Sample records for sulfide silver method

  1. Nanostructured silver sulfide: synthesis of various forms and their application

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.

    2018-04-01

    The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.

  2. Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation

    NASA Astrophysics Data System (ADS)

    Alp, Ibrahim; Celep, Oktay; Deveci, Haci

    2010-11-01

    This paper presents the alkaline sulfide pretreatment of an antimonial refractory gold and silver ore. In the ore, gold occurs mainly as gold-silver alloys and as associated with quartz and framboidal pyrite grains, and, to a small extent, as the inclusions within antimonial sulfides. Silver is present extensively as antimonial sulfides such as andorite. Alkaline sulfide pretreatment was shown to allow the decomposition of the antimonial sulfide minerals (up to 98% Sb removal) and to remarkably improve the amenability of gold (e.g., from <49% up to 83%) and silver (e.g., from <18% up to 90%) to subsequent cyanide leaching. An increase in reagent concentration (1-4 mol/L Na2S or NaOH) and temperature (20-80°C), and a decrease in particle size seem to produce an enhancing effect on metal extraction. These findings suggest that alkaline sulfide leaching can be suitably used as a chemical pretreatment method prior to the conventional cyanidation for antimonial refractory gold and silver ores.

  3. METHOD OF REMOVING IODINE FROM GASES AND FILTER MEDIUM THEREFOR

    DOEpatents

    Silverman, L.

    1961-08-01

    A method for the removal of iodine from large gas volumes is described. The gaseous medium is heated to a temperature not exceeding 400 deg C. Water vapor is then added to the medium in approximate amounts of 1 lb/cu ft of the medium. The medium is then passed through a porous copper fibrous pad having deposited thereon a coating of silver, the silver coating being treated with hydrogen sulfide forming a layer of silver sulfide. (AEC)

  4. The Empirical Formula of Silver Sulfide: An Experiment for Introductory Chemistry

    ERIC Educational Resources Information Center

    Trujillo, Carlos Alexander

    2007-01-01

    An experiment is described that allows students to experimentally determine an empirical formula for silver sulfide. At elevated temperatures, silver sulfide reacts in air to form silver, silver sulfate, and sulfur dioxide. At higher temperatures (960 [degree]C) silver sulfate decomposes to produce metallic silver. (Contains 1 figure and 1 table.)

  5. Preparation of silver-activated zinc sulfide thin films

    NASA Technical Reports Server (NTRS)

    Feldman, C.; Swindells, F. E.

    1968-01-01

    Silver improves luminescence and reduces contamination of zinc sulfide phosphors. The silver is added after the zinc sulfide phosphors are deposited in thin films by vapor evaporation, but before calcining, by immersion in a solution of silver salt.

  6. Comparison of Hydrogen Sulfide Analysis Techniques

    ERIC Educational Resources Information Center

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  7. Preliminary flight prototype silver ion monitoring system

    NASA Technical Reports Server (NTRS)

    Brady, J.

    1974-01-01

    The design, fabrication, and testing of a preliminary flight prototype silver ion monitoring system based on potentiometric principles and utilizing a solid-state silver sulfide electrode paired with a pressurized double-junction reference electrode housing a replaceable electrolyte reservoir is described. The design provides automatic electronic calibration utilizing saturated silver bromide solution as a silver ion standard. The problem of loss of silver ion from recirculating fluid, its cause, and corrective procedures are reported. The instability of the silver sulfide electrode is discussed as well as difficulties met in implementing the autocalibration procedure.

  8. Wash efficiency tests. [silver sulfide as an index of the storability of photographic film

    NASA Technical Reports Server (NTRS)

    Maas, K. A.

    1972-01-01

    Processed film products were tested for residual thiosulfate by precipitation as colored silver sulfide. The quantity of thiosulfate was determined and correlated with the expected storage life of the film.

  9. Nanocomposite polymer structures for optical sensors of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Mironenko, A. Yu.; Nazirov, A. E.; Leonov, A. A.; Voznesenskii, S. S.

    2017-08-01

    Composite coatings based on gold and silver nanoparticles reduced in situ in the film of chitosan polysaccharide are studied. In the presence of hydrogen sulfide, the maximum of plasmon resonance of the nanoparticles that is proportional to the analyte concentration decreases. The detection limits for hydrogen sulfide are 0.1 and 5 ppm for the chitosan/silver and chitosan/gold nanocomposites, respectively.

  10. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.

    PubMed

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP datamore » showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.« less

  12. Acanthite–argentite transformation in nanocrystalline silver sulfide and the Ag{sub 2}S/Ag nanoheterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, A. I., E-mail: gusev@ihim.uran.ru; Sadovnikov, S. I.

    Nanocrystalline acanthite-structured silver sulfide of the monoclinic structure and a Ag{sub 2}S/Ag nanoheterostructure are produced. The high-temperature X-ray diffraction technique is applied to the in situ study of the (acanthite α-Ag{sub 2}S)–(argentite β-Ag{sub 2}S) phase transformation in nanocrystalline silver sulfide. The crystal structure of argentite is refined, and it is found that the content of vacant sites in the metal sublattice of argentite exceeds 92%. A model of a resistive switch, whose operation is based on the reversible acanthite–argentite transformation in a Ag{sub 2}S/Ag heterostructure, is considered.

  13. Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, L.; Ntarlagiannis, D.; Yee, N.

    2008-10-01

    There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupledmore » with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.« less

  14. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  15. Residual water bactericide monitor development program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A silver-ion bactericidal monitor is considered for the Space Shuttle Potable Water System. Potentiometric measurement using an ion-selective electrode is concluded to be the most feasible of available techniques. Four commercially available electrodes and a specially designed, solid-state, silver-sulfide electrode were evaluated for their response characteristics and suitability for space use. The configuration of the solid-state electrode with its Nernstian response of 10 to 10,000 ppb silver shows promise for use in space. A pressurized double-junction reference electrode with a quartz-fiber junction and a replaceable bellows electrolyte reservoir was designed verification-tested, and paired with a solid-state silver-sulfide electrode in a test fixture.

  16. Conservation of Photographic Print Collections.

    ERIC Educational Resources Information Center

    Swan, Alice

    1981-01-01

    Provides specific information on varying photographic materials and processes to aid archivists and curators in preserving photograph collections. Preservation problems related to major types of silver prints on paper (salt, albumen, collodion, gelatin) and to the silver image (oxidation, silver sulfide) are covered. Twenty references are cited.…

  17. Biomolecule-assisted hydrothermal synthesis of silver bismuth sulfide with nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaowphong, Sulawan, E-mail: sulawank@gmail.com; Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200

