of SO2, CO, and VOCs in Beijing. However, further control of regional emissions is needed for significant reductions of ozone and fine particulate pollution in Beijing.
Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.
Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao
2007-04-10
In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.
Oulehle, Filip; Hruska, Jakub
2009-12-01
The concentration of chemical oxygen demand (COD), a common proxy for dissolved organic matter (DOM), was measured at seven drinking-water reservoirs and four streams between 1969 and 2006. Nine of them showed significant DOM increases (median COD change +0.08 mg L(-1) yr(-1)). Several potential drivers of these trends were considered, including air temperature, rainfall, land-use and water sulfate concentration. Temperature and precipitation influenced inter-annual variations, but not long-term trends. The long-term DOM increase was significantly associated with declines of acidic deposition, especially sulfur deposition. Surface water sulfate concentrations decreased from a median of 62 mg L(-1)-27 mg L(-1) since 1980. The magnitude of DOM increase was positively correlated with average DOM concentration (R(2) = 0.79, p < 0.001). Simultaneously, DOM concentration was positively correlated with the proportion of Histosols within the catchments (R(2) = 0.79, p < 0.001). A focus on the direct removal of DOM by water treatment procedures rather than catchment remediation is needed.
Lanio, M E; Alvarez, C; Pazos, F; Martinez, D; Martínez, Y; Casallanovo, F; Abuin, E; Schreier, S; Lissi, E
2003-01-01
The effect of sodium dodecyl sulfate (SDS) upon the conformation and hemolytic activity of St I and St II strongly depends on its concentration. At relatively low surfactant concentrations (ca. 0.5-5mM range) the surfactant leads to the formation of aggregates, as suggested by the turbidity observed even at relatively low (micromolar range) protein concentrations. In this surfactant range, the proteins show an increase in intrinsic fluorescence intensity and reduced quenching by acrylamide, with an almost total loss of its hemolytic activity. At higher surfactant concentrations the protein adducts disaggregates. This produces a decrease in fluorescence intensity, increase in quenching efficiency by acrylamide, loss of the native tertiary conformation (as reported by the near UV-CD spectra), and increase in alpha-helix content (as evidenced by the far UV-CD spectra). However, and in spite of these substantial changes, the toxins partially recover their hemolytic activity. The reasons for this recovering of the activity at high surfactant concentrations is discussed.
Tracking photosynthetic sulfide oxidation in a meromictic lake using sulfate δ34S and δ18O
NASA Astrophysics Data System (ADS)
Gilhooly, W. P.; Reinhard, C.; Lyons, T. W.; Glass, J. B.
2012-12-01
Phototrophic sulfur bacteria oxidize sulfide and fix carbon dioxide in the presence of sunlight without producing oxygen. Environmental conditions in the Paleo- and Mesoproterozoic, when atmospheric oxygen concentrations were at low levels and portions of the oceans were anoxic and sulfidic (euxinic), were conducive to widespread carbon fixation by anoxygenic photosynthesis. This pathway may have helped sustain euxinic conditions in the Proterozoic water column. With limited organic biomarker and geochemical evidence for widespread production of anoxygenic phototrophs, however, additional proxies are needed to fingerprint paleoecological and biogeochemical signals associated with photic zone euxinia. Paired δ34S and δ18O from ancient sulfates (gypsum, barite, or CAS) may offer an added constraint on the history and ecological dominance of photosynthetic S-oxidation. Sulfate-oxygen can fractionate during sulfate reduction, but the extent of isotopic enrichment is controlled either by kinetic isotope effects imparted during intracellular enzymatic steps or equilibrium oxygen exchange with ambient water. An improved understanding of these processes can be gained from modern natural environments. Mahoney Lake is a density-stratified lake located within the White Lake Basin of British Columbia. The euxinic water column supports a dense plate of purple sulfur bacteria (Amoebobacter purpureus) that thrives where free sulfide intercepts the photic zone at ~7 m water depth. We analyzed the isotopic composition of sulfate (δ34SSO4 and δ18OSO4), sulfide (δ34SH2S), and water (δ18OH2O) to track the potentially coupled processes of dissimilatory sulfate reduction and phototrophic sulfide oxidation within this meromictic lake. Large isotopic offsets observed between sulfate and sulfide within the monimolimnion (δ34SSO4-H2S = 51‰) and within pore waters along the oxic margin (δ34SSO4-H2S >50‰) are consistent with sulfate reduction in both the sediments and the anoxic water column. Given the high sulfide concentrations of the lake ([H2S] = 30 mM), sulfur disproportionation is likely inoperable, and so the large instantaneous fractionations are best explained by single-step sulfate reduction. The offset between sulfate and sulfide decreases at the chemocline (δ34SSO4-H2S = 37‰), a trend possibly explained by sulfide oxidation or decreasing sulfate reduction rates. Sulfate exhibits a curvilinear response in δ18OSO4/δ34SSO4 that approaches δ18OSO4 values (~24-33‰) in equilibrium with ambient water (δ18OH2O = -2.2‰). Although an inverse relationship between δ18OSO4/δ18OH2O is inconsistent with chemical sulfide oxidation (typically a positive relationship), fine-scale variations in δ34SSO4 and δ18OSO4 at the chemocline imply sulfate reduction coupled with near quantitative reoxidation by A. purpureus. Although observed within the microbial plate, this photosynthetic S-bacteria biosignature is restricted to the oxic/anoxic transition zone and is apparently swamped by the more prevalent process of sulfate reduction operative throughout the anoxic water column and sediment pore waters.
Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area.
Tao, Ling; Fairley, David; Kleeman, Michael J; Harley, Robert A
2013-09-17
Ocean-going vessels burning high-sulfur heavy fuel oil are an important source of air pollutants, such as sulfur dioxide and particulate matter. Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. To assess impacts of the fuel changes on air quality at the Port of Oakland and in the surrounding San Francisco Bay area, we analyzed speciated fine particle concentration data from four urban sites and two more remote sites. Measured changes in concentrations of vanadium, a specific marker for heavy fuel oil combustion, are related to overall changes in aerosol emissions from ships. We found a substantial reduction in vanadium concentrations after the fuel change and a 28-72% decrease in SO2 concentrations, with the SO2 decrease varying depending on proximity to shipping lanes. We estimate that the changes in ship fuel reduced ambient PM2.5 mass concentrations at urban sites in the Bay area by about 3.1 ± 0.6% or 0.28 ± 0.05 μg/m(3). The largest contributing factor to lower PM mass concentrations was reductions in particulate sulfate. Absolute sulfate reductions were fairly consistent across sites, whereas trace metal reductions were largest at a monitoring site in West Oakland near the port.
Li, Fenfang; Li, Qiao; Wu, Shuanggen; Tan, Zhijian
2017-02-15
Salting-out extraction (SOE) based on lower molecular organic solvent and inorganic salt was considered as a good substitute for conventional polymers aqueous two-phase extraction (ATPE) used for the extraction of some bioactive compounds from natural plants resources. In this study, the ethanol/ammonium sulfate was screened as the optimal SOE system for the extraction and preliminary purification of allicin from garlic. Response surface methodology (RSM) was developed to optimize the major conditions. The maximum extraction efficiency of 94.17% was obtained at the optimized conditions for routine use: 23% (w/w) ethanol concentration and 24% (w/w) salt concentration, 31g/L loaded sample at 25°C with pH being not adjusted. The extraction efficiency had no obvious decrease after amplification of the extraction. This ethanol/ammonium sulfate SOE is much simpler, cheaper, and effective, which has the potentiality of scale-up production for the extraction and purification of other compounds from plant resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gilhooly, William P.; Reinhard, Christopher T.; Lyons, Timothy W.
2016-09-01
Mahoney Lake is a permanently anoxic and sulfidic (euxinic) lake that has a dense plate of purple sulfur bacteria positioned at mid-water depth (∼7 m) where free sulfide intercepts the photic zone. We analyzed the isotopic composition of sulfate (δ34SSO4 and δ18OSO4), sulfide (δ34SH2S), and the water (δ18OH2O) to track the potentially coupled processes of dissimilatory sulfate reduction and phototrophic sulfide oxidation within an aquatic environment with extremely high sulfide concentrations (>30 mM). Large isotopic offsets observed between sulfate and sulfide within the monimolimnion (δ34SSO4-H2S = 51‰) and within pore waters along the oxic margin (δ34SSO4-H2S > 50‰) are consistent with sulfate reduction in both the sediments and the anoxic water column. Given the high sulfide concentrations of the lake, sulfur disproportionation is likely inoperable or limited to a very narrow zone in the chemocline, and therefore the large instantaneous fractionations are best explained by the microbial process of sulfate reduction. Pyrite extracted from the sediments reflects the isotopic composition of water column sulfide, suggesting that pyrite buried in the euxinic depocenter of the lake formed in the water column. The offset between sulfate and dissolved sulfide decreases at the chemocline (δ34SSO4-H2S = 37‰), a trend possibly explained by elevated sulfate reduction rates and inconsistent with appreciable disproportionation within this interval. Water column sulfate exhibits a linear response in δ18OSO4-δ34SSO4 and the slope of this relationship suggests relatively high sulfate reduction rates that appear to respond to seasonal changes in the productivity of purple sulfur bacteria. Although photosynthetic activity within the microbial plate influences the δ18OSO4-δ34SSO4 relationship, the biosignature for photosynthetic sulfur bacteria is restricted to the oxic/anoxic transition zone and is apparently minor relative to the more prevalent process of sulfate reduction operative throughout the light-deprived deeper anoxic water column and sediment pore waters.
Heim, Kelly E; Morrell, Jesse S; Ronan, Anne M; Tagliaferro, Anthony R
2002-06-01
Isoflurane and ketamine-xylazine (KX) combinations are widely used veterinary anesthetics, KX being the particularly common agent for immobilizing swine. Results of previous studies indicate that KX and xylazine suppress insulin release. The steroid hormones, dehydroepiandrosterone (DHEA) and its sulfated form, dehydroepiandrosterone-sulfate (DHEAS), have variable effects on insulin sensitivity in animals. We evaluated the effect of DHEAS on plasma glucose and insulin concentrations in female Yucatan swine under KX and isoflurane anesthesia. A 2 x 2 factorial design was used. Twenty-four 17-week-old gilts were randomly assigned to receive vehicle (placebo) or DHEAS as part of an ongoing study. The KX was given intramuscularly to all animals prior to blood sample collection at weeks two and four. At week three, all animals received isoflurane by inhalation. During KX anesthesia, mean insulin concentration in DHEAS-treated and control groups approximated half the postisoflurane values (P < 0.001). While under isoflurane, the DHEAS group had significantly higher mean plasma insulin concentration and mean insulin-to-glucose ratio, compared with values for controls (P < 0.05). These findings are consistent with changes in insulin values following DHEAS treatment observed previously in nonanesthetized swine. The effect of DHEAS treatment was absent in animals under KX anesthesia. These results suggest that KX significantly decreases plasma insulin concentration and blunts DHEAS-associated insulin resistance in female minipigs.
Clearcutting affects stream chemistry in the White Mountains of New Hampshire
C. Wayne Martin; Robert S. Pierce; Gene E. Likens; F. Herbert Bormann; F. Herbert Bormann
1986-01-01
Commercial clearcutting of northern hardwood forests changed the chemistry of the streams that drained from them. By the second year after cutting, specific conductance doubled, nitrate increased tenfold, calcium tripled, and sodium, magnesium, and potassium doubled. Chloride and ammonium did not change; sulfate decreased. Concentrations of most ions returned to...
NASA Astrophysics Data System (ADS)
Wang, Zhe; Pan, Xiaole; Uno, Itsushi; Li, Jie; Wang, Zifa; Chen, Xueshun; Fu, Pingqing; Yang, Ting; Kobayashi, Hiroshi; Shimizu, Atsushi; Sugimoto, Nobuo; Yamamoto, Shigekazu
2017-06-01
The impact of heterogeneous reactions on the chemical components and mixing state of dust particles are investigated by observations and an air quality model over northern China between March 27, 2015 and April 2, 2015. Synergetic observations were conducted using a polarization optical particle counter (POPC), a depolarized two-wavelength Lidar and filter samples in Beijing. During this period, dust plume passed through Beijing on March 28, and flew back on March 29 because of synoptic weather changes. Mineral dust mixed with anthropogenic pollutants was simulated using the Nested Air Quality Prediction Modeling System (NAQPMS) to examine the role of heterogeneous processes on the dust. A comparison of observations shows that the NAQPMS successfully reproduces the time series of the vertical profile, particulate matter concentration, and chemical components of fine mode (diameter ≤ 2.5 μm) and coarse mode (2.5 μm < diameter ≤ 10 μm) particles. After considering the heterogeneous reactions, the simulated nitrate, ammonium, and sulfate are in better agreement with the observed values during this period. The modeling results with observations show that heterogeneous reactions are the major mechanisms producing nitrate reaching 19 μg/m3, and sulfate reaching 7 μg/m3, on coarse mode dust particles, which were almost 100% of the coarse mode nitrate and sulfate. The heterogeneous reactions are also important for fine mode secondary aerosols, for producing 17% of nitrate and 11% of sulfate on fine mode dust particles, with maximum mass concentrations of 6 μg/m3 and 4 μg/m3. In contrast, due to uptake of acid gases (e.g. HNO3 and SO2) by dust particles, the fine mode anthropogenic ammonium nitrate and ammonium sulfate decreased. As a result, the total fine mode nitrate decreased with a maximum of 14 μg/m3, while the total fine mode sulfate increased with a maximum of 2 μg/m3. Because of heterogeneous reactions, 15% of fine mode secondary inorganic aerosols and the entire coarse mode nitrate and sulfate were internally mixed with dust particles. The significant alterations of the chemical composition and mixing state of particles due to heterogeneous reactions are important for the direct and indirect climate effects of dust and anthropogenic aerosols.
Sonne-Hansen; Westermann; Ahring
1999-03-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.
Sonne-Hansen, Jacob; Westermann, Peter; Ahring, Birgitte K.
1999-01-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations. PMID:10049897
Global source attribution of sulfate concentration and direct and indirect radiative forcing
NASA Astrophysics Data System (ADS)
Yang, Yang; Wang, Hailong; Smith, Steven J.; Easter, Richard; Ma, Po-Lun; Qian, Yun; Yu, Hongbin; Li, Can; Rasch, Philip J.
2017-07-01
The global source-receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010-2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with -0.31 W m-2 contributed by anthropogenic sulfate and -0.11 W m-2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17-84 % to the total DRF. East Asia has the largest contribution of 20-30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of -0.44 W m-2. DMS has the largest contribution, explaining -0.23 W m-2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.
NASA Astrophysics Data System (ADS)
Tonietto, G. B.; Godoy, J. M.; Almeida, A. C.; Mendes, D.; Soluri, D.; Leite, R. S.; Chalom, M. Y.
2015-12-01
Formation water is the naturally-occurring water which is contained within the geological formation itself. The quantity and quality of the formation water can both be problematic. Over time, the water volume should decrease as the gas volumes increase. Formation water has been found to contain high levels of Cl, As, Fe, Ba, Mn, PAHs and may even contain naturally occurring radioactive materials. Chlorides in some cases have been found to be in excess of four-five times the level of concentrations found in the ocean. Within the management of well operation, there is sulfate between the analytes of greatest importance due to the potential for hydrogen sulphide formation and consequent corrosion of pipelines. As the concentration of sulfate in these waters can be less than n times that of chloride, a quantitative determination, using the technique of ion chromatography, constitutes an analytical challenge. This work aimed to develop and validate a method for the determination of sulphate ions in hyper-saline waters coming from the oil wells of the pre-salt, using 2D IC. In 2D IC the first column can be understood as a separating column, in which the species with retention times outside a preset range are discarded, while those belonging to this range are retained in a pre-concentrator column to further injecting a second column, the second dimension in which occurs the separation and quantification of the analytes of interest. As the chloride ions have a retention time lower than that of sulfate, a method was developed a for determining sulfate in very low range (mg L-1) by 2D IC, applicable to hypersaline waters, wherein the first dimension is used to the elimination of the matrix, ie, chloride ions, and the second dimension utilized in determining sulfate. For sulphate in a concentration range from 1.00 mg L-1 was obtained an accuracy of 1.0%. The accuracy of the method was tested by the standard addition method different samples of formation water in the pre-salt region, having been a relative error less than 1.0% at a concentration of 5.0 mg L-1.This work allowed the expected achievement of sulfate results for hyper-saline samples such as those found in the pre-salt exploration. Studies are being developed in order to validate the determination of bromide in the pre-salt water, using the 2D liquid chromatography.
Deposition and cycling of sulfur controls mercury accumulation in Isle Royale fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul E. Drevnick; Donald E. Canfield; Patrick R. Gorski
2007-11-01
Mercury contamination of fish is a global problem. Consumption of contaminated fish is the primary route of methylmercury exposure in humans and is detrimental to health. Newly mandated reductions in anthropogenic mercury emissions aim to reduce atmospheric mercury deposition and thus mercury concentrations in fish. However, factors other than mercury deposition are important for mercury bioaccumulation in fish. In the lakes of Isle Royale, U.S.A., reduced rates of sulfate deposition since the Clean Air Act of 1970 have caused mercury concentrations in fish to decline to levels that are safe for human consumption, even without a discernible decrease in mercurymore » deposition. Therefore, reductions in anthropogenic sulfur emissions may provide a synergistic solution to the mercury problem in sulfate-limited freshwaters. 71 refs., 3 figs., 1 tab.« less
Health effects of acid aerosols on North American children: air pollution exposures.
Spengler, J D; Koutrakis, P; Dockery, D W; Raizenne, M; Speizer, F E
1996-05-01
Air pollution measurements were conducted over a 1-year period in 24 North American communities participating in a respiratory health study. Ozone, particle strong acidity, sulfate, and mass (PM10 and PM2.1) were measured in all communities. In 20 of the communities, sulfur dioxide, ammonia, nitric acid, nitrous acid, and particulate nitrate were measured. The sampler was located centrally in the community whenever possible and samples were collected every other day. Concentrations of particle strong acidity, mass, sulfate, and ozone were highly correlated both in the region of the country defined as a high-sulfur source area and in the downwind transport regions. These regions of the eastern United States and southern Canada experienced the greatest particle strong acidity, sulfate, and particle mass concentrations during the spring and summer months (May-September). The particle strong acidity concentrations were highest in regions close to the high sulfur emission areas of the United States; that is, in the area immediately to the west of the Appalachian Plateau and west of the Allegheny Mountains (western Pennsylvania, eastern Ohio, and West Virginia) up through southern Ontario. The frequency of particle strong acidity events decreased with transport distance from the region of highest sulfur emissions. Low particle strong acidity and sulfates were found at the western and midwestern sites of both the United States and Canada. Substantial concentrations of nitric acid were found in two of the California sites as well as many sites in the northeastern portion of the United States. Sites selected for the epidemiologic study provide a range of annual mean particle strong acidity exposures from below the limit of detection to more than 50 nmol/m3.
Health effects of acid aerosols on North American children: air pollution exposures.
Spengler, J D; Koutrakis, P; Dockery, D W; Raizenne, M; Speizer, F E
1996-01-01
Air pollution measurements were conducted over a 1-year period in 24 North American communities participating in a respiratory health study. Ozone, particle strong acidity, sulfate, and mass (PM10 and PM2.1) were measured in all communities. In 20 of the communities, sulfur dioxide, ammonia, nitric acid, nitrous acid, and particulate nitrate were measured. The sampler was located centrally in the community whenever possible and samples were collected every other day. Concentrations of particle strong acidity, mass, sulfate, and ozone were highly correlated both in the region of the country defined as a high-sulfur source area and in the downwind transport regions. These regions of the eastern United States and southern Canada experienced the greatest particle strong acidity, sulfate, and particle mass concentrations during the spring and summer months (May-September). The particle strong acidity concentrations were highest in regions close to the high sulfur emission areas of the United States; that is, in the area immediately to the west of the Appalachian Plateau and west of the Allegheny Mountains (western Pennsylvania, eastern Ohio, and West Virginia) up through southern Ontario. The frequency of particle strong acidity events decreased with transport distance from the region of highest sulfur emissions. Low particle strong acidity and sulfates were found at the western and midwestern sites of both the United States and Canada. Substantial concentrations of nitric acid were found in two of the California sites as well as many sites in the northeastern portion of the United States. Sites selected for the epidemiologic study provide a range of annual mean particle strong acidity exposures from below the limit of detection to more than 50 nmol/m3. Images p492-a Figure 1. Figure 2. Figure 3. Figure 4. Figure 4. Figure 4. PMID:8743436
NASA Astrophysics Data System (ADS)
Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.
2018-02-01
In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.
Kanlaya, Rattiyaporn; Thongboonkerd, Visith
2016-08-01
Conventional method to purify/concentrate dengue virus (DENV) is time-consuming with low virus recovery yield. Herein, we applied cellufine sulfate column chromatography to purify/concentrate DENV based on the mimicry between heparan sulfate and DENV envelope protein. Comparative analysis demonstrated that this new method offered higher purity (as determined by less contamination of bovine serum albumin) and recovery yield (as determined by greater infectivity). Moreover, overall duration used for cellufine sulfate column chromatography to purify/concentrate DENV was approximately 1/20 of that of conventional method. Therefore, cellufine sulfate column chromatography serves as a simple, rapid, and effective alternative method for DENV purification/concentration. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fike, David A.; Finke, Niko; Zha, Jessica; Blake, Garrett; Hoehler, Tori M.; Orphan, Victoria J.
2009-10-01
Substantial isotopic fractionations are associated with many microbial sulfur metabolisms and measurements of the bulk δ 34S isotopic composition of sulfur species (predominantly sulfates and/or sulfides) have been a key component in developing our understanding of both modern and ancient biogeochemical cycling. However, the interpretations of bulk δ 34S measurements are often non-unique, making reconstructions of paleoenvironmental conditions or microbial ecology challenging. In particular, the link between the μm-scale microbial activity that generates isotopic signatures and their eventual preservation as a bulk rock value in the geologic record has remained elusive, in large part because of the difficulty of extracting sufficient material at small scales. Here we investigate the potential for small-scale (˜100 μm-1 cm) δ 34S variability to provide additional constraints for environmental and/or ecological reconstructions. We have investigated the impact of sulfate concentrations (0.2, 1, and 80 mM SO 4) on the δ 34S composition of hydrogen sulfide produced over the diurnal (day/night) cycle in cyanobacterial mats from Guerrero Negro, Baja California Sur, Mexico. Sulfide was captured as silver sulfide on the surface of a 2.5 cm metallic silver disk partially submerged beneath the mat surface. Subsequent analyses were conducted on a Cameca 7f-GEO secondary ion mass spectrometer (SIMS) to record spatial δ 34S variability within the mats under different environmental conditions. Isotope measurements were made in a 2-dimensional grid for each incubation, documenting both lateral and vertical isotopic variation within the mats. Typical grids consisted of ˜400-800 individual measurements covering a lateral distance of ˜1 mm and a vertical depth of ˜5-15 mm. There is a large isotopic enrichment (˜10-20‰) in the uppermost mm of sulfide in those mats where [SO 4] was non-limiting (field and lab incubations at 80 mM). This is attributed to rapid recycling of sulfur (elevated sulfate reduction rates and extensive sulfide oxidation) at and above the chemocline. This isotopic gradient is observed in both day and night enrichments and suggests that, despite the close physical association between cyanobacteria and select sulfate-reducing bacteria, photosynthetic forcing has no substantive impact on δ 34S in these cyanobacterial mats. Perhaps equally surprising, large, spatially-coherent δ 34S oscillations (˜20-30‰ over 1 mm) occurred at depths up to ˜1.5 cm below the mat surface. These gradients must arise in situ from differential microbial metabolic activity and fractionation during sulfide production at depth. Sulfate concentrations were the dominant control on the spatial variability of sulfide δ 34S. Decreased sulfate concentrations diminished both vertical and lateral δ 34S variability, suggesting that small-scale variations of δ 34S can be diagnostic for reconstructing past sulfate concentrations, even when original sulfate δ 34S is unknown.
Reconstruction of secular variation in seawater sulfate concentrations
NASA Astrophysics Data System (ADS)
Algeo, T. J.; Luo, G. M.; Song, H. Y.; Lyons, T. W.; Canfield, D. E.
2015-04-01
Long-term secular variation in seawater sulfate concentrations ([SO42-]SW) is of interest owing to its relationship to the oxygenation history of Earth's surface environment. In this study, we develop two complementary approaches for quantification of sulfate concentrations in ancient seawater and test their application to late Neoproterozoic (635 Ma) to Recent marine units. The "rate method" is based on two measurable parameters of paleomarine systems: (1) the S-isotope fractionation associated with microbial sulfate reduction (MSR), as proxied by Δ34SCAS-PY, and (2) the maximum rate of change in seawater sulfate, as proxied by &partial; δ 34SCAS/∂ t(max). The "MSR-trend method" is based on the empirical relationship of Δ34SCAS-PY to aqueous sulfate concentrations in 81 modern depositional systems. For a given paleomarine system, the rate method yields an estimate of maximum possible [SO42-]SW (although results are dependent on assumptions regarding the pyrite burial flux, FPY), and the MSR-trend method yields an estimate of mean [SO42-]SW. An analysis of seawater sulfate concentrations since 635 Ma suggests that [SO42-]SW was low during the late Neoproterozoic (<5 mM), rose sharply across the Ediacaran-Cambrian boundary (~5-10 mM), and rose again during the Permian (~10-30 mM) to levels that have varied only slightly since 250 Ma. However, Phanerozoic seawater sulfate concentrations may have been drawn down to much lower levels (~1-4 mM) during short (<~2 Myr) intervals of the Cambrian, Early Triassic, Early Jurassic, and Cretaceous as a consequence of widespread ocean anoxia, intense MSR, and pyrite burial. The procedures developed in this study offer potential for future high-resolution quantitative analyses of paleo-seawater sulfate concentrations.
NASA Astrophysics Data System (ADS)
Hu, Yu; Feng, Dong; Liang, Qianyong; Xia, Zhen; Chen, Linying; Chen, Duofu
2015-12-01
Cold hydrocarbon seepage is a frequently observed phenomenon along continental margins worldwide. However, little is known about the impact of seeping fluids on the geochemical cycle of redox-sensitive elements. Pore waters from four gravity cores (D-8, D-5, D-7, and D-F) collected from cold-seep sites of the northern South China Sea were analyzed for SO42-, Mg2+, Ca2+, Sr2+, dissolved inorganic carbon (DIC), δ13CDIC, dissolved Fe, Mn, and trace elements (e.g. Mo, U). The sulfate concentration-depth profiles, δ13CDIC values and (ΔDIC+ΔCa2++ΔMg2+)/ΔSO42- ratios suggest that organoclastic sulfate reduction (OSR) is the dominant process in D-8 core. Besides OSR, anaerobic oxidation of methane (AOM) is partially responsible for depletion of sulfate at D-5 and D-7 cores. The sulfate consumption at D-F core is predominantly caused by AOM. The depth of sulfate-methane interface (SMI) and methane diffusive flux of D-F core are calculated to be ~7 m and 0.035 mol m-2 yr-1, respectively. The relatively shallow SMI and high methane flux at D-F core suggest the activity of gas seepage in this region. The concentrations of dissolved uranium (U) were inferred to decrease significantly within the iron reduction zone. It seems that AOM has limited influence on the U geochemical cycling. In contrast, a good correlation between the consumption of sulfate and the removal of molybdenum (Mo) suggests that AOM has a significantly influence on the geochemical cycle of Mo at cold seeps. Accordingly, cold seep environments may serve as an important potential sink in the marine geochemical cycle of Mo.
Risch, Martin R.; Bunch, Aubrey R.; Vecchia, Aldo V.; Martin, Jeffrey D.; Baker, Nancy T.
2014-01-01
Statistically significant trends were identified that included 167 downward trends and 83 upward trends. The Kankakee River Basin had the most significant upward trends while the most significant downward trends were in the Whitewater River Basin, the Lake Michigan Basin, and the Patoka River Basin. For most constituents, a majority of sites had significant downward trends. Two streams in the Lake Michigan Basin have shown substantial decreases in most constituents. The West Fork White River near Indianapolis, Indiana, showed increases in nitrate and phosphorus and the Kankakee River Basin showed increases in copper, zinc, chloride, sulfate, and hardness. Upward trends in nutrients were identified at a few sites, but most nutrient trends were downward. Upward trends in metals corresponded with relatively small concentration increases while downward trends involved considerably larger concentration changes. Downward trends in chloride, sulfate, and suspended solids were observed statewide, but upward trends in hardness were observed in the northern half of Indiana.
Global source attribution of sulfate concentration and direct and indirect radiative forcing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Wang, Hailong; Smith, Steven J.
The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO 2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggestingmore » that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is –0.42 W m –2, with –0.31 W m –2 contributed by anthropogenic sulfate and –0.11 W m –2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of –0.44 W m –2. DMS has the largest contribution, explaining –0.23 W m –2 of the global sulfate incremental IRF. Here, incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.« less
Global source attribution of sulfate concentration and direct and indirect radiative forcing
Yang, Yang; Wang, Hailong; Smith, Steven J.; ...
2017-07-25
The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO 2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggestingmore » that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is –0.42 W m –2, with –0.31 W m –2 contributed by anthropogenic sulfate and –0.11 W m –2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of –0.44 W m –2. DMS has the largest contribution, explaining –0.23 W m –2 of the global sulfate incremental IRF. Here, incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.« less
DOC and DON Dynamics along the Bagmati Drainage Network in Kathmandu Valley
NASA Astrophysics Data System (ADS)
Bhatt, M. P.; McDowell, W. H.
2005-05-01
We studied organic matter dynamics and inorganic chemistry of the Bagmati River in Kathmandu valley, Nepal, to understand the influence of human and geochemical processes on chemical loads along the drainage system. Population density appears to be the most fundamental control on the chemistry of surface waters within the Bagmati drainage system. DOC concentration increases 10-fold with distance downstream (from 2.38 to 23.95 mg/L) and shows a strong relationship with human population density. The composition of river water (nutrients, Cl) suggests that sewage effluent to the river has a major effect on water quality. Concentrations were highest during summer, and lowest during the winter monsoon season. In contrast to DOC, DON concentration shows surprisingly little variation, and tends to decrease in concentration with distance downstream. Ammonium contributes almost all nitrogen in the total dissolved nitrogen fraction and the concentration of nitrate is negligible, probably due to rapid denitrification within the stream channel under relatively low-oxygen conditions. Decreases in sulfate along the stream channel may also be due to the reduction of sulfate to sulfide due to the heavy organic matter loading. Water quality is unacceptable for any use and the whole ecosystem is severely affected within the urban areas. Based on a comparison of downstream and upstream water quality, it appears that human activities along the Bagmati, principally inputs of human sewage, are largely responsible for the changes in surface water chemistry within Kathmandu valley.
Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.
Bochenek, Michal; Etherington, Graham J; Koprivova, Anna; Mugford, Sam T; Bell, Thomas G; Malin, Gill; Kopriva, Stanislav
2013-08-01
The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Remonsellez, Francisco; Orell, Alvaro; Jerez, Carlos A
2006-01-01
It has been postulated that inorganic polyphosphate (polyP) and transport of metal-phosphate complexes could participate in heavy metal tolerance in some bacteria. To study if such a system exists in archaea, the presence of polyP was determined by the electron energy loss spectroscopy (EELS) procedure and quantified by using specific enzymic methods in Sulfolobus acidocaldarius, Sulfolobus metallicus and Sulfolobus solfataricus. All three micro-organisms synthesized polyP during growth, but only S. metallicus greatly accumulated polyP granules. The differences in the capacity to accumulate polyP between these archaea may reflect adaptive responses to their natural environment. Thus, S. metallicus could grow in and tolerate up to 200 mM copper sulfate, with a concomitant decrease in its polyP levels with increasing copper concentrations. On the other hand, S. solfataricus could not grow in or tolerate more than 1-5 mM copper sulfate, most likely due to its low levels of polyP. Shifting S. metallicus cells to copper sulfate concentrations up to 100 mM led to a rapid increase in their exopolyphosphatase (PPX) activity which was concomitant in time with a decrease in their polyP levels and a stimulation of phosphate efflux. Furthermore, copper in the range of 10 microM greatly stimulated PPX activity in cell-free extracts from S. metallicus. The results strongly suggest that a metal tolerance mechanism mediated through polyP is functional in members of the genus Sulfolobus. This ability to accumulate and hydrolyse polyP may play an important role not only in the survival of these micro-organisms in sulfidic mineral environments containing high toxic metals concentrations, but also in their applications in biomining.
Zaidi, Nida; Nusrat, Saima; Zaidi, Fatima Kamal; Khan, Rizwan H
2014-11-20
Sodium dodecyl sulfate (SDS)-glycoprotein interaction serves as a model for a biological membrane. To get mechanistic insight into the interaction of SDS and glycoprotein, the effect of SDS on bovine serum fetuin (BSF) was studied in subcritical micellar concentrations at pH 7.4 and pH 2 using multiple approaches. SDS interacts electrostatically with BSF through its negatively charged head groups at pH 2 and hydrophobically via its alkyl chains at pH 7.4 up to a 1:20 molar ratio of BSF to SDS. However, at higher concentrations of SDS, BSF undergoes amyloid fibril formation at pH 2, as confirmed by enhanced ThT fluorescence, β-sheet formation, and TEM microscopy, whereas BSF undergoes induction of an α-helical structure in the presence of higher SDS concentration at pH 7.4. The increase in α-helical content with increasing SDS concentrations constrains the environment around tryptophan. As a consequence, the interconversion of tryptophan conformers decreases, resulting in a decrement of the fluorescence lifetime for BSF in the presence of SDS at pH 7.4.
Multivariate relationships between groundwater chemistry and toxicity in an urban aquifer.
Dewhurst, Rachel E; Wells, N Claire; Crane, Mark; Callaghan, Amanda; Connon, Richard; Mather, John D
2003-11-01
Multivariate statistical methods were used to investigate the causes of toxicity and controls on groundwater chemistry from 274 boreholes in an urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations, and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoniacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.
Kao, C M; Chen, C Y; Chen, S C; Chien, H Y; Chen, Y L
2008-02-01
In this study, a full-scale biosparging investigation was conducted at a petroleum-hydrocarbon spill site. Field results reveal that natural attenuation was the main cause of the decrease in major contaminants [benzene, toluene, ethylbenzene, and xylenes (BTEX)] concentrations in groundwater before the operation of biosparging system. Evidence of the occurrence of natural attenuation within the BTEX plume includes: (1) decrease of DO, nitrate, sulfate, and redox potential, (2) production of dissolved ferrous iron, sulfide, methane, and CO(2), (3) decreased BTEX concentrations along the transport path, (4) increased microbial populations, and (5) limited spreading of the BTEX plume. Field results also reveal that the operation of biosparging caused the shifting of anaerobic conditions inside the plume to aerobic conditions. This variation can be confirmed by the following field observations inside the plume due to the biosparging process: (1) increase in DO, redox potential, nitrate, and sulfate, (2) decrease dissolved ferrous iron, sulfide, and methane, (3) increased total cultivable heterotrophs, and (4) decreased total cultivable anaerobes as well as methanogens. Results of polymerase chain reaction, denaturing gradient gel electrophoresis, and nucleotide sequence analysis reveal that three BTEX biodegraders (Candidauts magnetobacterium, Flavobacteriales bacterium, and Bacteroidetes bacterium) might exist at this site. Results show that more than 70% of BTEX has been removed through the biosparging system within a 10-month remedial period at an averaged groundwater temperature of 18 degrees C. This indicates that biosparging is a promising technology to remediate BTEX contaminated groundwater.
Lavergne, Aurélie; Zhu, Ying; Pizzino, Aldo; Molinier, Valérie; Aubry, Jean-Marie
2011-08-15
Two agro-based anionic surfactants containing an isosorbide moiety have been synthesized and their amphiphilic properties evaluated. Since isosorbide is now considered as an important platform chemical of the starch industry, these compounds could represent bio-sourced alternatives to the alkyl ether sulfates (notably lauryl ether sulfate, LES) that are based on petroleum-derived ethylene oxides. As isosorbide is an asymmetric diol, two isomers can be prepared (2-O-dodecyl isosorbide sulfate and 5-O-dodecyl isosorbide sulfate) that show significantly different aqueous properties as regards to their Krafft temperatures and critical micellar concentrations. 5-O-dodecyl isosorbide sulfate is the most soluble and the most efficient surfactant. It possesses a much lower critical micelle concentration (cmc) than sodium dodecyl sulfate, SDS, leading to comparable foaming properties with a three times lower concentration. Its behavior compares well with the one of pure diethoxylated dodecyl sulfate that has also been prepared and evaluated in this work. Copyright © 2011 Elsevier Inc. All rights reserved.
The Seagrass Holobiont and Its Microbiome
Ugarelli, Kelly; Chakrabarti, Seemanti; Laas, Peeter; Stingl, Ulrich
2017-01-01
Seagrass meadows are ecologically and economically important components of many coastal areas worldwide. Ecosystem services provided by seagrasses include reducing the number of microbial pathogens in the water, providing food, shelter and nurseries for many species, and decreasing the impact of waves on the shorelines. A global assessment reported that 29% of the known areal extent of seagrasses has disappeared since seagrass areas were initially recorded in 1879. Several factors such as direct and indirect human activity contribute to the demise of seagrasses. One of the main reasons for seagrass die-offs all over the world is increased sulfide concentrations in the sediment that result from the activity of sulfate-reducing prokaryotes, which perform the last step of the anaerobic food chain in marine sediments and reduce sulfate to H2S. Recent seagrass die-offs, e.g., in the Florida and Biscayne Bays, were caused by an increase in pore-water sulfide concentrations in the sediment, which were the combined result of unfavorable environmental conditions and the activities of various groups of heterotrophic bacteria in the sulfate-rich water-column and sediment that are stimulated through increased nutrient concentrations. Under normal circumstances, seagrasses are able to withstand low levels of sulfide, probably partly due to microbial symbionts, which detoxify sulfide by oxidizing it to sulfur or sulfate. Novel studies are beginning to give greater insights into the interactions of microbes and seagrasses, not only in the sulfur cycle. Here, we review the literature on the basic ecology and biology of seagrasses and focus on studies describing their microbiome. PMID:29244764
NASA Astrophysics Data System (ADS)
Gavrieli, Ittai; Starinsky, Avraham; Spiro, Baruch; Aizenshtat, Zeev; Nielsen, Heimo
1995-09-01
The evolution of the Ca-chloride brines in the Heletz Formation, Lower Cretaceous, in the southern coastal plain of Israel was reconstructed through the study of its sulfate concentration and isotopic composition. Particular emphasis was given to the brine-oil interaction in the oilfields and to the sulfate depletion and lower SO 4/Cl ratio in brines in contact with hydrocarbons (oil brines) relative to "oil-free" from dry wells in the same oilfields. A method is presented for a calculation of the amount of sulfate removed from the original seawater in the various stages of its evolution to Ca-chloride brine. These stages include evaporation, dolomitization, and sulfate reduction in different stages of its evolution, from early diagenetic processes to the contact with crude oil. In the present study, based on the δ34S SO 4 and SO 4/Cl ratio, it was found that in the Heletz brines most of the sulfate (80-94%) was removed from the original seawater prior to their interaction with the hydrocarbons and only a negligible fraction of few percent of the sulfate was removed during the crude oil-water contact. The Ca-chloride brines evolved from Messinian (Upper Miocene) seawater that underwent evaporation during the desiccation of the Mediterranean. Sulfate was removed from Messinian lagoon (s) during gypsum precipitation due to evaporation and dolomitization. Bacterial sulfate reduction further depleted the brine in sulfate and changed its isotopic composition, from its original Miocene seawater composition of δ34S SO 4 ˜ 20%o, 26%o. Overall, some 50% of the original sulfate, as normalized to chloride, was removed from the original lagoon through the above processes, mostly by gypsum precipitation. Eastward migration of the Messinian Ca-Chloride brine into the Heletz Formation was accompanied by dolomitization of the country rock. Final depletion of sulfate from the brines took place, and possibly still occurs, in the presence of crude oil in the oilfields. The two oil-producing fields, Heletz and Kokhav, occupy different areas on a Rayleigh distillation diagram. Sulfate depletion in both fields is accompanied by an increase in δ34S SO 4, which reaches a maximum value of 59%o. The above correlation is explained by bacterial sulfate reduction facilitated by the contact with the crude. Samples collected from the same boreholes at time intervals of several months show two opposing trends: sulfate concentration decrease accompanied by increase in δ34S SO 4, and vice versa. While the first can be explained as in situ bacterial sulfate reduction, the latter attest to subsurface brine migration, as would be expected in oil-producing fields.
NASA Technical Reports Server (NTRS)
Bebout, Brad; Carpenter, Steve; DesMarais, David J.; Discipulo, Mykell; Hogan, Mary; Turk, Kendra
2002-01-01
Microbial mats were widespread during the first ca. 2 Ga. of our biosphere's history. To better understand microbial ecosystems and their biomarkers under the low sulfate levels present in early oceans, we attempted a long-term (ca. 1 year) manipulation of sulfate in modem mats. Mats collected from salt ponds at Guerrero Negro, Baja Calif. Sur were incubated in a Greenhouse "Collaboratory" at Ames. Mats were maintained in artificial seawater brine containing either: 1) sulfate levels normal for these mats (70 mM), or 2) brine in which sulfate was replaced by chloride. Sulfate concentrations in the "low sulfate" brine gradually approached their lowest (to date) value of 0. 1 mM as sulfate was consumed and/or diffused out of the mat over a period of ca. 4 months. During that period of time, a number of differences between the treatments emerged. Relative to the "low sulfate" mats, "normal sulfate" mats had: 1) lower consumption of oxygen in the lower levels of the mat, 2) higher efficiencies of oxygenic photosynthesis, and 3) higher rates of nitrogen fixation. Rates of methane production by the mats increased greatly as sulfate concentrations fell below ca. 0.2 mM. In contrast, "low" and "normal" sulfate mats had similar net rates of exchange of O2 and dissolved inorganic C between the mats and overlying water. Reduced sulfate levels have diverse impacts upon these ecosystems.
Brown Carbon Production in Aldehyde + Ammonium Sulfate Mixtures: Effects of Formaldehyde and Amines
NASA Astrophysics Data System (ADS)
Powelson, M.; De Haan, D. O.
