Science.gov

Sample records for sulfate soil materials

  1. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water

  2. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials.

    PubMed

    Bishop, J L; Pieters, C M; Burns, R G; Edwards, J O; Mancinelli, R L; Fröschl, H

    1995-09-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mössbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mössbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mössbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the

  3. Ferric sulfate montmorillonites as Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.

    1993-01-01

    Spectroscopic analyses have shown that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite in these smectites has features in the visible to near-infrared region that resemble the energies and band-strengths of features in reflectance spectra observed for several bright regions on Mars. Ferric - sulfate - montmorillonite samples have been prepared more recently because they are a good compositional match with the surface material on Mars as measured by Viking. Reflectance spectra of montmorillonite doped with ferric sulfate in the interlayer regions include a strong 3 micron band that persists under dry conditions. This is in contrast to spectra of similarly prepared ferric-doped montmorillonites, which exhibit a relatively weaker 3 micron band under comparable dry environmental conditions. Presented here are reflectance spectra of a suite of ferric-sulfate exchanged montmorillonites prepared with variable ferric sulfate concentrations and variable pH conditions.

  4. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties.

  5. Sulfate adsorption in Michigan forest soils

    SciTech Connect

    MacDonald, N.W.

    1987-01-01

    The occurrence of acidic atmospheric deposition raised concerns over adverse cation leaching effects on Michigan forest soils with low cation exchange capacities. Leaching effects of acid deposition depend on mobility of sulfate in the soil. Little was known, however, concerning the ability of these soils to adsorb sulfate. The objectives of this study were to determine the ability of representative Michigan forest soils to adsorb sulfate, to relate sulfate adsorption to soil properties, and to develop equations to predict sulfate adsorption in similar forest soils. Frigid zone soil series studied were Grayling (Typic Udipsamments), Rubicon (Entic Haplorthods), Kalkaska (Typic Haplorthods), and Montcalm (Eutric Glossoboralfs). Mesic zone series studied were Spinks (Psammentic Hapludals) and Oshtemo (Typic Hapludalfs). Six randomly located pedons of each series were sampled. Sulfate adsorption was determined by shaking 10 gram soil samples for 24 hours in 50 mL 0.01 M CaCl/sub 2/ solution containing 10 mg SO/sub 4/-S L/sup -1/. Solution filtrates were turbidimetrically analyzed for SO/sub 4/-S and adsorption was calculated from reduction in SO/sub 4/-S concentration. Bw, Bs, and Bh horizons of frigid zone soils and E and Bt horizons of mesic zone soils had the highest sulfate adsorbing abilities. No significant differences were found between series in total sulfate adsorptive capacity.

  6. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    SciTech Connect

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as low as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.

  7. Sulfate Transport and Release in Technogenic Soil Substrates: Experiments and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Schonsky, H.; Peters, A.; Lang, F.; Mekiffer, B.; Wessolek, G.

    2012-04-01

    In Berlin and many other cities technogenic soil substrates from World War II and building and construction debris in general play an important role for soil formation and solute transport in the vadose zone. The largest debris landfill in Berlin is the Teufelsberg. Sulfate release from the landfill poses threats for groundwater quality. The scope of this study is to determine the processes controlling sulfate release from soils containing rubble. Column leaching experiments were conducted to analyze sulfate mobilization from Teufelsberg topsoil material. Flow interruptions of one and seven days were introduced. Sulfate release was modeled using a geochemical simulation tool (HP1). The model considered water flux, solute transport and precipitation/dissolution with first order kinetics. Sulfate release increased after flow interruptions, although bromide breakthrough indicated physical equilibrium of transport processes. The model was applicable for qualitative description of our experimental results. The estimated equilibrium concentrations of sulfate were one to two orders of magnitude smaller than expected according to the equilibrium constant of gypsum. It is assumed that the mobilization of sulfate from calcite/gypsum co-precipitates determines the sulfate concentrations in the soil solution of the studied soils. If Sulfate release and transport from soils containing debris is modeled with literature values, sulfate concentrations will be overestimated by one to two orders of magnitude.

  8. Assessing the combination of iron sulfate and organic materials as amendment for an arsenic and copper contaminated soil. A chemical and ecotoxicological approach.

    PubMed

    Fresno, Teresa; Moreno-Jiménez, Eduardo; Peñalosa, Jesús M

    2016-12-01

    The efficiency of combining iron sulfate and organic amendments (paper mill sludge, olive mill waste compost and olive tree pruning biochar) for the remediation of an As- and Cu-contaminated soil was evaluated. Changes in As and Cu fractionation and solubility due to the application of the amendments was explored by leachate analysis, single and sequential extractions. Also, the effects on Arrhenatherum elatius growth, germination of Lactuca sativa and toxicity to the bacteria Vibrio fischeri were assessed. The combination of iron sulfate and the organic amendments efficiently reduced As solubility and availability through the formation of amorphous iron oxides, while organic matter did not seem to mobilize As. At the same time, copper fractionation was strongly affected by soil pH and organic matter addition. The soil pH significantly influenced both As and Cu mobility. Within all the amendments tested, FeSO4 in combination with compost showed to be the most suitable treatment for the overall remediation process, as it reduced As and Cu availability andenhanced soil nutrient concentrations and plant growth. In sipte of contradictory trends between chemical analyses and ecotoxicity tests, we can still conclude that the application of organic amendments in combination with reactive iron salts is a suitable approach for the remediation of soils contaminated by Cu and As.

  9. Calcium sulfate crystallization along citrus root channels in a Florida soil exhibiting acid sulfate properties

    SciTech Connect

    Syslo, S.K.; Myhre, D.L.; Harris, W.G.

    1988-02-01

    The authors observed euhedral crystals in Manatee soil in a citrus grove in St. Lucie County, Florida. The material was identified as gypsum (CaSO/sub 4/ /times/ 2H/sub 2/O) using x-ray diffraction and infrared spectra. Photomicrography and scanning electron microscopy revealed that gypsum accumulated both in old root channels and within citrus root tissue of the Btg horizon. The subsurface horizons had elevated sulfate levels, a low initial pH, a drop (0.5 unit) in pH upon air-drying. Electrical conductivity paralleled the concentration of water-soluble sulfate. High levels of calcium and sulfate occurred for horizons above the water table. This accumulation is attributed to groundwater bearing these ions and subsequently discharging them to the overlying soil. Dead citrus roots appear to act as wicks to aid water transfer from lower to higher horizons. The roots and their empty channels provide spaces in which the gypsum can precipitate if the concentrations of calcium and sulfate in the evaporating groundwater exceed the solubility product of gypsum.

  10. Acid sulfate soils are an environmental hazard in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2016-04-01

    Acid sulfate soils (ASS) create significant threats to the environment on coastal regions of the Baltic Sea in Finland. The sediments were deposited during the ancient Litorina Sea phase of the Baltic Sea about 7500-4500 years ago. Finland has larger spatial extent of the ASS than any other European country. Mostly based on anthropogenic reasons (cultivation, trenching etc.) ASS deposits are currently being exposed to oxygen which leads to chemical reaction creating sulfuric acid. The acidic waters then dissolve metals form the soil. Acidic surface run off including the metals are then leached into the water bodies weakening the water quality and killing fish or vegetation. In constructed areas acidic waters may corrode building materials. Geological Survey of Finland (GTK) is mapping ASS deposits in Finland. The goal is to map a total of 5 million hectares of the potentially ASS affected region. It has been estimated that the problematic Litorina Sea deposits, which are situated 0-100 m above the recent Baltic Sea shoreline, cover 500 000 hectares area. There are several phases in mapping. The work begins at the office with gathering the existing data, interpreting airborne geophysical data and compiling a field working plan. In the field, quality of the soil is studied and in uncertain cases samples are taken to laboratory analyses. Also electrical conductivity and pH of soil and water are measured in the field. Laboratory methods include multielemental determinations with ICP-OES, analyses of grain size and humus content (LOI), and incubation. So far, approximately 60 % of the potential ASS affected regions in Finland are mapped. Over 15 000 sites have been studied in the field and 4000 laboratory analyses are done. The spatial database presented in the scale of 1: 250 000 can be viewed at the GTK's web pages (http://gtkdata.gtk.fi/hasu/index.html).

  11. Glufosinate and Ammonium Sulfate Inhibits Atrazine Degradation in Adapted Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The co-application of glufosinate with nitrogen fertilizers may alter atrazine co-metabolism, thereby extending the herbicide’s residual weed control in adapted soils. The objective of this study was to assess the effects of glufosinate, ammonium sulfate, and the combination of glufosinate and ammo...

  12. Sulfate deterioration of cement-based materials examined by x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Naik, Nikhila N.; Kurtis, Kimberly E.; Wilkinson, Angus P.; Jupe, Andrew C.; Stock, Stuart R.

    2004-10-01

    Sulfate ions present in soil, groundwater, seawater, decaying organic matter, acid rain, and industrial effluent adversely affect the long-term durability of portland cement concrete, but lack of complete understanding of the nature and consequences of sulfate attack hamper our ability to accurately predict performance of concrete in sulfate-rich environments. One impediment to improved understanding of sulfate deterioration of cement-based materials has been the lack of appropriate non-destructive characterization techniques. Laboratory x-ray microtomography affords an opportunity to study in situ the evolution of physical manifestations of damage due to sulfate exposure. The influence of materials selection and mixture parameters - including water-to-cement ratio, cement type, and presence or absence of aggregate, as well as the influence of sulfate exposure conditions, including sulfate and cation type (i.e., Na2SO4 and MgSO4) and concentration - have been examined by microtomography to determine their influence on the rate and character of the sulfate-induced deterioration.

  13. Bioremediation of coal contaminated soil under sulfate-reducing condition.

    PubMed

    Kuwano, Y; Shimizu, Y

    2006-01-01

    The objective of this study was to investigate the biodegradation of coal-derived hydrocarbons, especially high molecular weight (HMW) components, under anaerobic conditions. For this purpose biodegradation experiments were performed, using specifically designed soil column bioreactors. For the experiment, coal-contaminated soil was prepared, which contains high molecular weight hydrocarbons at high concentration (approx. 55.5 mgC g-drysoil(-1)). The experiment was carried out in two different conditions: sulfate reducing (SR) condition (SO4(2-) = 10 mmol l(-1) in the liquid medium) and control condition (SO4(2-)<0.5 mmol l(-1)). Although no degradation was observed under the control condition, the resin fraction decreased to half (from 6,541 to 3,386 mgC g-soil(-1)) under SR condition, with the concomitant increase of two PAHs (phenanthrene and fluoranthene, 9 and 2.5 times, respectively). From these results, we could conclude that high molecular hydrocarbons were biodegradable and transformed to low molecular weight PAHs under the sulfate-reducing condition. Since these PAHs are known to be biologically degraded under aerobic condition, a serial combination of anaerobic (sulfate reducing) and then aerobic bioremediations could be effective and useful for the soil pollution by petroleum and/or coal derived hydrocarbons.

  14. [Effects of colistin sulfate residue on soil microbial community structure].

    PubMed

    Ma, Yi; Peng, Jin-Ju; Chen, Jin-Jun; Fan, Ting-Li; Sun, Yong-Xue

    2014-06-01

    By using fumigation extraction and phospholipid fatty acid (PLFA) methods, the change of characteristics of soil microbial community structure caused by residue of colistin sulfate (CS) was studied. The results showed that the CS (w(cs) > or = 5 mg x kg(-1)) had a significant effect on the microbial biomass carbon (MBC) and it was dose-dependent where MBC decreased with the increase of CS concentration in soil. The MBC in soil decreased by 52. 1% when the CS concentration reached 50 mg x kg(-1). The total PLFA of soil in each CS treatment was significantly decreased during the sampling period compared with the control group and showed a dose-dependent relationship. The soil microbial community structure and diversity in the low CS group (w(cs) = 0.5 mg x kg(-1)) were not significantly different from the control group on 7th and 49th day. However, they were significantly different on 21st and 35th day especially in the high CS group (w(cs) = 50 mg x kg(-1)). It was concluded that CS could change the structure of soil microorganisms and varied with time which might be caused by the chemical conversion and degradation of CS in soil.

  15. Influence of metal ions and pH on the hydraulic properties of potential acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Le, T. M. H.; Collins, R. N.; Waite, T. D.

    2008-07-01

    SummaryAcid sulfate soils (ASS) cover extensive areas of east Australian coastal floodplains. Upon oxidation, these hydromorphic pyritic sediments produce large quantities of sulfuric acid. In addition, due to their geographic location, these soils may also come in contact with high ionic strength estuarine tidal waters. As a result, there is typically a large variation in acidity (pH) and cation concentrations in soil porewaters and adjacent aquatic systems (e.g., agricultural field drains, rivers, estuaries, etc.). Acid sulfate soils, especially from the unoxidized gelatinous deeper layers, contain a relatively high proportion of montmorillonite, which is wellknown for its shrink-swell properties. Variations in cation concentrations, including H3O+, can influence montmorillonite platelet interactions and may, thus, also significantly affect the hydraulic conductivity of materials containing this clay. In this paper we report on the effect of four common cations, at reasonable environmental concentrations, on the hydraulic properties of potential (unoxidized) acid sulfate soil materials. The natural system was simplified by examining individually the effects of each cation (H+, Ca2+, Fe2+ and Na+) on a soil-water suspension in a filtration cell unit. Moisture ratio, hydraulic conductivity and the consolidation coefficient of the deposited filter cakes were calculated using material coordinates theory. The results indicate that the hydraulic conductivity of potential acid sulfate soils increases at low pH and with cation concentration. Although an increase in the charge of amphoteric edge groups on montmorillonite clays may result in some aggregation between individual clay platelets, we conclude that the extent of these changes are unlikely to cause significant increases in the transportation of acidity (and contaminants) through potential acid sulfate soils as the hydraulic conductivity of these materials remain low (<10-9 m/s) at pH and ionic conditions normally

  16. Isotopically exchangeable Al in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Fink, D; Rose, J; Waite, T David; Collins, Richard N

    2016-01-15

    Periodic discharges of high concentrations of aluminium (Al) causing fish kills and other adverse effects occur worldwide in waterways affected by coastal lowland acid sulfate soils (CLASS). The exchangeability - a metal's ability to readily transfer between the soil solid- and solution-phases - of Al in these soils is therefore of particular importance as it has implications for metal transport, plant availability and toxicity to living organisms. In the present study, the concentrations of isotopically exchangeable Al (E values) were measured in 27 CLASS and compared with common salt extractions (i.e. KCl and CuCl2) used to estimate exchangeable soil pools of Al. E values of Al were high in the soils, ranging from 357 to 3040 mg·kg(-1). Exchangeable concentrations estimated using 1 M KCl were consistently lower than measured E values, although a reasonable correlation was obtained between the two values (E=1.68×AlKCl, r(2)=0.66, n=25). The addition of a 0.2 M CuCl2 extraction step improved the 1:1 agreement between extractable and isotopically exchangeable Al concentrations, but lead to significant mobilisation of non-isotopically exchangeable Al in surficial 'organic-rich' CLASS having E values<1000 mg·kg(-1). It was concluded that currently used (i.e. 1 M KCl) methodology severely underestimates exchangeable Al and total actual acidity values in CLASS and should be corrected by a factor similar to the one determined here.

  17. Processes and fluxes during the initial stage of acid sulfate soil formation

    NASA Astrophysics Data System (ADS)

    Gröger, J.; Hamer, K.; Schulz, H. D.

    2009-04-01

    Acid sulfate soils occur over a wide range of climatic zones, mainly in coastal landscapes. In these soils, the release of sulfuric acid by the oxidation of pyrite generates a very acidic environment (e.g., DENT and PONS, 1995, PONS, 1973). Two major types of acid sulfate soils can be distinguished: In actual acid sulfate soils, the initially contained pyrite was at least partly oxidized. This resulted in a severe acidification of the soil. Potential acid sulfate soils are generally unoxidized and contain large amounts of pyrite. Upon oxidation, these soils will turn into actual acid sulfate soils. By excavation or lowering of the groundwater table, potential acid sulfate soils can be exposed to atmospheric oxygen. During oxidation the pH drops sharply to values below pH 4. This acidification promotes the release of various metals, e.g., alumina, iron and heavy metals. Additionally, large quantities of sulfate are released. In order to assess the effects of disturbances of potential acid sulfate soils, for example by excavations during construction works, several large scale column experiments were conducted with various types of potential acid sulfate soils from Northern Germany. In these experiments, the oxidation and initial profile development of pyritic fen peats and thionic fluvisols were studied over a period of 14 months. The study focused on leaching and the translocation of various metals in the soil profile. To study mobilization processes, element fluxes and the progress of acidification, soil water and leachate were analyzed for total element concentrations. Furthermore, several redox-sensitive parameters, e.g., Fe2+ and sulfide, were measured and changes to the initial solid phase composition were analyzed. Chemical equilibria calculations of the soil water were used to gain insights into precipitation processes of secondary products of pyrite oxidation and leaching products. The results of this study will support the assessment of risks deriving from

  18. The relation between soil sulfate concentration and proanthocyanidin content of Selliguea feei Bory from around Ratu crater, Mount Tangkuban Perahu

    NASA Astrophysics Data System (ADS)

    Novianti, Vivi; Choesin, Devi N.

    2014-03-01

    Proanthocyanidin is a chemical compound with a basic flavan-3-ol structure formed from flavonoid secondary metabolism in plants, with potential for human use because of its anti-hypertension, analgesic, anti-inflammatory and antioxidant activities. Considering the fact that S. feei contains proanthocynidin and grows abundantly around Ratu Crater, Mount Tangkuban Perahu, which actively emits S02 gas, this study aimed to see the relation between soil sulfate concentration and proanthocyanidin content in leaves and rhizomes of S. feei. Field sampling was conducted in 1 m2 plots at elevations of 1400, 1600 m above sea level (100 m distance from sulfur source), 1700, 1800 and 1900 m a.s.l. (75 m from sulfur source). Measurements included soil sulfate concentration, proanthocyanidin content of rhizomes and leaves, and environmental factors. An experiment was conducted by planting S. feei from the field into polybags which were then given treatments of sterile plant media with varying sulfate concentrations (0 ppm, 100 ppm, 250 ppm, 400 ppm, 600 ppm, and 800 ppm). Proanthocyanidin content of S. feei leaves and rhizomes were measured on the third, sixth and ninth week. Soil sulfate concentrations were found to be very high (428.22 - 992.91 ppm) with values increasing according to altitude. Proanthocyanidin content in rhizomes were higher than in leaves, in both field and experimental data. Soil sulfate concentrations correlated positively and significantly with proanthocyanidin content in rhizomes of S. feei. As in the field, experimental results indicated no correlation or relation between soil sulfate concentration and proanthocyanidin content in leaves. Besides soil sulfate concentration, environmental factors have a role in incresing peoanthocyanidin content of S.feei. Proanthocyanidin content of S.feei rhizomes could be classified as being very high, thus having potential to be developed as raw material in medicine and food industries.

  19. Soil Profile Sulfate in Irrigated Southern High Plains Cotton Fields and Ogallala Groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Profile Sulfate in Irrigated Southern High Plains Cotton Fields and Ogallala Groundwater Abstract: Sulfate (SO4) is one of the most important anions in soils and groundwater in semiarid regions, including West Texas. Crops’ sulfur (S) requirement is about 10 to 20 % of the nitrogen (N) require...

  20. Criteria for Remote Sensing Detection of Sulfate Cemented Soils on Mars

    NASA Technical Reports Server (NTRS)

    Cooper, Christopher D.; Mustard, John F.

    2000-01-01

    Spectral measurements of loose and cemented mixtures of palagonitic soil and sulfates were made to determine whether cemented soils could be identified on Mars. Cemented MgSO4 mixtures exhibit an enhanced 9 micron sulfate fundamental compared to gypsum mixtures due to more diffuse and pervasive cementing.

  1. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    PubMed

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems.

  2. Novel diffusive gradients in thin films technique to assess labile sulfate in soil.

    PubMed

    Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas

    2016-09-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate.

  3. Dissipation and transformation of 17B-estradiol-17-sulfate in soil-water systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen conjugates are known to be precursors of endocrine-disrupting free estrogens, e.g. 17B-estradiol (E2) and estrone (E1), in the environment. This study investigated the fate of a sulfate conjugated estrogen, 17B-estradiol-17-sulfate (E2-17S), in agricultural soils using laboratory batch stu...

  4. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications

    PubMed Central

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  5. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications.

    PubMed

    Cunha, Ludmylla; Grenha, Ana

    2016-02-25

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting.

  6. Effect of liming on sulfate transformation and sulfur gas emissions in degraded vegetable soil treated by reductive soil disinfestation.

    PubMed

    Meng, Tianzhu; Zhu, Tongbin; Zhang, Jinbo; Cai, Zucong

    2015-10-01

    Reductive soil disinfestation (RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils. However, there is little information available about sulfate (SO4(2-)) transformation and sulfur (S) gas emissions during RSD treatment to degraded vegetable soils, in which S is generally accumulated. To investigate the effects of liming on SO4(2-) transformation and S gas emissions, two SO4(2-)-accumulated vegetable soils (denoted as S1 and S2) were treated by RSD, and RSD plus lime, denoted as RSD0 and RSD1, respectively. The results showed that RSD0 treatment reduced soil SO4(2-) by 51% and 61% in S1 and S2, respectively. The disappeared SO4(2-) was mainly transformed into the undissolved form. During RSD treatment, hydrogen sulfide (H2S), carbonyl sulfide (COS), and dimethyl sulfide (DMS) were detected, but the total S gas emission accounted for <0.006% of total S in both soils. Compared to RSD0, lime addition stimulated the conversion of SO4(2-) into undissolved form, reduced soil SO4(2-) by 81% in S1 and 84% in S2 and reduced total S gas emissions by 32% in S1 and 57% in S2, respectively. In addition to H2S, COS and DMS, the emissions of carbon disulfide, methyl mercaptan, and dimethyl disulfide were also detected in RSD1 treatment. The results indicated that RSD was an effective method to remove SO4(2-), liming stimulates the conversion of dissolved SO4(2-) into undissolved form, probably due to the precipitation with calcium.

  7. Sulfates hydrating bulk soil in the Martian low and middle latitudes

    NASA Astrophysics Data System (ADS)

    Karunatillake, S.; Wray, J. J.; Gasnault, O.; McLennan, S. M.; Rogers, A. D.; Squyres, S. W.; Boynton, W. V.; Skok, J. R.; Ojha, L.; Olsen, N.

    2014-11-01

    The evidence for sulfate-bearing strata, across Late-Noachian to Amazonian eons, suggests a central role for sulfates in acidity and salinity of Martian paleofluids and the planet's habitability. However, details remain unclear owing to shallow sampling and the limited ability of visible/near-infrared spectroscopy to distinguish among some sulfates. Using chemical data from the Mars Odyssey gamma ray spectrometer, including the sulfur map of Mars, we confirm the possibility of hydrous sulfates acting as key hydrates throughout the southern midlatitudinal soil at decimeter depths. An H2O:S molar ratio between 2.4 and 4.0 for 80% of the midlatitudes is also consistent with hydrous sulfate phases, including the many Fe sulfates hydrated in this range or mixtures of Ca and Mg sulfates. Nevertheless, hydrous Fe sulfates could explain our observations in a simpler manner relative to Ca/Mg mixtures. Furthermore, phyllosilicates, zeolites, amorphous phases, and H2O(s) do not seem to be strong candidates to explain the H-S variations. Consequently, we speculate that sulfates, as the primary contributor of H2O in bulk soil, may influence modern aqueous processes including warm-season slope lineae in the southern hemisphere.

  8. Calcium Sulfate in Atacama Desert Basalt: A Possible Analog for Bright Material in Adirondack Basalt, Gusev Crater

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    The Atacama Desert in northern Chile is one of the driest deserts on Earth (< 2mm/y). The hyper-arid conditions allow extraordinary accumulations of sulfates, chlorides, and nitrates in Atacama soils. Examining salt accumulations in the Atacama may assist understanding salt accumulations on Mars. Recent work examining sulfate soils on basalt parent material observed white material in the interior vesicles of surface basalt. This is strikingly similar to the bright-white material present in veins and vesicles of the Adirondack basalt rocks at Gusev Crater which are presumed to consist of S, Cl, and/or Br. The abundance of soil gypsum/anhydrite in the area of the Atacama basalt suggested that the white material consisted of calcium sulfate (Ca-SO4) which was later confirmed by SEM/EDS analysis. This work examines the Ca-SO4 of Atacama basalt in an effort to provide insight into the possible nature of the bright material in the Adirondack basalt of Gusev Crater. The objectives of this work are to (i) discuss variations in Ca-SO4 crystal morphology in the vesicles and (ii) examine the Ca-SO4 interaction(s) with the basalt interior.

  9. Sulfate-reducing bacteria in rice field soil and on rice roots.

    PubMed

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  10. Potential for Sulfate Reduction in Mangrove Forest Soils: Comparison between Two Dominant Species of the Americas

    PubMed Central

    Balk, Melike; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2016-01-01

    Avicennia and Rhizophora are globally occurring mangrove genera with different traits that place them in different parts of the intertidal zone. It is generally accepted that the oxidizing capacity of Avicennia roots is larger than that of Rhizophora roots, which initiates more reduced conditions in the soil below the latter genus. We hypothesize that the more reduced conditions beneath Rhizophora stands lead to more active sulfate-reducing microbial communities compared to Avicennia stands. To test this hypothesis, we measured sulfate reduction traits in soil samples collected from neighboring Avicennia germinans and Rhizophora mangle stands at three different locations in southern Florida. The traits measured were sulfate reduction rates (SRR) in flow-through reactors containing undisturbed soil layers in the absence and presence of easily degradable carbon compounds, copy numbers of the dsrB gene, which is specific for sulfate-reducing microorganisms, and numbers of sulfate-reducing cells that are able to grow in liquid medium on a mixture of acetate, propionate and lactate as electron donors. At the tidal locations Port of the Islands and South Hutchinson Islands, steady state SRR, dsrB gene copy numbers and numbers of culturable cells were higher at the A. germinans than at the R. mangle stands, although not significantly for the numbers at Port of the Islands. At the non-tidal location North Hutchinson Island, results are mixed with respect to these sulfate reduction traits. At all locations, the fraction of culturable cells were significantly higher at the R. mangle than at the A. germinans stands. The dynamics of the initial SRR implied a more in situ active sulfate-reducing community at the intertidal R. mangle stands. It was concluded that in agreement with our hypothesis R. mangle stands accommodate a more active sulfate-reducing community than A. germinans stands, but only at the tidal locations. The differences between R. mangle and A. germinans stands

  11. Understanding barite and gypsum precipitation in upland acid-sulfate soils: An example from a Lufkin Series toposequence, south-central Texas, USA

    NASA Astrophysics Data System (ADS)

    Jennings, Debra S.; Driese, Steven G.

    2014-01-01

    Although low-temperature barite precipitation has been previously documented in soils and paleosols, pedogenic barite precipitation remains poorly understood. This study characterizes the micromorphology, elemental trends, and stable isotope geochemistry of sulfates in a barite-bearing soil (Lufkin Series) toposequence using optical microscopy, XRD, ICP-MS, and stable S and O isotope data. Synthesized data indicate that fluctuating redox processes and microbial activity resulting from epiaquatic and evaporative conditions lead to the precipitation of sulfates in the Lufkin soils. Stable sulfur and oxygen isotopes indicate that the primary source of sulfur is the partial dissolution of jarosite during microbial sulfate reduction. Barium-rich parent material provides adequate barium for barite precipitation. Barium is mobilized and concentrated in Btg horizons ~ 100-160 cm below the surface. The presence of humic acids in profiles lower on the landscape prevents barite precipitation and drives the precipitation of gypsum between saturated, anoxic conditions (November to May) and drier, more oxic conditions (May to November). Barite precipitation is a slow, punctuated process. Micromorphological data reveal that barite precipitates first along evacuated macropores and then in the adjacent matrix. In general, optimal conditions for pedogenic barite precipitation in upland wetland acid-sulfate soils are: 1) warm soil temperature that supports active sulfur-reducing and sulfur oxidizing microbes; 2) distinct wet/dry seasons that allow alternating redox conditions; 3) low-gradient landscape; 4) parent material that contains barium- and sulfur-rich constituents; and 5) a long-lived, stable landscape.

  12. Diffusive gradients in thin films measurement of sulfur stable isotope variations in labile soil sulfate.

    PubMed

    Hanousek, Ondrej; Santner, Jakob; Mason, Sean; Berger, Torsten W; Wenzel, Walter W; Prohaska, Thomas

    2016-11-01

    A diffusive gradient in thin films (DGT) technique, based on a strongly basic anion exchange resin (Amberlite IRA-400), was successfully tested for (34)S/(32)S analysis in labile soil sulfate. Separation of matrix elements (Na, K, and Ca) that potentially cause non-spectral interferences in (34)S/(32)S analysis by MC ICP-MS (multi-collector inductively coupled plasma-mass spectrometry) during sampling of sulfate was demonstrated. No isotopic fractionation caused by diffusion or elution of sulfate was observed below a resin gel disc loading of ≤79 μg S. Above this threshold, fractionation towards (34)S was observed. The method was applied to 11 different topsoils and one mineral soil profile (0-100 cm depth) and compared with soil sulfate extraction by water. The S amount and isotopic ratio in DGT-S and water-extractable sulfate correlated significantly (r (2) = 0.89 and r (2) = 0.74 for the 11 topsoils, respectively). The systematically lower (34)S/(32)S isotope ratios of the DGT-S were ascribed to mineralization of organic S.

  13. Impact of mitigation strategies on acid sulfate soil chemistry and microbial community.

    PubMed

    Wu, Xiaofen; Sten, Pekka; Engblom, Sten; Nowak, Pawel; Österholm, Peter; Dopson, Mark

    2015-09-01

    Potential acid sulfate soils contain reduced iron sulfides that if oxidized, can cause significant environmental damage by releasing large amounts of acid and metals. This study examines metal and acid release as well as the microbial community capable of catalyzing metal sulfide oxidation after treating acid sulfate soil with calcium carbonate (CaCO3) or calcium hydroxide (Ca(OH)2). Leaching tests of acid sulfate soil samples were carried out in the laboratory. The pH of the leachate during the initial flushing with water lay between 3.8 and 4.4 suggesting that the jarosite/schwertmannite equilibrium controls the solution chemistry. However, the pH increased to circa 6 after treatment with CaCO3 suspension and circa 12 after introducing Ca(OH)2 solution. 16S rRNA gene sequences amplified from community DNA extracted from the untreated and both CaCO3 and Ca(OH)2 treated acid sulfate soils were most similar to bacteria (69.1% to 85.7%) and archaea (95.4% to 100%) previously identified from acid and metal contaminated environments. These species included a Thiomonas cuprina-like and an Acidocella-like bacteria as well as a Ferroplasma acidiphilum-like archeon. Although the CaCO3 and Ca(OH)2 treatments did not decrease the proportion of microorganisms capable of accelerating acid and metal release, the chemical effects of the treatments suggested their reduced activity.

  14. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  15. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions.

    PubMed

    Wang, Yongjie; Dang, Fei; Zhong, Huan; Wei, Zhongbo; Li, Ping

    2016-03-01

    Biogeochemical cycling of sulfur and selenium (Se) could play an important role in methylmercury (MeHg) dynamics in soil, while their potential effects on MeHg production in rice paddy soil are less understood. The main objective of this study was to explore the effects of sulfate and selenite on net MeHg production in contaminated rice paddy soil, characterized with massive MeHg production and thus MeHg accumulation in rice. A series of microcosm incubation experiments were conducted using a contaminated paddy soil amended with sulfate and/or selenite, in which sulfate-reducing bacteria were mainly responsible for MeHg production. Our results demonstrated that sulfate addition reduced solid and dissolved MeHg levels in soils by ≤18 and ≤25 %, respectively. Compared to sulfate, selenite was more effective in inhibiting net MeHg production, and the inhibitory effect depended largely on amended selenite doses. Moreover, sulfate input played a dual role in affecting Hg-Se interactions in soil, which could be explained by the dynamics of sulfate under anoxic conditions. Therefore, the effects of sulfate and selenium input should be carefully considered when assessing risk of Hg in anoxic environments (e.g., rice paddy field and wetland).

  16. Persistent endosulfan sulfate is found with highest abundance among endosulfan I, II, and sulfate in German forest soils.

    PubMed

    Bussian, Bernd M; Pandelova, Marchela; Lehnik-Habrink, Petra; Aichner, Bernhard; Henkelmann, Bernhard; Schramm, Karl-Werner

    2015-11-01

    Endosulfan - an agricultural insecticide and banned by Stockholm Convention - is produced as a 2:1 to 7:3 mixture of isomers endosulfan I (ESI) and endosulfan II (ESII). Endosulfan is transformed under aerobic conditions into endosulfan sulfate (ESS). The study shows for 76 sampling locations in German forests that endosulfan is abundant in all samples with an opposite ratio between the ESI and ESII than the technical product, where the main metabolite ESS is found with even higher abundance. The ratio between ESI/ESII and ESS show clear dependence on the type of stands (coniferous vs. deciduous) and humus type and increases from deciduous via mixed to coniferous forest stands. The study argues for a systematic monitoring of ESI, ESII, and ESS and underlines the need for further research, specifically on the fate of endosulfan including biomagnifications and bioaccumulation in soil.

  17. Residue inventories for alpha-, beta-Endosulfan and their metabolite endosulfan sulfate in Chinese surface soil

    NASA Astrophysics Data System (ADS)

    Jia, Hongliang; Tian, Chongguo; Li, Yi-Fan

    2010-05-01

    Endosulfan is currently-used organochlorine pesticide in China, with annual usage of 2,300 t between 1994 and 2004. A gridded mass balance model, Gridded PTSs (persistent toxic substances) Emission and Residue Model (GPERM), has been applied to create gridded inventories of residues in soil for two endosulfan isomers, alpha- and beta-endosulfan, on a 1/4 degree longitude and 1/6 degree latitude resolution (approximate 24 km by 24 km) by using Chinese gridded annual usage inventories of endosulfan on the same resolution as input. In order to evaluate these inventories, soil samples were collected from 92 sites (70 for rural and 22 for urban) across China in 2005, and concentrations of alpha-, beta-endosulfan and their metabolite endosulfan sulfate were measured. Measured soil concentrations of both alpha- and beta-endosulfan match well with their modeled data, and the results show that, at the 0.05 level, no significant difference was found between monitored and modeled results. Significant correlations found between measured data for endosulfan sulfate and beta-endosulfan in Chinese soil and also between monitored and modeled datasets for beta-endosulfan, inventories of endosulfan sulfate in Chinese agricultural soil in 2005 with a 1/4 degree × 1/6 degree longitude and latitude resolution have been established, which correlate significantly with their related monitoring data in the same grid cells. To our knowledge, this is the first soil concentration inventories for endosulfan sulfate, which will pave the way for further study of this chemical.

  18. Solubility of adsorbed sulfate in coastal plain soils

    SciTech Connect

    Camberato, J.J.; Kamprath, E.J.

    1986-10-01

    Ultisols of the Atlantic Coastal Plain have sandy surface horizons low in Ca(H/sub 2/PO/sub 4/)/sub 2/-extractable SO/sub 4//sup 2 -/ and clayey subsoil horizons high in extractable SO/sub 4//sup 2 -/. The capacity of the subsoils to supply adequate S is dependent upon the solubility of the extractable SO/sub 4//sup 2 -/. To assess the solubility of adsorbed SO/sub 4//sup 2 -/ in Coastal Plain soils, the authors collected samples from the Ap and B horizons of 12 sites and determined Ca(H/sub 2/PO/sub 4/)/sub 2/-extractable and water-soluble SO/sub 4//sup 2 -/. The Ap horizon contained 2 to 7 mg kg/sup -1/ of Ca(H/sub 2/PO/sub 4/)/sub 2/-extractable SO/sub 4//sup 2 -/-S, which ranged from 33 to 100% water soluble, with an average of 79%. The B horizon Ca(H/sub 2/PO/sub 4/)/sub 2/-extractable SO/sub 4//sup 2 -/-S levels ranged from 26 to 142 mg kg/sup -1/ soil. The solubility of the adsorbed SO/sub 4//sup 2 -/-S in the B horizons ranged from 0.203 to 0.359 mM L/sup -1/ SO/sub 4//sup 2 -/-S, which is adequate to supply plant requirements for S if plant roots can gain access to the B horizon.

  19. Toward understanding the influence of soil metals and sulfate content on plant thiols.

    PubMed

    Hunaiti, Abdelrahim A; Al-Oqlah, Ahmed; Shannag, Noor M; Abukhalaf, Imad K; Silvestrov, Natalia A; von Deutsch, Daniel A; Bayorh, Mohamed A

    2007-03-15

    Plants respond to increased concentrations of metals by a number of mechanisms, including chelation with phytochelatins (PCs). Soil specimens and plants (Veronica anagalis-aquatica, Typha domingensis, Cynodon dactylon, Chenopodium album, Rumex dentatus, Amaranthus gracilis, Chenopodium murale, Inula viscosa) leaves were collected from two sites in northern Jordan and subsequently metals (cadmium, copper, and lead), sulfate, and PC (from leaves) levels were determined. One of these sites was contaminated with metals and the other served as a control site. The contaminated site had elevated cadmium, copper, lead, and sulfate levels. This increase of metal and sulfate levels in the soil at the contaminated site correlated with a rise in plant total glutathione (GSH(T)) and cysteine (CYS(T)). These increases were not attributed to an elevation in total phytochelatin levels. However, a significant increase in the ratio of short-chain phytochelatins to the total phytochelatin stores was observed. The individual effects of metals and sulfate on glutathione, short-chain PCs and long-chain PCs levels were dissimilar.

  20. Soil Remediation of an Arsenic-Contaminated Site With Ferrous Sulfate and Type V Portland Cement

    NASA Astrophysics Data System (ADS)

    Illera, V.; O'Day, P. A.; Rivera, N.; Root, R.; Rafferty, M. T.; Vlassopoulos, D.

    2005-12-01

    High levels of arsenic are present in a site adjacent to San Francisco Bay (in East Palo Alto, CA) as a consequence of the activity of a former pesticide manufacturing plant. Most of the readily accessible arsenic at the site has been removed by remedial excavation and surface capping. In-situ fixation of residual arsenic was performed close to the source about 10 years ago where arsenic values in capped soils ranged from 500 to 5000 mg kg-1. The fixation method consisted of the addition of ferrous sulfate (3% w/w), type V Portland cement (10% w/w) and water. Both products were mixed with the contaminated soil to a treatment depth between 1.5 and 9 meters. The treated soil was then capped to prevent weathering. This long-term amended soil offers an opportunity to compare the processes that prevent microbial arsenic reduction and control the immobilization of arsenic in the treated soils versus natural soils, and to study the aging effects of arsenic sorption. Solid phase characterization of soil samples from both the field and controlled laboratory experiments were carried out to study the speciation and bioavailability of arsenic and to ascertain the mechanisms of the arsenic immobilization in the treated soil. These methods included physical description by field observations, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy, total elemental concentrations, and solid phase fractionation by sequential extraction. Both synchrotron X-ray absorption spectroscopy (XAS) and XRD measurements were used to determine oxidation state of arsenic and iron and host phases present in the soil. The remedial treatment was successful in immobilizing the arsenic in the contaminated soil, and decreasing its leachability. Measurements taken at short aging times (during the first month) showed that the treatment was effective in reducing leachable arsenic as evidenced by the TCLP wet test (< 5 mg l-1 leached). The field amendment influenced

  1. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.

    PubMed

    Hisatomi, Shihoko; Guan, Ling; Nakajima, Mami; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2013-11-15

    Diphenylarsinic acid (DPAA) is a toxic phenylarsenical compound often found around sites contaminated with phenylarsenic chemical warfare agents, diphenylcyanoarsine or diphenylchloroarsine, which were buried in soil after the World Wars. This research concerns the elucidation of the chemical structure of an arsenic metabolite transformed from DPAA under anaerobic sulfate-reducing soil conditions. In LC/ICP-MS analysis, the retention time of the metabolite was identical to that of a major phenylarsenical compound synthesized by chemical reaction of DPAA and hydrogen sulfide. Moreover the mass spectra for the two compounds measured using LC/TOF-MS were similar. Subsequent high resolution mass spectral analysis indicated that two major ions at m/z 261 and 279, observed on both mass spectra, were attributable to C12H10AsS and C12H12AsSO, respectively. These findings strongly suggest that the latter ion is the molecular-related ion ([M+H](+)) of diphenylthioarsinic acid (DPTA; (C6H5)2AsS(OH)) and the former ion is its dehydrated fragment. Thus, our results reveal that DPAA can be transformed to DPTA, as a major metabolite, under sulfate-reducing soil conditions. Moreover, formation of diphenyldithioarsinic acid and subsequent dimerization were predicted by the chemical reaction analysis of DPAA with hydrogen sulfide. This is the first report to elucidate the occurrence of DPAA-thionation in an anaerobic soil.

  2. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    USGS Publications Warehouse

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  3. Soil-derived sulfate in atmospheric dust particles at Taklimakan desert

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Zhang, Daizhou; Cao, Junji; Xu, Hongmei; An, Zhisheng

    2012-12-01

    Dust-associated sulfate is believed to be a key species which can alter the physical and chemical properties of dust particles in the atmosphere. Its occurrence in the particles has usually been considered to be the consequence of particles' aging in the air although it is present in some crustal minerals. Our observation at the north and south edge of Taklimakan desert, one of the largest dust sources in the Northern Hemisphere, during a dust episode in April 2008 revealed that sulfate in atmospheric dust samples most likely originated directly from surface soil. Its TSP, PM10 and PM2.5 content was proportional to samples' mass and comprised steadily about 4% in the differently sized samples, the ratio of elemental sulfur to iron was approximately constant 0.3, and no demonstrable influence of pollutants from fossil fuel combustion and biomass burning was detected. These results suggest that sulfate could be substantially derived from surface soil at the desert area and the lack of awareness of this origin may impede accurate results in any investigation of atmospheric sulfur chemistry associated with Taklimakan dust and its subsequent local, regional and global effects on the atmosphere.

  4. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  5. Quantitative in situ determination of hydration of bright high-sulfate Martian soils

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Gellert, R.; Lee, M.; Mallett, C. L.; Maxwell, J. A.; O'Meara, J. M.

    2008-04-01

    The total water content of soils and rocks encountered by the Spirit rover has been determined by a new analysis method applied to the existing data from the Alpha Particle X-Ray Spectrometer (APXS). This approach employs Monte Carlo simulation of the intensities of the photon scatter peaks in the APXS spectra, together with extraction of these intensities from the spectra. For any individual sample, the water detection limits (~6 wt %) and error bars are high due to low counting statistics in the spectra, but combining the data from a well-defined group of similar samples improves the error bars and lowers the limit. Thus typical basaltic surface soils are found to be essentially dry (<1 wt % water) and basaltic rocks are very close to dry (<3.5 wt % water). For four bright subsurface soils in Gusev Crater the water content lies in the range 6-18 wt % these soils contain sulfur at unusually high levels (>12 wt %, 30 wt % SO3) relative to the soils common at other landing sites. Mass balance mixing calculations of available cations infer the presence of Fe-, Mg-, and Ca-sulfates in these bright soils. Together with constraints from mineralogy, our results imply that highly hydrated ferric sulfates are the most important carrier of the bound water found in these four spots. In conjunction with the complementary available chemical and mineralogical information they reveal additional information about present bound water reservoirs on Mars, their mineralogy and their spatial and lateral distribution along the Spirit rover's traverse.

  6. Spectral and Textural Changes Observed in Sulfate Soil Deposits at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Rice, M. S.; Bell, J. F.; Wang, A.; Johnson, J. R.; Arvidson, R. E.

    2009-12-01

    The Mars Exploration Rover (MER) Spirit has discovered deposits of bright yellowish and whitish soils that have been confirmed by Spirit’s Alpha Particle X-Ray Spectrometer (APXS), Mössbauer spectrometer, and Miniature Thermal Emission Spectrometer (Mini-TES) instruments to contain ferric sulfates and/or opaline silica. These deposits have important implications for the history of water at Gusev Crater, as they have been interpreted by Squyres et al. (2008, Science, 316, 738) to have formed in a hydrothermal environment. Repeated Pancam 11 color visible to short-wave near-IR observations have been made at the Tyrone, Kit Carson and Ulysess soil exposures, and changes in Vis-NIR spectra and/or soil texture and morphology have been observed at all three sites. We have identified at least three possible explanations for the observed changes: 1) dust deposition; 2) aeolian sorting; and/or 3) a mineralogic change after exposure to martian surface conditions. To better characterize how and why these soils are changing with time, we present a detailed multispectral analysis of the seven Pancam image sequences at Tyrone, the two at Kit Carson, and the nine at Ulysses that have been acquired as of sol 2000 (August 18, 2009). At the Tyrone “yellow” soil, the blue-to-red (432 to 753 nm) spectral slope decreased after roughly 175 sols of exposure to the martian surface, as described by Wang et al. (2008, JGR, 114, 461). This spectral change is contrary to the “reddening” that would be expected from dust deposition, but could be consistent with dehydration pathways of certain ferric sulfates, such as from copiapite to amorphous ferric sulfates or to rhomboclase (Wang et al., 2008, AGU). The Tyrone “yellow” soil also exhibits increased 535 nm and 803 nm band depths with time, which is further suggestive of a mineralogic change. Pancam spectra of Kit Carson appear to have changed similarly to those of Tyrone, with 535 nm and 864 nm absorptions developing after four

  7. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms.

    PubMed

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; Tringe, Susannah G; Glavina Del Rio, Tijana; Loy, Alexander; Pester, Michael

    2016-10-01

    Dissimilatory sulfate reduction in peatlands is sustained by a cryptic sulfur cycle and effectively competes with methanogenic degradation pathways. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16-174 nmol cm(-3) per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (⩾0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. Most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.

  8. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms

    SciTech Connect

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; Tringe, Susannah G.; Glavina del Rio, Tijana; Loy, Alexander; Pester, Michael

    2016-03-25

    A cryptic sulfur cycle and effectively competes with methanogenic degradation pathways sustains dissimilatory sulfate reduction in peatlands. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16–174 nmol cm–3 per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (greater than or equal to0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. The most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.

  9. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms

    DOE PAGES

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; ...

    2016-03-25

    A cryptic sulfur cycle and effectively competes with methanogenic degradation pathways sustains dissimilatory sulfate reduction in peatlands. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16–174 nmol cm–3 per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (greater than or equal to0.1%more » estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. The most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.« less

  10. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms

    PubMed Central

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; Tringe, Susannah G; Glavina del Rio, Tijana; Loy, Alexander; Pester, Michael

    2016-01-01

    Dissimilatory sulfate reduction in peatlands is sustained by a cryptic sulfur cycle and effectively competes with methanogenic degradation pathways. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16–174 nmol cm–3 per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (⩾0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. Most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems. PMID:27015005

  11. Modeling Sorption and Degradation of 17β-Estradiol-17-Sulfate in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Bai, X.; Casey, F. X.; Hakk, H.; Shrestha, S. L.; DeSutter, T.; Khan, E.; Oduor, P. G.