    2012-05-15

    Silver bismuth sulfide (AgBiS{sub 2}) nanostructures were successfully prepared via a simple biomolecule-assisted hydrothermal synthesis at 200 Degree-Sign C for 12-72 h. Silver nitrate, bismuth nitrate and L-cysteine were used as starting materials. Here, the biomolecule, L-cysteine, was served as the sulfide source and a complexing agent. The products, characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were cubic AgBiS{sub 2} nanoparticles with a diameter range of about 20-75 nm. It was found that their crystallinity and particle size increased with increasing reaction time. The energy dispersive X-ray spectroscopy (EDX) and inductively coupledmore » plasma optical emission spectrophotometry (ICP-OES) analyses were used to confirm the stoichiometry of AgBiS{sub 2}. The optical band gap of the AgBiS{sub 2} nanoparticles, calculated from UV-vis spectra, was 3.0 eV which indicated a strong blue shift because of the quantum confinement effect. A possible formation mechanism of the AgBiS{sub 2} nanoparticles was also discussed. - Graphical abstract: The optical band gap of the as-prepared AgBiS{sub 2} nanoparticles displays a strong blue shift comparing to the 2.46 eV of bulk AgBiS{sub 2} caused by the quantum confinement effects. Highlights: Black-Right-Pointing-Pointer A simple biomolecule-assisted hydrothermal method is developed to prepare AgBiS{sub 2}. Black-Right-Pointing-Pointer L-Cysteine is served as the sulfide source and a complexing agent. Black-Right-Pointing-Pointer Increase in band gap of the AgBiS{sub 2} nanoparticles attributes to the quantum confinement effects.« less

  18. Ore microscopy of the Paoli silver-copper deposit, Oklahoma

    USGS Publications Warehouse

    Thomas, C.A.; Hagni, R.D.; Berendsen, P.

    1991-01-01

    The Paoli silver-copper deposit is located in south-central Oklahoma, 56 km south-southeast from Norman, Oklahoma. It was mined for high-grade silver-copper near the beginning of this century, and intensive exploratory drilling during the early 1970's delineated unmined portions of the deposit. A collaborative study between the U.S.G.S., the Kansas Geological Survey, and the University of Missouri-Rolla was undertaken to provide new information on the character of red bed copper deposits of the Midcontinent region. The Paoli deposit has been interpreted to occur as a roll-front type of deposit. The silver and copper mineralization occurs within paleochannels in the Permian Wellington Formation. The silver-copper interfaces appear to be controlled by oxidation-reduction interfaces that are marked by grey to red color changes in the host sandstone. Ore microscopic examinations of polished thin sections show that unoxidized ore consists of chalcocite, digenite, chalcopyrite, covellite and pyrite; and oxidized ores are characterized by covellite, bornite, hematite and goethite. In sandstone-hosted ores, chalcocite and digenite replace dolomite and border clastic quartz grains. In siltstone-hosted ores, the copper sulfide grains have varied shapes; most are irregular in shape and 5-25 ??m across, others have euhedral shapes suggestive of pyrite crystal replacements, and some are crudely spherical and are 120-200 ??m across. Chalcopyrite is the predominant copper sulfide at depth. Covellite and malachite replace chalcocite and digenite near the surface. Silver only occurs as native silver; most as irregularly shaped grains 40-80 ??m across, but some as cruciform crystals that are up to 3.5 mm across. The native silver has been deposited after copper sulfides, and locally replaces chalcocite. Surficial nodules of pyrite, malachite and hematite locally are present in outcrops at the oxidation-reduction fronts. Polished sections of the nodules show that malachite forms a cement around quartz sand grains, and brecciated pyrite grains are surrounded by rims of hematite and goethite. Dolomite is the principal sandstone cement. Cathodoluminescence microscopic study of the mineral has shown that it was deposited during seven periods before the copper sulfide mineralization. ?? 1991.

  19. Localization of mineralization, its age, and relationship to magmatism at the Mogot silver-base-metal deposit, North Stanovoi metallogenic zone in the southeastern framework of the North Asian Craton

    NASA Astrophysics Data System (ADS)

    Buchko, I. V.; Buchko, Ir. V.; Sorokin, A. A.; Ponomarchuk, V. A.; Travin, A. V.

    2014-03-01

    The results of studying the Mogot silver-base-metal deposit located in the Dzhugdzhur-Stanovoi Superterrane are discussed in this paper. The main ore-controlling structural elements of the studied district are near-latitudinal and NE-trending faults, which are accompanied by zones of hydrothermal metasomatic potassic, propylitic, and argillic alterations, breccias with quartz and quartz-carbonate cement replacing metamorphic rocks and granitoids of the Late Stanovoi Complex. The total sulfide content in ore is 2-3%. The high Ag, Pb, and Zn contents in ore allow us to consider the Mogot deposit as silver-base-metal, since except of orebody 4, there are no silver minerals proper. This indicates that silver is incorporated into crystalline lattice of sulfides. The results of 40Ar/39Ar geochronological investigations show that the hydrothermal ore deposition dated at 127-125 Ma was related to emplacement of intrusions pertaining to the Tynda-Bakaran Complex.

  20. Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora.

    PubMed

    Kraas, Marco; Schlich, Karsten; Knopf, Burkhard; Wege, Franziska; Kägi, Ralf; Terytze, Konstantin; Hund-Rinke, Kerstin

    2017-12-01

    The use of silver nanoparticles (AgNPs) in consumer products such as textiles leads to their discharge into wastewater and consequently to a transfer of the AgNPs to soil ecosystems via biosolids used as fertilizer. In urban wastewater systems (e.g., sewer, wastewater treatment plant [WWTP], anaerobic digesters) AgNPs are efficiently converted into sparingly soluble silver sulfides (Ag 2 S), mitigating the toxicity of the AgNPs. However, long-term studies on the bioavailability and effects of sulfidized AgNPs on soil microorganisms are lacking. Thus we investigated the bioavailability and long-term effects of AgNPs (spiked in a laboratory WWTP) on soil microorganisms. Before mixing the biosolids into soil, the sludges were either anaerobically digested or directly dewatered. The effects on the ammonium oxidation process were investigated over 140 d. Transmission electron microscopy (TEM) suggested an almost complete sulfidation of the AgNPs analyzed in all biosolid samples and in soil, with Ag 2 S predominantly detected in long-term incubation experiments. However, despite the sulfidation of the AgNPs, soil ammonium oxidation was significantly inhibited, and the degree of inhibition was independent of the sludge treatment. The results revealed that AgNPs sulfidized under environmentally relevant conditions were still bioavailable to soil microorganisms. Consequently, Ag 2 S may exhibit toxic effects over the long term rather than the short term. Environ Toxicol Chem 2017;36:3305-3313. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  1. Distribution of Ag in Cu-sulfides in Kupferschiefer deposit, SW Poland

    NASA Astrophysics Data System (ADS)

    Kozub, Gabriela A.