2012-12-01
The formation of light-absorbing 'brown carbon,' or HULIS (humic- like substances), in atmospheric aerosol has an important impact on climate. However, the precursors responsible for brown carbon formation have not been identified. Several aldehydes present in clouds (methylglyoxal, glycolaldehyde, hydroxyacetone, glyoxal, and acetaldehyde) have the potential to create brown products when reacted with ammonium sulfate or primary amines such as methylamine or glycine. The formation of light-absorbing products from these reactions was characterized as a function of cloud-relevant pH (from 3- 6) using UV-Visible spectroscopy. Of the different aldehydes teste, the largest production rates of light-absorbing compounds were observed in reactions of glycolaldehyde and methylglyoxal. Primary amines produced more light- absorbing products than ammonium sulfate at lower concentrations. The addition of formaldehyde to any reaction with other aldehydes decreased the formation of light-absorbing products, while the addition of a small amount (1:5 mole ratio) of glycine to aldehyde + ammonium sulfate reactions can increase the production of light-absorbing products. These results suggest that the presence of primary amines significantly influence atmospheric brown carbon production by aldehydes even when much greater quantities of ammonium sulfate are present.
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Jingyi; Ying, Qi; Yu, Jian Zhen; Wu, Dui; Cheng, Yuan; He, Kebin; Jiang, Jingkun
2012-12-01
Nitrate and sulfate account for a significant fraction of PM2.5 mass and are generally secondary in nature. Contributions to these two inorganic aerosol components from major sources need to be identified for policy makers to develop cost effective regional emission control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to secondary PM2.5 is developed to determine the regional contributions of power, industry, transportation and residential sectors as well as biogenic sources to nitrate and sulfate concentrations in China in January and August 2009.The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 nitrate and sulfate observations. Model prediction suggests that monthly average PM2.5 inorganic components (nitrate + sulfate + ammonium ion) can be as high as 60 μg m-3 in January and 45 μg m-3 in August, accounting for 20-40% and 50-60% of total PM2.5 mass. The model simulations also indicate significant spatial and temporal variation of the nitrate and sulfate concentrations as well as source contributions in the country. In January, nitrate is high over Central and East China with a maximum of 30 μg m-3 in the Sichuan Basin. In August, nitrate is lower and the maximum concentration of 16 μg m-3 occurs in North China. In January, highest sulfate occurs in the Sichuan Basin with a maximum concentration of 18 μg m-3 while in August high sulfate concentration occurs in North and East China with a similar maximum concentration. Power sector is the dominating source of nitrate and sulfate in both January and August. Transportation sector is an important source of nitrate (20-30%) in both months. Industry sector contributes to both nitrate and sulfate concentrations by approximately 20-30%. Residential sector contributes to approximately 10-20% of nitrate and sulfate in January but its contribution is low in August.
Qiu, Xionghui; Duan, Lei; Cai, Siyi; Yu, Qian; Wang, Shuxiao; Chai, Fahe; Gao, Jian; Li, Yanping; Xu, Zhaoming
2017-07-01
The national Air Pollution Prevention and Control Action Plan required significant decreases in PM 2.5 levels over China. To explore more effective emission abatement strategies in industrial cities, a case study was conducted in Baotou to evaluate the current national control measures. The total emissions of SO 2, NO X , PM 2.5 and NMVOC (non-methane volatile organic compounds) in Baotou were 211.2Gg, 156.1Gg, 28.8Gg, and 48.5Gg, respectively in 2013, and they would experience a reduction of 30.4%, 26.6%, 15.1%, and 8.7%, respectively in 2017 and 39.0%, 32.0%, 24.4%, and 12.9%, respectively in 2020. The SO 2 , NO X and PM 2.5 emissions from the industrial sector would experience a greater decrease, with reductions of 37%, 32.7 and 24.3%, respectively. From 2013 to 2020, the concentrations of SO 2 , NO 2 , and PM 2.5 are expected to decline by approximately 30%, 10% and 14.5%, respectively. The reduction rate of SNA (sulfate, nitrate and ammonium) concentrations was significantly higher than that of PM 2.5 in 2017, implying that the current key strategy toward controlling air pollutants from the industrial sector is more powerful for SNA. Although air pollution control measures implemented in the industrial sector could greatly reduce total emissions, constraining the emissions from lower sources such as residential coal combustion would be more effective in decreasing the concentration of PM 2.5 from 2017 to 2020. These results suggest that even for a typical industrial city, the reduction of PM 2.5 concentrations not only requires decreases in emissions from the industrial sector, but also from the low emission sources. The seasonal variation in sulfate concentration also showed that emission from coal-burning is the key factor to control during the heating season. Copyright © 2016. Published by Elsevier B.V.
Galloway, Joel M.; Vecchia, Aldo V.
2014-01-01
Modeled sulfate concentrations generally were highest (greater than 750 milligrams per liter) in basins in western North Dakota and lowest (less than 250 milligrams per liter) in basins in the upper Sheyenne River and upper James River. Area-weighted means for the basin characteristics also were computed for 10-digit and 8-digit hydrologic units for streams in North Dakota and modeled sulfate concentrations were computed from the characteristics. The resulting distribution of modeled sulfate concentrations was similar to the distribution of estimates for the 12-digit hydrologic units, but less variable because the basin characteristics were averaged over larger areas.
Rocky Mountain Snowpack Chemistry at Selected Sites, 2004
Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Handran, Heather H.; Manthorne, David J.; Hultstrand, Douglas M.
2007-01-01
During spring 2004, the U.S. Geological Survey in cooperation with the National Park Service and the U.S. Department of Agriculture, Forest Service collected and analyzed snowpack samples for 65 sites in the Rocky Mountain region from New Mexico to Montana. Snowpacks were sampled from late February through early April and generally had well-below-average- to near-average snow-water equivalent. Regionally, on April 1, snow-water equivalent ranged from 50 to 89 percent. At most regional sites monitored during 1993-2004, snowpack ammonium, nitrate, and sulfate concentrations for 2004 were lower than the 12-year averages. Snowpack ammonium concentrations in the region were lower than average concentrations for the period at 61 percent of sites in the region, but showed a new pattern compared to previous years with three of the four highest 2004 concentrations observed in northern Colorado. Nitrate concentrations in 2004 were lower than the 12-year average for the year at 53 percent of regional sites, and typically occurred at sites in Wyoming, Idaho, and Montana where powerplants and large industrial areas were limited. A regional decrease in sulfate concentrations across most of the Rocky Mountains (with concentrations lower than the 12-year average at 84 percent of snowpack sites) was consistent with other monitoring of atmospheric deposition in the Western United States. Total mercury concentrations, although data are only available for the past 3 years, decreased slightly for the region as a whole in 2004 relative to 2003. Ratios of stable sulfur isotopes indicated a similar regional pattern as observed in recent years with sulfur-34 (d34S) values generally increasing northward from northern New Mexico and southern Colorado to northern Colorado, Wyoming, Idaho, and Montana.
A Study of the Relationship Between Anthropogenic Sulfate and Cloud Drop Nucleation
NASA Technical Reports Server (NTRS)
Chuang, Catherine C.; Penner, Joyce E.
1994-01-01
The characteristics of the cloud drop size distribution near cloud base are initially determined by the aerosol particles that serve as CCN and by the local updraft velocity. Chemical reactions of the emitted gaseous sulfur compounds due to human activities will alter, through gas-to-particle conversion, the aerosol size distribution, total number, and its chemical composition. Recently, Boucher and Rodhe and Jones et.al have each developed parameterizations relating cloud drop concentration to sulfate mass or aerosol number concentration, respectively, and used them to develop estimates of the indirect forcing by anthropogenic sulfate aerosols. THese parameterizations made use of measure relationships in continental and maritime clouds. However, these relationships are inherently noisy, yielding more than a factor of 2 variation in cloud drop concentration for a given aerosol number (or for a given sulfate mass) concentration. The large spatial and temporal variabilities in the concentration, chemical characteristics, and size distribution of aerosols have made it difficult to develop such a parameterization from data. In this paper, our focus is to develop a means for relating the predicted anthropogenic sulfate mass to cloud drop number concentration over the range of expected conditions associated with continental and marine aerosol. We start with an assumed pre-existing particle size distribution and develop an approximation of the altered distribution after addition of anthropogenic sulfate. We thereby develop a conservative estimate of the possible change in cloud drop number concentration due to anthropogenic sulfate.
Ye, Yingwang; Ling, Na; Gao, Jina; Zhang, Maofeng; Zhang, Xiyan; Tong, Liaowang; Ou, Dexin; Wang, Yaping; Zhang, Jumei; Wu, Qingping
2018-04-01
Cronobacter sakazakii is associated with severe infections including sepsis, neonatal meningitis, and necrotizing enterocolitis. Antibiotic resistance in Cronobacter species has been documented in recent years, but the genes involved in resistance in Cronobacter strains are poorly understood. In this study, we determined the role of outer membrane protein W (OmpW) on survival rates, morphologic changes, and biofilm formation between wild type (WT) and an OmpW mutant strain (ΔOmpW) under neomycin sulfate stress. Results indicated that the survival rates of ΔOmpW were significantly reduced after half minimum inhibitory concentration (½ MIC) treatment compared with the WT strain. Filamentation of C. sakazakii cells was observed after ½ MIC treatment in WT and ΔOmpW, and morphologic injury, including cell disruption and leakage of cells, was more predominant in ΔOmpW. Under ½ MIC stress, the biofilms of WT and ΔOmpW were significantly decreased, but decreasing rates of biofilm formation in mutant strain were more predominant compared with WT strain. This is the first report to determine the role of OmpW on survival, morphological changes, and biofilm formation in C. sakazakii under neomycin sulfate stress. The findings indicated that OmpW contributed to survival and reduction of morphological injury under neomycin sulfate stress. In addition, enhancing biofilm formation in ΔOmpW may be an alternative advantage for adaptation to neomycin sulfate stress. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Biofiltration of high concentration of H2S in waste air under extreme acidic conditions.
Ben Jaber, Mouna; Couvert, Annabelle; Amrane, Abdeltif; Rouxel, Franck; Le Cloirec, Pierre; Dumont, Eric
2016-01-25
Removal of high concentrations of hydrogen sulfide using a biofilter packed with expanded schist under extreme acidic conditions was performed. The impact of various parameters such as H2S concentration, pH changes and sulfate accumulation on the performances of the process was evaluated. Elimination efficiency decreased when the pH was lower than 1 and the sulfate accumulation was more than 12 mg S-SO4(2-)/g dry media, due to a continuous overloading by high H2S concentrations. The influence of these parameters on the degradation of H2S was clearly underlined, showing the need for their control, performed through an increase of watering flow rate. A maximum elimination capacity (ECmax) of 24.7 g m(-3) h(-1) was recorded. As a result, expanded schist represents an interesting packing material to remove high H2S concentration up to 360 ppmv with low pressure drops. In addition, experimental data were fitted using both Michaelis-Menten and Haldane models, showing that the Haldane model described more accurately experimental data since the inhibitory effect of H2S was taken into account. Copyright © 2015 Elsevier B.V. All rights reserved.
Clow, D.W.; Mast, M. Alisa
1999-01-01
Trends in precipitation and stream-water chemistry during water years 1984-96 were examined at eight precipitation monitoring sites and five nearby streams operated by the U.S. Geological Survey in the northeastern United States. The statistical analyses indicate the following: 1)Stream-water sulfate (SO4) concentrations decreased at seven of eight precipitation monitoring sites and in each of five streams. 2)Calcium plus magnesium (Ca + Mg) concentrations decreased at seven of eight precipitation monitoring sites and in three of five streams. 3)Precipitation acidity decreased at five of eight precipitation monitoring sites, but alkalinity increased in only one stream. These results indicate that decreases in atmospheric deposition of SO4 have resulted in decreased precipitation acidity. The chemical response of stream water to changes in precipitation chemistry was complex. Decreases in stream-water SO4 concentrations generally matched decreases of precipitation SO4. In stream water, increases in alkalinity were uncommon because decreases in SO4 concentrations often were accompanied by decreases in Ca + Mg concentrations. The decreases in Ca + Mg concentrations might be related to depletion of base cations from soil caused by long-term exposure to acidic deposition. Increases in streamwater alkalinity might not occur until rates of acidic deposition are reduced to substantially less than the rate of cation resupply by weathering and atmospheric deposition. In areas where forests are aggrading, recovery of stream-water alkalinity will be delayed further because of the acidifying effect of biomass accumulation.
Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems
Wang, Hongmei; Gong, Linfeng; Cravotta,, Charles A.; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang
2013-01-01
Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.
iron phase control during pressure leaching at elevated temperature
NASA Astrophysics Data System (ADS)
Fleuriault, Camille
Iron is a common contaminant encountered in most metal recovery operations, and particularly hydrometallurgical processes. For example, the Hematite Process uses autoclaves to precipitate iron oxide out of the leaching solution, while other metals are solubilized for further hydrometallurgical processing. In some cases, Basic Iron Sulfate (BIS) forms in place of hematite. The presence of BIS is unwanted in the autoclave discharge because it diminishes recovery and causes environmental matters. The focus of this master thesis is on the various iron phases forming during the pressure oxidation of sulfates. Artificial leaching solutions were produced from CuSO4, FeSO4 and H2SO4 in an attempt to recreate the matrix composition and conditions used for copper sulfides autoclaving. The following factors were investigated in order to determine which conditions hinder the formation of BIS: initial free acidity (5 -- 98 g/L), initial copper concentration (12.7 -- 63.5 g/L), initial iron concentration (16.7 -- 30.7 g/L) and initial iron oxidation state. There were three solid species formed in the autoclave: hematite, BIS and hydronium jarosite. The results show that free acid is the main factor influencing the composition of the residue. At an initial concentration of 22.3 g/L iron and no copper added, the upper limit for iron oxide formation is 41 g/L H2SO4. The increase of BIS content in the residue is not gradual and occurs over a change of a few grams per liter around the aforementioned limit. Increasing copper sulfate concentration in the solution hinders the formation of BIS. At 63.5g/L copper, the upper free acidity limit is increased to 61g/L. This effect seems to be related to the buffering action of copper sulfate, decreasing the overall acid concentration and thus extending the stability range of hematite. The effect of varying iron concentration on the precipitate chemistry is unclear. At high iron levels, the only noticeable effect was the inhibition of jarosite. The results were reported within a Cu-Fe-S ternary system and modeled. The modeling confirmed the experimental observations with the exception that increasing iron concentrations seem to promote BIS stability.
Dorman, David C; Struve, Melanie F; Gross, Elizabeth A; Wong, Brian A; Howroyd, Paul C
2005-01-01
Background Neurotoxicity and pulmonary dysfunction are well-recognized problems associated with prolonged human exposure to high concentrations of airborne manganese. Surprisingly, histological characterization of pulmonary responses induced by manganese remains incomplete. The primary objective of this study was to characterize histologic changes in the monkey respiratory tract following manganese inhalation. Methods Subchronic (6 hr/day, 5 days/week) inhalation exposure of young male rhesus monkeys to manganese sulfate was performed. One cohort of monkeys (n = 4–6 animals/exposure concentration) was exposed to air or manganese sulfate at 0.06, 0.3, or 1.5 mg Mn/m3 for 65 exposure days. Another eight monkeys were exposed to manganese sulfate at 1.5 mg Mn/m3 for 65 exposure days and held for 45 or 90 days before evaluation. A second cohort (n = 4 monkeys per time point) was exposed to manganese sulfate at 1.5 mg Mn/m3 and evaluated after 15 or 33 exposure days. Evaluations included measurement of lung manganese concentrations and evaluation of respiratory histologic changes. Tissue manganese concentrations were compared for the exposure and control groups by tests for homogeneity of variance, analysis of variance, followed by Dunnett's multiple comparison. Histopathological findings were evaluated using a Pearson's Chi-Square test. Results Animals exposed to manganese sulfate at ≥0.3 mg Mn/m3 for 65 days had increased lung manganese concentrations. Exposure to manganese sulfate at 1.5 mg Mn/m3 for ≥15 exposure days resulted in increased lung manganese concentrations, mild subacute bronchiolitis, alveolar duct inflammation, and proliferation of bronchus-associated lymphoid tissue. Bronchiolitis and alveolar duct inflammatory changes were absent 45 days post-exposure, suggesting that these lesions are reversible upon cessation of subchronic high-dose manganese exposure. Conclusion High-dose subchronic manganese sulfate inhalation is associated with increased lung manganese concentrations and small airway inflammatory changes in the absence of observable clinical signs. Subchronic exposure to manganese sulfate at exposure concentrations (≤0.3 mg Mn/m3) similar to the current 8-hr occupational threshold limit value established for inhaled manganese was not associated with pulmonary pathology. PMID:16242036
Ruhl, Aki S; Jekel, Martin
2013-10-15
Permeable reactive barriers are successfully applied for the removal of various contaminants. The concomitant reduction of hydrogen ions and the subsequent formation of hydrogen gas by anaerobic corrosion lead to decreased pore volume filled with water and thus residence times, so called gas clogging. Long term column experiments were conducted to elucidate the impact of ubiquitous water constituents on the formation of hydrogen gas and potential passivation due to corrosion products. The collected gas volumes revealed a relation to the hydronium concentration (pH) but were only slightly increased in the presence of chloride and sulfate and not significantly influenced in the presence of phosphate, silicate, humic acid and ammonium compared to deionized water. Significant gas volumes within the reactive filling were verified by gravimetry. The presence of nitrate completely eliminated hydrogen formation by competition for electrons. Solid phase analyses revealed that neither chloride nor sulfate was incorporated in corrosion products in concentrations above 0.1 weight percent, and they did not alter the formation of mainly magnetite in comparison to deionized water. Copyright © 2013 Elsevier Ltd. All rights reserved.
SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Edwards, T.
2012-05-08
This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to developmore » a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a sulfur salt layer is not formed on top of the melt pool while allowing higher sulfur based feeds to be processed through DWPF.« less
Complex Actions of Estradiol-3-Sulfate in Late Gestation Fetal Brain
Winikor, Jared; Schlaerth, Christine; Rabaglino, Maria Belen; Cousins, Roderick; Sutherland, Monique
2011-01-01
The most abundant form of estrogen circulating in fetal plasma is sulfo-conjugated estrogen; for example, estradiol-3-sulfate (E2SO4) is more highly abundant than estradiol (E2). The present study investigated the ontogeny of the deconjugating (steroid sulfatase [STS]) and conjugating (estrogen sulfotransferase [STF]) enzymes in ovine fetal brain and tested the hypothesis that treatment with E2SO4 would alter the expression of one or both enzymes. Steroid sulfatase was more highly expressed than STF, and both changed as a function of gestational age. Estradiol-3-sulfate infused intracerebroventricularly (icv) significantly increased plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations. Plasma E2 and E2SO4 were increased, and brain expression of estrogen receptor α was decreased. The proteins STS and STF were up- and downregulated, respectively. Pituitary proopiomelanocortin (POMC) and follicle-stimulating hormone (FSH) and hypothalamic corticotrophin-releasing hormone (CRH) messenger RNA (mRNA) was decreased. We conclude that E2SO4 has complex actions on the fetal brain, which might involve deconjugation by STS, but that the net result of direct E2SO4 icv infusion is more complex than can be accounted for by infusion of E2 alone. PMID:21273638
Friction and Wear of Iron in Corrosive Media
NASA Technical Reports Server (NTRS)
Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.
1982-01-01
Friction and wear experiments were conducted with elemental iron exposed to various corrosive media including two acids, base, and a salt. Studies involved various concentrations of nitric and sulfuric acids, sodium hydroxide, and sodium chloride. Load and reciprocating sliding speed were kept constant. With the base NaOH an increase in normality beyond 0.01 N resulted in a decrease in both friction and wear. X-ray photoelectron spectroscopy (XPS) analysis of the surface showed a decreasing concentration of ferric oxide (Fe2O3) on the iron surface with increasing NaOH concentration. With nitric acid (HNO3) friction decreased in solutions to 0.05 N, beyond which no further change in friction was observed. The concentration of Fe2O3 on the surface continued to increase with increasing normality. XPS analysis revealed the presence of sulfates in addition of Fe2O3 on surfaces exposed to sulfuric acid and iron chlorides but no sodium on surfaces exposed to NaCl.
NASA Astrophysics Data System (ADS)
Hurtgen, M. T.; Pruss, S.; Knoll, A. H.
2006-12-01
The biogeochemical cycles of carbon and sulfur are intimately linked through a variety of feedbacks that operate on timescales of days to millions of years. For example, under anaerobic conditions, some bacteria respire organic matter by sulfate reduction, reducing sulfate to sulfide, which then reacts with iron to form iron sulfide (preserved as pyrite). On much longer timescales, increases in the fraction of total carbon buried as organic carbon can drive increases in atmospheric oxygen concentrations which then facilitate an increase in the extent to which sulfides on land are oxidatively weathered and ultimately delivered to the oceans as sulfate via rivers. Interestingly, these two processes impose very different isotope relationships between the C isotope composition of marine dissolved inorganic carbon (DIC) and the S isotope composition of seawater sulfate. The former leads to a positive correlation between δ13Ccarbonate and δ34Ssulfate whereas the latter prescribes a long-term negative correlation. Of course, the recognition of either a positive or negative correlation between δ13Ccarbonate and δ34Ssulfate depends strongly on the relative sizes of the DIC and seawater sulfate reservoirs-- neither of which is well constrained for the Cambrian Period. Here, we present a high-resolution δ34S (sulfate and pyrite) and δ13Ccarbonate record from the mixed carbonate-siliciclastic Middle-Upper Cambrian Port au Port Group in western Newfoundland, Canada. The δ34Ssulfate profile displays systematic shifts of >15‰ over relatively short stratigraphic distances (10 m, likely to represent < 1 Myr). C isotope values shift sympathetically throughout much of the composite section; however, important deviations from this relationship exist. First, in the Middle Cambrian March Point Formation, a 15‰- δ34Ssulfate decrease precedes a 3‰-δ13Ccarbonate fall suggesting that the sulfur cycle recorded the perturbation to the system before the carbon cycle did. Secondly, further up in the section, the Upper Cambrian Man O' War Member exhibits a ~6‰ positive C isotope excursion (SPICE Event) with almost no change in S isotope values. In combination, these data suggest that seawater sulfate concentrations were much lower than modern values, at least in this basin, resulting in a sulfate reservoir that was more susceptible to isotopic variation. Moreover, differences in the relationship between C and S isotopes indicate that the relative sizes of the marine DIC and sulfate reservoir changed through this interval and/or that the various perturbations recorded in the lower and upper parts of this succession affected the carbon and sulfur cycles in different ways.
Combined processing of lead concentrates
NASA Astrophysics Data System (ADS)
Kubasov, V. L.; Paretskii, V. M.; Sidorin, G. N.; Travkin, V. F.
2013-06-01
A combined scheme of processing of lead concentrates with the production of pure metallic lead and the important components containing in these concentrates is considered. This scheme includes sulfating roasting of the lead concentrates and two-stage leaching of the formed cinder with the formation of a sulfate solution and lead sulfate. When transformed into a carbonate form, lead sulfate is used for the production of pure metallic lead. Silver, indium, copper, cadmium, nickel, cobalt, and other important components are separately extracted from a solution. At the last stage, zinc is extracted by either extraction followed by electrolytic extraction of a metal or the return of the forming solution of sulfuric acid to cinder leaching.
The effect of snowmelt on the water quality of Filson Creek and Omaday Lake, northeastern Minnesota
Siegel, D.I.
1981-01-01
Sulfate concentration and pH were determined in surface water, groundwater, and precipitation samples collected in the Filson Creek watershed to evaluate the sources of sulfate in Filson Creek. During and immediately after snowmelt, sulfate concentrations in Filson Creek increased from about 2 to 14 mg/l. Concurrently, H+ ion activity increased from an average of 10−6.6 to 10−5.5. These changes suggest that sulfate acidity is concentrated in the snowpack at snowmelt, which is similar to changes reported in Scandinavia in areas subject to acid precipitation. Mass balance calculations indicate that the sulfate contribution from groundwater during snowmelt was minimal in comparison to that from snow. During base flow, sulfate did not appreciably increase from the headwaters of Filson Creek to the mouth, even though sulfate was as high as 58 mg/l in groundwater discharging to the creek from surficial materials overlying a sulfide-bearing mineralized zone in the lower third of the watershed. Approximately 10.6 kg of sulfate per hectare per year was retained in 1977.
Terenteva, E A; Apyari, V V; Dmitrienko, S G; Garshev, A V; Volkov, P A; Zolotov, Yu A
2018-04-01
Positively charged polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles (PHMG-AgNPs) were prepared and applied as a colorimetric probe for single-step determination of pyrophosphate and sulfate. The approach is based on the nanoparticles aggregation leading to change in their absorption spectra and color of the solution. Due to both electrostatic and steric stabilization these nanoparticles show decreased sensitivity relatively to many common anions, which allows for simple and rapid direct single-step determination of pyrophosphate and sulfate. Effects of different factors (time of interaction, pH, concentrations of anions and the nanoparticles) on aggregation of PHMG-AgNPs and analytical performance of the procedure were investigated. The method allows for the determination of pyrophosphate and sulfate in the range of 0.16-2μgmL -1 and 20-80μgmL -1 with RSD of 2-5%, respectively. The analysis can be performed using either spectrophotometry or naked-eye detection. Practical application of the method was shown by the example of pyrophosphate determination in baking powder sample. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Zijun; Zhou, Huaiyang; Ren, Dezhang; Gao, Hang; Li, Jiangtao
2015-04-01
Marine sediments are the main sink for seawater sulfate and bacterial sulfate reduction is a major component of the global sulfur cycle. Nevertheless, the factors controlling sulfate reduction in the coastal estuary sediments that undergo spatial and temporal variations are still not fully understood. In this study, we measured the concentrations of SO42-, Cl-, CH4, and DIC, and the δ13C of DIC in the pore water of five sampling stations surrounding the Qi'ao Island, Pearl River Estuary, Southern China during the dry season in November 2011 and during the wet season in May 2012. The results showed that the dilution-mixing of the Pearl River with low-concentration sulfate significantly affects the downcore profiles of the sulfate concentrations in the pore water of these estuary sediments. During the wet season, the dilution-mixing of the layers from the top of the sediments to a depth of 14-18 cm occurred at the different sampling stations. In this layer, the sulfate reduction is not appreciable based on the plot of the pore water Cl- and SO42-. Below the dilution-mixing layers, however, sulfate reduction that is driven by the anaerobic oxidation of methane (AOM) occurs. In our comparison, it appeared that the AOM played more important role in the consumption of the pore water sulfate in May 2012 than in November 2011. Meanwhile, we observed a relatively good correlation (r2=0.64) between the depth of the sulfate-methane interface (SMI) and the sulfate concentration in the pore water of the top sediments in dry season, indicating that the pore water sulfate concentration appears to be a primary controlling factor for the depth of the SMI in this estuary. These results highlight the need for an integrated analysis of the hydrologically driven the variations in the sulfate profiles to improve our understanding of the biogeochemical cycling of C, Fe and S and their budgets in estuarine environments.
NASA Astrophysics Data System (ADS)
Nie, Wei; Wang, Tao; Wang, Wenxing; Wei, Xiaolin; Liu, Qian
2013-09-01
The release of large amounts of sulfur dioxide (SO2) and nitrogen oxides (NOx) from the burning of fossil fuel leads to regional air pollution phenomena such as haze and acidic deposition. Despite longstanding recognition of the severity of these problems and the numerous studies conducted in China, little is known of long-term trends in particulate sulfate and nitrate and their association with changes in precursor emissions. In this study, we analyze records covering a 14-year period (1995-2008) of PM10 composition in the subtropical city of Hong Kong, situated in the rapidly developing Pearl River Delta region of southern China. A linear regression method and a Regional Kendall test are employed for trend calculations. In contrast to the decreased levels of SO2 and NOx emissions in Hong Kong, there are increasing overall trends in ambient concentrations of PM10 sulfate and PM10 nitrate, with the most obvious rise seen during 2001-2005. The percentages of sulfate and nitrate in the PM10 mass and rainwater acidity also increased. Backward trajectories are computed to help identify the origin of large-scale air masses arriving in Hong Kong. In air masses dominated by Hong Kong urban sources and ship emissions, there was no statistically significant trend for PM10 sulfate and a small increase for PM10 nitrate; however, the evident increases in PM10 sulfate and PM10 nitrate concentrations were observed in air masses originating from eastern China and are generally consistent with changes in emissions of their precursors in eastern China. Examination of PM10 mass data recorded at a pair of upwind-urban sites also indicates that long-range transport makes a large contribution (>80%) to PM10 loadings in Hong Kong. Together with our previous study on the ozone trend, these results demonstrate the important impact exerted by long-distance sources and suggest a need to consider the impact of super-regional transport when formulating air-quality management strategy in Hong Kong in future.
The relation between geochemical characteristics and landslide in Hungtsaiping area, Nantou, Taiwan
NASA Astrophysics Data System (ADS)
Lin, P.; Tsai, L.
2009-12-01
Hungtsaiping is located at the south bank of the Yonglu stream, Chungliao Village of Nantou County, central Taiwan. Hungtsaiping landslide was triggered by the Chi-Chi earthquake (Mw=7.6) occurring on September 20, 1999 UTC near the town of Chi-Chi in Nantou County, central Taiwan. Coping with the geological and geomorphologic investigations, this study makes an attempt to find the relation between geochemical characteristics and landslide in Hungtsaiping area. Water samples were collected from spring waters, creeks, ponds, groundwater and the Yonglu stream once every month from May 2008 to May 2009. Oxygen and hydrogen stable isotopic, ionic concentrations, as well as electrical conductivity and pH value were analyzed. The results indicate that calcium and magnesium bicarbonate-rich water was found on the top and the middle part of the slope. On the other hand, sodium bicarbonate-rich water as well as exceptionally high sulfate concentration was found on the foot of the slope, the sulfate content decreased with increasing elevations until the middle part of slope. A conceptual model of flow process and water origin in Hungtsaiping landslide was established by summarizing the features of hydrogeochemical analyses and the profiles in this study. Keywords: landslide, geochemical characteristics, isotope, hydrochemistry. Fig. 1 The sampling locations of Hungtsaiping landslide. Fig. 2 Isogram: the concentration of sulfate in May 2008 in Hungtsaiping area.
On the Effect of Sodium Chloride and Sodium Sulfate on Cold Denaturation
Pica, Andrea; Graziano, Giuseppe
2015-01-01
Both sodium chloride and sodium sulfate are able to stabilize yeast frataxin, causing an overall increase of its thermodynamic stability curve, with a decrease in the cold denaturation temperature and an increase in the hot denaturation one. The influence of low concentrations of these two salts on yeast frataxin stability can be assessed by the application of a theoretical model based on scaled particle theory. First developed to figure out the mechanism underlying cold denaturation in water, this model is able to predict the stabilization of globular proteins provided by these two salts. The densities of the salt solutions and their temperature dependence play a fundamental role. PMID:26197394
Sulfate deposition in subsurface regolith in Gusev crater, Mars
Wang, A.; Haskin, L.A.; Squyres, S. W.; Jolliff, B.L.; Crumpler, L.; Gellert, Ralf; Schroder, C.; Herkenhoff, K.; Hurowitz, J.; Tosca, N.J.; Farrand, W. H.; Anderson, R.; Knudson, A.T.
2006-01-01
Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rover's exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6-11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and mineralogy observations suggest the deposition of sulfate minerals within the subsurface regolith, mainly Mg-sulfates accompanied by minor Ca-sulfates and perhaps Fe-sulfates. An increase of Fe2O3, an excess of SiO2, and a minor decrease in the olivine proportion relative to surface materials are also inferred. Three hypotheses are proposed to explain the geochemical trends observed in trenches: (1) multiple episodes of acidic fluid infiltration, accompanied by in situ interaction with igneous minerals and salt deposition; (2) an open hydrologic system characterized by ion transportation in the fluid, subsequent evaporation of the fluid, and salt deposition; and (3) emplacement and mixing of impact ejecta of variable composition. While all three may have plausibly contributed to the current state of the subsurface regolith, the geochemical data are most consistent with ion transportation by fluids and salt deposition as a result of open-system hydrologic behavior. Although sulfates make up >20 wt.% of the regolith in the wall of The Boroughs trench, a higher hydrated sulfate than kieserite within The Boroughs or a greater abundance of sulfates elsewhere than is seen in The Boroughs wall regolith would be needed to hold the structural water indicated by the water-equivalent hydrogen concentration observed by the Gamma-Ray Spectrometer on Odyssey in the Gusev region. Copyright 2006 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Bates, Timothy S.; Calhoun, Julie A.; Quinn, Patricia K.
1992-01-01
Seawater concentrations of dimethylsulfide (DMS) and atmospheric concentrations of DMS, sulfur dioxide, methanesulfonate (MSA), and non-sea-salt (nss) sulfate were measured over the eastern Pacific Ocean between 105 deg and 110 deg W from 20 deg N to 60 deg S during February and March 1989. Although the samples collected in the Southern Hemisphere appear to be of marine origin, no significant correlation was found between the latitudinal distributions of DMS, SO2, MSA, and nss SO4(2-). However, an inverse correlation was found between atmospheric temperature and the MSA to nss SO4(2-) molar ratio in submicrometer aerosol particles with a decrease in temperature corresponding to an increase in the molar ratio. Although this trend is consistent with laboratory results indicating the favored production of MSA at lower temperatures, it is contrary to Southern Hemisphere baseline station data. This suggests either a decrease in the supply of DMS relative to nonmarine sources of nss SO4(2-) at the baseline stations in winter or additional mechanisms that affect the relative production of MSA and nss SO4(2-).
Water-quality trends in New England rivers during the 20th century
Robinson, Keith W.; Campbell, Jean P.; Jaworski, Norbert A.
2003-01-01
Water-quality data from the Merrimack, Blackstone, and Connecticut Rivers in New England during parts of the 20th century were examined for trends in concentrations of sulfate, chloride, residue upon evaporation, nitrate, and total phosphorus. The concentrations of all five of these constituents show statistically significant trends during the century. Annual concentrations of sulfate and total phosphorus decreased during the second half of the century, whereas annual concentrations of nitrate, chloride, and residues increased throughout the century. In the Merrimack River, annual chloride concentrations increased by an order of magnitude. Annual nitrate concentrations also increased by an order of magnitude in the Merrimack and Connecticut Rivers. These changes in the water quality probably are related to changing human activities. Most notable is the relation between increasing use of road de-icing salts and chloride concentrations in rivers. In addition, changes in concentrations of nitrate and phosphorus probably are related to agricultural use of nitrogen and phosphorus fertilizers. For all the water-quality constituents assessed, concentrations were greatest in the Blackstone River. The Blackstone River Basin is smaller and more highly urbanized than the other basins studied. Data-collection programs that span multiple decades can provide valuable insight on the effects of changing human population and societal activities on the water quality of rivers. This study was done as part of the U.S. Geological Survey's National Water-Quality Assessment Program.
Soil amendments effects on radiocesium translocation in forest soils.
Sugiura, Yuki; Ozawa, Hajime; Umemura, Mitsutoshi; Takenaka, Chisato
2016-12-01
We conducted an experiment to investigate the potential of phytoremediation by soil amendments in a forest area. To desorb radiocesium ( 137 Cs) from variable charges in the soil, ammonium sulfate (NH 4 + ) and elemental sulfur (S) (which decrease soil pH) were applied to forest soil collected from contaminated area at a rate of 40 and 80 g/m 2 , respectively. A control condition with no soil treatment was also considered. We defined four groups of aboveground conditions: planted with Quercus serrata, planted with Houttuynia cordata, covered with rice straw as litter, and unplanted/uncovered (control). Cultivation was performed in a greenhouse with a regular water supply for four months. Following elemental sulfur treatment, soil pH values were significantly lower than pH values following ammonium sulfate treatment and no treatment. During cultivation, several plant species germinated from natural seeds. No clear differences in aboveground tissue 137 Cs concentrations in planted Q. serrata and H. cordata were observed among the treatments. However, aboveground tissue 137 Cs concentration values in the germinated plants following elemental sulfur treatment were higher than the values following the ammonium sulfate treatment and no treatment. Although biomass values for Q. serrata, H. cordata, and germinated plants following elemental sulfur treatment tended to be low, the total 137 Cs activities in the aboveground tissue of germinated plants were higher than those following ammonium sulfate treatment and no treatment in rice straw and unplanted conditions. Although no significant differences were observed, 137 Cs concentrations in rice straw following ammonium sulfate and elemental sulfur treatments tended to be higher than those in the control case. The results of this study indicate that elemental sulfur lowers the soil pH for a relatively long period and facilitates 137 Cs translocation to newly emerged and settled plants or litter, but affects plant growth in large concentrations and/or anaerobic conditions. Combining elemental sulfur application with forest management practices, such as mowing and thinning, could be a suitable method of decontamination of the forest environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.
Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal
2018-02-01
Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of nanoparticles and sulfate salt of copper in M.posthuma inhabiting the soil of India, an agriculture based country. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Novianti, Vivi; Choesin, Devi N.
2014-03-01
Proanthocyanidin is a chemical compound with a basic flavan-3-ol structure formed from flavonoid secondary metabolism in plants, with potential for human use because of its anti-hypertension, analgesic, anti-inflammatory and antioxidant activities. Considering the fact that S. feei contains proanthocynidin and grows abundantly around Ratu Crater, Mount Tangkuban Perahu, which actively emits S02 gas, this study aimed to see the relation between soil sulfate concentration and proanthocyanidin content in leaves and rhizomes of S. feei. Field sampling was conducted in 1 m2 plots at elevations of 1400, 1600 m above sea level (100 m distance from sulfur source), 1700, 1800 and 1900 m a.s.l. (75 m from sulfur source). Measurements included soil sulfate concentration, proanthocyanidin content of rhizomes and leaves, and environmental factors. An experiment was conducted by planting S. feei from the field into polybags which were then given treatments of sterile plant media with varying sulfate concentrations (0 ppm, 100 ppm, 250 ppm, 400 ppm, 600 ppm, and 800 ppm). Proanthocyanidin content of S. feei leaves and rhizomes were measured on the third, sixth and ninth week. Soil sulfate concentrations were found to be very high (428.22 - 992.91 ppm) with values increasing according to altitude. Proanthocyanidin content in rhizomes were higher than in leaves, in both field and experimental data. Soil sulfate concentrations correlated positively and significantly with proanthocyanidin content in rhizomes of S. feei. As in the field, experimental results indicated no correlation or relation between soil sulfate concentration and proanthocyanidin content in leaves. Besides soil sulfate concentration, environmental factors have a role in incresing peoanthocyanidin content of S.feei. Proanthocyanidin content of S.feei rhizomes could be classified as being very high, thus having potential to be developed as raw material in medicine and food industries.
Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew
2006-08-01
Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.
Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao
2017-11-01
Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area
NASA Astrophysics Data System (ADS)
Gabriel, Mark C.; Howard, Nicole; Osborne, Todd Z.
2014-03-01
Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.
Fish mercury and surface water sulfate relationships in the Everglades Protection Area.
Gabriel, Mark C; Howard, Nicole; Osborne, Todd Z
2014-03-01
Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.
Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.
2015-01-01
Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050
Chapelle, F.H.; McMahon, P.B.
1991-01-01
A primary source of dissolved inorganic carbon (DIC) in the Black Creek aquifer of South Carolina is carbon dioxide produced by microbially mediated oxidation of sedimentary organic matter. Groundwater chemistry data indicate, however, that the available mass of inorganic electron acceptors (oxygen, Fe(III), and sulfate) and observed methane production is inadequate to account for observed CO2 production. Although sulfate concentrations are low (approximately 0.05-0.10 mM) in aquifer water throughout the flow system, sulfate concentrations are greater in confining-bed pore water (0.4-20 mM). The distribution of culturable sulfate-reducing bacteria in these sediments suggests that this concentration gradient is maintained by greater sulfate-reducing activity in sands than in clays. Calculations based on Fick's Law indicate that possible rates of sulfate diffusion to aquifer sediments are sufficient to explain observed rates of CO2 production (about 10-5 mmoll-1 year-1), thus eliminating the apparent electron-acceptor deficit. Furthermore, concentrations of dissolved hydrogen in aquifer water are in the range characteristic of sulfate reduction (2-6 nM), which provides independent evidence that sulfate reduction is the predominant terminal electron-accepting process in this system. The observed accumulation of pyrite- and calcite-cemented sandstones at sand-clay interfaces is direct physical evidence that these processes have been continuing over the history of these sediments. ?? 1991.
Piret, Jocelyne; Désormeaux, André; Cormier, Hélène; Lamontagne, Julie; Gourde, Pierrette; Juhász, Julianna; Bergeron, Michel G.
2000-01-01
The influence of sodium lauryl sulfate (SLS) on the efficacies of topical gel formulations of foscarnet against herpes simplex virus type 1 (HSV-1) cutaneous infection has been evaluated in mice. A single application of the gel formulation containing 3% foscarnet given 24 h postinfection exerted only a modest effect on the development of herpetic skin lesions. Of prime interest, the addition of 5% SLS to this gel formulation markedly reduced the mean lesion score. The improved efficacy of the foscarnet formulation containing SLS could be attributed to an increased penetration of the antiviral agent into the epidermis. In vitro, SLS decreased in a concentration-dependent manner the infectivities of herpesviruses for Vero cells. SLS also inhibited the HSV-1 strain F-induced cytopathic effect. Combinations of foscarnet and SLS resulted in subsynergistic to subantagonistic effects, depending on the concentration used. Foscarnet in phosphate-buffered saline decreased in a dose-dependent manner the viability of cultured human skin fibroblasts. This toxic effect was markedly decreased when foscarnet was incorporated into the polymer matrix. The presence of SLS in the gel formulations did not alter the viabilities of these cells. The use of gel formulations containing foscarnet and SLS could represent an attractive approach to the treatment of herpetic mucocutaneous lesions, especially those caused by acyclovir-resistant strains. PMID:10952566
Observational and modeling studies of chemical species concentrations as a function of raindrop size
NASA Astrophysics Data System (ADS)
Wai, K. M.; Tam, C. W. F.; Tanner, P. A.