    2011-12-01

    The natural steroid hormone, 17β-estradiol (E2), can be an endocrine disruptor at part-per trillion levels. Laboratory studies indicate a low potential for E2 persistence and mobility in the environment; however, field studies consistently indicate the presence of E2 and its primary metabolite, estrone, at levels sufficiently high to impact water quality. To facilitate urine excretion, animals may release E2 as a sulfated conjugate, which would have a higher aqueous solubility than the parent compound. We hypothesize that E2 conjugates contribute to the detection of free estrogens in the environment. The objective of this study was to determine the sorption, degradation, and mobility of a model conjugate, 17β-estradiol-17-sulfate (E2-17S), in agricultural soils. Radiolabeled E2-17S ([14C]E2-17S) was chemically synthesized in a three-step process, and then batch experiments were conducted in natural and sterile soils. Additionally, soil organic carbon (OC) was varied (1.29 and 0.26%) to investigate its effect on the fate of [14C]E2-17S. Liquid scintillation counting (LSC) was used in concert with high performance liquid chromatography (HPLC) to detect and quantitate parent compound and metabolites of E2-17S in the aqueous and bound phases. Residual soil was combusted to determine non-extractable levels of 14C. The E2-17S was relatively stable in the aqueous phase for natural and sterile soils. Mono- and di- hydroxyl E2-17S were detected as metabolites of E2-17S in the aqueous phase above both sterile and natural soil. Deconjugation to form E2 was not observed in aqueous phase; however, E2 and estrone were extracted from both natural and sterile soils. A conceptual model was developed to simulate and identify the fate and transport processes of E2-17S. Organic carbon was found to be an important factor affecting the sorption and degradation of E2-17S in soils.

  12. Use of organic substrates as electron donors for biological sulfate reduction in gypsiferous mine soils from Nakhon Si Thammarat (Thailand).

    PubMed

    Kijjanapanich, Pimluck; Annachhatre, Ajit P; Esposito, Giovanni; Lens, Piet N L

    2014-04-01

    Soils in some mining areas contain a high gypsum content, which can give adverse effects to the environment and may cause many cultivation problems, such as a low water retention capacity and low fertility. The quality of such mine soils can be improved by reducing the soil's gypsum content. This study aims to develop an appropriate in situ bioremediation technology for abbreviating the gypsum content of mine soils by using sulfate reducing bacteria (SRB). The technology was applied to a mine soil from a gypsum mine in the southern part of Thailand which contains a high sulfate content (150 g kg(-1)). Cheap organic substrates with low or no cost, such as rice husk, pig farm wastewater treatment sludge and coconut husk chips were mixed (60:20:20 by volume) and supplied to the soil as electron donors for the SRB. The highest sulfate removal efficiency of 59% was achieved in the soil mixed with 40% organic mixture, corresponding to a reduction of the soil gypsum content from 25% to 7.5%. For economic gains, this treated soil can be further used for agriculture and the produced sulfide can be recovered as the fertilizer elemental sulfur.

  13. The Soil Chemical Response to Decreases in Atmospheric Sulfate deposition Across the Northeastern United States

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Siemion, J.; Lawrence, G. B.; Mast, A.

    2012-12-01

    Data from National Atmospheric Deposition (NADP) stations show that since implementation of the Clean Air Act Amendments of 1990 there has been a steady decline in sulfate and nitrate concentrations in precipitation across the northeastern United States. Those decreases have become more pronounced during the last 10 years. There have also been decreasing trends in sulfate and less so nitrate stream-water concentrations during the same period at 3 U.S. Geological Survey Hydrologic Benchmark Network stream gaging stations. These stations are co-located with NADP stations in western Pennsylvania (Young Woman's Creek, YWC), the Catskill Mountains of New York (Neversink River, NR), and in northwestern Maine (Wild River, WR). Precipitation was most acidic at YWC (mean pH in 2010 of 4.68 at YWC, 4.88 at NR, and 4.97 at WR) while stream water was most acidic at WR (mean pH from 1999 to 2010 of 6.08 at WR, 6.19 at NR, and 6.72 at YWC). Soil samples were collected at each site in 2001 and again 10 years later in 2011 in the A and upper B-horizons at two to three locations in each watershed, at an upslope location, a mid-slope location, and in the case of NR also at a lower slope location. Replicate samples were collected from 5 pits at each site. At YWC the site with the lowest precipitation pH and the highest stream-water pH there were clear changes in soil acidity during the last 10 years. There was a decrease in soil pH of 0.7 pH units in the A-horizon of ridge top soils and 0.2 pH units in the mid slope soils while pH increased a mean of 0.2 pH units at both locations in the B-horizon. At NR, the site with intermediate precipitation and stream-water pH, there was a general decrease in soil pH in the A-horizon at the ridge top, mid slope, and lower slope locations although those changes were not as pronounced as those from YWC. Although B-horizon soil pH increased at the ridge top site in NR there were no clear changes in acidity of the mid or lower slope locations. At

  14. Sulfur-accumulating plants convert sulfate salts from soils into environmentally resilient biominerals

    NASA Astrophysics Data System (ADS)

    Robson, Thomas; Reid, Nathan; Stevens, Jason; Dixon, Kingsley

    2016-04-01

    Sulfur-accumulator plants (thiophores), which accumulate atypically high sulfur and calcium concentrations in their aerial biomass, may be suitable for revegetating and phytostabilising reactive sulfur-enriched substrates such as mine tailings, acid-sulfate soils and polluted soils. We present biogeochemical insights on thiophores from the Australian Great Sandy Desert, which accumulate up to 40 times as much sulfur (2-5 %S) versus comparator species. X-ray microanalyses revealed this accumulation relates to peculiar gypsum-like mineralisation throughout their foliage, illustrating a mechanism for sulfate removal from soils and sequestration as sparingly soluble biominerals. However, we did not know whether these species treat the excess Ca/S as a waste to be shed with senescent litter and, if so, how resilient these 'biominerals' are to photo-biodegradation once shed and so to what extent the accumulated elements are recycled back into the reactive/bioavailable sulfate reservoir. To address these questions, we sampled four foliage (phyllode) fractions from ten individuals of the thiophore, Acacia bivenosa: healthy mature phyllodes, senescent phyllodes on the branch, recently shed and older, more degraded ground litter. We selected two thiophores (A. bivenosa and A. robeorum) and a non-thiophore (A. ancistrocarpa) for detailed soil/regolith studies. Samples were collected from trenches bisected by each tree, taken from varying depth (20-500 mm) and distance from the stem (0.1-5 m). Dried foliage was cleaned, sectioned for SEM-EDXS examination and elemental compositions of foliage and soils were determined (microwave-assisted acid digestion + ICP-OES/MS). Each species generated a 'halo' of elevated S/Ca in the soil immediately beneath their crowns, although that of A. ancistrocarpa was of minor magnitude. These anomalies were confined to shallow soil (20-50 mm i.e. influenced by litter), suggesting limited S/Ca re-mobilisation from the litter. Foliar elemental

  15. Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability

    NASA Astrophysics Data System (ADS)

    Fulda, Beate; Voegelin, Andreas; Ehlert, Katrin; Kretzschmar, Ruben

    2013-12-01

    In periodically flooded soils, interactions of Cu with biogenic sulfide formed during soil reduction lead to the precipitation of sparingly soluble Cu-sulfides. In contaminated soils, however, the amounts of Cu can exceed the amount of sulfate available for microbial reduction to sulfide. In laboratory batch experiments, we incubated a paddy soil spiked to ∼4.4 mmol kg-1 (280 mg kg-1) Cu(II) to monitor temporal changes in the concentrations of dissolved Cu and the speciation of solid-phase Cu during 40 days of soil reduction and 28 days of reoxidation as a function of initially available reducible sulfate (0.06, 2.09 or 5.92 mmol kg-1). Using Cu K-edge EXAFS spectroscopy, we found that a large fraction of Cu(II) became rapidly reduced to Cu(I) (23-39%) and Cu(0) (7-17%) before the onset of sulfate reduction. Combination with results from sequential Cu extraction and chromium reducible sulfur (CRS) data suggested that complexation of Cu(I) by reduced organic S groups (Sorg) may be an important process during this early stage. In sulfate-depleted soil, Cu(0) and Cu(I)-Sorg remained the dominant species over the entire reduction period, whereas in soils with sufficient sulfate, initially formed Cu(0) and (remaining) Cu(II) became transformed into Cu-sulfide during continuing sulfate reduction. The formation of Cu(0), Cu(I)-Sorg, and Cu-sulfide led to an effective decrease in dissolved Cu concentrations. Differences in Cu speciation at the end of soil reduction however affected the dynamics of Cu during reoxidation. Whereas Cu(0) was rapidly oxidized to Cu(II), more than half of the S-coordinated Cu fraction persisted over 14 days of aeration. Our results show that precipitation of Cu(0) and complexation of Cu(I) by reduced organic S groups are important processes in periodically flooded soils if sulfide formation is limited by the amount of available sulfate or the duration of soil flooding. The speciation changes of Cu described in this study may also affect the

  16. Groundwater or floodwater? Assessing the pathways of metal exports from a coastal acid sulfate soil catchment.

    PubMed

    Santos, Isaac R; de Weys, Jason; Eyre, Bradley D

    2011-11-15

    Daily observations of dissolved aluminum, iron, and manganese in an estuary downstream of a coastal acid sulfate soil (CASS) catchment provided insights into how floods and submarine groundwater discharge drive wetland metal exports. Extremely high Al, Fe, and Mn concentrations (up to 40, 374, and 8 mg L(-1), respectively) were found in shallow acidic groundwaters from the Tuckean Swamp, Australia. Significant correlations between radon (a natural groundwater tracer) and metals in surface waters revealed that metal loads were driven primarily by groundwater discharge. Dissolved Fe, Mn, and Al loads during a 16-day flood triggered by a 213 mm rain event were respectively 80, 35, and 14% of the total surface water exports during the four months of observations. Counter clockwise hysteresis was observed for Fe and Mn in surface waters during the flood due to delayed groundwater inputs. Groundwater-derived Fe fluxes into artificial drains were 1 order of magnitude higher than total surface water exports, which is consistent with the known accumulation of monosulfidic black ooze within the wetland drains. Upscaling the Tuckean catchment export estimates yielded dissolved Fe fluxes from global acid sulfate soil catchments on the same order of magnitude of global river inputs into estuaries.

  17. Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles soil at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hausrath, E. M.; Golden, D. C.; Morris, R. V.; Agresti, D. G.; Ming, D. W.

    2013-01-01

    Phosphate-rich rocks and a nearby phosphate-rich soil, Paso Robles, were analyzed in Gusev Crater, Mars, by the Mars Exploration Rover Spirit and interpreted to be highly altered, possibly by hydrothermal or fumarolic alteration of primary, phosphate-rich material. To test mineral phases resulting from such alteration, we performed hydrothermal acid-vapor and acid-fluid experiments on olivine (Ol), fluorapatite (Ap), and basaltic glass (Gl) as single phases and a mixture of phases. Minerals formed include Ca-, Al-, Fe- and Mg-sulfates with different hydration states (anhydrite, bassanite, gypsum; alunogen; hexahydrite, and pentahydrite). Phosphate-bearing minerals formed included monocalcium phosphate monohydrate (MCP) (acid-vapor and acid-fluid alteration of fluorapatite only) and ferrian giniite (acid-fluid alteration of the Ol + Gl + Ap mixture). MCP is likely present in Paso Robles if primary Ca-phosphate minerals reacted with sulfuric acid with little transport of phosphate. Under fluid:rock ratios allowing transport of phosphate, a ferric phosphate phase such as ferrian giniite might form instead. Mössbauer measurements of ferrian giniite-bearing alteration products and synthetic ferrian giniite are consistent with Spirit's Mössbauer measurements of the ferric-bearing phase in Paso Robes soil, but are also consistent with ferric sulfate phases in the low-P soil Arad_Samra. Therefore, Mössbauer data alone do not constrain the fluid:rock ratio. However, the excess iron (hematite) in Paso Robles soil, which implies aqueous transport, combined with our laboratory experiments, suggest acid-sulfate alteration in a hydrothermal (fumarolic) environment at fluid:rock ratios sufficient to allow dissolution, transport, and precipitation of secondary chemical components including a ferric phosphate such as ferrian giniite.

  18. Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis

    SciTech Connect

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stress and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.

  19. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is

  20. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper.

    PubMed

    Fulda, Beate; Voegelin, Andreas; Kretzschmar, Ruben

    2013-11-19

    The solubility of Cd in contaminated paddy soils controls Cd uptake by rice, which is an important food safety issue. We investigated the solution and solid-phase dynamics of Cd in a paddy soil spiked with ∼20 mg kg(-1) Cd during 40 days of soil reduction followed by 28 days of soil reoxidation as a function of the amounts of sulfate available for microbial reduction and of Cu that competes with Cd for precipitation with biogenic sulfide. At an excess of sulfate over (Cd + Cu), dissolved Cd decreased during sulfate reduction and Cd was transformed into a poorly soluble phase identified as Cd-sulfide using Cd K-edge X-ray absorption spectroscopy (XAS). The extent of Cd-sulfide precipitation decreased with decreasing sulfate and increasing Cu contents, even if sulfate exceeded Cd. When both Cu and Cd exceeded sulfate, dissolved and mobilizable Cd remained elevated after 40 days of soil reduction. During soil reoxidation, Cd-sulfide was readily transformed back into more soluble species. Our data suggest that Cd-sulfide formation in flooded paddy soil may be limited when the amounts of Cd and other chalcophile metals significantly exceed reducible sulfate Therefore, in multimetal contaminated paddy soils with low sulfate contents, Cd may remain labile during soil flooding, which enhances the risk for Cd transfer into rice.

  1. Possible Association of Ferrous Phosphates and Ferric Sulfates in S-rich Soil on Mars

    NASA Astrophysics Data System (ADS)

    Mao, J.; Schroeder, C.; Haderlein, S.

    2012-12-01

    NASA Mars Exploration Rover (MER) Spirit explored Gusev Crater to look for signs of ancient aqueous activity, assess past environmental conditions and suitability for life. Spirit excavated light-toned, S-rich soils at several locations. These are likely of hydrothermal, possibly fumarolic origin. At a location dubbed Paso Robles the light-toned soil was also rich in P - a signature from surrounding rock. While S is mainly bound in ferric hydrated sulfates [1], the mineralogy of P is ill-constrained [2]. P is a key element for life and its mineralogy constrains its availability. Ferrous phases observed in Paso Robles Mössbauer spectra may represent olivine and pyroxene from surrounding basaltic soil [1] or ferrous phosphate minerals [3]. Phosphate is well-known to complex and stabilize Fe 2+ against oxidation to Fe 3+ . Schröder et al. [3] proposed a formation pathway of ferrous phosphate/ferric sulfate associations: sulfuric acid reacts with basalt containing apatite, forming CaSO4 and phosphoric acid. The phosphoric and/or excess sulfuric acid reacts with olivine, forming Fe2+-phosphate and sulfate. The phosphate is less soluble and precipitates. Ferrous sulfate remains in solution and is oxidized as pH increases. To verify this pathway, we dissolved Fe2+-chloride and Na-phosphate salts in sulfuric acid inside an anoxic glovebox. The solution was titrated to pH 6 by adding NaOH when a first precipitate formed, which was ferrous phosphate according to Mössbauer spectroscopy (MB). At that point the solution was removed from the glovebox and allowed to evaporate in the presence of atmospheric oxygen, leading to the oxidation of Fe2+. The evaporation rate was controlled by keeping the suspensions at different temperatures; pH was monitored during the evaporation process. The final precipitates were analyzed by MB and X-Ray Fluorescence (XRF), comparable to MER MB and Alpha Particle X-ray Spectrometer instrument datasets, and complementary techniques such as X

  2. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2.

  3. Monitoring the cementitious materials subjected to sulfate attack with optical fiber excitation Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yue, Yanfei; Bai, Yun; Muhammed Basheer, P. A.; Boland, John J.; Wang, Jing Jing

    2013-10-01

    Formation of ettringite and gypsum from sulfate attack together with carbonation and chloride ingress have been considered as the most serious deterioration mechanisms of concrete structures. Although electrical resistance sensors and fiber optic chemical sensors could be used to monitor the latter two mechanisms on site, currently there is no system for monitoring the deterioration mechanisms of sulfate attack. In this paper, a preliminary study was carried out to investigate the feasibility of monitoring sulfate attack with optical fiber excitation Raman spectroscopy through characterizing the ettringite and gypsum formed in deteriorated cementitious materials under an optical fiber excitation + objective collection configuration. Bench-mounted Raman spectroscopy analysis was also conducted to validate the spectrum obtained from the fiber-objective configuration. The results showed that the expected Raman bands of ettringite and gypsum in the sulfate-attacked cement paste can be clearly identified by the optical fiber excitation Raman spectrometer and are in good agreement with those identified from bench-mounted Raman spectrometer. Therefore, based on these preliminary results, it is considered that there is a good potential for developing an optical fiber-based Raman system to monitor the deterioration mechanisms of concrete subjected to sulfate attack in the future.

  4. Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality

    NASA Astrophysics Data System (ADS)

    Salmon, S. Ursula; Rate, Andrew W.; Rengel, Zed; Appleyard, Steven; Prommer, Henning; Hinz, Christoph

    2014-06-01

    Disturbance or drainage of potential acid sulfate soils (PASS) can result in the release of acidity and degradation of infrastructure, water resources, and the environment. Soil processes affecting shallow groundwater quality have been investigated using a numerical code that integrates (bio)geochemical processes with water, solute, and gas transport. The patterns of severe and persistent acidification (pH < 4) in the sandy, carbonate-depleted podzols of a coastal plain could be reproduced without calibration, based on oxidation of microcrystalline pyrite after groundwater level decrease and/or residual groundwater acidity, due to slow vertical solute transport rates. The rate of acidification was limited by gas phase diffusion of oxygen and hence was sensitive to soil water retention properties and in some cases also to oxygen consumption by organic matter mineralization. Despite diffusion limitation, the rate of oxidation in sandy soils was rapid once pyrite-bearing horizons were exposed, even to a depth of 7.5 m. Groundwater level movement was thus identified as an important control on acidification, as well as the initial pyrite content. Increase in the rate of Fe(II) oxidation lead to slightly lower pH and greater accumulation of Fe(III) phases, but had little effect on the overall amount of pyrite oxidized. Aluminosilicate (kaolinite) dissolution had a small pH-buffering effect but lead to the release of Al and associated acidity. Simulated dewatering scenarios highlighted the potential of the model for risk assessment of (bio)geochemical impacts on soil and groundwater over a range of temporal and spatial scales.

  5. Plant Uptake and Distribution of Endosulfan and Its Sulfate Metabolite Persisted in Soil

    PubMed Central

    Hwang, Jeong-In; Lee, Sung-Eun; Kim, Jang-Eok

    2015-01-01

    The distributions of endosulfan (ED) residues (α-, β-isomers, and sulfate-metabolite) in cucumbers grown in soils treated with ED at concentrations of 20 and 40 mg kg-1 were assessed using indoor and outdoor experiments. In all treatments, degradation rates of the α-isomer in soils were higher than that of the β-isomer. In the indoor tests, uptake amounts of total ED by cucumbers, after 15 d of growth, were 7.8 and 14.5 mg kg-1 in 20 and 40 mg kg-1-treated pots, respectively. For growth time from 15 to 30 d, uptake amounts in 20 and 40 mg kg-1-treated pots were 3.8 and 7.9 mg kg-1, respectively. Outdoor tests resulted in smaller ED residues in cucumbers than those in indoor tests. In both indoor and outdoor tests, ED residues absorbed were highest in roots, and the α-isomer was the more frequently absorbed isomer. These results will be useful for determining management criteria for soil persistent pesticides. PMID:26529511

  6. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  7. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  8. EPR-based material modelling of soils

    NASA Astrophysics Data System (ADS)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  9. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  10. FAST TRACK COMMUNICATION: Sodium sulfate heptahydrate: direct observation of crystallization in a porous material

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrea; Hall, Christopher; Pel, Leo

    2008-11-01

    It is well known that sodium sulfate causes salt crystallization damage in building materials and rocks. However since the early 1900s the existence of the metastable heptahydrate has been largely forgotten and almost entirely overlooked in scientific publications on salt damage mechanics and on terrestrial and planetary geochemistry. We use hard synchrotron x-rays to detect the formation of this metastable heptahydrate on cooling a porous calcium silicate material saturated with sodium sulfate solution. The heptahydrate persists indefinitely and transforms to mirabilite only below 0 °C. At the transformation, which is rapid, the solution is highly supersaturated with respect to mirabilite. We estimate that crystallization of the heptahydrate and of mirabilite have associated Correns pressures of about 9 and 19 MPa, respectively, exceeding the tensile strength of building stones. We detect lattice strains in the salts from x-ray measurements consistent with these values.

  11. Porewater geochemistry of inland Acid sulfate soils with sulfuric horizons following postdrought reflooding with freshwater.

    PubMed

    Creeper, Nathan L; Shand, Paul; Hicks, Warren; Fitzpatrick, Rob W

    2015-05-01

    Following the break of a severe drought in the Murray-Darling Basin, rising water levels restored subaqueous conditions to dried inland acid sulfate soils with sulfuric horizons (pH <3.5). Equilibrium dialysis membrane samplers were used to investigate in situ changes to soil acidity and abundance of metals and metalloids following the first 24 mo of restored subaqueous conditions. The rewetted sulfuric horizons remained severely acidified (pH ∼4) or had retained acidity with jarosite visibly present after 5 mo of continuous subaqueous conditions. A further 19 mo of subaqueous conditions resulted in only small additional increases in pH (∼0.5-1 pH units), with the largest increases occurring within the uppermost 10 cm of the soil profile. Substantial decreases in concentrations of some metal(loid)s were observed with time most likely owing to lower solubility and sorption as a consequence of the increase in pH. In deeper parts of the profiles, porewater remained strongly buffered at low pH values (pH <4.5) and experienced little progression toward anoxic circumneutral pH conditions over the 24 mo of subaqueous conditions. It is proposed that low pH conditions inhibited the activity of SO-reducing bacteria and, in turn, the in situ generation of alkalinity through pyrite production. The limited supply of alkalinity in freshwater systems and the initial highly buffered low pH conditions were also thought to be slowing recovery. The timescales involved for a sulfuric horizon rewetted by a freshwater body to recover from acidic conditions could therefore be in the order of several years.

  12. Effect of cyclic redox oscillations on water quality in freshwater acid sulfate soil wetlands.

    PubMed

    Karimian, Niloofar; Johnston, Scott G; Burton, Edward D

    2017-03-01

    Restoration of acid sulfate soil (ASS) wetlands by freshwater re-flooding can lead to the reformation of various Fe(II) and reduced inorganic sulfur (RIS) species in surface soil layers. However, in many locations, wetland water levels undergo large seasonal fluctuations that drive extreme redox oscillations. Newly formed RIS species [e.g. greigite, mackinawite, nano-pyrite and S(0)] and Fe(II) are vulnerable to rapid oxidation during dry periods and may generate substantial acidity. Rainfall following a dry period may then mobilise acidity and metal cations in surface waters prior to eventual recovery in pH by re-establishment of reducing conditions. We explore this dry-wet transition by subjecting soil samples from two freshwater re-flooded ASS wetlands to oxidative incubation for up to 130days followed by re-flooding simulation for 84days. During very early stages of re-flooding (up to 7days) there was an initial pulse-release of acidity, and trace metals/metalloids (Al, Mn, Zn and As). This was followed by a rapid reversion to anoxia, and Fe(III) and SO4 reducing conditions which generated alkalinity, ameliorated acidity and sequestered Fe, S, Zn, Mn and As. Field-observations of surface water quality in an ASS wetland at a sub-catchment scale also confirms re-establishment of SO4 reducing conditions and recovery of pH within ~4-8weeks of re-flooding after dry periods. These observations suggest that retaining surface water in ASS wetlands for ~8weeks after a dry-wet transition will allow sufficient time for alkalinity producing reductive processes to ameliorate most surface water acidity. Although management of freshwater re-flooded ASS wetlands in a highly dynamic climate will remain challenging over the long term and the post-remediation effectiveness of the method depends on initial soil characteristics, knowledge of the timing of redox oscillations and the associated changes in water geochemistry can be helpful for mitigating the risks to downstream

  13. Bacterial Growth at the High Concentrations of Magnesium Sulfate Found in Martian Soils

    PubMed Central

    Crisler, J.D.; Newville, T.M.; Chen, F.; Clark, B.C.

    2012-01-01

    Abstract The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO4 minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO4 in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO4. There was a complex physiological response to mixtures of MgSO4 and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars. Key Words: Analogue—Mars—Planetary protection—Salts—Life in extreme environments. Astrobiology 12, 98–106. PMID:22248384

  14. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-02-20

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.

  15. Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils.

    PubMed

    Dai, Guofei; Zhong, Jiayou; Song, Lirong; Guo, Chunjing; Gan, Nanqin; Wu, Zhenbin

    2015-07-01

    Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin-dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields.

  16. Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

    2013-11-01

    This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

  17. Materials Evaluated as Potential Soil Stabilizers

    DTIC Science & Technology

    1977-09-01

    21.0 168 270 +153 Lithium hydroxide 0.59 20.8 168 198 +85 Sodium sulfite 1.0 21.2 168 322 +200 Sodium carbonate 1.0 20.5 168 375 +250 Sodium bicarbonate...fluoride, sodium 1.0, and 2.0% rates fluoborate , and sodium tetraborate Mixing Material Form* Type of Soil Treated Capability Powder Silt Good Effective...used (sodiun fluosilicate, sodium fluoride, sodium fluoborate , ET-218, and sodium tetraborate) were either detrimental when added to the cement or no

  18. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation

    PubMed Central

    Ling, Yu-Chen; Bush, Richard; Grice, Kliti; Tulipani, Svenja; Berwick, Lyndon; Moreau, John W.

    2015-01-01

    Coastal acid sulfate soils (CASS) constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of “passive” CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from 10 depths ranging from 0 to 20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia). Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical, and lithological factors. The results illustrate spatial overlap, or close association, of iron-, and sulfate-reducing bacteria (SRB) in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling. PMID:26191042

  19. The Hydrothermal System at Home Plate in Gusev Crater, Mars: Formation of High Silica Material by Acid-Sulfate Alteration of Basalt

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Yen, A.; Clark, B. C.; Gnaff, T. G.; Arvidson, R. E.; Squyres, S. W.

    2008-01-01

    The Alpha Particle X-ray Spectrometer (APXS) instrument on the Mars Exploration Rover (MER) Spirit measured three targets on or adjacent to Home Plate in Gusev Crater that have unusually high SiO2 concentrations (68% to 91%), unusually low FeO concentrations (1% to 7%, with total Fe as FeO), and unusually high TiO2/FeO ratios (0.2 to 1.2 by weight) [1]. Two targets (Kenosha Comets and Lefty Ganote) are located on high albedo soil (Gertrude Weise) that was exposed by the rover wheels, and one target is a float rock called Fuzzy Smith. Kenosha Comets has the highest SiO2 concentration, lowest FeO concentration, and highest TiO2/FeO ratio. Mineralogical evidence from the MER Miniature Thermal Emission Spectrometer (Mini-TES) suggests that the SiO2 is present as amorphous (noncrystalline) SiO2 at Gertrude Weise and nearby targets [2,3]. Mini-TES data were not acquired for Fuzzy Smith. Home Plate is considered to have an explosive volcanic origin, resulting when basaltic magma came into contact with ground water or ice [4]. Within 50 m to 1 km of Home Plate are sulfate rich soil deposits (Paso Robles class soils with 22-35% SO3) which are considered to be probable fumarolic and/or hydrothermal deposits associated with the volcanism [5]. We develop the model here, suggested by [5], that the high-silica materials are another manifestation of acid-sulfate processes associated with fumarolic and hydrothermal activity at Home Plate. This is done by analogy with basaltic materials altered by acid sulfate processes on the Island of Hawaii.

  20. On the suppression of superconducting phase formation in YBCO materials by templated synthesis in the presence of a sulfated biopolymer

    NASA Astrophysics Data System (ADS)

    Smith, Elliott; Schnepp, Zoe; Wimbush, Stuart C.; Hall, Simon R.

    2008-11-01

    The use of biopolymers as templates to control superconductor crystallization is a recent phenomenon and is generating a lot of interest both from the superconductor community and in materials chemistry circles. This work represents a critical finding in the use of such biopolymers, in particular the contraindicatory nature of sulfur when attempting to affect a morphologically controlled synthesis. Synthesis of superconducting nanoparticles was attempted using carrageenan as a morphological template. Reactive sulfate groups on the biopolymer prevent this, producing instead significant quantities of barium sulfate nanotapes. By substituting the biopolymer for structurally analogous, non-sulfated agar, we show that superconducting nanoparticles could be successfully synthesized.

  1. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction.

    PubMed

    Zhu, Meng; Tu, Chen; Hu, Xuefeng; Zhang, Haibo; Zhang, Lijuan; Wei, Jing; Li, Yuan; Luo, Yongming; Christie, Peter

    2016-11-01

    Diphenylarsinic acid (DPAA) is a major organic arsenic (As) compound derived from abandoned chemical weapons. The solid-solution partitioning and transformation of DPAA in flooded soils are poorly understood but are of great concern. The identification of the mechanisms responsible for the mobilization and transformation of DPAA may help to develop effective remediation strategies. Here, soil and Fe mineral incubation experiments were carried out to elucidate the partitioning and transformation of DPAA in anoxic (without addition of sulfate or sodium lactate) and sulfide (with the addition of sulfate and sodium lactate) soil and to examine the impact of sulfate and Fe(III) reduction on these processes. Results show that DPAA was more effectively mobilized and thionated in sulfide soil than in anoxic soil. At the initial incubation stages (0-4weeks), 6.7-74.5% of the total DPAA in sulfide soil was mobilized likely by sorption competition with sodium lactate. At later incubation stage (4-8weeks), DPAA was almost completely released into the solution likely due to the near-complete Fe(III) reduction. Scanning transmission X-ray microscopy (STXM) results provide further direct evidence of elevated DPAA release coupled with Fe(III) reduction in sulfide environments. The total DPAA fraction decreased significantly to 24.5% after two weeks and reached 3.4% after eight weeks in sulfide soil, whereas no obvious elimination of DPAA occurred in anoxic soil at the initial two weeks and the total DPAA fraction decreased to 10.9% after eight weeks. This can be explained in part by the enhanced mobilization of DPAA and sulfate reduction in sulfide soil compared with anoxic soil. These results suggest that under flooded soil conditions, Fe(III) and sulfate reduction significantly promote DPAA mobilization and thionation, respectively, and we suggest that it is essential to consider both sulfate and Fe(III) reduction to further our understanding of the environmental fate of DPAA.

  2. Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.

    PubMed

    Gosavi, K; Sammut, J; Gifford, S; Jankowski, J

    2004-05-25

    Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.

  3. Monitoring and assessment of surface water acidification following rewetting of oxidised acid sulfate soils.

    PubMed

    Mosley, Luke M; Zammit, Benjamin; Jolley, Ann-Marie; Barnett, Liz; Fitzpatrick, Rob

    2014-01-01

    Large-scale exposure of acid sulfate soils during a hydrological drought in the Lower Lakes of South Australia resulted in acidification of surface water in several locations. Our aim was to describe the techniques used to monitor, assess and manage these acidification events using a field and laboratory dataset (n = 1,208) of acidic to circum-neutral pH water samples. The median pH of the acidified (pH < 6.5) samples was 3.8. Significant (p < 0.05) increases in soluble metals (Al, Co, Mn, Ni and Zn above guidelines for ecosystem protection), SO4 (from pyrite oxidation), Si (from aluminosilicate dissolution) and Ca (from carbonate dissolution and limestone addition), were observed under the acidic conditions. The log of the soluble metal concentrations, acidity and SO4/Cl ratio increased linearly with pH. The pH, alkalinity and acidity measurements were used to inform aerial limestone dosing events to neutralise acidic water. Field measurements correlated strongly with laboratory measurements for pH, alkalinity and conductivity (r (2) ≥ 0.97) but only moderately with acidity (r (2) = 0.54), which could be due to difficulties in determining the indicator-based field titration endpoint. Laboratory measured acidity correlated well with calculated acidity (r (2) = 0.87, acidity present as Al(III) > H(+) ≈ Mn(II) > Fe(II/III)) but was about 20 % higher on average. Geochemical speciation calculations and XRD measurements indicated that solid phase minerals (schwertmannite and jarosite for Fe and jurbanite for Al) were likely controlling dissolved metal concentrations and influencing measured acidity between pH 2 and 5.

  4. Sulfate-reducing bacteria release barium and radium from naturally occurring radioactive material in oil-field barite

    USGS Publications Warehouse

    Phillips, E.J.P.; Landa, E.R.; Kraemer, T.; Zielinski, R.

    2001-01-01

    Scale and sludge deposits formed during oil production can contain elevated levels of Ra, often coprecipitated with barium sulfate (barite). The potential for sulfate-reducing bacteria to release 226 Ra and Ba (a Ra analog) from oil-field barite was evaluated. The concentration of dissolved Ba increased when samples containing pipe scale, tank sludge, or oil-field brine pond sediment were incubated with sulfate-reducing bacteria Desulfovibrio sp., Str LZKI, isolated from an oil-field brine pond. However, Ba release was not stoichiometric with sulfide production in oil-field samples, and <0.1% of the Ba was released. Potential for the release of 226Ra was demonstrated, and the 226 Ra release associated with sulfate-reducing activity was predictable from the amount of Ba released. As with Ba, only a fraction of the 226Ra expected from the amount of sulfide produced was released, and most of the Ra remained associated with the solid material.

  5. The influence of different long-circulating materials on the pharmacokinetics of liposomal vincristine sulfate

    PubMed Central

    Zhang, Jing; Chen, Yingchong; Li, Xiang; Liang, Xinli; Luo, Xiaojian

    2016-01-01

    Purpose This study was designed to improve the in vivo pharmacokinetics of long-circulating vincristine sulfate (VS)-loaded liposomes; three different long-circulating materials, chitosan, poly(ethylene glycol)-1,2-distearoyl sn-glycero-3-phosphatidylethanolamine (PEG-DSPE), and poly(ethylene glycol)-poly-lactide-co-glycolide (PEG-PLGA), were evaluated at the same coating molar ratio with the commercial product Marqibo® (vincristine sulfate liposome injection [VSLI]). Materials and methods VS-loaded liposomes were prepared by a pH gradient method and were then coated with chitosan, PEG-DSPE, or PEG-PLGA. Physicochemical properties, including the morphology, particle size, zeta potential, encapsulation efficiency (EE%), pH, drug loading, and in vitro release, were determined. Preservation stability and pharmacokinetic studies were performed to compare the membrane-coated liposomes with either commercially available liposomes or the VS solution. Results The sphere-like morphology of the vesicles was confirmed by transmission electron microscope. Increased particle size, especially for the chitosan formulation, was observed after the coating process. However, the EE% was ~99.0% with drug loading at 2.0 mg/mL, which did not change after the coating process. The coating of long-circulation materials, except for chitosan, resulted in negatively charged and stable vesicles at physiological pH. The near-zero zeta potential exhibited by the PEG-DSPE formulation leads to a longer circulation lifetime and improved absorption for VS, when compared with the PEG-PLGA formulation. Compared with the commercial product, PEG was responsible for a higher plasma VS concentration and a longer half-life. Conclusion PEG-DSPE coating may be related to better absorption, based on the stability and a pharmacokinetic improvement in the blood circulation time. PMID:27616886

  6. Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems

    NASA Astrophysics Data System (ADS)

    Bai, Xuelian; Shrestha, Suman L.; Casey, Francis X. M.; Hakk, Heldur; Fan, Zhaosheng

    2014-11-01

    Animal manure is the primary source of exogenous free estrogens in the environment, which are known endocrine-disrupting chemicals to disorder the reproduction system of organisms. Conjugated estrogens can act as precursors to free estrogens, which may increase the total estrogenicity in the environment. In this study, a comprehensive model was used to simultaneously simulate the coupled sorption and transformation of a sulfate estrogen conjugate, 17β-estradiol-17-sulfate (E2-17S), in various soil-water systems (non-sterile/sterile; topsoil/subsoil). The simulated processes included multiple transformation pathways (i.e. hydroxylation, hydrolysis, and oxidation) and mass transfer between the aqueous, reversibly sorbed, and irreversibly sorbed phases of all soils for E2-17S and its metabolites. The conceptual model was conceived based on a series of linear sorption and first-order transformation expressions. The model was inversely solved using finite difference to estimate process parameters. A global optimization method was applied for the inverse analysis along with variable model restrictions to estimate 36 parameters. The model provided a satisfactory simultaneous fit (R2adj = 0.93 and d = 0.87) of all the experimental data and reliable parameter estimates. This modeling study improved the understanding on fate and transport of estrogen conjugates under various soil-water conditions.

  7. Properties and Osteogenicity of Two Calcium Sulfate Materials with Micro or Nano Morphology.

    PubMed

    Zhang, Chunli; Li, Zhonghai; Li, Qihong; Han, Liwei; Zhu, Jialiang; Bai, Yulong; Ge, Cheng; Zhao, Yantao; Zhong, Hongbin

    2016-03-01

    Calcium sulfate dihydrate (CaSO4 x 2H2O, CSD) was widely used as the artificial bone graft. In this study, two kinds of CSD materials were characterized with XRD, TG/DTA, FT-IR, and SEM. They were both composed of CSD. Spherical shape particles were observed for nano-CSD with diameters of 52-300 nm. The micro-CSD were thin sheet particles with dimensions of 5-10 μm. At 56 days post-implantation in vivo, nano-CSD had good tissue compatibility. A frequently used bioactive material DBM, which was the combination of nano-CSD (nano-CSD-DBM) and micro-CSD (micro-CSD-DBM) in a 1:1 weight ratio separately. Composite materials were implanted in intramuscular pockets in nude mouse model. New bone mineralization could be both observed in the surgery site. Collagen I was also widely distributed by immunohistochemistry assay. And new bone area of nano-CSD-DBM was 28 ± 4.6% at 4 weeks post-operation. But new bone area of micro-CSD-DBM was 16 ± 3.7% (less than nano-CSD-DBM). Nano-CSD showed increased degradation rate with obvious anginogenicity. And nano-CSD-DBM showed more excellent bone induction property as bone substitute implant.

  8. Multi-Elemental Nuclear Analysis of soil reference material

    NASA Astrophysics Data System (ADS)

    Metairon, S.; Zamboni, C. B.; Medeiros, I. M. M. Amaral; Menezes, M. À. B. C.

    2011-08-01

    The elements concentration in the soil reference material (IAEA/SOIL-7) was obtained using the parametric Neutron Activation Analysis technique in the IEA-R1 nuclear reactor at IPEN (CNEN-SP). The results obtained were in good agreement with the respective nominal values from this reference material suggesting the viability of using this parametric procedure for environmental investigations.

  9. Phosphonium alkyl PEG sulfate ionic liquids as coating materials for activation of Burkholderia cepacia lipase.

    PubMed

    Matsubara, Yui; Kadotani, Shiho; Nishihara, Takashi; Hikino, Yoshichika; Fukaya, Yukinobu; Nokami, Toshiki; Itoh, Toshiyuki

    2015-12-01

    Lipases are among the most widely used enzymes applicable for various substrates; however, the slow reactions or poor enantioselective reactions are sometimes obtained. To develop ionic liquid type activating agents for lipase, four types of phosphonium cetyl(PEG)10 sulfate ionic liquids have been synthesized and used as coating materials of Burkholderia cepacia lipase (Lipase PS) through the lyophilization process. Tributyl ([2-methoxy]ethoxymethyl)phosphonium cetyl(PEG)10 sulfate ([P444MEM ][C16 (PEG)10 SO4 ]) (PL1) worked best among them, and PL1-coated lipase PS displayed high reactivity in transesterification of broad types of secondary alcohols using vinyl acetate as an acylating reagent with perfect enantioselectivity (E > 200). The substrate preference of PL1-PS differs from that of commercial lipase PS or [bdmim] [C16 (PEG)10 SO4 ]-coated lipase (IL1-PS); PL1-PS displayed excellent enantioselectivity in the reaction of 2-chloro-1-phenylethanol with E > 200, though insufficient E values were recorded for lipase PS (E = 12) and IL1-PS (E = 123) for this alcohol. PL1-PS also showed perfect enantioselectivity (E > 200) for the reaction of 1-(pyridin-2-yl)ethanol, while IL1-PS showed E = 130 for this compound. We further succeeded in demonstrating the recyclable use of PL1-PS five times in tributyl(3-methoxypropyl)phosphonium bis(trifluoromethylsulfonyl)amide ([P444PM ][Tf2 N]) as a solvent. Since PL1-PS is easily applicable to 10-20 gram-scaled reactions, it is expected that the IL-coated enzyme might be useful for practical preparation of a wide variety of chiral secondary alcohols.

  10. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    NASA Astrophysics Data System (ADS)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of

  11. Response of the sulfate-reducing community to the re-establishment of estuarine conditions in two contrasting soils: a mesocosm approach.

    PubMed

    Miletto, Marzia; Loeb, Roos; Antheunisse, A Martjin; Bodelier, Paul L E; Laanbroek, Hendrikus J

    2010-01-01

    We studied the response of the sulfate-reducing prokaryote (SRP) communities to the experimental variation of salinity and tide in an outdoor mesocosm setup. Intact soil monoliths were collected at two areas of the Haringvliet lagoon (The Netherlands): one sampling location consisted of agricultural grassland, drained and fertilized for at least the last century; the other of a freshwater marshland with more recent sea influence. Two factors, i.e., "salinity" (freshwater/oligohaline) and "tide" (nontidal/tidal), were tested in a full-factorial design. Soil samples were collected after 5 months (June-October). Dissimilatory (bi)sulfite reductase beta subunit-based denaturing gradient gel electrophoresis (dsrB-DGGE) analysis revealed that the SRP community composition in the agricultural grassland and in the freshwater marshland was represented mainly by microorganisms related to the Desulfobulbaceae and the Desulfobacteraceae, respectively. Desulfovibrio-related dsrB were detected only in the tidal treatments; Desulfomonile-related dsrB occurrence was related to the presence of oligohaline conditions. Treatments did have an effect on the overall SRP community composition of both soils, but not on the sulfate depletion rates in sulfate-amended anoxic slurry incubations. However, initiation of sulfate reduction upon sulfate addition was clearly different between the two soils.

  12. Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials.

    PubMed

    Ni, Yilu; Tang, Zhurong; Cao, Wanxu; Lin, Hai; Fan, Yujiang; Guo, Likun; Zhang, Xingdong

    2015-03-01

    Natural polysaccharides are extensively investigated as cell scaffold materials for cellular adhesion, proliferation, and differentiation due to their excellent biocompatibility, biodegradability, and biofunctions. However, their application is often severely limited by their mechanical behavior. In this study, a tough and elastic hydrogel scaffold was prepared with hyaluronic acid (HA) and chondroitin sulfate (CS). HA and CS were conjugated with tyramine (TA) and the degree of substitution (DS) was 10.7% and 11.3%, respectively, as calculated by (1)H NMR spectra. The hydrogel was prepared by mixing HA-TA and CS-TA in presence of H2O2 and HRP. The sectional morphology of hydrogels was observed by SEM, static and dynamic mechanical properties were analyzed by Shimadzu electromechanical testing machine and dynamic mechanical thermal analyzer Q800. All samples showed good ability to recover their appearances after deformation, the storage modulus (E') of hydrogels became higher as the testing frequency went up. Hydrogels also showed fatigue resistance to cyclic compression. Mesenchymal stem cells encapsulated in hydrogels showed good cell viability as detected by CLSM. This study suggests that the hydrogels have both good mechanical properties and biocompatibility, and may serve as model systems to explore mechanisms of deformation and energy dissipation or find some applications in tissue engineering.

  13. Structural versus electrical properties of an organic-inorganic hybrid material based on sulfate

    NASA Astrophysics Data System (ADS)

    Ben Rached, Asma; Guionneau, Philippe; Lebraud, Eric; Mhiri, Tahar; Elaoud, Zakaria

    2017-01-01

    A new organo-sulfate compound is obtained by slow evaporation at room temperature and is characterized by powder and single-crystal X-ray diffraction (XRD) at variable temperatures. The benzylammonium monohydrogenosulfate of formula C6H5CH2NH3+. HSO4-, denoted (BAS), crystallizes in the monoclinic system P21/c space group with the following parameters at room temperature: a=5.623(5)Å, b=20.239(5) Å, c=8.188(5)Å, β=94.104(5)°. The crystal structure consists of infinite parallel two-dimensional planes built by HSO4- anions and C6H5CH2NH3+ cations interconnected by strong O-H….. O and N-H….. O hydrogen bonds. A phase transition is detected at 350 K by differential scanning calorimetry (DSC) and confirmed by powder XRD. Conductivity measurements using the impedance spectroscopy technique allow to determine the conductivity relaxation parameters associated with the H+ conduction from an analysis of the M"/M"max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to an H+ ion hopping mechanism.

  14. Glucosamine sulfate

    MedlinePlus

    ... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...

  15. Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia.

    PubMed

    Keene, Annabelle F; Johnston, Scott G; Bush, Richard T; Burton, Edward D; Sullivan, Leigh A

    2010-04-01

    This study examines the abundance of trace elements in surface sediments of a former acid sulfate soil (ASS) wetland subjected to marine tidal inundation. Sediment properties of this highly modified study site are compared with those of an adjacent unmodified, intertidal mangrove forest. Whilst some trace elements (Al, Cd, Mn, Ni and Zn) were clearly depleted due to mobilisation and leaching in the previous oxic-acidic phase, other trace elements (As and Cr) displayed significant enrichment in the tidally inundated ASS. Many trace elements were strongly associated with the reactive Fe and acid volatile sulfide (AVS) fractions, suggesting that trace elements may be adsorbed to abundant reactive Fe phases or sequestered as sulfide minerals. These findings provide an important understanding of the fate and mobility of reactive iron, AVS and trace elements during tidal remediation of a formerly acidified Great Barrier Reef (GBR) catchment.

  16. Acid Sulfate Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  17. TIR Emissivity Spectra of Thermally Processed Sulfates, Carbonates and Phyllosilicates as Analog Materials for Asteroid Surfaces

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Helbert, J.; D'Amore, M.; Ferrari, S.