    2014-05-01

    The Cu-Ag Kupferschiefer deposit located at the Fore-Sudetic Monocline (SW Poland) is a world class deposit of stratabound type. The Cu-Ag mineralization in the deposit occurs in the Permian sedimentary rocks (Rotliegend and Zechstein) in three lithological types of ore: the dolomite, the black shale and the sandstone. Silver, next to copper, is the most important element in the Kupferschiefer deposit (Salamon 1979; Piestrzyński 2007; Pieczonka 2011). Although occurrence of the Ag-minerals such as native silver, silver amalgams, stromeyerite, jalpaite and mckinstryite, silver is mainly present in the deposit due to isomorphic substitutions in Cu-minerals such as chalcocite, bornite, tennantite, covellite and chalcopyrite. The aim of the study was to define distribution of silver in Cu-minerals and correlate occurrence of Ag-enriched Cu-sulfides with native silver and silver amalgams. Identification of minerals and textural observation were performed using field emission scanning electron microscope. Analyzes of chemical composition of Cu-sulfides were performed utilizing electron microprobe. Silver concentration in Cu sulfides ranges from 0.1 to 10.4 wt.% in chalcocite, 0.2-15.8 wt.% in bornite, 0.1-2.9 wt.% in tennantite, 0.05-0.3 wt.% in chalcopyrite and ca. 0.4 wt.% in covellite. In general, distribution of silver in Cu-minerals is irregular, as indicated by high variations of Ag concentration in each mineral. Content of Ag in Cu-sulphides, in samples where native silver and silver amalgams are not found, is lower than in samples, where native silver and silver amalgams are noted. The chemical analyzes of Ag-bearing Cu-minerals indicate decrease of Cu content in minerals with high Ag concentration. In such case, decrease of Fe content is also noted in bornite. Lack of micro-inclusions of the native silver or silver amalgams in the Cu-minerals indicates that presence of Ag is mainly related to the isomorphic substitutions. This is in agreement with previous reports on high Ag content reaching 49 wt.% Ag in bornite and 1.8 wt.% Ag in chalcocite occurring due to Ag substitution in Cu-minerals without modification of their crystallographic structure (Salamon 1979; Banaś et al 2007; Kucha 2007; Piestrzyński 2007, Pieczonka 2011). Acknowledgements. This work was supported by the National Science Centre research grant (No 2011/03/N/ST10/04619). References: Kucha H and Mayer W (2007) Geochemistry. [In:] Piestrzyński A (Ed) Monografia KGHM Polska Miedź SA., pp 197-207 (In Polish) Pieczonka J (2011) Factors controlling distribution of ore minerals within copper deposit, Fore-Sudetic Monocline, SW Poland. 195 pp (In Polish) Piestrzyński A (2007) Ore minerals. [In:] Piestrzyński A (Ed) Monografia KGHM Polska Miedź SA., pp 167-197 (in Polish) Salamon W (1979) Occurrence of the Ag and Mo in the Zechstein sediments of the Fore-Sudetic Monocline. Prace Mineralogiczne, PAN 62, pp 1-52 (In Polish)

  2. Geology of the Barite Hill gold-silver deposit in the southern Carolina slate belt

    USGS Publications Warehouse

    Clark, S.H.B.; Gray, K.J.; Back, J.M.

    1999-01-01

    Barite Hill is a stratiform gold-silver deposit associated with base metal sulfides and barite in greenschist facies rocks. The deposit, southernmost of four recently mined gold deposits in the Carolina slate belt, is located in the Lincolnton-McCormick district of Georgia and South Carolina, which includes several known gold-silver and base metal deposits in a Kuroko-type geological setting along with deposits of kyanite and manganese. Approximately 1,835,000 g of gold was produced mainly from oxidized ores in the Main and Rainsford pits from 1990 until their closing in 1994. Ore is hosted by sericitically altered felsic metavolcanic and metasedimentary rocks of the Late Proterozoic Persimmon Fork Formation. The deposit is stratigraphically below an overturned contact between upper and lower pyroclastic units, which overlie the Lincolnton metarhyolite, an intrusive unit. Gold-silver-rich zones in the Main pit are partly coincident with lenses of siliceous barite rock, but not confined to them, and occur more commonly in pyrite-quartz-altered fragmental rock. The Main pit ore is stratigraphically overlain by a zone of base metal and barite enrichment, which is, in turn, overlain by a talc-tremolite alteration zone locally. Siliceous barite zones are absent in the Rainsford pit, and gold-silver minerals are associated with silicified rocks and chert. The Barite Hill deposit is interpreted to be the result of Kuroko-type, volcanogenic, base metal sulfide mineralization, followed by gold-silver mineralization under epithermal conditions with the following stages of evolution: (1) massive sulfides, barite, and fine-grained siliceous exhalites were deposited during Late Proterozoic to Cambrian submarine volcanism, which was related to plate convergence and subduction in a microcontinental or island-arc setting distant from the North American continental plate; (2) Au-Ag-Te and base and precious metal Te-Se-Bi minerals were deposited either during waning stages of hydrothermal activity in a failed massive sulfide system or in a separate event; (3) sulfides and silica-barite rock recrystallized during regional deformation and greenschist facies metamorphism related to the Middle to Late Ordovician collision of the Carolina terrane with the North American continental plate; (4) quartz, barite, and gold were remobilized and formed veins that cut across cleavage; (5) orebodies were offset along high-angle faults; and (6) during weathering, base metal sulfides and barite dissolved and reprecipitated as supergene euhedral barite crystals that line ferric iron oxide-hydroxide gossans.

  3. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  4. Occurrence of silver minerals in a silver-rich pocket in the massive sulfide zinc-lead ores in the Edwards mine, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serviss, C.R.; Grout, C.M.; Hagni, R.D.

    1985-01-01

    Ore microscopic examination of uncommon silver-rich ores from the Edwards mine has detected three silver minerals, native silver, freibergite, and argentite, that were previously unreported in the literature from the Balmat-Edwards district. The zinc-lead ore deposits of the Balmat-Edwards District in northern New York are composed of very coarse-grained massive sulfides, principally sphalerite, galena, and pyrite. The typical ores contain small amounts of silver in solid solution galena. Galena concentrates produced from those ores have contained an average of 15 ounces of silver per ton of 60% lead concentrates. In contrast to the typical ore a silver-rich pocket, that measuredmore » three feet by three feet on the vertical mine face and was the subject of this study, contained nearly 1% silver in a zinc ore. Ore microscopic study shows that this ore is especially characterized by abundant, relatively fine-grained chalcopyrite with anhedral pyrite inclusions. Fine-grained sphalerite, native silver, argentite, freibergite and arsenopyrite occur in association with the chalcopyrite and as fracture-fillings in gangue minerals. Geochemically anomalous amounts of tin, barium, chromium, and nickel also are present in the silver-rich pocket. The silver-rich pocket may mark the locus of an early feeder vent or alternatively it may record a hydrothermal event that was superimposed upon the event responsible for the metamorphic ore textures.« less

  5. Large-scale self-assembly of uniform submicron silver sulfide material driven by precise pressure control

    NASA Astrophysics Data System (ADS)

    Qi, Juanjuan; Chen, Ke; Zhang, Shuhao; Yang, Yun; Guo, Lin; Yang, Shihe

    2017-03-01

    The controllable self-assembly of nanosized building blocks into larger specific structures can provide an efficient method of synthesizing novel materials with excellent properties. The self-assembly of nanocrystals by assisted means is becoming an extremely active area of research, because it provides a method of producing large-scale advanced functional materials with potential applications in the areas of energy, electronics, optics, and biologics. In this study, we applied an efficient strategy, namely, the use of ‘pressure control’ to the assembly of silver sulfide (Ag2S) nanospheres with a diameter of approximately 33 nm into large-scale, uniform Ag2S sub-microspheres with a size of about 0.33 μm. More importantly, this strategy realizes the online control of the overall reaction system, including the pressure, reaction time, and temperature, and could also be used to easily fabricate other functional materials on an industrial scale. Moreover, the thermodynamics and kinetics parameters for the thermal decomposition of silver diethyldithiocarbamate (Ag(DDTC)) are also investigated to explore the formation mechanism of the Ag2S nanosized building blocks which can be assembled into uniform sub-micron scale architecture. As a method of producing sub-micron Ag2S particles by means of the pressure-controlled self-assembly of nanoparticles, we foresee this strategy being an efficient and universally applicable option for constructing other new building blocks and assembling novel and large functional micromaterials on an industrial scale.