The Guttalgor method has been used to determine the chemical species concentrations in size-selected raindrops in nine rain events at Hong Kong from 1999 to 2001. The curve (concentration against raindrop radius) patterns for all the species are similar but depend on the starting time of sampling within a rain event. In these plots, the maximum concentration occurs at the same range of droplet radius, irrespective of the species, and this indicates the importance of coalescence and breakup processes. The maximum is located at a smaller droplet radius than was found in previous studies in Germany. All results show almost constant concentrations with size for large raindrops, and these indicate the in-cloud contributions. The pH of raindrops of similar size is linearly correlated with a function of the sulfate, nitrate, acetate, formate, calcium and ammonium ion species concentrations. Within a single raindrop, chloride depletion is not significant, and sulfate, ammonium and hydrogen ions are found in ratios compatible with the precursor solid-phase mixture of ammonium sulfate and ammonium bisulphate. When simulated by a below-cloud model, good agreement between the modeled and measured sodium and sulfate concentrations has been found. Below-cloud sulfur dioxide scavenging contributes at most 60% of the sulfate concentration in a single raindrop.
Tracing sources of sulfur in the Florida everglades
Bates, A.L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.
2002-01-01
We examined concentrations and sulfur isotopic ratios (34S/32S, expressed as ??34S in parts per thousand [???] units) of sulfate in surface water, ground water, and rain water from sites throughout the northern Everglades to establish the sources of sulfur to the ecosystem. The geochemistry of sulfur is of particular interest in the Everglades because of its link, through processes mediated by sulfate -reducing bacteria, to the production of toxic methylmercury in this wetland ecosystem. Methylmercury, a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Results show that surface water in large portions of the Everglades is heavily contaminated with sulfate, with the highest concentrations observed in canals and marsh areas receiving canal discharge. Spatial patterns in the range of concentrations and ??34S values of sulfate in surface water indicate that the major source of sulfate in sulfur-contaminated marshes is water from canals draining the Everglades Agricultural Area. Shallow ground water underlying the Everglades and rain water samples had much lower sulfate concentrations and ??34S values distinct from those found in surface water. The ??34S results implicate agricultural fertilizer as a major contributor to the sulfate contaminating the Everglades, but ground water under the Everglades Agricultural Area (EAA) may also be a contributing source. The contamination of the northern Everglades with sulfate from canal discharge may be a key factor in controlling the distribution and extent of methylmercury production in the Everglades.
NASA Astrophysics Data System (ADS)
Mora, Sergio Mosquera
Numerous studies have tried to determine the survivability and proliferation of microorganisms under simulated Martian conditions. Furthermore, most of them have been focused on the ability of these microbes to cope with high brines' salt (NaCl) concentrations inherent of the Martian surface. However, there are not studies related to the ability of bacteria to survive on subsurface environments that have increasing concentrations of sulfate compounds. For this research, a group of microorganisms known as sulfate-reducing bacteria or simply sulfate reducers were chosen due to their ability to use sulfate compounds as terminal electron acceptors to produce metabolic energy, their tolerance to low temperatures (psychrophilic microbes) and their anaerobic metabolism. Moreover, the principal purpose of this study was to determine the ability of sulfate reducers to carry active metabolism under conditions similar to those present on Mars subsurface (low temperature, high concentration of sulfate compounds, anoxic atmosphere-95% carbon dioxide, low nutrients availability, among others). Furthermore, we cultivated strains of Desulfotalea psychrophila, Desulfuromusa ferrireducens and Desulfotomaculum arcticum using different concentrations of minerals. The latter (CaSO 4, MgSO4, FeSO4 and Fe2(SO4) 3) are normally found as part of the Martian subsurface components and they can act as terminal electron acceptors in sulfate respiration. Moreover, PCR amplifications of the 16S rDNA gene and the dsrAB genes were performed in order to determine the growth and survivability of the three microorganisms tested. Finally, we were able to determine that they were metabolically active at the different types and mineral concentrations under study.
Lin, Xiao-Li; Kang, Zhi-Wei; Pan, Qin-Jian; Liu, Tong-Xian
2015-10-01
Larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have rich microbial communities inhabiting the gut, and these bacteria contribute to the fitness of the pest. In this study we evaluated the effects of five antibiotics (rifampicin, ampicillin, tetracycline, streptomycin sulfate and chloramphenicol) on the gut bacterial diversity of P. xylostella larvae. We screened five different concentrations for each antibiotic in a leaf disc assay, and found that rifampicin and streptomycin sulfate at 3 mg/mL significantly reduced the diversity of the bacterial community, and some bacterial species could be rapidly eliminated. The number of gut bacteria in the rifampicin group and streptomycin sulfate group decreased more rapidly than the others. With the increase of antibiotic concentration, the removal efficiency was improved, whereas toxic effects became more apparent. All antibiotics reduced larval growth and development, and eventually caused high mortality, malformation of the prepupae, and hindered pupation and adult emergence. Among the five antibiotics, tetracycline was the most toxic and streptomycin sulfate was a relatively mild one. Some dominant bacteria were not affected by feeding antibiotics alone. Denaturing gradient gel electrophoresis graph showed that the most abundant and diverse bacteria in P. xylostella larval gut appeared in the cabbage feeding group, and diet change and antibiotics intake influenced gut flora abundance. Species diversity was significantly reduced in the artificial diet and antibiotics treatment groups. After feeding on the artificial diet with rifampicin, streptomycin sulfate and their mixture for 10 days, larval gut bacteria could not be completely removed as detected with the agarose gel electrophoresis method. © 2014 Institute of Zoology, Chinese Academy of Sciences.
Zunino, Susan J; Hwang, Daniel H; Huang, Shurong; Storms, David H
2018-02-01
THP-1 monocytes were used to evaluate the effects of physiological levels of resveratrol aglycone, resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate on phagocytosis, IL-1β, IL-1α, and IL-18 production, viability, and TLR2 and TLR4 expression. THP-1 cells were treated with 1, 5, 10, and 15μM resveratrol or metabolites. Resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate had no effect on the functional parameters tested. Resveratrol aglycone increased phagocytosis at concentrations of 5, 10, and 15μM and LPS-induced IL-1β production at concentrations of 10 and 15μM. Expression of TLR4 increased slightly after resveratrol treatment, but surface expression of TLR2 was reduced as resveratrol concentrations increased. Our data suggest that resveratrol may be effective in modulating monocyte function in an environment where there is direct exposure to the aglycone, such as at the gut epithelium. Published by Elsevier Ltd.
Bishop, Tom; Turchyn, Alexandra V.; Sivan, Orit
2013-01-01
We present coupled sulfur and oxygen isotope data from sulfur nodules and surrounding gypsum, as well as iron and manganese concentration data, from the Lisan Formation near the Dead Sea (Israel). The sulfur isotope composition in the nodules ranges between -9 and -11‰, 27 to 29‰ lighter than the surrounding gypsum, while the oxygen isotope composition of the gypsum is constant around 24‰. The constant sulfur isotope composition of the nodule is consistent with formation in an ‘open system’. Iron concentrations in the gypsum increase toward the nodule, while manganese concentrations decrease, suggesting a redox boundary at the nodule-gypsum interface during aqueous phase diagenesis. We propose that sulfur nodules in the Lisan Formation are generated through bacterial sulfate reduction, which terminates at elemental sulfur. We speculate that the sulfate-saturated pore fluids, coupled with the low availability of an electron donor, terminates the trithionate pathway before the final two-electron reduction, producing thionites, which then disproportionate to form abundant elemental sulfur. PMID:24098403
Yang, Zhi; Hu, Xueqian; Wu, Shihua
2016-02-01
In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hirai, M Y; Fujiwara, T; Chino, M; Naito, S
1995-10-01
Transgenic expression of genes encoding the alpha' and beta subunits of beta-conglycinin, one of the major seed storage proteins of soybean (Glycine max [L.] Merr.), was analyzed in Arabidopsis thaliana (L.) Heynh. under conditions of sulfate deficiency. Temporal patterns of expression of both the intact beta subunit gene and the beta subunit gene promoter fused to the beta-glucuronidase (GUS) gene are similar in soil-less cultures using rockwool, suggesting that the response to sulfate deficiency is regulated mainly at the level of transcription. In hydroponic cultures with various concentrations of sulfate, expression of both the intact beta subunit gene and the beta subunit gene promoter-GUS fusion gene were negatively correlated to increased sulfate concentrations in the culture medium. Transfer of transgenic A. thaliana plants carrying the beta subunit gene promoter-GUS fusion from sulfate-deficient to sulfate-sufficient control medium caused GUS activity in developing siliques to be repressed within two days. A reverse shift, where the plants were transferred from the control to sulfate-deficient medium, caused GUS activity to become higher than that in seeds of the control plants within two days. These results indicate that the expression of the beta subunit gene promoter responds rapidly to changes of sulfate availability.
Zeng, Aiguo; Yuan, Bingxiang; Fu, Qiang; Wang, Changhe; Zhao, Guilan
2009-01-01
The effect of sodium dodecyl sulfate (SDS) on the swelling, erosion and release behavior of HPMC matrix tablets was examined. Swelling and erosion of HPMC matrix tablets were determined by measuring the wet and subsequent dry weights of matrices. The rate of uptake of the dissolution medium by the matrix was quantified using a square root relationship whilst the erosion of the polymer was described using the cube root law. The extent of swelling decreased with increasing SDS concentrations in the dissolution medium but the rate of erosion was found to follow a reverse trend. Such phenomena might have been caused by the attractive hydrophobic interaction between HPMC and SDS as demonstrated by the cloud points of the solutions containing both the surfactant and polymer. Release profiles of nimodipine from HPMC tablets in aqueous media containing different concentrations of SDS were finally studied. Increasing SDS concentrations in the medium was shown to accelerate the release of nimodipine from the tablets, possibly due to increasing nimodipine solubility and increasing rate of erosion by increasing SDS concentrations in the dissolution medium.
Preparation, characterization and in vitro anticoagulant activity of corn stover xylan sulfates.
Cheng, He-Li; Liu, Hao; Feng, Qing-Hua; Xie, Yi-Min; Zhan, Huai-Yu
2017-02-01
A new anticoagulant agent was prepared by introducing sulfate groups into corn stover xylan through homogeneous reactions. Three organic solvents, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and formamide (FA), were adopted as reaction media, with the assistance of LiCl. Structural characterization by FT-IR and 13 CNMR showed that xylan sulfate (XS) could be successfully synthesized with SO 3 ∙Pyridine (SO 3 ∙Py) complexes sulfation reagent in the three media. The effect of sulfation temperature, sulfation time, media type and molar ratio of -SO 3 /-OH on the degree of substitution (DS) and degree of the polymerization (DP) were studied. DMF/LiCl were more effective than DMSO/LiCl and FA/LiCl in preparation of xylan sulfate with high DS. The optimal conditions for sulfation were obtained when SO 3 ∙Py complex was added to DMF/LiCl with -SO 3 /-OH ratio of 1.5:1 and maintained at 50 °C for 3 h. Degree of polymerization of xylan was decreased during the sulfation process and DMF/LiCl offered the least xylan degradation as compared with DMSO/LiCl or FA/LiCl. Anticoagulant activities of the resultant xylan sulfates with different DS were evaluated by using activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT). Results indicated that the introducing of sulfate groups into xylan did endow the polysaccharides with anticoagulant activity. The APTT and TT of XS with DS of 1.20 reached 141 and 45.3 s at a dosage of 20 μg/mL, while the APTT and TT values for the blank sample were only 35.5 and 15.6 s. Furthermore, coagulation time was prolonged with the increase of DS and the concentration of XS. Our findings provide new insights into the value-added utilization of agricultural biomass.
Rocha, Rui; Santos, Rita S; Madureira, Pedro; Almeida, Carina; Azevedo, Nuno F
2016-05-20
Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.
XANES mapping of organic sulfate in three scleractinian coral skeletons
NASA Astrophysics Data System (ADS)
Cuif, Jean-Pierre; Dauphin, Yannicke; Doucet, Jean; Salome, Murielle; Susini, Jean
2003-01-01
The presence and localization of organic sulfate within coral skeletons are studied by using X-ray absorption near edge structure spectroscopy (XANES) fluorescence. XANES spectra are recorded from four reference sulfur-bearing organic molecules: three amino acids (H-S-C bonds in cysteine; C-S-C bonds in methionine; one disulfide bond C-S-S-C bonds in cystine) and a sulfated sugar (C-SO 4 bonds in chondroitin sulfate). Spectral responses of three coral skeletons show that the sulfated form is extremely dominant in coral aragonite, and practically exclusive within both centres of calcification and the surrounding fibrous tissues of coral septa. Mapping of S-sulfate concentrations in centres and fibres gives us direct evidence of high concentration of organic sulfate in centres of calcification. Additionally, a banding pattern of S-sulfate is visible in fibrous part of the coral septa, evidencing a biochemical zonation that corresponds to the step-by-step growth of fibres.
Crain, Angela S.; Martin, Gary R.
2009-01-01
Increasingly complex water-management decisions require water-quality monitoring programs that provide data for multiple purposes, including trend analyses, to detect improvement or deterioration in water quality with time. Understanding surface-water-quality trends assists resource managers in identifying emerging water-quality concerns, planning remediation efforts, and evaluating the effectiveness of the remediation. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to analyze and summarize long-term water-quality trends of selected properties and water-quality constituents in selected streams in Kentucky's ambient stream water-quality monitoring network. Trends in surface-water quality for 15 properties and water-quality constituents were analyzed at 37 stations with drainage basins ranging in size from 62 to 6,431 square miles. Analyses of selected physical properties (temperature, specific conductance, pH, dissolved oxygen, hardness, and suspended solids), for major ions (chloride and sulfate), for selected metals (iron and manganese), for nutrients (total phosphorus, total nitrogen, total Kjeldahl nitrogen, nitrite plus nitrate), and for fecal coliform were compiled from the Commonwealth's ambient water-quality monitoring network. Trend analyses were completed using the S-Plus statistical software program S-Estimate Trend (S-ESTREND), which detects trends in water-quality data. The trend-detection techniques supplied by this software include the Seasonal Kendall nonparametric methods for use with uncensored data or data censored with only one reporting limit and the Tobit-regression parametric method for use with data censored with multiple reporting limits. One of these tests was selected for each property and water-quality constituent and applied to all station records so that results of the trend procedure could be compared among stations. Flow-adjustment procedures were used with these techniques at all stations to remove the effects of streamflow on water-quality variability. Flow adjustments were used for all constituents, except temperature. A decreasing trend indicates a decrease in concentration of a particular constituent; whereas, an increasing trend indicates an increase in concentration and potential degradation in water quality. Trend results varied statewide by station and by physical property and water-quality constituent. The results for all stations and all physical properties and water-quality constituents examined had at least one statistically significant (p-value <0.05) increasing or decreasing trend during the specified period of record. Water temperature and concentrations of dissolved oxygen had no significant decreasing trends at any station. Water temperature had one significant increasing trend at the South Fork Cumberland River near Blue Heron station. Specific conductance and concentrations of hardness had one significant decreasing trend at the South Fork Cumberland River near Blue Heron station. pH also had a significant decreasing trend at the Mud River near Gus station. Concentrations of total suspended solids had 1 increasing trend at the Kentucky River at High Bridge station and 10 decreasing trends with 5 of those stations located in the Cumberland River Basin. Major ions analyzed for trends included chloride and sulfate. Concentrations of chloride at the 37 stations had increasing trends at 15 stations, decreasing trends at 3 stations, and no significant trend in concentration over time at 19 stations. Most of the increasing trends in concentrations of chloride are located in the northern part of Kentucky, possibly indicating an increase in the use of road salts for road deicing and (or) the result of resource extraction (oil, gas, and coal). Increasing trends of sulfate concentrations were detected at seven stations, all located in the Appalachian
Hammami, Muhammad M; Duaiji, Najla; Mutairi, Ghazi; Aklabi, Sabah; Qattan, Nasser; Abouzied, Mohei El-Din M; Sous, Mohamed W
2015-09-09
Normalization of cortisol concentration by multikinase inhibitors have been reported in three patients with medullary thyroid cancer-related Cushing's syndrome. Aortic dissection has been reported in three patients with Cushing's syndrome. Diabetes insipidus without intrasellar metastasis, intestinal intussusception, and paraneoplastic dysautonomia have not been reported in medullary thyroid cancer. An adult male with metastatic medullary thyroid cancer presented with hyperglycemia, hypernatremia, hypokalemia, hypertension, acne-like rash, and diabetes insipidus (urine volume >8 L/d, osmolality 190 mOsm/kg). Serum cortisol, adrenocorticoitropic hormone, dehydroepiandrostenedione sulfate, and urinary free cortisol were elevated 8, 20, 4.4, and 340 folds, respectively. Pituitary imaging was normal. Computed tomography scan revealed jejunal intussusception and incidental abdominal aortic dissection. Sorafenib treatment was associated with Cushing's syndrome remission, elevated progesterone (>10 fold), normalization of dehydroepiandrostenedione sulfate, but persistently elevated cortisol concentration. Newly-developed proximal lower limb weakness and decreased salivation were associated with elevated ganglionic neuronal acetylcholine receptor (alpha-3) and borderline P/Q type calcium channel antibodies. Extreme cortisol concentration may have contributed to aortic dissection and suppressed antidiuretic hormone secretion; which combined with hypokalemia due cortisol activation of mineralocorticoid receptors, manifested as diabetes insipidus. This is the first report of paraneoplastic dysautonomia and jejunal intussusception in medullary thyroid cancer, they may be related to medullary thyroid cancer's neuroendocrine origin and metastasis, respectively. Remission of Cushing's syndrome without measurable reduction in cortisol concentration suggests a novel cortisol-independent mechanism of action or assay cross-reactivity. Normalization of dehydroepiandrostenedione sulfate and elevation of progesterone suggest inhibition of 17-hydroxylase and 21-hydroxylase activities by sorafenib.
Lundin, Lisa; Jansson, Stina
2014-01-01
The use of waste wood as an energy carrier has increased during the last decade. However, the higher levels of alkali metals and chlorine in waste wood compared to virgin biomass can promote the formation of deposits and organic pollutants. Here, the effect of fuel composition and the inhibitory effects of ammonium sulfate, (NH4)2SO4, on the concentrations of persistent organic pollutants (POPs) in the flue gas of a lab-scale combustor was investigated. Ammonium sulfate is often used as a corrosion-preventing additive and may also inhibit formation of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In addition to PCDDs and PCDFs, polychlorinated naphthalenes (PCN) and biphenyls (PCB) were also analyzed. It was found that the flue gas composition changed dramatically when (NH4)2SO4 was added: CO, SO2, and NH3 levels increased, while those of HCl decreased to almost zero. However, the additive's effects on POP formation were less pronounced. When (NH4)2SO4 was added to give an S:Cl ratio of 3, only the PCDF concentration was reduced, indicating that this ratio was not sufficient to achieve a general reduction in POP emissions. Conversely, at an S:Cl ratio of 6, significant reductions in the WHO-TEQ value and the PCDD and PCDF contents of the flue gas were observed. The effect on the PCDF concentration was especially pronounced. PCN formation seemed to be promoted by the elevated CO concentrations caused by adding (NH4)2SO4. Copyright © 2013. Published by Elsevier Ltd.
Bartholomay, Roy C.; Davis, Linda C.; Fisher, Jason C.; Tucker, Betty J.; Raben, Flint A.
2012-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, analyzed water-quality data collected from 67 aquifer wells and 7 surface-water sites at the Idaho National Laboratory (INL) from 1949 through 2009. The data analyzed included major cations, anions, nutrients, trace elements, and total organic carbon. The analyses were performed to examine water-quality trends that might inform future management decisions about the number of wells to sample at the INL and the type of constituents to monitor. Water-quality trends were determined using (1) the nonparametric Kendall's tau correlation coefficient, p-value, Theil-Sen slope estimator, and summary statistics for uncensored data; and (2) the Kaplan-Meier method for calculating summary statistics, Kendall's tau correlation coefficient, p-value, and Akritas-Theil-Sen slope estimator for robust linear regression for censored data. Statistical analyses for chloride concentrations indicate that groundwater influenced by Big Lost River seepage has decreasing chloride trends or, in some cases, has variable chloride concentration changes that correlate with above-average and below-average periods of recharge. Analyses of trends for chloride in water samples from four sites located along the Big Lost River indicate a decreasing trend or no trend for chloride, and chloride concentrations generally are much lower at these four sites than those in the aquifer. Above-average and below-average periods of recharge also affect concentration trends for sodium, sulfate, nitrate, and a few trace elements in several wells. Analyses of trends for constituents in water from several of the wells that is mostly regionally derived groundwater generally indicate increasing trends for chloride, sodium, sulfate, and nitrate concentrations. These increases are attributed to agricultural or other anthropogenic influences on the aquifer upgradient of the INL. Statistical trends of chemical constituents from several wells near the Naval Reactors Facility may be influenced by wastewater disposal at the facility or by anthropogenic influence from the Little Lost River basin. Groundwater samples from three wells downgradient of the Power Burst Facility area show increasing trends for chloride, nitrate, sodium, and sulfate concentrations. The increases could be caused by wastewater disposal in the Power Burst Facility area. Some groundwater samples in the southwestern part of the INL and southwest of the INL show concentration trends for chloride and sodium that may be influenced by wastewater disposal. Some of the groundwater samples have decreasing trends that could be attributed to the decreasing concentrations in the wastewater from the late 1970s to 2009. The young fraction of groundwater in many of the wells is more than 20 years old, so samples collected in the early 1990s are more representative of groundwater discharged in the 1960s and 1970s, when concentrations in wastewater were much higher. Groundwater sampled in 2009 would be representative of the lower concentrations of chloride and sodium in wastewater discharged in the late 1980s. Analyses of trends for sodium in several groundwater samples from the central and southern part of the eastern Snake River aquifer show increasing trends. In most cases, however, the sodium concentrations are less than background concentrations measured in the aquifer. Many of the wells are open to larger mixed sections of the aquifer, and the increasing trends may indicate that the long history of wastewater disposal in the central part of the INL is increasing sodium concentrations in the groundwater.
Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A
2015-09-01
Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.
Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.
Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang
2013-01-15
Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans. Copyright © 2012 Elsevier B.V. All rights reserved.
Process integration for biological sulfate reduction in a carbon monoxide fed packed bed reactor.
Kumar, Manoj; Sinharoy, Arindam; Pakshirajan, Kannan
2018-08-01
This study examined immobilized anaerobic biomass for sulfate reduction using carbon monoxide (CO) as the sole carbon source under batch and continuous fed conditions. The immobilized bacteria with beads made of 10% polyvinyl alcohol (PVA) showed best results in terms of sulfate reduction (84 ± 3.52%) and CO utilization (98 ± 1.67%). The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was investigated employing a 1L packed bed bioreactor containing the immobilized biomass. At 48, 24 and 12 h HRT, the sulfate removal was 94.42 ± 0.15%, 89.75 ± 0.47% and 61.08 ± 0.34%, respectively, along with a CO utilization of more than 90%. The analysis of variance (ANOVA) of the results obtained showed that only the initial CO concentration significantly affected the sulfate reduction process. The reactor effluent sulfate concentrations were 27.41 ± 0.44, 59.16 ± 1.08, 315.83 ± 7.33 mg/L for 250, 500 and 1000 mg/L of influent sulfate concentrations respectively, under the optimum operating conditions. The sulfate reduction rates matched well with low inlet sulfate loading rates, indicating stable performance of the bioreactor system. Overall, this study yielded very high sulfate reduction efficiency by the immobilized anaerobic biomass under high CO loading condition using the packed bed reactor system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L.; Kakouros, Evangelos; Kieu, Le H.; Fleck, Jacob A.; Alpers, Charles N.; Stricker, Craig A.
2014-01-01
As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible ‘reactive’ mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored microbial sulfate reduction resulted in the highest calculated MeHg production potential rates. Rice straw management options aimed at limiting labile carbon supplies to surface sediment during the post-harvest fall–winter period may be effective in limiting MeHg production within agricultural wetlands.
Müller, Egbert; Josic, Djuro; Schröder, Tim; Moosmann, Anna
2010-07-09
Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive hydration forces in this hydrotrophic salt.
Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L; Kakouros, Evangelos; Kieu, Le H; Fleck, Jacob A; Alpers, Charles N; Stricker, Craig A
2014-06-15
As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible 'reactive' mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored microbial sulfate reduction resulted in the highest calculated MeHg production potential rates. Rice straw management options aimed at limiting labile carbon supplies to surface sediment during the post-harvest fall-winter period may be effective in limiting MeHg production within agricultural wetlands. © 2013.
NASA Technical Reports Server (NTRS)
Peltier, R. E.; Sullivan, A. P.; Weber, R. J.; Brock, C. A.; Wollny, A. G.; Holloway, J. S.; deGouw, J. A.; Warneke, C.
2007-01-01
During the New England Air Quality Study (NEAQS) in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC) of the submicron (PM(sub 1.0)) aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM) was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S.) and Canada was predominantly sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (approximately 60% micro gram /micro gram) and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass was largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar throughout all altitudes within the boundary layer (altitude less than 2.5 km), but was significantly higher at altitude layers in the free troposphere (above 2.5 km). A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the study and were largely comprised of organic aerosol components (approximtely 60%).
Recalibrating the concentration of Precambrian seawater sulfate
NASA Astrophysics Data System (ADS)
Johnston, D. T.; Bradley, A. S.; Hoarfrost, A.; Girguis, P. R.
2010-12-01
The isotopic offset between sulfate sulfur and sulfide sulfur (δ34Ssulfate-sulfide) is widely used in the Precambrian as a paleo-indicator of seawater sulfate concentrations. Popularized by experimental work proposing an increase in seawater sulfate at the Archean - Proterozoic boundary, the concept of using a calibrated physiological process (dissimilatory sulfate reduction) to extract environmental information holds the potential to unlock numerous geological questions. To that end, the interpretability of sulfur isotope records relies on the degree to which strict quantitative constraints have been placed on the relationship between sulfate concentrations and sulfate reducing bacteria. Our work serves to extend those constraints. Here we present data from a series of replicate quasi-chemostat microbial reactors, inoculated with marine sediment from Monterey Bay and incubated with artificial seawater ([SO42-]< 5 mM). Our experimental design continuously removes sulfide and allows for systematic tracking of the dependence of δ34Ssulfate-sulfide on seawater sulfate concentration. In addition to expanding the existing δ34S context, we target high-precision multiple sulfur isotope data, which allows for a greater interpretability of both the overall result and its mapping onto environmental records. Further, we use natural abundance and δ18O spiked water within our experiments to assay rates of cellular re-oxidation (within the sulfate reduction pathway) and to constrain natural δ18O effects within these systems. Finally, we use modern molecular biological techniques to track community structure as a function of time and environmental conditions. Together, these data provide an integrated metric with which to interpret complex natural sulfur isotope records.
Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis
2016-01-01
Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic relationship. PMID:26872267
Water quality of streams and springs, Green River Basin, Wyoming
DeLong, L.L.
1986-01-01
Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)
NASA Astrophysics Data System (ADS)
Siegel, D. I.
1990-11-01
Sulfate concentrations in ground water from the Cambrian-Ordovician aquifer of southeastern Wisconsin and northern Illinois increase up to hundreds of times where the aquifer is confined beneath the Maquoketa Shale. There is no sulfate source in the aquifer or overlying rocks except for minor amounts of finely disseminated pyrite. Coinciding with increasing sulfate concentrations, δ34S of the dissolved sulfate increases from less than -5‰ in the unconfined part of the aquifer to a nearly constant value of +20‰ where the aquifer is confined and where sulfate reduction is minimal. The most likely source for this isotopically heavy sulfate is ground water associated with Silurian evaporites under Lake Michigan. It is uncertain if the sulfate-rich water was emplaced in pulses or mostly during the last glaciation.
Association of Cord Blood Magnesium Concentration and Neonatal Resuscitation
Johnson, Lynn H.; Mapp, Delicia C.; Rouse, Dwight J.; Spong, Catherine Y.; Mercer, Brian M.; Leveno, Kenneth J.; Varner, Michael W.; Iams, Jay D.; Sorokin, Yoram; Ramin, Susan M.; Miodovnik, Menachem; O'Sullivan, Mary J.; Peaceman, Alan M.; Caritis, Steve N.
2014-01-01
Objective Assess the relationship between umbilical cord blood magnesium concentration and level of delivery room resuscitation received by neonates. Study design Secondary analysis of a controlled fetal neuroprotection trial that enrolled women at imminent risk for delivery between 24 and 31 weeks’ gestation and randomly allocated them to receive intravenous magnesium sulfate or placebo. The cohort included 1507 infants for whom total cord blood magnesium concentration and delivery room resuscitation information were available. Multivariable logistic regression was used to estimate the association between cord blood magnesium concentration and highest level of delivery room resuscitation, using the following hierarchy: none, oxygen only, bag-mask ventilation with oxygen, intubation or chest compressions. Results There was no relationship between cord blood magnesium and delivery room resuscitation (odds ratio [OR] 0.92 for each 1.0 mEq/L increase in magnesium; 95% confidence interval [CI]: 0.83-1.03). Maternal general anesthesia was associated with increased neonatal resuscitation (OR 2.51; 95% CI: 1.72-3.68). Each 1-week increase in gestational age at birth was associated with decreased neonatal resuscitation (OR 0.63; 95% CI: 0.60 – 0.66). Conclusion Cord blood magnesium concentration does not correlate with the level of delivery room resuscitation of infants exposed to magnesium sulfate for fetal neuroprotection. PMID:22056282
Sahinkaya, Erkan; Dursun, Nesrin
2012-09-01
This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Implications of mercury speciation in thiosulfate treated plants.
Wang, Jianxu; Feng, Xinbin; Anderson, Christopher W N; Wang, Heng; Zheng, Lirong; Hu, Tiandou
2012-05-15
Mercury uptake was induced in two cultivars of Brassica juncea under field conditions using thiosulfate. Analysis was conducted to better understand the mechanism of uptake, speciation of mercury in plants, and redistribution of mercury in the soil. Plant mercury and sulfur concentrations were increased after thiosulfate treatment, and a linear correlation between mercury and sulfur was observed. Mercury may be absorbed and transported in plants as the Hg-thiosulfate complex. The majority of mercury in treated plant tissues (two cultivars) was bound to sulfur in a form similar to β-HgS (66-94%). Remaining mercury was present in forms similar to Hg-cysteine (1-10%) and Hg-dicysteine (8-28%). The formation of β-HgS may relate to the transport and assimilation of sulfate in plant tissues. Mercury-thiosulfate complex could decompose to mercuric and sulfate ions in the presence of free protons inside the plasma membrane, while sulfide ions would be produced by the assimilation of sulfate. The concomitant presence of mercuric ions and S(2-) would precipitate β-HgS. The mercury concentration in the rhizosphere decreased in the treated relative to the nontreated soil. The iron/manganese oxide and organic-bound fractions of soil mercury were transformed to more bioavailable forms (soluble and exchangeable and specifically sorbed) and taken up by plants.
Determination of trace elements in triglycine sulfate solutions
NASA Technical Reports Server (NTRS)
Tadros, Shawky H.
1993-01-01
Ten elements were divided into 2 groups. The elements in the first group included iron, nickel, chromium, manganese, copper, and gold. The elements in the second group included zinc, cobalt, lead, cadmium, and gold. Five ppm of each element in each group was spiked in a 1 percent triglycine sulfate (TGS) solution. Glycine was removed with 1-naphthyl isocyanate in ether medium. The glycine derivative 1-naphthyl isocyanate glycine was removed by filtration, and the filtrates were analyzed for the different elements. Analysis of these elements was performed by using the 5100 Perkin-Elmer Atomic Absorption Spectrophotometer. The result of these experiments was the observation that there was a decrease in the concentration of chromium and gold, which was interpreted to be due to the chelation of these elements by the derivative 1-naphthyl isocyanate glycine. Further research is needed to determine the concentration of other elements in triglycine sulfate (TGS) solutions. These elements will include lithium, sodium, rubidium, magnesium, calcium, strontium, barium, aluminum, and silicon. These are the most likely elements to be found in the sulfuric acid used in manufacturing the TGS crystal. Moreover, we will extend our research to investigate the structural formula of the violet colored chelated compounds, which had been formed by interaction of the derivative 1-naphthyl isocyanate glycine with the different elements, such as gold, chromium.
Yang, Zhiquan; Zhou, Shaoqi; Sun, Yanbo
2009-09-30
A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L(-1) respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L(-1), respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic condition, including simultaneous removal of ammonium and sulfate, and the appearance of elemental sulfur and nitrogen gas as the terminal products, widened the cycle approach between nitrogen and sulfur.
NASA Astrophysics Data System (ADS)
Silver, Maxwell M. W.
The NASA Planetary Protection policy requires interplanetary space missions do not compromise the target body for a current or future scientific investigation and do not pose an unacceptable risk to Earth, including biologic materials. Robotic missions to Mars pose a risk to planetary protection in the forms of forward and reverse contamination. To reduce these risks, a firm understanding of microbial response to Mars conditions is required. Sulfate-reducing bacteria are prime candidates for potential forward contamination on Mars. Understanding the potential for forward-contamination of sulfate-reducers on Mars calls for the characterization of sulfate-reducers under Mars atmosphere, temperature, and sulfate-brines. This study investigated the response of several sulfate-reducing bacteria, including spore formers and psychrophiles. The psychrophile Desulfotalea psychrophila was found to inconsistently survive positive control lab conditions, attributed to an issue shipping pure cultures. Desulfotomaculum arcticum, a spore-forming mesophilic sulfate-reducer, and Desulfuromusa ferrireducens, an iron and sulfate-reducer, were metabolically active under positive control lab conditions with complex and minimal growth medium. A wastewater treatment sulfate-reducing bacteria (SRB) isolate was subjected to sulfate + growth-medium solutions of varied concentrations (0.44 & 0.55% wt. SO42-). The wastewater SRB displayed higher cellular light-absorbance levels at delayed rates in 0.55% sulfate solutions, suggesting a greater total culture reproduction, but with increased lag time. Additional SRB were isolated from marine sediments, subjected to a shock pressure of 8.73 GPa, and returned to ideal conditions. The sulfate-concentration patterns in the impacted SRB culture suggests a destruction of culture occurred somewhere during the preparation process. The response of SRB in this investigation to Ca and Na sulfate-brines suggests that Martian sulfate deposits offer a viable energy sink to terrestrial microorganisms, and the studied SRB are capable of replication at reduced water-activity. Further investigation (i.e. sulfate cations and concentrations, temperature, pressure, etc.) may identify Martian locations at risk to forward contamination.
Ko, Jae-Jung; Shimizu, Yoshihisa; Ikeda, Kazuhiro; Kim, Seog-Ku; Park, Chul-Hwi; Matsui, Saburo
2009-02-01
This study is designed to investigate the biodegradation of high molecular weight (HMW) lignin under sulfate reducing conditions. With a continuously mesophilic operated reactor in the presence of co-substrates of cellulose, the changes in HMW lignin concentration and chemical structure were analyzed. The acid precipitable polymeric lignin (APPL) and lignin monomers, which are known as degradation by-products, were isolated and detected. The results showed that HMW lignin decreased and showed a maximum degradation capacity of 3.49 mg/l/day. APPL was confirmed as a polymeric degradation by-product and was accumulated in accordance with HMW lignin reduction. We also observed non-linear accumulation of aromatic lignin monomers such as hydrocinnamic acid. Through our experimental results, it was determined that HMW lignin, when provided with a co-substrate of cellulose, is biodegraded through production of APPL and aromatic monomers under anaerobic sulfate reducing conditions with a co-substrate of cellulose.
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)
2000-01-01
Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).
Wu, Shubiao; Jeschke, Christina; Dong, Renjie; Paschke, Heidrun; Kuschk, Peter; Knöller, Kay
2011-12-15
Current understanding of the dynamics of sulfur compounds inside constructed wetlands is still insufficient to allow a full description of processes involved in sulfur cycling. Experiments in a pilot-scale horizontal subsurface flow constructed wetland treating high sulfate-containing contaminated groundwater were carried out. Application of stable isotope approach combined with hydro-chemical investigations was performed to evaluate the sulfur transformations. In general, under inflow concentration of about 283 mg/L sulfate sulfur, sulfate removal was found to be about 21% with a specific removal rate of 1.75 g/m(2)·d. The presence of sulfide and elemental sulfur in pore water about 17.3 mg/L and 8.5 mg/L, respectively, indicated simultaneously bacterial sulfate reduction and re-oxidation. 70% of the removed sulfate was calculated to be immobilized inside the wetland bed. The significant enrichment of (34)S and (18)O in dissolved sulfate (δ(34)S up to 16‰, compared to average of 5.9‰ in the inflow, and δ(18)O up to 13‰, compared to average of 6.9‰ in the inflow) was observed clearly correlated to the decrease of sulfate loads along the flow path through experimental wetland bed. This enrichment also demonstrated the occurrence of bacterial sulfate reduction as well as demonstrated by the presence of sulfide in the pore water. Moreover, the integral approach shows that bacterial sulfate reduction is not the sole process controlling the isotopic composition of dissolved sulfate in the pore water. The calculated apparent enrichment factor (ɛ = -22‰) for sulfur isotopes from the δ(34)S vs. sulfate mass loss was significantly smaller than required to produce the observed difference in δ(34)S between sulfate and sulfide. It indicated some potential processes superimposing bacterial sulfate reduction, such as direct re-oxidation of sulfide to sulfate by oxygen released from plant roots and/or bacterial disproportionation of elemental sulfur. Furthermore, 41% of residual sulfate was calculated to be from sulfide re-oxidation, which demonstrated that the application of stable isotope approach combined with the common hydro-chemical investigations is not only necessary for a general qualitative evaluation of sulfur transformations in constructed wetlands, but also leads to a quantitative description of intermediate processes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Distinguishing iron-reducing from sulfate-reducing conditions
Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.
2009-01-01
Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.
Ferrero, Maximiliano R; Soprano, Luciana L; Acosta, Diana M; García, Gabriela A; Esteva, Mónica I; Couto, Alicia S; Duschak, Vilma G
2014-09-01
Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. Duringmore » the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wensui; Zhou, Jizhong; Wu, Weimin
2007-01-01
A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonatemore » (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.« less
Custelcean, Radu; Sloop, Frederick V.; Rajbanshi, Arbin; ...
2014-12-04
We measured the thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na 2 35SO 4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na 2SO 4(L1) 2(H 2O) 4 capsules. We foundmore » that temperature exerted relatively little influence over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. Moreover, this corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.« less
Mine drainage water from the Sar Cheshmeh porphyry copper mine, Kerman, IR Iran.
Shahabpour, J; Doorandish, M
2008-06-01
This paper presents the results of a study on stream and mine waters in the area of one of the world largest porphyry copper deposit located in the southeastern Iran, the Sar Cheshmeh porphyry copper mine. Trace metals are present as adsorption on Fe and Mn oxide and hydroxide particles, as sulfate, simple metal ions, and scarcely as adsorption on clay particles and hydrous aluminium oxides. Mean pH decreases and the mean concentration of trace elements, EC and SO4(2-) increases from the maximum discharge period (MXDP) during snow melt run off (May), through the moderate discharge period (MDDP; March and July) to the minimum discharge period (MNDP; September). Water samples have sulfatic character essentially, however, from the MNDP through the MDDP towards the MXDP they show a bicarbonate tendency. This study indicates that the surface waters draining the Sar Cheshmeh open pit have a higher pH and lower concentration of trace metals compared with some other porphyry copper deposits.
STATISTICAL METHOD FOR DETECTION OF A TREND IN ATMOSPHERIC SULFATE
Daily atmospheric concentrations of sulfate collected in northeastern Pennsylvania are regressed against meteorological factors, ozone, and time in order to determine if a significant trend in sulfate can be detected. he data used in this analysis were collected during the Sulfat...
Impact of wildfires on size-resolved aerosol composition at a coastal California site
NASA Astrophysics Data System (ADS)
Maudlin, L. C.; Wang, Z.; Jonsson, H. H.; Sorooshian, A.
2015-10-01
Size-resolved aerosol composition measurements were conducted at a coastal site in central California during the Nucleation in California Experiment (NiCE) between July and August of 2013. The site is just east of ship and marine emission sources and is also influenced by continental pollution and wildfires, such as those near the California-Oregon border which occurred near the end of NiCE. Two micro-orifice uniform deposit impactors (MOUDIs) were used, and water-soluble and elemental compositions were measured. The five most abundant water-soluble species (in decreasing order) were chloride, sodium, non-sea salt (nss) sulfate, ammonium, and nitrate. During wildfire periods, nss K mass concentrations were not enhanced as strongly as other species in the sub-micrometer stages and even decreased in the super-micrometer stages; species other than nss K are more reliable tracers for biomass burning in this region. Chloride levels were reduced in the fire sets likely due to chloride depletion by inorganic and organic acids that exhibited elevated levels in transported plumes. During wildfire periods, the mass size distribution of most dicarboxylic acids changed from unimodal to bimodal with peaks in the 0.32 μm and 1.0-1.8 μm stages. Furthermore, sulfate's peak concentration shifted from the 0.32 μm to 0.56 μm stage, and nitrate also shifted to larger sizes (1.0 μm to 1.8-3.2 μm stages). Mass concentrations of numerous soil tracer species (e.g., Si, Fe) were strongly enhanced in samples influenced by wildfires, especially in the sub-micrometer range. Airborne cloud water data confirm that soil species were associated with fire plumes transported south along the coast. In the absence of biomass burning, cloud condensation nuclei (CCN) composition is dominated by nss sulfate and ammonium, and the water-soluble organic fraction is dominated by methanesulfonate, whereas for the samples influenced by wildfires, ammonium becomes the dominant overall species, and oxalate is the most abundant organic species.
The Glycosaminoglycans of Normal and Arthritic Cartilage
Mankin, Henry J.; Lippiello, Louis
1971-01-01
The cartilages from the hip joints of 13 normal and 15 osteoarthritic humans were analyzed for glycosaminoglycan content and distribution. The GAGs were separated by elution with CPC on a short cellulose column by the technique of Svejcar and Robertson after digestion of the tissue with pronase and papain. The eluates were identified by a variety of methods including determination of molar ratios, N-acetyl-hexosamine determinations after hyaluronidase treatment and thin-layer chromatography of unhydrolyzed and hydrolyzed GAGs. From the data obtained, it was demonstrated that cartilage from arthritic patients showed a significant increase in the concentration of chondroitin 4-sulfate and a significant decrease in keratan sulfate, with only slight changes in the total amount of GAG present. Calculations of the molar ratios showed variation in the sulfation with chondroitin 4-sulfate appearing in the “supersulfated” state in the arthritic cartilage. The data lead to speculation regarding the process of osteoarthritis, and it is concluded that the changes seen are more likely to represent an altered pattern of synthesis rather than selective degradation. Since the changes suggest a younger cartilage, a theory is advanced that the chondrocyte responds to the chronic stress of osteoarthritis by modulation to a chondroblastic phase. PMID:4255496
Bioremediation of coal contaminated soil under sulfate-reducing condition.