    2013-12-01

    At the Planetary Emissivity Laboratory (PEL) of the German Aerospace Center (DLR) in Berlin we are building a database of spectral measurements of several meteorites and other analogs for asteroid surfaces. Bi-directional reflectance of samples in the 1 to 100 μm spectral range, are measured by using an evacuated (10-4 bar) Bruker Vertex 80V FTIR spectrometer and a Bruker A513 reflection unit, allowing phase angles between 26° and 170°. Emissivity in the 1 to 100 μm spectral range is measured with the same instrument coupled with an external emissivity chamber, for sample temperatures ranging from low (50° C) to very high (above 800° C). We present here new measurements on sulfates, carbonates, and phyllosilicates in various grain size ranges. The setup was configured to simulate the thermal history of surface minerals on the asteroid 2008 EV5 during its revolution around the Sun. This asteroid is the scientific target of the ESA Marco Polo-R mission. The samples in vacuum (< 0.8 mbar) are measured at surface temperature around 70° C, then the same samples are heated to 220° C, and maintained at this temperature for one hour. Slowly the sample temperature is reduced back again to 70° C and a second measurement is taken. Emissivity spectra before and after thermal processing of the samples are complemented with reflectance measurements on samples fresh and after thermal processing. This comparison show us that for some minerals no spectral/structural changes appear, while others show signs of dehydration and among them some species show structural changes. We conclude that a proper spectral library of emissivity spectra for asteroid analogue materials must include thermally processed samples, reproducing the thermal evolution for the asteroid that is target of the actual investigation.

  18. Hygrothermal Simulations of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Hygrothermal performance of soils coupled to buildings is a complicated process. The computational approach for heat transfer via the ground is well defined (EN-ISO-13370:, 2007) together with simplified methods (Staszczuk, Radon, & Holm). Though the soil moisture transfer is generally ignored, it is proven not negligible (Janssen, Carmeliet, & Hens, 2004). Even though reliable material properties of soils are required to perform realistic hygrothermal calculations of soils coupled to buildings, such material properties have not been well defined in hygrothermal calculations tools. Typical building constructions which are greatly influenced by soils are basements, crawl spaces and slab on grade and reliable hygrothermal performance of such construction are highly requested; as it is ranked within the top 10 Building America Enclosure Research Ideas according to Enclosures STC - Residential Energy Efficiency Stakeholder Meeting, February 29, 2012 Austin, TX. There exists an extensive amount of measurements on soil properties in Soil Science though this information must be gathered as well as adapted to be applicable in Building Science and for hygrothermal simulation purposes. Soil properties are important when analyzing and designing both new building constructions and retrofitting measures, where the outer boundary of the buildings enclosure consists of soil materials. Concerning basement energy retrofits, interior solutions of improving the energy demand has to cooperate with the existing soil properties and must therefore be designed thereafter. In concerns of exterior retrofits, the soil material can be replaced, if needed, with a more suitable filling material, though this approach applies only for basement walls. The soil material beneath the basement floor can naturally not be replaced hence the soil properties of this part of the buildings enclosure still must be taken into consideration. This study is divided into several parts. The intention of the first

  19. Soil Inorganic Carbon Formation: Can Parent Material Overcome Climate?

    NASA Astrophysics Data System (ADS)

    Stanbery, C.; Will, R. M.; Seyfried, M. S.; Benner, S. G.; Flores, A. N.; Guilinger, J.; Lohse, K. A.; Good, A.; Black, C.; Pierce, J. L.

    2014-12-01

    Soil carbon is the third largest carbon reservoir and is composed of both organic and inorganic constituents. However, the storage and flux of soil carbon within the global carbon cycle are not fully understood. While organic carbon is often the focus of research, the factors controlling the formation and dissolution of soil inorganic carbon (SIC) are complex. Climate is largely accepted as the primary control on SIC, but the effects of soil parent material are less clear. We hypothesize that effects of parent material are significant and that SIC accumulation will be greater in soils formed from basalts than granites due to the finer textured soils and more abundant calcium and magnesium cations. This research is being conducted in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho. The watershed is an ideal location because it has a range of gradients in precipitation (250 mm to 1200 mm), ecology (sagebrush steppe to juniper), and parent materials (a wide array of igneous and sedimentary rock types) over a relatively small area. Approximately 20 soil profiles will be excavated throughout the watershed and will capture the effects of differing precipitation amounts and parent material on soil characteristics. Several samples at each site will be collected for analysis of SIC content and grain size distribution using a pressure calcimeter and hydrometers, respectively. Initial field data suggests that soils formed over basalts have a higher concentration of SIC than those on granitic material. If precipitation is the only control on SIC, we would expect to see comparable amounts in soils formed on both rock types within the same precipitation zone. However, field observations suggest that for all but the driest sites, soils formed over granite had no SIC detected while basalt soils with comparable precipitation had measurable amounts of SIC. Grain size distribution appears to be a large control on SIC as the sandier, granitic soils promote

  20. Phase transitions and phase miscibility of mixed particles of ammonium sulfate, toluene-derived secondary organic material, and water.

    PubMed

    Smith, Mackenzie L; You, Yuan; Kuwata, Mikinori; Bertram, Allan K; Martin, Scot T

    2013-09-12

    The phase states of atmospheric particles influence their roles in physicochemical processes related to air quality and climate. The phases of particles containing secondary organic materials (SOMs) are still uncertain, especially for SOMs produced from aromatic precursor gases. In this work, efflorescence and deliquescence phase transitions, as well as phase separation, in particles composed of toluene-derived SOM, ammonium sulfate, and water were studied by hygroscopic tandem differential mobility analysis (HTDMA) and optical microscopy. The SOM was produced in the Harvard Environmental Chamber by photo-oxidation of toluene at chamber relative humidities of <5 and 40%. The efflorescence and deliquescence relative humidities (ERH and DRH, respectively, studied by HTDMA) of ammonium sulfate decreased as the SOM organic fraction ε in the particle increased, dropping from DRH = 80% and ERH = 31% for ε = 0.0 to DRH = 58% and ERH = 0% for ε = 0.8. For ε < 0.2, the DRH and ERH to first approximation did not change with the organic volume fraction. This observation is consistent with independent behaviors for ε < 0.2 of water-infused toluene-derived SOM and aqueous ammonium sulfate, suggesting phase immiscibility between the two. Optical microscopy of particles prepared for ε = 0.12 confirmed phase separation for RH < 85%. For ε from 0.2 to 0.8, the DRH and ERH values steadily decreased, as studied by HTDMA. This result is consistent with one-phase mixing of ammonium sulfate, SOM, and water. Optical microscopy for particles of ε = 0.8 confirmed this result. Within error, increased exposure times of the aerosol in the HTDMA from 0.5 to 30 s affected neither the ERH(ε) nor DRH(ε) curves, implying an absence of kinetic effects on the observations over the studied time scales. For ε > 0.5, the DRH values of ammonium sulfate in mixtures with SOM produced at <5% RH were offset by -3 to -5% RH compared to the results for SOM produced at 40% RH, suggesting differences

  1. A stable solid acid material: Sulfated ZrO2 dispersed on alumina nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Jiaqi, Chen; Xu, Wang; Rui-Feng, Li

    2017-02-01

    A tubular solid acid catalyst was designed by loading sulfated zirconia into γ-Al2O3 nanotubes using the method of stepwise deposition. The XRD, N2 adsorption-desorption characterization demonstrated that introducing alumina nanotube and SO4 2- anions have played an important role in stabilizing the metastable tetragonal ZrO2 phase, and the sulfated zirconia on the surface of the γ-Al2O3 nanotube has high dispersion and stability. The catalyst reused repeatedly possesses large amounts of acid sites and good acidity, exhibiting high catalytic activity and stability for isopropylbenzene cracking.

  2. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  3. Mobility of organic solvents in water-saturated soil materials

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1985-01-01

    This investigation presents an analysis of the mobility of 37 organic solvents in saturated soil-water systems, focusing on adsorption phenomena at the solid-liquid interface This analysis was made, in part, by applying predictive expressions that estimate the potential magnitude of adsorption by soil materials Of the 37 solvents considered, 19 were classified as either "very highly mobile" or "highly mobile" and, thus, would have little tendency to be retained by soils to a significant extent, 12 were considered to have medium mobility and 6 low mobility None of these solvents were in the immobile class The limited information available indicates that these predictive expressions yield satisfactory first approximations of the magnitude of adsorption of these solvents by soil materials ?? 1985 Springer-Verlag New York Inc.

  4. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

    PubMed

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Cui, Fu-Zhai

    2011-12-15

    An injectable and self-setting bone repair materials (nano-hydroxyapatite/collagen/calcium sulfate hemihydrate, nHAC/CSH) was developed in this study. The nano-hydroxyapatite/collagen (nHAC) composite, which is the mineralized fibril by self-assembly of nano-hydrocyapatite and collagen, has the same features as natural bone in both main hierarchical microstructure and composition. It is a bioactive osteoconductor due to its high level of biocompatibility and appropriate degradation rate. However, this material lacks handling characteristics because of its particle or solid-preformed block shape. Herein, calcium sulfate hemihydrate (CSH) was introduced into nHAC to prepare an injectable and self-setting in situ bone repair materials. The morphology of materials was observed using SEM. Most important and interesting of all, calcium sulfate dihydrate (CSD), which is not only the reactant of preparing CSH but also the final solidified product of CSH, was introduced into nHAC as setting accelerator to regulate self-setting properties of injectable nHAC/CSH composite, and thus the self-setting time of nHAC/CSH composite can be regulated from more than 100 min to about 30 min and even less than 20 min by adding various amount of setting accelerator. The compressive properties of bone graft substitute after final setting are similar to those of cancellous bone. CSD as an excellent setting accelerator has no significant effect on the mechanical property and degradability of bone repair materials. In vitro biocompatibility and in vivo histology studies demonstrated that the nHAC/CSH composite could provide more adequate stimulus for cell adhesion and proliferation, embodying favorable cell biocompatibility and a strong ability to accelerate bone formation. It can offer a satisfactory biological environment for growing new bone in the implants and for stimulating bone formation.

  5. Climatic controls on soil hydraulic properties along soil chronosequences on volcanic parent material

    NASA Astrophysics Data System (ADS)

    Beal, L. K.; Lohse, K. A.; Godsey, S.; Huber, D. P.

    2013-12-01

    . We observe that θ decreases with age, and α occurs at higher tensions. Soil horizons are developed dominantly on the cinder cones. These model estimates appear to match well with preliminary field measurements. Tropical climates enhance the weathering of basaltic parent material. The mean annual precipitation in the Hawaiian site is 2500 mm, and 310 mm at COTM. Accumulation of rainfall increases the weathering rate of the parent material. Using previous work characterizing the physical characteristics of soil across the Hawaii chronosequence to model the contrasting soils, we found that the 0.3 and 20 ka Hawaii soils had similar hydraulic properties; θ values were approximately 0.45 cm3/cm3 and Ks values were 6 cm/hr. However, these Hawaiian soils contrasted and were quantitatively lower than the entire COTM chronosequence. At the 2.1 ka COTM soil, Ks was 17 cm/hr and θ was 0.52-0.65 cm3/cm3 whereas at the 13.9 ka soil, Ks was 12 cm/hr and θ was 0.52 cm3/cm3. The 0.3 ka Hawaiian soil had a 20-30% higher silt content than the 2.1 ka COTM soil. Our models help quantify rates of soil development and hydraulic properties developed through time on volcanic parent materials.

  6. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration.

    PubMed

    Chen, Zonggang; Kang, Lingzhi; Meng, Qing-Yuan; Liu, Huanye; Wang, Zhaoliang; Guo, Zhongwu; Cui, Fu-Zhai

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites.

  7. Barium sulfate micro- and nanoparticles as bioinert reference material in particle toxicology.

    PubMed

    Loza, Kateryna; Föhring, Isabell; Bünger, Jürgen; Westphal, Götz A; Köller, Manfred; Epple, Matthias; Sengstock, Christina

    2016-12-01

    The inhalation of particles and their exposure to the bronchi and alveoli constitute a major public health risk. Chemical as well as particle-related properties are important factors for the biological response but are difficult to separate from each other. Barium sulfate is a completely inert chemical compound, therefore it is ideally suited to separate these two factors. The biological response of rat alveolar macrophages (NR8383) was analyzed after exposure to barium sulfate particles with three different diameters (40 nm, 270 nm, and 1.3 μm, respectively) for 24 h in vitro (particle concentrations from 12.5 to 200 μg mL(-)(1)). The particles were colloidally stabilized as well as fluorescently-labeled by carboxymethylcellulose, conjugated with 6-aminofluorescein. All kinds of barium sulfate particles were efficiently taken up by NR8383 cells and found inside endo-lysosomes, but never in the cell nucleus. Neither an inflammatory nor a cytotoxic response was detected by the ability of dHL-60 and NR8383 cells to migrate towards a chemotactic gradient (conditioned media of NR8383 cells) and by the release of inflammatory mediators (CCL2, TNF-α, IL-6). The particles neither caused apoptosis (up to 200 μg mL(-)(1)) nor necrosis (up to 100 μg mL(-)(1)). As only adverse reaction, necrosis was found at a concentration of 200 μg mL(-)(1) of the largest barium sulfate particles (1.3 μm). Barium sulfate particles are ideally suited as bioinert control to study size-dependent effects such as uptake mechanisms of intracellular distributions of pure particles, especially in nanotoxicology.

  8. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported.

  9. Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge

    SciTech Connect

    V. M. Malhotra; Y. P. Chugh

    2003-08-31

    The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our moisture

  10. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction.

    PubMed

    Burton, Edward D; Johnston, Scott G; Kocar, Benjamin D

    2014-12-02

    In floodplain soils, As may be released during flooding-induced soil anoxia, with the degree of mobilization being affected by microbial redox processes such as the reduction of As(V), Fe(III), and SO4(2-). Microbial SO4(2-) reduction may affect both Fe and As cycling, but the processes involved and their ultimate consequences on As mobility are not well understood. Here, we examine the effect of microbial SO4(2) reduction on solution dynamics and solid-phase speciation of As during flooding of an As-contaminated soil. In the absence of significant levels of microbial SO4(2-) reduction, flooding caused increased Fe(II) and As(III) concentrations over a 10 week period, which is consistent with microbial Fe(III)- and As(V)-reduction. Microbial SO4(2-) reduction leads to lower concentrations of porewater Fe(II) as a result of FeS formation. Scanning electron microscopy with energy dispersive X-ray fluorescence spectroscopy revealed that the newly formed FeS sequestered substantial amounts of As. Bulk and microfocused As K-edge X-ray absorption near-edge structure spectroscopy confirmed that As(V) was reduced to As(III) and showed that in the presence of FeS, solid-phase As was retained partly via the formation of an As2S3-like species. High resolution transmission electron microscopy suggested that this was due to As retention as an As2S3-like complex associated with mackinawite (tetragonal FeS) rather than as a discrete As2S3 phase. This study shows that mackinawite formation in contaminated floodplain soil can help mitigate the extent of arsenic mobilization during prolonged flooding.

  11. Physical state and acidity of inorganic sulfate can regulate the production of secondary organic material from isoprene photooxidation products.

    PubMed

    Kuwata, Mikinori; Liu, Yingjun; McKinney, Karena; Martin, Scot T

    2015-02-28

    The production of secondary organic material (SOM) by the reactive uptake of isoprene photooxidation products was investigated using partially to wholly neutralized sulfuric acid particles. The experiments were performed at a relative humidity (RH) of <5% and a temperature of 20 °C. The extent X of neutralization was adjusted from that of sulfuric acid (X = 0) to that of ammonium sulfate (X = 1). Significant SOM production was observed only for X < 0.7. The threshold of 0.7 corresponded to the transition point of the sulfate particles from aqueous to solid for <5% RH. The phase transition of inorganic sulfate therefore regulated the particle-phase reactions that produce isoprene SOM, at least for the investigated conditions. For aqueous particles, a decreasing extent of neutralization was associated with increasing production of SOM, including increased production of oligomers and organosulfates. These results can underpin treatments of phase-dependent SOM production within chemical transport models, thereby improving the accuracy of simulations of biogenic-anthropogenic interactions in the atmosphere and the associated impacts of aerosol particles on climate and air quality.

  12. Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.; Clarke, Jonathan; Direito, Susana O. L.; Blake, David; Martin, Kevin R.; Zavaleta, Jhony; Foing, Bernard

    2011-07-01

    We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to terrains on Mars. Soils were analysed for mineralogy by a Terra X-ray diffractometer (XRD), a field version of the CheMin instrument on the Mars Science Laboratory (MSL) mission (2012 landing). Soluble ion chemistry, total organic content and identity and distribution of microbial populations were also determined. The Terra data reveal that Mancos and Morrison soils are rich in phyllosilicates similar to those observed on Mars from orbital measurements (montmorillonite, nontronite and illite). Evaporite minerals observed include gypsum, thenardite, polyhalite and calcite. Soil chemical analysis shows sulfate the dominant anion in all soils and SO4>>CO3, as on Mars. The cation pattern Na>Ca>Mg is seen in all soils except for the Summerville where Ca>Na. In all soils, SO4 correlates with Na, suggesting sodium sulfates are the dominant phase. Oxidizable organics are low in all soils and range from a high of 0.7% in the Mancos samples to undetectable at a detection limit of 0.1% in the Morrison soils. Minerals rich in chromium and vanadium were identified in Morrison soils that result from diagenetic replacement of organic compounds. Depositional environment, geologic history and mineralogy all affect the ability to preserve and detect organic compounds. Subsurface biosphere populations were revealed to contain organisms from all three domains (Archaea, Bacteria and Eukarya) with cell density between 3.0×106 and 1.8×107 cells ml-1 at the deepest depth. These measurements are analogous to data that could be obtained on future robotic or human Mars missions and results are relevant to the MSL mission that will investigate phyllosilicates on Mars.

  13. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials

  14. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural

  15. The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lang, Xiaoshi; Wang, Dianlong; Hu, Chiyu; Tang, Shenzhi; Zhu, Junsheng; Guo, Chenfeng

    2014-12-01

    Conventional tetrabasic lead sulfate used as positive active material additive shows the results of the low effective lead dioxide conversion rate due to the large grain size and crossed the crystal structure. In this paper, we study on a type of nanometer tetrabasic lead sulfate. Through the XRD and SEM test and Material Studio software calculation, the purity of tetrabasic lead sulfate is very high, the grain size of the nanometer 4BS is almost unanimous, and can be controlled below 200 nm. When charged and discharged in 1.75 V-2.42 V with the current density of 40 mA g-1, 80 mA g-1 and 160 mA g-1, the effective lead dioxide conversion rate of nanometer 4BS after formation can achieve to 83.48%, 71.42%, and 66.96%. Subsequently, the nanometer 4BS as additive is added to positive paste of lead-acid battery. When the batteries are tested galvanostatically between 1.75 V and 2.42 V at 0.25 C charge and 0.5 C discharge rates at room temperature. The ratio of adding nanometer 4BS is 0%, 1% and 4% and the initial discharge specific capacities are 60 mAh g-1, 65 mAh g-1 and 68 mAh g-1. After 80 cycles, the initial discharge capacity of positive active material with 1% nanometer 4BS decreased less than 10%, while adding 4% nanometer 4BS, the initial discharge capacity doesn't decrease obviously.

  16. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    PubMed

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  17. Sulfur Mass Balances of Forested Catchments: Improving Predictions of Stream Sulfate Concentrations Through Better Representation of Soil Storage and Release

    NASA Astrophysics Data System (ADS)

    Scanlon, T. M.; Rice, K. C.; Riscassi, A.; Cosby, B. J., Jr.

    2015-12-01

    Sulfur dioxide (SO2) emissions in the eastern United States have declined by more than 80% since 1970, when the Clean Air Act first established limits on emissions from stationary and mobile sources. In many areas throughout the northeastern U.S., the resulting declines in sulfate (SO42-) deposition have been accompanied by declines in stream SO42- concentrations. In the southeastern U.S., however, declines in stream SO42- concentrations have not been observed on a widespread basis. In fact, SO42- concentrations continue to increase in many southeastern streams despite decades of declining deposition. This difference in behavior between northeastern and southeastern streams, owing to the distinct geological histories of their catchment soils, was anticipated by the Direct/Delayed Response Project initiated by the U.S. EPA during the early 1980s. At that time, understanding of how catchments store and release SO42- was mostly grounded in theory. Now, with the accumulation of long-term stream chemistry and hydrological datasets in forested catchments, we may develop an empirical basis for characterizing catchment storage and release of SO42-. In particular, are whole-catchment isotherms that described the partitioning between adsorbed and dissolved SO42- (1) linear or non-linear and (2) reversible or irreversible? How do these isotherms vary on a geographical basis? We apply mass balance combined with a simple theoretical framework to infer whole-catchment SO42- isotherms in Virginia and New England. Knowledge of this key soil geochemical property is needed to improve predictions of how catchments will store and export SO42- under changing levels of atmospheric deposition.

  18. Isotopically exchangeable concentrations of elements having multiple oxidation states: the case of Fe(II)/Fe(III) isotope self-exchange in coastal lowland acid sulfate soils.

    PubMed

    Collins, Richard N; Waite, T David

    2009-07-15

    Isotope exchange techniques have been used to probe isotopically exchangeable concentrations of Fe (E value) that are in dynamic equilibrium between the aqueous- and solid-phase of coastal lowland acid sulfate soils. Isotope self-exchange between Fe(II) and Fe(III) was rapid and complete in <1 min (p < 0.05) indicating that this reaction was initially occurring solely in the aqueous-phase and the surface of the soil solid-phase. It is further demonstrated that accurate and valid measurements of isotopically exchangeable concentrations of Fe do not require corrections for Fe speciation. This also holds for any element existing in two or more oxidation states which are completely isotopically self-exchangeable in soils. As isotope self-exchange between Fe(II) and Fe(III) is rapid, the distribution coefficient (Kd) and E value determined via this methodology are, therefore, truly representative of Fe regardless of the relative importance of Fe(II) or Fe(III) to the isotopically exchangeable pool of Fe. In the 21 soil samples examined, isotopically exchangeable concentrations of Fe varied from 90 mg/kg to values as high as 3610 mg/kg in acidic, saturated samples collected below the groundwater table from the transition soil horizon. The combination of low Evalues and extremely high Kd values in the upper oxidized layers of these soils indicate that these soil horizons are a relatively insignificant source of transportable (labile) Fe. As such, given our knowledge on the general rates of microbial Fe(III) reduction in, and the hydraulic properties of, the coastal lowland acid sulfate soils of this region, only those soils adjacent to agricultural drains are likely to contribute to the load of Fe entering surrounding aquatic systems.

  19. Filter properties of seam material from paved urban soils

    NASA Astrophysics Data System (ADS)

    Nehls, T.; Jozefaciuk, G.; Sokolowska, Z.; Hajnos, M.; Wessolek, G.

    2007-08-01

    We studied pavement seam material. This is the soil substrate in joints of pervious pavements in urban areas. It is mostly 1 cm thick and develops from the original seam filling by depositions of all kinds of urban residues, including anthropogenic organic substances. It was investigated, how this unique form of organic matter influences the filter properties of seam material and how the seam material influences heavy metal transport through the pavement. The seam material is characterised by a darker munsell colour, higher organic carbon content, higher surface areas, higher cation exchange capacities, but a lower fraction of high adsorption energy sites compared to the original seam filling. The deposited anthropogenic organic matter itself could be characterised as particulate and non-polar. Compared to natural soils, it has a small surface area and a low surface charge density resulting in a small cation exchange capacity of only 75 cmol(+) kg-1C. The seam material shows stronger sorption of Pb and Cd compared to the original construction sand. The retardation capacity of seam material towards Pb is similar, towards Cd it is much smaller compared to natural soils. The simulated long term displacement scenarios for a street in Berlin do not indicate an acute contamination risk for Pb. For Cd the infiltration from ponds can lead to a displacement of Cd during only one decade.

  20. Mapping of Acid Sulfate Soils in Finland: determining of areas of risks and compiling guidelines for environmental protection and safe land use

    NASA Astrophysics Data System (ADS)

    Kupila, Juho

    2013-04-01

    Acid sulfate soils (ASS), also referred to as the "nastiest soils in the world", are soils that contain or have contained metal sulfides that oxidize under aerobic conditions and, subsequently, typically produce very severe acidity and metal pollution. In Finland, for example, the discharge of several metals to water courses from ASS is greater than that from the entire Finnish industry, and due to the acidity these metals largely occur in a soluble toxic form. In Europe, the largest occurrences of acid sulfate soils are located in Finland. It has been estimated that coverage of these harmful soils is approximately 1000 - 1500 km2 along the coastal areas of Finland. Sulfide-bearing fine-grained sediments were deposited in the sea between Finland and Sweden after the melting of the latest continental ice sheet, about 10,000 years ago. In places, the formation of such sediments is still going on today. The rapid isostatic land uplift (more than 200 m after the latest glacial period, currently up to 8 mm/year) after the retreat of the continental ice sheet has lifted these sediments above sea level. In Finland, systematic mapping and classification of acid sulfate soils started in 2009 with Geological Survey of Finland (GTK) as the leading partner, together with Åbo Akademi University and University of Helsinki. The definition of a risk classification of Finnish acid sulfate soils has been developed during the project. The observations, measurements and analyses have been used to produce e.g. probability maps of integrated catchment areas (at the scale 1:250 000), reports of the areas and guides for the identification of ASS and their environments. The main users of the results have been authorities at governmental, regional and local levels, organizations and actors in agriculture and forestry, peat production and earthwork companies and consultants concerned with soil and construction. The mapping project carried out by GTK is still in process and should be

  1. Evaluation of soils for use as liner materials: a soil chemistry approach.

    PubMed

    DeSutter, Tom M; Pierzynski, Gary M

    2005-01-01

    Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+).

  2. Infrared optical properties of Mars soil analog materials: Palagonites

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    1992-01-01

    The globally distributed bright soils on Mars represent products of chemical alteration of primary igneous materials. As such, understanding the chemistry and mineralogy of these soils provides clues about the nature of the parent materials and the type, duration, and extent of the chemical weathering environments on Mars. Such clues are key in developing an understanding of the interior and surficial processes that have operated throughout Mars' history to yield the surface as it is currently observed. The generally homogeneous nature of these soils is illustrated by a variety of observational data. These data include (1) direct determination of elemental abundances by the X-ray fluorescence instruments on both Viking Landers, (2) Earth-based telescopic observations, and (3) space-based observations. Based on their spectral properties in the visible and near-infrared, terrestrial palagonitic soils have been suggested as analogs for the bright regions on Mars. Palagonites represent the weathering products of basaltic glass and as such are composed of a variety of minerals/materials. In order to gain an understanding regarding the chemical, mineralogical, and spectral properties of a broad suite of palagonites, several samples were collected from the eastern and central regions of the island of Hawaii.

  3. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Shamshuddin, Jusop; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  4. Comparison of phosphate materials for immobilizing cadmium in soil.

    PubMed

    Hong, Chang Oh; Chung, Doug Young; Lee, Do Kyoung; Kim, Pil Joo

    2010-02-01

    A study was conducted to compare the effects of phosphate (P) materials in reducing cadmium extractability. Seven P materials (commercial P fertilizers--fused phosphate (FP), 'fused and superphosphate' [FSP], and rock phosphate [RP]; P chemicals--Ca[H(2)PO(4)](2).H(2)O, [NH(4)](2)HPO(4), KH(2)PO(4), and K(2)HPO(4)) were selected for the test. The selected P source was mixed with Cd-contaminated soil at the rate of 0, 200, 400, 800, and 1,600 mg P kg(-1) under controlled moisture conditions at 70% of water holding capacity, then incubated for 8 weeks. FP, Ca(H(2)PO(4))(2) H(2)O, KH(2)PO(4), and K(2)HPO(4) significantly decreased NH(4)OAc-extractable Cd (plant-available form) concentrations with increasing application rates. Compared to other phosphate materials used, K(2)HPO(4) was found to be the most effective in reducing the plant-available Cd concentration in soil, mainly due to the negative charge increase caused by soil pH and phosphate adsorption. Contrary to the general information, FSP and (NH(4))(2)HPO(4) increased Cd extractability at low levels of P application (<400 mg kg(-1)), and thereafter Cd extractability decreased significantly with increasing application rate. RP scarcely had an effect on reducing Cd extractability. Ion activity products of CdHPO(4), Cd(OH)(2), and CdCO(3) analyzed by the MINTEQ program were significantly increased by K(2)HPO(4) addition, but the effect of Cd-P compound formation on reducing Cd extractability was negligible. Conclusively, the P-induced alleviation of Cd extractability can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than Cd-P precipitation, and therefore, alkaline P materials such as K(2)HPO(4) are effective for immobilizing soil Cd.

  5. Chondroitin sulfate

    MedlinePlus

    ... in combination with glucosamine sulfate, shark cartilage, and camphor. Some people also inject chondroitin sulfate into the ... in combination with glucosamine sulfate, shark cartilage, and camphor seems to reduce arthritis symptoms. However, any symptom ...

  6. Extralunar materials in cone-crater soil 14141.

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.; Chou, C.-L.; Bild, R. W.; Baedecker, P. A.

    1973-01-01

    Radiochemical neutron activation analysis has been used to determine Ni, Zn, Ga, Ge, Cd, In, Ir, and Au in duplicate samples of lunar soil 14141 and in one additional replicate each of soils 14163 and 14259. The concentrations of extralunar trace elements Ni, Ge, Ir, and Au in 14141 and 14163 are, respectively, about 69 and 82% as high as those in 14259. Although most of the mass of 14141 appears to be ejecta from Cone Crater, a sizable contamination by mature Fra Mauro soil such as 14259 is also present. The siderophilic-element concentrations of the subregolith Fra Mauro materials are estimated to be 25 plus or minus 25% of those observed in 14259.

  7. Filter properties of seam material from paved urban soils

    NASA Astrophysics Data System (ADS)

    Nehls, T.; Jozefaciuk, G.; Sokolowska, Z.; Hajnos, M.; Wessolek, G.

    2008-04-01

    Depositions of all kinds of urban dirt and dust including anthropogenic organic substances like soot change the filter properties of the seam filling material of pervious pavements and lead to the formation of a new soil substrate called seam material. In this study, the impact of the particular urban form of organic matter (OM) on the seam materials CECpot, the specific surface area (As), the surface charge density (SCD), the adsorption energies (Ea) and the adsorption of Cd and Pb were assessed. The Cd and Pb displacement through the pavement system has been simulated in order to assess the risk of soil and groundwater contamination from infiltration of rainwater in paved urban soils. As, Ea and SCD derived from water vapor adsorption isotherms, CECpot, Pb and Cd adsorption isotherms where analyzed from adsorption experiments. The seam material is characterized by a darker munsell-color and a higher Corg (12 to 48g kg-1) compared to the original seam filling. Although, the increased Corg leads to higher As (16m2g-1) and higher CECpot (0.7 to 4.8cmolckg-1), with 78cmolckg-1C its specific CECpot is low compared to OM of non-urban soils. This can be explained by a low SCD of 1.2×10-6molc m-2 and a low fraction of high adsorption energy sites which is likely caused by the non-polar character of the accumulated urban OM in the seam material. The seam material shows stronger sorption of Pb and Cd compared to the original construction sand. The retardation capacity of seam material for Pb is similar, for Cd it is much smaller compared to natural sandy soils with similar Corg concentrations. The simulated long term displacement scenarios for a street in Berlin do not indicate an acute contamination risk for Pb . For Cd the infiltration from puddles can lead to a breakthrough of Cd through the pavement system during only one decade. Although they contain contaminations itself, the accumulated forms of urban OM lead to improved filter properties of the seam material and

  8. Sulphate release from construction and demolition material in soils

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Wessolek, Gerd

    2013-04-01

    In Berlin and many other cities soils are heavily influenced by anthropogenic activities and deposited substrates. A widespread technical substrate in technosols is construction and demolition material from residential and industrial buildings. Existing rubble landfills without sealing facilities pose threats to ground water quality. In the central city of Berlin rising sulphate concentrations of groundwaters (up to 1200 mg/L) are measured since more than two decades. Previous studies point out that the high sulphate concentrations are mainly attributed to World War II rubble. The major part of debris was deposited in form of landfills and contains approximately 0.3 wt% gypsum. The scope of our research is to determine mechanisms of sulphate release from debris material, interactions between sulphate release, soil hydraulic properties and potential sinks of sulphur. To estimate equilibrium concentration and kinetics of sulphate release of various debris components batch and column experiments are conducted. The same method is applied to determine potential adsorptive character of common debris components. To analyse the impacts of soil hydraulic properties on sulphate leaching we carry out soil column experiments with defined upper and lower boundary conditions, varying water flow velocity and induced preferential flow. Simultaneously we monitor sulphate concentration of soil leachate in a 2 m³ lysimeter. First results of the batch experiments show that gypsum from broken stucco is the main source of sulphate in the observed technosols. Other components as mortar and slag show a quite low sulphate release. Similar results are found within the column experiments. For brigs medium and strongly time dependent sulphate release is determined. Concentrations up to 1500 mg/L are measured in the soil leachate from the lysimeter.

  9. Forming artificial soils from waste materials for mine site rehabilitation

    NASA Astrophysics Data System (ADS)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  10. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil.

    PubMed

    Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-02-02

    The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.

  11. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  12. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Maag, C. R.

    1980-01-01

    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments, as well as in materials field experiments using candidate encapsulants and top covers. It is concluded that: (1) the electrical performance degradation shows a significant time and site dependence, ranging from 2% to 60% power loss; (2) the rate of particulate accumulation appears to be largely material independent when natural removal processes do not dominate; (3) the effectiveness of natural removal processes, especially rain, is strongly material dependent; (4) top-cover materials of glass and plexiglass retain fewer particles than silicone rubber; and (5) high module voltages relative to ground do not appear to affect the rate of dirt accumulation on modules.

  13. Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite

    NASA Technical Reports Server (NTRS)

    Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.

    2012-01-01

    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH <3) formation environment [4]. Jarosite and other sulfate minerals, including kieserite, gypsum, and alunite have also been identified in several locations in orbital remote sensing data from the MEx OMEGA and MRO CRISM instruments [e.g. 5-8]. Acid sulfate weathering of basaltic materials is an obvious pathway for formation of sulfate-bearing phases on Mars [e.g. 4, 9, 10]. In order to constrain acid-sulfate pathways on Mars, we are studying the mineralogical and chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO

  14. Antimicrobial Formulations of Absorbable Bone Substitute Materials as Drug Carriers Based on Calcium Sulfate

    PubMed Central

    Obermeier, A.; Kiokekli, M.; Büchner, H.; Vogt, S.; Stemberger, A.; Burgkart, R.; Lucke, M.

    2016-01-01

    Substitution of bones is a well-established, necessary procedure to treat bone defects in trauma and orthopedic surgeries. For prevention or treatment of perioperative infection, the implantation of resorbable bone substitute materials carrying antibiotics is a necessary treatment. In this study, we investigated the newly formulated calcium-based resorbable bone substitute materials containing either gentamicin (CaSO4-G [Herafill-G]), vancomycin (CaSO4-V), or tobramycin (Osteoset). We characterized the released antibiotic concentration per unit. Bone substitute materials were implanted in bones of rabbits via a standardized surgical procedure. Clinical parameters and levels of the antibiotic-releasing materials in serum were determined. Local concentrations of antibiotics were measured using antimicrobial tests of bone tissue. Aminoglycoside release kinetics in vitro per square millimeter of bead surface showed the most prolonged release for gentamicin, followed by vancomycin and, with the fastest release, tobramycin. In vivo level in serum detected over 28 days was highest for gentamicin at 0.42 μg/ml, followed by vancomycin at 0.11 μg/ml and tobramycin at 0.04 μg/ml. The clinical parameters indicated high biocompatibility for materials used. None of the rabbits subjected to the procedure showed any adverse reaction. The highest availability of antibiotics at 14.8 μg/g on day 1 in the cortical tibia ex vivo was demonstrated for gentamicin, decreasing within 14 days. In the medulla, vancomycin showed a high level at 444 μg/g on day 1, decreasing continuously over 14 days, whereas gentamicin decreased faster within the initial 3 days. The compared antibiotic formulations varied significantly in release kinetics in serum as well as locally in medulla and cortex. PMID:27067337

  15. Microbiological destruction of composite polymeric materials in soils

    NASA Astrophysics Data System (ADS)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  16. Structural and Spectral Characteristics of Amorphous Iron Sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E.; Jensen, H. B.; Rogers, D.; Reeder, R. J.

    2014-12-01

    Substantial evidence points to the existence of hydrated sulfate phases on the Martian surface1-3. In addition, the discovery of recurring slope lineae could point to an active brine hydrologic cycle on the surface4,5. The rapid dehydration of both hydrated sulfates and sulfate-rich brines can lead to the formation of amorphous sulfates. Evidence suggests that the Rocknest soil target and the Sheepbed mudstone interrogated by the Mars Science Laboratory at Gale crater contain ~30 wt.% XRD amorphous material that is rich in both sulfur and iron6. These factors have led us to consider hydrated amorphous iron sulfates as possible components in Martian surface materials. Amorphous iron sulfates were created through multiple synthesis routes, and then characterized with total x-ray scattering, TGA, SEM, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3•~5-8H2O) from sulfate-saturated fluids via two pathways: vacuum dehydration and exposure to low relative humidity (<11%) using a LiCl buffer. Amorphous ferrous sulfate (Fe(II)SO4•~1H2O) was synthesized via vacuum dehydration of melanterite (Fe(II) SO4•7H2O). We find that both the ferric and ferrous sulfates synthesized from these methods lack long-range (>10Å) order, and thus are truly amorphous. VNIR and TIR spectral data for the amorphous sulfates display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from all crystalline phase spectra available for comparison. The amorphous sulfates should be distinguishable based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, which is the spectral range that has primarily been used to detect sulfates on Mars, the bands associated with hydration at ~1.4 and 1.9 μm are significantly

  17. Processing lunar soils for oxygen and other materials

    NASA Technical Reports Server (NTRS)

    Knudsen, Christian W.; Gibson, Michael A.

    1992-01-01

    Two types of lunar materials are excellent candidates for lunar oxygen production: ilmenite and silicates such as anorthite. Both are lunar surface minable, occurring in soils, breccias, and basalts. Because silicates are considerably more abundant than ilmenite, they may be preferred as source materials. Depending on the processing method chosen for oxygen production and the feedstock material, various useful metals and bulk materials can be produced as byproducts. Available processing techniques include hydrogen reduction of ilmenite and electrochemical and chemical reductions of silicates. Processes in these categories are generally in preliminary development stages and need significant research and development support to carry them to practical deployment, particularly as a lunar-based operation. The goal of beginning lunar processing operations by 2010 requires that planning and research and development emphasize the simplest processing schemes. However, more complex schemes that now appear to present difficult technical challenges may offer more valuable metal byproducts later. While they require more time and effort to perfect, the more complex or difficult schemes may provide important processing and product improvements with which to extend and elaborate the initial lunar processing facilities. A balanced R&D program should take this into account. The following topics are discussed: (1) ilmenite--semi-continuous process; (2) ilmenite--continuous fluid-bed reduction; (3) utilization of spent ilmenite to produce bulk materials; (4) silicates--electrochemical reduction; and (5) silicates--chemical reduction.

  18. Alterations of lead speciation by sulfate from addition of flue gas desulfurization gypsum (FGDG) in two contaminated soils

    EPA Science Inventory

    This is the first study to evaluate the potential application of FGDG as an in situ Pb stabilizer in contaminated soils with two different compositions and to explain the underlying mechanisms. A smelter Pb contaminated soil (SM-soil), rich in ferrihydrite bound Pb (FH-Pb), ceru...

  19. Soil solid materials affect the kinetics of extracellular enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Lammirato, C.; Miltner, A.; Kästner, M.

    2009-04-01

    INTRODUCTION Soil solid materials affect the degradation processes of many organic compounds by decreasing the bioavailability of substrates and by interacting with degraders. The magnitude of this effect in the environment is shown by the fact that xenobiotics which are readily metabolized in aquatic environments can have long residence times in soil. Extracellular enzymatic hydrolysis of cellobiose (enzyme: beta-glucosidase from Aspergillus niger) was chosen as model degradation process since it is easier to control and more reproducible than a whole cell processes. Furthermore extracellular enzymes play an important role in the environment since they are responsible for the first steps in the degradation of organic macromolecules; beta-glucosidase is key enzyme in the degradation of cellulose and therefore it is fundamental in the carbon cycle and for soil in general. The aims of the project are: 1) quantification of solid material effect on degradation, 2) separation of the effects of minerals on enzyme (adsorption →change in activity) and substrate (adsorption →change in bioavailability). Our hypothesis is that a rate reduction in the enzymatic reaction in the presence of a solid phase results from the sum of decreased bioavailability of the substrate and decreased activity of enzyme molecules. The relative contribution of the two terms to the overall effect can vary widely depending on the chemical nature of the substrate, the properties of the enzyme and on the surface properties of the solid materials. Furthermore we hypothesize that by immobilizing the enzyme in an appropriate carrier the adsorption of enzymes to soil materials can be eliminated and that therefore immobilization can increase the overall reaction rate (activity loss caused by immobilization < activity loss caused by adsorption to soil minerals). MATERIALS AND METHODS Enzymatic kinetic experiments are carried out in homogeneous liquid systems and in heterogeneous systems where solid

  20. Dielectric properties of solutions of oil materials solubilized by sodium dodecyl sulfate in aqueous solutions

    SciTech Connect

    Abe, M.; Shimizu, A.; Ogino, K.

    1982-08-01

    One of the most important properties of micellar systems is their ability to solubilize a variety of species. For aqueous micelles, solubilization is related closely to the hydrophobic and hydrophilic properties of the solubilizate. Different sites of solubilization and orientations may be involved, depending on the structure of the solubilizate. A number of studies on solubilization have been performed experimentally and theoretically. Dielectric constant measurement has proved to be a powerful tool for the investigation of permanent dipole moments of various molecules and of the behavior in solution of various substances, and has been applied in various fields. This technique has been used to determine the chemical structure of surfactants, but not to investigate the solubilization of oily materials in aqueous solution. The dielectric constants and ac electric conductivities observed when a solubilizate is added to an aqueous solution of an anionic surfactant and the differences in the solubilizing behavior due to different kinds of polar groups are discussed. 30 references.

  1. Microdisc gel electrophoresis in sodium dodecyl sulfate of organic material from rat otoconial complexes

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Pote, K. G.; Rarey, K. E.; Verma, L. M.

    1981-01-01

    The gravity receptors of all vertebrates utilize a 'test mass' consisting of a complex arrangement of mineral and organic substance that lies over the sensory receptor areas. In most vertebrates, the mineral is a polymorph of calcium carbonate in the form of minute, single crystals called otoconia. An investigation is conducted to determine the number of proteins in otoconial complexes and their molecular weights. The investigation makes use of a microdisk gel electrophoresis method reported by Gainer (1971). The most important finding of the reported research is that analysis of the proteins of the organic material of the otoconial complexes is possible when sensitive microanalytical methods are employed. Further modification of the basic technique employed and the inclusion of other sensitive staining methods should mean that, in the future, protein separation by molecular weight will be possible in sample pools containing only two otoconial masses.

  2. Materials Testing and Quality Control Soils, 3-28. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This instructional package on material testing and quality control of soils has been adapted from military curriculum materials for use in technical and vocational education programs. This short course presents basic information on soils as well as exploration, field identification, and laboratory procedures that will enable students completing…

  3. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3268, Khayr Kot (521) and Urgun (522) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral Surface Materials Map of Quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) Quadrangles, Afghanistan, Showing Carbonates, Phyllosilicates, Sulfates, Altered Minerals, and Other Materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Draft Genome Sequence of Desulfitobacterium hafniense Strain DH, a Sulfate-Reducing Bacterium Isolated from Paddy Soils

    PubMed Central

    Zhang, Xi; Li, Guo-Xiang; Chen, Song-Can; Jia, Xiao-Yu; Wu, Kun; Cao, Chang-Li

    2016-01-01

    Desulfitobacterium hafniense strain DH is a sulfate-reducing species. Here, we report the draft genome sequence of strain DH, with a size of 5,368,588 bp, average G+C content of 47.48%, and 5,296 predicted protein-coding sequences. PMID:26868389

  7. Laboratory evaluation of frozen soil target materials with a fused interface.

    SciTech Connect

    Bronowski, David R.; Lee, Moo Yul

    2004-10-01

    To investigate the performance of artificial frozen soil materials with a fused interface, split tension (or 'Brazilian') tests and unconfined uniaxial compression tests were carried out in a low temperature environmental chamber. Intact and fused specimens were fabricated from four different soil mixtures (962: clay-rich soil with bentonite; DNA1: clay-poor soil; DNA2: clay-poor soil with vermiculite; and DNA3: clay-poor soil with perlite). Based on the 'Brazilian' test results and density measurements, the DNA3 mixture was selected to closely represent the mechanical properties of the Alaskan frozen soil. The healed-interface by the same soil layer sandwiched between two blocks of the same material yielded the highest 'Brazilian' tensile strength of the interface. Based on unconfined uniaxial compression tests, the frictional strength of the fused DNA3 specimens with the same soil appears to exceed the shear strength of the intact specimen.

  8. The Medical Geochemistry of Dusts, Soils, and Other Earth Materials

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.

    2003-12-01

    "Town clenched in suffocating grip of asbestos"USA Today, article on Libby,Montana, February, 2000"Researchers find volcanoes are bad for your health… long after they finish erupting"University of WarwickPress Release, 1999"Toxic soils plague city - arsenic, lead in 5 neighborhoods could imperil 17,000 residents"Denver Post, 2002"Ill winds - dust storms ferry toxic agents between countries and even continents"Science News, 2002A quick scan of newspapers, television, science magazines, or the internet on any given day has a fairly high likelihood of encountering a story (usually accompanied by a creative headline such as those above) regarding human health concerns linked to dusts, soils, or other earth materials. Many such concerns have been recognized and studied for decades, but new concerns arise regularly.Earth scientists have played significant roles in helping the medical community understand some important links between earth materials and human health, such as the role of asbestos mineralogy in disease (Skinner et al., 1988; Ross, 1999; Holland and Smith, 2001), and the role of dusts generated by the 1994 Northridge, California, earthquake in an outbreak of Valley Fever ( Jibson et al., 1998; Schneider et al., 1997).Earth science activities tied to health issues are growing (Skinner and Berger, 2003), and are commonly classified under the emerging discipline of medical geology (Finkelman et al., 2001; Selinus and Frank, 2000; Selinus, in press).Medical geochemistry (also referred to as environmental geochemistry and health: Smith and Huyck (1999), Appleton et al. (1996)) can be considered as a diverse subdiscipline of medical geology that deals with human and animal health in the context of the Earth's geochemical cycle ( Figure 1). Many medical geochemistry studies have focused on how chemical elements in rocks, soils, and sediments are transmitted via water or vegetation into the food chain, and how regional geochemical variations can result in disease

  9. Nature and Properties of Lateritic Soils Derived from Different Parent Materials in Taiwan

    PubMed Central

    2014-01-01

    The objective of this study was to investigate the physical, chemical, and mineralogical composition of lateritic soils in order to use these soils as potential commercial products for industrial application in the future. Five lateritic soils derived from various parent materials in Taiwan, including andesite, diluvium, shale stone, basalt, and Pleistocene deposit, were collected from the Bt1 level of soil samples. Based on the analyses, the Tungwei soil is an alfisol, whereas other lateritic soils are ultisol. Higher pH value of Tungwei is attributed to the large amounts of Ca2+ and Mg2+. Loupi and Pingchen soils would be the older lateritic soils because of the lower active iron ratio. For the iron minerals, the magnetic iron oxides such as major amounts of magnetite and maghemite were found for Tamshui and Tungwei lateritic soils, respectively. Lepidocrocite was only found in Soka soil and intermediate amounts of goethite were detected for Loupi and Pingchen soils. After Mg-saturated and K-saturated processes, major amounts of mixed layer were observed in Loupi and Soka soils, whereas the montmorillonite was only detected in Tungwei soil. The investigation results revealed that the parent materials would play an important role during soil weathering process and physical, chemical, and mineralogy compositions strongly affect the formation of lateritic soils. PMID:24883366

  10. Nature and properties of lateritic soils derived from different parent materials in Taiwan.

    PubMed

    Ko, Tzu-Hsing

    2014-01-01

    The objective of this study was to investigate the physical, chemical, and mineralogical composition of lateritic soils in order to use these soils as potential commercial products for industrial application in the future. Five lateritic soils derived from various parent materials in Taiwan, including andesite, diluvium, shale stone, basalt, and Pleistocene deposit, were collected from the Bt1 level of soil samples. Based on the analyses, the Tungwei soil is an alfisol, whereas other lateritic soils are ultisol. Higher pH value of Tungwei is attributed to the large amounts of Ca(2+) and Mg(2+). Loupi and Pingchen soils would be the older lateritic soils because of the lower active iron ratio. For the iron minerals, the magnetic iron oxides such as major amounts of magnetite and maghemite were found for Tamshui and Tungwei lateritic soils, respectively. Lepidocrocite was only found in Soka soil and intermediate amounts of goethite were detected for Loupi and Pingchen soils. After Mg-saturated and K-saturated processes, major amounts of mixed layer were observed in Loupi and Soka soils, whereas the montmorillonite was only detected in Tungwei soil. The investigation results revealed that the parent materials would play an important role during soil weathering process and physical, chemical, and mineralogy compositions strongly affect the formation of lateritic soils.