  6. Influence of various surface pretreatments on adherence of sputtered molybdenum disulfide to silver, gold, copper, and bronze

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1973-01-01

    Solid film lubricants of radio frequency sputtered molybdenum disulfide (MoS2) were applied to silver, gold, copper, and bronze surfaces that had various pretreatments (mechanical polishing, sputter etching, oxidation, and sulfurization). Optical and electron transmission micrographs and electron diffraction patterns were used to interpret the film formation characteristics and to evaluate the sputtering conditions in regard to the film and substrate compatibility. Sputtered MoS2 films flaked and peeled on silver, copper, and bronze surfaces except when the surfaces had been specially oxidized. The flaking and peeling was a result of sulfide compound formation and the corresponding grain growth of the sulfide film. Sputtered MoS2 films showed no peeling and flaking on gold surfaces regardless of surface pretreatment.

  7. Reactions of VX, HD, and their simulants with NaY and AgY zeolites. Desulfurization of VX on AgY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, G.W.; Bartram, P.W.

    1999-11-09

    The room-temperature reactions of the chemical warfare agents VX (O-ethyl S-2-(diisopropylamino)-ethyl methylphosphonothioate), HD (2,2{prime}-dichloroethyl sulfide, or mustard), and their common simulants, O,S-diethyl phenylphosphonothioate (DEPPT) and 2-chloroethyl phenyl sulfide (CEPS), with NaY and silver-exchanged (AgY) zeolites have been studied using solid-state magic angle spinning NMR. VX hydrolyzes via exclusive cleavage of the P{single{underscore}bond}S bond on both NaY and AgY to yield ethyl methylphosphonate (EMPA). The reaction is significantly faster on AgY than on NaY, suggesting catalysis by silver. On AgY, an intermediate silver salt of EMPA is apparently formed which is slowly converted to ethyl 2-(diisopropylamino)ethyl methylphosphonate (QB, the desulfurized analoguemore » of VX) in about a 78% yield. DEPPT similarly hydrolyzes via P{single{underscore}bond}S cleavage on AgY to yield an apparent silver salt of ethyl phenylphosphonate, which does not undergo further reaction to the desulfurized analogue. No reaction is observed for DEPPT on NaY. HD on AgY forms both vinyl sulfide and the cyclic ether 1,4-thioxane. HD reacts faster on NaY to exclusively form the CH-TG sulfonium ion (HOCH{sub 2}CH{sub 2}SCH{sub 2}CH{sub 2}S{sup +}[CH{sub 2}CH{sub 2}OH]{sub 2}). CEPS also reacts faster on NaY, forming 2-hydroxyethyl phenyl sulfide. On AgY, CEPS does not give the vinyl product, but does yield the ether product PhSCH{sub 2}CH{sub 2}OCH{sub 2}CH{sub 2}SPh. A mechanism is proposed for the silver-catalyzed hydrolysis of VX, the desulfurization of the cleaved thiol, and the formation of QB.« less

  8. Residence of silver in mineral deposits of the Thunder Mountain caldera complex, Central Idaho, U.S.A.

    USGS Publications Warehouse

    Leonard, B.F.; Christian, R.P.

    1987-01-01

    Silver is an accessory element in gold, antimony, and tungsten deposits of the caldera complex. Most of the deposits are economically of low grade and genetically of xenothermal or epithermal character. Their gold- and silver-bearing minerals are usually disseminated, fine grained, and difficult to study. Sparsely disseminated pyrite and arsenoprite are common associates. Identified silver minerals are: native silver and electrum; the sulfides acanthite, argentite (the latter always inverted to acanthite), and members of the Silberkies group; the sulfosalts matildite, miargyrite, pyrargyrite, argentian tetrahedrite, and unnamed Ag-Sb-S and Ag-Fe-Sb-S minerals; the telluride hessite and the selenide naumannite; halides of the cerargyrite group; and the antimonate stetefeldtite. Suspected silver minerals include the sulfide uytenbogaardtite and the sulfosalts andorite, diaphorite, and polybasite. Electrum, acanthite, and argentian tetrahedrite are common, though nowhere abundant. The other silver minerals are rare. Silver is present as a minor element in the structure of some varieties of other minerals. These include arsenopyrite, chalcopyrite, chalcostibite, covelline, digenite, galena, sphalerite, and stibnite. The search for adventitious Ag in most of these minerals has been cursory. The results merely indicate that elemental silver is not confined to discrete silver minerals and is, therefore, an additional complication for the recovery of silver-bearing material from some deposits. Silver occurs cryptically in some plants of the region. At Red Mountain, for example, the ashed sapwood of Douglas-fir (Pseudotsuga menziesii) contains 2 to 300 ppm Ag. Silver in the ashed wood is roughly 100 times as abundant as it is in soil. The phenomenon, useful in biogeochemical exploration, deserves the attention of mineralogists. ?? 1987 Springer-Verlag.

  9. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  10. Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; von Gunten, Urs; Behra, Renata; Morgenroth, Eberhard; Kaegi, Ralf

    2015-09-15

    Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations.

  11. A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera

    PubMed

    Iizasa; Fiske; Ishizuka; Yuasa; Hashimoto; Ishibashi; Naka; Horii; Fujiwara; Imai; Koyama

    1999-02-12

    Manned submersible studies have delineated a large and actively growing Kuroko-type volcanogenic massive sulfide deposit 400 kilometers south of Tokyo in Myojin Knoll submarine caldera. The sulfide body is located on the caldera floor at a depth of 1210 to 1360 meters, has an area of 400 by 400 by 30 meters, and is notably rich in gold and silver. The discovery of a large Kuroko-type polymetallic sulfide deposit in this arc-front caldera raises the possibility that the numerous unexplored submarine silicic calderas elsewhere might have similar deposits.

  12. Characterizing the Uptake, Accumulation and Toxicity of Silver Sulfide Nanoparticles in Plants

    EPA Science Inventory

    Silver nanoparticles (Ag-NPs) are used in a wide range of everyday products, leading to increasing concerns regarding their accumulation in soils and subsequent impact on plants. Using single particle inductively coupled plasma mass spectrometry (spICP-MS) and synchrotron-based t...

  13. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms.