Kuwano, Y; Shimizu, Y
2006-01-01
The objective of this study was to investigate the biodegradation of coal-derived hydrocarbons, especially high molecular weight (HMW) components, under anaerobic conditions. For this purpose biodegradation experiments were performed, using specifically designed soil column bioreactors. For the experiment, coal-contaminated soil was prepared, which contains high molecular weight hydrocarbons at high concentration (approx. 55.5 mgC g-drysoil(-1)). The experiment was carried out in two different conditions: sulfate reducing (SR) condition (SO4(2-) = 10 mmol l(-1) in the liquid medium) and control condition (SO4(2-)<0.5 mmol l(-1)). Although no degradation was observed under the control condition, the resin fraction decreased to half (from 6,541 to 3,386 mgC g-soil(-1)) under SR condition, with the concomitant increase of two PAHs (phenanthrene and fluoranthene, 9 and 2.5 times, respectively). From these results, we could conclude that high molecular hydrocarbons were biodegradable and transformed to low molecular weight PAHs under the sulfate-reducing condition. Since these PAHs are known to be biologically degraded under aerobic condition, a serial combination of anaerobic (sulfate reducing) and then aerobic bioremediations could be effective and useful for the soil pollution by petroleum and/or coal derived hydrocarbons.
Dziewiatkowski, Dominic D.
1954-01-01
The administration of vitamin A to vitamin A-deficient rats resulted in a decreased concentration of inorganic sulfate-sulfur in the serum from a value of 2.5 mg. per cent to 1.8 mg. per cent, the latter being close to the value of 2.0 mg. per cent found in normal rats of the same age. The uptake of sulfate and phosphate by femurs and tibiae of vitamin A-deficient rats was less than that in normal rats of the same age. An increased uptake followed the administration of vitamin A: radioautography indicated that in the case of sulfate, its uptake was particularly increased in the epiphyseal cartilage; an increased uptake of phosphate was particularly evident in the diaphysis immediately adjacent to the epiphyseal cartilage plate. The specific activity of the sulfate-sulfur in the chondroitin sulfate samples isolated from the skeletons of vitamin A-deficient rats fell progressively as the deficiency continued. Following administration of vitamin A, the specific activity approached and exceeded the value given by the sample from the skeletons of normal rats of the same age. A substantial increase was found in the value of the specific activity of the sulfate-sulfur of sulfomucopolysaccharides isolated from skins of vitamin A-deficient rats that had been given vitamin A. Following administration of vitamin A to rats deficient in this vitamin, an increased accumulation of some sulfur-containing material was found in regions of active calcification. PMID:13163335
Elevated arsenic concentrations are coincident with enriched sulfur and oxygen isotopes of sulfate in bedrock ground water within Kelly's Cove watershed, Northport, Maine, USA. Interpretation of the data is complicated by the lack of correlations between sulfate concentrations an...
Chamani, J; Heshmati, M
2008-06-01
Papain exists in a molten globule (MG) state at pH 2 and in this state protein tends to aggregate in the presence of lower concentrations of guanidine hydrochloride (GuHCl). Such aggregation is prevented if low concentrations of sodium n-alkyl sulfates are also present in the buffer; in addition, stabilization of the protein is also induced. The guanidine hydrochloride and temperature-induced unfolding of papain, in the presence of n-alkyl sulfates, indicate stabilization of the protein as seen from the higher transition midpoints when monitored by fluorescence, circular dichroism, and differential scanning calorimetry. However, a similar phenomenon is not seen under neutral conditions in the presence of n-alkyl sulfate concentrations. The effect of n-alkyl sulfates on the structure of the MG state of papain was utilized to investigate the contribution of hydrophobic interaction to the stability of the MG state. The Td values of the MG states of papain in the presence of n-alkyl sulfates at different concentrations showed substantial variation. The enhancement of Td values at the stability criterion of MG states corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the hydrophobic interactions play important roles in stabilizing and preventing the aggregation of the MG state of papain.
Kim, Jung-Hwan; Kim, Jong Yun; Kim, Soo-Sam
2009-09-01
The Electrokinetic-Fenton (EK-Fenton) process is a powerful technology to remediate organic-contaminated soil. The behavior of salts and acids introduced for the pH control has significant influence on the H(2)O(2) stabilization and destruction of organic contaminants. In this study, the effects of the type and concentration of acids, which were introduced at the anode, were investigated for the treatment of clayey soil contaminated with phenanthrene. In experiments with H(2)SO(4) as the anode solution, H(2)O(2) concentration in the anode reservoir decreased due to reaction between reduced species of sulfate and H(2)O(2), as time elapsed. By contrast, HCl as an electrolyte in the anode reservoir did not decrease the H(2)O(2) concentration in the anode reservoir. The reaction between the reduced species of sulfate and H(2)O(2) hindered the stabilization of H(2)O(2) in the soil and anode reservoir. In experiments with HCl for pH control, Cl(.), and Cl(2)(. -), which could be generated with mineral catalyzed Fenton-like reaction, did not significantly hinder H(2)O(2) stabilization. H(2)O(2) transportation with electro-osmotic flow and mineral catalyzed Fenton-like reaction on the soil surface resulted in the simultaneous transport and degradation of phenanthrene, which are dependent of the advancement rate of the acid front and electro-osmotic flow toward the cathode according to HCl and H(2)SO(4) concentrations in the anode purging solution.
NASA Astrophysics Data System (ADS)
Ganor, E.; Levin, Z.; Van Grieken, R.
Aerosol particles were collected aboard a ship in Haifa Bay and Tel Aviv, Israel, during the summer time. The aerosol particles (6170) were analyzed as individual particles and classified according to their chemical composition, size, number concentration per cubic centimeter and morphology. Most of the aerosol particles could be classified into four groups. The first contains gypsum from the sea and from industrial sources brought in by land breezes. A second group is characterized by continental aluminosilicate and quartz. A third group consists of sea salt mixed with sulfate particles. The fourth group is characterized by an abundance of sulfate particles, some of which are ammonium sulfate brought by the land breezes. The particles were identified as marine and mineral aerosols which originated in Eastern Europe and the Mediterranean sea, while local aerosols brought by land breeze characterized by phosphate, fly ash and soil particles originated in the Haifa industrial zone. In addition, the aerosols were analyzed for sulfates and nitrates. Aerosols of sea and land breezes differed as follows: (1) Sulfate and nitrate concentrations in the aerosols were 5-10 times higher during land breeze than during sea breeze, and the total content of suspended particles was, respectively, 6-12 times higher. (2) Particle size spectra during land breeze were broader than during sea breeze and their concentrations were about 20 times greater. Analyses of individual particles by electron microscopy revealed that during the sea breeze the aerosols contained calcium sulfate, sodium sulfate and sulfuric acid. The sulfuric acid, of pH 2.5, is due to the long-range transport as previously reported ( Ganor et al., 1993) while the other sulfates are from the sea. This explains the high concentration of sulfates in the atmospheric sea breeze above the Israelian Mediterranean coast during the summertime.
Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice
Reine, Trine M.; Grøndahl, Frøy; Jenssen, Trond G.; Hadler-Olsen, Elin; Prydz, Kristian
2013-01-01
Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes. PMID:23757342
Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.
Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O
2013-08-01
Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.
Vinegar-amended anaerobic biosand filter for the removal of arsenic and nitrate from groundwater.
Snyder, Kathryn V; Webster, Tara M; Upadhyaya, Giridhar; Hayes, Kim F; Raskin, Lutgarde
2016-04-15
The performance of a vinegar-amended anaerobic biosand filter was evaluated for future application as point-of-use water treatment in rural areas for the removal of arsenic and nitrate from groundwater containing common ions. Due to the importance of sulfate and iron in arsenic removal and their variable concentrations in groundwater, influent sulfate and iron concentrations were varied. Complete removal of influent nitrate (50 mg/L) and over 50% removal of influent arsenic (200 μg/L) occurred. Of all conditions tested, the lowest median effluent arsenic concentration was 88 μg/L. Iron removal occurred completely when 4 mg/L was added, and sulfate concentrations were lowered to a median concentration <2 mg/L from influent concentrations of 22 and 50 mg/L. Despite iron and sulfate removal and the establishment of reducing conditions, arsenic concentrations remained above the World Health Organization's arsenic drinking water standard. Further research is necessary to determine if anaerobic biosand filters can be improved to meet the arsenic drinking water standard and to evaluate practical implementation challenges. Copyright © 2016. Published by Elsevier Ltd.
Masadome, Takashi; Yamagishi, Yuichi; Takano, Masaki; Hattori, Toshiaki
2008-03-01
A potentiometric titration method using a cationic surfactant as an indicator cation and a plasticized poly(vinyl chloride) membrane electrode sensitive to the cationic surfactant is proposed for the determination of polyhexamethylene biguanide hydrochloride (PHMB-HCl), which is a cationic polyelectrolyte. A sample solution of PHMB-HCl containing an indicator cation (hexadecyltrimethylammonium ion, HTA) was titrated with a standard solution of an anionic polyelectrolyte, potassium poly(vinyl sulfate) (PVSK). The end-point was detected as a sharp potential change due to an abrupt decrease in the concentration of the indicator cation, HTA, which is caused by its association with PVSK. The effects of the concentrations of HTA ion and coexisting electrolytes in the sample solution on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant exists in the concentration range from 2.0 x 10(-5) to 4.0 x 10(-4) M in the case that the concentration of HTA is 1.0 x 10(-5) M, and that from 1.0 x 10(-6) to 1.2 x 10(-5) M in the case that the concentration of HTA is 5.0 x 10(-6) M, respectively. The proposed method was applied to the determination of PHMB-HCl in some contact-lens detergents.
Effects of ammonium sulfate aerosols on vegetation—II. Mode of entry and responses of vegetation
NASA Astrophysics Data System (ADS)
Gmur, Nicholas F.; Evans, Lance S.; Cunningham, Elizabeth A.
These experiments were designed to provide information on the rates of aerosol deposition, mode of entry, and effects of deposition of submicrometer ammonium sulfate aerosols on foliage of Phaseolus vulgaris L. A deposition velocity of 3.2 × 10 3cms-1 was constant during 3-week exposures of plants to aerosol concentrations of 26mg m -3 (i.e. about two orders of magnitude above ambient episode concentrations). Mean deposition rate on foliage was 4.1 × 10 -11 μg cm -2s -1. Visible injury symptoms included leaf chlorosis, necrosis and loss of turgor. Chlorosis was most frequent near leaf margins causing epinasty and near major veins. Internal injury occurred initially in spongy mesophyll cells. Eventually abaxial epidermal and palisade parenchyma cells were injured. These results suggest that submicrometer aerosols enter abaxial stomata and affect more internal cells before affecting leaf surface cells. Exposure to aerosols decreased both abaxial and adaxial leaf resistances markedly. Although visible injury to foliage occurred, no changes in dry mass of roots and shoots or leaf area occurred. These results suggest that for the plant developmental stage studied, while leaf resistances decreased and cellular injury occurred in foliage, these factors were not significantly related to plant growth and development.
Spear, John R.; Figueroa, Linda A.; Honeyman, Bruce D.
2000-01-01
The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source. PMID:10966381
Cigarette smoke toxicants as substrates and inhibitors for human cytosolic SULTs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, Shin; Idell, Steven; Fu Jian
2007-05-15
The current study was designed to examine the role of sulfation in the metabolism of cigarette smoke toxicants and clarify whether these toxicants, by serving as substrates for the cytosolic sulfotransferases (SULTs), may interfere with the sulfation of key endogenous compounds. By metabolic labeling, [{sup 35}S]sulfated species were found to be generated and released into the media of HepG2 human hepatoma cells and primary human lung endothelial cells labeled with [{sup 35}S]sulfate in the presence of cigarette smoke extract (CSE). Concomitantly, several [{sup 35}S]sulfated metabolites observed in the medium in the absence of CSE either decreased or disappeared. Eleven previouslymore » prepared human cytosolic SULTs were tested for sulfating activity with CSE and known cigarette smoke toxicants as substrates. Activity data revealed SULT1A1, SULT1A2, SULT1A3, and SULT1C2 as major enzymes responsible for their sulfation. To examine their inhibitory effects on the sulfation of 17{beta}-estradiol by SULT1A1, enzymatic assays were performed in the presence of three representative toxicant compounds, namely N-hydroxy-4-aminobiphenyl (N-OH-4-ABP), 4-aminobiphenyl (4-ABP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). IC{sub 50} values determined for the sulfation of 17{beta}-estradiol by SULT1A1 were 11.8 {mu}M, 28.2 {mu}M, and 500 {mu}M, respectively, for N-OH-4-ABP, 4-ABP and PhIP. Kinetic analyses indicated that the mechanism underlying the inhibition of 17{beta}-estradiol sulfation by these cigarette smoke toxicants is of a mixed competitive-noncompetitive type. Metabolic labeling experiments clearly showed inhibition of the production of [{sup 35}S]sulfated 17{beta}-estradiol by N-OH-4-ABP in a concentration-dependent manner in HepG2 cells. Taken together, these results suggest that sulfation plays a significant role in the metabolism of cigarette smoke compounds. By serving as substrates for SULTs, cigarette smoke toxicants may interfere with the metabolism of 17{beta}-estradiol and other endogenous compounds.« less
England, Beatrice
1972-01-01
Protamine sulfate was employed to recover reoviruses, adenoviruses, and certain enteroviruses from sewage and treated effluents; 50- to 400-fold concentration of viral content was achieved. PMID:4342842
Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.
2006-01-01
Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples from 900 ft or less below land surface, although mineralized, were fresh, not brackish. Sodium concentrations ranged from 51.3 to 513 mg/L, with the maximum concentration found at 882 ft below land surface in the composite confining unit below the aquifer. Chloride concentrations ranged from 46.4 to 757 mg/L, with the maximum concentration found at 596 ft below land surface in the 'lower' confining unit, and were higher than those in pore water from the same units at Atlantic City, N.J. Concentrations of chloride in the composite confining unit below the aquifer were consistently greater than 250 mg/L, indicating that the confining unit can be a source of chloride at depth. Of the major anions, sulfate was the constituent whose concentration varied most, ranging from 42 to 799 mg/L. The maximum concentration was found at 406 ft below land surface, in the upper part of the confining unit overlying the aquifer and the Rio Grande water-bearing zone (termed the 'upper' confining unit). Sulfide was not detected in any pore-water sample despite the presence of abundant quantities of sulfate and sulfide in the aquifer. The absence of sulfide in the pore waters is consistent with the hypothesis that sulfate is reduced in the aquifer. The presence of arsenic, at concentrations ranging from 0.0062 to 0.0374 mg/L, is consistent with the absence of sulfide and the possible presence of iron in the pore water.
Geochemical Investigation of Slope Failure on the Northern Cascadia Margin Frontal Ridge
NASA Astrophysics Data System (ADS)
Pohlman, J. W.; Riedel, M.; Waite, W.; Rose, K.; Lapham, L.; Hamilton, T. S.; Enkin, R.; Spence, G. D.; Hyndman, R.; Haacke, R.
2008-12-01
Numerous submarine landslides occur along the seaward side of the northern Cascadia margin's frontal ridge. Bottom simulating reflectors (BSRs) are also prevalent beneath the ridge at a sediment depth (~255 mbsf) coincident with the failure of at least one potentially recent slump. By one scenario, the most recent megathrust earthquake on the northern Cascadia margin, which occurred in 1700 A.D., raised the pore pressure and destabilized gas-charged sediment at the BSR depth. If true, the exposed seafloor within the slide's sole would contain gas-charged, sulfate-free sediment immediately following the slope failure. Over time, sulfate would diffuse into the exposed sediment and re-establish an equilibrium sulfate gradient. In this study, three 1-5 km wide collapse structures and the surrounding areas were cored during the Natural Resources Canada (NRCan) supported cruise PGC0807 to determine if the failures were related to over- pressurized gas and constrain the age of the slumps. Sulfate and methane gradients were measured from cores typically collected along a transect from the headwall scarp, and down to the toe of the slide. Rapidly decreasing sulfate concentrations with depth (a proxy for enhanced methane flux toward the seafloor) above the headwall of Lopez slump confirms a high background flux on the crest of the ridge. However, within the cores we recovered from the headwall, slide sole and slide deposits at all sites investigated, sulfate was abundant, methane was largely absent and, correspondingly, sulfate gradients were relatively low. On the basis of these results, methane was either lost from the system during or since the slope failure, or was never present in the high concentrations expected at an exhumed BSR. Numerical models that simulate sulfate diffusion following the slump-induced pore water profile perturbations will be utilized to constrain the age of the slope failures. Complementary sedimentological and geotechnical studies from the geochemically analyzed cores are ongoing to understand the primary factors that initiate and trigger slope failures along the frontal ridge of the northern Cascadia margin. Shipboard scientific party in alphabetical order: R. Enkin (NRCan), L. Esteban (NRCan), R. Haacke (NRCan), T.S. Hamilton (Camosun College), M. Hogg (Camosun), L. Lapham (Florida State), G. Middleton (NRCan), P. Neelands (NRCan), J. Pohlman (USGS), M. Riedel (McGill), K. Rose (USDOE), A. Schlesinger (UVic), G. Standen (Geoforce), A. Stephenson (UVic), S. Taylor (NRCan), W. Waite (USGS), X. Wang (McGill)
Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters
Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.
2009-01-01
Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.
Hyer, Kenneth; Hornberger, George M.; Herman, Janet S.
2001-01-01
Episodic streamwater transport of atrazine (a common agricultural herbicide) and nutrients has been observed throughout agricultural watersheds in the United States and poses a serious threat to the quality of its water resources. Catchment-scale atrazine and nutrient transport processes after agricultural application are still poorly understood, and predicting episodic streamwater composition remains an elusive goal. We instrumented a 1.2-km2 agricultural catchment near Harrisonburg, Virginia, and examined streamwater, overland flow, soil water, groundwater, and rainfall during the summer of 1998. Storm chemographs demonstrated different patterns for constituents derived primarily from weathering (silica and calcium), compared to constituents derived primarily from early spring land applications (nitrate, atrazine, DOC, potassium, chloride, and sulfate). During storms, the concentrations of silica and calcium decreased, the atrazine response was variable, and the concentrations of nitrate, DOC, potassium, chloride, and sulfate increased; the elevated nitrate signal lagged several hours behind the other elevated constituents. Graphical and statistical analyses indicated a relatively stable spring-fed baseflow was modified by a mixture of overland flow and soil water. A rapid, short-duration overland-flow pulse dominated the streamflow early in the event and contributed most of the potassium, DOC, chloride, suspended sediment, and atrazine. A longer-duration soil–water pulse dominated the streamflow later in the event and contributed the nitrate as well as additional potassium, DOC, sulfate, and atrazine. The contributions to the episodic streamflow were quantified using a flushing model in which overland-flow and soil–water concentrations decreased exponentially with time during an episode. Flushing time constants for the overland-flow and soil–water reservoirs were calculated on a storm-by-storm basis using separate tracers for each time-variable reservoir. Initial component concentrations were estimated through regression analyses. Mass-balance calculations were used for flow separations and to predict the observed streamwater composition. Model forecasts indicated that reduced fertilizer and pesticide application (rather than elimination of overland-flow or soil–water contributions) was necessary to improve the episodic streamwater composition. This study provides important additional understanding of the catchment-scale processes by which land-applied pesticides and nutrients can move through agricultural systems.
Durães, Nuno; Bobos, Iuliu; da Silva, Eduardo Ferreira
2017-02-01
Acid mine waters (AMW) collected during high- and low-flow water conditions from the Lousal, Aljustrel, and São Domingos mining areas (Iberian Pyrite Belt) were physicochemically analyzed. Speciation calculation using PHREEQC code confirms the predominance of Me n+ and Me-SO 4 species in AMW samples. Higher concentration of sulfate species (Me-SO 4 ) than free ion species (Me n+ , i.e., Al, Fe, and Pb) were found, whereas opposite behavior is verified for Mg, Cu, and Zn. A high mobility of Zn than Cu and Pb was identified. The sulfate species distribution shows that Fe 3+ -SO 4 2- , SO 4 2- , HSO 4 - , Al-SO 4 , MgSO 4 0 , and CaSO 4 0 are the dominant species, in agreement with the simple and mixed metal sulfates and oxy-hydroxysulphates precipitated from AMW. The saturation indices (SI) of melanterite and epsomite show a positive correlation with Cu and Zn concentrations in AMW, which are frequently retained in simple metal sulfates. Lead is well correlated with jarosite and alunite (at least in very acid conditions) than with simple metal sulfates. The Pb for K substitution in jarosite occurs as increasing Pb concentration in solution. Lead mobility is also controlled by anglesite precipitation (a fairly insoluble sulfate), where a positive correlation was ascertained when the SI approaches equilibrium. The zeta potential of AMW decreased as pH increased due to colloidal particles aggregation, where water species change from SO 4 2- to OH - species during acid to alkaline conditions, respectively. The AMW samples were supersaturated in schwertmannite and goethite, confirmed by the Me n+ -SO 4 , Me n+ -Fe-O-OH, or Me n+ -S-O-Fe-O complexes identified by attenuated total reflectance infrared spectroscopy (ATR-IR). The ATR-IR spectrum of an AMW sample with pH 3.5 (sample L1) shows well-defined vibration plans attributed to SO 4 tetrahedron bonded with Fe-(oxy)hydroxides and the Me n+ sorbed by either SO 4 or Fe-(oxy)hydroxides. For samples with lower pH values (pH ~ 2.5-samples SD1 and SD4), the vibration plans attributed to Me n+ sorption are not evidenced, indicating its release in solution. The sorption of heavy metals on the first precipitated simple metal sulfates was ascertained by scanning electron microscopy coupled with X-ray spectrometry (SEM-EDX), where X-ray maps of Cu and Zn confirm a distribution of both metals in the melanterite structure.
Berndt, Michael E; Rutelonis, Wes; Regan, Charles P
2016-10-01
The St. Louis River watershed in northeast Minnesota hosts a major iron mining district that has operated continuously since the 1890s. Concern exists that chemical reduction of sulfate that is released from mines enhances the methylation of mercury in the watershed, leading to increased mercury concentrations in St. Louis River fish. This study tests this idea by simulating the behavior of chemical tracers using a hydrologic flow model (Hydrologic Simulation Program FORTRAN; HSPF) and comparing the results with measured chemistry from several key sites located both upstream and downstream from the mining region. It was found that peaks in measured methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and dissolved iron (Fe) concentrations correspond to periods in time when modeled recharge was dominated by active groundwater throughout the watershed. This helps explain why the timing and size of the MeHg peaks was nearly the same at sites located just upstream and downstream from the mining region. Both the modeled percentages of mine water and the measured sulfate concentrations were low and computed transit times were short for sites downstream from the mining region at times when measured MeHg reached its peak. Taken together, the data and flow model imply that MeHg is released into groundwater that recharges the river through riparian sediments following periods of elevated summer rainfall. The measured sulfate concentrations at the upstream site reached minimum concentrations of approximately 1 mg/L just as MeHg reached its peak, suggesting that reduction of sulfate from non-point sources exerts an important influence on MeHg concentrations at this site. While mines are the dominant source of sulfate to sites downstream from them, it appears that the background sulfate which is present at only 1-6 mg/L, has the largest influence on MeHg concentrations. This is because point sourced sulfate is transported generally under oxidized conditions and is not flushed through riparian sediments in a gaining stream watershed system. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
A laboratory study of anaerobic oxidation of methane in the presence of methane hydrate
NASA Astrophysics Data System (ADS)
Solem, R.; Bartlett, D.; Kastner, M.; Valentine, D.
2003-12-01
In order to mimic and study the process of anaerobic methane oxidation in methane hydrate regions we developed four high-pressure anaerobic bioreactors, designed to incubate environmental sediment samples, and enrich for populations of microbes associated with anaerobic methane oxidation (AMO). We obtained sediment inocula from a bacterial mat at the southern Hydrate Ridge, Cascadia, having cell counts approaching 1010 cells/cc. Ultimately, our goal is to produce an enriched culture of these microbes for characterization of the biochemical processes and chemical fluxes involved, as well as the unique adaptations required for, AMO. Molecular phylogenetic information along with results from fluorescent in situ hybridization indicate that consortia of Archaea and Bacteria are present which are related to those previously described for marine sediment AMO environments. Using a medium of enriched seawater and sediment in a 3:1 ratio, the system was incubated at 4° C under 43 atm of methane pressure; the temperature and pressure were kept constant. We have followed the reactions for seven months, particularly the vigorous consumption rates of dissolved sulfate and alkalinity production, as well as increases in HS-, and decreases in Ca concentrations. We also monitored the dissolved inorganic C (DIC) δ 13C values. The data were reproduced, and indicated that the process is extremely sensitive to changes in methane pressure. The rates of decrease in sulfate and increase in alkalinity concentrations were complimentary and showed considerable linearity with time. When the pressure in the reactor was decreased below the methane hydrate stability field, following the methane hydrate dissociation, sulfate reduction abruptly decreased. When the pressure was restored all the reactions returned to their previous rates. Much of the methane oxidation activity in the reactor is believed to occur in association with the methane hydrate. Upon the completion of one of the experiments, the chamber methane hydrate, liquid phase, and sediment were separated. FISH analyses of the dissociated hydrate fluid indicate a significant presence of Archaea in or on the hydrate. The cell densities in the bioreactor medium liquid phase were 7.2 x 107 cells/cc, and with the methane hydrate, 2.8 x 108 cells/cc.
NASA Astrophysics Data System (ADS)
Karunatillake, Suniti; Wray, James J.; Gasnault, Olivier; McLennan, Scott M.; Deanne Rogers, A.; Squyres, Steven W.; Boynton, William V.; Skok, J. R.; Button, Nicole E.; Ojha, Lujendra
2016-07-01
Midlatitudinal hydrated sulfates on Mars may influence brine pH, atmospheric humidity, and collectively water activity. These factors affect the habitability of the planetary subsurface and the preservation of relict biomolecules. Regolith at grain sizes smaller than gravel, constituting the bulk of the Martian subsurface at regional scales, may be a primary repository of chemical alteration, mechanical alteration, and biosignatures. The Mars Odyssey Gamma Ray Spectrometer with hundreds of kilometers of lateral resolution and compositional sensitivity to decimeter depth provides unique insight into this component of the regolith, which we call soil. Advancing the globally compelling association between H2O and S established by our previous work, we characterize latitudinal variations in the association between H and S, as well as in the hydration state of soil. Represented by H2O:S molar ratios, the hydration state of candidate sulfates increases with latitude in the northern hemisphere. In contrast, hydration states generally decrease with latitude in the south. Furthermore, we observe that H2O concentration may affect the degree of sulfate hydration more than S concentration. Limited H2O availability in soil-atmosphere exchange and in subsurface recharge could explain such control exerted by H2O on salt hydration. Differences in soil thickness, ground ice table depths, atmospheric circulation, and insolation may contribute to hemispheric differences in the progression of hydration with latitude. Our observations support chemical association of H2O with S in the southern hemisphere as suggested by Karunatillake et al. (2014), including the possibility of Fe sulfates as a key mineral group.
Krumholz, L R; Harris, S H; Tay, S T; Suflita, J M
1999-06-01
We examined the relative roles of acetogenic and sulfate-reducing bacteria in H2 consumption in a previously characterized subsurface sandstone ecosystem. Enrichment cultures originally inoculated with ground sandstone material obtained from a Cretaceous formation in central New Mexico were grown with hydrogen in a mineral medium supplemented with 0.02% yeast extract. Sulfate reduction and acetogenesis occurred in these cultures, and the two most abundant organisms carrying out the reactions were isolated. Based on 16S rRNA analysis data and on substrate utilization patterns, these organisms were named Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov. The steady-state H2 concentrations measured in sandstone-sediment slurries (threshold concentration, 5 nM), in pure cultures of sulfate reducers (threshold concentration, 2 nM), and in pure cultures of acetogens (threshold concentrations 195 to 414 nM) suggest that sulfate reduction is the dominant terminal electron-accepting process in the ecosystem examined. In an experiment in which direct competition for H2 between D. hypogeium and A. psammolithicum was examined, sulfate reduction was the dominant process.
Control of Chondrogenesis in Limb-Bud Cell Cultures by Bromodeoxyuridine
Levitt, Daniel; Doreman, Albert
1973-01-01
Initial exposure of cultured limb-bud cells (stage 23-24) to 5-bromo-2′-deoxyuridine (BrdU) irreversibly inhibits differentiation to cartilage under three different culture conditions. The inhibition of chondroitin sulfate synthesis is partially reversed by D-xylose in limb-bud cells after treatment with BrdU. The activities of four enzymes involved in chondroitin sulfate production were reduced in BrdU-treated cultures, but the magnitude of decrease was far less than the decrease in glycosaminoglycan synthesis. The slight increase in the turnover rate of sulfated glycosaminoglycans in BrdU-treated mesenchyme was not sufficient to account for the marked decrease in chondroitin sulfate content. The results suggest that BrdU treatment interferes with normal synthesis of chondroitin sulfate core protein in cultured limb-bud cells, but does not greatly diminish enzyme activities or UDP-sugar levels necessary for production of polysaccharide chains. PMID:4275762
Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11.
Lee, Eun Young; Lee, Nae Yoon; Cho, Kyung-Suk; Ryu, Hee Wook
2006-04-01
Toxic H2S gas is an important industrial pollutant that is applied to biofiltration. Here, we examined the effects of factors such as inlet concentration and space velocity on the removal efficiency of a bacterial strain capable of tolerating high sulfate concentrations and low pH conditions. We examined three strains of Acidithiobacillus thiooxidans known to have sulfur-oxidizing activity, and identified strain AZ11 as having the highest tolerance for sulfate. A. thiooxidans AZ11 could grow at pH 0.2 in the presence of 74 g l(-1) sulfate, the final oxidation product of elemental sulfur, in the culture broth. Under these conditions, the specific sulfur oxidation rate was 2.9 g-S g-DCW (dry cell weight)(-1) d(-1). The maximum specific sulfur oxidation rate of A. thiooxidans AZ11 was 21.2 g-S g-DCW(-1) d(-1), which was observed in the presence of 4.2 g-SO4(2-) l(-1) and pH 1.5, in the culture medium. To test the effects of various factors on biofiltration by this strain, A. thiooxidans AZ11 was inoculated into a porous ceramic biofilter. First, a maximum inlet loading of 670 g-S m(-3) h(-1) was applied with a constant space velocity (SV) of 200 h(-1) (residence time, 18 s) and the inlet concentration of H2S was experimentally increased from 200 ppmv to 2200 ppmv. Under these conditions, less than 0.1 ppmv H2S was detected at the biofilter outlet. When the inlet H2S was maintained at a constant concentration of 200 ppmv and the SV was increased from 200 h(-1) to 400 h(-1) (residence time, 9 s), an H2S removal of 99.9% was obtained. However, H2S removal efficiencies decreased to 98% and 94% when the SV was set to 500 h(-1) (residence time, 7.2 s) and 600 h(-1) (residence time, 6 s), respectively. The critical elimination capacity guaranteeing 96% removal of the inlet H2S was determined to be 160 g-S m(-3) h(-1) at a space velocity of 600 h(-1). Collectively, these findings show for the first time that a sulfur oxidizing bacterium has a high sulfate tolerance and a high sulfur oxidizing activity below pH 1.
NASA Astrophysics Data System (ADS)
Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.
2017-12-01
Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of elevated sulfide concentrations due to freshwater ingress and enhanced mixing. In all simulations the highest concentrations of total sulfide occur at depths of approximately 150 m, while concentrations at depths greater than 300 m typically remain below 0.03 mmol L-1, comparing well with observational data.
Heyl, Taylor P.; Gilhooly, William P.; Chambers, Randolph M.; Gilchrist, George W.; Macko, Stephen A.; Ruppel, Carolyn D.; Van Dover, Cindy L.
2007-01-01
Spatial distributions and patchiness of dominant megafaunal invertebrates in deep-sea seep environments may indicate heterogeneities in the flux of reduced chemical compounds. At the Blake Ridge seep off South Carolina, USA, the invertebrate assemblage includes dense populations of live vesicomyid clams (an undescribed species) as well as extensive clam shell beds (i.e. dead clams). In the present study, we characterized clam parameters (density, size-frequency distribution, reproductive condition) in relation to sulfur chemistry (sulfide and sulfate concentrations and isotopic compositions, pyrite and elemental sulfur concentrations) and other sedimentary metrics (grain size, organic content). For clams >5 mm, clam density was highest where the total dissolved sulfide concentration at 10 cm depth (ΣH2S10cm) was 0.4 to 1.1 mmol l–1; juvenile clams (2S10cm was lowest. Clams were reproductively capable across a broad range of ΣH2S10cm (0.1 to 6.4 mmol l–1), and females in the sampled populations displayed asynchronous gametogenesis. Sulfide concentrations in porewaters at the shell–sediment interface of cores from shell beds were high, 3.3 to 12.1 mmol l–1, compared to –1 sulfide concentrations at the clam–sediment interface in live clam beds. Concentration profiles for sulfide and sulfate in shell beds were typical of those expected where there is active microbial sulfate reduction. In clam beds, profiles of sulfide and sulfate concentrations were also consistent with rapid uptake of sulfide by the clams. Sulfate in shell beds was systematically enriched in 34S relative to that in clam beds due to microbial fractionation during sulfate reduction, but in clam beds, sulfate δ34S matched that of seawater (~20‰). Residual sulfide values in clam and shell beds were correspondingly depleted in 34S. Based on porewater sulfide concentrations in shell beds at the time of sampling, we suggest that clam mortality may have been due to an abrupt increase in sulfide concentration and sulfide toxicity, but other alternatives cannot be eliminated.
Effect of barium sulfate contrast medium on rheology and sensory texture attributes in a model food.
Ekberg, O; Bulow, M; Ekman, S; Hall, G; Stading, M; Wendin, K
2009-03-01
The swallowing process can be visualized using videoradiography, by mixing food with contrast medium, e.g., barium sulfate (BaSO(4)), making it radiopaque. The sensory properties of foods may be affected by adding this medium. To evaluate if and to what extent sensory and rheological characteristics of mango purée were altered by adding barium sulfate to the food. This study evaluated four food samples based on mango purée, with no or added barium sulfate contrast medium (0%, 12.5%, 25.0%, and 37.5%), by a radiographic method, and measured sensory texture properties and rheological characteristics. The sensory evaluation was performed by an external trained panel using quantitative descriptive analysis. The ease of swallowing the foods was also evaluated. The sensory texture properties of mango purée were significantly affected by the added barium in all evaluated attributes, as was the perception of particles. Moreover, ease of swallowing was significantly higher in the sample without added contrast medium. All samples decreased in extensional viscosity with increasing extension rate, i.e., all samples were tension thinning. Shear viscosity was not as dependent on the concentration of BaSO(4) as extensional viscosity. Addition of barium sulfate to a model food of mango purée has a major impact on perceived sensory texture attributes as well as on rheological parameters.
Nishihara, Arisa; Haruta, Shin; McGlynn, Shawn E.; Thiel, Vera; Matsuura, Katsumi
2018-01-01
The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72–75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth. PMID:29367473
González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel
2015-12-01
Melatonin is known to reduce the growth of endocrine-responsive breast cancers by interacting with estrogen signaling pathways. Estrogens play an important role in breast cancer, but also in various types of tissues, including vascular tissue. Estrogen sulfatase (STS) converts inactive estrogen sulfates into active estrogens, whereas estrogen sulfotransferase (EST) sulfonates estrogens to estrogen sulfates. Therefore, STS and EST are considered to be involved in the regulation of local estrogen levels in hormone‑dependent tumors and in non-pathologic tissues, such as those of the vascular system. Estrogens have a major impact on the vasculature, influencing vascular function, the expression of adhesion proteins, angiogenesis and the inflammatory state. In this study, we investigated the status of STS and EST in human umbilical vein endothelial cells (HUVECs) and the modulatory effects of melatonin. Both STS and EST were highly expressed in the HUVECs. The enzymatic activity correlated with the expression levels in these cells. Our findings also demonstrated that melatonin, at physiological concentrations, modulated the synthesis and transformation of biologically active estrogens in HUVECs through the inhibition of STS activity and expression, and the stimulation of EST activity and expression. Since melatonin decreased the STS levels and increased the EST levels, it modified the dynamic steady‑state equilibrium of estrogen sulfates by increasing the inactive estrogen levels and decreasing the active estrogen levels. Therefore, melatonin may modulate the known different biological actions of estrogens in endothelial cells, as well as in estrogen-dependent tumors and non-pathologic tissues.
SEM and AFM studies of dip-coated CuO nanofilms.
Dhanasekaran, V; Mahalingam, T; Ganesan, V
2013-01-01
Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Semprini, Lewis; Kitanidis, Peter K.; Kampbell, Don H.; Wilson, John T.
1995-04-01
We estimated the distribution of chlorinated aliphatic hydrocarbons (CAHs) from groundwater samples collected along three transects in a sand aquifer. Trichloroethylene (TCE) leaked and contaminated the aquifer probably more than a decade before we collected the measurements. The data show significant concentrations of TCE, cis-l,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethene. We attributed DCE, VC, and ethene to the reductive dehalogenation of TCE. The CAH concentrations varied significantly with depth and correlate with sulfate and methane concentrations. Anoxic aquifer conditions exist with methane present at relatively high concentrations at depth. High concentrations of TCE correspond with the absence of methane or low methane concentrations, whereas products of TCE dehalogenation are associated with higher methane concentrations and low sulfate concentrations. Indications are that the dechlorination of TCE and DCE to VC and ethene is associated with sulfate reduction and active methanogenesis. TCE dechlorination to DCE is likely occurring under the less reducing conditions of sulfate reduction, with further reductions to VC and ethene occurring under methanogenic conditions. We estimated that about 20% of TCE has dechlorinated to ethene. The analysis of the data enhanced our knowledge of natural in situ transformation and transport processes of CAHs.
Development of a Methodology for the Rapid Detection of Coliform Bacteria.
1981-02-27
Micelle Concentration Determination of Sodium Lauryl Sulfate 19 10 Sheath Flow Measuring Chamber 24 ll(a-c) Negative Substrate Control Comparisons 27...the net result being a net increase in the level of detectability. Sodium lauryl sulfate was chosen as the candidate surfactant and used at its...determined experimentally by taking conductivity mea- surements for a concentration series of sodium lauryl sulfate . Plotting equivalent conductivity vs
NASA Astrophysics Data System (ADS)
Martínez-Carreño, N.; García-Gil, S.; Cartelle, V.; de Blas, E.; Ramírez-Pérez, A. M.; Insua, T. L.
2017-05-01
High-resolution seismic profiles, gravity core analysis and radiocarbon data have been used to identify the factors behind the methane production and free gas accumulation in the Ría de Vigo. Lithological and geochemical parameters (sulfate and methane concentration) from seventeen gravity cores were analyzed to characterize the sediment of the ria. The distribution of methane-charged sediments is mainly controlled by the quantity and quality of organic matter. Geochemical analyses reveal minimum methane concentrations ranging between 1 μM and 1 mM in sediments located outside the acoustic gas field, while gas-bearing sediments, show methane concentrations up to 5 mM. A shallowing of the sulfate-methane transition zone (SMTZ) is observed from the outer to the inner area of the ria. The presence of methane in the sulfate reduction zone (SRZ) likely to reflect the existence of methylotropic methanogenesis and/or migration processes of deeper methane gas in the sediments of the Ría de Vigo. The presence of an 'anomalous' high-sulfate concentration layer below the SMTZ in the inner and middle area of the ria, is attributed to the intrusion of sulfate-rich waters from adjacent areas that could be transported laterally through more porous layers.
NASA Astrophysics Data System (ADS)
Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.
2015-12-01
In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as assessed by CO2 production and sulfate depletion, in two of the four soils, but resulted in a up to a 40% decrease in two other soils. AC amendment has little effect on slurry pH, but decreased aqueous Fe, sulfide and DOC concentrations.
Wet and Occult Ion Deposition To An Elevated Forest Ecosystem In Switzerland
NASA Astrophysics Data System (ADS)
Buetzberger, P.; Burkard, R.; Eugster, W.
Due to much higher ion concentrations in fogwater compared to rainwater, critical deposition levels of nutrients such as sulfate, nitrate or ammonium can be achieved in areas with high fog frequency. From summer 2001 until spring 2002 a measuring campaign of the FINIMSAS project (Fog Interception and Nutrient Inputs to Montane- Subalpine Areas in Switzerland) is being conducted at Laegeren (690m asl) on the Swiss Plateau. Fog frequency was high during our campaign. Similar measurements were carried out in 1986/87 at the exact same location, providing a reference data set for comparison. Because the deposition flux was measured differently during 1986/87, direct compar- isons are only possible for ion concentrations. Preliminary results show a significant decrease of sulfate and ammonium median concentrations of more than 50 % over this 15 year period, whereas nitrate decrease is relatively small. This corresponds well with the large-scale evolution of the air pollutant emissions of SO2 (major decrease) and NOx (relatively small decrease). The strong reduction of ammonium is probably due to the reduced use of fertilizer in the area. Chloride shows the largest decrease which can be attributed to the improvement of filtering technique of waste incinerations. In order to achieve maximum comparability, similar event types (e.g. advection fog vs. radiation fog) with similar meteorological conditions were interpreted individually. Analysis of fog nutrient input with respect to wind direction, wind speed, and origin of air mass will help to understand the influence of local and large-scale emissions on fog water concentrations in Switzerland. Computations based on half-hourly mean wind direction revealed significantly lower fog water input but higher median concentra- tions of all measured components if the dominating wind sector was East. Event-based wind field analyses were also carried out and compared to computed trajectories. In order to assess the influence of fog and rain water nutrient deposition on vegetation and soil, we measured throughfall precipitation close to the forest floor. Whereas fog water showed pH values as low as 3, throughfall water was between pH 6 and 7, indicating an important buffering capacity of this ecosystem mainly due to potassium leaching and probably calcium compounds. High ionic concentrations and low pH values seem to act mostly on the leaves.