  11. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2015-04-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~ 1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 µm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.

  12. As(V) and P Competitive Sorption on Soils, By-Products and Waste Materials

    PubMed Central

    Rivas-Pérez, Ivana María; Paradelo-Núñez, Remigio; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-01-01

    Batch-type experiments were used to study competitive As(V) and P sorption on various soils and sorbent materials. The materials assayed were a forest soil, a vineyard soil, pyritic material, granitic material, coarsely and finely ground mussel shell, calcinated mussel shell ash, pine sawdust and slate processing fines. Competition between As(V) and P was pronounced in the case of both soils, granitic material, slate fines, both shells and pine sawdust, showing more affinity for P. Contrary, the pyritic material and mussel shell ash showed high and similar affinity for As(V) and P. These results could be useful to make a correct use of the soils and materials assayed when focusing on As and P removal in solid or liquid media, in circumstances where both pollutants may compete for sorption sites. PMID:26690456

  13. Influence of barium sulfate X-ray imaging contrast material on properties of floating drug delivery tablets.

    PubMed

    Diós, Péter; Szigeti, Krisztián; Budán, Ferenc; Pócsik, Márta; Veres, Dániel S; Máthé, Domokos; Pál, Szilárd; Dévay, Attila; Nagy, Sándor

    2016-12-01

    The objective of the study was to reveal the influence of necessarily added barium sulfate (BaSO4) X-ray contrast material on floating drug delivery tablets. Based on literature survey, a chosen floating tablet composition was determined containing HPMC and carbopol 943P as matrix polymers. One-factor factorial design with five levels was created for evaluation of BaSO4 (X1) effects on experimental parameters of tablets including: floating lag time, total floating time, swelling-, erosion-, dissolution-, release kinetics parameters and X-ray detected volume changes of tablets. Applied concentrations of BaSO4 were between 0 and 20.0% resulting in remarkable alteration of experimental parameters related especially to flotation. Drastic deterioration of floating lag time and total floating time could be observed above 15.0% BaSO4. Furthermore, BaSO4 showed to increase the integrity of tablet matrix by reducing eroding properties. A novel evaluation of dissolutions from floating drug delivery systems was introduced, which could assess the quantity of drug dissolved from dosage form in floating state. In the cases of tablets containing 20.0% BaSO4, only the 40% of total API amount could be dissolved in floating state. In vitro fine resolution X-ray CT imagings were performed to study the volume change and the voxel distributions as a function of HU attenuations by histogram analysis of the images. X-ray detected relative volume change results did not show significant difference between samples. After 24h, all tablets containing BaSO4 could be segmented, which highlighted the fact that enough BaSO4 remained in the tablets for their identification.

  14. Magnesium sulfate as a key mineral for the detection of organic molecules on Mars using pyrolysis

    NASA Astrophysics Data System (ADS)

    François, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes. This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (~700°C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  15. Akaganéite (β-FeOOH) precipitation in inland acid sulfate soils of south-western New South Wales (NSW), Australia

    NASA Astrophysics Data System (ADS)

    Bibi, Irshad; Singh, Balwant; Silvester, Ewen

    2011-11-01

    The prevalence of sulphidic sediments in inland wetlands has been only recently recognized in many parts of the world, including Australia. The exposure of sulphidic sediments in these wetlands due to natural and human induced drying events has resulted in the oxidation of iron sulfide minerals, the formation of secondary iron minerals characteristic of acid sulfate soils and the release of highly acidic solutions. The objective of this study was to determine the mineralogy and morphology of sediments collected from the oxidized surface horizon (0-5 cm) of an inland acid sulfate soil located in south-western New South Wales (NSW), Australia. Random powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning transmission electron microscopy combined with energy dispersive X-ray spectroscopy (STEM-EDS) techniques were used to characterize the minerals present in these sediments. Akaganéite was identified as the major mineral phase in the sediments; K-jarosite was also determined in small amounts in some sediments. The XRD patterns of sequentially washed (E-pure® water-0.01 M HCl-0.01 M EDTA) sediment samples showed all akaganéite peaks; the Rietveld refinement of these patterns also revealed a predominance of akaganéite. The chemical analyses of the original and washed sediments using STEM-EDS clearly showed the presence of akaganéite as a pure mineral phase with an average Fe/Cl mole ratio of 6.7 and a structural formula of Fe 8O 8(OH) 6.8(Cl) 1.2. These findings show that the extreme saline-acidic solutions (pH ˜ 2, EC = 216 dS/m) at the Bottle Bend lagoon provide ideal conditions for the crystallization of this rarely forming mineral.

  16. Soils and Fertilizers. Competency Based Teaching Materials in Horticulture.

    ERIC Educational Resources Information Center

    Legacy, Jim; And Others

    This competency-based curriculum unit on soils and fertilizers is one of four developed for classroom use in teaching the turf and lawn services area of horticulture. The four sections are each divided into teaching content (in a question-and-answer format) and student skills that outline taking soil samples, testing samples, preparing soil for…

  17. Preparation and physical characterization of calcium sulfate cement/silica-based mesoporous material composites for controlled release of BMP-2

    PubMed Central

    Tan, Honglue; Yang, Shengbing; Dai, Pengyi; Li, Wuyin; Yue, Bing

    2015-01-01

    As a commonly used implant material, calcium sulfate cement (CSC), has some shortcomings, including low compressive strength, weak osteoinduction capability, and rapid degradation. In this study, silica-based mesoporous materials such as SBA-15 were synthesized and combined with CSC to prepare CSC/SBA-15 composites. The properties of SBA-15 were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen adsorption–desorption isotherms. SBA-15 was blended into CSC at 0, 5, 10, and 20 wt%, referred to as CSC, CSC-5S (5% mass ratio), CSC-10S (10% mass ratio), and CSC-20S (20% mass ratio), respectively. Fourier-transform infrared spectroscopy and compression tests were used to determine the structure and mechanical properties of the composites, respectively. The formation of hydroxyapatite on composite surfaces was analyzed using scanning electron microscopy and X-ray diffraction after soaking in simulated body fluid. BMP-2 was loaded into the composites by vacuum freeze-drying, and its release characteristics were detected by Bradford protein assay. The in vitro degradation of the CSC/SBA-15 composite was investigated by measuring weight loss. The results showed that the orderly, nanostructured, mesoporous SBA-15 possessed regular pore size and structure. The compressive strength of CSC/SBA-15 increased with the increase in SBA-15 mass ratio, and CSC-20S demonstrated the maximum strength. Compared to CSC, hydroxyapatite that formed on the surfaces of CSC/SBA-15 was uniform and compact. The degradation rate of CSC/SBA-15 decreased with increasing mass ratio of SBA-15. The adsorption of BMP-2 increased and released at a relatively slow rate; the release rate of BMP-2 in CSC-20S was the slowest, and presented characteristics of low doses of release. In vitro experiments demonstrated that the physical properties of pure CSC incorporated with SBA-15 could be improved significantly, which made the CSC/SBA-15 composite more suitable for bone repair

  18. Element concentrations in soils and other surficial materials of Alaska

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Shacklette, H.T.

    1988-01-01

    Mean concentrations of 35 elements, ash yields, and pH have been estimated for samples of sils and other unconsolidated surficial materials from 266 collection locations throughout Alaska. These background values can be applied to studies of environmental geochemistry and health, wildlife management, and soil-forming processes in cold climates and to computation of element abundances on a regional or worldwide scale. Limited data for an additoinal eight elements are also presented. Materials were collected using a one-way, three-level, analysis-of-variance samplling design in which collecting procedures were simplified for the convenience of the many volunteer field workers. The sample collectors were asked to avoid locations of known mineral deposits and obvious contamination, to take samples at a depth of about 20 cm where possible, and to take a replicate sample about 100 m distant from the first sample collected. With more than 60 percent of the samples replicated and 14 percent of the samples split for duplicate laboratory analyses, reliable estimates were made of the variability in element concentrations at two geographic scales and of the error associated with sample handling and laboratory procedures. Mean concentrations of most elements in surficial materials from the state of alaska correspond well with those reported in similar materials from the conterminous United STatess. Most element concentrations and ranges in samples of stream and lake sediments from Alaska, however, as reported in the literature, do not correspond well with those found in surficial materials of this study. This lack of correspondence is attributed to (1) a merger of two kinds ofsediments (stream and lake) for calculating means; (2) elimination from the sediment mean calculations of values below the limit of quantitative determination; (3) analytical methods different from those of the surficial materials study; and (4) most importantly, the inherent differences in chemistry of

  19. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil.

    PubMed

    Deschênes, L; Lafrance, P; Villeneuve, J P; Samson, R

    1996-12-01

    The effect of two anionic surfactants was assessed during biodegradation of 13 of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAH) in a wood-preserving soil contaminated with creosote and pentacholorophenol for a period of at least 20 years. Sodium dodecyl sulfate (SDS) and biosurfactants from Pseudomonas aeruginosa UG2 were utilized at concentrations of 10, 100 and 500 micrograms/g soil. Because both surfactants are readily biodegradable, the microcosms received a fresh spike of surfactant every 2 weeks. Biodegradation of aged PAH residues was monitored by GC/MS for a period of 45 weeks. Results indicated that the biodegradation of the three-ring PAH was rapid and almost complete but was slowed by the addition of 100 micrograms/g and 500 micrograms/g chemical surfactant. Similarly, at the same concentrations, the two surfactants significantly decreased the biodegradation rate of the four-ring PAH. In this case, the inhibition was more pronounced with SDS. High-molecular-mass PAH (more than four rings) were not biodegraded under the test conditions. It was suggested that the preferential utilization of surfactants by PAH degraders was responsible for the inhibition observed in the biodegradation of the hydrocarbons. The high biodegradability and the inhibitory effect of these two surfactants would have a significant impact on the development of both above-ground and in situ site reclamation processes.

  20. Results of mineral, chemical, and sulfate isotopic analyses of water, soil, rocks, and soil extracts from the Pariette Draw Watershed, Uinta Basin, Utah

    USGS Publications Warehouse

    Morrison, Jean M.; Tuttle, Michele L.W.; Fahy, Juli W.

    2015-08-06

    The goal of this study was to establish a process-based understanding of salt, Se, and B behavior to address whether these contaminants can be better managed, or if uncontrollable natural processes will overwhelm any attempts to bring Pariette Draw into compliance with respect to recently established total maximum daily limits (TMDLs). We collected data to refine our knowledge about the role of rock weathering and soil formation in the transport and storage of salt in the watershed and to show how salt is cycled under irrigated and natural conditions. Our approach was to sample rock, soils, and sediment on irrigated and natural terrain for mineralogical analysis to determine the residence of salt and associated Se and B, classify minerals as primary (related to rock formation) or secondary weathering products, and characterize mineral dissolution kinetics. Mineral and chemical analyses and selective extractions of rocks and soils provide useful information in understanding solute movement and mineral dissolution/ formation. The resulting data are critical in determining residence of salt, Se, and B in weathered rock and soil and understanding the mobility during water-rock-soil interactions. This report summarizes our methods for sample and data collection and tabulates the mineral, chemical, and isotopic data collected.

  1. Controlling Sulfate Attack in Mississippi Department of Transportation Structures

    DTIC Science & Technology

    2010-08-01

    suitable for use in high -sulfate environments. In this accelerated test, changes in the unconfined com- pressive strength of cement paste cubes after...deterioration of con- crete in contact with the surrounding soil could be related to the high sul- fate content of the adjacent soils. Studies dating to 1966...contact with the surrounding soil could be related to the high sulfate con- tent of the adjacent soils. Studies dating to 1966 have documented sulfate

  2. Fe-C interactions and soil organic matter stability in two tropical soils of contrasting parent materials

    NASA Astrophysics Data System (ADS)

    Coward, E.; Thompson, A.; Plante, A. F.

    2014-12-01

    The long residence time of soil organic matter (SOM) is a dynamic property, reflecting the diversity of stabilization mechanisms active within the soil matrix. Climate and ecosystem properties act at the broadest scale, while biochemical recalcitrance, physical occlusion and mineral association drive stability at the microscale. Increasing evidence suggests that the stability of SOM is dominated by organo-mineral interactions. However, the 2:1 clays that provide much of the stabilization capacity in temperate soils are typically absent in tropical soils due to weathering. In contrast, these soils may contain an abundance of iron and aluminium oxides and oxyhydroxides, known as short-range-order (SRO) minerals. These SRO minerals are capable of SOM stabilization through adsorption or co-precipitation, a faculty largely enabled by their high specific surface area (SSA). As such, despite their relatively small mass, SRO minerals may contribute substantially to the SOM stabilization capacity of tropical soils. The objective of this work is to characterize and quantify these Fe-C interactions. Surface (0-20 cm) soil samples were taken from 20 quantitative soil pits dug within the Luquillo Critical Zone Observatory in northeast Puerto Rico. Soils were stratified across granodiorite and volcaniclastic parent materials. Four extraction procedures were used to isolate three different forms of Fe-C interactions: sodium pyrophosphate to isolate organo-metallic complexes, hydroxylamine and oxalate to isolate SRO Fe- and Al-hydroxides, and dithionite to isolate crystalline Fe-oxyhydroxides. Extracts were analysed for DOC and Fe and Al concentrations to estimate the amount of SOM associated with each mineral type. Soils were subjected to SSA and solid-phase C analyses before and after extraction to determine the contribution of the various Fe mineral types to soil SSA, and therefore to potential stabilization capacity through organo-mineral complexation. Preliminary results

  3. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2013-01-01

    Saving energy in buildings is top of mind with today s building professionals. Although designing energy-efficient walls and roofs is mostly a no-brainer, ensuring that below-grade foundations do not generate moisture problems has become even more complex, particularly because of how soil is involved. Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. A computational approach for heat transfer through the ground has been well-defined, and simplified methods have been developed. These approaches, however, generally ignore the transfer of soil moisture, which is not negligible. The intention of an ongoing study at Oak Ridge (TN) National Laboratory, therefore, is to gather, comprehend and adapt soil properties from soil science as well. The obtained information must be applicable to related tasks in building science and validated with hygrothermal calculation tools, where additional plugins to the existing software code WUFI (an acronym for Warme unde Felichte Instructionar, which translates to unsteady heat and moisture) are required. (See the sidebar, opposite page, for specifics on WUFI.)Simulation results from WUFI are being compared with existing thermal-only measurements and are being accomplished with ongoing hygrothermal measurements. The final outcome of the study will be the evaluation of several soil types in several climate zones for a number of basement assembly types. The study will define the type of soil, together with the type of building construction considered most and least reliable with respect to energy consumption and moisture safety. Furthermore, the study will determine the influences that different soils have on total energy loss through the ground.

  4. Growth of barley exposed to solvent refined coal (SRC) materials added to soil

    SciTech Connect

    Cline, J.F.; Rickard, W.H.; Thiede, M.E.

    1980-01-01

    The growth of barley plants (Hordeum vulgare) grown in Ritzville silt loam soil, treated with solvent refined coal material, SRC solid (SRC I) and SRC liquid (SRC II) was examined. Although the SRC materials will not be introduced to soil or surface waters in normal uses, they could be spilled during transportation. Such spills could contaminate surface waters and agricultural, rangeland and forest soils, possibly causing acute or chronic damage to plants and also provide a way for certain inorganic and organic materials to enter food chains.

  5. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    EPA Pesticide Factsheets

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  6. Activation and isomerization of n-butane on sulfated zirconia model systems--an integrated study across the materials and pressure gaps.

    PubMed

    Breitkopf, C; Papp, H; Li, X; Olindo, R; Lercher, J A; Lloyd, R; Wrabetz, S; Jentoft, F C; Meinel, K; Förster, S; Schindler, K-M; Neddermeyer, H; Widdra, W; Hofmann, A; Sauer, J

    2007-07-21

    Butane activation has been studied using three types of sulfated zirconia materials, single crystalline epitaxial films, nanocrystalline films, and powders. A surface phase diagram of zirconia in interaction with SO(3) and water was established by DFT calculations, which was verified by LEED investigations on single-crystalline films and by IR spectroscopy on powders. At high sulfate surface densities a pyrosulfate species is the prevailing structure in the dehydrated state; if such species are absent, the materials are inactive. Theory and experiment show that the pyrosulfate can react with butane to give butene, H(2)O and SO(2), hence butane can be activated via oxidative dehydrogenation. This reaction occurred on all investigated materials; however, isomerization could only be proven for powders. Transient and equilibrium adsorption measurements in a wide pressure and temperature range (isobars measured via UPS on nanocrystalline films, microcalorimetry and temporal analysis of products measurements on powders) show weak and reversible interaction of butane with a majority of sites but reactive interaction with <5 micromol g(-1) sites. Consistently, the catalysts could be poisoned by adding sodium to the surface in a ratio S/Na = 35. Future research will have to clarify what distinguishes these few sites.

  7. Developing a More Rapid Test to Assess Sulfate Resistance of Hydraulic Cements

    PubMed Central

    Ferraris, Chiara; Stutzman, Paul; Peltz, Max; Winpigler, John

    2005-01-01

    External sulfate attack of concrete is a major problem that can appear in regions where concrete is exposed to soil or water containing sulfates, leading to softening and cracking of the concrete. Therefore, it is important that materials selection and proportioning of concrete in susceptible regions be carefully considered to resist sulfate attack. American Society for Testing Materials (ASTM) limits the tricalcium aluminate phase in cements when sulfate exposure is of concern. The hydration products of tricalcium aluminate react with the sulfates resulting in expansion and cracking. While ASTM standard tests are available to determine the susceptibility of cements to sulfate attack, these tests require at least 6 months and often up to a year to perform; a delay that hinders development of new cements. This paper presents a new method for testing cement resistance to sulfate attack that is three to five times faster than the current ASTM tests. Development of the procedure was based upon insights on the degradation process by petrographic examination of sulfate-exposed specimens over time. Also key to the development was the use of smaller samples and tighter environmental control. PMID:27308177

  8. Military Curriculum Materials for Vocational and Technical Education. Soils Engineering 3-1. Edition 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This individualized, self-paced course for independent study in soils engineering was adapted from military curriculum materials for use in vocational education. The course is designed to acquaint students with various soil types and their characteristics using various procedures, tests, and recording forms. Some of these duties are determining…

  9. Detection of tritium sorption on four soil materials.

    PubMed

    Teng, Yanguo; Zuo, Rui; Wang, Jinsheng; Hu, Qinhong; Sun, Zongjian; Zeng, Ni

    2011-02-01

    In order to measure groundwater age and design nuclear waste disposal sites, it is important to understand the sorption behavior of tritium on soils. In this study, batch tests were carried out using four soils from China: silty clays from An County and Jiangyou County in Sichuan Province, both of which could be considered candidate sites for Very Low Level Waste disposal; silty sand from Beijing; and loess from Yuci County in Shanxi Province, a typical Chinese loess region. The experimental results indicated that in these soil media, the distribution coefficient of tritium is slightly influenced by adsorption time, water/solid ratio, initial tritium specific activity, pH, and the content of humic and fulvic acids. The average distribution coefficient from all of these influencing factors was about 0.1-0.2 mL/g for the four types of soil samples. This relatively modest sorption of tritium in soils needs to be considered in fate and transport studies of tritium in the environment.

  10. Soil deepening by trees and the effects of parent material

    NASA Astrophysics Data System (ADS)

    Shouse, Michael; Phillips, Jonathan

    2016-09-01

    In some cases biomechanical effects of individual trees may locally deepen or thicken regolith, especially in relatively shallow soils. This biogeomorphic ecosystem engineering phenomenon is at least partly contingent on the geological setting. The purpose of this research was to gain further insight into the biogeomorphic phenomenon, and to assess the relative importance of biomechanical and geological effects. Earlier studies in the Ouachita Mountains of Arkansas showed that individual trees locally thicken the regolith via mechanisms associated with root penetration of bedrock. However, that work was conducted mainly in areas of strongly dipping and contorted rock, where joints and bedding planes susceptible to root penetration were thought to be common and accessible. This project extended the research to the Cumberland Plateau region of Kentucky, where flat, level-bedded sedimentary rocks are dominant. Soil depth beneath trees was compared to that of non-tree sites by measuring depth to bedrock beneath rotted tree stumps and at adjacent sites with 1.0 m. While soil thickness beneath stumps was greater in the Ouachita Mountains compared to the Kentucky sites, in both regions soils beneath stumps are significantly deeper than adjacent soils. Further, there were no statistically significant differences in the difference between stump and adjacent sites between the two regions. This suggests the local deepening effects of trees occur in flat-bedded as well as steeply dipping lithologies.

  11. Trace elements in soil and biota in confined disposal facilities for dredged material.

    PubMed

    Beyer, W N; Miller, G; Simmers, J W

    1990-01-01

    We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high concentrations of trace elements in the biota.

  12. Trace elements in soil and biota in confined disposal facilities for dredged material

    USGS Publications Warehouse

    Beyer, W.N.; Miller, G.; Simmers, J.W.

    1990-01-01

    We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata) at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high, concentrations of trace elements in the biota.

  13. Applying high resolution SyXRD analysis on sulfate attacked concrete field samples

    SciTech Connect

    Stroh, J.; Schlegel, M.-C.; Irassar, E.F.; Meng, B.; Emmerling, F.

    2014-12-15

    High resolution synchrotron X-ray diffraction (SyXRD) was applied for a microstructural profile analysis of concrete deterioration after sulfate attack. The cement matrices consist of ordinary Portland cement and different amounts of supplementary cementitious materials, such as fly ash, natural pozzolana and granulated blast furnace slag. The changes of the phase composition were determined along the direction of sulfate ingress. This approach allows the identification of reaction fronts and zones of different phase compositions and conclusions about the mechanisms of sulfate attack. Two reaction fronts were localized in the initial 4 mm from the sample surface. The mechanism of deterioration caused by the exposition in the sulfate-bearing soil is discussed. SyXRD is shown to be a reliable method for investigation of cementitious materials with aggregates embedded in natural environments.

  14. Minimizing soil remediation volume through specification of excavation and materials handling procedures

    SciTech Connect

    Oresik, W.L.S.; Otten, M.T.; Nelson, M.D.

    1994-12-31

    The technologies currently available for treating soils contaminated with the explosives 2,4,6-trinitroluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX) are both limited and expensive. Therefore, an important consideration in soils remediation is the preparation of construction specifications and contract drawings which limit the volume of soil that will be required to undergo treatment. Construction specifications and contract drawings were developed for the Contaminated Soil Remediation of the Explosives Washout Lagoons at Umatilla Depot Activity (UMDA) with the following primary objectives: (1) limit the volume of soil excavated from the Explosives Washout Lagoons and Explosives Washout Plant Areas, (2) minimize materials handling, and (3) reduce the excavated volume of soil which will undergo treatment.

  15. [Enhanced fixation of phenanthrene in soils amended with exotic organic materials].

    PubMed

    Ren, Li-Li; Ling, Wan-Ting; Gao, Yan-Zheng

    2008-03-01

    This paper studied the enhanced fixation of phenanthrene in clay loam soil, sandy silt soil, and silt loam soil under effects of exotic organic materials (EOMs) commercial organic fertilizer and peat. The results showed that after the addition of EOMs, the adsorption isotherms of phenanthrene in test soils were still linear, and distribution was the predominant mechanism for phenanthrene adsorption by soil. The adsorption of phenanthrene was significantly enhanced by the addition of EOMs, and the enhancement of distribution constant (Kd) was positively correlated with the content of soil organic carbon (foc), indicating that the higher the soil foc, the more significant the promotion effect of EOMs addition on phenanthrene adsorption. On the contrary, the desorption of phenanthrene was obviously inhibited by the addition of EOMs. After 64 days of EOMs addition, the extractable amount of phenanthrene was decreased significantly, compared with the control. Since the organic matter content of peat was higher than that of commercial organic fertilizer, the decrease of extractable phenanthrene in soils added with peat was more significant. In addition, the higher the soil foc, the stronger inhibition effect of EOMs on extractability of phenanthrene. On the whole, exotic EOMs could promote the adsorption, while inhibit the desorption and reduce the extractability of phenanthrene in soils.

  16. Controls of Parent Material and Topography on Soil Carbon Storage in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Patton, N. R.; Seyfried, M. S.; Lohse, K. A.; Link, T. E.

    2014-12-01

    Semi-arid environments make up a large percentage of the world's terrestrial ecosystems, and climate is a major factor influencing soil carbon storage and release. However, the roles of local controls such as parent material, aspect and microtopography have received less attention and are important for consideration in soil carbon modeling. The purpose of this study is to understand the role that parent material, aspect and micro-topography play in storage and release of soil carbon along an elevation gradient in a semi-arid climate. Johnston Draw (JD) is a first order watershed within the Reynolds Creek Critical Zone Observatory in southwestern Idaho with underlining late cretaceous, granitic Idaho batholith bedrock. Upper Sheep Creek (USC) is a first order watershed consisting of basalt. Both watersheds were chosen for this project due to similar size, aspect, elevation, vegetation and for the contrast in parent material. Two transects, totaling approximately nine soil pits, were excavated on both the north and south facing slopes of each watershed running parallel to the water channel. Soil carbon was generally higher in basalt compared to the granite parent material in pits with similar aspect, elevation and vegetation. Preliminary data using soil organic matter (SOM) as a proxy for organic carbon (OC) and soil water dynamics showed that percent OC declines markedly with elevation in JD and soil depth at lower elevations and is more homogenous throughout the profile moving up elevation (1646 meters 4.3-9.7%; 1707 meters 6.87-3.83%). Similarly, aspect controls patterns of SOM at depth more strongly at lower elevations. Findings from our study suggest that parent material and topography may play as important roles in semi-arid ecosystems as climate factors in controlling soil carbon storage.

  17. Soil Materials and Health: An new experience for teaching

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2014-05-01

    Cationic clays are very extended compounds on the earth surface so they constitute the main component of soils and sedimentary rocks. Due to their presence and special properties that they have, mankind has used them with therapeutic aims from Prehistory, not being rare to find references to this subject in works of classic authors. During the Renaissance and with the appearance of the first Pharmacopeia, its use was regulated to a certain extent. The scientific development reached during the XXth century has allowed to understand and to study the reasons of the useful and peculiar properties of clays, directly related to their colloidal size and crystalline structure. These properties are translated in a high specific surface area, optimal rheological properties and/or excellent sorptive capacity; everything makes cationic clays very useful for a wide range of applications. In the field of health, cationic clays are used in Pharmaceutical Technology and Dermopharmacy as ideal excipients and substances of suitable biological activity due to their chemical inertness and low or null toxicity for the patient (Carretero, 2002; Lopez Galindo et al., 2005; Choy et al., 2007; del Hoyo, 2007). Cationic clays can be used in a wide range of applications in health. However, it must be also considered that the risk exposure to cationic clays may cause several diseases, as it has been seen above. Cationic clays have been used as excipients and active principles in the pharmaceutical industry. The last tendencies are their use in geomedicine, as much to come up as to treat diseases. One stands out his presence in spas and aesthetic medicine. Development of new pharmaceutical formulations is observed, based on cationic clays, for cancer therapy. It has to emphasize the importance in the synthesis of biosensors with cationic clays. Cationic clays can be considered a group of promising materials in the development of new health applications. The study of the use of the cationic

  18. Biotoxicity of Mars Analog Soils: Microbial, Dispersal into Desiccated Soils Versus Emplacement in Salt or Ice Inclusions Fluids

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Ming, Doutlas W.; Golden, D. C.

    2010-01-01

    Recent evidence from the Opportunity and Spirit rovers and the Mars Express mission suggests that the soils on Mars might be very high in biotoxic materials including sulfate salts, chlorides, and acidifying agents. Yet, very little is known about how the chemistries of Mars soils might affect the survival and growth of terrestrial microorganisms. The primary objectives of the research included: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, chlorides, and acidifying minerals; and (2) use the simulants to conduct a series of toxicology assays to determine if terrestrial microorganisms from spacecraft can survive direct exposure to the biotoxic soils.

  19. The suitability evaluation of dredged soil from reservoirs as embankment material.

    PubMed

    Park, Jaesung; Son, Younghwan; Noh, Sookack; Bong, Taeho

    2016-12-01

    We assessed the suitability of soil dredged from reservoirs as embankment material and investigated its physical and geochemical properties and strength parameters, as well as its environmental stability. The dredged soil samples were taken from the Ansung, Jechon, and Mulwang Reservoirs in Korea. To evaluate their environmental stability and geochemical properties, we examined their levels of heavy metal contamination, pH, and electrical conductivity. We also conducted X-ray fluorescence and X-ray diffraction analyses. Furthermore, we determined the geotechnical characteristics, such as the compaction characteristics, and permeability coefficient, and we performed consolidated undrained triaxial compression tests to evaluate the recycling potential of dredged soil as embankment material. The concentrations of heavy metals in the sediment samples were lower than those of the standard samples. The pH value of the soil samples ranged from 4.25 to 5.39, and the electrical conductivity ranged between 83.3 and 265.0 μS/cm, indicating suitability for use as construction material with steel and concrete. Based on the values of the mechanical properties of the dredged soil, analysis of slope stability was performed for various cases and water level conditions. Our results indicate that the dredged soil has sufficient stability for substitution of embankment material and also as new embankment material for expansion.

  20. Diethyl sulfate

    Integrated Risk Information System (IRIS)

    Diethyl sulfate ; CASRN 64 - 67 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  1. Barium Sulfate

    MedlinePlus

    ... uses a computer to put together x-ray images to create cross-sectional or three dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque contrast media. It works by coating the esophagus, stomach, or ...

  2. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  3. Acid Sulfate Alteration in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  4. Animal evolution, bioturbation, and the sulfate concentration of the oceans

    PubMed Central

    Canfield, Donald E.; Farquhar, James

    2009-01-01

    As recognized already by Charles Darwin, animals are geobiological agents. Darwin observed that worms aerate and mix soils on a massive scale, aiding in the decomposition of soil organic matter. A similar statement can be made about marine benthic animals. This mixing, also known as bioturbation, not only aides in the decomposition of sedimentary organic material, but as contended here, it has also significantly influenced the chemistry of seawater. In particular, it is proposed that sediment mixing by bioturbating organisms resulted in a severalfold increase in seawater sulfate concentration. For this reason, the evolution of bioturbation is linked to the significant deposition of sulfate evaporate minerals, which is largely a phenomena of the Phanerozoic, the last 542 million years and the time over which animals rose to prominence. PMID:19451639

  5. Development of Low Cost Soil Stabilization Using Recycled Material

    NASA Astrophysics Data System (ADS)

    Ahmad, F.; Yahaya, A. S.; Safari, A.

    2016-07-01

    Recycled tyres have been used in many geotechnical engineering projects such as soil improvement, soil erosion and slope stability. Recycled tyres mainly in chip and shredded form are highly compressible under low and normal pressures. This characteristic would cause challenging problems in some applications of soil stabilization such as retaining wall and river bank projects. For high tensile stress and low tensile strain the use of fiberglass would be a good alternative for recycled tyre in some cases. To evaluate fiberglass as an alternative for recycled tyre, this paper focused on tests of tensile tests which have been carried out between fiberglass and recycled tyre strips. Fibreglass samples were produced from chopped strand fibre mat, a very low-cost type of fibreglass, which is cured by resin and hardener. Fibreglass samples in the thickness of 1 mm, 2 mm, 3 mm and 4 mm were developed 100 mm x 300 mm pieces. It was found that 3 mm fibreglass exhibited the maximum tensile load (MTL) and maximum tensile stress (MTS) greater than other samples. Statistical analysis on 3 mm fibreglass indicated that in the approximately equal MTL fibreglass samples experienced 2% while tyre samples experienced 33.9% ultimate tensile strain (UTST) respectively. The results also showed an approximately linear relationship between stress and strain for fibreglass samples and Young's modulus (E), ranging from 3581 MPa to 4728 MPa.

  6. How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?

    PubMed

    El Khalil, Hicham; Schwartz, Christophe; El Hamiani, Ouafae; Sirguey, Catherine; Kubiniok, Jochen; Boularbah, Ali

    2016-06-01

    One fundamental characteristic distinguishing urban soils from natural soils is the presence of technic materials or artefacts underlining the influence of human activity. These technic materials have different nature (organic or inorganic) and origins. They contribute to the enrichment of the soil solution by metallic trace elements. The present study aims to determine the effect of physical alteration of the technic coarse fraction on the bioavailability of metallic trace elements in urban Technosols. In general, results show that physical alteration increases the metallic trace elements water extractible concentrations of technic materials. The ability of lettuce to accumulate metallic trace elements, even at low concentrations, underlines the capacity of technic materials to contaminate the anthropised soil solution by bioavailable metals. The highest metal levels, accumulated by the various organs of the lettuce (leaves and roots), were measured in plants grown in presence of metallic particles mixtures. This indicates that the majority of metallic trace elements released by this technic constituent is bioavailable and explains the low plant biomass obtained. The abundant part of metallic trace elements released by the other technic constituents (building materials, bones, wood, plastic and fabric-paper) remains less bioavailable. Under anthropised soil conditions, technic materials have a significant effect on the metallic trace elements behavior. They impact the flow of these metallic elements in Technosols, which can increase their bioavailability and, therefore, the contamination of the food chain.

  7. Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a charcoal-like material produced by the thermochemical pyrolysis of biomass materials. It is being considered as a potentially significant means of storing carbon for long periods to mitigate greenhouse gases. Much of the interest comes from studies of Amazonian soils that appear to have...

  8. Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.

    PubMed

    Chen, Jun; Wang, Hao; Yao, Yangping

    2016-07-01

    In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ.

  9. Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Merkli, Christian; Sartori, Giacomo; Mirabella, Aldo; Plötze, Michael

    2008-05-01

    A toposequence of Holocene soils located between 1100-2400 m asl in the Italian Alps served as the basis for the following analyses: the weathering of limestone and dolomite, the calculation of mass balances, understanding the formation of pedogenic Fe and Al, the determination of soil mineral and clay mineral reactions and transformation and the measurement of accumulation and stabilisation mechanisms of soil organic matter. Leaching of carbonates is most intense at the lower elevations, although calcite and dolomite have a higher solubility at low temperatures. The pCO 2 in the soil is higher at lower elevations and weathering is driven mainly by carbonic acids. At higher elevations, organic acids appear to determine the mineral transformations and weathering reactions to a greater extent. This suggests that two very different weathering regimes (carbonic and organic acid weathering) exist along the toposequence. The transformation of mica into vermiculite is the main process in both the clay and fine-earth fraction. Weathering of silicate minerals started even before the carbonates had been completely removed from the soils. The transformation mechanisms of silicate minerals in the A and O horizon at higher elevations was at least as intensive as that at the climatically warmer sites. The neoformation of pedogenetic clays at climatically cooler sites was slightly greater than that at the warmer sites. However, the formation rate of secondary Fe and Al phases was more pronounced at lower elevation, which means that this process seemed to be driven dominantly by carbonic acid (weathering of primary minerals). Soil organic matter (SOM) abundance in the mineral soil is nearly 15 kg/m 2 at all sites and, surprisingly, no climate-driven effect could be detected. In general, the preservation and stabilisation of SOM was due to poorly crystalline Al and Fe phases and vermiculite, regardless of some variations in the composition of the parent material (varying calcite

  10. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    PubMed

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  11. Toxicity Determinations for Five Energetic Materials, Weathered and Aged in Soil, to the Collembolan Folsomia Candida

    DTIC Science & Technology

    2015-03-01

    and NG that meet the USEPA criteria for inclusion in the development of scientifically based ecological soil-screening levels, which can be used...in ecological risk assessment at sites that are contaminated with energetic materials. 15. SUBJECT TERMS 2,4-Dinitrotoluene (2,4-DNT...Toxicity Ecological soil-screening level (Eco-SSL) Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) 16. SECURITY CLASSIFICATION OF

  12. Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material

    NASA Astrophysics Data System (ADS)

    Prasad, C. K. Subramania; Nambiar, E. K. Kunhanandan; Abraham, Benny Mathews

    2012-10-01

    Solid waste management, especially the huge quantity of waste plastics, is one of the major environmental concerns nowadays. Their employability in block making in the form of fibres, as one of the methods of waste management, can be investigated through a fundamental research. This paper highlights the salient observations from a systematic investigation on the effect of embedded fibre from plastic waste on the performance of stabilised mud blocks. Stabilisation of the soil was done by adding cement, lime and their combination. Plastic fibre in chopped form from carry bags and mineral water bottles were added (0.1% & 0.2% by weight of soil) as reinforcement. The blocks were tested for density, and compressive strength, and observed failure patterns were analysed. Blocks with 0.1% of plastic fibres showed an increase in strength of about 3 to 10%. From the observations of failure pattern it can be concluded that benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propogation after its initial formation.

  13. Soil as an inexhaustible and high-performance anode material for Li-ion batteries.

    PubMed

    Hu, Xiaofei; Zhang, Kai; Cong, Liang; Cheng, Fangyi; Chen, Jun

    2015-11-11

    Herein, we demonstrate that by a simple treatment of heating and ball-milling, soil is endowed with a 77.2% degree of defects and acts as a high-performance anode material for soil/Li half cells and 18650-type LiNi0.915Co0.075Al0.1O2 (NCA)/soil full batteries that displayed a high and stable capacity of 3200 mA h (corresponding to 176 W h kg(-1) and 522 W h L(-1)) in the 200th cycle at a high current of 4 A.

  14. Clues on Acid-Sulfate Alteration and Hematite Formation on Earth and Mars From Iron Isotopic Analyses of Terrestrial Analogues From Hawaii

    NASA Technical Reports Server (NTRS)

    Nie, N. X.; Dauphas, N.; Morris, R. V

    2017-01-01

    The Mars Exploration Rover mission revealed the presence of rocks and minerals indicative of water-rock interactions on Mars. A range of mineralogies have been identified, including hematite spherules (i.e., blueberries), jarosite, Mg-, Ca-sulfates, silica-rich materials and silicate relics from basaltic rocks. The mineral assemblages have been interpreted to be derived from acid-sulfate alteration of basaltic materials. Indeed, the chemical compositions of rocks and soils at Home Plate in Gusev Crater follow the trends expected for acid-sulfate alteration.

  15. Carbon Dioxide Effects on Soil-Chemical Weathering: Laboratory Column Studies with Saprolite Materials

    NASA Astrophysics Data System (ADS)

    Oh, N.; Richter, D. D.

    2001-12-01

    Column leaching experiments have evaluated effects of sulfuric, nitric, and hydrochloric acids on chemical weathering in soils and rocks. In contrast, research to investigate effects of carbonic acid on chemical weathering is notably absent. Given that rising aboveground CO2 may increase photosynthesis and may enhance soil respiration, elevated soil CO2 and carbonic acid may enhance cation leaching via a combination of cation exchange and mineral dissolution. Column leaching studies were conducted using deep soil materials of the southern Piedmont (Enon, Tarrus, and Cecil series soils). Deionized water equilibrated with CO2 (at 1, 10, and 100%) was used as eluent and soluble products from exchangeable and mineral-bound sources were estimated. Results demonstrated that elevated CO2 accelerated cation release by both cation exchange and mineral dissolution. Highest cation release rates were from the Enon C horizon, a smectite-rich material from diabase with 23cmol(+)/kg ECEC and 98% base saturation. Lowest releases were from the Cecil Cr horizon, a kaolin-micaceous material derived from granitic gneiss with 1.2cmol(+)/kg ECEC and 40% B.S. Cation exchange was the predominant source of cations released, although mineral dissolution occurred in all three soils in response to elevated CO2. Remarkably, upto 35% of the cations released by the Cecil Cr horizon was attributed to weathering dissolution, probably from micaceous minerals.

  16. Quality improvement of acidic soils by biochar derived from renewable materials.

    PubMed

    Moon, Deok Hyun; Hwang, Inseong; Chang, Yoon-Young; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ji, Won Hyun; Park, Jeong-Hun

    2017-02-01

    Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured. Moreover, a maize growth experiment was performed for 14 days with selected treated soil samples to confirm the effectiveness of the treatment. The results showed that the pH of the treated acidic soil increased by more than 2 units, and the exchangeable cation values were greatly enhanced upon treatment with 5 wt% of both biochars, after 1 month of curing. Maize growth was superior in the 3 wt% biochar-treated samples compared to the control sample. The presented results demonstrate the effective use of biochar derived from renewable materials such as waste plant materials and agricultural residues for quality improvement of acidic soils.

  17. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    NASA Astrophysics Data System (ADS)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and

  18. Sulfates on Mars: Indicators of Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  19. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  20. Acid Sulfate Weathering on Mars: Results from the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2006-01-01

    Sulfur has played a major role in the formation and alteration of outcrops, rocks, and soils at the Mars Exploration Rover landing sites on Meridiani Planum and in Gusev crater. Jarosite, hematite, and evaporite sulfates (e.g., Mg and Ca sulfates) occur along with siliciclastic sediments in outcrops at Meridiani Planum. The occurrence of jarosite is a strong indicator for an acid sulfate weathering environment at Meridiani Planum. Some outcrops and rocks in the Columbia Hills in Gusev crater appear to be extensively altered as suggested by their relative softness as compared to crater floor basalts, high Fe(3+)/FeT, iron mineralogy dominated by nanophase Fe(3+) oxides, hematite and/or goethite, corundum-normative mineralogies, and the presence of Mg- and Casulfates. One scenario for aqueous alteration of these rocks and outcrops is that vapors and/or fluids rich in SO2 (volcanic source) and water interacted with rocks that were basaltic in bulk composition. Ferric-, Mg-, and Ca-sulfates, phosphates, and amorphous Si occur in several high albedo soils disturbed by the rover's wheels in the Columbia Hills. The mineralogy of these materials suggests the movement of liquid water within the host material and the subsequent evaporation of solutions rich in Fe, Mg, Ca, S, P, and Si. The presence of ferric sulfates suggests that these phases precipitated from highly oxidized, low-pH solutions. Several hypotheses that invoke acid sulfate weathering environments have been suggested for the aqueous formation of sulfate-bearing phases on the surface of Mars including (1) the oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials by solutions enriched by volcanic gases (e.g., SO2); and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials.

  1. A modified sulfate process to lunar oxygen

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.

  2. A Linkage Between Parent Materials of Soil and Potential Risk of Heavy Metals in Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Cheng, X.

    2015-12-01

    A large area exceeding soil quality standards for heavy metals in South western China has been identified previously reported on a nationwide survey of soil pollution, yet the ecological risk of heavy metal in soil is unknown or uncertainty.To assess thoroughly the ecological risk in this region, seven soil profiles with a depth of 2m on the different parent materials of soil were conducted in Yunnan province, China, and the level of total concentrations and the fraction of water soluble, ion exchangeable, carbonates, humic acid, iron and manganese oxides and organic matter of As, Cd, Hg and Pb was investigated in soil profiles. The results indicate that parent materials of soil critically influenced the ecological risk of heavy metal.The fraction of water soluble and ion exchangeable of Cd and Hg in alluvial material and in terrigenous clastic rocks showed 2-6 times higher than those in carbonate rock; As and Pb has almost same fraction of water soluble and ion exchangeable in three parent materials of soil.The findings suggest that parent materials of soil play a critical role in ecological risk of heavy metal.Thus, more studies are needed to better understand a linkage between the parent materials of soil, different soil-forming processes and the potential risk of heavy metals under various geographic conditions, which is the key for the evaluating soil quality and food safety. Those soils with high concentration of Cd and Hg originated alluvial material and terrigenous clastic rocks need to be continuously monitored before determining a cost-effective remediation technology. Keywords: Heavy metals; Ecological risk;Parent materials of soil;China

  3. CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS 1990

    EPA Science Inventory

    The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). Work included determination of radon concentrations...

  4. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  5. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    PubMed Central

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-01-01

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil. PMID:24025555

  6. Strontium-doped hematite as a possible humidity sensing material for soil water content determination.

    PubMed

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-09-10

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800-1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil.

  7. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Jie; Liu, Chunmeng; Zong, Shuang; Lu, Zhaohua

    2015-06-01

    A 180-day incubation experiment was conducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concentrations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descending order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manureamended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Considering the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronutrients.

  8. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Jie; Liu, Chunmeng; Zong, Shuang; Lu, Zhaohua

    2014-09-01

    A 180-day incubation experiment was conducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concentrations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descending order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manureamended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Considering the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronutrients.

  9. Analyses of exobiological and potential resource materials in the Martian soil.

    PubMed

    Mancinelli, R L; Marshall, J R; White, M R

    1992-01-01

    Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end we are investigating methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology. Differential thermal analysis coupled with gas chromatography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials.

  10. Analyses of exobiological and potential resource materials in the Martian soil

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; Marshall, John R.; White, Melisa R.

    1992-01-01

    Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end, methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology are investigated. Differential thermal analysis coupled with gas chromotography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials.

  11. Studies related to the evolution of the lunar soil materials

    NASA Technical Reports Server (NTRS)

    Carter, J. L.

    1973-01-01

    Studies of the chemistry and morphology of the lunar samples are reported. The presence of fragments of plagoclase in the centers of the impact craters indicate that the glass spheres were derived by meteoritic impact from high velocity particles, while the glass was at high temperatures. From the study of the Apollo 16 samples, it is suggested that this material was formed in a hot impact ejecta blanket, or in an igneous environment, and later exposed to meteoritic impact. It is suggested that particles from Apollo 17 were formed in a cloud of siliceous vapors.