    PubMed

    Zhang, Chiqian; Hu, Zhiqiang; Deng, Baolin

    2016-01-01

    Nanosilver (silver nanoparticles or AgNPs) has unique physiochemical properties and strong antimicrobial activities. This paper provides a comprehensive review of the physicochemical behavior (e.g., dissolution and aggregation) and antimicrobial mechanisms of nanosilver in aquatic environments. The inconsistency in calculating the Gibbs free energy of formation of nanosilver [ΔGf(AgNPs)] in aquatic environments highlights the research needed to carefully determine the thermodynamic stability of nanosilver. The dissolutive release of silver ion (Ag(+)) in the literature is often described using a pseudo-first-order kinetics, but the fit is generally poor. This paper proposes a two-stage model that could better predict silver ion release kinetics. The theoretical analysis suggests that nanosilver dissolution could occur under anoxic conditions and that nanosilver may be sulfidized to form silver sulfide (Ag2S) under strict anaerobic conditions, but more investigation with carefully-designed experiments is required to confirm the analysis. Although silver ion release is likely the main antimicrobial mechanism of nanosilver, the contributions of (ion-free) AgNPs and reactive oxygen species (ROS) generation to the overall toxicity of nanosilver must not be neglected. Several research directions are proposed to better understand the dissolution kinetics of nanosilver and its antimicrobial mechanisms under various aquatic environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Uptake and Distribution of Silver in the Aquatic Plant Landoltia punctata (Duckweed) Exposed to Silver and Silver Sulfide Nanoparticles.

    PubMed

    Stegemeier, John P; Colman, Benjamin P; Schwab, Fabienne; Wiesner, Mark R; Lowry, Gregory V

    2017-05-02

    Aquatic ecosystems are expected to receive Ag 0 and Ag 2 S nanoparticles (NPs) through anthropogenic waste streams. The speciation of silver in Ag-NPs affects their fate in ecosystems, but its influence on interactions with aquatic plants is still unclear. Here, the Ag speciation and distribution was measured in an aquatic plant, duckweed (Landoltia punctata), exposed to Ag 0 or Ag 2 S NPs, or to AgNO 3 . The silver distribution in duckweed roots was visualized using synchrotron-based micro X-ray fluorescence (XRF) mapping and Ag speciation was determined using extended X-ray absorption fine structure (EXAFS) spectroscopy. Duckweed exposed to Ag 2 S-NPs or Ag 0 -NPs accumulated similar Ag concentrations despite an order of magnitude smaller dissolved Ag fraction measured in the exposure medium for Ag 2 S-NPs compared to Ag 0 -NPs. By 24 h after exposure, all three forms of silver had accumulated on and partially in the roots regardless of the form of Ag exposed to the plants. Once associated with duckweed tissue, Ag 0 -NPs had transformed primarily into silver sulfide and silver thiol species. This suggests that plant defenses were active within or at the root surface. The Ag 2 S-NPs remained as Ag 2 S, while AgNO 3 exposure led to Ag 0 and sulfur-associated Ag species in plant tissue. Thus, regardless of initial speciation, Ag was readily available to duckweed.

  15. Nanosilver - does it have only one face?

    PubMed

    Likus, Wirginia; Bajor, Grzegorz; Siemianowicz, Krzysztof

    2013-01-01

    Silver nanoparticles (NPs) have at least one dimension of a particle smaller than 100 nm and contain 20-15,000 silver atoms. Due to its antibacterial activity nanosilver (NS) is used for medical purposes. NS particles can be obtained by various methods. Potentially, the best method of the NS synthesis for medical purposes is based on a brief flow of electric current between two silver electrodes placed in deionized water. It is accepted that the major antibacterial effect of silver is its partial oxidation and releasing silver ions, which interact with thiol groups of peptidoglicans of bacterial cell wall, and proteins of the cell membrane causing cell lysis. Silver ions can also bind to bacterial DNA preventing its replication and stopping synthesis of bacterial proteins. The rise in exposure to silver NPs has spurred interest into their toxicology. NS undergoes a set of biochemical transformations including accelerated oxidative dissolution in gastric acid, binding to thiol groups of serum and tissue proteins, exchange between thiol groups, sulfides and selenides, binding to selenoproroteins and photoreduction in skin to zerovalent metallic silver. Animal studies have shown that exposure to NS may lead to liver and spleen damage. NS can also stimulate an increased secretion of proinflammatory cytokines by monocytes. As a spectrum of NS applications is still growing, the complex evaluation of a safety of its use becomes an important task. This requires an elucidation of not only the influence of NS on human cells and organism, but also its biotransformation in organism and in environment.

  16. Process for making silver metal filaments

    DOEpatents

    Bamberger, Carlos E.

    1997-01-01

    A process for making silver metal particles from silver salt particles having the same morphology. Precursor silver salt particles selected from the group consisting of silver acetate and silver sulfide having a selected morphology are contained in a reactor vessel having means for supporting the particles in an air suspension to prevent the agglomeration of the particles. Air is flowed through the reactor vessel at a flow rate sufficient to suspend the particles in the reactor vessel. The suspended precursor silver salt particles are heated to a processing temperature and at a heating rate below which the physical deterioration of the suspended precursor silver salt particles takes place. The suspended precursor silver salt particles are maintained at the processing temperature for a period of time sufficient to convert the particles into silver metal particles having the same morphology as the precursor silver salt particles.

  17. Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires.

    PubMed

    Liu, Dongliang; Liu, Yong; Huang, Peng; Zhu, Cheng; Kang, Zhenhui; Shu, Jie; Chen, Muzi; Zhu, Xing; Guo, Jun; Zhuge, Lanjian; Bu, Xianhui; Feng, Pingyun; Wu, Tao

    2018-05-04

    A facile and general strategy is presented to create well-defined heterojunctions with ultra-small multimetallic sulfide nanoparticles (MMSNPs) uniformly coated on sliver nanowires. A unique aspect of this method is the atomic-level pre-integration of multimetallic components by exploiting recently developed supertetrahedral metal sulfide nanoclusters. The use of such nanoclusters also enables the convenient formation of the ultrathin interfacial Ag 2 S layer via etching. The heterojunctions (denoted as MMSNPs/Ag 2 S/Ag-NWs) benefit from adjustable multimetallic components and display tunable visible-light-driven photocatalytic performance owing to the synergistic effect of multimetallic components from MMSNPs and the high carrier mobility of Ag-NWs. The synthetic strategy opens new routes to designing and fabricating various heterojunctions with multimetallic components, which could further expand their applications in catalysis, electronics, and photonics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Elevated corrosion rates and hydrogen sulfide in homes with 'Chinese Drywall'.

    PubMed

    Allen, Joseph G; MacIntosh, David L; Saltzman, Lori E; Baker, Brian J; Matheson, Joanna M; Recht, Joel R; Minegishi, Taeko; Fragala, Matt A; Myatt, Theodore A; Spengler, John D; Stewart, James H; McCarthy, John F

    2012-06-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs.

  19. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    PubMed

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  20. [Ag115S34(SCH2C6H4 t Bu)47(dpph)6]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster.

    PubMed

    Bestgen, Sebastian; Fuhr, Olaf; Breitung, Ben; Kiran Chakravadhanula, Venkata Sei; Guthausen, Gisela; Hennrich, Frank; Yu, Wen; Kappes, Manfred M; Roesky, Peter W; Fenske, Dieter

    2017-03-01

    With the aim to synthesize soluble cluster molecules, the silver salt of (4-( tert -butyl)phenyl)methanethiol [AgSCH 2 C 6 H 4 t Bu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag 115 S 34 (SCH 2 C 6 H 4 t Bu) 47 (dpph) 6 ] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31 P/ 109 Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution.