Efflorescence relative humidity for ammonium sulfate particles.
Gao, Yonggang; Chen, Shing Bor; Yu, Liya E
2006-06-22
The classical homogeneous nucleation theory was employed to calculate the efflorescence relative humidity (ERH) of airborne ammonium sulfate particles with a wide size range (8 nm to 17 microm) at room temperature. The theoretical predictions are in good agreement with the experimentally measured values. When the ammonium sulfate particle is decreased in size, the ERH first decreases, reaches a minimum around 30% for particle diameter equal to about 30 nm, and then increases. It is for the first time that the Kelvin effect is theoretically verified to substantially affect the ERH of ammonium sulfate particles smaller than 30 nm, while the aerosol size is the dominant factor affecting the efflorescent behavior of ammonium sulfate particles larger than 50 nm.
Long-term leaching tests with high ash fusion Maryland coal slag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browman, M.G.
The main objective of this project was to investigate the potential environmental impact of the storage or disposal of coal gasification residues. In this regard, this investigation examined the quality of leachate produced during the long-term outdoor storage slag generated at the TVA 200-t/d Texaco gasifier in Muscle Shoals, Alabama. Evaluative laboratory extraction tests were also conducted on both the coarse and fine slag. Leachate quality was tracked in both the surface water and the water at depth after it percolated through the slag pile (leachate well water) by measuring pH and conductivity on a weekly basis and toxic tracemore » elements and other chemical species quarterly or at longer intervals. The major species observed in the leachate well water were Ca and Mg cations as well as sulfate anions. The average electrical conductivity measured in the leachate well water was 2503 {mu}mhos/cm. The measured pH decreased from an initial value of 8.2 and stabilized at about 7.1 with occasional excursions to values as low as 6.3 during dry periods. Concurrently, sulfate concentrations averaged 1083 mg/l with occasional peaks as high as 2600 mg/l. Fe and Mn concentrations measured in the leachate well waters averaged 2.0 and 1.68 mg/l, respectively. Concentrations of species for which Primary Maximum Contaminant Limits (MCLs) for public drinking water supplies have been established were generally below the primary limits with the exception of Se and F which exceeded the limits occasionally. Concentrations of Fe, Mn, sulfate, and total dissolved solids were markedly above the Secondary MCLs set for these species. 35 refs., 2 figs., 21 tabs.« less
Sulfur isotope and porewater geochemistry of Florida escarpment seep sediments
Chanton, J.P.; Martens, C.S.; Paull, C.K.; Coston, J.A.
1993-01-01
Distributions of porewater constituents, SO4=, NH4+, Cl-, ???CO2, and H2S, solid phase iron, and sulfur concentrations, and the sulfur isotopic composition of dissolved and solid phases were investigated in sediments from abyssal seeps at the base of the Florida escarpment. Despite the apparent similarity of seep sediment porewater chemistry to that of typical marine sediments undergoing early diagenesis, relationships between chemical distributions and isotopic measurements revealed that the distribution of pore fluid constituents was dominated by processes occurring within the platform rather than by in situ microbial processes. Ammonium and sulfate concentrations were linearly correlated with chloride concentrations, indicating that variations in porewater chemistry were controlled by the admixture of seawater and a sulfate depleted brine with a chlorinity of 27.5 ?? 1.9%. and 2.2 ?? 1.3 mM ammonium concentration. At sites dominated by seepage, dissolved sulfate isotopic composition remained near seawater values despite depletion in porewater concentrations. Porewater ???CO2 concentrations were found to be elevated relative to seawater, but not to the extent predicted from the observed sulfate depletion. Sediment solid phase sulfur was predominantly pyrite, at concentrations as high as 20% S by weight. In contrast to typical marine deposits, pyrite concentrations were not related to the quantity of sedimentary organic matter. Pyrite ??34S values ranged from -29%. to + 21%. (CDT). However, only positive ??34S values were observed at sites associated with high pyrite concentrations. Isotopically heavy pyrite was observed at sites with porewater sulfate of seawater-like isotopic composition. Isotopically light pyrite was associated with sites where porewater sulfate exhibited ??34S values greater than those in seawater, indicating the activity of in situ microbial sulfate reduction. Thus, dual sulfide sources are suggested to explain the range in sediment pyrite isotopic composition: a ??34S enriched (+10 to +20%.) source adverted from within the Florida platform, and a lighter 34S depleted component generated in situ from microbial reduction of seawater sulfate. The degree of pyritization of seep sediments was as high as 0.9 and was controlled by pyrite concentrations, which varied over a wider range than did the non-pyrite solid phase iron concentrations. The highest non-sulfide solid phase iron concentrations were observed in sediments that are believed to be at the "front" of the advancing seep fluids (i.e., hemipelagic sediments newly exposed to the seep fluids), indicating that dissolution of hemipelagic background sediment may be the source of at least half of the iron to the highly pyritized seep sediments. Porewater sulfide concentrations were variable, reaching a maximum of 5.7 mM, and were not correlated with the degree of pyritization of the sediments, suggesting that iron was not particularly limiting to pyrite formation. ?? 1993.
[Biomineralization of copper in Candida fukuyamaensis RCL-3].
Irazusta, Verónica; Michel, Lucas; de Figueroa, Lucía I C
2016-01-01
Candida fukuyamaensis RCL-3 yeast has the ability to decrease copper concentration in a culture medium. High copper concentrations change the cell color from white/cream to brown. The effect of color change ceases with the addition of KCN or when cells are grown in a culture medium without sulfate ions. These results could be associated with CuS bioaccumulation in the cell surface. This report revealed that mineralization would be a mechanism used by this yeast for copper bioremediation. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Willison, Hillary; Boyer, Treavor H
2012-05-01
Water treatment processes can cause secondary changes in water chemistry that alter finished water quality including chloride, sulfate, natural organic matter (NOM), and metal release. Hence, the goal of this research was to provide an improved understanding of the chloride-to-sulfate mass ratio (CSMR) with regards to chloride and sulfate variations at full-scale water treatment plants and corrosion potential under simulated premise plumbing conditions. Laboratory corrosion studies were conducted using Pb-Sn solder/Cu tubing galvanic cells exposed to model waters with low (approx. 5 mg/L Cl(-) and 10 mg/L SO(4)(2-)) and high (approx. 50 mg/L Cl(-) and 100 mg/L SO(4)(2-)) concentrations of chloride and sulfate at a constant CSMR of ≈ 0.5. The role of NOM during corrosion was also evaluated by changing the type of organic material. In addition, full-scale sampling was conducted to quantify the raw water variability of chloride, sulfate, and NOM concentrations and the changes to these parameters from magnetic ion exchange treatment. Test conditions with higher concentrations of chloride and sulfate released significantly more lead than the lower chloride and sulfate test waters. In addition, the source of NOM was a key factor in the amount of lead released with the model organic compounds yielding significantly less lead release than aquatic NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.
Method of increasing the sulfation capacity of alkaline earth sorbents
Shearer, J.A.; Turner, C.B.; Johnson, I.
1980-03-13
A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.
Method of increasing the sulfation capacity of alkaline earth sorbents
Shearer, John A.; Turner, Clarence B.; Johnson, Irving
1982-01-01
A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.
SFG and SPR Study of Sodium Dodecyl Sulfate Film Assembly on Positively Charged Surfaces
NASA Astrophysics Data System (ADS)
Song, Sanghun; Weidner, Tobias; Wagner, Matthew; Castner, David
2012-02-01
This study uses sum frequency generation (SFG) vibrational spectroscopy and surface plasmon resonance (SPR) sensing to investigate the structure of sodium dodecyl sulfate (SDS) films formed on positively charged and hydrophilic surfaces. The SPR signals show a good surface coverage suggesting that full monolayer coverage is reached at 1 mM. SFG spectra of SDS adsorbed exhibits well resolved CH3 peaks and OH peaks. At both 0.2 mM and 1 mM SDS concentration the intensity of both the CH3 and OH peaks decreased close to background levels. We found that the loss of SFG signal at 0.2 mM occurs at this concentration independent of surface charge density. It is more likely that the loss of signal is related to structural inhomogeneity induced by a striped phase - stand-up phase transition. This is supported by a distinct change of the relative SFG phase between CH3/OH near 0.2 mM. The second intensity minimum might be related to charge compensation effects. We observed a substrate dependence for the high concentration transition. We also observed distinct SFG signal phase changes for water molecules associated with SDS layers at different SDS solution concentrations indicating that the orientation of bound water changed with SDS surface structure.
Tsunoda, Akira; Nakagi, Masafumi; Kano, Nobuyasu; Mizutani, Masahiko; Yamaguchi, Kenji
2014-12-01
Aluminum potassium sulfate and tannic acid (ALTA) is an effective sclerosing agent for internal hemorrhoids. However, it is contraindicated for patients with chronic renal failure on dialysis, because the aluminum in ALTA can cause aluminum encephalopathy when it is not excreted effectively. We conducted this study to measure the serum aluminum concentrations and observe for symptoms relating to aluminum encephalopathy in dialysis patients after ALTA therapy. Ten dialysis patients underwent ALTA therapy for hemorrhoids. We measured their serum aluminum concentrations and observed them for possible symptoms of aluminum encephalopathy. The total injection volume of ALTA solution was 31 mL (24-37). The median serum aluminum concentration before ALTA therapy was 9 μg/L, which increased to 741, 377, and 103 μg/L, respectively, 1 h, 1 day, and 1 week after ALTA therapy. These levels decreased rapidly, to 33 μg/L by 1 month and 11 μg/L by 3 months after ALTA therapy. No patient suffered symptoms related to aluminum encephalopathy. Although the aluminum concentrations increased temporarily after ALTA therapy, dialysis patients with levels below 150 μg/L by 1 week and thereafter are considered to be at low risk of the development of aluminum encephalopathy.
NASA Astrophysics Data System (ADS)
Bak, Geonyoung; Kim, Bongju; Choi, Nagchoul; Park*, Cheonyoung
2015-04-01
In this study, in order to obtain the maximum Au leaching rate, an invisible gold concentrate sample was microwave-treated and a thiourea leaching experiment was performed. It is found that gold exists as invisible as a result of observation with an optical microscope and an electron microscope. As the invisible gold concentrate sample was exposed to microwave longer, its temperature and weight loss were increased together and its S content was decreased. The conditions for the maximum Au leaching rate and the fast leaching effect were a particle size of -325×400 mesh, exposure to microwave for 70 minutes, 1.0 g of thiourea, 0.0504 g of sodium sulfite and 0.425 g of ferric sulfate. However, the condition under which Au was leached out to the maximum was applied to the control sample, but its Au leaching rate was just in a range of 78% to 88%. Such results suggest that the effect of sodium sulfite and ferric sulfate was more effective in the microwave-treated sample than in the control sample. Therefore, it was confirmed that the complete and very fast Au leaching can be achieved by means of the microwave pretreatment of invisible gold concentrate.
Dianzani, Chiara; Foglietta, Federica; Ferrara, Benedetta; Rosa, Arianna Carolina; Muntoni, Elisabetta; Gasco, Paolo; Della Pepa, Carlo; Canaparo, Roberto; Serpe, Loredana
2017-01-01
AIM To improve anti-inflammatory activity while reducing drug doses, we developed a nanoformulation carrying dexamethasone and butyrate. METHODS Dexamethasone cholesteryl butyrate-solid lipid nanoparticles (DxCb-SLN) were obtained with the warm microemulsion method. The anti-inflammatory activity of this novel nanoformulation has been investigated in vitro (cell adhesion to human vascular endothelial cells and pro-inflammatory cytokine release by lipopolysaccharide-induced polymorphonuclear cells) and in vivo (disease activity index and cytokine plasma concentrations in a dextran sulfate sodium-induced mouse colitis) models. Each drug was also administered separately to compare its effects with those induced by their co-administration in SLN at the same concentrations. RESULTS DxCb-SLN at the lowest concentration tested (Dx 2.5 nmol/L and Cb 0.1 μmol/L) were able to exert a more than additive effect compared to the sum of the individual effects of each drug, inducing a significant in vitro inhibition of cell adhesion and a significant decrease of pro-inflammatory cytokine (IL-1β and TNF-α) in both in vitro and in vivo models. Notably, only the DxCb nanoformulation administration was able to achieve a significant cytokine decrease compared to the cytokine plasma concentration of the untreated mice with dextran sulfate sodium-induced colitis. Specifically, DxCb-SLN induced a IL-1β plasma concentration of 61.77% ± 3.19%, whereas Dx or Cb used separately induced a concentration of 90.0% ± 2.8% and 91.40% ± 7.5%, respectively; DxCb-SLN induced a TNF-α plasma concentration of 30.8% ± 8.9%, whereas Dx or Cb used separately induced ones of 99.5% ± 4.9% and 71.1% ± 10.9%, respectively. CONCLUSION Our results indicate that the co-administration of dexamethasone and butyrate by nanoparticles may be beneficial for inflammatory bowel disease treatment. PMID:28694660
Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.
2013-01-01
Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or equal to reporting levels in water samples collected at various depths. Tritium concentrations in water from wells completed in shallow perched groundwater at the Advanced Test Reactor Complex (ATR Complex) were less than the reporting levels. Tritium concentrations in deep perched groundwater at the ATR Complex equaled or exceeded the reporting level in 12 wells during at least one sampling event during 2009–11 at the ATR Complex. Concentrations of strontium-90 in water from 20 of 76 aquifer wells sampled during April or October 2011 exceeded the reporting level. Strontium-90 was not detected within the ESRP aquifer beneath the ATR Complex. During at least one sampling event during 2009–11, concentrations of strontium-90 in water from 10 wells completed in deep perched groundwater at the ATR Complex equaled or exceeded the reporting levels. During 2009–11, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all aquifer wells and in all wells equipped with MLMS. Concentrations of cesium-137 were equal to or slightly above the reporting level in 8 aquifer wells and from 2 wells equipped with MLMS. The concentration of chromium in water from one well south of the ATR Complex was 97 micrograms per liter (μg/L) in April 2011, just less than the maximum contaminant level (MCL) of 100 μg/L. Concentrations of chromium in water samples from 69 other wells sampled ranged from 0.8 μg/L to 25 μg/L. During 2009–11, dissolved chromium was detected in water from 15 wells completed in perched groundwater at the ATR Complex. In 2011, concentrations of sodium in water from most wells in the southern part of the INL were greater than the background concentration of 10 milligrams per liter (mg/L); the highest concentrations were at or near the Idaho Nuclear Engineering and Technology Center (INTEC). After the newpercolation ponds were put into service in 2002 southwest of the INTEC, concentrations of sodium in water samples from the Rifle Range well rose steadily until 2008, when the concentrations generally began decreasing. The increases and decreases were attributed to disposal variability in the new percolation ponds. Concentrations of sodium in most wells equipped with MLMS generally were consistent with depth. During 2011, dissolved sodium concentrations in water from 17 wells completed in deep perched groundwater at the ATR Complex ranged from 6 to 146 mg/L. In 2011, concentrations of chloride in most water samples from aquifer wells south of the INTEC and at the Central Facilities Area exceeded the background concentrations of 15 mg/L, but were less than the secondary MCL of 250 mg/L. Chloride concentrations in water from wells south of the INTEC have generally increased because of increased chloride disposal to the old percolation ponds since 1984 when discharge of wastewater to the INTEC disposal well was discontinued. After the new percolation ponds were put into service in 2002 southwest of the INTEC, concentrations of chloride in water samples from one well rose steadily until 2008 then began decreasing. Chloride concentrations in water from all but one well completed in the ESRP aquifer at or near the ATR Complex were less than background and ranged between 10 and 14 mg/L during 2011, similar to concentrations detected during the 2006–08 reporting period. During 2011, chloride concentrations in water from two aquifer wells at the Radioactive Waste Management Complex (RWMC) were slightly greater than concentrations detected during the 2006–08 reporting period. The vertical distribution of chloride concentrations in wells equipped with MLMS were generally consistent within zones during 2009–11 and ranged from about 8 to 20 mg/L. During April 2011, dissolved chloride concentrations in shallow perched groundwater at the ATR Complex ranged from 7 to 13 mg/L in water from three wells. Dissolved chloride concentrations in deep perched groundwater at the ATR Complex during 2011 ranged from 4 to 54 mg/L. In 2011, sulfate concentrations in water samples from 11 aquifer wells in the south-central part of the INL equaled or exceeded the background concentration of sulfate and ranged from 40 to 167 mg/L. The greater-than-background concentrations in water from these wells probably resulted from sulfate disposal at the ATR Complex infiltration ponds or the old INTEC percolation ponds. In 2011, sulfate concentrations in water samples from two wells near the RWMC were greater than background levels and could have resulted from well construction techniques and (or) waste disposal at the RWMC. The vertical distribution of sulfate concentrations in three wells near the southern boundary of the INL was generally consistent with depth, and ranged between 19 and 25 mg/L. The maximum dissolved sulfate concentration in shallow perched groundwater near the ATR Complex was 400 mg/L in well CWP 1 in April 2011. During 2009–11, the maximum concentration of dissolved sulfate in deep perched groundwater at the ATR Complex was 1,550 mg/L in a well located west of the chemical-waste pond. In 2011, concentrations of nitrate in water from most wells at and near the INTEC exceeded the regional background concentrations of 1 mg/L and ranged from 1.6 to 5.95 mg/L. Concentrations of nitrate in wells south of INTEC and farther away from the influence of disposal areas and the Big Lost River show a general decrease in nitrate concentrations through time. During 2009–11, water samples from 30 wells were collected and analyzed for volatile organic compounds (VOCs). Six VOCs were detected. At least one and up to five VOCs were detected in water samples from 10 wells. The primary VOCs detected include carbon tetrachloride, chloroform, tetrachloroethylene, 1,1,1-trichloroethane, and trichloroethylene. In 2011, concentrations for all VOCs were less than their respective MCL for drinking water, except carbon tetrachloride in water from two wells. During 2009–11, variability and bias were evaluated from 56 replicate and 16 blank quality-assurance samples. Results from replicate analyses were investigated to evaluate sample variability. Constituents with acceptable reproducibility were stable isotope ratios, major ions, nutrients, and VOCs. All radiochemical constituents and trace metals had acceptable reproducibility except for gross beta-particle radioactivity, aluminum, antimony, and cobalt. Bias from sample contamination was evaluated from equipment, field, container, and source-solution blanks. No detectable constituent concentrations were reported for equipment blanks of the thief samplers and sampling pipes or for the source-solution and field blanks. Equipment blanks of bailers had detectable concentrations of strontium-90, sodium, chloride, and sulfate, and the container blank had a detectable concentration of dichloromethane.
Crystallization of calcium sulfate dihydrate in the presence of some metal ions
NASA Astrophysics Data System (ADS)
Hamdona, Samia K.; Al Hadad, Umaima A.
2007-02-01
Crystallization of calcium sulfate dihydrate (CaSO 4·2H 2O gypsum) in sodium chloride solutions in the presence of some metal ions, and over a range of relative super-saturation has been studied. The addition of metal ions, even at relatively low concentration (10 -6 mol l -1), markedly retard the rate of crystallization of gypsum. Retardation effect was enhanced with increase in the additives contents. Moreover, the effect was enhanced as the relative super-saturation decreases. Influence of mixed additives on the rate of crystallization (Cd 2++Arg, Cd 2++H 3PO 4 and Cd 2++PAA) has also been studied. Direct adsorption experiments of these metal ions on the surface of gypsum crystals have been made for comparison.
Li, Mingzhong; Qiao, Ning; Wang, Ke
2013-10-11
The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine-nicotinamide (CBZ-NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ-NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ-NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated that SLS and Tween 80 had little influence upon the solubility of the CBZ-NIC cocrystal but they had totally opposite effects on the IDR of the CBZ-NIC cocrystal during dissolution. SLS significantly increased the IDR of the CBZ-NIC cocrystal while Tween 80 decreased its IDR.
Li, Mingzhong; Qiao, Ning; Wang, Ke
2013-01-01
The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine–nicotinamide (CBZ–NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ–NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ–NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated that SLS and Tween 80 had little influence upon the solubility of the CBZ–NIC cocrystal but they had totally opposite effects on the IDR of the CBZ–NIC cocrystal during dissolution. SLS significantly increased the IDR of the CBZ–NIC cocrystal while Tween 80 decreased its IDR. PMID:24300560
Cloud condensation nucleus-sulfate mass relationship and cloud albedo
NASA Technical Reports Server (NTRS)
Hegg, Dean A.
1994-01-01
Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Abdul, Momen; Youker, Amanda J.
2016-06-01
Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery andmore » -concentration columns. Promising results are reported for both methods.« less
NASA Astrophysics Data System (ADS)
Sun, Wan-chang; Xu, Jia-Min; Wang, Yuan; Guo, Fang; Jia, Zong-Wei
2017-12-01
AZ91D magnesium alloy substrate was first pretreated in a phosphoric acid to obtain a phosphate coating, and then, the electroless ternary Ni-W-P coating was deposited using a sulfate nickel bath. The morphologies of the Ni-W-P coating were observed by using scanning electron microscope, the deposition rate of the coating was examined with the method of gravimetric analysis, and the phase analysis was identified by x-ray diffractometer. Electrochemical property was tested by means of an electrochemical analyzer. The results indicated that the addition of an optimum concentration of CeO2 (cerium oxide) particles could evidently improve the deposition rate and the stability of the plating bath. However, it acted as an inhibiting effect as the concentration of CeO2 particles exceeded to 8 mg/L in the sulfate nickel bath. The results also revealed that the morphology of Ni-W-P coating became more smooth, compact and uniform with the increase in the concentrations of CeO2 particles in the bath, but the corrosion resistance decreased due to the precipitation of crystal phases (Ni3P, Ni4W, etc.) after heat treatment.
Dhawan, Shikha; Lal, Rup; Hanspal, Manjit; Kuhad, Ramesh Chander
2005-08-01
The effect of nine different antibiotics (chloramphenicol, ampicillin trihydrate, kanamycin A monosulfate, neomycin sulfate, erythromycin, thiostrepton, tetracycline, apramycin sulfate and streptomycin sulfate) on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus has been investigated. All the antibiotics tested at a concentration of 200 mg/l affected the fungal growth, release of protein and laccase production to different extent. Inhibition in fungal growth was found to be positively correlated with increase in laccase production. Interestingly, apramycin sulfate inhibited biomass production (14.9-26.2%), nevertheless, it stimulated maximum laccase production (18.2 U/ml) in both the fungi. Increasing concentrations of apramycin sulfate enhanced laccase production from P. cinnabarinus but not from C. bulleri.
Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.
1998-01-01
Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.
Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.
Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang
2016-01-01
Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.
Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.
2008-01-01
Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.
Water resources in a rapidly growing region-Oakland County, Michigan
Aichele, Stephen S.
2005-01-01
Despite considerable expansion of urban areas, streamflow characteristics at most sites have not been affected. However, at several sites in areas of the county that are both supplied by ground water and sewered, statistically significant downward trends in low-flow stream discharges have been noted between 1970 and 2003. Stream chemistry, compared to a previous study of county water resources prepared in 1972, has generally improved, with marked decreases in concentrations of nitrogen, phosphorus, and sulfate. Chloride concentrations, however, have increased dramatically in river and lake water across the county. Detectable concentrations of personal-care products, flame retardants, and petroleum fuel compounds were identified at all river sites sampled.
Kiah, Richard G.; Deacon, Jeffrey R.; Piatak, Nadine M.; Seal, Robert R.; Coles, James F.; Hammarstrom, Jane M.
2007-01-01
The hydrology and quality of surface water in and around the Pike Hill Brook watershed, in Corinth, Vermont, was studied from October 2004 to December 2005 by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (USEPA). Pike Hill was mined intermittently for copper from 1847 to 1919 and the site is known to be contributing trace elements and acidity to Pike Hill Brook and an unnamed tributary to Cookville Brook. The site has been listed as a Superfund site since 2004. Streamflow, specific conductance, pH, and water temperature were measured continuously and monthly at three sites on Pike Hill Brook to determine the variation in these parameters over an annual cycle. Synoptic water-quality sampling was done at 10 stream sites in October 2004, April 2005, and June 2005 and at 13 stream sites in August 2005 to characterize the quality of surface water in the watershed on a seasonal and spatial basis, as well as to assess the effects of wetlands on water quality. Samples for analysis of benthic macroinvertebrate populations were collected at 11 stream sites in August 2005. Water samples were analyzed for 5 major ions and 32 trace elements. Concentrations of trace elements at sites in the Pike Hill Brook watershed exceeded USEPA National Recommended Water Quality Criteria acute and chronic toxicity standards for aluminum, iron, cadmium, copper, and zinc. Concentrations of copper exceeded the chronic criteria in an unnamed tributary to Cookville Brook in one sample. Concentrations of sulfate, calcium, aluminum, iron, cadmium, copper, and zinc decreased with distance from a site directly downstream from the mine (site 1), as a result of dilution and through sorption and precipitation of the trace elements. Maximum concentrations of aluminum, iron, cadmium, copper, and zinc were observed during spring snowmelt. Concentrations of sulfate, calcium, cadmium, copper, and zinc, and instantaneous loads of calcium and aluminum were statistically different (p<0.05) among the three continuously monitored sites (sites 1, 4, and 5). Instantaneous loads of aluminum, iron, and copper decreased by one to three orders of magnitude from site 1 to a site 1.1 mi downstream (site 4). Instantaneous loads of sulfate were similar between sites 1, 4, and at a site 3 mi downstream (site 5). Instantaneous loads of cadmium and zinc were similar between sites 1 and 4, and loads of iron and copper were similar between sites 4 and 5. Loads of chemical constituents were compared at site 1 (closest to the mine waste piles) and site 5 (near the mouth of Pike Hill Brook and below a majority of the wetlands). Annually, the loads of dissolved cadmium and zinc at site 1 were about five times greater than loads at site 5, and the load of dissolved copper at site 1 was about 17 times greater than at site 5. The ratio of loads for dissolved cadmium, copper, and zinc to total cadmium, copper, and zinc at site 1 was about 1. Samples collected in Pike Hill Brook upstream and downstream from the wetlands during low flows in August 2005 showed that oxidation of ferrous iron and precipitation of iron-hydroxides were probably not affecting trace metals in the wetlands through sorption; however, a significant portion of the iron entering the wetlands was in particulate form and may have transported sorbed copper and other trace metals. Thus, aerobic activity in the wetlands was probably not affecting metal cycling in the watershed. Concentrations and loads of sulfate may be unlikely to define unequivocally the role of the wetlands with regard to anaerobic bacterial sulfate reduction; however, bacterial sulfate removal may have affected loads of sulfate. Loads of copper increased downstream from the wetlands and may reflect the reductive dissolution of ferric hydroxide particulates in anaerobic parts of the wetlands.Concentrations of dissolved iron increased downstream from the wetlands. The most apparent effects on the macroinvertebr
NASA Technical Reports Server (NTRS)
Chayvialle, J. A.; Lambert, R.; Ruet, D.
1980-01-01
The effects of restraint on the amount of nondialysable radioactive sulfate in the gastric wall and the gastric juice and saliva were investigated. It was found that restraint provokes a significant decrease in salivary radioactive sulfate. This, in turn, is responsible for the decrease of sulfate in the gastric contents observed under these conditions in rats with pyloric ligation. Esophageal ligation associated with this prevents passage of saliva and lowers the amount of radioactive sulfate in the gastric juice. Restraint causes then an increase in the amount of sulfate in the gastric juice, the value observed being very much lower than that of rats with a free esophagus. At the level of the gastric wall, the change observed during restraint does not reach a significant threshold.
Güden, Mahmut; Akkurt, Mehmet Özgür; Eriş Yalçın, Serenat; Coşkun, Bora; Akkurt, Iltaç; Yavuz, And; Yirci, Bülent; Kandemir, Necmi Ömer
2016-01-01
Objective: To investigate the effects of two tocolytics, nifedipine and magnesium sulfate, on Doppler indices in maternal and fetal vessels. Materials and Methods: We recruited 100 pregnant women with preterm birth between 24-36 gestational weeks who were admitted to our tertiary center over a two-year period. Patients were allocated to nifedipine (n=49) and magnesium sulfate (n=51) groups and Doppler indices of umbilical, middle cerebral, uterine arteries, and ductus venosus were measured before and after tocolysis. Results: There were no differences between the groups in terms of maternal age, gestational week, body mass indexes, cervical dilation, effacement at admission, birth weights and latency periods until birth. Nifedipine decreased resistance indexes in uterine arteries but magnesium sulfate increased resistance especially in the right uterine artery. Nifedipine significantly decreased systole to diastole and resistance index in the umbilical artery, magnesium sulfate increased systole to diastole and resistance index but this was not statistically significant. Nifedipine acted variably on resistance index and pulsatility index in the ductus venosus; however, magnesium sulfate increased resistance. Nifedipine decreased pulsatility index in the middle cerebral artery, contrary to magnesium sulfate with which it increased. Conclusion: Nifedipine had favorable effects on maternal and fetal vessel indexes but magnesium sulfate increased resistance. Despite the proposed neuroprotective benefits of magnesium sulfate, nifedipine seems to be a better and safer tocolytic agent than magnesium sulfate due to its positive beneficial effects on maternal and fetal vessels. PMID:28913098
Vietri, M; Pietrabissa, A; Spisni, R; Mosca, F; Pacifici, G M
2000-09-01
The aim of this investigation was to determine whether mefenamic acid and salicylic acid inhibit the sulfation of (-)-salbutamol and minoxidil in the human liver and duodenum, and if so, to ascertain whether the 50% inhibitory concentration (IC50) estimates are different in the two tissues. Sulfotransferase activities were measured for 10 mM (-)-salbutamol and 5 mM minoxidil, and the concentration of 3'-phosphoadenosine-5'-phosphosulphate-[35S] was 0.4 microM. The IC50 estimates for (-)-salbutamol and minoxidil sulfation of mefenamic acid were 72 +/- 5.4 nM and 1.5 +/- 0.6 microM (liver), respectively, and 161 + 23 microM and 420 +/- 18 microM (duodenum), respectively. The figures for the liver were significantly lower (P < 0.0001) than those for the duodenum. The IC50 estimates for (-)-salbutamol sulfation of salicylic acid were 93 +/- 11 microM (liver) and 705 +/- 19 microM (duodenum, P < 0.0001). Salicylic acid was a poor inhibitor of minoxidil sulfation. The IC50 estimates for (-)-salbutamol sulfation of mefenamic acid and salicylic acid are lower than their unbound plasma concentrations after standard dosing, suggesting that mefenamic acid and salicylic acid should inhibit the hepatic sulfation of (-)-salbutamol in vivo.
Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact
NASA Astrophysics Data System (ADS)
Wang, T.; Nie, W.; Gao, J.; Xue, L. K.; Gao, X. M.; Wang, X. F.; Qiu, J.; Poon, C. N.; Meinardi, S.; Blake, D.; Wang, S. L.; Ding, A. J.; Chai, F. H.; Zhang, Q. Z.; Wang, W. X.
2010-08-01
This paper presents the first results of the measurements of trace gases and aerosols at three surface sites in and outside Beijing before and during the 2008 Olympics. The official air pollution index near the Olympic Stadium and the data from our nearby site revealed an obvious association between air quality and meteorology and different responses of secondary and primary pollutants to the control measures. Ambient concentrations of vehicle-related nitrogen oxides (NOx) and volatile organic compounds (VOCs) at an urban site dropped by 25% and 20-45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants) improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions). A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed >34-88% to the peak ozone concentrations at the urban site in Beijing. Regional sources also contributed significantly to the CO concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv), indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2), total sulfur (SO2+PM2.5 sulfate), carbon monoxide (CO), reactive aromatics (toluene and xylenes) sharply decreased (by 8-64%) in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy), and longer lived alkanes and benzene. We suggest that these results indicate the success of the government's efforts in reducing emissions of SO2, CO, and VOCs in Beijing, but increased regional emissions during 2005-2008. More stringent control of regional emissions will be needed for significant reductions of ozone and fine particulate pollution in Beijing.
Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh
NASA Technical Reports Server (NTRS)
Hines, Mark E.; Knollmeyer, Stephen L.; Tugel, Joyce B.
1992-01-01
Sulfate reduction rates, dissolved iron and sulfide concentrations, and titration alkalinity were measured in salt marsh soils along a transect that included areas inhabited by both the tall and short forms of Spartina alterniflora and by Spartina patens. Pore waters were collected with in situ 'sippers' to acquire temporal data from the same location without disturbing plant roots. During 1984, data collected at weekly intervals showed rapid temporal changes in belowground biogeochemical processes that coincided with changes in S. alterniflora physiology. Rates of SO4(-2) reduction increased fivefold (to greater than 2.5 micromol ml(sup -1)d(sup -1)) when plants began elongating aboveground yet decreased fourfold upon plant flowering. This rapid increase in rates of SO4(-2) reduction must have been fueled by dissolved organic matter released from roots only during active growth. Once plants flowered, the supply of oxidants to the soil decreased and sulfide and alkalinity concentrations increased despite decreases in SO4(-2) reduction and increases in SO4(-2):Cl(-) ratios. Sulfide concentrations were highest in soils inhabited by tallest plants. During 1985, S. alterniflora became infested with fly larvae (Chaetopsis apicalis John) and aboveground growth ceased in late June. This cessation was accompanied by decreased rates of SO4(-2) reduction similar to those noted during the previous year when flowering occurred. After the fly infestation, the pore-water chemical profiles of these soils resembled profiles of soils inhabited by the short form of S. alterniflora. The SO4(-2) reduction rates in S. patens soils are the first reported. Rates were similar to those in S. alterniflora except that they did not increase greatly when S. patens was elongating. Tidal and rainfall events produced desiccation-saturation cycles that altered redox conditions in the S. patens soils, resulting in rapid changes in the dissolution and precipitation of iron and in the magnitude and spatial distribution of SO4(-2) reduction.
Ko, K Y; Ahn, D U
2007-02-01
The objective of this study was to develop an economical, simple, and large-scale separation method for IgY from egg yolk. Egg yolk diluted with 9 volumes of cold water was centrifuged after adjusting the pH to 5.0. The supernatant was added with 0.01% charcoal or 0.01% carrageenan and centrifuged at 2,800 x g for 30 min. The supernatant was filtered through a Whatman no. 1 filter paper and then the filtrate was concentrated to 20% original volume using ultrafiltration. The concentrated solution was further purified using either cation exchange chromatography or ammonium sulfate precipitation. For the cation exchange chromatography method, the concentrated sample was loaded onto a column equilibrated with 20 mM citrate-phosphate buffer at pH 4.8 and eluted with 200 mM citrate-phosphate buffer at pH 6.4. For the ammonium sulfate precipitation method, the concentrated sample was twice precipitated with 40% ammonium sulfate solution at pH 9.0. The yield and purity of IgY were determined by ELISA and electrophoresis. The yield of IgY from the cation exchange chromatography method was 30 to 40%, whereas that of the ammonium sulfate precipitation was 70 to 80%. The purity of IgY from the ammonium sulfate method was higher than that of the cation exchange chromatography. The cation exchange chromatography could handle only a small amount of samples, whereas the ammonium sulfate precipitation could handle a large volume of samples. This suggests that ammonium sulfate precipitation was a more efficient and useful purification method than cation exchange chromatography for the large-scale preparation of IgY from egg yolk.
Evaluation of acidity estimation methods for mine drainage, Pennsylvania, USA.
Park, Daeryong; Park, Byungtae; Mendinsky, Justin J; Paksuchon, Benjaphon; Suhataikul, Ratda; Dempsey, Brian A; Cho, Yunchul
2015-01-01
Eighteen sites impacted by abandoned mine drainage (AMD) in Pennsylvania were sampled and measured for pH, acidity, alkalinity, metal ions, and sulfate. This study compared the accuracy of four acidity calculation methods with measured hot peroxide acidity and identified the most accurate calculation method for each site as a function of pH and sulfate concentration. Method E1 was the sum of proton and acidity based on total metal concentrations; method E2 added alkalinity; method E3 also accounted for aluminum speciation and temperature effects; and method E4 accounted for sulfate speciation. To evaluate errors between measured and predicted acidity, the Nash-Sutcliffe efficiency (NSE), the coefficient of determination (R (2)), and the root mean square error to standard deviation ratio (RSR) methods were applied. The error evaluation results show that E1, E2, E3, and E4 sites were most accurate at 0, 9, 4, and 5 of the sites, respectively. Sites where E2 was most accurate had pH greater than 4.0 and less than 400 mg/L of sulfate. Sites where E3 was most accurate had pH greater than 4.0 and sulfate greater than 400 mg/L with two exceptions. Sites where E4 was most accurate had pH less than 4.0 and more than 400 mg/L sulfate with one exception. The results indicate that acidity in AMD-affected streams can be accurately predicted by using pH, alkalinity, sulfate, Fe(II), Mn(II), and Al(III) concentrations in one or more of the identified equations, and that the appropriate equation for prediction can be selected based on pH and sulfate concentration.
Riverine Response of Sulfate to Declining Atmospheric Sulfur Deposition in Agricultural Watersheds.
David, Mark B; Gentry, Lowell E; Mitchell, Corey A
2016-07-01
Sulfur received extensive study as an input to terrestrial ecosystems from acidic deposition during the 1980s. With declining S deposition inputs across the eastern United States, there have been many studies evaluating ecosystem response, with the exception of agricultural watersheds. We used long-term (22 and 18 yr) sulfate concentration data from two rivers and recent (6 yr) data from a third river to better understand cycling and transport of S in agricultural, tile-drained watersheds. Sulfate concentrations and yields steadily declined in the Embarras (from ∼10 to 6 mg S L) and Kaskaskia rivers (from 7 to 3.5 mg S L) during the sampling period, with an overall -23.1 and -12.8 kg S ha yr balance for the two watersheds. There was evidence of deep groundwater inputs of sulfate in the Salt Fork watershed, with a much smaller input to the Embarras and none to the Kaskaskia. Tiles in the watersheds had low sulfate concentrations (<10 mg S L), similar to the Kaskaskia River, unless the field had received some form of S fertilizer. A multiple regression model of runoff (cm) and S deposition explained much of the variation in Embarras River sulfate ( = 0.86 and 0.80 for concentrations and yields; = 46). Although atmospheric deposition was much less than outputs (grain harvest + stream export of sulfate), riverine transport of sulfate reflected the decline in inputs. Watershed S balances suggest a small annual depletion of soil organic S pools, and S fertilization will likely be needed at some future date to maintain crop yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
A CONSIDERATION OF THE PERMEABILITY OF CARTILAGE TO INORGANIC SULFATE
Campo, Robert D.; Dziewiatkowski, Dominic D.
1961-01-01
On the basis of an examination of autoradiograms of knee-joints fixed so as to remove chondroitin sulfate or inorganic sulfate, or to minimize the loss of both, it is suggested that the cartilage is permeable to inorganic sulfate in vivo and in vitro. In vivo and in vitro, almost as rapidly as it enters the cartilage, inorganic sulfate is utilized by the cells in the synthesis of chondroitin sulfate. The net result is a continuing low concentration of inorganic sulfate in the cartilage. PMID:13690307
Simulation of construction and demolition waste leachate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, T.G.; Jang, Y.; Thurn, L.G.
1999-11-01
Solid waste produced from construction and demolition (C and D) activities is typically disposed of in unlined landfills. Knowledge of C{ampersand}D debris landfill leachate is limited in comparison to other types of wastes. A laboratory study was performed to examine leachate resulting from simulated rainfall infiltrating a mixed C and D waste stream consisting of common construction materials (e.g., concrete, wood, drywall). Lysimeters (leaching columns) filled with the mixed C and D waste were operated under flooded and unsaturated conditions. Leachate constituent concentrations in the leachate from specific waste components were also examined. Leachate samples were collected and analyzed formore » a number of conventional water quality parameters including pH, alkalinity, total organic carbon, total dissolved solids, and sulfate. In experiments with the mixed C and D waste, high concentrations of total dissolved solids (TDS) and sulfate were detected in the leachate. C and D leachates produced as a result of unsaturated conditions exhibited TDS concentrations in the range of 570--2,200 mg/L. The major contributor to the TDS was sulfate, which ranged in concentration between 280 and 930 mg/L. The concentrations of sulfate in the leachate exceeded the sulfate secondary drinking water standard of 250 mg/L.« less
In Situ Rates of Sulfate Reduction in Response to Geochemical Perturbations
Kneeshaw, T.A.; McGuire, J.T.; Cozzarelli, I.M.; Smith, E.W.
2011-01-01
Rates of in situ microbial sulfate reduction in response to geochemical perturbations were determined using Native Organism Geochemical Experimentation Enclosures (NOGEEs), a new in situ technique developed to facilitate evaluation of controls on microbial reaction rates. NOGEEs function by first trapping a native microbial community in situ and then subjecting it to geochemical perturbations through the introduction of various test solutions. On three occasions, NOGEEs were used at the Norman Landfill research site in Norman, Oklahoma, to evaluate sulfate-reduction rates in wetland sediments impacted by landfill leachate. The initial experiment, in May 2007, consisted of five introductions of a sulfate test solution over 11 d. Each test stimulated sulfate reduction with rates increasing until an apparent maximum was achieved. Two subsequent experiments, conducted in October 2007 and February 2008, evaluated the effects of concentration on sulfate-reduction rates. Results from these experiments showed that faster sulfate-reduction rates were associated with increased sulfate concentrations. Understanding variability in sulfate-reduction rates in response to perturbations may be an important factor in predicting rates of natural attenuation and bioremediation of contaminants in systems not at biogeochemical equilibrium. Copyright ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.
Ziegler, Andrew C.; Hansen, Cristi V.; Finn, Daniel A.