  12. Fate of organic carbon from different waste materials in cropland soils

    NASA Astrophysics Data System (ADS)

    Paetsch, Lydia; Mueller, Carsten; Rumpel, Cornelia; Houot, Sabine; Kögel-Knabner, Ingrid

    2015-04-01

    Organic amendments are widely used to enhance the fertility of cropland soils. However, there is only scarce knowledge about the long term impact of added organic matter (OM) on the soil organic carbon (SOC) pool. Therefore, we analyzed a long-term field experiment in Feucherolles (France), which regularly received three different composts (home sorted bio-waste mixed with green waste (BIO), municipal solid waste (MSW) and a mixture of green waste and sewage sludge (GWS) and cattle manure since 1998. With these organic materials approximately 4 Mg total OC were added to the soil in two year intervals. The experiment was fully randomized with 4 replicates for each amendment. In September 2013 we took samples from the surface soil (0-5 cm of Ap horizon) of all 4 treatments and the unamended control. To study the chemical alteration and the fate of the added OC into different soil compartments, we fractionated the soils by physical means using a combined density and particle size protocol. Carbon and N content were determined in bulk soils, amendments as well as in size fractions (fPOM, oPOM <20µm and oPOM >20µm, sand, silt and a combined fine silt-clay fraction). Chemical composition was determined by solid-state 13C CPMAS NMR spectroscopy. We found significant higher C contents for the oPOM small and sand fraction of BIO treated soil and for the clay fraction of GWS treated soils (p<0.05). Nitrogen contents were significantly higher for BIO treated soils in bulk soil, fPOM, oPOM small and for GWS treated soils in bulk soil, fPOM and oPOM. The NMR measurements revealed that only the chemical composition of the fPOM differed according to the treatment; towards the more altered fractions as the oPOM small, the compositional differences leveled out and became almost homogeneous. Furthermore, the NMR measurements indicate a similar OC composition within the independent field replicates regarding the different amendments and fractions. As previously shown, N was found

  13. Data collection handbook to support modeling the impacts of radioactive material in soil

    SciTech Connect

    Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E.; Loureiro, C.; Chia, Y.P.

    1993-04-01

    A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

  14. Porous sulfated metal oxide SO4 2-/Fe2O3 as an anode material for Li-ion batteries with enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Lv, Qianqian; Huang, Xiaoxiong; Tan, Yueyue; Tang, Bohejin

    2017-01-01

    Sulfated metal oxide SO4 2-/Fe2O3 was prepared by a novel facile sol-gel method combined with a subsequent heating treatment process. The as-synthesized products were analyzed by XRD, FTIR, and FE-SEM. Compared with the unsulfated Fe2O3, the agglomeration of particles has been alleviated after the incorporation of SO4 2-. Interestingly, the primary particle size of the SO4 2-/Fe2O3 (about 5 nm) is similar to its normal counterparts even after the calcination treatment. More importantly, SO4 2-/Fe2O3 exhibits a porous architecture, which is an intriguing feature for electrode materials. When used as anode materials in Li-ion batteries, SO4 2-/Fe2O3 delivered a higher reversible discharge capacity (992 mAh g-1), with smaller charge transfer resistance, excellent rate performance, and better cycling stability than normal Fe2O3. We believed that the presence of SO4 2- and porous architecture should be responsible for the enhanced electrochemical performance, which could provide more continuous and accessible conductive paths for Li+ and electrons.

  15. Effect of fiber crosslinking on collagen-fiber reinforced collagen-chondroitin-6-sulfate materials for regenerating load-bearing soft tissues.

    PubMed

    Shepherd, J H; Ghose, S; Kew, S J; Moavenian, A; Best, S M; Cameron, R E

    2013-01-01

    Porous collagen-glycosaminoglycan structures are bioactive and exhibit a pore architecture favorable for both cellular infiltration and attachment; however, their inferior mechanical properties limit use, particularly in load-bearing situations. Reinforcement with collagen fibers may be a feasible route for enhancing the mechanical characteristics of these materials, providing potential for composites used for the repair and regeneration of soft tissue such as tendon, ligaments, and cartilage. Therefore, this study investigates the reinforcement of collagen-chondroitin-6-sulfate (C6S) porous structures with bundles of extruded, reconstituted type I collagen fibers. Fiber bundles were produced through extrusion and then, where applicable, crosslinked using a solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide. Fibers were then submerged in the collagen-C6S matrix slurry before being lyophilized. A second 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide crosslinking process was then applied to the composite material before a secondary lyophilization cycle. Where bundles had been previously crosslinked, composites withstood a load of approximately 60 N before failure, the reinforcing fibers remained dense and a favorable matrix pore structure resulted, with good interaction between fiber and matrix. Fibers that had not been crosslinked before lyophilization showed significant internal porosity and a channel existed between them and the matrix. Mechanical properties were significantly reduced, but the additional porosity could prove favorable for cell migration and has potential for directing aligned tissue growth.

  16. Unit The World of the Soil, First Trial Materials, Inspection Set, [Australian Science Education Project].

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Education project is producing materials designed for use in grades 7 - 10 of Australian schools. This is the first trial version of a unit expected to take about 20 40-minute periods to complete. Included are a teacher's guide to the unit, four pupil booklets ("Looking at Soils,""Things to do With…

  17. Assessment of the Use of Natural Materials for the Remediation of Cadmium Soil Contamination

    PubMed Central

    de O. Pinto, Tatiana; García, Andrés C.; Guedes, Jair do N.; do A. Sobrinho, Nelson M. B.; Tavares, Orlando C. H.

    2016-01-01

    Rice plants accumulate cadmium (Cd2+) within the grain, increasing the danger of human exposure. Natural materials have been used in soil remediation, but few studies have examined the risks (based on the bioavailability of these metals to plants) of using these materials, so the practice remains controversial. In the present study, we evaluated the effectiveness of biochar produced from sugarcane bagasse, vermicompost (VC), vermicompost solid residue (VCR) and humin for remediation of Cd2+-contaminated soils. We characterized the interactions between these materials and Cd2+ and evaluated their capacity to alter Cd2+ availability to rice plants. Our results show that under the conditions in this study, biochar and humin were not effective for soil remediation. Although biochar had high Cd2+ retention, it was associated with high Cd2+ bioavailability and increased Cd2+ accumulation in rice plants. VC and VCR had high Cd2+ retention capacity as well as low Cd2+ availability to plants. These characteristics were especially notable for VCR, which was most effective for soil remediation. The results of our study demonstrate that in the tested materials, the bioavailability of Cd2+ to plants is related to their structural characteristics, which in turn determine their retention of Cd2+. PMID:27341440

  18. Phosphoric acid, nitric acid, and hydrogen peroxide digestion of soil and plant materials for selenium determination

    SciTech Connect

    Dong, A.; Rendig, V.V.; Burau, R.G.; Besga, G.S.

    1987-11-15

    A mixture of phosphoric acid, nitric acid, and hydrogen peroxide has been proposed as an alternative to the use of the nitric/perchloric acid mixture to digest biological fluids to determine their selenium (Se) content. The purpose of the studies reported here was to test the applicability of this digestion method for the determination of Se in soil and plant materials.

  19. Stabilization and reuse of heavy metal contaminated soils by means of quicklime sulfate salt treatment. Final report, September 1992--February 1995

    SciTech Connect

    Dermatas, D.

    1995-08-01

    Capillary and hydraulic flows of water in porous media contaminated by heavy metal species often result in severe aquifer contamination. In the present study a chemical admixture stabilization approach is proposed, where heavy metal stabilization/immobilization is achieved by means of quicklime-based treatment. Both in-situ treatment by injection and on-site stabilization by excavation, mixing, and compaction will be investigated. In addition, the potential to reuse the resulting stabilized material as readily available construction material will also be investigated. The heavy metals under study include: arsenic, chromium, lead, and mercury. The proposed technical approach consists of three separate phases. During phase A, both artificial and naturally occurring contaminated soil mixes were treated, and then tested for stress-strain properties, leachability, micromorphology, mineralogical composition, permeability, setting time, and durability. In such a way, the effectiveness of the proposed remediation technology was verified, the treatment approach was optimized, and the underlying mechanisms responsible for stabilization were established. During phase B, the proposed technology will be tested for two DOE-site subscale systems, involving naturally occurring contaminated soil, using the same testing methodology as the one outlined for phase A. Provided that the proposed technology is proven effective for the subscale systems, a field application will be demonstrated. Again process quality monitoring will be performed by testing undisturbed samples collected from the treated sites, in the same fashion as for the previous phases. Following completion of the proposed study, a set of comprehensive guidelines for field applications will be developed. 42 refs., 196 figs., 26 tabs.

  20. Shrubby Reed-Mustard Habitat: Parent Material, Soil, and Landscape Characteristics

    NASA Astrophysics Data System (ADS)

    Kelly, L. S.; Boettinger, J. L.

    2012-12-01

    Shrubby reed-mustard (Glaucocarpum suffrutescens, a.k.a. Schoenocrambe suffrutescens, Glaucocarpum suffrutescens, or Hesperidanthus suffrutescens) is an endangered perennial shrub endemic to the southern Uinta Basin in northeast Utah. Only seven populations of shrubby reed-mustard have been identified. The arid area where the plant grows is rich in natural gas and oil deposits, as well as oil shale. Oil wells already dot the landscape, and there is significant concern that further development of these resources will threaten the continued existence of shrubby reed-mustard. Determination of the parent material, soil and landscape characteristics associated with shrubby reed-mustard habitat is imperative to facilitate conservation management. Shrubby reed-mustard grows where little else does and, based on field observations and remotely sensed spectral data, appears to occur in a particular type of strata. Our objective is to identify the physical and chemical characteristics of shrubby reed-mustard's environment. Site characteristics such as parent material and associated vegetation have been identified and documented. Soil properties such as water-soluble and total leachable elements, particle-size distribution, organic carbon, cation exchange capacity, total nitrogen, and available phosphorus and potassium are being determined. During the course of this investigation, soils within four shrubby reed-mustard habitat areas were sampled. Soils from non-shrubby reed-mustard areas adjacent to the four shrubby reed-mustard populations were also sampled. Soil samples were collected from a total of twenty-five shrubby reed-mustard soil pits and twenty-four non-shrubby reed-mustard soil pits. The soil horizons of each pedon were delineated, and samples were collected from each horizon. Field data indicate that shrubby reed-mustard occurs exclusively in shale-derived, shallow soils on bedrock-controlled uplands. Although there is some overlap of plant species on both types

  1. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity

  2. Consensus evaluation of radioactivity-in-soil reference materials in the context of an NPL Environmental Radioactivity Proficiency Test Exercise.

    PubMed

    Dean, Julian; Collins, Sean; Garcia Miranda, Maria; Ivanov, Peter; Larijani, Cyrus; Woods, Selina

    2017-01-25

    The development of two radioactivity-in-soil reference materials is described - one for peat and one for soil with high sand content. Each bulk material was processed, subdivided and measured before being sent to participants in an NPL Environmental Radioactivity Proficiency Test Exercise. Activity concentrations of radionuclides in each material were determined by 'consensus' evaluations of participants' results using two weighted mean methods. The project demonstrated the use of such exercises in delivering reference materials to the user community.

  3. Use of Fly Ash as a Liming Material for Corn and Soybean Production on an Acidic Sandy Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fly ash (FA) produced from subbituminous coal combustion can potentially serve as a lime material for crop production in acidic soils in areas. A five-year study was conducted to determine if FA can be used as a liming material in an acid sandy soil under corn and soybean grain production. Fly ash...

  4. Artificial soil formation and stabilization of material cycles in closed ecological systems for Mars habitats

    NASA Astrophysics Data System (ADS)

    Borchardt, Joshua D.

    Scientists are increasingly pressured to investigate novel ways in which to feed astronauts for the first mission to Mars in the 2030s. It is the aim of this thesis to conduct a preliminary investigation for soil formation of NASA JSC Mars-1A Regolith Simulant in an environmentally closed ecosystem to simulate plant growth within these initial habitats, and the prospect of soil formation from a Mars parent material for agricultural purposes. The rhizosphere and plant stress will be the main regions of research focus. It is hypothesized rhizosphere activity will determine the rate of stable soil formation adequate to support the agricultural needs of Mars's first human inhabitants. A Brassica rapa (Wisconsin FastPlant(TM)) was grown on several different substrates, and evaluated for plant stress, elemental analysis, soil fertility, and mineralogical analysis to identify the biogeochemical factors related to areas inside and outside of the rhizosphere, which affect soil formation. In addition, multiple plant generations were grown to investigate bioavailability of nutrients within the system, and lay down preliminary approaches for mathematical model development in order to predict & evaluate future conditions and applications under reduced resource availability situations. Overall, the story of early soil formation from a Mars regolith simulant is further defined to aid in the success of our first human adventurers to the red planet.

  5. The Biotoxicity of Mars Soils

    NASA Technical Reports Server (NTRS)

    Kerney, Krystal

    2010-01-01

    Recent evidence from the Opportunity and Spirit rovers suggests that the soils on Mars might be very high in biotoxic materials induding sulfate salts, chlorides, and acidifying agents. Yet, very little is known about how the chemistries of Mars soils might affect the survival and growth of terrestrial microorganisms. The primary objectives of the proposed research will be to: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, chlorides, and acidifying minerals; (2) use the stimulants to conduct a series of toxicology assays to determine if terrestrial microorganisms from spacecraft or extreme environments can survive direct exposure to the biotoxic soils, and (3) mix soils from extreme environments on Earth into Mars analog soils to determine if terrestrial microorganisms can grow and replicate under Martian conditions. The Mars analog soils will be thoroughly characterized by a wide diversity of soil chemistry assays to determine the exact nature of the soluble biotoxic components following hydration. The microbial experiments will be designed to test the effects of Mars stimulants on microbial survival, growth and replication during direct challenge experiments. Toxicology experiments will be designed to mimic terrestrial microbes coming into contact with biotoxic soils with and without liquid water. Results are expected to help" ... characterize the limits of life in ... planetary environments ... " and may help constrain the search for life on Mars.

  6. Dose-response functions for the soiling of heritage materials due to air pollution exposure.

    PubMed

    Watt, John; Jarrett, David; Hamilton, Ron

    2008-08-01

    A set of materials (Portland limestone, white painted steel, white plastic and polycarbonate filter material) was exposed at locations in London, Athens and Krakow. Regular measurements of reflectance were taken over a period of twelve months. Co-located measurements of PM(10) concentrations were available. Based on these results, the relationship between soiling (measured as loss of reflectance) and ambient PM(10) concentrations was quantified leading to the development of dose-response functions for the soiling of materials. The results for limestone revealed too much scatter for a prediction to be made. Implications for air quality management and for the conservation of cultural heritage buildings are considered, including public acceptability and economic factors.

  7. Element concentrations in soils and other surficial materials of the conterminous United States

    USGS Publications Warehouse

    Shacklette, Hansford T.; Boerngen, Josephine G.

    1984-01-01

    Samples of soils or other regoliths, taken at a depth of approximately 20 cm form locations about 80 km apart, throughout the conterminous United States, were analyzed for their content of elements. In this manner, 1,318 sampling sites were chosen, and the results of the sample analyses for 50 elements were plotted on maps. The arithmetic and geometric mean, the geometric deviation, and a histogram showing frequencies of analytical values are given for 47 elements. The lower concentrations of some elements (notable, aluminum, barium, calcium, magnesium, potassium, sodium, and strontium) in most samples of surficial materials from the Eastern United States, and the greater abundance of heavy metals in the same materials of the Western United States, indicates a regional geochemical pattern of the largest scale. The low concentrations of many elements in soils characterize the Atlantic Coastal Plain. Souls of the Pacific Northwest generally have high concentrations of aluminum, cobalt, iron, scandium, and vanadium, but are low in boron. Soils of the Rocky Mountain region tend to have high concentrations of copper, lead, and zinc. High mercury concentrations in surficial materials are characteristic of Gulf Coast sampling sites and the Atlantic coast sites of Connecticut, Massachusetts, and Maine. At the State level, Florida has the most striking geochemical pattern by having soils that are low in concentrations of most elements considered in this study. Some smaller patterns of element abundance can be noted, but the degree of confidence in the validity of these patterns decreases as the patterns become less extensive.

  8. Morphology and physical properties of soil material in cryogenic cracks of permafrost-affected meadow-chernozemic soils of the Trans-Baikal Region

    NASA Astrophysics Data System (ADS)

    Tsybenov, Yu. B.; Chimitdorzhieva, G. D.; Chimitdorzhieva, E. O.; Egorova, R. A.; Mil'kheev, E. Yu.; Davydova, T. V.; Korsunova, Ts. D.-Ts.

    2016-08-01

    Meadow-chernozemic soils (Turbic Chernozems Molliglossic) in the western Trans-Baikal Region are dissected by large cryogenic cracks penetrating to the depth of 100-120 cm and filled with humified material. The depth of humus pockets is 50-80 cm, and their width in the upper part is 50-90 cm. The lower boundary of most of the humus pockets lies at the depth of 60-70 cm. The development of cryogenic cracks proceeded due to their penetration into the frozen ground, which is evidenced by their sharply narrowing lower part. The fraction of physical clay (<0.01 mm) constitutes a considerable part of the material filling the cracks, which explains the significant humus content in this material. The contents of humus and adsorbed bases sharply decrease down through the soil profile in the soil mass between the cracks and remain relatively stable in the material filling the cracks. The soil mass in humus pockets is less compact that that in the background soil mass at the same depth, which is explained by the higher humus content in the pockets. Humified soil material in the pockets is also characterized by a higher porosity and, hence, higher water permeability than the surrounding soil mass.

  9. Soil Stabilization for Roadways and Airfields

    DTIC Science & Technology

    1987-07-01

    Moduli. For lime-soil pavement struc- tural layers possessing high shear strength , the flexural stresses in the lime-soil mixture may be the control...mixtures to water produces only slightly detrimental effects, and the ratio of soaked to unsoaked compressive strength of the mixtures is quite high ...experience accelerated strength loss if the material is subjected to excessive moisture or cyclic freeze-thaw. Lime treatment of high sulfate content

  10. Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Schiffman, P.; Drief, A.; Southard, R. J.

    2004-01-01

    Cemented soils formed via reactions with salts are studied here and provide information about the climate when they formed. Spectroscopic and microprobe studies have been performed on cemented volcanic crusts in order to learn about the composition of these materials, how they formed, and what they can tell us about climatic interactions with surface material on Mars to form cemented soils. These crusts include carbonate, sulfate and opaline components that may all be present in cemented soil units on Mars.

  11. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  12. Investigation of sodium sulfate phase transitions in a porous material using humidity- and temperature-controlled X-ray diffraction.

    PubMed

    Linnow, Kirsten; Zeunert, Anke; Steiger, Michael

    2006-07-01

    Crystals growing in confined spaces can generate stress and are a major cause of damage in porous materials. To investigate such deleterious processes, appropriate in situ techniques are required. This paper describes the use of X-ray diffractometry under controlled conditions of temperature and relative humidity (RH-XRD) for the direct observation of phase transition reactions in a porous substrate. An improved environmental chamber without temperature gradients is presented and applied to the investigation of phase transformations in the system Na2SO4 + H2O. This salt is generally considered as particularly damaging and frequently used in accelerated weathering tests. It is demonstrated that RH-XRD can be successfully applied for the direct observation of several relevant phase transitions in glass frits used as porous substrates. The conversion of Na2SO4(III) to Na2SO4(V) and the hydration of Na2SO4(V) both proceed fairly rapidly as true solid-state reactions without deliquescence of the educt phases. In contrast, crystallization from solution is kinetically hindered as there is a strong tendency of aqueous Na2SO4 to form supersaturated solutions also in narrow pores. The important implications of this behavior of the salt are also briefly discussed in the paper.

  13. Factors controlling sulfate retention and transport in a forested watershed in the Georgia Piedmont

    SciTech Connect

    Shanley, J.B.

    1989-01-01

    The mechanisms that control sulfate retention and transport were investigated at Panola Mountain, a 41-ha forested watershed in the Georgia Piedmont. The approach combined laboratory determination of soil sulfate sorption properties with a field study that was designed to infer mechanisms controlling sulfate chemistry from temporal and spatial variations in sulfate concentration and flux. Aqueous sulfate concentrations are regulated at two discrete levels: near 100 {mu}eq L{sup {minus}1} by organic-rich upper horizon soils and near 10 {mu}eq L{sup {minus}1} by deeper mineral soils. Upper horizon soils contain a large pool of labile sulfate that damps variations in sulfate concentrations. Runoff from a 3-ha granodiorite outcrop in the headwaters varied from near zero to greater than 500 {mu}eq L{sup {minus}1} sulfate. After only minimal contact with organic-rich soils, however, sulfate was regulated at 80-120 {mu}eq L{sup {minus}1} in the headwater stream. Soil solution (200 {mu}eq L{sup {minus}1} sulfate) and groundwater in the upper part of the watershed (50 {mu}eq L{sup {minus}1} sulfate) also were controlled primarily by the organic horizon. In the lower part of the basin, mineral soil regulates sulfate in groundwater and low-flow streamwater at approximately 10 {mu}eq L{sup {minus}1}. Streamwater sulfate, however, increased to 100 {mu}eq L{sup {minus}1} or more during storms. Regulation of stream sulfate concentration shifted from the sulfate-retaining mineral soil at low flow to the upper-horizon, organic-rich soil at high flow. From October 1985 to September 1988, the watershed retained 75.4% of sulfate in wet deposition. For individual storms, however, sulfate retention ranged from less than 0% (net export) to greater than 99%.

  14. Experimental study of bentonite-soil mixtures as anti-seepage materials of constructed wetlands.

    PubMed

    Chen, Jing; Li, Zifu; Zhao, Xin; Li, Haihan

    2011-01-01

    In this study, mixtures of different kinds of bentonite and soil were used and tested in order to find a cheap alternative to current anti-seepage materials for constructed wetlands. The anti-seepage layer of constructed wetlands was simulated in the experimental study and the permeability coefficient of the mixed materials was determined in order to evaluate the anti-seepage effect of mixtures. The main results are as follows: (i) The minimum mass ratio of bentonite to soil is 10%; (ii) Within a certain range, the more compact and higher the wet density is, then the better anti-seepage effect is (under the condition of certain moisture content). The permeability coefficient of the mixed materials exponentially increased with the increase of wet density; (iii) At the wet density of 1.83 g/cm(3), corresponding with the optimum compactness, the mixture of natural sodium bentonite produced in Wyoming, USA and soil from Cangzhou, Hebei province showed the best anti-seepage performance; (iv) The impermeability of the mixture with smaller particle sizes of bentonite was far better than that with the bigger particle sizes; (v) The hydration effect of bentonite changed the structure of the mixture materials into a special structure that is similar to that of pure bentonite. The particles of the mixture became expanded under SEM investigation and the mixture became more compact, which could have the same or similar effect as pure bentonite for anti-seepage.

  15. Evaluation of Varying Biochars as Carrier Materials for Bacterial Soil Inoculants

    NASA Astrophysics Data System (ADS)

    Hale, Lauren; Crowley, David

    2014-05-01

    The incorporation of biochar into agricultural soils for carbon sequestration and improved soil fertility creates an opportunity to simultaneously deliver plant-growth promoting rhizobacteria (PGPR). Many characteristics of biochar materials indicate that these particles could be conducive as inoculum carriers. This could provide a value-added component for biochar marketing and has an advantage over traditional carrier materials, which can be unsustainable or expensive to produce. Here, we assessed the suitability of 10 biochar types, made from 5 feedstocks at 2 pyrolysis temperatures (300°C and 600°C), to serve as carriers for 2 model PGPR strains, Enterobacter cloacae UW5 and Pseudomonas putida UW4. All biochars were characterized based on BET specific surface area, C-N content, pH, EC, and their abilities to adsorb bacterial cells from a liquid inoculum. Further studies incorporated qPCR to quantify the survival of inoculants after introduction into soils via biochar carriers. The biochars that performed well were further assayed for their influence on PGPR traits, 1-aminocyclopropane-1-carboxylate (ACC) deaminase and auxin production. Peat and vermiculite served as traditional carrier materials to which we compared the biochars. Our findings indicated that biochars varied in their interactions with our model PGPR strains. Based on our analysis several biochar types were able to serve as carriers which were as good, if not better than, the traditional carrier materials. Future work should seek to assess shelf life and varying inoculation methods for the biochar-inoculant complexes.

  16. Heavy Metals in Water Percolating Through Soil Fertilized with Biodegradable Waste Materials.

    PubMed

    Wierzbowska, Jadwiga; Sienkiewicz, Stanisław; Krzebietke, Sławomir; Bowszys, Teresa

    2016-01-01

    The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), "Dano" compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm(3)) of heavy metals in the leachate were as follows: Cd (3.6-11.5) < Mn (4.8-15.4) < Cu (13.4-35.5) < Zn (27.5-48.0) < Cr (36.7-96.5) < Ni (24.4-165.8) < Pb (113.8-187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.

  17. Residual keratan sulfate in chondroitin sulfate formulations for oral administration.

    PubMed

    Pomin, Vitor H; Piquet, Adriana A; Pereira, Mariana S; Mourão, Paulo A S

    2012-10-01

    Chondroitin sulfate is a biomedical glycosaminoglycan (GAG) mostly used as a dietary supplement. We undertook analysis on some formulations of chondroitin sulfates available for oral administration. The analysis was based on agarose-gel electrophoresis, strong anion-exchange chromatography, digestibility with specific GAG lyases, uronic acid content, NMR spectroscopy, and size-exclusion chromatography. Keratan sulfate was detected in batches from shark cartilage, averaging ∼16% of the total GAG. Keratan sulfate is an inert material, and hazardous effects due to its presence in these formulations are unlikely to occur. However, its unexpected high percentage compromises the desired amounts of the real ingredient specified on the label claims, and forewarns the pharmacopeias to update their monographs. The techniques they recommended, especially cellulose acetate electrophoresis, are inefficient in detecting keratan sulfate in chondroitin sulfate formulations. In addition, this finding also alerts the manufacturers for improved isolation procedures as well as the supervisory agencies for better audits. Analysis based on strong anion-exchange chromatography is shown to be more reliable than the methods presently suggested by standard pharmacopeias.

  18. Simple method for estimating soil mass loading onto plant surface using magnetic material content as a soil indicator - Influence of soil adhesion to vegetation on radioactive cesium concentration in forage.

    PubMed

    Sunaga, Yoshihito; Harada, Hisatomi

    2016-11-01

    A simple technique for estimating soil mass loading on vegetation was developed using magnetic material content as an indicator of soil adhesion. Magnetic material contents in plant and soil samples were determined by a magnetic analyzer. High recovery rates of 85-97% were achieved in a recovery test in which additional soil was added to powdered plant materials [stem of forage corn (Zea mays L.), aboveground part of Italian ryegrass (Lolium multiflorum Lam.)] at addition rates of 12.3-200 g dry soil kg(-1) dry plant material including soil. Samples of different Japanese cultivated soils were tested and showed a range of magnetic contents of 1.27-16.1 g kg(-1) on a dry weight basis. These levels are considered adequate for determining soil contamination in plant materials. Then, we applied this method for confirming the effect of soil adhesion on radioactive cesium concentrations in plant samples obtained at the area affected by the 2011 nuclear accident in Japan. The mean soil mass loading (±standard deviation) on forage rye (Secale cereale L.) showing mild lodging was 0.8 ± 0.6 g kg(-1), but was 7.4 ± 5.0 g kg(-1) for plants with serious lodging. No soil loading was detected on rye plants that showed no lodging. Radioactive cesium concentrations in the rye samples increased linearly with the increase in soil mass loading caused by plant lodging, and consequently mean radioactive cesium concentration for rye plants with serious lodging was about 2.7 times higher than that with no lodging. Cesium radioactivity in forage was affected by variations in soil mass loading onto forage plants caused by changes in plant growth and differences between plant species.

  19. Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils

    USGS Publications Warehouse

    Bern, C.R.; Townsend, A.R.; Farmer, G.L.

    2005-01-01

    Controls over nutrient supply are key to understanding the structure and functioning of terrestrial ecosystems. Conceptual models once held that in situ mineral weathering was the primary long-term control over the availability of many plant nutrients, including the base cations calcium (Ca), magnesium (Mg), and potassium (K). Recent evidence has shown that atmospheric sources of these "rock-derived" nutrients can dominate actively cycling ecosystem pools, especially in systems on highly weathered soils. Such studies have relied heavily on the use of strontium isotopes as a proxy for base-cation cycling. Here we show that vegetation and soil-exchangeable pools of strontium in a tropical rainforest on highly weathered soils are still dominated by local rock sources. This pattern exists despite substantial atmospheric inputs of Sr, Ca, K, and Mg, and despite nearly 100% depletion of these elements from the top 1 m of soil. We present a model demonstrating that modest weathering inputs, resulting from tectonically driven erosion, could maintain parent-material dominance of actively cycling Sr. The majority of tropical forests are on highly weathered soils, but our results suggest that these forests may still show considerable variation in their primary sources of essential nutrients. ?? 2005 by the Ecological Society of America.

  20. Parent material, vegetation or slope position - which soil-forming factor controls the intensity of podzolization process in the soils of the Sudety Mountains montane zone?

    NASA Astrophysics Data System (ADS)

    Musielok, Łukasz

    2016-04-01

    Climatic conditions, parent material and vegetation type are considered to be the main soil-forming factors controlling podzolization process advancement. Moreover, in hilly and mountainous areas properties of soils that are undergoing podzolization process are influenced significantly by its location on a slope, due to lateral translocation of soil solutions. The Sudety Mts. are a medium-high mountain range characterized by geological mosaic with many different sedimentary, igneous and metamorphic rocks, mostly poor in alkali elements. Most of the Sudety Mts. area lies in a lower montane zone, where the dominant natural vegetation were temperate mixed and deciduous forests. However, since 18th century natural vegetation was significantly transformed by widespread introduction of spruce monocultures. These distinguishing features of the Sudety Mts. natural environment are considered to be responsible for prevalence of podzolized soil in this area, however the intensity of podzolization process is very differentiated. The aim of presented research was to determine the influence of varying parent material, different vegetation types and different slope positions the on the soil properties variability, and thus, to answer the question which of the analyzed soil-forming factors is controlling the podzolization process advancement in the Sudety Mountains montane zone? Data from A, E, Bs and C horizons of 16 soil profiles developed from different parent materials (granite, sandstone, andesites and mica schists), located under various types of vegetation (spruce and beech forests) and in different slope positions (upper, middle and lower parts of the slopes) were taken into the analysis. All analyzed soil profiles were located in lower montane zone between 550 and 950 m a. s. l. to avoid the influence of varying climatic conditions. One-way ANOVA and Principal Components Analysis (PCA) were used to analyze differentiation of soil texture, pH, organic carbon and nitrogen

  1. Measurement of radon exhalation rate in various building materials and soil samples

    NASA Astrophysics Data System (ADS)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  2. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil.

    PubMed

    Koskinen, William C; Marek, LeEtta J; Hall, Kathleen E

    2016-03-01

    There is a need for simple, fast, efficient and sensitive methods of analysis for glyphosate and its degradate aminomethylphosphonic acid (AMPA) in diverse matrices such as water, plant materials and soil to facilitate environmental research needed to address the continuing concerns related to increasing glyphosate use. A variety of water-based solutions have been used to extract the chemicals from different matrices. Many methods require extensive sample preparation, including derivatization and clean-up, prior to analysis by a variety of detection techniques. This review summarizes methods used during the past 15 years for analysis of glyphosate and AMPA in water, plant materials and soil. The simplest methods use aqueous extraction of glyphosate and AMPA from plant materials and soil, no derivatization, solid-phase extraction (SPE) columns for clean-up, guard columns for separation and confirmation of the analytes by mass spectrometry and quantitation using isotope-labeled internal standards. They have levels of detection (LODs) below the regulatory limits in North America. These methods are discussed in more detail in the review.

  3. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials

    DOEpatents

    Lindgren, Eric R.; Mattson, Earl D.

    2001-01-01

    Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

  10. Designing for cleanability: The effects of material, surface roughness, and the presence of blood test soil and bacteria on devices.

    PubMed

    Gonzalez, Elizabeth A; Nandy, Poulomi; Lucas, Anne D; Hitchins, Victoria M

    2017-02-01

    Cleaning reusable medical devices removes organic and inorganic soil, which allows for effective disinfection and sterilization. However, it is not always clear what variables to consider when validating cleaning. This study compared the ability of 3 different cleaning agents (ie, water, alcohol, and bleach) to remove bacteria (ie, vegetative and spores) and artificial blood test soil from 2 common device materials: polypropylene and ultra-high-molecular-weight polyethylene. There was a complex interaction between bacteria, soil, and surface roughness.

  11. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    SciTech Connect

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex.

  12. Laboratory and field testing for utilization of an excavated soil as landfill liner material.

    PubMed

    Bozbey, Ilknur; Guler, Erol

    2006-01-01

    This study investigates the feasibility of using a silty soil excavated in highway construction as landfill liner material. The tests were conducted both at laboratory and in situ scales, and the soil was tested in pure and lime treated forms. Different levels of compaction energy were used. For the field study, a test pad was constructed and in situ hydraulic conductivity experiments were conducted by sealed double ring infiltrometers (SDRI). Laboratory testing revealed that while lime treatment improved the shear strength, it resulted in higher hydraulic conductivity values compared to pure soil. It was observed that leachate permeation did not change the hydraulic conductivity of the pure and lime treated samples. Laboratory hydraulic conductivities were on the order of 10(-9) m/s and met the 1.0E-08 m/s criterion in the Turkish regulations, which is one order of magnitude higher than the value allowed in most developed countries. SDRI testing, which lasted for 6 mo, indicated that lime treatment increased the hydraulic conductivity of pure soil significantly in the field scale tests. In situ hydraulic conductivities were on the order of 1E-08 and 1E-07 m/s, and exceeded the allowable value in the Turkish regulations. Undisturbed samples collected from the test pad were not representative of field hydraulic conductivities. Contrary to laboratory findings, higher compaction efforts did not result in lower hydraulic conductivities in field scales. The study verified the importance of in situ hydraulic conductivity testing in compacted liners.

  13. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity.

  14. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  15. Improving quality of textile wastewater with organic materials as multi soil layering

    NASA Astrophysics Data System (ADS)

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  16. The importance of parent material information derived from globally available small scale legacy data for soil mapping at medium scale

    NASA Astrophysics Data System (ADS)

    Schuler, U.; Bock, M.; Günther, A.; Willer, J.; Pickert, E.; Asch, K.; Baritz, R.

    2012-04-01

    Up to now, harmonized global soil information is solely available from the FAO-Unesco Soil map of the world at 1:5M scale (FAO-Unesco 1974-1981). However, for monitoring global environmental changes and sustainable land resource management, higher resolution soil maps are urgently needed. At the global scale, the soil forming factors climate, soil parent material (SPM) and topography can be considered the most important parameters for spatial prediction of soil associations and their properties. While topographic and climatic information is available at high spatial resolutions, SPM information can only be derived from small-scale geological maps or soil maps. The objective of this study is to investigate the potential of commonly available SPM data derived from small scale soil and geological maps for soil mapping at the 1:250k scale. The study was conducted for a test site in Southern Saxony, Germany, 140*85 km wide, representing diverse soil landscapes. Additionally, SPM maps were derived from a reclassification of the geological overview map of Germany at 1:1M scale, and the European Soil database. The proposed SPM classification, developed in the framework of the EU-FP7 eSOTER project, is based on the degree of SPM consolidation, its geochemical character, and the major bedrock types. In addition, SPM-related surface processes are characterized since SPM is defined here as the original lithological material before the onset of weathering and soil formation processes. To assess the potential of SPM data for the spatial delineation of soil associations, random forest-based predictions of soils and its properties were carried out using relief attributes from digital elevation model data. Model runs were performed (i) with and (ii) without spatial information on SPM properties. The outputs were compared with independent soil information of model validation areas. Training and validation point data was selected from a comprehensive dataset representing more than 14

  17. Geological controls on soil parent material geochemistry along a northern Manitoba-North Dakota transect

    USGS Publications Warehouse

    Klassen, R.A.

    2009-01-01

    As a pilot study for mapping the geochemistry of North American soils, samples were collected along two continental transects extending east–west from Virginia to California, and north–south from northern Manitoba to the US–Mexican border and subjected to geochemical and mineralogical analyses. For the northern Manitoba–North Dakota segment of the north–south transect, X-ray diffraction analysis and bivariate relations indicate that geochemical properties of soil parent materials may be interpreted in terms of minerals derived from Shield and clastic sedimentary bedrock, and carbonate sedimentary bedrock terranes. The elements Cu, Zn, Ni, Cr and Ti occur primarily in silicate minerals decomposed by aqua regia, likely phyllosilicates, that preferentially concentrate in clay-sized fractions; Cr and Ti also occur in minerals decomposed only by stronger acid. Physical glacial processes affecting the distribution and concentration of carbonate minerals are significant controls on the variation of trace metal background concentrations.

  18. Diffusion of Iodine and Rhenium in Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Whyatt, Greg A.; Powers, Laura; Parker, Kent E.; Wood, Marcus I.

    2006-12-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). This understanding will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. A set of diffusion experiments using carbonated and non-carbonated concrete-soil half cells was conducted under unsaturated conditions (4% and 7% by wt moisture content). Spiked concrete half-cell specimens were prepared with and without colloidal metallic iron addition and were carbonated using supercritical carbon dioxide. Spikes of I and Re were added to achieve measurable diffusion profile in the soil part of the half-cell. In addition, properties of concrete materials likely to influence radionuclide migration such as carbonation were evaluated in an effort to correlate these properties with the release of iodine and rhenium.

  19. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry.

    PubMed

    Pye, Kenneth; Blott, Simon J

    2004-08-11

    Particle size is a fundamental property of any sediment, soil or dust deposit which can provide important clues to nature and provenance. For forensic work, the particle size distribution of sometimes very small samples requires precise determination using a rapid and reliable method with a high resolution. The Coulter trade mark LS230 laser granulometer offers rapid and accurate sizing of particles in the range 0.04-2000 microm for a variety of sample types, including soils, unconsolidated sediments, dusts, powders and other particulate materials. Reliable results are possible for sample weights of just 50 mg. Discrimination between samples is performed on the basis of the shape of the particle size curves and statistical measures of the size distributions. In routine forensic work laser granulometry data can rarely be used in isolation and should be considered in combination with results from other techniques to reach an overall conclusion.

  20. Some adverse effects of soil amendment with organic Materials-The case of soils polluted by copper industry phytostabilized with red fescue.

    PubMed

    Cuske, Mateusz; Karczewska, Anna; Gałka, Bernard; Dradrach, Agnieszka

    2016-08-02

    The study was aimed to examine the effects of soil amendment with organic waste materials on the growth of red fescue and the uptake of Cu and Zn by this grass, in view of its potential usage for phytostabilization of Cu-polluted soils. Five soils, containing 301-5180 mg/kg Cu, were collected from the surroundings of copper smelter Legnica, and amended with lignite (LG) and limed sewage sludge (SS). Plant growth and the concentrations of Cu and Zn in the shoots and roots of grass were measured in a pot experiment and related to the results of Pytotoxkit and Microtox® tests performed on soil solution. The effects of soil amendment with LG and SS differed greatly, and depended on soil properties. In some cases, the application of alkaline SS resulted in dramatic increase of Cu phytotoxicity and its enhanced uptake by plants, while application of LG to slightly acidic soil caused increased accumulation of Zn in plants, particularly in their roots. The study confirmed good suitability of red fescue for phytostabilization of Cu-contaminated soils except for those extremely polluted. Organic amendments to be used for metal immobilization should be thoroughly examined prior to application.

  1. Development of construction materials like concrete from lunar soils without water

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  2. THE DEVELOPMENT OF SYNTHETIC SOIL MATERIALS FOR THE SUCCESSFUL RECLAMATION OF ABANDONED MINED LAND SITES

    SciTech Connect

    Song Jin

    2006-03-01

    Abandoned mine sites associated with coal and metal mining across the western United States have been left as unproductive wastelands. The availability of soil materials or other materials to support the restoration of the vegetative cover and enhance the recovery of such areas is limited. The restoration of these areas often requires the use of available amendments such as organic waste products or to help stabilize the soil. Many of the organic waste products, including sewage sludge, clarifier sludge, fly ash sludge, and other by-products from the agricultural industries such as compost can be employed for beneficial uses. This study looked at the feasibility of applying organic waste products to a mine soil in Montana to increase soil fertility and enhance plant productivity. Waste rock samples were tested for acid forming potential via acid base accounting. Samples cores were constructed and leached with simulated rainwater to determine amendment affect on metal leaching. A greenhouse study was completed to determine the most suitable amendment(s) for the field mine land site. Results from the acid base accounting indicate that acid formed from the waste rock would be neutralized with the alkalinity in the system. Results also show that metals in solution are easily held by organics from the amendments and not allowed to leach in to the surrounding water system. Data from the greenhouse study indicated that the amendment of sewage sludge was most promising. Application of 2% sewage sludge along with 1% sewage sludge plus 1% clarifier sludge, 2% compost, and no treatment were used for mine land application. Initial results were encouraging and it appears that sewage sludge may be a good reclamation option for mine lands.

  3. Regional mapping of soil parent material by machine learning based on point data

    NASA Astrophysics Data System (ADS)

    Lacoste, Marine; Lemercier, Blandine; Walter, Christian

    2011-10-01

    A machine learning system (MART) has been used to predict soil parent material (SPM) at the regional scale with a 50-m resolution. The use of point-specific soil observations as training data was tested as a replacement for the soil maps introduced in previous studies, with the aim of generating a more even distribution of training data over the study area and reducing information uncertainty. The 27,020-km 2 study area (Brittany, northwestern France) contains mainly metamorphic, igneous and sedimentary substrates. However, superficial deposits (aeolian loam, colluvial and alluvial deposits) very often represent the actual SPM and are typically under-represented in existing geological maps. In order to calibrate the predictive model, a total of 4920 point soil descriptions were used as training data along with 17 environmental predictors (terrain attributes derived from a 50-m DEM, as well as emissions of K, Th and U obtained by means of airborne gamma-ray spectrometry, geological variables at the 1:250,000 scale and land use maps obtained by remote sensing). Model predictions were then compared: i) during SPM model creation to point data not used in model calibration (internal validation), ii) to the entire point dataset (point validation), and iii) to existing detailed soil maps (external validation). The internal, point and external validation accuracy rates were 56%, 81% and 54%, respectively. Aeolian loam was one of the three most closely predicted substrates. Poor prediction results were associated with uncommon materials and areas with high geological complexity, i.e. areas where existing maps used for external validation were also imprecise. The resultant predictive map turned out to be more accurate than existing geological maps and moreover indicated surface deposits whose spatial coverage is consistent with actual knowledge of the area. This method proves quite useful in predicting SPM within areas where conventional mapping techniques might be too

  4. Spectral variations in rocks and soils containing ferric iron hydroxide and(or) sulfate minerals as seen by AVIRIS and laboratory spectroscopy

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2004-01-01

    with AVIRIS data, a laboratory experiment was performed in which spectra were acquired of a goethite-bearing rock while progressively decreasing the areal abundance of the rock with respect to a background of white, fine-grained quartz sand. This experiment found that, with decreasing material abundance, the crystal field absorption feature of goethite near 1.0 micron decreases in depth and narrows more from the long wavelength side of the feature than from the short wavelength side, as is the case in goethite reference spectra as grain size decreases from coarse to fine. In the Marysvale study area, goethite-bearing alluvium downgradient from source outcrops tends to be identified as finer-grained or thin coatings of goethite due to the minerals presence in lesser abundance. The goethite-bearing alluvium is a closer match to reference spectra of thin coatings of goethite even though the actual grain size of the contained goethite fragments is medium to coarse grained, the same on average as that from the source outcrops. Coarser-grained goethite most likely will be correctly identified in areas of greater goethite abundance proximal to jarosite-bearing source rock where the surface is relatively free of goethite-free soil components and vegetation that corrupt the goethite spectral response. When analysis of imaging spectroscopy data is performed using reference spectra of iron minerals of varying grain sizes and mixed compositions, the results are useful not only for purposes of mineral identification, but also for distinguishing goethite-bearing outcrop from alluvial surfaces with similar mineralogy, providing valuable information for geologic, geomorphologic, mineral exploration, and environmental assessment studies.

  5. Cadmium sulfate application to sludge-amended soils: III. Relationship between treatment and plant available cadmium, zinc, and manganese. [Beta vulgaris, Zea mays

    SciTech Connect

    Mahler, R.J. ); Ryan, J.A. )

    1988-01-01

    Swiss chard (Beta vulgaris var. cicla) and corn (Zea mays L.) were used as biological indicators of Cd, Zn, and Mn availability in 12 soils amended with and without sludge, CdSO{sub 4} and CaCO{sub 3}. Soil Cd, Zn and Mn were partitioned into six fractions: soluble, exchangeable, adsorbed, organically bound, carbonate bound and sulfide bound, by the use of H{sub 2}O, KNO{sub 3}, H{sub 2}O, NaOH, EDTA and HNO{sub 3}, respectively. The data indicate that the major portion of total Cd was found in the carbonate, residual and organic fractions. Addition of CaCO{sub 3} caused an increase in the soluble and exchangeable fractions of Cd in the soils. The concentrations of Cd in the saturation extracts of the limed soils were significantly greater than those of the unlimed soils; however, this was not reflected in greater plant uptake of Cd from limed soils.