  1. Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 4. Platinum group element distribution in the ores, and genetic implications

    NASA Astrophysics Data System (ADS)

    Barnes, Stephen J.

    2004-11-01

    The Black Swan komatiite sequence, in the Eastern Goldfields province of the Archaean Yilgarn Craton in Western Australia, is a body of dominantly olivine-rich cumulates with lesser volumes of spinifex textured rocks, interpreted as a section through an extensive komatiite lava flow field. The sequence hosts a number of nickel sulfide orebodies, including the Silver Swan massive shoot and the Cygnet and Black Swan disseminated orebodies. The massive sulfide orebodies of the Black Swan Succession are pervasively depleted in all platinum group elements (PGEs), particularly Pt and Pd, despite very high Ni contents. This depletion cannot be explained by R-factor variations, which would also require relatively low Ni tenors. The PGE depletion could be explained in part if the ores are enriched in a monosulfide solid solution (MSS) cumulate component, but requires some additional fractional segregation of sulfide melt upstream from the site of deposition. The Silver Swan orebody shows a remarkably consistent vertical zonation in PGE contents, particularly in Ir, Ru, Rh, Os, which increase systematically from very low levels at the stratigraphic base of the sulfide body to maxima corresponding roughly with the top of a lower layer of the orebody rich in silicate inclusions. Platinum shows the opposite trend, but is somewhat modified by remobilisation during talc carbonate alteration. A similar pattern is also observed in the adjacent White Swan orebody. This zonation is interpreted and modelled as the result of fractional crystallisation of MSS from the molten sulfide pool. The strong IPGE depletion towards the base of the orebody may be a consequence of sulfide liquid crystallisation in an inverted thermal gradient, between a thin rapidly cooling upper rind of komatiite lava and a hot substrate.

  2. The geology, mineralogy and paragenesis of the Castrovirreyna lead-zinc-silver deposits, Peru

    USGS Publications Warehouse

    Lewis, Richard Wheatley

    1964-01-01

    The Castrovirreyna mining district lies in the Andean Cordillera of South Central Peru, and has been worked sporadically since its discovery in 1591. Supergene silver ores were first mined. Currently the district produces about 20,000 tons of lead-zinc ore and 5000 tons of silver ore annually. The district is underlain by Tertiary andesitic rocks interbedded with basalts and intruded by small bodies of quartz latite porphyry. The terrane reflects recent glaciation and is largely covered by glacial debris. The ore deposits are steeply dipping veins that strike N. 60? E. to S. 50? E., and average 60 centimeters wide and 300 meters long. The principal veins are grouped around three centers, lying 5 kilometers apart along a line striking N. 55? E. They are, from east to west: San Genaro, Caudalosa, and La Virreyna. A less important set of veins, similarly aligned, lies 2 kilometers to the north. Most of the veins were worked to depths of about 30 meters, the limit of supergene enrichment; but in the larger veins hypogene ores have been worked to depths of over 150 meters. Galena, sphalerite, chalcopyrite, and tetrahedrite are common to all veins, but are most abundant in the westernmost veins at La Virreyna. In the center of the district, around Caudalosa, land sulfantimonides are the commonest ore minerals, and at the eastern end, around San Genaro and Astohuaraca, silver sulfosalts predominate. Supergene enrichment of silver is found at shallow depths in all deposits. Silver at San Genaro, however, was concentrated towards the surface by migration along hypogene physico-chemical gradients in time and space, as vein material was reworked by mineralizing fluids. The pattern of wallrock alteration throughout the district grades from silicification and scricitization adjacent to the veins, through argillization and propylitization, to widespread chloritization farther away. Mineralization can be divided into three stages: 1) Preparatory stage, characterized by silicification and pyritization; 2) Depositional stage, characterized by the deposition of base-metal sulfides; and 3) Reworking stage, characterized by the formation of lead sulfantimonides from galena at Caudalosa, and the deposition of silver sulfide and sulfosalts at San Genaro. Maximum temperatures, indicated by the wurtzite-sphalerite, famatinite-energite and chalcopyrite-sphalerite assemblages, did not exceed 350? C. The low iron content of sphalerite suggests that most of the base-metal sulfides were deposited below 250? C. The colloidal habits of pyrite and quartz in the preparatory and reworking stages imply relatively low temperatures of deposition, probably between 50? C and 100? C. Mineralization was shallow and pressures ranged from 17 atmospheres in the silver deposits to over 45 atmospheres in the lead sulfantimonide deposits. Mineralization at Castrovirreyna represents an open chemical system in which mineralizing fluids constantly modified the depositional environment while they themselves underwent modification. The deposits formed under nonequilibrium conditions from fluids containing complex ions and colloids. Reworking and migration along persistent physico-chemical gradients in time and space, from a deep source to the west concentrated base-metal sulfides in the western half, lead-antimony minerals in the center, and silver-antimony minerals in the eastern part of the district. Silver, antimony, and bismuth were kept in solution as complex ions until low temperature and pressure prevailed. They document in situ reworking by reacting with existing minerals. Physico-chemical gradients controlled the type of minerals deposited, whereas vein structure controlled the quantity deposited. Vein fissures formed by the equivalent of from east-west compression during Andean orogenesis and mineralization probably came from the underlying Andean Batholith.

  3. Indirect spectrophotometric determination of trace cyanide with cationic porphyrins.

    PubMed

    Ishii, H; Kohata, K

    1991-05-01

    Three highly sensitive methods for the determination of cyanide have been developed, based on the fact that the complexation of silver ions with three cationic porphyrins, 5,10,15,20-tetrakis-(1-methyl-2-pyridinio)porphine [T(2-MPy)P], 5,10,15,20-tetrakis(1-methyl-3-pyridinio)porphine [T(3-MPy)P] and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphine [T(4-MPy)P], in alkaline media is inhibited by cyanide and the decrease in absorbance of the silver(II) complex is proportional to the cyanide concentration. Sensitivities of the procedures developed are 0.133, 0.126 and 0.234 ng/cm(2), respectively for an absorbance of 0.001. Cadmium(II), copper(II), mercury(II), zinc(II), iodide and sulfide interfere with the cyanide determination. One of the proposed methods was applied to the determination of cyanide in waste-water samples, with satisfactory results.

  4. An Improved Process for Precipitating Cyanide Ions from the Barren Solution at Different pHs

    NASA Astrophysics Data System (ADS)

    Figueroa, Gabriela V.; Parga, José R.; Valenzuela, Jesus L.; Vázquez, Victor; Valenzuela, Alejandro; Rodriguez, Mario

    2016-02-01

    In recent decades, the use of metal sulfides instead of hydroxide precipitation in hydrometallurgical processes has gained prominence. Some arguments for its preferential use are as follows: a high degree of metal removal at relatively low pH values, the sparingly soluble nature of sulfide precipitates, favorable dewatering characteristics, and the stability of the formed metal sulfides. The Merrill-Crowe zinc-precipitation process has been applied worldwide in a large number of operations for the recovery of gold and silver from cyanide solutions. However, in some larger plants, the quality of this precious precipitate is low because copper, zinc and especially lead are precipitated along with gold and silver. This results in higher consumption of zinc dust and flux during the smelting of the precipitate, the formation of the matte, and a shorter crucible life. The results show that pH has a significant effect on the removal efficiency of zinc and copper cyanide ions. The optimal pH range was determined to be 3-4, and the removal efficiency of zinc and copper cyanide ions was up to 99%.