2010-01-01
Artificial recharge of the Equus Beds aquifer using runoff from the Little Arkansas River in south-central Kansas was first proposed in 1956 and was one of many options considered by the city of Wichita to preserve its water supply. Declining aquifer water levels of as much as 50 feet exacerbated concerns about future water availability and enhanced migration of saltwater into the aquifer from past oil and gas activities near Burrton and from the Arkansas River. Because Wichita changed water-management strategies and decreased pumping from the Equus Beds aquifer in 1992, water storage in the aquifer recovered by about 50 percent. This recovery is the result of increased reliance on Cheney Reservoir for Wichita water supply, decreased aquifer pumping, and larger than normal precipitation. Accompanying the water-level recovery, the average water-level gradient in the aquifer decreased from about 12 feet per mile in 1992 to about 8 feet per mile in January 2006. An important component of artificial recharge is the water quality of the receiving aquifer and the water being recharged (source water). Water quality within the Little Arkansas River was defined using data from two real-time surface-water-quality sites and discrete samples. Water quality in the Equus Beds aquifer was defined using sample analyses collected at 38 index sites, each with a well completed in the shallow and deep parts of the Equus Beds aquifer. In addition, data were collected at diversion well sites, recharge sites, background wells, and prototype wells for the aquifer storage and recovery project. Samples were analyzed for major ions, nutrients, trace metals, radionuclides, organic compounds, and bacterial and viral indicators. Water-quality constituents of concern for artificial recharge are those constituents that frequently (more than 5 percent of samples) may exceed Federal [U.S. Environmental Protection Agency (USEPA)] and State drinking-water criteria in water samples from the receiving aquifer or in samples from the source water. Constituents of concern include major ions (sulfate and chloride), nutrients (nitrite plus nitrate), trace elements (arsenic, iron, and manganese), organic compounds (atrazine), and fecal bacterial indicators. This report describes the water quality in the Equus Beds aquifer and the Little Arkansas River from 1995 through 2005 before implementation of large-scale recharge activities. Sulfate concentrations in water samples from the Little Arkansas River rarely exceeded Federal secondary drinking water regulation (SDWR) of 250 milligrams per liter (mg/L). Sulfate concentrations in groundwater were exceeded in about 18 percent of the wells in the shallow (less than or equal to 80 feet deep) parts of the aquifer and in about 13 percent of the wells in the deep parts the aquifer. Larger sulfate concentrations were associated with parts of the aquifer with the largest water-level declines. Water-quality changes in the Equus Beds aquifer likely were caused by dewatering and oxidation of aquifer material that subsequently resulted in increased sulfate concentrations as water levels recovered. The primary sources of chloride to the Equus Beds aquifer are from past oil and gas activities near Burrton and from the Arkansas River. Computed chloride concentrations in the Little Arkansas River near Halstead exceeded the Federal SDWR of 250 mg/L about 27 percent of the time (primarily during low-flow conditions). Chloride concentrations in groundwater exceeded 250 mg/L in about 8 percent or less of the study area, primarily near Burrton and along the Arkansas River. Chloride in groundwater near Burrton has migrated downgradient about 3 miles during the past 40 to 45 years. The downward and horizontal migration of the chloride is controlled by the hydraulic gradient in the aquifer, dispersion of chloride, and discontinuous clay layers that can inhibit further downward migration. Chloride in the shallow parts of the Equus Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaveri, R.A.; Kleinman, L.; Berkowitz, C. M.
2010-06-01
Nighttime chemical evolution of aerosol and trace gases in a coal-fired power plant plume was monitored with the Department of Energy Grumman Gulfstream-1 aircraft during the 2002 New England Air Quality Study field campaign. Quasi-Lagrangian sampling in the plume at increasing downwind distances and processing times was guided by a constant-volume balloon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the background air. The enhanced sulfate concentrations were attributed to direct emissions of gaseous H{sub 2}SO{submore » 4}, some of which had formed new particles as evidenced by enhanced concentrations of nucleation-mode particles in the plume. The aerosol species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred as secondary organic aerosol, which was possibly formed from NO{sub 3} radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. Microspectroscopic analysis of particle samples suggested that some sulfate was in the form of organosulfates. Microspectroscopy also revealed the presence of sp{sup 2} hybridized C = C bonds, which decreased with increasing processing time in the plume, possibly because of heterogeneous chemistry on particulate organics. Constrained plume modeling analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N{sub 2}O{sub 5} was negligibly slow. These results have significant implications for several issues related to the impacts of power plant emissions on air quality and climate.« less
Zhang, Jingyan; Ge, Zhishen; Jiang, Xiaoze; Hassan, P A; Liu, Shiyong
2007-12-15
The kinetics and mechanism of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, p-toluidine hydrochloride (PTHC), were investigated by stopped-flow with light scattering detection. Spherical sodium dodecyl sulfate (SDS) micelles transform into short ellipsoidal shapes at low salt concentrations ([PTHC]/[SDS], chi(PTHC)=0.3 and 0.4). Upon stopped-flow mixing aqueous solutions of spherical SDS micelles with PTHC, the scattered light intensity gradually increases with time. Single exponential fitting of the dynamic traces leads to characteristic relaxation time, tau(g), for the growth process from spherical to ellipsoidal micelles, and it increases with increasing SDS concentrations. This suggests that ellipsoidal micelles might be produced by successive insertion of unimers into spherical micelles, similar to the case of formation of spherical micelles as suggested by Aniansson-Wall (A-W) theory. At chi(PTHC) > or = 0.5, rod-like micelles with much higher axial ratio form. The scattered light intensity exhibits an initially abrupt increase and then levels off. The dynamic curves can be well fitted with single exponential functions, and the obtained tau(g) decreases with increasing SDS concentration. Thus, the growth from spherical to rod-like micelles might proceed via fusion of spherical micelles, in agreement with mechanism proposed by Ikeda et al. At chi(PTHC)=0.3 and 0.6, the apparent activation energies obtained from temperature dependent kinetic studies for the micellar growth are 40.4 and 3.6 kJ/mol, respectively. The large differences between activation energies for the growth from spherical to ellipsoidal micelles at low chi(PTHC) and the sphere-to-rod transition at high chi(PTHC) further indicate that they should follow different mechanisms. Moreover, the sphere-to-rod transition kinetics of sodium alkyl sulfate with varying hydrophobic chain lengths (n=10, 12, 14, and 16) are also studied. The longer the carbon chain lengths, the slower the sphere-to-rod transition.
Salehi, Fariba; Krewski, Daniel; Mergler, Donna; Normandin, Louise; Kennedy, Greg; Philippe, Suzanne; Zayed, Joseph
2003-09-15
Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese (Mn) compound added to unleaded gasoline in Canada. The primary combustion products of MMT are Mn phosphate, Mn sulfate, and a Mn phosphate/Mn sulfate mixture. Concerns have been raised that the combustion products of MMT containing Mn could be neurotoxic, even at low levels of exposure. The objective of this study is to investigate exposure-response relationships for bioaccumulation and locomotor effects following subchronic inhalation exposure to a mixture of manganese phosphates/sulfate mixture. A control group and three groups of 30 male Sprague-Dawley rats were exposed in inhalation chambers for a period of 13 weeks, 5 days per week, 6 h a day. Exposure concentrations were 3000, 300, and 30 microg/m(3). At the end of the exposure period, locomotor activity and resting time tests were conducted for 36 h using a computerized autotrack system. Rats were then euthanized by exsanguination and Mn concentrations in different tissues (liver, lung, testis, and kidney) and blood and brain (caudate putamen, globus pallidus, olfactory bulb, frontal cortex, and cerebellum) were determined by neutron activation analysis. Increased manganese concentrations were observed in blood, kidney, lung, testis, and in all brain sections in the highest exposure group. Mn in the lung and in the olfactory bulb were dose dependent. Our data indicate that the olfactory bulb accumulated more Mn than other brain regions following inhalation exposure. Locomotor activity was increased at 3000 microg/m(3), but no difference was observed in resting time among the exposed groups. At the end of the experiment, rats exposed to 300 and 3000 microg/m(3) exhibited significantly decreased body weight in comparison with the control group. Biochemical profiles also revealed some significant differences in certain parameters, specifically alkaline phospatase, urea, and chlorate.
NASA Astrophysics Data System (ADS)
Segarra, Katherine E. A.; Comerford, Christopher; Slaughter, Julia; Joye, Samantha B.
2013-08-01
Methane, a powerful greenhouse gas, is both produced and consumed in anoxic coastal sediments via microbial processes. Although the anaerobic oxidation of methane (AOM) is almost certainly an important process in coastal freshwater and salt marsh sediments, the factors that control the rates and pathways of AOM in these habitats are poorly understood. Here, we present the first direct measurements of AOM activity in freshwater (0 PSU) and brackish (25 PSU) wetland sediments. Despite disparate sulfate concentrations, both environments supported substantial rates of AOM. Higher sulfate reduction (SR) rates were measured in the freshwater site and SR at both sites was of sufficient magnitude to support the observed AOM activity. Laboratory incubations of freshwater and brackish tidal, wetland sediments amended with either nothing [control], sulfate, nitrate, manganese oxide (birnessite) or iron oxide (ferrihydrite) and supplied with a methane headspace were used to evaluate the impact(s) of electron acceptor availability on potential AOM rates. Maximum AOM rates in brackish slurries occurred in the sulfate amendments. In contrast, addition of sulfate and several possible electron acceptors to the freshwater slurries decreased AOM rates relative to the control. High ratios of AOM activity relative to SR activity in the nitrate, birnessite, and ferrihydrite treatments of both the brackish and freshwater slurries provided evidence of AOM decoupled from SR. This study demonstrates that both freshwater and brackish coastal wetland sediments support considerable rates of anaerobic methanotrophy and provides evidence for sulfate-independent AOM that may be coupled to nitrate, iron, or manganese reduction in both environments.
Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling
NASA Astrophysics Data System (ADS)
Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan
2015-02-01
Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.
NASA Astrophysics Data System (ADS)
Matsui, Takato; Kojima, Hisaya; Fukui, Manabu
2013-03-01
Most sedimentary mineralization occurs along coasts under anaerobic conditions. In the absence of oxygen, high-molecular weight organic matter in marine sediments is gradually decomposed by hydrolysis, fermentation and sulfate reduction. Because of the different responses of the respective steps to temperature, degradation may be specifically slowed or stopped in certain step. To evaluate the effect of temperature on cellobiose degradation, culture experiments were performed at six different temperatures (3 °C, 8 °C, 13 °C, 18 °C, 23 °C, and 28 °C) under sulfate-reducing conditions. This study measured the concentrations of sulfide, dissolved organic carbon (DOC), and organic acids during that degradation. Degradation patterns were divided into three temperature groups: 3 °C, 8/13 °C, and 18/23/28 °C. The decrease in DOC proceeded in two steps, except at 3 °C. The length of the stagnant phase separating these two steps differed greatly between temperatures of 8/13 °C and 18/23/28 °C. In the first step, organic carbon was consumed by hydrolysis, fermentation and sulfate reduction. In the second step, acetate accumulated during the first step was oxidized by sulfate reduction. Bacterial communities in the cultures were analyzed by denaturing gradient gel electrophoresis (DGGE); the major differences among the three temperature groups were attributed to shifts in acetate-using sulfate reducers of the genus Desulfobacter. This suggests that temperature characteristics of dominant acetate oxidizers are important factors in determining the response of carbon flow in coastal marine sediments in relation to the changes in temperature.
Isotopic insights into microbial sulfur cycling in oil reservoirs
Hubbard, Christopher G.; Cheng, Yiwei; Engelbrekston, Anna; Druhan, Jennifer L.; Li, Li; Ajo-Franklin, Jonathan B.; Coates, John D.; Conrad, Mark E.
2014-01-01
Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of −30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures. PMID:25285094
Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V
2013-09-15
This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Atekwana, E. A.; Enright, A.; Ntarlagiannis, D.; Slater, L. D.; Bernier, R.; Beaver, C. L.; Rossbach, S.
2016-12-01
We investigated the chemical and stable carbon isotope composition of groundwater in a highly saline aquifer contaminated with hydrocarbon. Our aim to evaluate hydrocarbon degradation and to constrain the geochemical conditions that generated high anomalous magnetic susceptibility (MS) signatures observed at the water table interface. The occurrence of high MS in the water table fluctuating zone has been attributed to microbial iron reduction, suggesting the use of MS as a proxy for iron cycling. The highly saline aquifer had total dissolved solids concentrations of 3.7 to 29.3 g/L and sulfate concentrations of 787 to 37,100 mg/L. We compared our results for groundwater locations with high hydrocarbon contamination (total petroleum hydrocarbon (TPH) >10 mg/L), at lightly contaminated (TPH <10 mg/L) and locations with no contaminations. Our results for the terminal electron acceptors (TEAs) dissolved oxygen (DO), nitrate (NO3-), dissolved iron (Fe2+) , dissolved manganese (Mn2+), sulfate (SO42-) and methane (CH4) suggest a chemically heterogeneous aquifer, probably controlled by heterogeneous distribution of TEAs and contamination (type of hydrocarbon, phase and age of contamination). The concentrations of dissolved inorganic carbon (DIC) ranged from 67 to 648 mg C/L and the stable carbon isotope (δ13CDIC) ranged from -30.0‰ to 1.0 ‰ and DIC-δ13CDIC modeling indicates that the carbon in the DIC is derived primarily from hydrocarbon degradation. The concentrations of Fe2+ in the aquifer ranged from 0.1 to 55.8 mg/L, but was mostly low, averaging 2.7+10.9 mg/L. Given the low Fe2+ [AE1] in the aqueous phase and the high MS at contaminated locations, we suggest that the high MS observed does not arise from iron reduction but rather from sulfate reduction. Sulfate reduction produces H2S which reacts with Fe2+ to produce ferrous sulfide (Fe2+S) or the mixed valence greigite (Fe2+Fe3+2S4). We conclude that in highly saline aquifers with high concentrations of sulfate and contaminated with hydrocarbon, dominance of sulfate reduction as the TEA is responsible for iron cycling and therefore the high MS associated with biodegradation. [AE1]What about sulfate concentrations? And the range in salinity? You need to add these values to the bastrcat
Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P; Esposito, Giovanni; Yeh, Daniel H; Lens, Piet N L
2014-03-30
Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75-85% was achieved at a hydraulic retention time (HRT) of 15.5h. A high calcium concentration up to 1,000 mg L(-1) did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tozsin, Gulsen
2016-01-01
Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.
INTERCOMPARISON OF PERIODIC FINE PARTICLE SULFUR AND SULFATE CONCENTRATION RESULTS
A one-week study was conducted in August 1979 to evaluate the comparative ability of representative aerosol sampling systems to monitor fine particulate sulfur and sulfate concentrations periodically in situ. Participants in the study operated their samplers simultaneously in the...
Krumholz, Lee R.; Harris, Steve H.; Tay, Stephen T.; Suflita, Joseph M.
1999-01-01
We examined the relative roles of acetogenic and sulfate-reducing bacteria in H2 consumption in a previously characterized subsurface sandstone ecosystem. Enrichment cultures originally inoculated with ground sandstone material obtained from a Cretaceous formation in central New Mexico were grown with hydrogen in a mineral medium supplemented with 0.02% yeast extract. Sulfate reduction and acetogenesis occurred in these cultures, and the two most abundant organisms carrying out the reactions were isolated. Based on 16S rRNA analysis data and on substrate utilization patterns, these organisms were named Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov. The steady-state H2 concentrations measured in sandstone-sediment slurries (threshold concentration, 5 nM), in pure cultures of sulfate reducers (threshold concentration, 2 nM), and in pure cultures of acetogens (threshold concentrations 195 to 414 nM) suggest that sulfate reduction is the dominant terminal electron-accepting process in the ecosystem examined. In an experiment in which direct competition for H2 between D. hypogeium and A. psammolithicum was examined, sulfate reduction was the dominant process. PMID:10347005
NASA Technical Reports Server (NTRS)
Hennigan, Christopher J.; Sandholm, Scott; Kim, Saewung; Stickel, Robert E.; Huey, L. Gregory; Weber, Rodney J.
2006-01-01
Aircraft measurements of fine inorganic aerosol composition were made with a particle-into-liquid sampler coupled to dual ion chromatographs (PILS-IC) as part of the NASA INTEX-NA study. The sampling campaign, which lasted from 1 July to 14 August 2004, centered over the eastern United States and Canada and showed that sulfate was the dominant inorganic species measured. The highest sulfate concentrations were observed at altitudes below 2 km, and back trajectory analyses showed a distinct difference between air masses that had or had not intercepted the Ohio River valley (ORV) region. Air masses encountered below 2 km with a history over the ORV had sulfate concentrations that were higher by a factor of 3.2 and total sulfur (S) concentrations higher by 2.5. The study's highest sulfate concentrations were found in these air masses. The sulfur of the ORV air masses was also more processed with a mean sulfate to total sulfur molar ratio of 0.5 compared to 0.3 in non-ORV measurements. Results from a second, independent trajectory model agreed well with those from the primary analysis. These ORV-influenced air masses were encountered on multiple days and were widely spread across the eastern United States and western Atlantic region.
Pimpão, Rui C; Ventura, M Rita; Ferreira, Ricardo B; Williamson, Gary; Santos, Claudia N
2015-02-14
Bioavailability studies are vital to assess the potential impact of bioactive compounds on human health. Although conjugated phenolic metabolites derived from colonic metabolism have been identified in the urine, the quantification and appearance of these compounds in plasma is less well studied. In this regard, it is important to further assess their potential biological activity in vivo. To address this gap, a cross-over intervention study with a mixed fruit purée (blueberry, blackberry, raspberry, strawberry tree fruit and Portuguese crowberry) and a standard polyphenol-free meal was conducted in thirteen volunteers (ten females and three males), who received each test meal once, and plasma metabolites were identified by HPLC-MS/MS. Sulfated compounds were chemically synthesised and used as standards to facilitate quantification. Gallic and caffeic acid conjugates were absorbed rapidly, reaching a maximum concentration between 1 and 2 h. The concentrations of sulfated metabolites resulting from the colonic degradation of more complex polyphenols increased in plasma from 4 h, and pyrogallol sulfate and catechol sulfate reached concentrations ranging from 5 to 20 μm at 6 h. In conclusion, phenolic sulfates reached high concentrations in plasma, as opposed to their undetected parent compounds. These compounds have potential use as biomarkers of polyphenol intake, and their biological activities need to be considered.
Acetate concentrations and oxidation in salt marsh sediments
NASA Technical Reports Server (NTRS)
1992-01-01
Acetate concentrations and rates of acetate oxidation and sulfate reduction were measured in S. alterniflora sediments in New Hampshire and Massachusetts. Pore water extracted from cores by squeezing or centrifugation contained in greater than 0.1 mM acetate and, in some instances, greater than 1.0 mM. Pore water sampled nondestructively contained much less acetate, often less than 0.01 mM. Acetate was associated with roots, and concentrations varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of sulfate reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a substantial percentage of sulfate reduction. These results differ markedly from data for unvegetated coastal sediments where acetate levels are low, oxidation rate constants are high, and acetate oxication rates greatly exceed rates of sulfate reduction. The discrepancy between rates of acetate oxidation and sulfate reduction in these marsh soils may be due either to the utilization of substrates other than acetate by sulfate reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria. Care must be taken when interpreting data from salt marsh sediments since the release of material from roots during coring may affect the concentrations of certain compounds as well as influencing results obtained when sediment incubations are employed.
de la Torre-Carbot, Karina; Chávez-Servín, Jorge L; Jaúregui, Olga; Castellote, Ana I; Lamuela-Raventós, Rosa M; Nurmi, Tarja; Poulsen, Henrik E; Gaddi, Antonio V; Kaikkonen, Jari; Zunft, Hans-Franz; Kiesewetter, Holger; Fitó, Montserrat; Covas, María-Isabel; López-Sabater, M Carmen
2010-03-01
In human LDL, the bioactivity of olive oil phenols is determined by the in vivo disposition of the biological metabolites of these compounds. Here, we examined how the ingestion of 2 similar olive oils affected the content of the metabolic forms of olive oil phenols in LDL in men. The oils differed in phenol concentrations as follows: high (629 mg/L) for virgin olive oil (VOO) and null (0 mg/L) for refined olive oil (ROO). The study population consisted of a subsample from the EUROLIVE study and a randomized controlled, crossover design was used. Intervention periods lasted 3 wk and were preceded by a 2-wk washout period. The levels of LDL hydroxytyrosol monosulfate and homovanillic acid sulfate, but not of tyrosol sulfate, increased after VOO ingestion (P < 0.05), whereas the concentrations of circulating oxidation markers, including oxidized LDL (oxLDL), conjugated dienes, and hydroxy fatty acids, decreased (P < 0.05). The levels of LDL phenols and oxidation markers were not affected by ROO consumption. The relative increase in the 3 LDL phenols was greater when men consumed VOO than when they consumed ROO (P < 0.05), as was the relative decrease in plasma oxLDL (P = 0.001) and hydroxy fatty acids (P < 0.001). Plasma oxLDL concentrations were negatively correlated with the LDL phenol levels (r = -0.296; P = 0.013). Phenols in LDL were not associated with other oxidation markers. In summary, the phenol concentration of olive oil modulates the phenolic metabolite content in LDL after sustained, daily consumption. The inverse relationship of these metabolites with the degree of LDL oxidation supports the in vivo antioxidant role of olive oil phenolics compounds.
Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants
Zhai, Guangshu; Lehmler, Hans-Joachim; Schnoor, Jerald L.
2013-01-01
4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently utilized in phytoremediation. Results showed poplar plants could metabolize PCB3 into PCB3 sulfates during 25 day exposures. Three sulfate metabolites, including 2′-PCB3 sulfate, 3′-PCB3 sulfate and 4′-PCB3 sulfate, were identified in poplar roots and their concentrations increased in the roots from day 10 to day 25. The major products were 2′-PCB3 sulfate and 4′-PCB3 sulfate. However, the concentrations of PCB3 sulfates were much lower than those of OH-PCB3s in the roots, suggesting the sequential transformation of these hydroxylated PCB3 metabolites into PCB3 sulfates in whole poplars. In addition, 2′-PCB3 sulfate or 4′-PCB3 sulfate was also found in the bottom wood samples indicating some translocation or metabolism in woody tissue. Results suggested that OH-PCB3s were the substrates of sulfotransferases which catalyzed the formation of PCB3 sulfates in the metabolic pathway of PCB3. PMID:23215248
Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust
Zaromb, Solomon; Lawson, Daniel B.
1994-01-01
A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.
Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust
Zaromb, S.; Lawson, D.B.
1994-02-15
A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.
Behavior of a chlorinated ethene plume following source-area treatment with Fenton's reagent
Chapelle, F.H.; Bradley, P.M.; Casey, C.C.
2005-01-01
Monitoring data collected over a 6-year period show that a plume of chlorinated ethene-contaminated ground water has contracted significantly following treatment of the contaminant source area using in situ oxidation. Prior to treatment (1998), concentrations of perchloroethene (PCE) exceeded 4500 ??g/L in a contaminant source area associated with a municipal landfill in Kings Bay, Georgia. The plume emanating from this source area was characterized by vinyl chloride (VC) concentrations exceeding 800 ??g/L. In situ oxidation using Fenton's reagent lowered PCE concentrations in the source area below 100 ??g/L, and PCE concentrations have not rebounded above this level since treatment. In the 6 years following treatment, VC concentrations in the plume have decreased significantly. These concentration declines can be attributed to the movement of Fenton's reagent-treated water downgradient through the system, the cessation of a previously installed pump-and-treat system, and the significant natural attenuation capacity of this anoxic aquifer. While in situ oxidation briefly decreased the abundance and activity of microorganisms in the source area, this activity rebounded in <6 months. Nevertheless, the shift from sulfate-reducing to Fe(III)-reducing conditions induced by Fenton's treatment may have decreased the efficiency of reductive dechlorination in the injection zone. The results of this study indicate that source-area removal actions, particularly when applied to ground water systems that have significant natural attenuation capacity, can be effective in decreasing the areal extent and contaminant concentrations of chlorinated ethene plumes. Copyright ?? 2005 National Ground Water Association.
Lake Recovery Through Reduced Sulfate Deposition: A New Paradigm for Drinking Water Treatment.
Anderson, Lindsay E; Krkošek, Wendy H; Stoddart, Amina K; Trueman, Benjamin F; Gagnon, Graham A
2017-02-07
This study examined sulfate deposition in Nova Scotia from 1999 to 2015, and its association with increased pH and organic matter in two protected surface water supplies (Pockwock Lake and Lake Major) located in Halifax, Nova Scotia. The study also examined the effect of lake water chemistry on drinking water treatment processes. Sulfate deposition in the region decreased by 68%, whereas pH increased by 0.1-0.4 units over the 16-year period. Average monthly color concentrations in Pockwock Lake and Lake Major increased by 1.7 and 3.8×, respectively. Accordingly, the coagulant demand increased by 1.5 and 3.8× for the water treatment plants supplied by Pockwock Lake and Lake Major. Not only was this coagulant increase costly for the utility, it also resulted in compromised filter performance, particularly for the direct-biofiltration plant supplied by Pockwock Lake that was found to already be operating at the upper limit of the recommended direct filtration thresholds for color, total organic carbon and coagulant dose. Additionally, in 2012-2013 geosmin occurred in Pockwock Lake, which could have been attributed to reduced sulfate deposition as increases in pH favor more diverse cyanobacteria populations. Overall, this study demonstrated the impact that ambient air quality can have on drinking water supplies.
Girolami, Federica; Persiani, Stefano
2012-01-01
Glucosamine is an amino monosaccharide and a natural constituent of glycosaminoglycans in articular cartilage. When administered exogenously, it is used for the treatment of osteoarthritis as a prescription drug or a dietary supplement. The latter use is mainly supported by its perception as a cartilage building block, but it actually exerts specific pharmacologic effects, mainly decreasing interleukin 1-induced gene expression by inhibiting the cytokine intracellular signaling cascade in general and nuclear factor-kappa B (NF-kB) activation in particular. As a whole, the use of glucosamine in the management of osteoarthritis is supported by the clinical trials performed with the original prescription product, that is, crystalline glucosamine sulfate. This is the stabilized form of glucosamine sulfate, while other formulations or different glucosamine salts (e.g. hydrochloride) have never been shown to be effective. In particular, long-term pivotal trials of crystalline glucosamine sulfate 1500 mg once daily have shown significant and clinically relevant improvement of pain and function limitation (symptom-modifying effect) in knee osteoarthritis. Continuous administration for up to 3 years resulted in significant reduction in the progression of joint structure changes compared with placebo as assessed by measuring radiologic joint space narrowing (structure-modifying effect). The two effects combined may suggest a disease-modifying effect that was postulated based on an observed decrease in the risk of undergoing total joint replacement in the follow up of patients receiving the product for at least 12 months in the pivotal trials. The safety of the drug was good in clinical trials and in the postmarketing surveillance. Crystalline glucosamine sulfate 1500 mg once daily is therefore recommended in the majority of clinical practice guidelines and was found to be cost effective in pharmacoeconomic analyses. Compared with other glucosamine formulations, salts, or dosage forms, the prescription product achieves higher plasma and synovial fluid concentrations that are above the threshold for a pharmacologically relevant effect, and may therefore justify its distinct therapeutic characteristics. PMID:22850875
NASA Astrophysics Data System (ADS)
Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru
1996-10-01
Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.
Dam, W.L.
1995-01-01
Ground water was sampled from wells completed in the Gallup, Dakota, and Morrison aquifers in the San Juan Basin, New Mexico, to examine controls on solute concentrations. Samples were collected from 38 wells primarily from the Morrison aquifer (25 wells) in the northwestern part of the basin. A series of samples was collected along ground-water flow paths; dissolved constituents varied horizontally and vertically. The understanding of the flow system changed as a result of the geochemical analyses. The conceptual model of the flow system in the Morrison aquifer prior to the study reported here assumed the Westwater Canyon Member of the Morrison aquifer as the only significant regional aquifer; flow was assumed to be two dimensional; and vertical leakage was assumed to be negligible. The geochemical results indicate that the Westwater Canyon Member is not the only major water-yielding zone and that the flow system is three dimensional. The data presented in this report suggest an upward component of flow into the Morrison aquifer. The entire section above and below the Morrison aquifer appears to be controlled by a three-dimensional flow regime where saline brine leaks near the San Juan River discharge area. Predominant ions in the Gallup aquifer were calcium bicarbonate in recharge areas and sodium sulfate in discharge areas. In the Dakota aquifer, predominant ions were sodium bicarbonate and sodium sulfate. Water in the Morrison aquifer was predominantly sodium bicarbonate in the recharge area, changing to sodium sulfate downgradient. Chemical and radioisotopic data indicate that water from overlying and underlying units mixes with recharge water in the Morrison aquifer. Recharge water contained a large ratio of chlorine-36 to chlorine and a small ratio of bromide to chloride. Approximately 10 miles downgradient, samples from four wells completed in the Morrison aquifer were considerably different in composition compared to recharge samples. Oxygen stable isotopes decreased by 2.8 per mil and deuterium decreased 26 per mil, relative to recharge. Carbon-14 radioisotope activities were not detectable. Chloride-36 radioisotope ratios were small and bromide to chloride concentration ratios were large. These results suggest two potentially viable processes: ion filtration or trapping of ancient dilute water recharged under a humid climate. For water samples near the San Juan River, pH decreased to about 8.0, chloride concentrations increased to more than 100 milligrams per liter, and ratios of chlorine-36 to chlorine and bromide to chloride were small. Leakage of deep basin brine into the fresher water of the Morrison aquifer appears to control ion concentrations.
Meena, Amanda H.; Arai, Yuji
2016-04-29
Reductive precipitation of hexavalent chromium (Cr(VI)) with magnetite is a well-known Cr(VI) remediation method to improve water quality. The rapid (< a few hr) reduction of soluble Cr(VI) to insoluble Cr(III) species by Fe(II) in magnetite has been the primary focus of the Cr(VI) removal process in the past. However, the contribution of simultaneous Cr(VI) adsorption processes in aged magnetite has been largely ignored, leaving uncertainties in evaluating the application of in situ Cr remediation technologies for aqueous systems. In this study, effects of common groundwater ions (i.e., nitrate and sulfate) on Cr(VI) sorption to magnetite were investigated using batchmore » geochemical experiments in conjunction with X-ray absorption spectroscopy. As a result, in both nitrate and sulfate electrolytes, batch sorption experiments showed that Cr(VI) sorption decreases with increasing pH from 4 to 8. In this pH range, Cr(VI) sorption decreased with increasing ionic strength of sulfate from 0.01 to 0.1 M whereas nitrate concentrations did not alter the Cr(VI) sorption behavior. This indicates the background electrolyte specific Cr(VI) sorption process in magnetite. Under the same ionic strength, Cr(VI) removal in sulfate containing solutions was greater than that in nitrate solutions. This is because the oxidation of Fe(II) by nitrate is more thermodynamically favorable than by sulfate, leaving less reduction capacity of magnetite to reduce Cr(VI) in the nitrate media. X-ray absorption spectroscopy analysis supports the macroscopic evidence that more than 75 % of total Cr on the magnetite surfaces was adsorbed Cr(VI) species after 48 h. In conclusion, this experimental geochemical study showed that the adsorption process of Cr(VI) anions was as important as the reductive precipitation of Cr(III) in describing the removal of Cr(VI) by magnetite, and these interfacial adsorption processes could be impacted by common groundwater ions like sulfate and nitrate. The results of this study highlight new information about the large quantity of adsorbed Cr(VI) surface complexes at the magnetite-water interface. It has implications for predicting the long-term stability of Cr at the magnetite-water interface.« less
Hayhurst, Brett A.; Coon, William F.; Eckhardt, David A.V.
2010-01-01
This report, the sixth in a series published since 1994, presents analyses of hydrologic data in Monroe County for the period October 2002 through September 2008. Streamflows and water quality were monitored at nine sites by the Monroe County Department of Health and the U.S. Geological Survey. Streamflow yields (flow per unit area) were highest in Northrup Creek, which had sustained flows from year-round inflow from the village of Spencerport wastewater-treatment plant and seasonal releases from the New York State Erie (Barge) Canal. Genesee River streamflow yields also were high, at least in part, as a result of higher rainfall and lower evapotranspiration rates in the upper part of the Genesee River Basin than in the other study basins. The lowest streamflow yields were measured in Honeoye Creek, which reflected a decrease in flows due to the withdrawals from Hemlock and Canadice Lakes for the city of Rochester water supply. Water samples collected at nine monitoring sites were analyzed for nutrients, chloride, sulfate, and total suspended solids. The loads of constituents, which were computed from the concentration data and the daily flows recorded at each of the monitoring sites, are estimates of the mass of the constituents that was transported in the streamflow. Annual yields (loads per unit area) also were computed to assess differences in constituent transport among the study basins. All urban sites - Allen Creek and the two downstream sites on Irondequoit Creek - had seasonally high concentrations and annual yields of chloride. Chloride loads are attributed to the application of road-deicing salts to the county's roadways and are related to population and road densities. The less-urbanized sites in the study - Genesee River, Honeoye Creek, and Oatka Creek - had relatively low concentrations and yields of chloride. The highest concentrations and yields of sulfate were measured in Black Creek, Oatka Creek, and Irondequoit Creek at Railroad Mills and are attributable to dissolution of sulfate from gypsum (calcium sulfate) deposits in Silurian shale bedrock that crops out upstream from these monitoring sites. Northrup Creek had the highest concentrations of phosphorus, orthophosphate, and nitrogen, and high yields of nitrate plus nitrite nitrogen and ammonia plus organic nitrogen. These results are attributed to discharges from the Spencerport wastewater-treatment plant (which ceased operation in June 2008), diversions from the New York State Erie (Barge) Canal, and manure and fertilizers applied to agricultural fields. Concentrations and yields of nitrate plus nitrite nitrogen also were high in Oatka Creek and Black Creek; basins with substantial agricultural land uses. Allen Creek had the second highest yield of ammonia plus organic nitrogen. Honeoye Creek, which drains a relatively undeveloped basin, had the lowest yields of nitrogen constituents. The second highest median concentrations and highest sample concentrations of phosphorus and orthophosphate, as well as the highest phosphorus yields, were measured in the Genesee River. A comparison of the yields computed for the two downstream sites on Irondequoit Creek - above Blossom Road and at Empire Boulevard - permitted an assessment of the mitigative effects of the Ellison Park wetland on constituent loads, which would otherwise be transported to Irondequoit Bay. These effects also include those provided by a flow-control structure (installed mid-way through the wetland during February 1997), which was designed to increase the dispersal and short-term detention of stormflows in the wetland. The wetland decreased yields of particulate constituents - phosphorus and ammonia plus organic nitrogen - but had little effect on the yields of dissolved constituents - chloride, sulfate, and nitrate plus nitrite nitrogen. Trends in flow-adjusted concentrations were identified at all sites for most of the nutrient constituents that were evaluated. All of the linear time tren
Jagucki, Martha L.; Kula, Stephanie P.; Mailot, Brian E.
2015-01-01
To evaluate whether constituent concentrations consistently increased or decreased over time, the strength of the association between sampling year (time) and constituent concentration was statistically evaluated for 116 water-quality samples collected by the USGS in 1978, 1980, 1986, 1999, and 2009 from a total of 65 wells across the county (generally domestic wells or wells serving small businesses or churches). Results indicate that many of the constituents that have been analyzed for decades exhibited no consistent temporal trends at a statistically significant level (p-value less than 0.05); fluctuations in concentrations of these constituents represent natural variation in groundwater quality. Dissolved oxygen, calcium, and sulfate concentrations and chloride:bromide ratios increased over time in one or more aquifers, while pH and concentrations of bromide and dissolved organic carbon decreased over time. Detections of total coliform bacteria and nitrate did not become more frequent from 1986 to 2009, even though potential sources of these constituents, such as number of septic systems (linked to population) and percent developed land in the county, increased during this period.
Dong, Li-Qun; Wang, Zheng; Yu, Ping; Guo, Yan-Nan; Wu, Jin; Feng, Shi-Pin; Li, Sha
2009-01-01
To investigate the expression of glomerular heparin sulfate (HS) in paediatric patients with minimal change nephritic syndrome (MCNS). The kidyney tissues were collected by biopsy from 13 paediatric patients with MCNS, while 5 normal renal biopsy samples were used as control. HS in glomeruli was analysed by indirect immunofluorescence staining using four different monoclonal antibodies, Hepss1, 3G10, JM403 and 10E4, which all recognize distinct HS species and each interacts with a specific HS domain. The concentrations of urine heparan sulfate also were measured by enzyme-linked immunosorbent assay (Elisa). Expression of HS fine domains was aberrant in paediatric patients compared with control subjects. Children with MCNS in replase showed a decreased glomerular expression of 10E4, JM403 and Hepss1 (P < 0.05). The level of urinary HS was significantly increased in peadiatric patients with MCNS when compared with that in control subjects (P < 0.01). These results suggest that loss of heparan sulphate in renal tissue may play a role in the pathogenesis of MCNS proteinuria.
Bacterial Growth as a Practical Indicator of Extensive Biodegradability of Organic Compounds
Prochazka, G. J.; Payne, W. J.
1965-01-01
The proportionality of growth, as indicated by turbidity of cultures of Pseudomonas C12B, to the initial concentration of sodium dodecyl sulfate, dodecanol, or a mixture of C10-C20 secondary alcohol sulfates, each provided as sole carbon source in basal mineral salts medium, was demonstrated. Subsequently, the direct correlation of culture turbidity as a growth indicator and degradation of sodium dodecyl sulfate and the C10-C20 compounds was established. Degradation of these detergents was measured by the rise in surface tension and the decrease in methylene blue values, respectively. Turbidimetry was found to be a poor indicator of degradation of dodecanol in the early hours of culture, however, and did not correlate over a significant range with degradation of substrate. Viable cell counts did parallel dodecanol degradation as measured by gas-liquid chromatography. The use of bacterial growth as a reliable, quantitative, and easily measured parameter indicating biodegradability was suggested for those organic compounds which can be shown to serve as a carbon source for a bacterium. PMID:5867651
In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation
Pecora, Fabio; Gualeni, Benedetta; Forlino, Antonella; Superti-Furga, Andrea; Tenni, Ruggero; Cetta, Giuseppe; Rossi, Antonio
2006-01-01
Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859–871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration. PMID:16719839
MEASUREMENT AND QUANTIFICATION OF SULFATES IN MINING INFLUENCED WATER
Most hard rock (mineral) mine drainages contain metals and sulfates higher than current water quality standards permit for discharge. In treating these wastes with passive systems, scientists and engineers have concentrated on using sulfate-reducing bioreactors (SRBRs) and their ...
Geochemical characterization of shallow ground water in the Eutaw aquifer, Montgomery, Alabama
Robinson, J.L.; Journey, C.A.
2004-01-01
Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium-sodium-chloride- dominated type in the recharge area to calcium-bicarbonate-dominated type in the confined portion of the aquifer. Ground water in the recharge area was undersaturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite-plus-nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.
So, Masatomo; Ishii, Akira; Hata, Yasuko; Yagi, Hisashi; Naiki, Hironobu; Goto, Yuji
2015-09-15
Although various natural and synthetic compounds have been shown to accelerate or inhibit the formation of amyloid fibrils, the mechanisms by which they achieve these adverse effects in a concentration-dependent manner currently remain unclear. Sodium dodecyl sulfate (SDS), one of the compounds that has adverse effects on fibrillation, is the most intensively studied. Here we examined the effects of a series of detergents including SDS on the amyloid fibrillation of β2-microglobulin at pH 7.0, a protein responsible for dialysis-related amyloidosis. In all the detergents examined (i.e., SDS, sodium decyl sulfate, sodium octyl sulfate, and sodium deoxycholate), amyloid fibrillation was accelerated and inhibited at concentrations near the critical micelle concentration (CMC) and higher than CMC, respectively. The most stable conformation changed from monomers with a β-structure to amyloid fibrils with a β-structure and then to α-helical complexes with micelles with an increase in detergent concentrations. These results suggest that competition between supersaturation-limited fibrillation and unlimited mixed micelle formation between proteins and micelles underlies the detergent concentration-dependent complexity of amyloid fibrillation.
2005-2014 trends of PM10 source contributions in an industrialized area of southern Spain.
Li, Jiwei; Chen, Bing; de la Campa, Ana M Sánchez; Alastuey, Andrés; Querol, Xavier; de la Rosa, Jesus D
2018-05-01
Particulate matter with a diameter of 10 μm or less (PM10) using receptor modelling was determined at an urban (La Linea, LL) and an industrial area (Puente Mayorga, PMY) in Southern Spain with samples collected during 2005-2014. The concentrations of PM10 had been decreasing at both sites in three distinctive periods: 1) the initial PM10 levels approached or exceeded the Spain and EU PM10 annual guidelines of 40 μg/m 3 during 2005-2007 at LL and 2005-2009 at PMY; 2) then PM10 dropped by 25%-∼30 μg/m 3 during 2008-2011 at LL and during 2010-2011 at PMY; 3) since 2012, the PM10 concentrations gradually decreased to <30 μg/m 3 . Chemical compositions of PM10 revealed the important contributions of water soluble ions (sulfate, nitrate, ammonium, and chloride), carbonaceous aerosols, and other major elements. These PM components generally showed a decrease trend, in accord with the trend of PM10 reduction. A PMF model identified seven sources to PM10 contributions. Secondary sulfate, soil/urban/construction dust, and secondary nitrate showed significantly decreasing trends with reduction of 40-60% comparing to the initial levels. The road traffic contribution decreased by 14% from the first to third period. However, sea salt, oil combustion, and industrial metallurgical process had relative stable contributions. These source contribution changes are reasonably governed by the PM emission abatement actions implemented during the past decade, as well as the financial crisis, that accounted for a significant decrease of PM pollution in Southern Spain. We identified that the mitigation efforts on industry, fossil fuel combustion, and urban transportation during the past decade were successful for air quality improvement in a highly industrialized area in Southern Spain. Copyright © 2018 Elsevier Ltd. All rights reserved.
Copper ions stimulate the proliferation of hepatic stellate cells via oxygen stress in vitro.
Xu, San-qing; Zhu, Hui-yun; Lin, Jian-guo; Su, Tang-feng; Liu, Yan; Luo, Xiao-ping
2013-02-01
This study examined the effect of copper ions on the proliferation of hepatic stellate cells (HSCs) and the role of oxidative stress in this process in order to gain insight into the mechanism of hepatic fibrosis in Wilson's disease. LX-2 cells, a cell line of human HSCs, were cultured in vitro and treated with different agents including copper sulfate, N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO) for different time. The proliferation of LX-2 cells was measured by non-radioactive cell proliferation assay. Real-time PCR and Western blotting were used to detect the mRNA and protein expression of platelet-derived growth factor receptor β subunit (PDGFβR), ELISA to determine the level of glutathione (GSH) and oxidized glutathione (GSSG), dichlorofluorescein assay to measure the level of reactive oxygen species (ROS), and lipid hydroperoxide assay to quantify the level of lipid peroxide (LPO). The results showed that copper sulfate over a certain concentration range could promote the proliferation of LX-2 cells in a time- and dose-dependent manner. The effect was most manifest when LX-2 cells were treated with copper sulfate at a concentration of 100 μmol/L for 24 h. Additionally, copper sulfate could dose-dependently increase the levels of ROS and LPO, and decrease the ratio of GSH/GSSG in LX-2 cells. The copper-induced increase in mRNA and protein expression of PDGFβR was significantly inhibited in LX-2 cells pre-treated with NAC, a precursor of GSH, and this phenomenon could be reversed by the intervention of BSO, an inhibitor of NAC. It was concluded that copper ions may directly stimulate the proliferation of HSCs via oxidative stress. Anti-oxidative stress therapies may help suppress the copper-induced activation and proliferation of HSCs.