  6. Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Chang, S. (Principal Investigator)

    1993-01-01

    Spectroscopic analyses show that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite has been identified as the interlayer ferric component in Fe(3+)-doped smectites by a low quadrupole splitting and magnetic field strength of approximately 48 tesla in Mossbauer spectra measured at 4.2 K, as well as a crystal field transition at 0.92 micrometer. Ferrihydrite in these smectites explains features in the visible-near infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. Clay silicates have met resistance in the past as Mars soil analogs because terrestrial clay silicates exhibit prominent hydrous spectral features at 1.4, 1.9, and 2.2 micrometers; and these are observed weakly, if at all, in reflectance spectra of Mars. However, several mechanisms can weaken or compress these features, including desiccation under low-humidity conditions. The hydration properties of the interlayer cations also effect band strengths, such that a ferrihydrite-bearing smectite in the Martian environment would exhibit a 1.9 micrometers H2O absorption that is even weaker than the 2.2 micrometers structural OH absorption. Mixing experiments demonstrate that infrared spectral features of clays can be significantly suppressed and that the reflectance can be significantly darkened by mixing with only a few percent of a strongly absorbing opaque material. Therefore, the absolute reflectance of a soil on Mars may be disproportionately sensitive to a minor component. For this reason, the shape and position of spectral features and the chemical composition of potential analogs are of utmost importance in assessing the composition of the soil on Mars. Given the remarkable similarity between visible-infrared reflectance spectra of soils in bright regions on Mars and Fe(3+)-doped montmorillonites, coupled with recent observations of smectites in SNC

  7. Elaidate-Intercalated hydrotalcite as a sorbent material for metalaxyl immobilitzation in soil

    NASA Astrophysics Data System (ADS)

    López-Cabeza, Rocío; Cornejo, Juan; Hermosín, María C.; Cox, Lucía; Celis, Rafael

    2015-04-01

    Layered double hydroxides (LDHs), also known as hydrotalcite-like compounds (HTs), comprise a special group of layered materials. Their structure consists of positively charged layers of mixed divalent (MII) and trivalent (MIII) metal hydroxide [MII1-xMIIIx(OH)2]x+, with the positive charge being balanced by inorganic hydrated anions (An-x/n·mH2O), which occupy the interlayer space. LDHs have anion exchange properties and, therefore, are good sorbents for anionic pollutants. In addition, the anionic exchange properties of LDHs allow the intercalation of organic anions in the interlayer space to render the LDH surface hydrophobic. This increases its affinity to hydrophobic organic compounds. Pesticides with chiral centers are an emerging class of organic pollutants and it has become clear that addressing the different efficacy, toxicity, and environmental behavior of chiral pesticide enantiomers is necessary to avoid the incorrect assumption that enantiomers have identical environmental behavior. Appropriate soil remediation strategies accounting for the enantioselective behavior of chiral pesticide enantiomers are also needed. In this work, we evaluated the performance of elaidate-modified hydrotalcite (HT-ELA) as a sorbent to remove the chiral fungicide metalaxyl from aqueous solution and as an amendment for metalaxyl immobilization in soil. Analysis of metalaxyl by chiral high-performance liquid chromatography allowed us to monitor the sorption and mobility of the two enantiomers of metalaxyl, S-(+)-metalaxyl and R-(-)-metalaxyl, independently. Batch sorption experiments showed that HT-ELA [Mg3Al(OH)8ELA] displayed an excellent performance as an sorbent of the two enantiomers of metalaxyl from aqueous solution and that its addition to a sandy loam agricultural soil at a rate of 1% greatly enhanced the sorption of metalaxyl enantiomers by the soil. Column leaching experiments demonstrated that amending the soil top layer (0-2.5 cm) with HT-ELA at a rate of 1

  8. Bioengineered heparins and heparan sulfates.

    PubMed

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates.

  9. Effects of the addition of nitrogen and sulfate on CH4 and CO2 emissions, soil, and pore water chemistry in a high marsh of the Min River estuary in southeastern China.

    PubMed

    Hu, Minjie; Wilson, Benjamin J; Sun, Zhigao; Ren, Peng; Tong, Chuan

    2017-02-01

    Exogenous nitrogen (N) and sulfate (SO4(2-)), resulting from human activity, can strongly influence the emission of CH4 and CO2 from soil ecosystems. Studies have reported the effects of N and SO4(2-) on CH4 and CO2 emissions from inland peatlands and paddies. However, very few studies have presented year-round data on the effects of the addition of N and SO4(2-) on CH4 and CO2 emissions in estuarine marshes. The effects of the addition of N and SO4(2-) on the emission of CH4 and CO2 were investigated in a Cyperus malaccensis marsh in the high tidal flat of the Min River estuary of southeastern China from September 2014 to August 2015. Dissolved NH4Cl, KNO3, and K2SO4 were applied every month, in doses of 24gN/SO4(2-)m(-2)·yr(-1). The emission of CH4 and CO2 showed distinct monthly and seasonal variations. Compared with the control, the addition of NH4Cl and NH4NO3+K2SO4 showed increases in CH4 fluxes (p<0.05), while the effects of the addition of KNO3 and K2SO4 on CH4 were minor (p>0.05). NH4Cl had a positive impact on CO2 emissions (p<0.01), while the addition of KNO3, K2SO4, and NH4NO3+K2SO4 had minor positive impacts, compared to the control (p>0.05). Correlation analysis found that soil sulfate concentration, nitrogen availability and enzyme activity were the dominant factors influencing CH4 and CO2 variation. Our findings suggest that CH4 and CO2 emissions were influenced more by ammonium than by nitrate. We propose that the suppressive effect of additional sulfate on CH4 production is insignificant, due to which the inhibition may be overestimated in the estuarine brackish marsh.

  10. On the corrosion and soiling effects on materials by air pollution in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Tzanis, C.; Varotsos, C.; Christodoulakis, J.; Tidblad, J.; Ferm, M.; Ionescu, A.; Lefevre, R.-A.; Theodorakopoulou, K.; Kreislova, K.

    2011-12-01

    In the frame of the European project, entitled MULTI-ASSESS, specimens of structural metals, glass, stone and concrete materials were exposed to air pollution at a station, which was installed for this purpose on a building, located in the centre of Athens. The main purpose of this project was to determine the corrosion and soiling effects of air pollution on materials. A set of the specimens was exposed in a position that was sheltered from rain and partly from wind, and another set was exposed in unsheltered positions on the roof of the above said building. In addition, other specimens were exposed at different heights on the same building, in order to investigate for the first time the corrosion and soiling effects on various materials as a function of height. For the determination of these effects, chemical analysis of the specimens was performed and basic parameters as the weight change, the layer thickness and the optical properties were calculated. Finally, the results obtained are discussed and their plausible interpretation is attempted.

  11. On the corrosion and soiling effects on materials by air pollution in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Tzanis, C.; Varotsos, C.; Christodoulakis, J.; Tidblad, J.; Ferm, M.; Ionescu, A.; Lefevre, R.-A.; Theodorakopoulou, K.; Kreislova, K.

    2010-12-01

    In the frame of the European project, entitled MULTI-ASSESS, specimens of structural metals, glass, stone and concrete materials were exposed to air pollution at a station, which was installed for this purpose on a building, located in the centre of Athens. The main purpose of this project was to determine the corrosion and soiling effects of air pollution on materials. A set of the specimens was exposed in a position that was sheltered from rain and partly from wind, and another set was exposed in unsheltered positions on the roof of the above said building. In addition, other specimens were exposed at different heights on the same building, in order to investigate for the first time the corrosion and soiling effects on various materials as a function of height. For the determination of these effects, chemical analysis of the specimens was performed and basic parameters as the weight change, the layer thickness and the optical properties were calculated. Finally, the results obtained are discussed and their plausible interpretation is attempted.

  12. Ferrous Sulfate (Iron)

    MedlinePlus

    Ferrous sulfate provides the iron needed by the body to produce red blood cells. It is used to ... Ferrous sulfate comes as regular, coated, and extended-release (long-acting) tablets; regular and extended-release capsules; and ...

  13. [Effects of Different Kinds of Organic Materials on Soil Heavy Metal Phytoremediation Efficiency by Sedum alfredii Hance].

    PubMed

    Yao, Gui-hua; Xu, Hai-zhou; Zhu, Lin-gang; Ma, Jia-wei; Liu, Dan; Ye, Zheng-qian

    2015-11-01

    In this study, a pot experiment was conducted to investigate the effect of clean organic materials i. e., biogas residue (BR), mushroom residue (MR), and bamboo shell (BS) on phytoextraction remediation of two heavy metal contaminated soils (collected from Wenzhou and Fuyang, which referred to "Wenzhou soil" and "Fuyang soil", respectively.) using a cadmium (Cd) and zinc (Zn) hyperaccumulator Sedum alfredii Hance. The results indicated that the effects of organic materials on availabilities of soil heavy metals were different due to different kinds of heavy metals, organic materials, and the application rates of the organic materials. Addition with 5% BR showed the greatest activation to copper (Cu), Zn in Wenzhou soil, and in Fuyang soil 1% BS had the highest activation for Cu, Zn, lead ( Ph) and Cd. Growth of shoot biomass of Sedum alfredii Hance increased with the addition rate of organic materials, and the plant dry weights were increased by 23.7%-93.0%. In Wenzhou soil, only 1% BS treatment had the best effect on Cd uptake and accumulation in shoots of Sedum alfredii Hance, increased by 22.6%, while other treatments were inferior to the control. For Zn, MR treatments were inferior to the control, while other treafments were superior to the control, of which 5% BR, 1% BS and 5% BS exceeded the control by 39. 6%, 32.6% and 23.8%, respectively. In Fuyang soil, for Cd, the treatment effects of 5% BS, 1% BR and 5% BR were the greatest, of which Cd accumulation in shoots exceeded the control by 12.9%, 12.8% and 6.2%, respectively, while Cd accumulations in shoots in all other treatments were less than that of control. For Zn, the treatments of adding organic materials promoted Zn accumulation in shoots of Sedum alfredii Hance, and the best treatments were as follows: 5% BS. 5% BR and 5% MR, exceeded the control by 38.4%, 25.7% and 22.4%, respectively.

  14. Sorption/desorption reversibility of phenanthrene in soils and carbonaceous materials

    SciTech Connect

    Guohui Wang; Sybille Kleineidam; Peter Grathwohl

    2007-02-15

    Sorption/desorption of phenanthrene in two soil samples and carbonaceous materials was found to yield co-incident equilibrium isotherms and no significant hysteresis was observed. Additionally, release of native phenanthrene was investigated. Equilibrium sorption and desorption isotherms were determined using pulverized samples of Pahokee peat, lignite, and high-volatile bituminous coal, a mineral soil, and an anthropogenic soil. Instead of the conventional decant-and-refill batch method, sorption/desorption was driven by temperature changes using consistent samples. Sorption started at 77{sup o}C and was increased by reducing the temperature stepwise to 46, 20, and finally 4{sup o}C. For desorption the temperature was increased stepwise again until 77{sup o}C was reached. Besides the co-incident sorption and desorption isotherms at each temperature step, the solubility-normalized sorption/desorption isotherms of all different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked sorption isotherms indicating that the release of native phenanthrene involves the same sorption/desorption mechanisms as those for newly added phenanthrene. 35 refs., 4 figs., 5 tabs.

  15. An improved SOIL*EX{trademark} process for the removal of hazardous and radioactive contaminants from soils, sludges and other materials

    SciTech Connect

    Bloom, R.R.; Bonnema, B.E.; Navratil, J.D.; Falconer, K.L.; Van Vliet, J.A.; Diel, B.N.

    1995-12-31

    Rust`s patented SOIL*EX process is designed to remove hazardous and radioactive contaminants from soils, sludges and a matrix of other materials while destroying volatile organic compounds often associated with contaminated soil and debris. The process is comprised of three major process operations. The first operation involves the dissolution of contaminants that are chemically or mechanically bonded to the solid phase. The second process operation involves separation of the solid phase from the dissolution solution (mother liquor), which contains the dissolved contaminants. The final operation concentrates and removes the contaminants from the mother liquor. A pilot-scale SOIL*EX system was constructed at Rust`s Clemson Technical Center for a Proof-of-Process demonstration. The demonstration program included the design, fabrication, and operation of pilot scale and demonstration equipment and systems. The pilot plant, an accurate scaled-down version of a proposed full-scale treatment system, was operated for five months to demonstrate the efficiency of the overall process. The pilot plant test program focused on demonstrating that the SOIL*EX process would remove and concentrate the contaminants and destroy volatile organic compounds. The pilot plant processed nearly 20 tons of soils and sludges, and test results indicated that all contaminants of concern were removed. Additionally, Rust completed numerous bench scale tests to optimize the chemistry. This paper discusses the pilot plant test criteria and results along with the salient design features of the SOIL*EX system and planned improvements.

  16. Infrared Spectroscopic Analyses of Sulfate, Nitrate, and Carbonate-bearing Atacama Desert Soils: Analogs for the Interpretation of Infrared Spectra from the Martian Surface

    NASA Technical Reports Server (NTRS)

    Dalton, J. B.; Dalton, J. B.; Ewing, S. A.; Amundson, R.; McKay, C. P.

    2005-01-01

    The Atacama Desert of northern Chile is the driest desert on Earth, receiving only a few mm of rain per decade. The Mars climate may, in the past, have been punctuated by short-lived episodes of aqueous activity. The paleo-Martian environment may have had aqueous conditions similar to the current conditions that exist in the Atacama, and Mars soils may have formed with soil chemistry and mineralogy similar to those found in the Atacama. Remote and in-situ analysis of the Martian surface using infrared technology has a long heritage. Future investigations of the subsurface mineralogy are likely to build upon this heritage, and will benefit from real life lessons to be learned from terrestrial analog studies. To that end, preliminary results from a near- and mid-infrared spectroscopic study of Atacama soil profiled at a range of depths are presented.

  17. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials.

    PubMed

    Lee, Chang Hoon; Lee, Do Kyoung; Ali, Muhammad Aslam; Kim, Pil Joo

    2008-12-01

    Oyster shell, a byproduct of shellfish-farming in Korea and containing a high amount of CaCO(3), has a high potential to be used as a liming material in agriculture. However, the agricultural utilization of oyster shell is limited due to its high concentration NaCl. The oyster-shell meal collected had a low concentration of water soluble NaCl (mean 2.7 g kg(-1)), which might be a result of stacking the material for 6 months in the open field. It has a very similar liming potential with calcium carbonate, with 3.4 and 3.8 Mg ha(-1) for silt loam (SiL, pH 6.2) and sandy loam (SL, pH 5.8) to bring the soil pH to 6.5, respectively. To determine the effect of crushed oyster-shell meal on improving soil chemical and biological properties and crop plant productivity, oyster-shell meal was applied at rates of 0, 4, 8, 12, and 16 Mg ha(-1) before transplanting Chinese cabbage (Brassica campestris L.) in the two soils mentioned above. Soil pH was significantly increased to 6.9 and 7.4 by 16 Mg ha(-1) shell meal application (4 times higher level than the recommendation) in SiL and SL, respectively, at harvesting stage. The effect of liming was found higher in SL compared to SiL soil, probably due to the different buffering capacity of the two soils. The concentration of NaCl and EC value of soils were found slightly increased with shell meal applications, but no salt damage was observed. Oyster-shell meal application increased soil organic matter, available P, and exchangeable cations concentrations. The improved soil pH and nutrient status significantly increased the microbial biomass C and N concentrations and stimulated soil enzyme activities. With the exception of acid phosphomonoesterase (PMEase) activity, which decreased with increasing soil pH in SL but slightly increased in SiL, the activities of urease and alkali PMEase increased markedly with increasing soil pH by shell meal application. The improved soil chemical and biological properties resulted in increased crop

  18. Unexpected Dominance of Parent-Material Strontium in a Tropical Forest on Highly Weathered Soils.

    NASA Astrophysics Data System (ADS)

    Bern, C. R.; Townsend, A. R.; Farmer, G. L.

    2003-12-01

    Controls over nutrient supplies influence the basic structure and function of terrestrial ecosystems. Major plant nutrients supplied by mineral weathering (Ca, Mg, K) can be severely depleted in the highly weathered soils found in the tropics. Some recent studies have shown that as pools of rock-derived nutrients diminish, a transition occurs in which nutrients supplied by dust and precipitation become increasingly important. A state of near complete reliance on the atmosphere can occur on soils after as little as one million years of development. Such studies have relied heavily on strontium as a proxy for the nutrient elements of interest. We investigated sources of nutrients to a tropical forest in Costa Rica growing on a highly weathered soil derived from basaltic parent material 50-70 Ma in age. Base cations, including the strontium tracer, are severely depleted in the bulk and exchange pools of the upper soil profile. The close proximity of the ocean and rainfall in excess of 5m per year provide substantial inputs of atmospheric nutrients. Despite this, isotope ratios (87Sr/86Sr) indicate that >90% of actively cycling Sr is rock-derived. This result cannot be explained by inputs of continental dust, Central American tephra, or decoupling of Sr from the elements it is intended to trace. It places our sites on the opposite end of the transition from what previous studies would predict. Although the precise mechanisms responsible are currently unknown, our data suggest that variations in geomorphological and biological processes across systems with broadly similar climate and geology may lead to considerable variation in the dominant sources of key nutrients.

  19. Changes in interfacial tension of chlorinated solvents following flow through U.K. soils and shallow aquifer material.

    PubMed

    Harrold, Gavin; Gooddy, Daren C; Reid, Stephen; Lerner, David N; Leharne, Stephen A

    2003-05-01

    The interfacial tension (IFT) that arises at the interface between water and an immiscible organic liquid is a key parameter affecting the transport and subsequent fate of the organic liquid in water-saturated porous media. In this paper, data are presented that show how contact between a range of soil types and chlorinated hydrocarbon solvent (CHS) dense nonaqueous phase liquids (DNAPLs) can affect DNAPL/water IFT values. The soils examined are indicative of U.K. soil types and shallow aquifer materials. The solvents investigated were tetrachloroethylene (PCE) and trichloroethylene (TCE). Lab grade, recovered field DNAPL and industrial waste chlorinated solvent mixtures were used. The data from batch and column experiments invariably revealed that water/DNAPL IFT values change following contact with unsaturated soils. In the majority of cases, the IFT values increase following soil exposure. However, after contact with an organic-rich soil, the IFT of the lab grade solvents decreased. The experimental evidence suggests that these reductions are linked to the removal of organic material from the soil and its subsequent incorporation into the solvent IFT increases in the case of lab solvents are shown to be linked to the removal of stabilizers (added by the manufacturers to obviate degradation) that are removed by adsorption to soil mineral surfaces. Similarly, it is conjectured that adsorption of surface-active compounds from the industrial waste samples to soil surfaces is responsible for increases in the IFT in these samples. Finally, it was observed that invading CHSs are capable of dissolving and subsequently mobilizing in-situ soil contaminants. GC/MS analysis revealed these mobilized soil contaminants to be polyaromatic hydrocarbons and phthalate esters.

  20. Impact of terrain attributes, parent material and soil types on gully erosion

    NASA Astrophysics Data System (ADS)

    Chaplot, Vincent

    2013-03-01

    Gully erosion is a worldwide matter of concern because of the irreversible losses of fertile land, which often have severe environmental, economic and social consequences. While most of the studies on the gullying process have investigated the involved mechanisms (either overland flow incision, seepage or piping erosion), only few have been conducted on the controlling factors of gully wall retreat, an important, if not the dominant, land degradation process and sediment source in river systems. In a representative 4.4 km2 degraded area of the Drakensberg foothills (South Africa) the main objective of this study was to evaluate the relationship between the rate of gully bank retreat (GBR) and parent material, soil types and selected terrain attributes (elevation, specific drainage area, mean slope gradient, slope length factor, stream power index, compound topographic index and slope curvatures). The survey of gully bank retreat was performed during an entire hydrological year, from September 2007 to September 2008, using a network of pins (n = 440 from 110 pits). Both the gully contours and pin coordinates were determined, using a GPS with a 0.5 m horizontal accuracy (n = 20,120). The information on the parent material and the soil types was obtained from field observations complemented by laboratory analysis, while terrain attributes were extracted from a 20 m DEM generated from 5 m interval contour lines. The average GBR value for the 6512 m of gully banks found in the area was 0.049 ± 0.0013 m y- 1, which, considering bank height and soil bulk density, corresponded to an erosion rate of 2.30 ton ha- 1 y- 1. There was no significant difference in GBR between sandstone and dolerite and between Acrisols and Luvisols. Despite a weak one-to-one correlation with the selected terrain attributes (r < 0.2), a principal component analysis (PCA), the first two axes of which explained 68% of the data variability, pointed out that GBR was the highest at hillslope inflexion

  1. Evaluation of bottom ash and composted manure blends as a soil amendment material.

    PubMed

    Mukhtar, S; Kenimer, A L; Sadaka, S S; Mathis, J G

    2003-09-01

    The long-term goal of this project was to find alternative uses for bottom ash (BA) and composted dairy manure (CM), by-products of coal combustion and livestock production, respectively. The study discussed in this paper focused on potential water quality impacts associated with using blended BA and CM as a soil amendment. The constituents of BA and CM include heavy metals and other chemicals that, while essential nutrients for plant growth, also pose a potential threat to water quality. Four blends (BA:CM, v/v) namely, B1 (100%:0%), B2 (70%:30%), B3 (50%:50%) and B4 (0%:100%), were subjected to flow-through water table management and two blends, B2 (70%:30%) and B3 (50%:50%), were subjected to constant head water table management using de-ionized water. Leachate and standing water from saturated and flooded blends of BA and CM were examined for total solids (TS), volatile solids (VS), COD, pH, total Kjeldahl nitrogen (TKN), NO(3)-N, total P, total K as well as selected metals over a 5 and 7 week period for flow-through and constant head watertables, respectively. The results showed that higher CM content resulted in higher TS, VS, TKN, P and K concentrations in the leachate and standing water. Concentrations of these constituents were higher in leachate than in the standing water. Even though, marked reductions of most chemicals in the leachate and standing water were realized within one to three weeks, initially high concentrations of chemicals in leachate and standing water from these particular blends made them unsuitable as soil amendment material. Based upon these results, it was concluded that additional column studies of BA and CM blends with reduced CM content (5%, 10% and 20%) should be performed to further assess the feasibility of BA and CM blends as an environmentally safe soil amendment material.

  2. Steroid Biomarkers Revisited – Improved Source Identification of Faecal Remains in Archaeological Soil Material

    PubMed Central

    Prost, Katharina; Birk, Jago Jonathan; Lehndorff, Eva; Gerlach, Renate; Amelung, Wulf

    2017-01-01

    Steroids are used as faecal markers in environmental and in archaeological studies, because they provide insights into ancient agricultural practices and the former presence of animals. Up to now, steroid analyses could only identify and distinguish between herbivore, pig, and human faecal matter and their residues in soils and sediments. We hypothesized that a finer differentiation between faeces of different livestock animals could be achieved when the analyses of several steroids is combined (Δ5-sterols, 5α-stanols, 5β-stanols, epi-5β-stanols, stanones, and bile acids). We therefore reviewed the existing literature on various faecal steroids from livestock and humans and analysed faeces from old livestock breed (cattle, horse, donkey, sheep, goat, goose, and pig) and humans. Additionally, we performed steroid analyses on soil material of four different archaeological periods (sites located in the Lower Rhine Basin, Western Germany, dating to the Linearbandkeramik, Urnfield Period / Bronze Age, Iron Age, Roman Age) with known or supposed faecal inputs. By means of already established and newly applied steroid ratios of the analysed faeces together with results from the literature, all considered livestock faeces, except sheep and cattle, could be distinguished on the basis of their steroid signatures. Most remarkably was the identification of horse faeces (via the ratio: epi-5β-stigmastanol: 5β-stigmastanol + epicoprostanol: coprostanol; together with the presence of chenodeoxycholic acid) and a successful differentiation between goat (with chenodeoxycholic acid) and sheep/cattle faeces (without chenodeoxycholic acid). The steroid analysis of archaeological soil material confirmed the supposed faecal inputs, even if these inputs had occurred several thousand years ago. PMID:28060808

  3. Evaluation of lunar rocks and soils for resource utilization: Detailed image analysis of raw materials and beneficiated products

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Chambers, John G.; Patchen, Allan; Jerde, Eric A.; Mckay, David S.; Graf, John; Oder, Robin R.

    1993-01-01

    The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.

  4. Manufacture of ammonium sulfate fertilizer from FGD-gypsum. Technical report, September 1--November 30, 1994

    SciTech Connect

    Chou, M.I.M.; Rostam-Abadi, M.; Lytle, J.M.; Hoeft, R.; Blevins, F.Z.; Achron, F.

    1994-12-31

    The overall goal of this project is to assess the technical and economic feasibility for producing commercial-grade ammonium sulfate fertilizer from gypsum produced as part of limestone flue gas desulfurization (FGD) processes. This is a cooperative effort among the ISGS, the UIUC, AlliedSignal, SE-ME, Henry Fertilizer, Illinois Power Co. (IP), and Central Illinois Public Services (CIPS). Bench-scale experiments will be conducted to obtain process engineering data for manufacture of ammonium sulfate from FGD-gypsum and to help evaluate technical and economical feasibility of the process. Controlled greenhouse experiments will be conducted at UIUC to evaluate the chemical impact of the produced ammonium sulfate on soil properties. A process flow sheet will be proposed and market demand for the products will be established. An engineering team at IP will provide an independent review of the economics of the process. AlliedSignal will be involved in testing and quality evaluation of ammonium sulfate samples and is interested in an agreement to market the finished product. CIPS will provide technical assistance and samples of FGD-gypsum for the project. In this quarter, a literature study that should give detailed insight into the chemistry, process schemes, and costs of producing ammonium sulfate from gypsum is in progress at the ISGS. Acquisition of a high quality FGD-gypsum sample was completed. Collecting of the other lower grade sample was scheduled to be conducted in December. Characterization of these feed materials is in progress.

  5. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator.

    PubMed

    Shi, Yu; Huang, Zhanbin; Liu, Xiujie; Imran, Suheryani; Peng, Licheng; Dai, Rongji; Deng, Yulin

    2016-04-01

    Heavy metal pollution is a severe environmental problem. Remediation of contaminated soils can be accomplished using environmental materials that are low cost and environmentally friendly. We evaluated the individual and combination effects of humic acid (HA), super absorbent polymer (SAP), zeolite (ZE), and fly ash composites (FC) on immobilization of lead (Pb) and cadmium (Cd) in contaminated soils. We also investigated long-term practical approaches for remediation of heavy metal pollution in soil. The biochemical and morphological properties of maize (Zea mays L.) were selected as biomarkers to assess the effects of environmental materials on heavy metal immobilization. The results showed that addition of test materials to soil effectively reduced heavy metal accumulation in maize foliage, improving chlorophyll levels, plant growth, and antioxidant enzyme activity. The test materials reduced heavy metal injury to maize throughout the growth period. A synergistic effect from combinations of different materials on immobilization of Pb and Cd was determined based on the reduction of morphological and biochemical injuries to maize. The combination of zeolite and humic acid was especially effective. Treatment with a combination of HA + SAP + ZE + FC was superior for remediation of soils contaminated with high levels of Pb and Cd.

  6. Di-sulfated Keratan Sulfate as a Novel Biomarker for Mucopolysaccharidosis II, IVA, and IVB.

    PubMed

    Shimada, Tsutomu; Tomatsu, Shunji; Mason, Robert W; Yasuda, Eriko; Mackenzie, William G; Hossain, Jobayer; Shibata, Yuniko; Montaño, Adriana M; Kubaski, Francyne; Giugliani, Roberto; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E; Fukao, Toshiyuki; Orii, Tadao

    2015-01-01

    Keratan sulfate (KS) is a storage material in mucopolysaccharidosis IV (MPS IV). However, no detailed analysis has been reported on subclasses of KS: mono-sulfated KS and di-sulfated KS. We established a novel method to distinguish and quantify mono- and di-sulfated KS using liquid chromatography-tandem mass spectrometry and measured both KS levels in various specimens.Di-sulfated KS was dominant in shark cartilage and rat serum, while mono-sulfated KS was dominant in bovine cornea and human serum. Levels of both mono- and di-sulfated KS varied with age in the blood and urine from control subjects and patients with MPS II and IVA. The mean levels of both forms of KS in the plasma/serum from patients with MPS II, IVA, and IVB were elevated compared with that in age-matched controls. Di-sulfated KS provided more significant difference between MPS IVA and the age-matched controls than mono-sulfated KS. The ratio of di-sulfated KS to total KS in plasma/serum increased with age in control subjects and patients with MPS II but was age independent in MPS IVA patients. Consequently, this ratio can discriminate younger MPS IVA patients from controls. Levels of mono- and di-sulfated KS in urine of MPS IVA and IVB patients were all higher than age-matched controls for all ages studied.In conclusion, the level of di-sulfated KS and its ratio to total KS can distinguish control subjects from patients with MPS II, IVA, and IVB, indicating that di-sulfated KS may be a novel biomarker for these disorders.

  7. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    NASA Astrophysics Data System (ADS)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    Heavy metal contamination is an important environmental problem, since the metals are harmful to humans, animals and tend to bioaccumulate in the food chain. The aim of this study was to determine the total concentration of As, As (III) and As(V) in soil samples, leaves and roots of plant material, growing in a mining area in Spain (Murcia). Ditichia viscosa was used as the plant of reference. The concentrations of bioavailable As in plant samples were calculated by different soil chemical extraction methods; deionized water, 0.5N NaHCO3 (Olsen extraction), oxidizable medium, 0.5 HCl, 0.05M (NH4)2SO4, 0.005M DTPA and Mehra-Jackson extraction. For this study, fourteen samples were collected in the surrounding area of Sierra Minera and Portman Bay (Murcia, SE Spain). Samples were air dried and sieved to < 2mm for general analytical determinations. To determine the As content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer. Samples showed pH average values close to neutrality. Most samples showed a very low organic matter percentage. Electrical conductivity and calcium carbonate content were considerably low in most samples. The mineralogical analysis showed that the main minerals were quartz, muscovite, kaolinite and illite, while the minority minerals were alteration products derived of mining activities (iron oxides and hydroxides, siderite, jarosite and gypsum), calcite and feldspars. Although the plants do not absorb arsenic in the same proportion, the results suggest that a good relationship exists between the total content of As in soil and the total content in plant. The results showed that the arsenic content in roots was positively correlated with the oxidizable-organic matter and sulfides

  8. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies.

  9. Microbial Transformation of 2,4,6-Trinitrotoluene in Aerobic Soil Columns

    PubMed Central

    Bruns-Nagel, D.; Breitung, J.; von Low, E.; Steinbach, K.; Gorontzy, T.; Kahl, M.; Blotevogel, K.; Gemsa, D.

    1996-01-01

    2,4,6-Trinitrotoluene (TNT)-contaminated soil material of a former TNT production plant was percolated aerobically in soil columns. Nineteen days of percolation with a potassium phosphate buffer supplemented with glucose or glucose plus ammonium sulfate caused an over 90% decline in the amount of extractable nitroaromatics in soils containing 70 to 2,100 mg of TNT per kg (dry weight). In the percolation solution, a complete elimination of TNT was achieved. Mutagenicity and soil toxicity were significantly reduced by the percolation process. 4-N-Acetylamino-2-amino-6-nitrotoluene was generated in soil and percolation fluid as a labile TNT metabolite. PMID:16535369

  10. Reclamation with Recovery of Radionuclides and Toxic Metals from Contaminated Materials, Soils, and Wastes

    NASA Technical Reports Server (NTRS)

    Francis, A. J.; Dodge, C. J.

    1993-01-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

  11. Management of Plant-parasitic Nematodes with a Chitin-Urea Soil Amendment and Other Materials

    PubMed Central

    Westerdahl, B. B.; Carlson, H. L.; Grant, J.; Radewald, J. D.; Welch, N.; Anderson, C. A.; Darso, J.; Kirby, D.; Shibuya, F.

    1992-01-01

    Field trials were conducted with a chitin-urea soil amendment and several other nematicides on four crop-nematode combinations: tomato-Meloidogyne incognita; potato-Meloidogyne chitwoodi; walnut-Pratylenchus vulnus; and brussels sprouts-Heterodera schachtii. Significant (P ≤ 0.10) nematode population reductions were obtained with the chitin-urea soil amendment in the trims on potato and walnut. In the trials on brussels sprouts and on tomato, phytotoxicity occurred at rates of 1,868 and 1,093 kg/ha, respectively. Significant (P ≤ 0.10) nematode reductions were also obtained with metham sodium on potato; with 1,3-D on tomato and brussels sprouts; and with sodium tetrathiocarbonate, XRM 5053, fenamiphos, ethoprop, LX1075-05, LX1075-07, and SN 109106 on tomato. The following materials did not provide significant nematode control under the conditions of the particular experiments: metham sodium, oxamyl, and Yucca extract on tomato; and dazomet granules on brussels sprouts. PMID:19283044

  12. A framework for assessing ecological risks of petroleum-derived materials in soil

    SciTech Connect

    Suter, G.W. II

    1997-05-01

    Ecological risk assessment estimates the nature and likelihood of effects of human actions on nonhuman organisms, populations, and ecosystems. It is intended to be clearer and more rigorous in its approach to estimation of effects and uncertainties than previously employed methods of ecological assessment. Ecological risk assessment is characterized by a standard paradigm that includes problem formulation, analysis of exposure and effects, risk characterization, and communication with a risk manager. This report provides a framework that applies the paradigm to the specific problem of assessing the ecological risks of petroleum in soil. This type of approach requires that assessments be performed in phases: (1) a scoping assessment to determine whether there is a potential route of exposure for potentially significant ecological receptors; (2) a screening assessment to determine whether exposures could potentially reach toxic levels; and (3) a definitive assessment to estimate the nature, magnitude, and extent of risks. The principal technical issue addressed is the chemically complex nature of petroleum--a complexity that may be dealt with by assessing risks on the basis of properties of the whole material, properties of individual chemicals that are representative of chemical classes, distributions of properties of the constituents of chemical classes, properties of chemicals detected in the soil, and properties of indicator chemicals. The advantages and feasibility of these alternatives are discussed. The report concludes with research recommendations for improving each stage in the assessment process.

  13. Sulfation pathways in plants.

    PubMed

    Koprivova, Anna; Kopriva, Stanislav

    2016-11-25

    Plants take up sulfur in the form of sulfate. Sulfate is activated to adenosine 5'-phosphosulfate (APS) and reduced to sulfite and then to sulfide when it is assimilated into amino acid cysteine. Alternatively, APS is phosphorylated to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), and sulfate from PAPS is transferred onto diverse metabolites in its oxidized form. Traditionally, these pathways are referred to as primary and secondary sulfate metabolism, respectively. However, the synthesis of PAPS is essential for plants and even its reduced provision leads to dwarfism. Here the current knowledge of enzymes involved in sulfation pathways of plants will be summarized, the similarities and differences between different kingdoms will be highlighted, and major open questions in the research of plant sulfation will be formulated.

  14. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    PubMed

    Cheng, Chin-Min; Chang, Yung-Nan; Sistani, Karamat R; Wang, Yen-Wen; Lu, Wen-Chieh; Lin, Chia-Wei; Dong, Jing-Hong; Hu, Chih-Chung; Pan, Wei-Ping

    2012-02-01

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements (i.e., As, B, and Se), i.e., emission to ambient air, uptake by surface vegetation, and/or rainfall infiltration, after flue gas desulfurization (FGD) material is applied to soil. Three FGD materials collected from two power plants were used. Our results show Hg released into the air and uptake in grass from all FGD material-treated soils were all higher (P < 0.1) than the amounts observed from untreated soil. Hg in the soil amended with the FGD material collected from a natural oxidation wet scrubber (i.e., SNO) was more readily released to air compared to the other two FGD materials collected from the synthetic gypsum dewatering vacuum belt (i.e., AFO-gypsum) and the waste water treatment plant (i.e., AFO-CPS) of a forced oxidation FGD system. No Hg was detected in the leachates collected during the only 3-hour, 1-inch rainfall event that occurred throughout the 4-week testing period. For every kilogram of FGD material applied to soil, AFO-CPS released the highest amount of Hg, B, and Se, followed by SNO, and AFO gypsum. Based on the same energy production rate, the land application of SNO FGD material from Plant S released higher amounts of Hg and B into ambient air and/or grass than the amounts released when AFO-gypsum from Plant A was used. Using FGD material with lower concentration levels of Hg and other elements of concern does not necessary post a lower environmental risk. In addition, this study demonstrates that considering only the amounts of trace elements uptake in surface vegetation may under estimate the overall release of the trace elements from FGD material-amended soils. It also shows, under the same soil amendment conditions, the mobility of trace elements varies when FGD materials produced from different processes are used.

  15. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  16. Dynamics of soil organic carbon fractions in olive groves in Andalusia (Southern Spain) in soils with contrasted parent material and under different management practices

    NASA Astrophysics Data System (ADS)

    Vicente-Vicente, Jose Luis; García-Ruiz, Roberto; Calero, Julio; Aranda, Victor

    2016-04-01

    Spain has 2.5 million hectares of olive groves, 60 % of which are situated in Andalusia (Southern Spain). The most common agricultural management consist of a conventional or reduced tillage combined with herbicides to eliminate weeds. This might lead to some ecological problems (e.g. erosion, soil nutrient and organic carbon losses). The recommended management consist of a plant cover of spontaneous herbaceous plant in the inter row of olive oil orchards which are usually mowed early in spring. In this study, we assessed the influence of: i) two soil managements: non-covered and weed-covered, and ii) soil parent material (carbonated and siliceous), on soil organic carbon (SOC) fractions. In addition, we assessed the existence of a saturation limit for the different SOC fractions by including calcareous and siliceous soils under natural vegetation. Weed-covered soils accumulated more total SOC than soils under the non-covered management and this was independent on the parent material type. Same was true for most of the SOC fractions. However, the relative proportion of the SOC fractions was not affected by the presence of weeds, but it was due to the parent material type; carbonated soils had more unprotected and physically protected SOC, whereas the siliceous soils were relatively enriched in biochemically protected pool. Otherwise, table 1 shows that the chemically protected SOC pool was best fit to a saturation function, especially in the siliceous plots. The other fractions were best fit to a linear function. Therefore, these results suggest that chemically protected pools are the only protected fractions which can be saturated considering the SOC in the natural vegetation soils as the SOC limit. Considering SOC levels in the weed-covered and non-covered managements of all protected fractions and their respective limits of total SOC, saturation deficits in the non-covered and weed-covered plots were 75% and 60% of total SOC, respectively. Table 1. Significance

  17. Effect of Soil Solid-Phase Material Migration on Soil Properties within a Small Watershed Detected Using the Magnetic Tracer Method

    NASA Astrophysics Data System (ADS)

    Koshovskii, Timur; Gennadiev, Alexander; Zhidkin, Andrei

    2014-05-01

    We have performed detailed studies of the lateral migration of the solid soil material and the soil cover within a small catchment area (Russia, Tula region, Lokna river basin). The main goal of this work is to characterize the migration and accumulation features of the soil solid-phase material within a small watershed and to analyze the effect of the lateral mass transfer on the crucial soil fertility-related properties in the catchment basin under study. The total area of the catchment and the ravine network elements is 96 ha. The catchment basin is drop-shaped; it slightly curves and is latitudinally oriented. The catchment basin's slopes are of southern, eastern, northern, and intermediate exposures with average inclination of 1,5-5 degrees. The magnetic tracer method was used to assess the volumes and rates of the lateral migration of the solid-phase soil material on the selected territory. This method is based on the investigation of the spherical magnetic particles (SMPs), which fall onto the soil cover from the atmosphere, where they arrive at the burning of coals and some other fuels, mostly in steam locomotives. The period of the most intensive emission of SMPs into the soil in the territory of Russia corresponds to the last 100-150 years [1]. The reserve of SMPs in the 0- to 25-cm layer is estimated to be 3.8 g/m2on the least eroded sub-horizontal surface. The zones with the concentration of SMPs lower than their average content on the least eroded surface were characterized as dispersion zones. The zones of the basin with significant exceeding the value of 3.8 g/m2 were marked as accumulation zones of the soil solid-phase material. Dispersion zones are found in the middle part of the ridge in the north-eastern area, in the middle part of a longslope in the south-western area of the catchment basin, and other [2]. Accumulation zones are observed in a cup-shaped depression on the plowed slope adjacent to the ravine's head, on steep unplowed slopes of the

  18. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  19. Single Laboratory Validation of a Method for Determination of Glucosamine in Raw Materials and Dietary Supplements Containing Glucosamine Sulfate and/or Glucosamine Hydrochloride by High-Performance Liquid Chromatography with FMOC-Su Derivatization

    PubMed Central

    Zhou, Joseph ZiQi; Waszkuc, Ted; Mohammed, Felicia

    2008-01-01

    Single laboratory validation of a method for determination of glucosamine in raw materials and dietary supplements containing glucosamine sulfate and/or glucosamine hydrochloride by with high-performance liquid Chromatography FMOC-Su derivatization. Tests with 2 blank matrixes containing SAMe, vitamin C, citric acid, chondroitin sulfates, methylsulfonylmethane, lemon juice concentrate, and other potential interferents showed the method to be selective and specific. Eight calibration curves prepared over 7 working days indicated excellent reproducibility with the linear range at least over 2.0–150 μg/mL, and determination coefficients >0.9999. Average spike recovery from the blank matrix (n = 8 over 2 days) was 93.5, 99.4, and 100.4% at respective spike levels of 15,100, and 150%, and from the sample matrix containing glucosamine (n = 3) was 99.9 and 102.8% at respective levels of 10 and 40%, with relative standard deviations <0.9%. The method was also applied to 12 various glucosamine finished products and raw materials. The stability tests confirmed that glucosamine–FMOC-Su derivative once formed is stable at room temperature for at least 5 days. Limit of quantitation was 1 μg/mL and limit of detection was 0.3 μg/mL. The method is ready to proceed for the collaborative study. PMID:15493664

  20. Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China.

    PubMed

    Wang, Yanan; Zeng, Xibai; Lu, Yahai; Su, Shiming; Bai, Lingyu; Li, Lianfang; Wu, Cuixia

    2015-12-01

    The effects of aging time and soil parent materials on the bioavailability and fractionations of arsenic (As) in five red soils were studied. The results indicated that As bioavailability in all soils decreased during aging, especially with a sharp decline occurring in the first 30 days. After aging for 360 days, the highest available As concentration, which accounted for 12.3% of the total, was observed in soils derived from purple sandy shale. While 2.67% was the lowest proportion of the available As in soils derived from quaternary red clay. Furthermore, the best fit of the available As changing with aging time was obtained using the pseudo-second-order model (R(2) = 0.939-0.998, P < 0.05). Notably, Al oxides played a more crucial role (R(2) = 0.89, P<0.05) than did Fe oxides in controlling the rate of As aging. The non-specially and specially absorbed As constituted the primary forms of available As.

  1. Cementitious encapsulation of waste materials and/or contaminated soils containing heavy metals, to render them immobile

    SciTech Connect

    Stark, J.N.

    1994-01-04

    The present invention relates to the cementitious encapsulation of waste materials and/or contaminated soils containing heavy metals, to render them immobile, and particularly to the immobilization of metals, in regulated amounts, in the wastes. A waste product comprising the metals is provided. A mixture is prepared comprising the wastes and/or contaminated soils containing heavy metals, water, and a cementitious composition. The cementitious composition comprises magnesium oxide and magnesium chloride in proportions effective to produce, with the water, a magnesium oxychloride cement. The cementitious composition is present in an amount which, on setting, is effective to immobilize the metals in the waste and/or contaminated soils. The mixture of waste and/or contaminated soils and cementitious composition is introduced to a disposition site, and allowed to set and harden at the site. The present invention is particularly useful for the remedial treatment of landfill sites. No Drawings

  2. Determination of Chondroitin Sulfate Content in Raw Materials and Dietary Supplements by High-Performance Liquid Chromatography with UV Detection After Enzymatic Hydrolysis: Single-Laboratory Validation First Action 2015.11

    PubMed Central

    Brunelle, Sharon L.

    2016-01-01

    A previously validated method for determination of chondroitin sulfate in raw materials and dietary supplements was submitted to the AOAC Expert Review Panel (ERP) for Stakeholder Panel on Dietary Supplements Set 1 Ingredients (Anthocyanins, Chondroitin, and PDE5 Inhibitors) for consideration of First Action Official MethodsSM status. The ERP evaluated the single-laboratory validation results against AOAC Standard Method Performance Requirements 2014.009. With recoveries of 100.8–101.6% in raw materials and 105.4–105.8% in finished products and precision of 0.25–1.8% RSDr within-day and 1.6–4.72% RSDr overall, the ERP adopted the method for First Action Official Methods status and provided recommendations for achieving Final Action status. PMID:26821980

  3. Determination of Chondroitin Sulfate Content in Raw Materials and Dietary Supplements by High-Performance Liquid Chromatography with UV Detection After Enzymatic Hydrolysis: Single-Laboratory Validation First Action 2015.11.

    PubMed

    Brunelle, Sharon L

    2016-01-01

    A previously validated method for determination of chondroitin sulfate in raw materials and dietary supplements was submitted to the AOAC Expert Review Panel (ERP) for Stakeholder Panel on Dietary Supplements Set 1 Ingredients (Anthocyanins, Chondroitin, and PDE5 Inhibitors) for consideration of First Action Official Methods(SM) status. The ERP evaluated the single-laboratory validation results against AOAC Standard Method Performance Requirements 2014.009. With recoveries of 100.8-101.6% in raw materials and 105.4-105.8% in finished products and precision of 0.25-1.8% RSDr within-day and 1.6-4.72% RSDr overall, the ERP adopted the method for First Action Official Methods status and provided recommendations for achieving Final Action status.

  4. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    SciTech Connect

    Yu, Charley; Kamboj, Sunita; Wang, Cheng; Cheng, Jing-Jy

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  5. Revisiting the dissimilatory sulfate reduction pathway.

    PubMed

    Bradley, A S; Leavitt, W D; Johnston, D T

    2011-09-01

    Sulfur isotopes in the geological record integrate a combination of biological and diagenetic influences, but a key control on the ratio of sulfur isotopes in sedimentary materials is the magnitude of isotope fractionation imparted during dissimilatory sulfate reduction. This fractionation is controlled by the flux of sulfur through the network of chemical reactions involved in sulfate reduction and by the isotope effect associated with each of these chemical reactions. Despite its importance, the network of reactions constituting sulfate reduction is not fully understood, with two principle networks underpinning most isotope models. In this study, we build on biochemical data and recently solved crystal structures of enzymes to propose a revised network topology for the flow of sulfur through the sulfate reduction metabolism. This network is highly branched and under certain conditions produces results consistent with the observations that motivated previous sulfate reduction models. Our revised network suggests that there are two main paths to sulfide production: one that involves the production of thionate intermediates, and one that does not. We suggest that a key factor in determining sulfur isotope fractionation associated with sulfate reduction is the ratio of the rate at which electrons are supplied to subunits of Dsr vs. the rate of sulfite delivery to the active site of Dsr. This reaction network may help geochemists to better understand the relationship between the physiology of sulfate reduction and the isotopic record it produces.

  6. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands

    USGS Publications Warehouse

    Muhs, D.R.; Bush, C.A.; Stewart, K.C.; Rowland, T.R.; Crittenden, R.C.

    1990-01-01

    Most previous workers have regarded the insoluble residues of high-purity Quaternary limestones (coral reefs and oolites) as the most important parent material for well-developed, clay-rich soils on Caribbean and western Atlantic islands, but this genetic mechanism requires unreasonable amounts of limestone solution in Quaternary time. Other possible parent materials from external sources are volcanic ash from the Lesser Antilles island arc and Saharan dust carried across the Atlantic Ocean on the northeast trade winds. Soils on Quaternary coral terraces and carbonate eolianites on Barbados, Jamaica, the Florida Keys (United States), and New Providence Island (Bahamas) were studied to determine which, if either, external source was important. Caribbean volcanic ashes and Saharan dust can be clearly distinguished using ratios of relatively immobile elements ( Al2O3 TiO2, Ti Y, Ti Zr, and Ti Th). Comparison of these ratios in 25 soils, where estimated ages range from 125,000 to about 870,000 yr, shows that Saharan dust is the most important parent material for soils on all islands. These results indicate that the northeast trade winds have been an important component of the regional climatology for much of the Quaterary. Saharan dust may also be an important parent material for Caribbean island bauxites of much greater age. ?? 1990.