  5. Pressure tuning the lattice and optical response of silver sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhao, E-mail: zhaozhao@stanford.edu; Wei, Hua; Mao, Wendy L.

    2016-06-27

    Binary transition metal chalcogenides have attracted increasing attention for their unique structural and electronic properties. High pressure is a powerful tool for tuning the lattice and electronic structure of transition metal chalcogenides away from their pristine states. In this work, we systematically studied the in situ structural and optical behavior of silver sulfide (Ag{sub 2}S) under pressure by synchrotron X-ray diffraction and infrared spectroscopy measurements in a diamond anvil cell. Upon compression, Ag{sub 2}S undergoes structural symmetrization accompanied by a series of structural transitions while the crystallographic inequivalence of the two Ag sites is maintained. Electronically, pressure effectively tunes themore » ambient semiconducting Ag{sub 2}S into a metal at ∼22 GPa. Drude model analysis shows that the optical conductivity evolves significantly, reaching the highest value of 100 Ω{sup −1} cm{sup −1} at ∼40 GPa. Our results highlight the structural and electronic tunability of silver chalcogenides as a function of pressure and suggest the potential of Ag{sub 2}S as a platform for developing optical and opto-electronic applications.« less

  6. A review of silver-rich mineral deposits and their metallogeny

    USGS Publications Warehouse

    Graybeal, Frederick T.; Vikre, Peter

    2010-01-01

    Mineral deposits with large inventories or high grades of silver are found in four genetic groups: (1) volcanogenic massive sulfide (VMS), (2) sedimentary exhalative (SEDEX), (3) lithogene, and, (4) magmatichydrothermal. Principal differences between the four groups relate to source rocks and regions, metal associations, process and timing of mineralization, and tectonic setting. These four groups may be subdivided into specific metal associations on ternary diagrams based on relative metal contents. The VMS deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 33 g/t Ag. Variable Ag- Pb-Zn-Cu-Au ± Sn concentrations are interpreted as having been derived both from shallow plutons and by leaching of the volcanic rock pile in regions of thin or no continental crust and the mineralization is syngenetic. Higher silver grades are associated with areas of abundant felsic volcanic rocks. The SEDEX deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 46 g/t Ag. Silver, lead, and zinc in relatively consistent proportions are leached from sedimentary rocks filling rift-related basins, where the continental crust is thin, and deposited as syngenetic to diagenetic massive sulfides. Pre-mineral volcanic rocks and their detritus may occur deep within the basin and gold is typically absent. Lithogene silver-rich deposits are epigenetic products of varying combinations of compaction, dewatering, meteoric water recharge, and metamorphism of rift basin-related clastic sedimentary and interbedded volcanic rocks. Individual deposits may contain more than 15,600 t Ag (500 Moz) at high grades. Ores are characterized by four well-defined metal associations, including Ag, Ag-Pb-Zn, Ag-Cu, and Ag-Co-Ni-U. Leaching, transport, and deposition of metals may occur both in specific sedimentary strata and other rock types adjacent to the rift. Multiple mineralizing events lasting 10 to 15 m.y., separated by as much as 1 b.y., may occur in a single basin. Gold is absent at economic levels. The magmatic-hydrothermal silver-rich deposits are epigenetic and related to cordilleran igneous and volcanic suites. Six magmatic-hydrothermal districts each contain more than 31,000 t Ag (1,000 Moz) with grades of veins >600 g/t Ag. Mineralization occurs as veins, massive sulfides in carbonate rocks, and disseminated deposits including porphyry silver deposits, a proposed exploration model. Most deposits are epithermal with low-sulfidation alteration assemblages. Deposits are often telescoped and well-zoned. All large and high-grade magmatic-hydrothermal deposits appear confined to regions of relatively thick continental crust above Cenozoic consuming plate margins on the eastern side of the Pacific Rim. Silver in these deposits may be partly derived by hydrothermal leaching of rocks under or adjacent to the deposits.Specific metal associations in SEDEX and lithogene deposits may reflect confinement of fluid flow to and derivation of metals from specific source rock types. Variable metal associations in VMS and magmatichydrothermal deposits may reflect derivation of metals from a more diverse suite of rocks by convecting hydrothermal systems and processes related to the generation of magma. The discovery rate for silver-rich deposits has accelerated during the past decade, with new deposit types, metal associations, and exploration models being identified that provide numerous exploration and research opportunities.

  7. Platinum-group element, Gold, Silver and Base Metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril'sk, Russia

    USGS Publications Warehouse

    Barnes, S.-J.; Cox, R.A.; Zientek, M.L.

    2006-01-01

    Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril'sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite. ?? Springer-Verlag 2006.

  8. An assessment of silver copper sulfides for photovoltaic applications: theoretical and experimental insights.

    PubMed

    Savory, Christopher N; Ganose, Alex M; Travis, Will; Atri, Ria S; Palgrave, Robert G; Scanlon, David O

    2016-08-28

    As the worldwide demand for energy increases, low-cost solar cells are being looked to as a solution for the future. To attain this, non-toxic earth-abundant materials are crucial, however cell efficiencies for current materials are limited in many cases. In this article, we examine the two silver copper sulfides AgCuS and Ag 3 CuS 2 as possible solar absorbers using hybrid density functional theory, diffuse reflectance spectroscopy, XPS and Hall effect measurements. We show that both compounds demonstrate promising electronic structures and band gaps for high theoretical efficiency solar cells, based on Shockley-Queisser limits. Detailed analysis of their optical properties, however, indicates that only AgCuS should be of interest for PV applications, with a high theoretical efficiency. From this, we also calculate the band alignment of AgCuS against various buffer layers to aid in future device construction.

  9. The electrum-tarnish method for the determination of the fugacity of sulfur in laboratory sulfide systems

    USGS Publications Warehouse

    Barton, P.B.; Toulmin, P.

    1964-01-01

    A new method for the determination of the fugacity of sulfur in laboratory systems consists of visual observation of the development and decomposition of a sulfide tarnish phase on silver-gold alloy (electrum) of precisely known composition. The alloy system is calibrated against pure sulfur. The method has the following advantages: simple apparatus; ability to cover a large range of fugacity of S2; ability to cover a large temperature range by permitting runs of long duration; ability to tolerate other components in the gas phase; and ease of recovery of the quenched charges for determinations of phases and compositions. Results obtained by the electrum-tarnish method are in satisfactory agreement with those obtained by other workers for the fs2 vs. T curves for the assemblage Ni(1-x)S + NiS2. The electrum-tarnish method shows promise for investigating many other reactions. Univariant reactions studied by this method can be represented as lines forming a genetic grid in terms of the environmental parameters fs2 and T, The slopes of such lines can yield valuable thermodynamic data for the phases involved, but activity coefficients must be known for phases of variable composition. ?? 1964.