In vitro susceptibility of spiroplasmas to heavy-metal salts.
Whitmore, S C; Rissler, J F; Davis, R E
1983-01-01
The susceptibility of six spiroplasma strains to heavy-metal salt was characterized in terms of minimal inhibitory concentrations and minimal biocidal concentrations in broth tube dilution tests. The strains were most susceptible to mercuric chloride and silver nitrate; less susceptible to copper sulfate, cobalt chloride, lead nitrate, and cadmium sulfate; and least susceptible to nickel chloride and zinc sulfate. Spiroplasma citri strains Maroc R8A2 and C189 were the most susceptible to five of eight heavy-metal salts, and honeybee spiroplasma strain AS576 and Spiroplasma floricola strain 23-6 were generally the least susceptible. The difference between the minimal biocidal concentrations and the minimal inhibitory concentrations was greater for certain heavy-metal salts than for others.
Meena, Amanda H; Arai, Yuji
2016-01-01
Reductive precipitation of hexavalent chromium (Cr(VI)) with magnetite is a well-known Cr(VI) remediation method to improve water quality. The rapid (
NASA Astrophysics Data System (ADS)
Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.
2014-09-01
The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.
Tang, Zhijian; Hong, Seungkwan; Xiao, Weizhong; Taylor, James
2006-03-01
The impacts of distribution water quality changes caused by blending different source waters on lead release from corrosion loops containing small lead coupons were investigated in a pilot distribution study. The 1-year pilot study demonstrated that lead release to drinking water increased as chlorides increased and sulfates decreased. Silica and calcium inhibited lead release to a lesser degree than sulfates. An additional 3-month field study isolated and verified the effects of chlorides and sulfates on lead release. Lead release decreased with increasing pH and increasing alkalinity during the 1-year pilot study; however, the effects of pH and alkalinity on lead release, were not clearly elucidated due to confounding effects. A statistical model was developed using nonlinear regression, which showed that lead release increased with increasing chlorides, alkalinity and temperature, and decreased with increasing pH and sulfates. The model indicated that primary treatment processes such as enhanced coagulation and RO (reverse osmosis membrane) were related to lead release by water quality. Chlorides are high in RO-finished water and increase lead release, while sulfates are high following enhanced coagulation and decrease lead release.
Hassan, P A; Fritz, Gerhard; Kaler, Eric W
2003-01-01
The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.
Particle emission from heavy-duty engine fuelled with blended diesel and biodiesel.
Martins, Leila Droprinchinski; da Silva Júnior, Carlos Roberto; Solci, Maria Cristina; Pinto, Jurandir Pereira; Souza, Davi Zacarias; Vasconcellos, Pérola; Guarieiro, Aline Lefol Nani; Guarieiro, Lílian Lefol Nani; Sousa, Eliane Teixeira; de Andrade, Jailson B
2012-05-01
In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 μm in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekhamkin, L.G.; Kondrashova, I.A.; Kerina, V.R.
1987-08-20
The reactivity of zirconium basic sulfate is determined by the possibility of replacement of oxo- and hydroxo-ligands and decreases with increasing temperature of its precipitation. The interaction of the less reactive zirconium basic sulfate with carbonate and oxalate reagents occurs at 25/sup 0/C without any change in basicity and that with phosphate reagents occurs with a decrease in it, up to the formation of a monophosphate with basicity about 20%. In the interaction of the more reactive zirconium basic sulfate, obtained without heating, oxo- and hydroxo groups can be entirely replaced by acido-ligands with the formation of unhydrolyzed compounds.
Baba, M; Schols, D; Nakashima, H; Pauwels, R; Parmentier, G; Meijer, D K; De Clercq, E
1989-01-01
Several cholic acid derivatives such as taurolithocholic acid, lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate were shown to inhibit selectively the replication of human immunodeficiency virus type 1 (HIV-1) in vitro. These compounds completely protected MT-4 cells against HIV-1-induced cytopathogenicity at a concentration of 100 micrograms/ml, whereas no toxicity for the host cells was observed at 200 micrograms/ml. They also inhibited HIV-1 antigen expression in HIV-1-infected CEM cells. The bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid) did not show any inhibitory effect on HIV-1 replication at concentrations that were not toxic to the host (MT-4) cells. From a structure-function analysis of a number of cholic acid derivatives, the presence of either a sulfonate (as in the tauro conjugates) or a sulfate group as well as the "litho" configuration appeared to be necessary for the expression of anti-HIV-1 activity. The active cholic acid derivatives did not directly inactivate the virus particles at the concentrations that were not toxic to the host cells. Lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate, but not taurolithocholic acid, partially inhibited virus adsorption to MT-4 cells. These three compounds were also inhibitory to the reverse transcriptase activity associated with HIV-1.
Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.I.
Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less
Cooley-Andrade, O; Connor, D E; Ma, D D F; Weisel, J W; Parsi, K
2016-04-01
To investigate morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants sodium tetradecyl sulfate and polidocanol. Samples of whole blood, isolated leukocytes, platelets, endothelial cells, and fibroblasts were incubated with varying concentrations of sclerosants. Whole blood smears were stained with Giemsa and examined by light and bright field microscopy. Phalloidin and Hoechst stains were used to analyze cytoplasmic and nuclear morphology by fluorescence microscopy. Endothelial cell and fibroblasts were analyzed by live cell imaging. Higher concentrations of sclerosants induced cell lysis. Morphological changes in intact cells were observed at sublytic concentrations of detergents. Low concentration sodium tetradecyl sulfate induced erythrocyte acanthocytosis and macrocytosis, while polidocanol induced Rouleaux formation and increased the population of target cells and stomatocytes. Leukocytes showed swelling, blebbing, vacuolation, and nuclear degradation following exposure to sodium tetradecyl sulfate, while polidocanol induced pseudopodia formation, chromatin condensation, and fragmentation. Platelets exhibited pseudopodia with sodium tetradecyl sulfate and a "fried egg" appearance with polidocanol. Exposure to sodium tetradecyl sulfate resulted in size shrinkage in both endothelial cell and fibroblasts, while endothelial cell developed distinct spindle morphology. Polidocanol induced cytoplasmic microfilament bundles in both endothelial cell and fibroblasts. Patchy chromatin condensation was observed following exposure of fibroblasts to either agent. Detergent sclerosants are biologically active at sublytic concentrations. The observed morphological changes are consistent with cell activation, apoptosis, and oncosis. The cellular response is concentration dependent, cell-specific, and sclerosant specific. © The Author(s) 2015.
Lasier, Peter J.; Hardin, Ian R.
2010-01-01
Chronic toxicities of Cl-, SO42-, and HCO3- to Ceriodaphnia dubia were evaluated in low- and moderate-hardness waters using a three-brood reproduction test method. Toxicity tests of anion mixtures were used to determine interaction effects and to produce models predicting C. dubia reproduction. Effluents diluted with low- and moderate-hardness waters were tested with animals acclimated to low- and moderate-hardness conditions to evaluate the models and to assess the effects of hardness and acclimation. Sulfate was significantly less toxic than Cl- and HCO3- in both types of water. Chloride and HCO3- toxicities were similar in low-hardness water, but HCO3- was the most toxic in moderate-hardness water. Low acute-to-chronic ratios indicate that toxicities of these anions will decrease quickly with dilution. Hardness significantly reduced Cl- and SO42- toxicity but had little effect on HCO3-. Chloride toxicity decreased with an increase in Na+ concentration, and CO3- toxicity may have been reduced by the dissolved organic carbon in effluent. Multivariate models using measured anion concentrations in effluents with low to moderate hardness levels provided fairly accurate predictions of reproduction. Determinations of toxicity for several effluents differed significantly depending on the hardness of the dilution water and the hardness of the water used to culture test animals. These results can be used to predict the contribution of elevated anion concentrations to the chronic toxicity of effluents; to identify effluents that are toxic due to contaminants other than Cl-, SO42-, and HCO3-; and to provide a basis for chemical substitutions in manufacturing processes.
NASA Astrophysics Data System (ADS)
Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona
2018-05-01
Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition, inorganic nitrate evaporated in the PAM reactor as sulfate was added to the particles. These results suggest that the chemical composition of aerosols and their degree of photochemical aging, particularly for organics, are also crucial in determining aerosol mass concentrations.
Modeling and minimization of barium sulfate scale
Alan W. Rudie; Peter W. Hart
2006-01-01
The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...
NASA Astrophysics Data System (ADS)
Myrbo, A.; Swain, E. B.; Engstrom, D. R.; Coleman Wasik, J.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.; Blaha, G.
2017-11-01
Field observations suggest that surface water sulfate concentrations control the distribution of wild rice, an aquatic grass (Zizania palustris). However, hydroponic studies show that sulfate is not toxic to wild rice at even unrealistically high concentrations. To determine how sulfate might directly or indirectly affect wild rice, potential wild rice habitat was characterized for 64 chemical and physical variables in over 100 sites spanning a relatively steep climatic and geological gradient in Minnesota. Habitat suitability was assessed by comparing the occurrence of wild rice with the field variables, through binary logistic regression. This analysis demonstrated that sulfide in sediment pore water, generated by the microbial reduction of sulfate that diffuses or advects into the sediment, is the primary control of wild rice occurrence. Water temperature and water transparency independently control the suitability of habitat for wild rice. In addition to generating phytotoxic sulfide, sulfate reduction also supports anaerobic decomposition of organic matter, releasing nutrients that can compound the harm of direct sulfide toxicity. These results are important because they show that increases in sulfate loading to surface water can have multiple negative consequences for ecosystems, even though sulfate itself is relatively benign.
Model intra-comparison of transboundary sulfate loadings over springtime east Asia
NASA Astrophysics Data System (ADS)
Goto, D.; Ohara, T.; Nakajima, T.; Takemura, T.; Kajino, M.; Dai, T.; Matsui, H.; Takami, A.; Hatakeyama, S.; Aoki, K.; Sugimoto, N.; Shimizu, A.
2013-12-01
Over east Asia, a spatial gradient of sulfate aerosols from source to outflow regions has not fully evaluated by simulations. In the present study, we executed a global aerosol-transport model (SPRINTARS) during April 2006 to investigate the spatial gradient of sulfate aerosols using multiple measurements including surface mass concentration, aerosol optical thickness, and vertical profiles of extinction coefficients for spherical particles. We also performed sensitivity experiments to estimate possible uncertainties of sulfate mass loadings caused by macrophysical processes; emission inventory, dynamic core, and spatial resolution. Among the experiments, although a difference in the surface sulfate mass concentrations over east Asia was large, none of the simulations in the present study as well as regional models reproduced the spatial gradient of the surface sulfate from the source over China to the outflow regions in Japan. The sensitivity of different macrophysical factors to the surface sulfate differs from that to sulfate loadings in the column especially in the marine boundary layers (MBL). Therefore, to properly simulate the transboundary air pollution over east Asia is required to use multiple measurements in both the source and outflow regions especially in the MBL during the polluted days.
Chen, Lei; Gin, Karina Y H; He, Yiliang
2016-02-01
Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.
Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China
Cheng, Yafang; Zheng, Guangjie; Wei, Chao; Mu, Qing; Zheng, Bo; Wang, Zhibin; Gao, Meng; Zhang, Qiang; He, Kebin; Carmichael, Gregory; Pöschl, Ulrich; Su, Hang
2016-01-01
Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to ~300 μg m−3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution. PMID:28028539
Cunningham, W.L.; Jones, R.L.
1990-01-01
Two small watersheds in eastern Ohio that were surface mined for coal and reclaimed were studied during 1986-89. Water-level and water-quality data were compared with similar data collected during previous investigations conducted during 1976-83 to determine long-term effects of surface mining on the hydrologic system. Before mining, the watersheds were characterized by sequences of flat-lying sedimentary rocks containing two major coal seams and underclays. An aquifer was present above each of the underclays. Surface mining removed the upper aquifer, stripped the coal seam, and replaced the sediment. This created a new upper aquifer with different hydraulic and chemical characteristics. Mining did not disturb the middle aquifer. A third, deeper aquifer in each watershed was not studied. Water levels were continuously recorded in one well in each aquifer. Other wells were measured every 2 months. Water levels in the upper aquifers reached hydraulic equilibrium from 2 to 5 years after mining ceased. Water levels in the middle aquifers increased more than 5 feet during mining and reached equilibrium almost immediately thereafter. Water samples were collected from three upper-aquifer well, a seep from the upper aquifer, and the stream in each watershed. Two samples were collected in 1986 and 1987, and one each in 1988 and 1989. In both watersheds, sulfate replaced bicarbonate as the dominant upper-aquifer and surface-water anion after mining. For the upper aquifer of a watershed located in Muskingum County, water-quality data were grouped into premining and late postmining time periods (1986-89). The premining median pH and concentration of dissolved solids and sulfate were 7.6, 378 mg/L (milligrams per liter), and 41 mg/L, respectively. The premining median concentrations of iron and manganese were 10? /L (micrograms per liter) and 25?, respectively. The postmining median values of pH, dissolved solids, and sulfate were 6.7, 1,150 mg/L, and 560 mg/L, respectively. The postmining median concentrations of iron and manganese were 3,900?g/L and 1,900? g/L, respectively. For the upper aquifer of a watershed located in Jefferson County, the water-quality data were grouped into three time periods of premining, early postmining, and late postmining. The premining median pH and concentrations of dissolved solids and sulfate were 7.0, 335 mg/L, and 85 mg/L, respectively. The premining median concentrations of iron and manganese were 30? g/L for each constituent. Late postmining median pH and concentrations of dissolved solids and sulfate were 6.7, 1,495 mg/L, and 825 mg/L, respectively. The postmining median concentrations of iron and manganese were 31? g/L and 1,015? g/L, respectively. Chemistry of water in the middle aquifer in each watershed underwent similar changes. In general, statistically significant increases in concentrations of dissolved constituents occurred because of surface mining. In some constituents, concentrations increased by more than an order of magnitude. The continued decrease in pH indicated that ground water had no reached geochemical equilibrium in either watershed more than 8 years after mining.
Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leaderer, B.P.; Boone, P.M.; Hammond, S.K.
1990-06-01
Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles ({<=} 2.5-{mu}m diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in homes in which the heaters are used may be increased in excess of 20 {mu}g/m{sup 3} over background levels. Sulfate and acidic aerosol levels in such homes could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels of all air contaminantsmore » measured.« less
Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leaderer, B.P.; Boone, P.M.; Hammond, S.K.
1990-01-01
The article discusses chamber studies of four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles (= or < 2.5 micrometer diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in houses in which the heaters are used may be increased in excess of 20 micrograms/m3 over background levels. Sulfate and acidic aerosol levels in such houses could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels ofmore » all air contaminants measured.« less
Djoullah, Attaf; Krechiche, Ghali; Husson, Florence; Saurel, Rémi
2016-01-01
In this work, techniques for monitoring the intramolecular transglutaminase cross-links of pea proteins, based on protein size determination, were developed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of transglutaminase-treated low concentration (0.01% w/w) pea albumin samples, compared to the untreated one (control), showed a higher electrophoretic migration of the major albumin fraction band (26 kDa), reflecting a decrease in protein size. This protein size decrease was confirmed, after DEAE column purification, by dynamic light scattering (DLS) where the hydrodynamic radius of treated samples appears to be reduced compared to the control one. Copyright © 2015 Elsevier Ltd. All rights reserved.
Novel Thermally Stable Poly (vinyl chloride) Composites for Sulfate Removal
BaCO3 dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthe...
Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area
Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-conce...
Clark, D.W.
1995-01-01
A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.
Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
Xu, Pei; Capito, Marissa; Cath, Tzahi Y
2013-09-15
Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.
Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.
Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C
2017-10-17
Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.
Hezarjaribi, Mehrnoosh; Ardestani, Fatemeh; Ghorbani, Hamid Reza
2016-08-01
Saccharomyces cerevisiae PTCC5269 growth was evaluated to specify an optimum culture medium to reach the highest protein production. Experiment design was conducted using a fraction of the full factorial methodology, and signal to noise ratio was used for results analysis. Maximum cell of 8.84 log (CFU/mL) was resulted using optimized culture composed of 0.3, 0.15, 1, and 50 g L(-1) of ammonium sulfate, iron sulfate, glycine, and glucose, respectively at 300 rpm and 35 °C. Glycine concentration (39.32 % contribution) and glucose concentration (36.15 % contribution) were determined as the most effective factors on the biomass production, while Saccharomyces cerevisiae growth had showed the least dependence on ammonium sulfate (5.2 % contribution) and iron sulfate (19.28 % contribution). The most interaction was diagnosed between ammonium sulfate and iron sulfate concentrations with interaction severity index of 50.71 %, while the less one recorded for glycine and glucose concentration was equal to 8.12 %. An acceptable consistency of 84.26 % was obtained between optimum theoretical cell numbers determined by software of 8.91 log (CFU/mL), and experimentally measured one at optimal condition confirms the suitability of the applied method. High protein content of 44.6 % using optimum culture suggests that Saccharomyces cerevisiae is a good commercial case for single cell protein production.
[Composition and source of atmosphere aerosol water soluble ions over the East China Sea in winter].
He, Yu-Hui; Yang, Gui-Peng; Zhang, Hong-Hai
2011-08-01
With the ion chromatographic method, the water-soluble ion concentrations of Cl(-), NO3(-), SO4(2-) , CH3SO3(-) (MSA), Na+, K+, NH4+, Mg2+ and Ca2+ in the atmospheric aerosol over the East China Sea in winter 2009 was determined and the sources of these ions was investigated through correlation analysis by SPSS (statistical package for social sciences) software. The results indicated that the concentrations of secondary ions in aerosol were the highest (non-sea-salt sulfates nss-SO4(2-), NO3(-), NH4+), accounting for 78.4% of total determining ions. The calculation results of equivalent concentration of anions and cations showed that the acid ions of aerosol were neutralized inadequately. The stoichiometry of NH4+ in different compounds showed that NH4HSO4 was the main binding form of NH4+ and SO4(2-) in the aerosol. The concentration of methanesulfonic acid (MSA) was low, and the average value was (0.0088 +/- 0.0037) microg x m(-3). According to calculation, the contribution of sea-salt sulfates was 4.5% to total sulfates, and that of biogenous sulfates was 1.4% to non-sea-salt sulfate (nss-SO4(2-)), showing that human input was the main source of sulfates in aerosol over the East China Sea. In addition, nss-SO4(2-)/NO3(-) in the aerosol was 1.08, reflecting that China's energy structure adjustment played an important role in recent years.
Preventing Precipitation in the ISS Urine Processor
NASA Technical Reports Server (NTRS)
Muirhead, Dean; Carter, Layne; Williamson, Jill; Chambers, Antja
2017-01-01
The ISS Urine Processor Assembly (UPA) was initially designed to achieve 85% recovery of water from pretreated urine on ISS. Pretreated urine is comprised of crew urine treated with flush water, an oxidant (chromium trioxide), and an inorganic acid (sulfuric acid) to control microbial growth and inhibit precipitation. Unfortunately, initial operation of the UPA on ISS resulted in the precipitation of calcium sulfate at 85% recovery. This occurred because the calcium concentration in the crew urine was elevated in microgravity due to bone loss. The higher calcium concentration precipitated with sulfate from the pretreatment acid, resulting in a failure of the UPA due to the accumulation of solids in the Distillation Assembly. Since this failure, the UPA has been limited to a reduced recovery of water from urine to prevent calcium sulfate from reaching the solubility limit. NASA personnel have worked to identify a solution that would allow the UPA to return to a nominal recovery rate of 85%. This effort has culminated with the development of a pretreatment based on phosphoric acid instead of sulfuric acid. By eliminating the sulfate associated with the pretreatment, the brine can be concentrated to a much higher concentration before calcium sulfate reach the solubility limit. This paper summarizes the development of this pretreatment and the testing performed to verify its implementation on ISS.
Kiel, Steffen
2015-04-07
The origin and evolution of the faunas inhabiting deep-sea hydrothermal vents and methane seeps have been debated for decades. These faunas rely on a local source of sulfide and other reduced chemicals for nutrition, which spawned the hypothesis that their evolutionary history is independent from that of photosynthesis-based food chains and instead driven by extinction events caused by deep-sea anoxia. Here I use the fossil record of seep molluscs to show that trends in body size, relative abundance and epifaunal/infaunal ratios track current estimates of seawater sulfate concentrations through the last 150 Myr. Furthermore, the two main faunal turnovers during this time interval coincide with major changes in seawater sulfate concentrations. Because sulfide at seeps originates mostly from seawater sulfate, variations in sulfate concentrations should directly affect the base of the food chain of this ecosystem and are thus the likely driver of the observed macroecologic and evolutionary patterns. The results imply that the methane-seep fauna evolved largely independently from developments and mass extinctions affecting the photosynthesis-based biosphere and add to the growing body of evidence that the chemical evolution of the oceans had a major impact on the evolution of marine life. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Lin, Juan; Zhong, Yufang; Fan, Hua; Song, Chaofeng; Yu, Chao; Gao, Yue; Xiong, Xiong; Wu, Chenxi; Liu, Jiantong
2017-01-01
In this work, sediments were treated with calcium nitrate, aluminum sulfate, ferric sulfate, and Phoslock®, respectively. The impact of treatments on internal phosphorus release, the abundance of nitrogen cycle-related functional genes, and the growth of submerged macrophytes were investigated. All treatments reduced total phosphorus (TP) and soluble reactive phosphorus (SRP) in interstitial water, and aluminum sulfate was most efficient. Aluminum sulfate also decreased TP and SRP in overlying water. Treatments significantly changed P speciations in the sediment. Phoslock® transformed other P species into calcium-bound P. Calcium nitrate, ferric sulfate, and Phoslock® had negative influence on ammonia oxidizers, while four chemicals had positive influence on denitrifies, indicating that chemical treatment could inhibit nitrification but enhance denitrification. Aluminum sulfate had decreased chlorophyll content of the leaves of submerged macrophytes, while ferric sulfate and Phoslock® treatment would inhibit the growth of the root. Based on the results that we obtained, we emphasized that before application of chemical treatment, the effects on submerged macrophyte revegetation should be taken into consideration.
Sulfation degree not origin of chondroitin sulfate derivatives modulates keratinocyte response.
Corsuto, Luisana; Rother, Sandra; Koehler, Linda; Bedini, Emiliano; Moeller, Stephanie; Schnabelrauch, Matthias; Hintze, Vera; Schiraldi, Chiara; Scharnweber, Dieter
2018-07-01
Chondroitin sulfate (CS) sulfation-dependently binds transforming growth factor-β1 (TGF-β1) and chronic wounds often accompany with epidermal hyperproliferation due to downregulated TGF-β signaling. However, the impact of CS on keratinocytes is unknown. Especially biotechnological-chemical strategies are promising to replace animal-derived CS. Thus, this study aims to evaluate the effects of CS derivatives on the interaction with vascular endothelial growth factor-A (VEGF-A) and on keratinocyte response. Over-sulfated CS (sCS3) interacts stronger with VEGF-A than CS. Furthermore, collagen coatings with CS variants are prepared by in vitro fibrillogenesis. Stability analyses demonstrate that collagen is firmly integrated, while the fibril diameters decrease with increasing sulfation degree. CS variants sulfation-dependently decelerate keratinocyte (HaCaT) migration and proliferation in a scratch assay. HaCaT cultured on sCS3-containing coatings produced increased amounts of solute active TGF-β1 which could be translated into biomaterials able to decrease epidermal hyperproliferation in chronic wounds. Overall, semi-synthetic and natural CS yield to comparable responses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate.
Kohring, G W; Zhang, X M; Wiegel, J
1989-01-01
In the presence of added sulfate, 2,4-dichlorophenol and 4-chlorophenol were transformed stoichiometrically to 4-chlorophenol and phenol, respectively, in anaerobic freshwater lake sediments between 18 and 40 degrees C. The concomitantly occurring sulfate reduction reduced the initial sulfate concentration from 25 mM to about 6 to 8 mM and depressed methane formation. PMID:2604410
Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng
2017-05-01
Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2 > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gholampour, Firouzeh; Behzadi Ghiasabadi, Fatemeh; Owji, Seyed Mohammad; Vatanparast, Jaafar
2017-01-01
Objective: Iron overload in the body is related with toxic effects and threatens the health. The aim of this study was to evaluate the protective role of hydroalcoholic extract of ginger (Zingiber officinale) against ferrous sulfate-induced hepatic and renal functional disorders and histological damages in rats. Materials and Methods: The rats were divided into four groups (n=7): Sham, Sham + G.E (ginger extract, 400 mg/kg/day for 14 days), FS (ferrous sulfate, 30 mg/kg/day for 14 days), FS+G.E (ferrous sulfate, 30 mg/kg/day for 14 days; ginger extract, 400 mg/kg/day for 11 days from the fourth day of ferrous sulfate injection). After 24 hr, blood, urine and tissue samples were collected. Results: Compared with Sham and Sham + G.E groups, administration of ferrous sulfate resulted in liver and kidney dysfunction as evidenced by significantly higher levels of serum hepatic markers and bilirubin, and lower levels of serum albumin, total protein, triglyceride, cholesterol and glucose, as well as lower creatinine clearance and higher fractional excretion of sodium (p<0.001). This was accompanied by increased malondialdehyde levels and histological damages (p<0.001). In the FS + G.E, ginger extract significantly (p<0.01) reversed the levels of serum hepatic markers, renal functional markers and lipid peroxidation marker. Furthermore, it restored the levels of serum total protein, albumin, glucose, triglycerides and cholesterol and decreased bilirubin concentration in the blood. All these changes were corroborated by histological observations of liver and kidney. Conclusion: In conclusion, ginger extract appears to exert protective effects against ferrous sulfate-induced hepatic and renal toxicity by reducing lipid peroxidation and chelating iron. PMID:29299437
Gholampour, Firouzeh; Behzadi Ghiasabadi, Fatemeh; Owji, Seyed Mohammad; Vatanparast, Jaafar
2017-01-01
Iron overload in the body is related with toxic effects and threatens the health. The aim of this study was to evaluate the protective role of hydroalcoholic extract of ginger ( Zingiber officinale ) against ferrous sulfate-induced hepatic and renal functional disorders and histological damages in rats. The rats were divided into four groups (n=7): Sham, Sham + G.E (ginger extract, 400 mg/kg/day for 14 days), FS (ferrous sulfate, 30 mg/kg/day for 14 days), FS+G.E (ferrous sulfate, 30 mg/kg/day for 14 days; ginger extract, 400 mg/kg/day for 11 days from the fourth day of ferrous sulfate injection). After 24 hr, blood, urine and tissue samples were collected. Compared with Sham and Sham + G.E groups, administration of ferrous sulfate resulted in liver and kidney dysfunction as evidenced by significantly higher levels of serum hepatic markers and bilirubin, and lower levels of serum albumin, total protein, triglyceride, cholesterol and glucose, as well as lower creatinine clearance and higher fractional excretion of sodium (p<0.001). This was accompanied by increased malondialdehyde levels and histological damages (p<0.001). In the FS + G.E, ginger extract significantly (p<0.01) reversed the levels of serum hepatic markers, renal functional markers and lipid peroxidation marker. Furthermore, it restored the levels of serum total protein, albumin, glucose, triglycerides and cholesterol and decreased bilirubin concentration in the blood. All these changes were corroborated by histological observations of liver and kidney. In conclusion, ginger extract appears to exert protective effects against ferrous sulfate-induced hepatic and renal toxicity by reducing lipid peroxidation and chelating iron.
Moore, Priscilla A; Kery, Vladimir
2009-01-01
High-throughput protein purification is a complex, multi-step process. There are several technical challenges in the course of this process that are not experienced when purifying a single protein. Among the most challenging are the high-throughput protein concentration and buffer exchange, which are not only labor-intensive but can also result in significant losses of purified proteins. We describe two methods of high-throughput protein concentration and buffer exchange: one using ammonium sulfate precipitation and one using micro-concentrating devices based on membrane ultrafiltration. We evaluated the efficiency of both methods on a set of 18 randomly selected purified proteins from Shewanella oneidensis. While both methods provide similar yield and efficiency, the ammonium sulfate precipitation is much less labor intensive and time consuming than the ultrafiltration.
Seo, Yoonjoo; Kang, Hyemin; Chang, Sumin; Lee, Yun-Yeong; Cho, Kyung-Suk
2018-01-02
Membrane-less, single-chamber, air-cathode, microbial fuel cells (ML-SC MFCs) have attracted attention as being suitable for wastewater treatment. In this study, the effects of nitrate and sulfate on the performance of ML-SC MFCs and their bacterial structures were evaluated. The maximum power density increased after nitrate addition from 8.6 mW·m -2 to 14.0 mW·m -2 , while it decreased after sulfate addition from 11.5 mW·m -2 to 7.7 mW·m -2 . The chemical oxygen demand removal efficiencies remained at more than 90% regardless of the nitrate or sulfate additions. The nitrate was removed completely (93.0%) in the ML-SC MFC, while the sulfate removal efficiency was relatively low (17.6%). Clostridium (23.1%), Petrimonas (20.0%), and unclassified Rhodocyclaceae (6.2%) were dominant on the anode before the addition of nitrate or sulfate. After the addition of nitrate, Clostridium was still the most dominant on the anode (23.6%), but Petrimonas significantly decreased (6.0%) and unclassified Rhodocyclaceae increased (17.1%). After the addition of sulfate, the amount of Clostridium almost doubled in the composition on the anode (43.2%), while Petrimonas decreased (5.5%). The bacterial community on the cathode was similar to that on the anode after the addition of nitrate. However, Desulfovibrio was remarkably dominant on the cathode (32.9%) after the addition of sulfate. These results promote a deeper understanding of the effects of nitrate or sulfate on the ML-SC MFCs' performance and their bacterial community.
Hollmann, J; Niemann, R; Buddecke, E
1986-01-01
A 3'-phosphoadenylylsulfate:chondroitin sulfotransferase (EC 2.8.2.5) was purified to homogeneity (about 760-fold) from the cytosolic fraction of calf arterial tissue by Con A-Sepharose, ion exchange and affinity chromatography. The enzyme has a molecular mass of 38000 Da, optimal activity at pH 6.0 (100%) and 7.25 (75%), requires divalent cations for maximal activity (Mn2+ greater than Mg2+, Ca2+) and exhibits specificity towards desulfated chondroitin sulfate and oligosaccharides derived therefrom. The enzyme transfers sulfate groups from [35S]phosphoadenylylsulfate exclusively to C-6 OH groups of N-acetylgalactosamine units of the acceptor substrates. Maximal sulfate transfer occurs at 2mM chondroitin disaccharide units (100%), the transfer rates decreasing with decreasing chain length in the order deca (55%), octa (17%) and hexasaccharides (4%). Lineweaver-Burk plots revealed equal maximal velocities for chondroitin, deca-, octa- and hexasaccharide, but decreasing Km values. Chondroitin 4-sulfate has 21% of the acceptor potency exhibited by chondroitin, whereas dermatan sulfate, heparan sulfate and hyaluronate and the chondroitin tetrasaccharide showed no acceptor properties. Analysis of the reaction products formed by prolonged enzymatic sulfation of a reduced chondroitin hexasaccharide [GlcA-GalNAc]2-GlcA-GalNAc-ol revealed that the preterminal N-acetylgalactosamine from the non-reducing end and the internal N-acetylgalactosamine but not the N-acetylgalactosaminitol were sulfated and that no hexasaccharide disulfate was formed by the action of chondroitin 6-sulfotransferase. Chondroitin 6-sulfotransferase is considered to possess a binding region capable of accommodating a nonsulfated oligosaccharide sequence of at least six sugars and is believed to act in the course of chondroitin sulfate synthesis in cooperation with, but shortly after, the enzymes involved in the chain elongation reaction.
A modified sulfate process to lunar oxygen
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.
1992-01-01
A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.
Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan
NASA Astrophysics Data System (ADS)
Kundu, S.; Quraishi, T. A.; Yu, G.; Suarez, C.; Keutsch, F. N.; Stone, E. A.
2013-05-01
Organosulfates are important components of atmospheric organic aerosols, yet their structures, abundances, sources and formation processes are not adequately understood. This study presents the identification and quantitation of benzyl sulfate in atmospheric aerosols, which is the first confirmed atmospheric organosulfate with aromatic carbon backbone. Benzyl sulfate was identified and quantified in fine particulate matter (PM2.5) collected in Lahore, Pakistan, during 2007-2008. An authentic standard of benzyl sulfate was synthesized, standardized, and identified in atmospheric aerosols with quadrupole time-of-flight (Q-ToF) mass spectrometry (MS). Benzyl sulfate was quantified in aerosol samples using ultra performance liquid chromatography (UPLC) coupled to negative electrospray ionization triple quadrupole (TQ) MS. The highest benzyl sulfate concentrations were recorded in November and January 2007 (0.50 ± 0.11 ng m-3) whereas the lowest concentration was observed in July (0.05 ± 0.02 ng m-3). To evaluate matrix effects, benzyl sulfate concentrations were determined using external calibration and the method of standard addition; comparable concentrations were detected by the two methods, which ruled out significant matrix effects in benzyl sulfate quantitation. Three additional organosulfates with m/z 187, 201 and 215 were qualitatively identified as aromatic organosulfates with additional methyl substituents by high-resolution mass measurements and tandem MS. The observed aromatic organosulfates form a homologous series analogous to toluene, xylene, and trimethylbenzene, which are abundant anthropogenic volatile organic compounds (VOC), suggesting that aromatic organosulfates may be formed by secondary reactions. However, stronger statistical correlations of benzyl sulfate with combustion tracers (EC and levoglucosan) than with secondary tracers (SO42- and α-pinene-derived nitrooxy organosulfates) suggest that aromatic organosulfates may be emitted from the combustion sources or their subsequent atmospheric processing. Further studies are needed to elucidate the sources and formation pathways of aromatic organosulfates in the atmosphere.
An, Xinli; Baker, Paul; Li, Hu; Su, Jianqiang; Yu, Changping; Cai, Chao
2016-11-01
Microorganisms are the primary agents responsible for the modification, degradation, and/or detoxification of pollutants, and thus, they play a major role in their natural attenuation; yet, little is known about the structure and diversity of the subsurface community and relationships between microbial community and groundwater hydrochemistry. In this study, denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) allowed a comparative microbial community analysis of sulfate-contaminated groundwater samples from nine different wells in the region of Baogang rare earth tailings. Using real-time PCR, the abundance of total bacteria and the sulfate-reducing genes of aprA and dsrB were quantified. Statistical analyses showed a clear distinction of the microbial community diversity between the contaminated and uncontaminated samples, with Proteobacteria being the most dominant members of the microbial community. SO 4 2- concentrations exerted a significant effect on the variation of the bacterial community (P < 0.05), with higher concentrations of sulfate reducing the microbial diversity (H' index), indicating that human activity (e.g., mining industries) was a possible factor disturbing the structure of the bacterial community. Quantitative analysis of the functional genes showed that the proportions of dsrB to total bacteria were 0.002-2.85 %, and the sulfate-reducing bacteria (SRB) were predominant within the prokaryotic community in the groundwater. The uncontaminated groundwater with low sulfate concentration harbored higher abundance of SRB than that in the polluted samples, while no significant correlation was observed between sulfate concentrations and SRB abundances in this study, suggesting other environmental factors possibly contributed to different distributions and abundances of SRB in the different sites. The results should facilitate expanded studies to identify robust microbe-environment interactions and provide a strong foundation for qualitative exploration of the bacterial diversity in rare earth tailings groundwater that might ultimately be incorporated into the remediation of environmental contamination.
Jiang, Zedong; Ueno, Mikinori; Nishiguchi, Tomoki; Abu, Ryogo; Isaka, Shogo; Okimura, Takasi; Yamaguchi, Kenichi; Oda, Tatsuya
2013-10-18
To investigate the role of sulfate groups on the macrophage-stimulating activities of ascophyllan, we prepared desulfated ascophyllan, and its effects on RAW264.7 cells were compared with native ascophyllan. The chemical structural analysis revealed that nearly 21% of sulfate groups of ascophyllan were removed by desulfation reaction, while no significant changes in the molecular mass and monosaccharide composition occurred after desulfation. NO- and cytokine- (TNF-α and G-CSF) inducing activities of the desulfated ascophyllan on RAW264.7 cells were significantly decreased as compared to native ascophyllan. Furthermore, the activity of desulfated ascophyllan to induce reactive oxygen species (ROS) generation from RAW264.7 cells decreased to almost negligible level. Our results suggest that the level of sulfate groups of ascophyllan is an important structural element responsible for the macrophage-stimulating activities. Probably, even the limited removal of sulfate residues sensitive to desulfation reaction may result in significant decrease in the bioactivities of ascophyllan. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Cravotta, C.A.
2008-01-01
Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.
Barker, J.L.; Witt, E. C.
1990-01-01
Five headwater streams in the Laurel Hill area in southwestern Pennsylvania were investigated from September 1983 through February 1986 to determine possible effects of acidic precipitation on water quality. Precipitation in the Laurel Hill area is among the most acidic in the Nation, with a mean volume-weighted pH of 4.06. Sulfate is the dominant acid-forming anion, averaging 3.6 milligrams per liter or about 50 kilograms per hectare in wet deposition alone. Nitrate averages about 2 milligrams per liter or 7 kilograms per hectare in the study area. Stream chemistry in the five streams is quite variable and apparently is influenced to a large degree by the bedrock geology and by small amounts of alkaline material in watershed soils. Three of the five streams with no or little acid-neutralizing capacity presently are devoid of fish because of low pH and elevated aluminum concentrations. Aluminum concentrations increase in the other two streams during rainfall and snowmelt despite comparatively higher base flow and acid-neutralizing capacities. Comparison of the chemistry of streamflow during 14 storm events at South Fork Bens Creek and North Fork Bens Creek reveals similar chemical responses when discharge suddenly increases. Concentrations of dissolved metals and sulfate increased during stormflow and snowmelt runoff, whereas concentrations of base cations, silica, and chloride decreased. Nitrate concentrations were not affected by rainfall runoff by tended to increase with snowmelt runoff.
Trend analysis of weekly acid rain data, 1978-83
Schertz, Terry L.; Hirsch, Robert M.
1985-01-01
There are 19 stations in the National Atmospheric Deposition Program which operated over the period 1978-83 and were subsequently incorporated into the National Trends Network in 1983. The precipitation chemistry data for these stations for this period were analyzed for trend, spatial correlation, seasonality, and relationship to precipitation volume. The intent of the analysis was to provide insights on the sources of variation in precipitation chemistry and to attempt to ascertain what statistical procedures may be most useful for ongoing analysis of the National Trends Network data. The Seasonal Kendall test was used for detection of trends in raw concentrations of dissolved constituents, pH and specific conductance, and residuals of these parameters from regression analysis. Forty-one percent of the trends detected in the raw concentrations were downtrends, 4 percent were uptrends, and 55 percent showed no trends at a = 0.2. At a more restrictive significance level of a = 0.05, 24 percent of the trends detected were downtrends, 2 percent were uptrends, and 74 percent showed no trends. The two constituents of greatest interest in terms of human generated emissions and environmental effects, sulfate and nitrate, showed only downtrends, and sulfate showed the largest decreases in concentration per year of all the ions tested.
Darwish, Ibrahim A; Khedr, Alaa S; Askal, Hassan F; Mohamed, Ramadan M
2006-01-01
Eight spectrophotometric methods for determination of ribavirin have been developed and validated. These methods were based on the oxidation of the drug by different inorganic oxidants: ceric ammonium sulfate, potassium permanganate, ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate. The oxidation reactions were performed in perchloric acid medium for ceric ammonium sulfate and in sulfuric acid medium for the other reagents. With ceric ammonium sulfate and potassium permanganate, the concentration of ribavirin in its samples was determined by measuring the decrease in the absorption intensity of the colored reagents at 315 and 525 nm, respectively. With the other reagents, the concentration of ribavirin was determined by measuring the intensity of the developed colored reaction products at the wavelengths of maximum absorbance: 675, 780, 595, 595, 475, and 475 nm for reactions with ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate, respectively. Different variables affecting the reaction conditions were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9984-0.9998) were found between the absorbance readings and the concentrations of ribavirin in the range of 4-1400 microg/mL. The molar absorptivities were correlated with the oxidation potential of the oxidants used. The precision of the methods were satisfactory; the values of relative standard deviation did not exceed 1.64%. The proposed methods were successfully applied to the analysis of ribavirin in pure drug material and capsules with good accuracy and precision; the recovery values were 99.2-101.2 +/- 0.48-1.30%. The results obtained using the proposed spectrophotometric methods were comparable with those obtained with the official method stated in the United States Pharmacopeia.
Phenotypic and gene expression responses of E. coli to antibiotics during spaceflight
NASA Astrophysics Data System (ADS)
Zea, Luis
Bacterial susceptibility to antibiotics has been shown in vitro to be reduced during spaceflight; however, the underlying mechanisms responsible for this outcome are not fully understood. In particular, it is not yet clear whether this observed response is due to increased drug resistance (a microbial defense response) or decreased drug efficacy (a microgravity biophysical mass transport effect). To gain insight into the differentiation between these two potential causes, an investigation was undertaken onboard the International Space Station (ISS) in 2014 termed Antibiotic Effectiveness in Space-1 (AES-1). For this purpose, E. coli was challenged with two antibiotics, Gentamicin Sulfate and Colistin Sulfate, at concentrations higher than those needed to inhibit growth on Earth. Phenotypic parameters (cell size, cell envelope thickness, population density and lag phase duration) and gene expression were compared between the spaceflight samples and ground controls cultured in varying levels of drug concentration. It was observed that flight samples proliferated in antibiotic concentrations that were inhibitory on Earth, growing on average to a 13-fold greater concentration than matched 1g controls. Furthermore, at the highest drug concentrations in space, E. coli cells were observed to aggregate into visible clusters. In spaceflight, cell size was significantly reduced, translating to a decrease in cell surface area to about one half of the ground controls. Smaller cell surface area can in turn proportionally reduce the rate of antibiotic molecules reaching the cell. Additionally, it was observed that genes --- in some cases more than 2000 --- were overexpressed in space with respect to ground controls. Up-regulated genes include poxB, which helps catabolize glucose into organic acids that alter acidity around and inside the cell, and the gadABC family genes, which confer resistance to extreme acid conditions. The next step is to characterize the mechanisms behind the observed gene expression, its implications, and most importantly, how this knowledge can help prevent the acquisition and spread of antibiotic resistance in pathogens on Earth.