  7. PRODUCTION OF METHYL SULFIDE AND DIMETHYL DISULFIDE FROM SOIL-INCORPORATED PLANT MATERIALS AND IMPLICATIONS FOR CONTROLLING SOILBORNE PATHOGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-incorporated plant materials have been associated with reduction in soilborne pathogens and diseases. Most credits have been given to secondary products of glucosinolate hydrolysis. Little is known about the production of volatile sulfur compounds and even less on their efficacy against soilb...

  8. Applying a new procedure to assess the controls on aggregate stability - including soil parent material and soil organic carbon concentrations - at the landscape scale

    NASA Astrophysics Data System (ADS)

    Turner, Gren; Rawlins, Barry; Wragg, Joanna; Lark, Murray

    2014-05-01

    Aggregate stability is an important physical indicator of soil quality and influences the potential for erosive losses from the landscape, so methods are required to measure it rapidly and cost-effectively. Previously we demonstrated a novel method for quantifying the stability of soil aggregates using a laser granulometer (Rawlins et al., 2012). We have developed our method further to mimic field conditions more closely by incorporating a procedure for pre-wetting aggregates (for 30 minutes on a filter paper) prior to applying the test. The first measurement of particle-size distribution is made on the water stable aggregates after these have been added to circulating water (aggregate size range 1000 to 2000 µm). The second measurement is made on the disaggregated material after the circulating aggregates have been disrupted with ultrasound (sonication). We then compute the difference between the mean weight diameters (MWD) of these two size distributions; we refer to this value as the disaggregation reduction (DR; µm). Soils with more stable aggregates, which are resistant to both slaking and mechanical breakdown by the hydrodynamic forces during circulation, have larger values of DR. We made repeated analyses of DR using an aggregate reference material (RM; a paleosol with well-characterised disaggregation properties) and used this throughout our analyses to demonstrate our approach was reproducible. We applied our modified technique - and also the previous technique in which dry aggregates were used - to a set of 60 topsoil samples (depth 0-15 cm) from cultivated land across a large region (10 000 km2) of eastern England. We wished to investigate: (i) any differences in aggregate stability (DR measurements) using dry or pre-wet aggregates, and (ii) the dominant controls on the stability of aggregates in water using wet aggregates, including variations in mineralogy and soil organic carbon (SOC) content, and any interaction between them. The sixty soil

  9. S1 certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate certified reference material (organochlorine pesticides in tea) by isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Sin, Della Wai-Mei; Wong, Yee-Lok; Cheng, Eddie Chung-Chin; Lo, Man-Fung; Ho, Clare; Mok, Chuen-Shing; Wong, Siu-Kay

    2015-04-01

    This paper presents the certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate tea certified reference material (code: GLHK-11-03) according to the requirements of the ISO Guide 30 series. Certification of GLHK-11-03 was based on an analytical method purposely developed for the accurate measurement of the mass fraction of the target analytes in the material. An isotope dilution mass spectrometry (IDMS) method involving determination by (i) gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS) and (ii) gas chromatography-electron ionization-high-resolution mass spectrometry (GC-EI-HRMS) techniques was employed. The performance of the described method was demonstrated through participation in the key comparison CCQM-K95 "Mid-Polarity Analytes in Food Matrix: Mid-Polarity Pesticides in Tea" organized by the Consultative Committee for Amount of Substance-Metrology in Chemistry in 2012, where the study material was the same as the certified reference material (CRM). The values reported by using the developed method were in good agreement with the key comparison reference value (KCRV) assigned for beta-endosulfan (727 ± 14 μg kg(-1)) and endosulfan sulfate (505 ± 11 μg kg(-1)), where the degree of equivalence (DoE) values were 0.41 and 0.40, respectively. The certified values of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in dry mass fraction in GLHK-11-03 were 350, 730, and 502 μg kg(-1), respectively, and the respective expanded uncertainties, due to sample inhomogeneity, long-term and short-term stability, and variability in the characterization procedure, were 27 μg kg(-1) (7.8 %), 48 μg kg(-1) (6.6 %), and 33 μg kg(-1) (6.6 %).

  10. High-coercivity minerals from North African Humid Period soil material deposited in Lake Yoa (Chad)

    NASA Astrophysics Data System (ADS)

    Just, J.; Kroepelin, S.; Wennrich, V.; Viehberg, F. A.; Wagner, B.; Rethemeyer, J.; Karls, J.; Melles, M.

    2015-12-01

    The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the so-called African Humid Period (AHP) have favored the formation of big lake systems. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics together with proxies for lacustrine productivity and biota of a sediment core (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). Magnetic properties of AHP sediments show strong indications for reductive diagenesis. An up to ~ 80 m higher lake level is documented by lacustrine deposits in the Ounianga Basin, dating to the early phase of the AHP. The higher lake level and less strong seasonality restricted deep mixing of the lake. Development of anoxic conditions consequently lead to the dissolution of iron oxides. An exception is an interval with high concentration of high-coercivity magnetic minerals, deposited between 7800 - 8120 cal yr BP. This interval post-dates the 8.2 event, which was dry in Northern Africa and probably caused a reduced vegetation cover. We propose that the latter resulted in the destabilization of soils around Lake Yoa. After the re-establishment of humid conditions, these soil materials were eroded and deposited in the lake. Magnetic minerals appear well preserved in the varved Late Holocene sequence, indicating (sub-) oxic conditions in the lake. This is surprising, because the occurrence of varves is often interpreted as an indicator for anoxic conditions of the lake water. However, the salinity of lake water rose strongly after the AHP. We therefore hypothesize that the conservation of varves and absence of benthic organisms rather relates to the high salinity than to anoxic conditions.

  11. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    SciTech Connect

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik Saat, Ahmad; Hamzah, Zaini

    2015-04-29

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The K{sub d} values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The K{sub d} values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  12. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    NASA Astrophysics Data System (ADS)

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik; Saat, Ahmad; Hamzah, Zaini

    2015-04-01

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The Kd values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The Kd values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  13. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  14. Heparan sulfate in skeletal muscle development

    SciTech Connect

    Noonan, D.M.

    1985-01-01

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in /sup 35/SO/sub 4//sup 2 -/ radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium (Ca/sup + +/) closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate.

  15. Monohydrated Sulfates in Aurorae Chaos

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of sulfate-containing deposits in Aurorae Chaos was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0653 UTC (2:53 a.m. EDT) on June 10, 2007, near 7.5 degrees south latitude, 327.25 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 12 kilometers (7.5 miles) wide at its narrowest point.

    Aurorae Chaos lies east of the Valles Marineris canyon system. Its western edge extends toward Capri and Eos Chasmata, while its eastern edge connects with Aureum Chaos. Some 750 kilometers (466 miles) wide, Aurorae Chaos is most likely the result of collapsed surface material that settled when subsurface ice or water was released.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data covers an area featuring several knobs of erosion-resistant material at one end of what appears to be a large teardrop shaped plateau. Similar plateaus occur throughout the interior of Valles Marineris, and they are formed of younger, typically layered rocks that post-date formation of the canyon system. Many of the deposits contain sulfate-rich layers, hinting at ancient saltwater.

    The center left image, an infrared false color image, reveals a swath of light-colored material draped over the knobs. The center right image unveils the mineralogical composition of the area, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral).

    The lower two images are renderings of data draped over topography with 5 times vertical exaggeration. These images provide a view of the topography and reveal how the monohydrated sulfate-containing deposits drape over the knobs and also an outcrop in lower-elevation parts of the

  16. Human land-use and soil change

    USGS Publications Warehouse

    Wills, Skye A.; Williams, Candiss O.; Duniway, Michael C.; Veenstra, Jessica; Seybold, Cathy; Pressley, DeAnn

    2017-01-01

    Soil change refers to the alteration of soil and soil properties over time in one location, as opposed to soil variability across space. Although soils change with pedogensis, this chapter focuses on human caused soil change. Soil change can occur with human use and management over long or short time periods and small or large scales. While change can be negative or positive; often soil change is observed when short-term or narrow goals overshadow the other soil’s ecosystem services. Many soils have been changed in their chemical, physical or biological properties through agricultural activities, including cultivation, tillage, weeding, terracing, subsoiling, deep plowing, manure and fertilizer addition, liming, draining, and irrigation. Assessing soil change depends upon the ecosystem services and soil functions being evaluated. The interaction of soil properties with the type and intensity of management and disturbance determines the changes that will be observed. Tillage of cropland disrupts aggregates and decreases soil organic carbon content which can lead to decreased infiltration, increased erosion, and reduced biological function. Improved agricultural management systems can increase soil functions including crop productivity and sustainability. Forest management is most intensive during harvesting and seedling establishment. Most active management in forests causes disturbance of the soil surface which may include loss of forest floor organic materials, increases in bulk density, and increased risk of erosion. In grazing lands, pasture management often includes periods of biological, chemical and physical disturbance in addition to the grazing management imposed on rangelands. Grazing animals have both direct and indirect impacts on soil change. Hoof action can lead to the disturbance of biological crusts and other surface features impairing the soil’s physical, biological and hydrological function. There are clear feedbacks between vegetative systems

  17. Rehabilitation materials from surface- coal mines in western U.S.A. III. Relations between elements in mine soil and uptake by plants.

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1984-01-01

    Plant uptake of Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn from mine soils was assessed using alfalfa Medicago sativa, sainfoin Onobrychis viciaefolia, smooth brome Bromus inermis, crested wheatgrass Agropyron cristatum, slender wheatgrass A. trachycaulum and intermediate wheatgrass A. intermedium; mine soil (cover-soil and spoil material) samples were collected from rehabilitated areas of 11 western US surface-coal mines in North Dakota, Montana, Wyoming and Colorado. Correlations between metals in plants and DTPA-extractable metals from mine soils were generally not statistically significant and showed no consistent patterns for a single metal or for a single plant species. Metal uptake by plants, relative to amounts in DTPA extracts of mine soil, was positively related to mine soil organic matter content or negatively related to mine soil pH. DTPA-extractable metal levels were significantly correlated with mine soil pH and organic-matter content.-from Authors

  18. The Transition from Phyllosilicate to Hydrated Sulfate Deposition as Evidenced from Mars Reconnaissance Orbiter CRISM and Opportunity Rover Observations in Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Catalano, J. G.

    2012-12-01

    The Opportunity rover has traveled over 34.6 km across the plains of Meridiani, focusing on measurements of rock strata in Eagle, Endurance, Erebus, Victoria, and Santa Maria craters that impacted into Burns Formation materials. Currently Opportunity is investigating impact breccias on the dissected rim of the Noachian-aged Endeavour crater, together with characterizing the basal strata and associated gypsum veins that on-lap onto the rim segments. In contrast to the sulfate-rich sandstones that comprise the Burns Formation the basal strata are dominated by contributions from local basaltic materials. CRISM along-track oversampled (super resolution) observations from 0.4 to 2.7 μm covering the six craters have been processed from first-principles to remove atmospheric radiative streams and to retrieve surface single scattering albedos to directly compare data from place to place and to laboratory spectra. CRISM results show that where wind has stripped soil and uncovered relatively fresh rock, strong mono and polyhydrated sulfate signatures are evident and consistent with measurements conducted by Opportunity. In particular, monohydrated sulfates, including kieserite, tend to occur at the top of the Burns Formation whereas polyhydrated sulfates dominate the bulk of the section. Iazu crater, located to the south of Endeavour crater, formed during emplacement of the Burns Formation materials and exposes the Burns Formation from its basal member to the polyhydrated sulfate-dominated deposits. The basal section includes repeated facies changes from clastic materials with smectite spectral signatures to polyhydrated sulfates. These changes are interpreted to be due to repeated submergence events that changed the environment from fluvial to shallow lacustrine systems, eventually giving way to the ephemeral lakes, aeolian dunes, and rising ground water events associated with the deposition and alteration of the Burns Formation. Monohydrated sulfates at the top of the

  19. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash.

    PubMed

    Querol, Xavier; Alastuey, Andrés; Moreno, Natàlia; Alvarez-Ayuso, Esther; García-Sánchez, Antonio; Cama, Jordi; Ayora, Carles; Simón, Mariano

    2006-01-01

    The use of zeolitic material synthesized from coal fly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley (SW Spain). This area was affected by a pyrite slurry spill in April 1998. Although reclamation activities were completed in a few months, residual pyrite slurry mixed with soil accounted for relatively high leachable levels of trace elements such as Zn, Pb, As, Cu, Sb, Co, Tl and Cd. Phytoremediation strategies were adopted for the final recovery of the polluted soils. The immobilization of metals had previously been undertaken to avoid leaching processes and the consequent groundwater pollution. To this end, 1100 kg of high NaP1 (Na6[(AlO2)6(SiO2)10] .15H2O) zeolitic material was synthesized using fly ash from the Teruel power plant (NE Spain), in a 10 m3 reactor. This zeolitic material was manually applied using different doses (10000-25000 kg per hectare), into the 25 cm topsoil. Another plot (control) was maintained without zeolite. Sampling was carried out 1 and 2 years after the zeolite addition. The results show that the zeolitic material considerably decreases the leaching of Cd, Co, Cu, Ni, and Zn. The sorption of metals in soil clay minerals (illite) proved to be the main cause contributing to the immobilization of these pollutants. This sorption could be a consequence of the rise in pH from 3.3 to 7.6 owing to the alkalinity of the zeolitic material added (caused by traces of free lime in the fly ash, or residual NaOH from synthesis).

  20. Conserving Soil.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…

  1. Role of particulate metals in heterogenous secondary sulfate formation

    NASA Astrophysics Data System (ADS)

    Clements, Andrea L.; Buzcu-Guven, Birnur; Fraser, Matthew P.; Kulkarni, Pranav; Chellam, Shankararaman

    2013-08-01

    A series of field sampling and controlled laboratory experiments were undertaken to quantify the role of trace metals found in ambient fine particulate matter and metal-rich primary sources in the heterogenous catalytic conversion of SO2 gas into sulfate particulate matter (PM) in the atmosphere. Analysis produced source profiles of three primary source materials, fluidized-bed catalytic cracking catalyst, coal-fired combustion fly ash, and paved road dust, featuring 33 elements including rare earth metals, which are not commonly reported in the literature. Subsequently three sets of experiments were conducted exposing 1) source materials, 2) ambient PM, and 3) ambient PM augmented with approximately an equal amount of source material to SO2 gas and measuring sulfate formation. Source material experiments revealed that the greatest extent of reaction was on the surface of coal fly ash with sulfate formation of 19 ± 5 mg sulfate g-1 material. Ambient fine particulate matter (PM) experiments showed sulfate formation ranging from negligible amounts to 180 ± 10 mg sulfate g-1 PM. It was much more difficult to quantify the sulfate formation on ambient filters augmented with the source materials. In these experiments, sulfate formation ranged from negligible amounts to 40 ± 8 mg sulfate g-1 of particles (ambient + augmented material). These three sets of experiments shows that heterogenous sulfate formation is often negligible but, under some conditions can contribute 10% or more to the total sulfate concentrations when exposed to high SO2 concentrations such as those found in plumes. Factor analysis of the source material experiments grouped metals into two categories, crustal components and anthropogenically emitted metals representative of catalyst material, with the former showing the strongest correlation with sulfate formation. Subsequent analysis of data collected from the ambient PM experiments showed a much weaker correlation of sulfate formation with the

  2. Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique.

    PubMed

    Putra, Heriansyah; Yasuhara, Hideaki; Kinoshita, Naoki; Neupane, Debendra; Lu, Chih-Wei

    2016-01-01

    The optimization of enzyme-mediated calcite precipitation was evaluated as a soil-improvement technique. In our previous works, purified urease was utilized to bio-catalyze the hydrolysis of urea, which causes the supplied Ca(2+) to precipitate with [Formula: see text] as calcium carbonate. In the present work, magnesium chloride was newly added to the injecting solutions to delay the reaction rate and to enhance the amount of carbonate precipitation. Soil specimens were prepared in PVC cylinders and treated with concentration-controlled solutions composed of urea, urease, calcium, and magnesium chloride. The mechanical properties of the treated soil specimens were examined through unconfined compressive strength (UCS) tests. A precipitation ratio of the carbonate up to 90% of the maximum theoretical precipitation was achieved by adding a small amount of magnesium chloride. Adding magnesium chloride as a delaying agent was indeed found to reduce the reaction rate of the precipitation, which may increase the volume of the treated soil if used in real fields because of the slower precipitation rate and the resulting higher injectivity. A mineralogical analysis revealed that magnesium chloride decreases the crystal size of the precipitated materials and that another carbonate of aragonite is newly formed. Mechanical test results indicated that carbonate precipitates within the soils and brings about a significant improvement in strength. A maximum UCS of 0.6 MPa was obtained from the treated samples.

  3. Comparison of American Society of Testing Materials and Soil Science Society of America Hydrometer Methods for Particle-Size Analysis

    SciTech Connect

    Keller, Jason M.; Gee, Glendon W.

    2006-05-31

    Particle-size analysis (PSA) is widely used in both soil science and geo-engineering. Soil classification schemes are built on PSA values while recent developments in pedotransfer functions rely on PSA to estimate soil hydraulic properties. Because PSA is method dependent, the standardization of experimental procedures is important for the comparison of reported results. A study was conducted to compare the American Society of Testing Materials (ASTM) hydrometer method (D422) for particle-size analysis with the hydrometer method published by the Soil Science Society of America (SSSA). Tests on soils ranging in texture from sand to a sandy clay loam were conducted at temperatures ranging from 20 C to 30 C. The main difference between methods is the temperature correction, with the ASTM method relying on an empirical correction and the SSSA method using a blank hydrometer reading. Identical texture estimates for all but one sample was observed between methods. Percent fines, silt, and clay demonstrated relatively consistent values between methods. D50 and D30 showed reasonable agreement between methods, with differences of less than 4 percent and 8 percent. For D10 values, the agreement was less satisfactory, with uncertainties of as much as 10 percent. The results suggest that ASTM and SSSA methods can be used interchangeably for textural analysis.

  4. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China.

    PubMed

    Yang, Yan-min; Liu, Xiao-jing; Li, Wei-qiang; Li, Cun-zhen

    2006-11-01

    Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wheat production. Surface mulch has significant effect in reducing evaporation and decreasing soil salinity level. This research was aimed at comparing the effect of different mulch materials on winter wheat production. The experiment was conducted during 2002~2003 and 2003~2004. Four treatments were setup: (1) no mulch, (2) mulch with plastic film, (3) mulch with corn straw, (4) mulch with concrete slab between the rows. The result indicated that concrete mulch and straw mulch was effective in conserving soil water compared to plastic film mulch which increased soil temperature. Concrete mulch decreases surface soil salinity better in comparison to other mulches used. Straw mulch conserved more soil water but decreased wheat grain yield probably due to low temperature. Concrete mulch had similar effect with plastic film mulch on promoting winter wheat development and growth.

  5. Quantification of the vertical translocation rate of soil solid-phase material by the magnetic tracer method

    NASA Astrophysics Data System (ADS)

    Zhidkin, A. P.; Gennadiev, A. N.

    2016-07-01

    Approaches to the quantification of the vertical translocation rate of soil solid-phase material by the magnetic tracer method have been developed; the tracer penetration depth and rate have been determined, as well as the radial distribution of the tracer in chernozems (Chernozems) and dark gray forest soils (Luvisols) of Belgorod oblast under natural steppe and forest vegetation and in arable lands under agricultural use of different durations. It has been found that the penetration depth of spherical magnetic particles (SMPs) during their 150-year-occurrence in soils of a forest plot is 68 cm under forest, 58 cm on a 100-year old plowland, and only 49 cm on a 150-year-old plowland. In the chernozems of the steppe plot, the penetration depth of SMPs exceeds the studied depth of 70 cm both under natural vegetation and on the plowlands. The penetration rates of SMPs deep into the soil vary significantly among the key plots: 0.92-1.32 mm/year on the forest plot and 1.47-1.63 mm/year on the steppe plot, probably because of the more active recent turbation activity of soil animals.

  6. Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique

    PubMed Central

    Putra, Heriansyah; Yasuhara, Hideaki; Kinoshita, Naoki; Neupane, Debendra; Lu, Chih-Wei

    2016-01-01

    The optimization of enzyme-mediated calcite precipitation was evaluated as a soil-improvement technique. In our previous works, purified urease was utilized to bio-catalyze the hydrolysis of urea, which causes the supplied Ca2+ to precipitate with CO32− as calcium carbonate. In the present work, magnesium chloride was newly added to the injecting solutions to delay the reaction rate and to enhance the amount of carbonate precipitation. Soil specimens were prepared in PVC cylinders and treated with concentration-controlled solutions composed of urea, urease, calcium, and magnesium chloride. The mechanical properties of the treated soil specimens were examined through unconfined compressive strength (UCS) tests. A precipitation ratio of the carbonate up to 90% of the maximum theoretical precipitation was achieved by adding a small amount of magnesium chloride. Adding magnesium chloride as a delaying agent was indeed found to reduce the reaction rate of the precipitation, which may increase the volume of the treated soil if used in real fields because of the slower precipitation rate and the resulting higher injectivity. A mineralogical analysis revealed that magnesium chloride decreases the crystal size of the precipitated materials and that another carbonate of aragonite is newly formed. Mechanical test results indicated that carbonate precipitates within the soils and brings about a significant improvement in strength. A maximum UCS of 0.6 MPa was obtained from the treated samples. PMID:27200343

  7. Environmental Impact Research Program. Restoration of Problem Soil Materials at Corps of Engineers Construction Sites.

    DTIC Science & Technology

    1985-05-01

    Bell, University of Queensland , Brisbane, Australia, for technical review of this report. The valuable contributions made by the following Federal and...11-2 Geology and soil characteristics. ................ 11-5 Hydrology ........................... 11-13 Topography...the interaction of soils, geology , and climate in potentially difficult restoration situations. Information and techniques are presented relating to

  8. Contributions of pyrogenic materials on the accumulation of soil organic matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendment of charcoal co-product (HHVdb as high as coal) from thermochemical waste biomass-to-energy conversion (slow/fast pyrolysis and gasification) has received considerable interests for both contaminated and agricultural lands. Biochar amendment not only increases soil organic carbon cont...

  9. Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey

    SciTech Connect

    Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C.

    1996-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis.

  10. Measurement and modeling of energetic material mass transfer to soil pore water : Project CP-1227 : FY04 annual technical report.

    SciTech Connect

    Stein, Joshua S.; Webb, Stephen Walter

    2005-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of a mass transfer model evaluating mass transfer processes from solid phase energetics to soil pore water based on experimental work obtained earlier in this project. This mass transfer numerical model has been incorporated into the porous media simulation code T2TNT. Next year, the energetic material mass transfer model will be developed further using additional experimental data.

  11. Methylmercury formation in a wetland mesocosm amended with sulfate.

    PubMed

    Harmon, S M; King, J K; Gladden, J B; Chandler, G T; Newman, L A

    2004-01-15

    This study used an experimental model to evaluate methylmercury accumulation when the soil of a constructed wetland is amended with sulfate. The model was planted with Schoenoplectus californicus and designed to reduce wastestream metals and metal-related toxicity. The soil was varied during construction to provide a control and two sulfate treatments which were equally efficient at overall mercury and copper removal. After an initial stabilization period, methylmercury concentrations in porewater were up to three times higher in the sulfate-treated porewater (0.5-1.6 ng/L) than in the control (<0.02-0.5 ng/L). Mean percent methylmercury was 9.0% in the control with 18.5 and 16.6% in the low- and high-sulfate treatments, respectively. Methylmercury concentrations measured in mesocosm surface water did not reflect the differences between the control and the sulfate treatments that were noted in porewater. The mean bulk sediment methylmercury concentration in the top 6 cm of the low-sulfate treatment (2.33 ng/g) was significantly higher than other treatment means which ranged from 0.96 to 1.57 ng/g. Total mercury in sediment ranged from 20.8 to 33.4 ng/g, with no differences between treatments. Results suggest that the non-sulfate-amended control was equally effective in removing metals while keeping mercury methylation low.

  12. Assessment of radium and radon exhalation rate in soil and building material samples using LR-115 plastic track detectors.

    PubMed

    Mehra, Rohit; Badhan, Komal; Bala, Pankaj

    2013-04-01

    Solid state nuclear track detectors (LR-115 TYPE-II) were used to determine the concentration of radium and radon exhalation rate in soil samples collected from the different areas of Dharamshala,Himachal Pradesh (India) and in building material samples :" viz. cement, bricks and white marble collected from different locations of India. The radium concentration for the soil samples and building materials variedfrom 16.22Bqkg-1 to 25.44Bqkg-1 and 32.33 Bqkg-1 to 52.26Bqkg-1 with an average value of 22.03 Bqkg-1 and 39.12 Bqkg-1 respectively. The calculated average values of radon exhalation rate in terms of mass (E.) and area (E.) for soil samples and building material samples are (8.59mBqkg-1h-1 and 310.6 mBqm-1h-1) and (15.26mBqkg-1h-1and 551.6 mBqm-2h-1) respectively.

  13. Protective barrier materials analysis: Fine soil site characterization: A research report for Westinghouse Hanford Company

    SciTech Connect

    Last, G.V.; Glennon, M.A.; Young, M.A.; Gee, G.W.

    1987-11-01

    We collected soil samples for the physical characterization of a potential fine-soil quarry site at the McGee Ranch, which is located approximately 1 km northwest of the Hanford Site's Yakima Barricade. Forty test borings were made using a hollow-stem auger. Field moisture content and grain-size distribution were determined. The samples were classified into one of 19 sediment classes based on their grain-size distributions. Maps and cross sections were constructed from both the field and laboratory data to delineate the distributions of the various sediment classes. Statistical evaluations were made to determine the variations within the fine-soil fraction of the various sediment classes. Volume estimates were then made of the amounts of soil meeting the preliminary grain-size criteria. The physical characterization of the fine soils sampled near the McGee Ranch site indicated that approximately 3.4 million cubic meters of soil met or exceeded the minimum grain-size criteria for the fine soils needed for the protective barriers program. 11 refs., 14 figs., 6 tabs.

  14. Recognizing Sulfate and Phosphate Complexes Adsorbed onto Nanophase Weathering Products on Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Archer, P. D., Jr.

    2015-01-01

    Nanophase weathering products (i.e., secondary phases that lack long-range atomic order) have been recognized on the martian surface via orbital observations and in-situ measurements from landed missions. Allophane, a poorly crystalline, hydrated aluminosilicate, has been identified at the regional scale in models of thermal-infrared (TIR) data from the Thermal Emission Spectrometer (TES) and at the local scale from visible/near-IR (VNIR) data from the Compact Reconnaissance Impact Spectrometer for Mars (CRISM) instrument and phase calculations of Alpha Particle X-ray Spectrometer (APXS) data of rocks encountered by the Mars Exploration Rovers (MER) Spirit and Opportunity. Nanophase iron oxides (npOx) have been recognized in rocks and soils measured by the Mössbauer Spectrometer on Spirit and Opportunity. Furthermore, analyses of X-ray diffraction data measured by the CheMin instrument onboard the Mars Science Laboratory rover Curiosity indicate rock and soil samples are comprised of approx. 20-50 wt.% X-ray amorphous materials. Chemical measurements by landed missions indicate the presence of sulfur and phosphorus in martian rocks in soils, and APXS data from Gusev crater demonstrate abundances of up to approx. 5 wt.% P2O5 and approx. 30 wt.% SO3. However, the speciation of phosphorus and sulfur is not always evident. On Earth, phosphate and sulfate anions can be chemisorbed onto the surfaces of nanophase weathering products. This process may also occur on Mars, and calculations of the composition of the amorphous component at Gale crater using CheMin mineral models and APXS data show that amorphous material is enriched in volatiles, including S. Here, we examine the ability to detect chemisorbed sulfate and phosphate complexes by analyzing sulfate- and phosphate-adsorbed nanophase weathering products using instruments similar to those on landed and orbital missions.

  15. Mineralogy, Abundance, and Hydration State of Sulfates and Chlorides at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Y.; Kuzmin, R. O.; Shock, E. L.

    2004-01-01

    Detection of elevated concentrations of S and Cl at the landing sites of Viking 1 and 2 [1], and Mars Pathfinder (MP) [2-5] reveals the presence of sulfates and chlorides in soil and rock samples [1-10]. These data are consistent with the findings of Ca sulfates and NaCl in Martian meteorites [11,12], and with Earth-based spectroscopic observations [13,14] tentatively indicating the presence of sulfates on Mars. Although the correlation of S and Mg in Viking and MP samples could reveal the occurrence of Mg sulfate [1-10], the mineralogy of sulfates and chlorides remains unclear.

  16. Using Crystal Structure Groups to Understand Mössbauer parameters of Ferric Sulfates

    NASA Astrophysics Data System (ADS)

    Knutson, J.; Dyar, M. D.; Sklute, E. C.; Lane, M. D.; Bishop, J. L.

    2008-12-01

    + cation, resulting in larger QS values (1-1.4 mm/s). Between these extremes of QS are two populations of structures based on finite clusters of polyhedra with QS = 0.36-0.80 mm/s (coquimbite, römerite, halotrichite, rozenite) and infinite chains with QS = 0.70-0.97 mm/s (chalcanthite, butlerite, fibroferrite, metahomanite). Our fits to the Paso Robles sol 429A data show two ferric doublets, both with IS = 0.42-0.43 mm/s but with differing QS = 0.36 and 0.93 mm/s; these parameters rule out mineral structures that have spectra with very high or very low QS. Ferric sulfates with structures composed of finite clusters and infinite chains thus provide the closest matches to the Paso Robles Mössbauer doublets, as well as spectra of other bright soils. Further constraints provided by other types of spectroscopy are then needed to determine which species within these structure groups are present. As additional sulfate structures are characterized, it will be possible to better understand the interrelationships among sulfate crystal structures and their spectral characteristics may provide additional constraints on mineral identification from ferric materials of all types. Morris et al. (2006) JGR, 111, doi: 10.1029/2005JE002584. Lane et al. (2008) Amer. Mineral., 93, 738-739. Hawthorne et al. (2000) Revs. Mineral., 40, 1-112.

  17. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    PubMed

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1).

  18. The Effect of Equilibration Time and Tubing Material on Soil Gas Measurements

    EPA Science Inventory

    The collection of soil vapor samples representative of in-situ conditions presents challenges associated with the unavoidable disturbance of the subsurface and potential losses to the atmosphere. This article evaluates the effects of two variables that influence the concentration...

  19. Ice-lens formation and geometrical supercooling in soils and other colloidal materials.

    PubMed

    Style, Robert W; Peppin, Stephen S L; Cocks, Alan C F; Wettlaufer, J S

    2011-10-01

    We present a physically intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil and the geometrical supercooling of the water in the soil, a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that are currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios and should therefore be useful in the prediction of macroscopic frost-heave rates.

  20. Use of different surface covering materials to enhance removal of radiocaesium in plants and upper soil from orchards in Fukushima prefecture.

    PubMed

    Sato, Mamoru; Akai, Hiroko; Saito, Yuichi; Takase, Tsugiko; Kikunaga, Hidetoshi; Sekiya, Nobuhito; Ohtsuki, Tsutomu; Yamaguchi, Katsuhiko

    2017-04-04

    The effectiveness of a decontamination methodology whereby herbaceous plants were grown through different materials covering the soil surface followed by subsequent removal of the material, associated plant tissues and attached soil on (137)Cs removal from soil was evaluated. Revegetation netting sown with Kentucky bluegrass and white clover had a high effectiveness in (137)Cs removal when rolling up the plants, roots, and rhizosphere soil approximately 6 months after sowing. The removal rate was lower when there was higher (137)Cs vertical migration down the soil profile. The maximum removal effectiveness of 93.1% was observed by rolling up fertilized Kentucky bluegrass with a well-developed root mat without netting, indicating that applying nutrients to encourage the development of roots or root mats in the 3 cm topsoil rhizosphere is an efficient technology to increase the decontamination effect of plant removal in orchards. Netting and weeding were able to remove up to 80% of (137)Cs in the soil without the use of heavy machinery. There was a significant relationship between the removal ratio and the removed soil weight per area. Using the relationship on the site below the canopy, removal of 14.3 kg m(-2) DW soil would achieve a removal ratio of 80%. The effectiveness of the technique will decrease with time as radiocaesium migrates down the soil profile but this would be expected to occur slowly in many soils.

  1. Sulfate attack expansion mechanisms

    SciTech Connect

    Müllauer, Wolfram Beddoe, Robin E.; Heinz, Detlef

    2013-10-15

    A specially constructed stress cell was used to measure the stress generated in thin-walled Portland cement mortar cylinders caused by external sulfate attack. The effects of sulfate concentration of the storage solution and C{sub 3}A content of the cement were studied. Changes in mineralogical composition and pore size distribution were investigated by X-ray diffraction and mercury intrusion porosimetry, respectively. Damage is due to the formation of ettringite in small pores (10–50 nm) which generates stresses up to 8 MPa exceeding the tensile strength of the binder matrix. Higher sulfate concentrations and C{sub 3}A contents result in higher stresses. The results can be understood in terms of the effect of crystal surface energy and size on supersaturation and crystal growth pressure.

  2. Mathematical modelling and optimization of synthetic textile dye removal using soil composites as highly competent liner material.

    PubMed

    Das, Papita; Banerjee, Priya; Mondal, Sandip

    2015-01-01

    Soil is widely used as adsorbent for removing toxic pollutants from their aqueous solutions due to its wide availability and cost efficiency. This study investigates the potential of soil and soil composites for removal of crystal violet (CV) dye from solution on a comparative scale. Optimisation of different process parameters was carried out using a novel approach of response surface methodology (RSM) and a central composite design (CCD) was used for determining the optimum experimental conditions, as well as the result of their interactions. Around 99.85 % removal of CV was obtained at initial pH 6.4, which further increased to 99.98 % on using soil and cement composite proving it to be the best admixture of those selected. The phenomenon was found to be represented best by the Langmuir isotherm at different temperatures. The process followed the pseudo-second-order kinetic model and was determined to be spontaneous chemisorption in nature. This adsorbent can hence be suggested as an appropriate liner material for the removal of CV dye.

  3. Bacterial biodegradation of melamine-contaminated aged soil: influence of different pre-culture media or addition of activation material.

    PubMed

    Hatakeyama, Takashi; Takagi, Kazuhiro

    2016-08-01

    This study aimed to investigate the biodegrading potential of Arthrobacter sp. MCO, Arthrobacter sp. CSP, and Nocardioides sp. ATD6 in melamine-contaminated upland soil (melamine: approx. 10.5 mg/kg dry weight) after 30 days of incubation. The soil sample used in this study had undergone annual treatment of lime nitrogen, which included melamine; it was aged for more than 10 years in field. When R2A broth was used as the pre-culture medium, Arthrobacter sp. MCO could degrade 55 % of melamine after 30 days of incubation, but the other strains could hardly degrade melamine (approximately 25 %). The addition of trimethylglycine (betaine) in soil as an activation material enhanced the degradation rate of melamine by each strain; more than 50 % of melamine was degraded by all strains after 30 days of incubation. In particular, strain MCO could degrade 72 % of melamine. When the strains were pre-cultured in R2A broth containing melamine, the degradation rate of melamine in soil increased remarkably. The highest (72 %) melamine degradation rate was noted when strain MCO was used with betaine addition.

  4. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.

    PubMed

    Navarro, Andrés; Cardellach, Esteve; Corbella, Mercé

    2011-02-28

    Immobilization processes were used to chemically stabilize soil contaminated with Cu, Pb and Zn from mine tailings and industrial impoundments. We examined the effectiveness of ordinary Portland cement (OPC), phosphoric acid and MgO at immobilizing Cu, Pb and Zn in soil contaminated by either mine tailings or industrial and mine wastes. The effectiveness was evaluated using column leaching experiments and geochemical modelling, in which we assessed possible mechanisms for metal immobilization using PHREEQC and Medusa numerical codes. Experimental results showed that Cu was mobilized in all the experiments, whereas Pb immobilization with H(3)PO(4) may have been related to the precipitation of chloropyromorphite. Thus, the Pb concentrations of leachates of pure mining and industrial contaminated soils (32-410 μg/l and 430-1000 μg/l, respectively) were reduced to 1-60 and 3-360 μg/l, respectively, in the phosphoric acid experiment. The mobilization of Pb at high alkaline conditions, when Pb(OH)(4)(-) is the most stable species, may be the main obstacle to the use of OPC and MgO in the immobilization of this metal. In the mining- and industry-contaminated soil, Zn was retained by OPC but removed by MgO. The experiments with OPC showed the Zn decrease in the leachates of mining soil from 226-1960 μg/l to 92-121 μg/l. In the industrial contaminated soil, the Zn decrease in the leachates was most elevated, showing >2500 μg/l in the leachates of contaminated soil and 76-173 μg/l in the OPC experiment. Finally, when H(3)PO(4) was added, Zn was mobilized.

  5. [Effect of different N, P and K fertilizers on soil pH and available Cd under waterlogged conditions].

    PubMed

    Jia, Ka-La-Tie; Yu, Hua; Feng, Wen-Qiang; Qin, Yu-Sheng; Zhao, Jing; Liao, Ming-Lan; Wang, Chang-Quan; Tu, Shi-Hua

    2009-11-01

    In order to tackle the problem of Cd pollution in paddy soils and investigate soil available Cd as affected by different fertilizers, incubation experiments were carried out to study the effects of different N, P and K fertilizers and pH by adding acid or base on soil available Cd under waterlogged conditions. Results revealed that soil pH increased sharply after the soil was flooded, especially at the beginning of incubation, and gradually decreased with incubation time and finally tended to approach the neutral values. The patterns of soil pH change were just opposite to those of soil available Cd, a negative correlation observed between the two. Soil flooding made the soil available Cd drop by 58.2%-84.1%. There were significant differences between different fertilizer types/varieties on soil available Cd, being most complex with N fertilizers and followed by K and P fertilizers. Among the fertilizers studied, ammonium chloride showed the unique ability in reducing soil pH and enhancing soil available Cd, and urea, single super phosphate and potassium chloride also promoted to a less extent amounts of Cd extracted from the soil. Ammonium sulfate, potassium sulfate and mono-ammonium phosphate significantly decreased soil available Cd compared to the CK treatment. Whether or not the soil was flooded, soil available Cd was highly negatively correlated with soil pH after adding acid or base (R = - 0.994 without incubation and R = - 0.919 after incubation for 60 d). The results further suggest that in the Cd polluted paddy soil, use of ammonium chloride should be avoided, S bearing fertilizers in combination with alkaline materials can be adopted, and the rice field should be flooded all the time during growing season, all the these practices can effectively lower soil available Cd.

  6. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  7. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  8. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  9. Ion selective electrode for determination of chloride ion in biological materials, food products, soils and waste water.

    PubMed

    Sekerka, I; Lechner, J F

    1978-11-01

    The chloride ion selective electrode is used for a rapid, simple, and reliable determination of chloride ion in biological materials (blood serum, urine, fish, and plant tissues), food products (milk, beef extract, nutrient broth and orange, tomato, and grapefruit juices), soils, and waste water (industrial and municipal). The method consists of treating the samples with perchloric acid (pH 1) and potassium peroxydisulfate and determining the chloride content either by a calibration curve or by known addition or analyte addition, using the chloride ion selective electrode. Such sample treatment eliminates most of the interferences occurring in the samples, including iodide, complexing and reducing compounds, and macromolecular and surface-active species. The method is suitable for a wide range of chloride concentration, e.g., 5010 ppm Cl- in nutrient broth and 4890 ppm in beef extract and as low as 12 and 80 ppm in soil extracts.

  10. Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report.

    SciTech Connect

    Stein, Joshua S.; Sallaberry, Cedric M.; Webb, Stephen Walter; Phelan, James M.; Hadgu, Teklu

    2006-05-01

    Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

  11. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  12. Hydrazine/Hydrazine sulfate

    Integrated Risk Information System (IRIS)

    Hydrazine / Hydrazine sulfate ; CASRN 302 - 01 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  13. Effect of 10 different TiO2 and ZrO2 (nano)materials on the soil invertebrate Enchytraeus crypticus.

    PubMed

    Gomes, Susana I L; Caputo, Gianvito; Pinna, Nicola; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2015-10-01

    Nearly 80% of all the nano-powders produced worldwide are metal oxides, and among these materials titanium dioxide (TiO2 ) is one of the most produced. Titanium dioxide's toxicity is estimated as low to soil organisms, but some studies have shown that TiO2 nanoparticles can cause oxidative stress. Additionally, it is known that TiO2 is activated by ultraviolet (UV) radiation, which can promote photocatalytic generation of reactive oxygen species, which is seldom taken into account in toxicity testing. In the present study, the authors investigated the effects of different TiO2 and zirconium materials on the soil oligochaete Enchytraeus crypticus, using exposure via soil, water, and soil:water extracts, and studied the effects combined with UV radiation. The results showed that zirconium dioxide (bulk and nano) was not toxic, whereas zirconium tetrachloride reduced enchytraeid reproduction in soil (50% effect concentration = 502 mg/kg). The TiO2 materials were also not toxic via soil exposure or under UV radiation. However, pre-exposure to TiO2 and UV radiation via aqueous media caused a lower reproductive output post-exposure in clean soil (20-50% less but only observed at the lowest concentration tested, 1 mg/L); that is, the effect of TiO2 in water was potentiated by the UV radiation and measurable as a decrease in reproduction in soil media.

  14. Soil salination indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salts are naturally present in soils, and many salt elements are essential nutrients for plants. The most common soluble salts in soil include major cations of sodium (Na+), magnesium (Mg2+), calcium (Ca2+), potassium (K+), and anions of chloride (Cl-), sulfate (SO42-), bicarbonate (HCO3-) and carbo...

  15. Measurement and modeling of energetic material mass transfer to soil pore water :project CP-1227 FY03 annual technical report.

    SciTech Connect

    Phelan, James M.; Barnett, James L.; Kerr, Dayle R.

    2004-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. This report documents the results of the Phase III experimental effort, which evaluated the impacts of surface deposits versus buried deposits, energetic material particle size, and low order detonation debris. Next year, the energetic material mass transfer model will be refined and a 2-d screening model will be developed for initial site-specific applications. A technology development roadmap was created to show how specific R&D efforts are linked to technology and products for key customers.

  16. System for high throughput water extraction from soil material for stable isotope analysis of water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...

  17. Measurement and Modeling of Energetic-Material Mass Transfer to Soil-Pore Water

    DTIC Science & Technology

    2006-05-01

    143 6 Figures Figure 1. Low-Order Detonation Debris Containing TNT Main Charge (~30 cm long) .............17 Figure 2. Soil...Aggregate Containing Soot and Extractable TNT (~5 cm long axis)....................17 Figure 3. Unreacted TNT Ejected from Low Order Detonation (~5...Slurry Sacrifice Test Results – First-Order Degradation Plot.....................................46 Figure 22. Compiled RDX and TNT Solubility Data

  18. Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp

    SciTech Connect

    Westermann, P.; Ahring, B.K.

    1987-10-01

    The dynamics of sulfate reduction, methane production, and denitrification were investigated in a permanently waterlogged alder swamp. Molybdate, an inhibitor of sulfate reduction, stimulated methane production in soil slurries, thus suggesting competition for common substrates between sulfate-reducing and methane-producing bacteria. Acetate, hydrogen, and methanol were found to stimulate both sulfate reduction and methane production, while trimethylamine mainly stimulated methane production. Nitrate addition reduced both methane production and sulfate reduction, either as a consequence of competition of poisoning of the bacteria. Sulfate-reducing bacteria were only slightly limited by the availability of electron acceptors, while denitrifying bacteria were seriously limited by low nitrate concentrations. Arrhenius plots of the three processes revealed different responses to temperature changes in the slurries. Methane production was most sensitive to temperature changes, followed by denitrification and sulfate reduction. No significant differences between slope patterns were observed when comparing summer and winter measurements, indicating similar populations regarding temperature responses.

  19. Synergic use of chemical and ecotoxicological tools for evaluating multi-contaminated soils amended with iron oxides-rich materials.

    PubMed

    Manzano, Rebeca; Jiménez-Peñalver, Pedro; Esteban, Elvira

    2017-03-27

    Abandoned waste piles from ancient mining activities are potential hot spots for the pollution of the surrounding areas. A pot experiment was carried out to check the potential toxicity of the dumping material present in one of these scenarios, and several amendments were tested to attenuate the spread of the contamination events. The waste material had an acid pH and a large total concentration of As and Cu. A dose-response experiment was performed with this material following OCDE 208 test. A proportion 90:10 uncontaminated soil: dumping material (% w/w) was selected for the following experiment, in order to surpass the amount of dumping material that caused 50% reduction in plant growth. Pots were filled with the 90:10 mixture, planted with seeds of Brassica napus and amended with the following materials: three iron oxides of Bayoxide® E33 series, iron (II) sulphate in combination with de-inking paper sludge (Fe+PS), iron oxide-rich rolling mill scale (ROL) and iron oxide-rich cement waste (CEM). Amendment effectiveness evaluation was based on chemical and biological assays: extractable trace element concentration, soil enzymatic activities, inhibition of light emission of V. fischeri and Anabaena sp., B. napus L. fresh weight and screening test for emergence of B. napus L. seedlings. Amendments E33HCF and Fe+PS were the most effective in reducing extractable As and Zn concentration. B. napus weight and dehydrogenase and β-glucosidase activities were positively increased with the two above mentioned treatments but they triggered more toxic effects for V. fischeri luminescence. E33P treatment was the only in which the EC50 was higher than in the control. Anabaena sp. was less sensitive than V. fischeri as its luminescence was not hampered by any treatment. Trace element concentration did not significantly affect the failure in seed emergence. E33HCF and Fe+PS could act as proper amendments as they decreased extractable As and Zn. Further, plant fresh weight

  20. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

  1. Method for recovery of hydrocarbons form contaminated soil or refuse materials

    DOEpatents

    Ignasiak, Teresa; Turak, Ali A.; Pawlak, Wanda; Ignasiak, Boleslaw L.; Guerra, Carlos R.; Zwillenberg, Melvin L.

    1991-01-01

    A method is provided for separating an inert solid substantially inorganic fraction comprising sand or soil from a tarry or oily organic matter in a feedstock. The feedstock may be contaminated soil or tarry waste. The feedstock is combined with pulverized coal and water. The ratio (oil or tar to dry weight of coal) of about 1.0:10 to about 4.0:10 at a temperature in the range of 60.degree.-95.degree. C. The mixture is agitated, the coarse particles are removed, and up to about 0.10% by weight (based on weight of coal) of a frothing agent is added. The mixture is then subjected to flotation, and the froth is removed from the mixture.

  2. Methods using earthworms for the evaluation of potentially toxic materials in soils

    SciTech Connect

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.