Dillon, Jesse G; Fishbain, Susan; Miller, Scott R; Bebout, Brad M; Habicht, Kirsten S; Webb, Samuel M; Stahl, David A
2007-08-01
The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation.
Dillon, Jesse G.; Fishbain, Susan; Miller, Scott R.; Bebout, Brad M.; Habicht, Kirsten S.; Webb, Samuel M.; Stahl, David A.
2007-01-01
The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation. PMID:17575000
Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.
Einsiedl, Florian
2009-01-01
The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water, evidence of 18O enriched water in the remaining sulfate in the experiments that contained nitrite also demonstrates that SO3(2-) recycling to sulfate affects sulfur and oxygen isotope fractionation during bacterial sulfate reduction to some extent. Even though reduction of adenosine-5'-phosphosulfate (APS) to sulfite of -25 per thousand was not fully expressed, SO3(2-) was recycled to SO4(2-). On the basis of the results of this study a sulfur isotope fractionation for APSR of upto approximately -30 per thousand can be assumed. However, reported NO2(-) concentrations of up to 20 microM in freshwater and marine habitats may not significantly impact the ability to use stable isotope analysis in assessing bacterial sulfate reduction.
There is great uncertainty and large cost in making dry deposition measurements. e present evidence based on wet deposition, evapotranspiration, S storage in lake sediments, and sulfate concentrations in lakes and streams in Nllaine that the dry deposition flux of sulfur to drain...
Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.
1998-01-01
Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Four different crystal morphologies have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed, Crystals grown at 15 C were generally tetragonal, with space group P43212. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P21212 1. The tetragonal much less than orthorhombic morphology transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 0.8 -1.2M magnesium sulfate at pH 7.6 - 8.0 gave a hexagonal (trigonal) crystal form, space group P3121, which diffracted to 2.8 A. Ammonium sulfate was also found to result in a monoclinic form, space group C2. Small twinned monoclinic crystals of approx. 0.2 mm on edge were grown by dialysis followed by seeded sitting drop crystallization.
Osher, R H; Amdahl, L D; Cheetham, J K
1994-01-01
We compared trimethoprim sulfate 0.1%/polymyxin B sulfate 10,000 units/mL with tobramycin 0.3% for preoperative sterilization of the ocular surface, aqueous humor concentration, and ocular safety and comfort in 99 patients who had cataract extraction and intraocular lens implantation. The organisms most frequently cultured from the conjunctiva at baseline were Staphylococcus epidermidis, Corynebacterium species, and Staphylococcus aureus, which were isolated from 66%, 15%, and 8% of the 95 specimens eligible for evaluation. All organisms identified in positive baseline conjunctival cultures except Staphylococcus epidermidis were completely eradicated in both groups on the day of surgery and five to seven days postoperatively. Staphylococcus epidermidis was eradicated on the day of surgery in 58% of patients in the trimethoprim/polymyxin group and in 68% in the tobramycin group. This organism was eradicated five to seven days postoperatively in 85% of patients in both groups. Mean aqueous humor concentration of trimethoprim sulfate at surgery was greater than the mean tobramycin concentration, but neither reached clinically significant inhibitory levels for most organisms. No significant differences were found in ocular safety and comfort.
NASA Astrophysics Data System (ADS)
Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.
2015-11-01
To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since airflow into eastern China during the Asian Monsoon generally prevents transport of emissions eastward to the Korean Peninsula. Concentrations of the m/z 60 AMS biomass burning marker were more abundant in autumn, when transport patterns appeared to bring some smoke from fires in northern Asia to the island.
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate.../ton) of ammonium sulfate produced. cs = concentration of particulate matter, g/dscm (g/dscf). Qsd = volumetric flow rate of effluent gas, dscm/hr (dscf/hr). P = production rate of ammonium sulfate, Mg/hr (ton...
Zhang, T.; Ellis, G.S.; Walters, C.C.; Kelemen, S.R.; Wang, K.-s.; Tang, Y.
2008-01-01
A series of gold tube hydrous pyrolysis experiments was conducted in order to investigate the effect of thermochemical sulfate reduction (TSR) on gas generation, residual saturated hydrocarbon compositional alteration, and solid pyrobitumen formation. The intensity of TSR significantly depends on the H2O/MgSO4 mole ratio, the smaller the ratio, the stronger the oxidizing conditions. Under highly oxidizing conditions (MgSO4/hydrocarbon wt/wt 20/1 and hydrocarbon/H2O wt/wt 1/1), large amounts of H2S and CO2 are generated indicating that hydrocarbon oxidation coupled with sulfate reduction is the dominant reaction. Starting with a mixture of C21-C35 n-alkanes, these hydrocarbons are consumed totally at temperatures below the onset of hydrocarbon thermal cracking in the absence of TSR (400 ??C). Moreover, once the longer chain length hydrocarbons are oxidized, secondarily formed hydrocarbons, even methane, are oxidized to CO2. Using whole crude oils as the starting reactants, the TSR reaction dramatically lowers the stability of hydrocarbons leading to increases in gas dryness and gas/oil ratio. While their concentrations decrease, the relative distributions of n-alkanes do not change appreciably from the original composition, and consequently, are non-diagnostic for TSR. However, distinct molecular changes related to TSR are observed, Pr/n-C17 and Ph/n-C18 ratios decrease at a faster rate under TSR compared to thermal chemical alteration (TCA) alone. TSR promotes aromatization and the incorporation of sulfur and oxygen into hydrocarbons leading to a decrease in the saturate to aromatic ratio in the residual oil and in the generation of sulfur and oxygen rich pyrobitumen. These experimental findings could provide useful geochemical signatures to identify TSR in settings where TSR has occurred in natural systems. ?? 2008 Elsevier Ltd. All rights reserved.
Functional microbial diversity explains groundwater chemistry in a pristine aquifer
2013-01-01
Background The diverse microbial populations that inhabit pristine aquifers are known to catalyze critical in situ biogeochemical reactions, yet little is known about how the structure and diversity of this subsurface community correlates with and impacts upon groundwater chemistry. Herein we examine 8,786 bacterial and 8,166 archaeal 16S rRNA gene sequences from an array of monitoring wells in the Mahomet aquifer of east-central Illinois. Using multivariate statistical analyses we provide a comparative analysis of the relationship between groundwater chemistry and the microbial communities attached to aquifer sediment along with those suspended in groundwater. Results Statistical analyses of 16S rRNA gene sequences showed a clear distinction between attached and suspended communities; with iron-reducing bacteria far more abundant in attached samples than suspended, while archaeal clones related to groups associated with anaerobic methane oxidation and deep subsurface gold mines (ANME-2D and SAGMEG-1, respectively) distinguished the suspended community from the attached. Within the attached bacterial community, cloned sequences most closely related to the sulfate-reducing Desulfobacter and Desulfobulbus genera represented 20% of the bacterial community in wells where the concentration of sulfate in groundwater was high (> 0.2 mM), compared to only 3% in wells with less sulfate. Sequences related to the genus Geobacter, a genus containing ferric-iron reducers, were of nearly equal abundance (15%) to the sulfate reducers under high sulfate conditions, however their relative abundance increased to 34% when sulfate concentrations were < 0.03 mM. Also, in areas where sulfate concentrations were <0.03 mM, archaeal 16S rRNA gene sequences similar to those found in methanogens such as Methanosarcina and Methanosaeta comprised 73–80% of the community, and dissolved CH4 ranged between 220 and 1240 μM in these groundwaters. In contrast, methanogens (and their product, CH4) were nearly absent in samples collected from groundwater samples with > 0.2 mM sulfate. In the suspended fraction of wells where the concentration of sulfate was between 0.03 and 0.2 mM, the archaeal community was dominated by sequences most closely related to the ANME-2D, a group of archaea known for anaerobically oxidizing methane. Based on available energy (∆GA) estimations, results varied little for both sulfate reduction and methanogenesis throughout all wells studied, but could favor anaerobic oxidation of methane (AOM) in wells containing minimal sulfate and dihydrogen, suggesting AOM coupled with H2-oxidizing organisms such as sulfate or iron reducers could be an important pathway occurring in the Mahomet aquifer. Conclusions Overall, the results show several distinct factors control the composition of microbial communities in the Mahomet aquifer. Bacteria that respire insoluble substrates such as iron oxides, i.e. Geobacter, comprise a greater abundance of the attached community than the suspended regardless of groundwater chemistry. Differences in community structure driven by the concentration of sulfate point to a clear link between the availability of substrate and the abundance of certain functional groups, particularly iron reducers, sulfate reducers, methanogens, and methanotrophs. Integrating both geochemical and microbiological observations suggest that the relationships between these functional groups could be driven in part by mutualism, especially between ferric-iron and sulfate reducers. PMID:23800252
Rising from the Sea: Correlations between Sulfated Polysaccharides and Salinity in Plants
Aquino, Rafael S.; Grativol, Clicia; Mourão, Paulo A. S.
2011-01-01
High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops. PMID:21552557
Rising from the sea: correlations between sulfated polysaccharides and salinity in plants.
Aquino, Rafael S; Grativol, Clicia; Mourão, Paulo A S
2011-04-28
High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops.
Formation and reduction of furan in a soy sauce model system.
Kim, Min Yeop; Her, Jae-Young; Kim, Mina K; Lee, Kwang-Geun
2015-12-15
The formation and reduction of furan using a soy sauce model system were investigated in the present study. The concentration of furan fermented up to 30 days increased by 211% after sterilization compared to without sterilization. Regarding fermentation temperature, furan level after 30 days' fermentation was the highest at 30°C (86.21 ng/mL). The furan levels in the soy sauce fermentation at 20°C and 40°C were reduced by 45% and 88%, respectively compared to 30°C fermentation. Five metal ions (iron sulfate, zinc sulfate, manganese sulfate, magnesium sulfate, and calcium sulfate), sodium sulfite, ascorbic acid, dibutyl hydroxyl toluene (BHT), and butylated hydroxyanisole (BHA) were added in a soy sauce model system. The addition of metal ions such as magnesium sulfate and calcium sulfate reduced the furan concentration significantly by 36-90% and 27-91%, respectively in comparison to furan level in the control sample (p<0.05). Iron sulfate and ascorbic acid increased the furan level at 30 days' fermentation in the soy sauce model system by 278% and 87%, respectively. In the case of the BHT and BHA, furan formation generally was reduced in the soy sauce model system by 84%, 56%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling hydrologic controls on sulfur processes in sulfate-impacted wetland and stream sediments
NASA Astrophysics Data System (ADS)
Ng, G.-H. C.; Yourd, A. R.; Johnson, N. W.; Myrbo, A. E.
2017-09-01
Recent studies show sulfur redox processes in terrestrial settings are more important than previously considered, but much remains uncertain about how these processes respond to dynamic hydrologic conditions in natural field settings. We used field observations from a sulfate-impacted wetland and stream in the mining region of Minnesota (USA) to calibrate a reactive transport model and evaluate sulfur and coupled geochemical processes under contrasting hydrogeochemical scenarios. Simulations of different hydrological conditions showed that flux and chemistry differences between surface water and deeper groundwater strongly control hyporheic zone geochemical profiles. However, model results for the stream channel versus wetlands indicate sediment organic carbon content to be the more important driver of sulfate reduction rates. A complex nonlinear relationship between sulfate reduction rates and geochemical conditions is apparent from the model's higher sensitivity to sulfate concentrations in settings with higher organic content. Across all scenarios, simulated e- balance results unexpectedly showed that sulfate reduction dominates iron reduction, which is contrary to the traditional thermodynamic ladder but corroborates recent experimental findings by Hansel et al. (2015) that "cryptic" sulfur cycling could drive sulfate reduction in preference over iron reduction. Following the thermodynamic ladder, our models shows that high surface water sulfate slows methanogenesis in shallow sediments, but field observations suggest that sulfate reduction may not entirely suppress methane. Overall, our results show that sulfate reduction may serve as a major component making up and influencing terrestrial redox processes, with dynamic hyporheic fluxes controlling sulfate concentrations and reaction rates, especially in high organic content settings.
Lee, Su Hyeon; Kim, Shin Hye; Lee, Won-Yong; Chung, Bong Chul; Park, Mi Jung; Choi, Man Ho
2016-09-01
Free and conjugated steroids coexist in a dynamic equilibrium due to complex biosynthetic and metabolic processes. This may have clinical significance related to various physiological conditions, including sex development involving the reproductive system. Therefore, we performed quantitative profiling of 16 serum steroids conjugated with glucuronic and sulfuric acids using liquid chromatography-mass spectrometry (LC-MS). All steroid conjugates were purified by solid-phase extraction and then separated through a 3-μm particle size C18 column (150mm×2.1mm) at a flow rate of 0.3 mL/min in the negative ionization mode. The LC-MS-based analysis was found to be linear (r(2)>0.99), and all steroid conjugates had a limit-of-quantification (LOQ) of 10ng/mL, except for cholesterol sulfate and 17β-estradiol-3,17-disulfate (20ng/mL). The extraction recoveries of all steroid conjugates ranged from 97.9% to 110.7%, while the overall precision (% CV) and accuracy (% bias) ranged from 4.8% to 10.9% and from 94.4% to 112.9% at four different concentrations, respectively. Profiling of steroid conjugates corrected by adiposity revealed decreased levels of steroid sulfates (P<0.01) in overweight and obese girls compared to normal girls. The suggested technique can be used for evaluating metabolic changes in steroid conjugates and for understanding the pathophysiology and relative contributions of adiposity in childhood obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impacts of Four SO2 Oxidation Pathways on Wintertime Sulfate Concentrations
NASA Astrophysics Data System (ADS)
Sarwar, G.; Fahey, K.; Zhang, Y.; Kang, D.; Mathur, R.; Xing, J.; Wei, C.; Cheng, Y.
2017-12-01
Air quality models tend to under-estimate winter-time sulfate concentrations compared to observed data. Such under-estimations are particularly acute in China where very high concentrations of sulfate have been measured. Sulfate is produced by oxidation of sulfur dioxide (SO2) in gas-phase by hydroxyl radical and in aqueous-phase by hydrogen peroxide, ozone, etc. and most air quality models employ such typical reactions. Several additional SO2 oxidation pathways have recently been proposed. Heterogeneous reaction on dust has been suggested to be an important sink for SO2. Oxidation of SO2 on fine particles in presence of nitrogen dioxide (NO2) and ammonia (NH3) at high relative humidity has been implicated for sulfate formation in Chinese haze and London fog. Reactive nitrogen chemistry in aerosol water has also been suggested to produce winter-time sulfate in China. Specifically, high aerosol water can trap SO2 which can be subsequently oxidized by NO2 to form sulfate. Aqueous-phase (in-cloud) oxidation of SO2 by NO2 can also produce sulfate. Here, we use the hemispheric Community Multiscale Air Quality (CMAQ) modeling system to examine the potential impacts of these SO2 oxidation pathways on sulfate formation. We use anthropogenic emissions from the Emissions Database for Global Atmospheric Research and biogenic emissions from Global Emissions InitiAtive. We performed simulations without and with these SO2 oxidation pathways for October-December of 2014 using meteorological fields obtained from the Weather Research and Forecasting model. The standard CMAQ model contains one gas-phase chemical reaction and five aqueous-phase chemical reactions for SO2 oxidation. We implement four additional SO2 oxidation pathways into the CMAQ model. Our preliminary results suggest that the dust chemistry enhances mean sulfate over parts of China and Middle-East, the in-cloud SO2 oxidation by NO2 enhances sulfate over parts of western Europe, oxidation of SO2 by NO2 and NH3 on fine particles enhances sulfate only over parts of China, and SO2 oxidation by NO2 in aerosol water enhances sulfate only over parts of China by >5%. We will present a detailed analysis of the results and a comparison of model predictions with available observed data.
Global source attribution of sulfate aerosol and its radiative forcing
NASA Astrophysics Data System (ADS)
Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.
2017-12-01
Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the largest contribution, explaining half of the global sulfate IRF. IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than those over the polluted Northern Hemisphere.
NASA Astrophysics Data System (ADS)
Sainato, C. M.; Losinno, B. N.; Márquez Molina, J. J.; Espada, R. A.
2018-07-01
Feedlots, a set of corrals where livestock is gathered to be fattened for market, are widely spreading in Buenos Aires Province, Argentina. However, the impact of manure as a consequence of this activity on soil organic matter mineralisation and groundwater is still to be explored. Although previous studies have described contamination in sandy soil environments, there is still little evidence on the effect of leachates in soils with a finer texture. The objective of this work was to assess contamination at a pen and its surroundings, by means of the modelling of electromagnetic induction (EMI) soundings carried out annually during two years of feedlot activity. A multifrequency conductivity meter was used for frequencies from 2 kHz to 16 kHz. For the 1D inversion of experimental data, the quadrature component of the secondary H-field normalized by the primary field expressed in ppm was used. The models of each measurement site were joined and 2D sections were obtained along transects in the pen and its surroundings. Groundwater chemical analysis was also performed annually during four years of feedlot activity. With soil depth, model resistivity decreased, reaching values between 6 and 8 Ω m at the unsaturated and the saturated zone. This decline indicated that the leachates from animal manure had increased soil salinity. In the second year of soundings, the layers below the pen showed an important decrease of resistivity. On the other hand, variation of the concentration of nitrates, chlorides and sulfates remained the same both in the phreatic and in the deep well along the four years of groundwater analysis. The concentration of sulfates and nitrates showed a maximum value in the second and in the third year after the beginning of the animal confinement activity in the pen. The following year, with the increase of precipitations, these concentrations decreased. Thus, the modelling of electromagnetic soundings proved to be a useful tool to determine the effect of leachate contamination in feedlot pens.
Zou, Lina; Zhang, Shu; Duan, Dechao; Liang, Xinqiang; Shi, Jiyan; Xu, Jianming; Tang, Xianjin
2018-03-01
Arsenic (As) and lead (Pb) commonly co-exist with high concentrations in paddy soil mainly due to human activities in south of China. This study investigates the effect of ferrous sulfate (FeSO 4 ) amendment and water management on rice growth and arsenic (As) and lead (Pb) accumulation in rice plants. A paddy soil co-contaminated with As and Pb was chosen for the pot experiment with three FeSO 4 levels (0, 0.25, and 1%, on a dry weight basis) and two water managements (flooded, non-flooded). The concentrations of As and Pb in iron plaques and rice plants were determined. Application of FeSO 4 and non-flooded conditions significantly accelerated the growth of rice plants. With the addition of FeSO 4 , iron plaques were significantly promoted and most of the As and Pb were sequestered in the iron plaques. The addition of 0.25% FeSO 4 and non-flooded conditions did not significantly change the accumulation of As and Pb in rice grains. The practice also significantly decreased the translocation factor (TF) of As and Pb from roots to above-ground parts which might have been aided by the reduction of As and Pb availability in soil, the preventing effect of rice roots, and the formation of more reduced glutathione (GSH). Flooded conditions decreased the Pb concentration in rice plants, but increased As accumulation. Moreover, rice grew thin and weak and even died under flooded conditions. Overall, an appropriate FeSO 4 dose and non-flooded conditions might be feasible for rice cultivation, especially addressing the As issue in the co-contaminated soil. However, further detailed studies to decrease the accumulation of Pb in edible parts and the field application in As and Pb co-contaminated soil are recommended.
Origin of increased sulfate in groundwater at the ETF disposal site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, E.C.
1997-09-01
Treated effluent being discharged to the vadose zone from the C-018H Effluent Treatment Facility (ETF) at the Hanford Site has infiltrated vertically to the unconfined aquifer, as indicated by increasing tritium activity levels in the groundwater. Well 699-48-77A, in particular, exhibits increased levels of tritium and also sulfate in the groundwater. The origin of increased sulfate levels in the groundwater is attributed to the dissolution of gypsum as the effluent flows through the vadose zone. This is supported by the observation that sulfate was found to be present in soils collected from the vadose zone at an average value ofmore » about 10.6 ppm. The maximum observed sulfate concentration of 190 mg/L from well 699-48-77A was observed on August 6, 1996, and is less than the maximum value of 879 mg/L that potentially could be achieved if water in the vadose zone was to attain saturation with respect to gypsum and calcite. It is suggested that infiltration rates were high enough that the effluent did not completely equilibrate with gypsum in the vadose zone, and thus, sulfate levels remained below gypsum saturation levels. Sulfate levels appear to be dropping, which may be attributed to the completion of the dissolution of the bulk of gypsum present along the vadose zone flow path traversed by the effluent. Geochemical modeling was undertaken to evaluate the influence of effluent chemistry on sulfate concentration levels in the presence of excess calcite and gypsum. In general, the effect is fairly minor for dilute solutions, but becomes more significant for concentrated solutions.« less
NASA Astrophysics Data System (ADS)
Sánchez-Román, Mónica; McKenzie, Judith A.; de Luca Rebello Wagener, Angela; Romanek, Christopher S.; Sánchez-Navas, Antonio; Vasconcelos, Crisógono
2011-02-01
Two strains of moderately halophilic bacteria were grown in aerobic culture experiments containing gel medium to determine the Sr partition coefficient between dolomite and the medium from which it precipitates at 15 to 45 °C. The results demonstrate that Sr incorporation in dolomite does occur not by the substitution of Ca, but rather by Mg. They also suggest that Sr partitioning between the culture medium and the minerals is better described by the Nernst equation ( DSrdol = Sr dol/Sr bmi), instead of the Henderson and Kracek equation ( DSrdol = (Sr/Ca) dol/(Sr/Ca) solution. The maximum value for DSrdol occurs at 15 °C in cultures with and without sulfate, while the minimum values occur at 35 °C, where the bacteria exhibit optimal growth. For experiments at 25, 35 and 45 °C, we observed that DSrdol values are greater in cultures with sulfate than in cultures without sulfate, whereas DSrdol values are smaller in cultures with sulfate than in cultures without sulfate at 15 °C. Together, our observations suggest that DSrdol is apparently related to microbial activity, temperature and sulfate concentration, regardless of the convention used to assess the DSrdol. These results have implications for the interpretation of depositional environments of ancient dolomite. The results of our culture experiments show that higher Sr concentrations in ancient dolomite could reflect microbial mediated primary precipitation. In contrast, previous interpretations concluded that high Sr concentrations in ancient dolomites are an indication of secondary replacement of aragonite, which incorporates high Sr concentrations in its crystal lattice, reflecting a diagenetic process.
Marinsky, J.A.; Baldwin, Robert F.; Reddy, M.M.
1985-01-01
It has been shown that the apparent enhancement of divalent metal ion binding to polyions such as polystyrenesulfonate (PSS) and dextran sulfate (DS) by decreasing the ionic strength of these mixed counterion systems (M2+, M+, X-, polyion) can be anticipated with the Donnan-based model developed by one of us (J.A.M.). Ion-exchange distribution methods have been employed to measure the removal by the polyion of trace divalent metal ion from simple salt (NaClO4)-polyion (NaPSS) mixtures. These data and polyion interaction data published earlier by Mattai and Kwak for the mixed counterion systems MgCl2-LiCl-DS and MgCl2-CsCl-DS have been shown to be amenable to rather precise analysis by this model. ?? 1985 American Chemical Society.
Ponton, Dominic E; Fortin, Claude; Hare, Landis
2018-04-19
Selenium (Se) concentrations measured in lake planktonic food chains (microplankton < 64 µm, copepods and Chaoborus larvae) were strongly correlated with the concentrations of dissolved organic Se. These correlations were strengthened slightly by adding the concentrations of dissolved selenate to those of organic Se. To better understand the role of Se species and the influence of water chemistry on Se uptake, we exposed the green alga Chlamydomonas reinhardtii to selenite, selenate or selenomethionine at various H + ion and sulfate concentrations under controlled laboratory conditions. At low sulfate concentrations, inorganic Se species (selenate > selenite) were more readily accumulated by this alga than was selenomethionine. However, at higher sulfate concentrations the uptake of selenite was higher than that of selenate while the uptake of selenomethionine remained unchanged. While pH of the exposure water did not influence the uptake of selenate by this alga, the accumulation of selenomethionine and selenite increased with pH because of their relative pH-related speciation. The Se concentrations that we measured in C. reinhardtii exposed to selenomethionine were 30 times lower than those that we measured in field-collected microplankton exposed in the same laboratory conditions. This difference is explained by the taxa present in the microplankton samples. Using our laboratory measurements of Se uptake in microplankton and our natural Se concentrations in lakewater allowed us to model Se concentrations in a lake pelagic food chain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sulfur and carbon isotope biogeochemistry of a rewetted brackish fen
NASA Astrophysics Data System (ADS)
Koebsch, Franziska; Gehre, Matthias; Winkel, Matthias; Koehler, Stefan; Koch, Marian; Jurasinski, Gerald; Spitzy, Alejandro; Liebner, Susanne; Sachs, Torsten; Schmiedinger, Iris; Kretzschmann, Lisett; Saborowski, Anke; Böttcher, Michael E.
2015-04-01
Coastal wetlands are at the interface between terrestrial freshwater and marine and exhibit very specific biogeochemical conditions. Intermittent sea water intrusion affects metabolic pathways, i. e. anaerobic carbon metabolism is progressively dominated by sulfate reduction with lower contribution of methanogenesis whilst methane production is increasingly shifted from acetoclastic to hydrogenotrophic. Due to expanding anthropogenic impact a large proportion of coastal ecosystems is degraded with severe implications for the biogeochemical processes. We use concentration patterns and stable isotope signatures of water, sulfate, dissolved carbonate, and methane (δ2H, δ13C, δ18O, δ34S) to investigate the S and C metabolic cycle in a rewetted fen close to the southern Baltic Sea border. Such studies are crucial to better predict dynamic ecosystem feedback to global change like organic matter (OM) decomposition or greenhouse gas emissions. Yet, little is known about the metabolic pathways in such environments. The study site is part of the TERENO Observatory "Northeastern German Lowlands' and measurements of methane emissions have run since 2009. High methane fluxes up to 800 mg m-2 hr-1 indicate that methanogenesis is the dominant C metabolism pathway despite of high sulfate concentrations (up to 37 mM). The presented data are part of a comprehensive biogeochemical investigation that we conducted in autumn 2014 and that comprises 4 pore water profiles and sediment samples within a transect of 300-1500 m distance to the Baltic Sea. Depth of organic layers ranged from 25 to 140 cm with high OM contents (up to 90 dwt.%). Sulfate/chloride ratios in the pore waters were lower than in the Baltic Sea for most sites and sediment depths indicated a substantial net sulfate loss. Sulfide concentrations were negligible at the top and increased parallel to the sulfate concentrations with depth to values of up to 0.3 mM. One pore water profiles situated 1150 m from the Baltic Sea coast line exhibited a significant excess of sulfate. Preliminary sulfur isotope analysis of pore water sulfate from a location nearest to this profile revealed an enrichment in 34S (24.9 to 41.8o ) in comparison to Baltic Sea sulfate (21o ). This confirms high degrees of net sulfate reduction. Considering the yet high sulfate concentrations we hypothesize that local processes might supply additional sulfate and that the sulfide produced from sulfate reduction might either be lost by upwards diffusion towards the atmosphere or converted into other S compounds such as pyrite or organic compounds. The isotopic signatures of methane (δ13C: -68 to -57o and δ2H: -133 to -157o respectively) indicated acetoclastic methanogenesis to be the most dominant methane production pathway. However, estimated fractionation factors are comparatively high (1.050-1.065). Enrichment of heavy 13C in methane at the top of the sediment was either caused by methane oxidation or variation in substrate availability (e. g. due to peat degradation). The interpretation of our data in the light of further results will provide deeper insights into metabolic pathways and possible interactions between both coupled element cycles for coastal ecosystems.
Yongqiang Zhang; Tichang Sun; Tieqiang Lu; Chunhuan Yan
2016-11-25
An aqueous two-phase system composed of Triton X-100-(NH 4 ) 2 SO 4 -H 2 O was proposed for extraction and separation of tungsten(VI) from aqueous solution without using any extractant. The effects of aqueous pH, concentration of ammonium sulfate, Triton X-100 and tungsten, extracting temperature on the extraction of tungsten were investigated. The extraction of tungsten has remarkable relationship with aqueous pH and are to above 90% at pH=1.0-3.0 under studied pH range (pH=1.0-7.0) and increases gradually with increasing Triton X-100 concentration, but decreases slightly with increasing ammonium sulfate concentration. The extraction percentage of tungsten is hardly relevant to temperature but its distribution coefficient linearly increases with increasing temperature within 303.15-343.15K. The distribution coefficient of tungsten increases with the increase of initial tungsten concentration (0.1-3%) and temperature (303.15 K-333.15K). The solubilization capacity of tungsten in Triton X-100 micellar phase is independent of temperature. FT-IR analysis reveals that there is no evident interaction between polytungstate anion and ether oxygen unit in Triton X-100, and DLS analysis indicates that zeta potential of Triton X-100 micellar phase have a little change from positive to negative after extracting tungsten. Based on the above-mentioned results, it can be deduced that polytungstate anions are solubilized in hydrophilic outer shell of Triton X-100 micelles by electrostatic attraction depending on its relatively high hydrophobic nature. The stripping of tungsten is mainly influenced by temperature and can be easily achieved to 95% in single stage stripping. The tungsten (VI) is separated out from solution containing Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Mn(II) under the suitable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Ángeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín
2014-01-01
Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. “Orbis”) grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs. PMID:24478782
El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Angeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín
2014-01-01
Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.
Microbial control of hydrogen sulfide production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.
1995-12-31
A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of coresmore » and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.« less
DeForest, David K; Brix, Kevin V; Elphick, James R; Rickwood, Carrie J; deBruyn, Adrian M H; Tear, Lucinda M; Gilron, Guy; Hughes, Sarah A; Adams, William J
2017-09-01
There is consensus that fish are the most sensitive aquatic organisms to selenium (Se) and that Se concentrations in fish tissue are the most reliable indicators of potential toxicity. Differences in Se speciation, biological productivity, Se concentration, and parameters that affect Se bioavailability (e.g., sulfate) may influence the relationship between Se concentrations in water and fish tissue. It is desirable to identify environmentally protective waterborne Se guidelines that, if not exceeded, reduce the need to directly measure Se concentrations in fish tissue. Three factors that should currently be considered in developing waterborne Se screening guidelines are 1) differences between lotic and lentic sites, 2) the influence of exposure concentration on Se partitioning among compartments, and 3) the influence of sulfate on selenate bioavailability. Colocated data sets of Se concentrations in 1) water and particulates, 2) particulates and invertebrates, and 3) invertebrates and fish tissue were compiled; and a quantile regression approach was used to derive waterborne Se screening guidelines. Use of a regression-based approach for describing relationships in Se concentrations between compartments reduces uncertainty associated with selection of partitioning factors that are generally not constant over ranges of exposure concentrations. Waterborne Se screening guidelines of 6.5 and 3.0 μg/L for lotic and lentic water bodies were derived, and a sulfate-based waterborne Se guideline equation for selenate-dominated lotic waters was also developed. Environ Toxicol Chem 2017;36:2503-2513. © 2017 SETAC. © 2017 SETAC.
Mineralogical transformations controlling acid mine drainage chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peretyazhko, Tetyana; Zachara, John M.; Boily, Jean F.
2009-05-30
The role of Fe(III) minerals in controlling acid mine drainage (AMD) chemistry was studied using samples from two AMD sites [Gum Boot (GB) and Fridays-2 (FR)] located in northern Pennsylvania. Chemical extractions, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used to identify and characterize Fe(III) phases. The mineralogical analysis revealed that schwertmannite and goethite were the principal Fe(III) phases in the sediments. Schwertmannite transformation occurred at the GB site where poorly-crystallized goethite rich in surface-bound sulfate was initially formed. In contrast, no schwertmannite transformation occurred at the FR site. The goethite in GBmore » sediments had spherical morphology due to preservation of schwertmannite structure by adsorbed sulfate. Results of chemical extractions showed that poorly-crystallized goethite was subject to further crystallization accompanied by sulfate desorption. Changes in sulfate speciation preceded its desorption, with a conversion of bidentate- to monodentate-bound sulfate surface complexes. Laboratory sediment incubation experiments were conducted to evaluate the effect of mineral transformation on water chemistry. Incubation experiments were carried out with schwertmannite-containing sediments and AMD waters with different pH and chemical composition. The pH decreased to 1.9-2.2 in all suspensions and the concentrations of dissolved Fe and S increased significantly. Regardless of differences in the initial water composition, pH, Fe and S were similar in suspensions of the same sediment. XRD measurements revealed that schwertmannite transformed into goethite in GB and FR sediments during laboratory incubation. The incubation experiment demonstrated that schwertmannite transformation controlled AMD water chemistry during “closed system” laboratory contact.« less
Lee, Yeon Sil; Yang, Hyun Ok; Shin, Kuk Hyun; Choi, Hyung Seok; Jung, Sang Hoon; Kim, Yong Man; Oh, Deok Kun; Linhardt, Robert J; Kim, Yeong Shik
2003-03-28
Acharan sulfate is a new type of glycosaminoglycan from the giant African snail, Achatina fulica. Acharan sulfate, which has a primary repeating disaccharide structure of alpha-D-N-acetylglucosaminyl-2-O-sulfo-alpha-L-iduronic acid, was studied as a potential antitumor agent in both in vivo and in vitro assays. The antiangiogenic activity of acharan sulfate was evaluated in the chorioallantoic membrane assay and by measuring its effect on the proliferation of calf pulmonary artery endothelial cells. In vivo, a matrigel plug assay showed that acharan sulfate suppressed basic fibroblast growth factor (bFGF)-stimulated angiogenesis and lowered the hemoglobin (Hb) content inside the plug. Acharan sulfate was administered s.c. at two doses for 15 days to C57BL/6 mice implanted with murine Lewis lung carcinoma in the back. It was also administered i.p. to ICR mice bearing sarcoma 180 at a dose of 30 mg/kg. Subcutaneous injection of acharan sulfate at doses of 10 and 30 mg/kg decreased tumor weight and tumor volume by 40% without toxicity or resistance. Intraperitoneal injection of acharan sulfate also decreased tumor weight and volume by 40% in sarcoma 180-bearing mice. These results suggest that the antitumor activity of acharan sulfate may be related to the inhibition of angiogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, S.A.; Kahl, J.S.; Brakke, D.F.
1988-01-01
There is great uncertainty and large cost in making dry deposition measurements. The authors present evidence based on wet deposition, evapotranspiration, S storage in lake sediments, and sulfate concentrations in lakes and streams in Maine that the dry deposition flux of sulfur to drainage basins of lakes in Maine ranges from nearly 0% to more than 100% of wet deposition, even in small areas. The regional pattern of sulfate concentrations in Maine lakes is due to gradients in both wet and dry deposition and variation in evapotranspiration. Patterns are modified locally by lakes hydrologic type, elevation, vegetation, and terrestrial drainagemore » basin aspect. (Copyright (c) 1988 Elsevier Science Publishers B.V.)« less
Djamali, Essmaiil; Chen, Keith; Cobble, James W
2009-08-27
Pabalan and Pitzer (Geochim. Cosmochim. Acta 1988, 52, 2393-2404) reported a comprehensive set of thermodynamic properties of aqueous solutions of sodium sulfate without using ion association or hydrolysis. However, there is now ample evidence available indicating that the ion association cannot be ignored at temperatures T>or=373 K. For example, even at the lowest concentration of their studies (m>or=0.05) and at 573.15 K, less than 20% of SO4(2-)(aq) is available as free ions. In the present study, the integral heats of solution of sodium sulfate were measured to very low concentrations (10(-4) m) up to 573.16 K. The data were analyzed correcting for the hydrolysis of SO4(2-)(aq) and the association of Na+(aq) with SO4(2-)(aq) and NaSO4-(aq) in order to obtain the final standard state thermodynamic properties of completely ionized aqueous sodium sulfate, Na2SO4(aq). From these and the available solubility data, the stoichiometric activity coefficients of saturated aqueous solutions of sodium sulfate were calculated up to 573.15 K and compared with literature data. The stoichiometric activity coefficients of aqueous solutions of sodium sulfate, as a function of temperature at all concentrations (0
Some considerations on the washout of sulfate from stack plumes
Leonard K. Peters
1976-01-01
A theoretical analysis of the contribution to rainwater sulfate concentration by precipitation scavenging of gaseous SO2 and sulfate containing aerosols is presented. Aspects, such as the proper choice of mean raindrop diameter, are discussed in detail, and guidelines for their use are explored. Sample calculations are provided in which emissions...
Preparation and anticoagulant activity of N-succinyl chitosan sulfates.
Wang, Tan; Zhou, Yue; Xie, Weiguo; Chen, Lingyun; Zheng, Hua; Fan, Lihong
2012-12-01
In order to develop a promising substitute for heparin, N-succinyl chitosan (NSC) was chemically modified by sulfating agent N(SO(3)Na)(3), which were synthesized with sodium bisulfite and sodium nitrite in aqueous solution. The N-succinyl chitosan sulfates (NSCS) products were characterized by infrared spectroscopy (FT-IR) and (13)C NMR. The degree of substitution (DS) of NSCS depended on the ratio of sulfating agent to N-succinyl chitosan, reaction temperature, reaction time and pH of sulfation agent. N-succinyl chitosan sulfates with DS of 1.97 were obtained under optimal conditions. The in vitro coagulation assay of NSCS was determined by activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) assays. The results showed that NSCS obviously prolonged APTT. The anticoagulant activity strongly depended on DS, molecular weight (M(w)) and concentration of NSCS. The anticoagulant activity of NSCS promoted with the increase of DS and concentration, and NSCS exhibited the best anticoagulant activity with the M(w) of 1.37×10(4). Copyright © 2012. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syslo, S.K.; Myhre, D.L.; Harris, W.G.
1988-02-01
The authors observed euhedral crystals in Manatee soil in a citrus grove in St. Lucie County, Florida. The material was identified as gypsum (CaSO/sub 4/ /times/ 2H/sub 2/O) using x-ray diffraction and infrared spectra. Photomicrography and scanning electron microscopy revealed that gypsum accumulated both in old root channels and within citrus root tissue of the Btg horizon. The subsurface horizons had elevated sulfate levels, a low initial pH, a drop (0.5 unit) in pH upon air-drying. Electrical conductivity paralleled the concentration of water-soluble sulfate. High levels of calcium and sulfate occurred for horizons above the water table. This accumulation ismore » attributed to groundwater bearing these ions and subsequently discharging them to the overlying soil. Dead citrus roots appear to act as wicks to aid water transfer from lower to higher horizons. The roots and their empty channels provide spaces in which the gypsum can precipitate if the concentrations of calcium and sulfate in the evaporating groundwater exceed the solubility product of gypsum.« less
pH control of the structure, composition, and catalytic activity of sulfated zirconia
NASA Astrophysics Data System (ADS)
Ivanov, Vladimir K.; Baranchikov, Alexander Ye.; Kopitsa, Gennady P.; Lermontov, Sergey A.; Yurkova, Lyudmila L.; Gubanova, Nadezhda N.; Ivanova, Olga S.; Lermontov, Anatoly S.; Rumyantseva, Marina N.; Vasilyeva, Larisa P.; Sharp, Melissa; Pranzas, P. Klaus; Tretyakov, Yuri D.
2013-02-01
We report a detailed study of structural and chemical transformations of amorphous hydrous zirconia into sulfated zirconia-based superacid catalysts. Precipitation pH is shown to be the key factor governing structure, composition and properties of amorphous sulfated zirconia gels and nanocrystalline sulfated zirconia. Increase in precipitation pH leads to substantial increase of surface fractal dimension (up to ˜2.7) of amorphous sulfated zirconia gels, and consequently to increase in specific surface area (up to ˜80 m2/g) and simultaneously to decrease in sulfate content and total acidity of zirconia catalysts. Complete conversion of hexene-1 over as synthesized sulfated zirconia catalysts was observed even under ambient conditions.
Schmidt, Cristiano Gautério; Furlong, Eliana Badiale
2012-11-01
The effects of rice bran particle size (0.18-0.39mm) and ammonium sulfate concentration in the nutrient solution (2-8g/L) on biomass production, protein and phenolic content generated by solid state fermentation with the fungus Rhizopus oryzae (CCT 1217) were studied. Particle size had a positive effect on biomass production and a negative effect (p⩽0.05) on protein and phenolic contents. Ammonium sulfate concentration had a positive effect (p⩽0.05) on biomass and phenolic content gain. Cultivation of fungus in rice bran with particle size of 0.18mm and in the presence of 8g/L ammonium sulfate, resulted in protein levels of 20g/100g dry wt and phenolics content of 4mg/g dry wt. These values were 53 and 65% higher than those achieved with unfermented rice bran. The results demonstrate that the fermentation process increased the value of compounds recovered for potential use in food formulations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hebert, G. Ann
1974-01-01
Optimal (NH4)2SO4 concentrations were sought for serum fractionation in order to obtain the gamma globulin as free as possible from other serum components while maintaining a reasonable recovery. Various ammonium sulfate concentrations were used to fractionate sera from mice, hamsters, guinea pigs, monkeys, chimpanzees, swine, chicken, and cattle. All precipitates and supernatants were analyzed by electrophoresis to study the effects of various treatments on the composition of these materials. Approximately 75% of all the gamma globulins were recovered when each serum was fractionated with its optimal sulfate concentration. These optimals were determined to be as follows: three precipitations in 35% saturated ammonium sulfate (SAS) for hamster, chimpanzee, swine, and chicken serum; one precipitation in 35% SAS followed by two in 40% SAS for mouse and guinea pig serum; one precipitation in 30% SAS and then two in 40% SAS for monkey serum; and one precipitation in 30% SAS followed by two in 35% SAS for cattle serum. Images PMID:4132689