    1982-01-01

    The purpose of this study was to investigate the feasibility of using earthworms to indicate effects of potentially toxic wastes when such wastes are intentionally or accidentally added to soils. Initial work with metals has shown that earthworms exhibit specific growth and reproductive responses. These responses are related to the concentration and solubility of the metal. Of the metals tested, cadmium was found to be the most toxic, followed by nickel, copper, zinc, and lead. The metal concentration in earthworm tissue and the background manure-metal mixture was measured, permitting the concentration factor to be computed. The concentration factor is the ratio of the metal in the worm tissue to that in the surrounding manure-metal mixture. These and other studies in our laboratory have demonstrated that the methods described in this paper may be used to predict the effect of land-applied or atmospherically deposited residues on the soil biota.

  3. Differences in soil solution chemistry between soils amended with nanosized CuO or Cu reference materials: implications for nanotoxicity tests.

    PubMed

    McShane, Heather V A; Sunahara, Geoffrey I; Whalen, Joann K; Hendershot, William H

    2014-07-15

    Soil toxicity tests for metal oxide nanoparticles often include micrometer-sized oxide and metal salt treatments to distinguish between toxicity from nanometer-sized particles, non-nanometer-sized particles, and dissolved ions. Test result will be confounded if each chemical form has different effects on soil solution chemistry. We report on changes in soil solution chemistry over 56 days-the duration of some standard soil toxicity tests-in three soils amended with 500 mg/kg Cu as nanometer-sized CuO (nano), micrometer-sized CuO (micrometer), or Cu(NO3)2 (salt). In the CuO-amended soils, the log Cu2+ activity was initially low (minimum -9.48) and increased with time (maximum -5.20), whereas in the salt-amended soils it was initially high (maximum -4.80) and decreased with time (minimum -6.10). The Cu2+ activity in the nano-amended soils was higher than in the micrometer-amended soils for at least the first 11 days, and lower than in the salt-amended soils for at least 28 d. The pH, and dissolved Ca and Mg concentrations in the CuO-amended soils were similar, but the salt-amended soils had lower pH for at least 14 d, and higher Ca and Mg concentrations throughout the test. Soil pretreatments such as leaching and aging prior to toxicity tests are suggested.

  4. Defining Soil Materials for 3-D Models of the Near Surface: Preliminary Findings

    DTIC Science & Technology

    2012-03-01

    R.COE2009.06. Dr. David Horner was the ATO Manager, Josh R. Fairley was the GEOTACS Program Manager, and Dr. Niki Goerger was the Technology Staff...sensor systems for surface and near-surface target detection in complex geo-environmental settings (Horner 2009; Fairley et al. 2010). The intent...soils (Eslinger et al. 2007; Fairley et al. 2010; Howington et al. 2010; Peters et al. 2007). To support the computational testbed, the GEOTACS

  5. Development and Validation of EPH Material Model for Engineered Roadway Soil

    DTIC Science & Technology

    2014-08-01

    of information if it does not display a currently valid OMB control number. 1. REPORT DATE 11 AUG 2014 2. REPORT TYPE Journal Article 3. DATES...fairly consistent gradation, it is not blended to a specification, and current process controls are not sufficient to guarantee the soil consistency...of the plate. The deformed overall shape matches very well with the test. The resulting four normalized deformations, labeled as “ Dsim ” are also

  6. Acidity characterization of a titanium and sulfate modified vermiculite

    SciTech Connect

    Hernandez, W.Y.; Centeno, M.A.; Odriozola, J.A.; Moreno, S.; Molina, R.

    2008-07-01

    A natural vermiculite has been modified with titanium and sulfated by the intercalation and impregnation method in order to optimize the acidity of the clay mineral, and characterization of samples were analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption isotherms, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature programmed desorption with ammonia (TPD-NH{sub 3}). All the modified solids have a significantly higher number of acidic sites with respect to the parent material and in all of these, Broensted as well as Lewis acidity are identified. The presence of sulfate appears not to increase the number of acidic centers in the modified clay. For the materials sulfated with the intercalation method, it is observed that the strength of the acidic sites found in the material increases with the nominal sulfate/metal ratio. Nevertheless, when elevated quantities of sulfur are deposited, diffusion problems in the heptane reaction appear.

  7. Phyllosilicate weathering pathways in chlorite-talc bearing soil parent materials, D.R. Congo: early findings.

    NASA Astrophysics Data System (ADS)

    Dumon, Mathijs; Oostermeyer, Fran; Timmermans, Els; De Meulemeester, Aschwin; Mees, Florias; Van Driessche, Isabel; Erens, Hans; Bazirake Mujinya, Basile; Van Ranst, Eric

    2015-04-01

    The study of the formation and transformation of clay minerals is of the upmost importance to understand soil formation and to adjust land-use management to the land surface conditions. These clay minerals determine to a large extent the soil physical and chemical properties. It is commonly observed that over time the mineralogy of any parent material is transformed to a simple assemblage composed mostly of Al and Fe oxides and low-activity clays, e.g. kaolinite. This is especially obvious in the humid tropics, which have been protected from glacial erosion, allowing deep, highly weathered soils to form. Despite the abundant presence of kaolinite in these soils, its formation pathways are still under debate: either neoformation by dissolution-crystallisation reactions or solid-state transformation of 2:1 phyllosilicates. To elucidate this, weathering sequences in a unique 40 m core taken below a termite mound, reaching a talc-chlorite bearing substrate in the Lubumbashi area, Katanga, DR Congo are being investigated in detail using a.o. quantitative X-ray diffraction analysis, chemical characterization, micromorphology and µXRF-scanning with the main objective to improve the understanding of the formation pathways of kaolinite subgroup minerals in humid tropical environments. Based on an initial characterization of the core, two zones of interest were selected for more detailed analysis, for which the early findings will be presented. The first zone extends from ca. 9 m to 11 m below the surface is dominated by kaolinite but shows early traces of primary talc and micas. The second zone extends from 34 to 36 m below the surface and contains large amounts of chlorite, with smaller amounts of talc, micas and kaolinite.

  8. Impact of climate and parent material on chemical weathering in Loess-derived soils of the Mississippi River valley

    USGS Publications Warehouse

    Muhs, D.R.; Bettis, E. Arthur; Been, J.; McGeehin, J.P.

    2001-01-01

    Peoria Loess-derived soils on uplands east of the Mississippi River valley were studied from Louisiana to Iowa, along a south-to-north gradient of decreasing precipitation and temperature. Major element analyses of deep loess in Mississippi and Illinois show that the composition of the parent material is similar in the northern and southern parts of the valley. We hypothesized that in the warmer, wetter parts of the transect, mineral weathering should be greater than in the cooler, drier parts of the transect. Profile average values of CaO/TiO2, MgO/ TiO2, K2O/TiO2, and Na2O/TiO2, Sr/Zr, Ba/Zr, and Rb/Zr represent proxies for depletion of loess minerals such as calcite, dolomite, hornblende, mica, and plagioclase. All ratios show increases from south to north, supporting the hypothesis of greater chemical weathering in the southern part of the valley. An unexpected result is that profile average values of Al2O3/TiO2 and Fe2O3/TiO2 (proxies for the relative abundance of clay minerals) show increases from south to north. This finding, while contrary to the evidence of greater chemical weathering in the southern part of the transect, is consistent with an earlier study which showed higher clay contents in Bt horizons of loess-derived soils in the northern part of the transect. We hypothesize that soils in the northern part of the valley received fine-grained loess from sources to the west of the Mississippi River valley either late in the last glacial period, during the Holocene or both. In contrast, soils in the southern part of the valley were unaffected by such additions.

  9. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    NASA Astrophysics Data System (ADS)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-12-01

    Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  10. The Toxicological Geochemistry of Dusts, Soils, and Other Earth Materials: Insights From In Vitro Physiologically-based Geochemical Leach Tests

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.; Lamothe, P.; Meeker, G. P.; Sutley, S.

    2003-12-01

    Exposure to mineral dusts, soils, and other earth materials results in chemical reactions between the materials and different body fluids that include, depending upon the exposure route, lung fluids, gastrointestinal fluids, and perspiration. In vitro physiologically-based geochemical leach tests provide useful insights into these chemical reactions and their potential toxicological implications. We have conducted such leach tests on a variety of earth materials, including asbestos, volcanic ash, dusts from dry lake beds, mine wastes, wastes left from the roasting of mercury ores, mineral processing wastes, coal dusts and coal fly ash, various soils, and complex dusts generated by the World Trade Center collapse. Size-fractionated samples of earth materials that have been well-characterized mineralogically and chemically are reacted at body temperature (37 C) for periods from 2 hours up to multiple days with various proportions of simulated lung, gastric, intestinal, and/or plasma-based fluids. Results indicate that different earth materials may have quite different solubility and dissolution behavior in vivo, depending upon a) the mineralogic makeup of the material, and b) the exposure route. For example, biodurable minerals such as asbestos and volcanic ash particles, whose health effects result because they dissolve very slowly in vivo, bleed off low levels of trace metals into the simulated lung fluids; these include metals such as Fe and Cr that are suspected by health scientists of contributing to the generation of reactive oxygen species and resulting DNA damage in vivo. In contrast, dry lake bed dusts and concrete-rich dusts are highly alkaline and bioreactive, and cause substantial pH increases and other chemical changes in the simulated body fluids. Many of the earth materials tested contain a variety of metals that can be quite soluble (bioaccessible), depending upon the material and the simulated body fluid composition. For example, due to their acidic

  11. Estimate of excess uranium in surface soil surrounding the Feed Materials Production Center using a requalified data base.

    PubMed

    Stevenson, K A; Hardy, E P

    1993-09-01

    A conservative estimate of the excess total uranium in the top 5 cm of soil surrounding the former Feed Materials Production Center was made using a data base compiled by the International Technology Corporation in 1986, and the requalification of that data base was completed in 1988. The results indicate that within an area of 8 km2, extending 2 km both northeast and southwest of the Feed Materials Production Center, the uranium concentration is between 2 and 5 times greater than average natural background radiation levels. More than 85% of this excess uranium is deposited within 1 km of the site boundary. The presence of any excess uranium outside of this area is indistinguishable from the natural background contribution.

  12. Off limits: sulfate below the sulfate-methane transition

    NASA Astrophysics Data System (ADS)

    Brunner, Benjamin; Arnold, Gail; Røy, Hans; Müller, Inigo; Jørgensen, Bo

    2016-07-01

    One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling - the simultaneous sulfate consumption and production - has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment - thus the term cryptic - it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface. Classically, the sulfate-methane transition (SMT) in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1 to 0.2 mM) below the SMT. The sulfur and oxygen isotope signature of this deep sulfate (34S = 18.9‰, 18O = 7.7‰) was close to the isotope signature of bottom-seawater collected from the sampling site (34S = 19.8‰, 18O = 7.3‰). In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool (18O = 4.5‰ to 6.8‰) were distinctly lighter than the deep sulfate pool. Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide - to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

  13. Report: Potential environmental impact of exempt site materials - a case study of bituminous road planings and waste soils.

    PubMed

    Bark, Marjorie; Bland, Michael; Grimes, Sue

    2009-09-01

    The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.

  14. Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils

    USGS Publications Warehouse

    Yen, A. S.; Morris, R.V.; Clark, B. C.; Gellert, Ralf; Knudson, A.T.; Squyres, S.; Mittlefehldt, D. W.; Ming, D. W.; Arvidson, R.; McCoy, T.; Schmidt, M.; Hurowitz, J.; Li, R.; Johnson, J. R.

    2008-01-01

    The Mars Exploration Rover Spirit analyzed multiple occurrences of sulfur-rich, light-toned soils along its traverse within Gusev Crater. These hydrated deposits are not readily apparent in images of undisturbed soil but are present at shallow depths and were exposed by the actions of the rover wheels. Referred to as 'Paso Robles' class soils, they are dominated by ferric iron sulfates, silica, and Mg-sulfates. Ca-sulfates, Ca-phosphates, and other minor phases are also indicated in certain specific samples. The chemical compositions are highly variable over both centimeter-scale distances and between the widely separated exposures, but they clearly reflect the elemental signatures of nearby rocks. The quantity of typical basaltic soil mixed into the light-toned materials prior to excavation by the rover wheels is minimal, suggesting negligible reworking of the deposits after their initial formation. The mineralogy, geochemistry, variability, association with local compositions, and geologic setting of the deposits suggest that Paso Robles class soils likely formed as hydrothermal and famarolic condensates derived from magma degassing and/ or oxidative alteration of crustal iron sulfide deposits. Their occurrence as unconsolidated, near-surface soils permits, though does not require, an age that is significantly younger than that of the surrounding rocks. Copyright 2008 by the American Geophysical Union.

  15. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  16. SATURATED - UNSATURATED HYDRAULIC PROPERTIES OF SUBBASE COURSE MATERIAL AND SUBGRADE SOIL

    NASA Astrophysics Data System (ADS)

    Yano, Takao; Nishiyama, Satoshi; Nakashima, Shin-Ichiro; Moriishi, Kazushi; Ohnishi, Yuzo

    In order to evaluate the rainwate r storage and infiltration properties of the permeable pavement by unsaturated seepage analysis or gas-liquid two-phase flow analysis, it is important to know the unsaturated hydraulic properties of materials wh ich constitute the pavement. For this reason, we showed the unsaturated hydraulic properties of porous asphalt material s but we have not clarified the relation between the performance of the permeable pavement and the properties of all constituti on materials. In this paper, we try to determine the unsaturated hydraulic properties of subbase course and subgrade materials that greatly affect the rainwater storage and infiltration properties of the permeable pavement. We show from experiments that water retention characteristic and the un saturated hydraulic properties of subbase course and subgrade materials well match the van Genuchten model and the Irmay model.

  17. Sulfates and phyllosilicates in Aureum Chaos, Mars

    NASA Astrophysics Data System (ADS)

    Sowe, M.; Wendt, L.; McGuire, P. C.; Neukum, G.

    2012-12-01

    Many Martian regions show a hydrated mineralogy indicating that aqueous processes played a major role in the planet's past. This study combines short wave infrared data, imagery and elevation data to identify these minerals in an equatorial chaotic terrain region and to find out their stratigraphy and geological context. Local Interior Layered Deposits (ILD) display three stratigraphic units: The lowest unit shows massive and also layered, monohydrated sulfate (MHS, best matching kieserite; 20-650 m thick), intercalated hydroxylated ferric sulfates (HFS, best matching jarosite) and ferric oxides. The overlying polyhydrated sulfate (PHS) is commonly layered (20-40 m thick), smooth to heavily fractured, partially with ferric oxides. Spectrally neutral, distinctly layered, bumpy cap rock (40-300 m thick) forms the top. Units are spectrally and morphologically similar to deposits of Aram Chaos (PHS, MHS, ferric oxides; texture of ILD and cap rock) and Juventae Chasma (HFS). Here, the phyllosilicate nontronite is found attributed to chaotic terrain as a light-toned fractured exposure but also within dark, smooth mantling. Coexisting sulfates and phyllosilicates demonstrate geochemical variations in the aqueous environment. Conversions between sulfates and iron oxides are considered, since we might be looking at alteration products instead of the parent rock material. Here, PHS occurs along mantling edges and flat surfaces of MHS without showing textural differences; making it a potential alteration product of MHS (e.g. due to surface exposure). Since the facies and timing of sulfate formation remain undefined, two different formation models are considered: contemporaneous ILD and PHS deposition with diagenetic sulfate conversion due to overburden (into MHS, iron oxides) later on; and groundwater evaporation. The first is less likely since a (sharp) PHS-MHS boundary is required that would indicate a diagenetic formation. The second is more consistent with our

  18. Incorporation of /sup 35/S-sulfate and /sup 3/H-glucosamine into heparan and chondroitin sulfates during the cell cycle of B16-F10 cells

    SciTech Connect

    Blair, O.C.; Sartorelli, A.C.

    1984-05-01

    Changes in glycosaminoglycan composition occurring during the cell cycle were determined in B16-F10 cells sorted flow cytometrically with respect to DNA content. Incorporation of /sup 35/S-sulfate into heparan sulfate and chondroitin sulfate of unsorted and G1,S, and G2 +M sorted cells was determined following chondroitinase ABC or nitrous acid treatment; the incorporation into surface material was measured as the difference between the radioactivity of control and trypsin-treated cells. Incorporation of /sup 35/S-sulfate and /sup 3/H-glucosamine into cetyl pyridinium chloride (CPC)-precipitable material was characterized before and after chondroitinase or nitrous acid treatment by Sephadex G50 chromatography. Long-term (48 h) and short-term (1 h) labeling studies demonstrate that (a) the amount of total cellular chondroitin sulfate is greater than that of heparan sulfate, with larger amounts of unsulfated heparan than chondroitin being present; (b) the rate of turnover of heparan sulfate is greater than that of chondroitin sulfate; (c) greatest short-term incorporation of 3H-glucosamine into CPC-precipitable material occurs during S phase; and (d) the rate of turnover of both heparan sulfate and chondroitin sulfate is decreased in S phase relative to G1 and G2 + M.

  19. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China

    PubMed Central

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-01-01

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level. PMID:28335450

  20. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    PubMed Central

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  1. Parent material and vegetation influence soil microbial community structure following 30-years of rock weathering and pedogenesis.

    PubMed

    Yarwood, Stephanie; Wick, Abbey; Williams, Mark; Daniels, W Lee

    2015-02-01

    The process of pedogenesis and the development of biological communities during primary succession begin on recently exposed mineral surfaces. Following 30 years of surface exposure of reclaimed surface mining sites (Appalachian Mountains, USA), it was hypothesized that microbial communities would differ between sandstone and siltstone parent materials and to a lesser extent between vegetation types. Microbial community composition was examined by targeting bacterial and archaeal (16S ribosomal RNA (rRNA)) and fungal (internal transcribed spacer (ITS)) genes and analyzed using Illumina sequencing. Microbial community composition significantly differed between parent materials and between plots established with tall fescue grass or pitch x loblolly pine vegetation types, suggesting that both factors are important in shaping community assembly during early pedogenesis. At the phylum level, Acidobacteria and Proteobacteria differed in relative abundance between sandstone and siltstone. The amount of the heavy fraction carbon (C) was significantly different between sandstone (2.0 mg g(-1)) and siltstone (5.2 mg g(-1)) and correlated with microbial community composition. Soil nitrogen (N) cycling was examined by determining gene copy numbers of ureC, archaeal amoA, and bacterial amoA. Gene quantities tended to be higher in siltstone compared to sandstone but did not differ by vegetation type. This was consistent with differences in extractable ammonium (NH4 (+)) concentrations between sandstone and siltstone (16.4 vs 8.5 μg NH4 (+)-N g(-1) soil), suggesting that nitrification rates may be higher in siltstone. Parent material and early vegetation are important determinants of early microbial community assembly and could be drivers for the trajectory of ecosystem development over longer time scales.

  2. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    PubMed

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-23

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  3. Crystal structure of tris-(piperidinium) hydrogen sulfate sulfate.

    PubMed

    Lukianova, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-12-01

    In the title molecular salt, 3C5H12N(+)·HSO4 (-)·SO4 (2-), each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O-H⋯O hydrogen bond. The packing also features a number of N-H⋯O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen bonds.

  4. Survey and evaluation of contaminants in earthworms and in soils derived from dredged material at confined disposal facilities in the Great Lakes region

    USGS Publications Warehouse

    Beyer, W.N.; Stafford, C.

    1993-01-01

    Soils derived from dredged material were collected, together with earthworms from nine confined disposal facilities located in the Great Lakes Region. These samples were analyzed for 18 elements, 11 organochlorine pesticides, PCBs, and 24 polycyclic aromatic hydrocarbons. The concentrations detected in earthworms were evaluated in terms of their potential hazard to wildlife, which for the sake of the evaluation were assumed to prey entirely either on earthworms or on other soil invertebrates having similar concentrations. The soil concentrations (dry wt.) of the contaminants of greatest concern were < 1.9 to 32 ppm Cd, < 0.053 to 0.94 ppm Hg, 4.6 to 550 ppm Pb, and < 0.1 to 1.0 ppm PCBs. The concentrations in earthworms (dry wt., ingested soil included) were as high as 91 ppm Cd, 1.6 ppm Hg, 200 ppm Pb, and 1.8 ppm PCBs. Based on laboratory toxicity studies of relatively sensitive species, and on concentration factors calculated from the earthworm and soil data, we estimated that lethal or serious sublethal effects on wildlife might be expected at concentrations of 10 ppm Cd, 3 ppm Hg, 670 ppm Pb, and 1.7 ppm PCBs in alkaline surface soils derived from dredged material. Concentrations of polycyclic aromatic hydrocarbons in earthworms were well below those in soil.

  5. Coal tar, material used in soil improvement for use in road engineering

    NASA Astrophysics Data System (ADS)

    Ochoa Díaz, R.; Montañez, A.; Cuentas, J.

    2016-02-01

    Coal tar is a by-product of coal distillation in the absence of oxygen to obtain metallurgical coke; its colour varies from dark coffee to black, slightly viscous and its density is greater than that of water. Taking into account the previous characteristics, this document presents a study of the feasibility of using coal tar for the improvement of physical properties, mechanics and dynamics of materials used in road engineering. In this way, the origin, characteristics, and properties of tar are first described. Next, its combination with which granular-based material is evaluated through the CBR test procedure to determine its resistance and to compare it with the non-stabilized material. Finally, the behaviour of the material when subjected to dead loads by means of resistant modules found with the NAT (Nottingham Asphalt Tester) is explored. As a result, the option of using coal tar as a stabilizer was identified due to its use under specific conditions.

  6. MOELCULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of pow dered coal samples has been adapted for swelling measurements on various peat, pollen, chain, and cellulose samples The swelling of these macromolecular materials is the volumetric manifestatio...

  7. Sulfate scale dissolution

    SciTech Connect

    Morris, R.L.; Paul, J.M.

    1992-01-28

    This patent describes a method for removing barium sulfate scale. It comprises contacting the scale with an aqueous solution having a pH of about 8 to about 14 and consisting essentially of a chelating agent comprising a polyaminopolycarboxylic acid or salt of such an acid in a concentration of 0.1 to 1.0 M, and anions of a monocarboxylic acid selected form mercaptoacetic acid, hydroxyacetic acid, aminoacetic acid, or salicyclic acid in a concentration of 0.1 to 1.0 M and which is soluble in the solution under the selected pH conditions, to dissolve the scale.

  8. Glucosamine and chondroitin sulfate.

    PubMed

    Miller, Karla L; Clegg, Daniel O

    2011-02-01

    Glucosamine and chondroitin sulfate, components of normal cartilage that are marketed as dietary supplements in the United States, have been evaluated for their potential role in the treatment of osteoarthritis. Due to claims of efficacy, increased prevalence of osteoarthritis, and a lack of other effective therapies, there has been substantial interest in using these dietary supplements as therapeutic agents for osteoarthritis. Though pharmacokinetic and bioavailability data are limited, use of these supplements has been evaluated for management of osteoarthritis symptoms and modification of disease progression. Relevant clinical trial efficacy and safety data are reviewed and summarized.

  9. Ferric sulfates on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1987-01-01

    Evidence is presented for the possible existence of ferric sulfato complexes and hydroxo ferric sulfate minerals in the permafrost of Mars. A sequential combination of ten unique conditions during the cooling history of Mars is suggested which is believed to have generated an environment within Martian permafrost that has stabilized Fe(3+)-SO4(2-)-bearing species. It is argued that minerals belonging to the jarosite and copiapite groups could be present in Martian regolith analyzed in the Viking XRF measurements at Chryse and Utopia, and that maghemite suspected to be coating the Viking magnet arrays is a hydrolysate of dissolved ferric sulfato complexes from exposed Martian permafrost.

  10. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment

    SciTech Connect

    Hossain, K.M.A. . E-mail: ahossain@ryerson.ca; Lachemi, M.

    2006-06-15

    The deterioration of concrete structures due to the presence of mixed sulfate in soils, groundwater and marine environments is a well-known phenomenon. The use of blended cements incorporating supplementary cementing materials and cements with low C{sub 3}A content is becoming common in such aggressive environments. This paper presents the results of an investigation on the performance of 12 volcanic ash (VA) and finely ground volcanic pumice (VP) based ASTM Type I and Type V (low C{sub 3}A) blended cement concrete mixtures with varying immersion period of up to 48 months in environments characterized by the presence of mixed magnesium-sodium sulfates. The concrete mixtures comprise a combination of two Portland cements (Type I and Type V) and four VA/VP based blended cements with two water-to-binder ratio of 0.35 and 0.45. Background experiments (in addition to strength and fresh properties) including X-ray diffraction (XRD), Differential scanning calorimetry (DSC), mercury intrusion porosimetry (MIP) and rapid chloride permeability (RCP) were conducted on all concrete mixtures to determine phase composition, pozzolanic activity, porosity and chloride ion resistance. Deterioration of concrete due to mixed sulfate attack and corrosion of reinforcing steel were evaluated by assessing concrete weight loss and measuring corrosion potentials and polarization resistance at periodic intervals throughout the immersion period of 48 months. Plain (Type I/V) cement concretes, irrespective of their C{sub 3}A content performed better in terms of deterioration and corrosion resistance compared to Type I/V VA/VP based blended cement concrete mixtures in mixed sulfate environment.

  11. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.

    PubMed

    Erhagen, Björn; Öquist, Mats; Sparrman, Tobias; Haei, Mahsa; Ilstedt, Ulrik; Hedenström, Mattias; Schleucher, Jürgen; Nilsson, Mats B

    2013-12-01

    The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate.

  12. Development of a standard reference material for Cr(vi) in contaminated soil

    USGS Publications Warehouse

    Nagourney, S.J.; Wilson, S.A.; Buckley, B.; Kingston, H.M.S.; Yang, S.-Y.; Long, S.E.

    2008-01-01

    Over the last several decades, considerable contamination by hexavalent chromium has resulted from the land disposal of Chromite Ore Processing Residue (COPR). COPR contains a number of hexavalent chromium-bearing compounds that were produced in high temperature industrial processes. Concern over the carcinogenic potential of this chromium species, and its environmental mobility, has resulted in efforts to remediate these waste sites. To provide support to analytical measurements of hexavalent chromium, a candidate National Institute of Standards and Technology (NIST) Standard Reference Material?? (SRM 2701), having a hexavalent chromium content of approximately 500 mg kg -1, has been developed using material collected from a waste site in Hudson County, New Jersey, USA. The collection, processing, preparation and preliminary physico-chemical characterization of the material are discussed. A two-phase multi-laboratory testing study was carried out to provide data on material homogeneity and to assess the stability of the material over the duration of the study. The study was designed to incorporate several United States Environmental Protection Agency (USEPA) determinative methods for hexavalent chromium, including Method 6800 which is based on speciated isotope dilution mass spectrometry (SIDMS), an approach which can account for chromium species inter-conversion during the extraction and measurement sequence. This journal is ?? The Royal Society of Chemistry 2008.

  13. Measurement and Modeling of Energetic Material Mass Transfer to Soil Pore Water - Project CP-1227 Annual Technical Report

    SciTech Connect

    PHELAN, JAMES M.; WEBB, STEPHEN W.; ROMERO, JOSEPH V.; BARNETT, JAMES L.; GRIFFIN, FAWN A.

    2003-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g. weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. Experimental work to date with Composition B explosive has shown that column tests typically produce effluents near the temperature dependent solubility limits for RDX and TNT. The influence of water flow rate, temperature, porous media saturation and mass loading is documented. The mass transfer model formulation uses a mass transfer coefficient and surface area function and shows good agreement with the experimental data. Continued experimental work is necessary to evaluate solid phase particle size and 2-dimensional effects, and actual low order detonation debris. Simulation model improvements will continue leading to a capability to complete screening assessments of the impacts of military range operations on groundwater quality.

  14. The informativeness of coefficients a and b of the soil line for the analysis of remote sensing materials

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.

    2016-08-01

    The coefficients of the soil line are often taken into account in calculations of vegetation indices. These coefficients are usually calculated for the entire satellite image, or are taken as constants without any calculations. In both cases, the informativeness of these coefficients is low and insufficient for the needs of soil mapping. In our study, we calculated soil line coefficients at 8000 lattice points for the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast on the basis of 34 Landsat 5, 7, and 8 images obtained in 1985-2014. In order to distinguish between the soil line calculated for a given image and the soil line calculated for lattice points on the basis of dozens of multitemporal images, we suggest that the latter can be referred to as the temporal soil line. The temporal soil line is described by a classical equation: NIR = RED a + b, where a is its slope relative to the horizontal axis (RED), and b is the Y-axis (NIR) intercept. Both coefficients were used to create soil maps. The verification of the maps was performed with the use of data on 1985 soil pits. The informativeness of these coefficients appeared to be sufficient for delineation of eight groups of soils of different taxonomic levels: soddy moderately podzolic soils, soddy slightly podzolic soils, soddy-podzolic soils, light gray forest soils, gray forest soils, dark gray forest soils, podzolized chernozems, and leached chernozems. The b coefficient proved to be more informative, as it allowed us to create the soil map precisely on its basis. In order to create the soil map on the basis of the a coefficient, we had to apply some threshold values of the b coefficient. The bare soil on each of Landsat scenes was separated with the help of the mask of agricultural fields and the notion of the spectral neighborhood of soil line (SNSL).

  15. Soil Chemistry Still Affected 23 Years After Large Application of Fluidized Bed Material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to assess the movement of arsenic, aluminum, calcium, copper, iron, lead, magnesium, manganese, mercury and zinc in an old apple (Malus domestica Borkh) orchard that received a one time application of 36 kg/ m2 of fluidized bed combustion material (FBCM) 23 years earlier. S...

  16. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, Fe... pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate heptahydrate...

  17. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous sulfate. 184.1315 Section 184.1315 Food and... Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate... as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate...

  18. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    NASA Astrophysics Data System (ADS)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  19. Acid-Sulfate Alteration at Gusev Crater and Across Mars: High-SiO2 Residues and Ferric Sulfate Precipitates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Catalano, J. G.; Klingelhoefer, G.; Schroeder, C.; Gellert, R.; Clark, B. C.; Ming, D. W.; Yen, A. S.; Arvidson, R. E.; Cohen, B. A.; Fleischer, I.; McCoy, T. J.; Mittlefehldt, D. W.; Squyres, S. W.

    2017-01-01

    The Mars Exploration Rover Spirit ended its mission in Gusev crater on sol 2210 after it had become stuck in a deposit of fined-grained and sulfate rich soil with dust covered solar panels unfavorably pointed toward the sun. Final analysis of remaining data from Spirit's Moessbauer spectrometer (Fe redox and mineralogy) for sols 1529 through 2071 is now complete. We focus here on chemical (APXS) and MB data for targets having high-SiO2 or high-SO3 and process link the targets through mixing and geochemical modelling to an acid-sulfate system centered at Home Plate, which is considered to be a hydrovolcanic complex.

  20. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  1. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. [Vertical distribution patterns of nitrogen, phosphorus, and potassium in Chinese pine forest soils developed from different parent materials in Songshan Mountain Nature Reserve, Beijing of China].

    PubMed

    Gou, Li-hui; Sun, Zhao-di; Nie, Li-shui; Luo, Pan-pan; Wu, Ji-Gui; Xu, Wu-de

    2013-04-01

    Taking the soils developed from two kinds of parent materials (granite and limestone) under Pinus tabulaeformis forest at the same altitude in Songshan Mountain Nature Reserve of Beijing as test objects, this paper studied the vertical distribution patterns of soil total nitrogen, available phosphorus, and available potassium. The soil developed from granite had the total nitrogen, available phosphorus, and available potassium contents being 1.61-2. 35 g kg-1, 5. 84-10.74 mg kg- 1, and 39.33-93.66 mg kg-1, while that developed from limestone had the total nitrogen, available phosphorus, and available potassium contents being 1. 69 -2. 36 g kg-1, 4.45-8.57 mg . kg-1, and 60.66-124.00 mg kg-1, respectively. The total nitrogen, available phosphorus, and available potassium contents in the two soils were the highest in 0-10 cm layer, decreased with increasing depth, and had significant differences between different layers, showing that the soil total nitrogen, available phosphorus, and available potassium had a strong tendency to accumulate in surface layer. Such a tendency was more obvious for the soil developed from limestone. The paired t-test for the two soils indicated that the total nitrogen content in different layers had no significant difference, whereas the available phosphorus content in 0-10 cm layer and the available potassium content in 10-20 cm layer differed significantly.

  3. Partitioning CO2 effluxes from an Atlantic pine forest soil between endogenous soil organic matter and recently incorporated 13C-enriched plant material.

    PubMed

    Fernandez, Irene; Cabaneiro, Ana; González-Prieto, Serafín J

    2006-04-15

    Soil CO2 effluxes from recently added 13C-labeled phytomass versus endogenous soil organic matter (SOM) were studied in an acid soil from Atlantic pine forests (NW Spain). After several cultures to incorporate fresh 13C-enriched Lolium perenne to a Humic Cambisol with predominance of humus--Al over humus--Fe complexes, potential soil C mineralization was determined by laboratory aerobic incubation (84 days). Isotopic 13C analyses of SOM fractions were assessed to know in which organic compartments the 13C was preferentially incorporated. Although in the 13C-labeled soil the C mineralization coefficient totalized less than 3% of soil C, the 13C mineralization coefficient exceeded 14%, indicating a greater lability of the newly incorporated organic matter. Organic compounds coming from added phytomass showed a higher lability and contributed considerably to the total soil CO2 effluxes (52% of total soil CO2 evolved during the first decomposition stages and 27% at the end), even though added-C comprised less than 4% of total soil C. Good determination coefficients, when values of CO2--C released were fitted to a first-order double exponential kinetic model, support the existence of two C pools of different lability. Kinetic parameters obtained with this model indicated that phytomass addition augmented the biodegradability of the labile pool (instantaneous mineralization rate k increased from 0.07 d(-1) to 0.12 d(-1)) but diminished that of the recalcitrant pool (instantaneous mineralization rate h decreased from 2.7 x 10(-4) d(-1) to 1.6 x 10(-4) d(-1)). Consequently, the differentiation between both SOM pools increased, showing the importance of SOM quality on CO2 emissions from this kind of soil to the atmosphere.

  4. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS... treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a...

  5. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS... treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a...

  6. Sulfation of von Willebrand factor

    SciTech Connect

    Carew, J.A.; Browning, P.J.; Lynch, D.C. )

    1990-12-15

    von Willebrand factor (vWF) is a multimeric adhesive glycoprotein essential for normal hemostasis. We have discovered that cultured human umbilical vein endothelial cells incorporate inorganic sulfate into vWF. Following immunoisolation and analysis by polyacrylamide or agarose gel electrophoresis, metabolically labeled vWF was found to have incorporated (35S)-sulfate into all secreted multimer species. The time course of incorporation shows that sulfation occurs late in the biosynthesis of vWF, near the point at which multimerization occurs. Quantitative analysis suggests the presence, on average, of one molecule of sulfate per mature vWF subunit. Virtually all the detectable sulfate is released from the mature vWF subunit by treatment with endoglycosidases that remove asparagine-linked carbohydrates. Sulfated carbohydrate was localized first to the N-terminal half of the mature subunit (amino acids 1 through 1,365) by partial proteolytic digestion with protease V8; and subsequently to a smaller fragment within this region (amino acids 273 through 511) by sequential digestions with protease V8 and trypsin. Thus, the carbohydrate at asparagine 384 and/or 468 appears to be the site of sulfate modification. Sodium chlorate, an inhibitor of adenosine triphosphate-sulfurylase, blocks sulfation of vWF without affecting either the ability of vWF to assemble into high molecular weight multimers or the ability of vWF multimers to enter Weible-Palade bodies. The stability of vWF multimers in the presence of an endothelial cell monolayer also was unaffected by the sulfation state. Additionally, we have found that the cleaved propeptide of vWF is sulfated on asparagine-linked carbohydrate.

  7. Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil.

    PubMed

    Crockett, Michael P; Evans, Austin M; Worthington, Max J H; Albuquerque, Inês S; Slattery, Ashley D; Gibson, Christopher T; Campbell, Jonathan A; Lewis, David A; Bernardes, Gonçalo J L; Chalker, Justin M

    2016-01-26

    A polysulfide material was synthesized by the direct reaction of sulfur and d-limonene, by-products of the petroleum and citrus industries, respectively. The resulting material was processed into functional coatings or molded into solid devices for the removal of palladium and mercury salts from water and soil. The binding of mercury(II) to the sulfur-limonene polysulfide resulted in a color change. These properties motivate application in next-generation environmental remediation and mercury sensing.

  8. Sulfur‐Limonene Polysulfide: A Material Synthesized Entirely from Industrial By‐Products and Its Use in Removing Toxic Metals from Water and Soil

    PubMed Central

    Crockett, Michael P.; Evans, Austin M.; Worthington, Max J. H.; Albuquerque, Inês S.; Slattery, Ashley D.; Gibson, Christopher T.; Campbell, Jonathan A.; Lewis, David A.; Bernardes, Gonçalo J. L.

    2015-01-01

    Abstract A polysulfide material was synthesized by the direct reaction of sulfur and d‐limonene, by‐products of the petroleum and citrus industries, respectively. The resulting material was processed into functional coatings or molded into solid devices for the removal of palladium and mercury salts from water and soil. The binding of mercury(II) to the sulfur‐limonene polysulfide resulted in a color change. These properties motivate application in next‐generation environmental remediation and mercury sensing. PMID:26481099

  9. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley E.; Quelen, Sarah; Marlot, Lea; Preble, Chelsea V.; Chen, Sharon; Montalbano, Amandine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  10. A comparison of rates of hornblende etching in soils in glacial deposits of the northern Rocky Mountains: Influence of climate and characteristics of parent material

    SciTech Connect

    Horn, L.L. . Dept. of Geology); Hall, R.D. . Dept. of Geology)

    1993-04-01

    Etching rates of hornblende grains in the soil matrix of glacial deposits in the Northern Rocky Mountains are dependent primarily upon the influences on soil moisture of the climate and texture of the parent materials. Etching is measured as the deepest penetration of weathering along cleavages. Previous works have shown that hornblende etching is a logarithmic function of depth. Hornblende etching is also a logarithmic function of age of the parent material, with etching rates declining rapidly after initially high rates during the first 10 to 15 kyr after deposition. A comparison of etching rates was made among four chronosequences from the Wind River Range, Wyoming and the Tobacco Root Range, Montana, which have differences in mean annual precipitation (MAP) and texture of the till parent materials. Using rates calculated from both ranges for the first 12 kyr after deposition, etching is slowest (0.02 [mu]m/1,000 yrs) in coarse-textured granitic parent materials where the MAP is 25--40 cm. In contrast, etching is faster by an order of magnitude (0.21 [mu]m/1,000 yrs) where MAP is 110--150 cm and the parent material is finer textured due to about 15% sedimentary rock material mixed with a granitic component. Within individual chronosequences, deposits at higher elevations have accelerated etching rates due to higher orographic precipitation or the influence of late-lying snow. These factors result in higher soil moisture content.

  11. Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release.

    PubMed

    Dang, Tan; Mosley, Luke M; Fitzpatrick, Rob; Marschner, Petra

    2016-12-01

    When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers. The suitability of organic materials for such barriers was tested. Eight organic materials including two plant residues, compost and five biochars differing in feedstock and production temperature were finely ground and filled into PVC cores at 3.5 g dry wt/core. Field-collected acidic drainage water (pH 3, Al 22 mg L(-1) and Fe 48 mg L(-1)) was applied in six leaching events followed by six leaching events with reverse osmosis (RO) water (45 mL/event). Compost and biochars increased the leachate pH by up to 4.5 units and had a high retention capacity for metals. The metal and proton release during subsequent leaching with RO water was very small, cumulatively only 0.05-0.8 % of retained metals and protons. Retention was lower in the two plant residues, particularly wheat straw, which raised leachate pH by 2 units only in the first leaching event with drainage water, but had little effect on leachate pH in the following leaching events. It can be concluded that organic materials and particularly biochars and compost have the potential to be used in acid drainage treatment to remove and retain protons and metals.

  12. Confirmation of Soluble Sulfate at the Phoenix Landing Site: Implications for Martian Geochemistry and Habitability

    NASA Technical Reports Server (NTRS)

    Kounaves, S. P.; Hecht, M. H.; Kapit, J.; Quinn, R. C.; Catling, D. C.; Clark, B. C.; Ming, D. W.; Gospodinova, K.; Hredzak, P.; McElhoney, K.; Shusterman, J.

    2010-01-01

    Over the past several decades, elemental sulfur in martian soils and rocks has been detected by a number of missions using X-ray spectroscopy [1-3]. Optical spectroscopy has also provided evidence for widespread sulfates on Mars [4,5]. The ubiquitous presence of sulfur in soils has been interpreted as a widely distributed sulfate mineralogy [6]. However, direct confirmation as to the identity and solubility of the sulfur species in martian soil has never been obtained. One goal of the Wet Chemistry Laboratory (WCL) [7] on board the 2007 Phoenix Mars Lander [8] was to determine soluble sulfate in the martian soil. The WCL received three primary samples. Each sample was added to 25 mL of leaching solution and analysed for solvated ionic species, pH, and conductivity [9,10]. The analysis also showed a discrepancy between charge balance, ionic strength, and conductivity, suggesting unidentified anionic species.

  13. Sulfate threshold target to control methylmercury levels in wetland ecosystems.

    PubMed

    Corrales, Juliana; Naja, Ghinwa M; Dziuba, Catherine; Rivero, Rosanna G; Orem, William

    2011-05-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear(-1), respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear(-1), respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear(-1), and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear(-1). Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL(-1) was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2μgL(-1) criterion for surface water already established by the U.S. Environmental Protection Agency (EPA).

  14. Sulfate threshold target to control methylmercury levels in wetland ecosystems

    USGS Publications Warehouse

    Corrales, J.; Naja, G.M.; Dziuba, C.; Rivero, R.G.; Orem, W.

    2011-01-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear-1, respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear-1, respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear-1, and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear-1. Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL-1 was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2??gL-1 criterion for surface water already established by the U.S. Environmental Protection Agency (EPA). ?? 2011 Elsevier B.V.

  15. The response of earthworms (Eisenia fetida) and soil microbes to the crumb rubber material used in artificial turf fields.

    PubMed

    Pochron, Sharon T; Fiorenza, Andrew; Sperl, Cassandra; Ledda, Brianne; Lawrence Patterson, Charles; Tucker, Clara C; Tucker, Wade; Ho, Yuwan Lisa; Panico, Nicholas

    2017-04-01

    Municipalities have been replacing grass fields with artificial turf, which uses crumb rubber infill made from recycled tires. Crumb rubber contains hydrocarbons, organic compounds, and heavy metals. Water runoff from crumb rubber fields contains heavy metals. These components can damage the environment. We contaminated topsoil with new crumb rubber and measured its impact on earthworms and soil microbes. Specifically, we compared soil microbe activity and earthworm health, survivorship, and longevity in heat and light stress under two soil regimes: clean topsoil and clean topsoil contaminated with crumb rubber. We then characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published New York soil background levels and to levels set by the New York State Department of Environmental Conservation (DEC) as remediation goals. We found that: 1) contaminated soil did not inhibit microbial respiration rates, 2) earthworm survivorship was not impacted by exposure to contaminated soil, 3) earthworms' ability to cope with heat and light stress remained unchanged after living in contaminated soil, but 4) earthworms living in contaminated soil gained 14% less body weight than did earthworms living in uncontaminated soil. We also found that, with the exception of zinc, heavy metals in our contaminated soil did not exceed the background levels found throughout New York State or the remediation targets set by the DEC.

  16. Novel approach for quantitatively estimating element retention and material balances in soil profiles of recharge basins used for wastewater reclamation.

    PubMed

    Eshel, Gil; Lin, Chunye; Banin, Amos

    2015-01-01

    We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals.

  17. Verification of the Classification and Diagnostic system of Russian soils (2004) on the materials of a collection of soil monoliths from the V.V. Dokuchaev Central Soil Museum

    NASA Astrophysics Data System (ADS)

    Aparin, B. F.; Gerasimova, M. I.; Lebedeva, I. I.; Sukhacheva, E. I.; Tonkonogov, V. D.

    2007-05-01

    The first in the world collection of soil monoliths from the Dokuchaev Central Soil Museum (St. Petersburg) was examined in order to test and verify the new substantive-genetic classification system of Russian soils. This work made it possible to introduce a number of refinements in the second edition of the Russian soil classification system (2004). These refinements included the addition of new diagnostic horizons and features and the specification of their definitions. The analysis of the museum collection of soils has definite advantages, as it allows one to work with soils from different geographic regions simultaneously, to consider morphological features of soils under standard conditions, to use analytical soil data, and to analyze different names (i.e., interpretations of the genesis) given to the same soils. At the same time, a critical analysis of the collection creates necessary prerequisites for a comparative analysis of soils from different regions of Russia with the national reference soil base, which is important in order to reveal the real pedogenetic diversity and improve the information base on soil resources in Russia.

  18. Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Ming, Douglas W.

    2010-01-01

    The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

  19. p-Cresyl Sulfate

    PubMed Central

    Gryp, Tessa; Vanholder, Raymond; Vaneechoutte, Mario; Glorieux, Griet

    2017-01-01

    If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden. PMID:28146081

  20. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems

    USGS Publications Warehouse

    Wershaw, R. L.

    1986-01-01

    A generalized model of humic materials in soils and sediments, which is consistent with their observed properties, is presented. This model provides a means of understanding the interaction of hydrophobic pollutants with humic materials. In this model, it is proposed that the humic materials in soils and sediments consist of a number of different oligomers and simple compounds which result from the partial degradation of plant remains. These degradation products are stabilized by incorporation into humic aggregates bound together by weak bonding mechanisms, such as hydrogen bonding, pi bonding, and hydrophobic interactions. The resulting structures are similar to micelles or membranes, in which the interiors of the structures are hydrophobic and the exteriors are hydrophilic. Hydrophobic compounds will partition into the hydrophobic interiors of the humic micelles or "membrane-like" structures. ?? 1986.

  1. Mixed metal phospho-sulfates for acid catalysis

    SciTech Connect

    Thoma, S.G.; Jackson, N.B.; Nenoff, T.M.; Maxwell, R.S.

    1997-12-01

    Mixed metal phospho-sulfates have been prepared and evaluated for use as acid catalysts via 2-methyl-2-pentene isomerization and o-xylene isomerization. Particular members of this class of materials exhibit greater levels of activity than sulfated zirconia as well as lower rates and magnitudes of deactivation. {sup 31}P MAS NMR has been used to examine the role of phosphorus in contributing to the activity and deactivation behavior of these materials, while powder x-ray diffraction, BET surface area, IR, and elemental analysis were used to characterize the bulk catalysts.

  2. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    PubMed

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  3. Cement composition and sulfate attack

    SciTech Connect

    Shanahan, Natalya; Zayed, Abla . E-mail: zayed@eng.usf.edu

    2007-04-15

    Four cements were used to address the effect of tricalcium silicate content of cement on external sulfate attack in sodium sulfate solution. The selected cements had similar fineness and Bogue-calculated tricalcium aluminate content but variable tricalcium silicates. Durability was assessed using linear expansion and compressive strength. Phases associated with deterioration were examined using scanning electron microscopy and X-ray diffraction. Mineralogical phase c