  10. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments

    USGS Publications Warehouse

    Lee, B.-G.

    2000-01-01

    Understanding how animals are exposed to the large repository of metal pollutants in aquatic sediments is complicated and is important in regulatory decisions. Experiments with four types of invertebrates showed that feeding behavior and dietary uptake control bioaccumulation of cadmium, silver, nickel, and zinc. Metal concentrations in animal tissue correlated with metal concentrations extracted from sediments, but not with metal in porewater, across a range of reactive sulfide concentrations, from 0.5 to 30 micromoles per gram. These results contradict the notion that metal bioavailability in sediments is controlled by geochemical equilibration of metals between porewater and reactive sulfides, a proposed basis for regulatory criteria for metals.

  11. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization

    USGS Publications Warehouse

    Berger, Byron R.; Henley, Richard W.

    2011-01-01

    High-sulfidation copper–gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500 m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica–alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide–sulfosalt mineral assemblages and gold–silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting.At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold–silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source.

  12. [Ag115S34(SCH2C6H4 tBu)47(dpph)6]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster† †Dedicated to Evamarie Hey-Hawkins on the occasion of her 60th birthday. ‡ ‡Electronic supplementary information (ESI) available: CCDC 1507868. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc04578b Click here for additional data file. Click here for additional data file.

    PubMed Central

    Fuhr, Olaf; Breitung, Ben; Kiran Chakravadhanula, Venkata Sei; Guthausen, Gisela; Hennrich, Frank; Yu, Wen; Kappes, Manfred M.; Roesky, Peter W.

    2017-01-01

    With the aim to synthesize soluble cluster molecules, the silver salt of (4-(tert-butyl)phenyl)methanethiol [AgSCH2C6H4 tBu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag115S34(SCH2C6H4 tBu)47(dpph)6] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31P/109Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution. PMID:28507679

  13. Silver nanoparticles in sewage sludge: Bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber.

    PubMed

    Kampe, Sebastian; Kaegi, Ralf; Schlich, Karsten; Wasmuth, Claus; Hollert, Henner; Schlechtriem, Christian

    2018-06-01

    Silver nanoparticles (AgNPs) are efficiently converted during the wastewater-treatment process into sparingly soluble Ag sulfides (Ag 2 S). In several countries, sewage sludge is used as a fertilizer in agriculture. The bioavailability of sulfidized Ag to the terrestrial isopod Porcellio scaber was investigated. Sewage sludge containing transformed AgNPs was obtained from a laboratory-scale sewage-treatment plant operated according to Organisation for Economic Co-operation and Development (OECD) guideline 303a. The results of transmission electron microscopy with energy dispersive X-ray of sludge samples suggest that AgNPs were completely transformed to Ag 2 S. Adult isopods were exposed to OECD 207 soil substrate amended with the AgNP spiked sludge for 14 d (uptake phase) followed by an elimination phase in unspiked soil of equal duration. Most of the Ag measured in P. scaber at the end of the uptake phase was found in the hindgut (71%), indicating that only a minor part of the estimated Ag content was actually assimilated by the isopods with 16.3 and 12.7% found in the carcass and hepatopancreas, respectively. As a result of this, the Ag content of the animals dropped following transition to unspiked sludge within 2 d to one-third of the previously measured Ag concentration and remained stable at this level until the end of the elimination period. The present study shows that Ag 2 S in sewage sludge is bioavailable to the terrestrial isopod P. scaber. Environ Toxicol Chem 2018;37:1606-1613. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  14. Fabrication of an Inexpensive Ion-Selective Electrode.

    ERIC Educational Resources Information Center

    Palanivel, A.; Riyazuddin, P.

    1984-01-01

    The preparation and performance of a graphite (silver/copper sulfide) electrode is described. This rod, extracted from a used dry cell, is an acceptable substitute for ion-selective electrodes after it has been cleaned by abrasion followed by an overnight treatment with hydrochloric acid. (JN)

  15. Ag2S Quantum Dot-Sensitized Solar Cells by First Principles: The Effect of Capping Ligands and Linkers.

    PubMed

    Amaya Suárez, Javier; Plata, Jose J; Márquez, Antonio M; Fernández Sanz, Javier

    2017-09-28

    Quantum dots solar cells, QDSCs, are one of the candidates for being a reliable alternative to fossil fuels. However, the well-studied CdSe and CdTe-based QDSCs present a variety of issues for their use in consumer-goods applications. Silver sulfide, Ag 2 S, is a promising material, but poor efficiency has been reported for QDSCs based on this compound. The potential influence of each component of QDSCs is critical and key for the development of more efficient devices based on Ag 2 S. In this work, density functional theory calculations were performed to study the nature of the optoelectronic properties for an anatase-TiO 2 (101) surface sensitized with different silver sulfide nanoclusters. We demonstrated how it is possible to deeply tune of its electronic properties by modifying the capping ligands and linkers to the surface. Finally, an analysis of the electron injection mechanism for this system is presented.

  16. The irradiation influence on the properties of silver sulfide (Ag2S) colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Rempel, S. V.; Kuznetsova, Yu. V.; Gerasimov, E. Yu.; Rempel', A. A.

    2017-08-01

    The aqueous solutions of different stability containing silver sulfide (Ag2S) nanoparticles are studied. The stable, transparent, and turbid solutions have been subjected to daylight for 7 months, to ultraviolet and laser irradiation, as well as to an electron beam. Solar radiation is found to favor the Ag2S reduction to Ag and/or the formation of Ag2S/Ag hybrid nanoparticles in the solution. At a high amount of hybrid nanoparticles, the exciton-plasmon interaction causes asymmetry in the absorption spectra. The exposure of Ag2S particles precipitated from the solution with the electron beam leads to the reversible growth of Ag threads. The possible exciton-plasmon interplay mechanisms in Ag2S/Ag hybrid nanoparticles are considered. The physical mechanisms of the changing Ag2S stoichiometry, the formation of metallic Ag and Ag2S/Ag hybrid nanoparticles are the generation of hot carriers and the energy transfer (exciton-plasmon interaction) in a metal-semiconductor hybrid nanosystem are elucidated, as well.

  17. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Zhai, Degao; Liu, Jiajun; Cook, Nigel J.; Wang, Xilong; Yang, Yongqiang; Zhang, Anli; Jiao, Yingchun

    2018-04-01

    The Bianjiadayuan Ag-Pb-Zn deposit (4.81 Mt. @157.4 g/t Ag and 3.94% Pb + Zn) is located in the Great Hinggan Range Pb-Zn-Ag-Cu-Mo-Sn-Fe polymetallic metallogenic belt, NE China. Vein type Pb-Zn-Ag ore bodies are primarily hosted by slate, adjacent to a Sn ± Cu ± Mo mineralized porphyry intrusion. The deposit is characterized by silver-rich ores with Ag grades up to 3000 g/t. Four primary paragenetic sequences are recognized: (I) arsenopyrite + pyrite + quartz, (II) main sulfide + quartz, (III) silver-bearing sulfosalt + quartz, and (IV) boulangerite + calcite. A subsequent supergene oxidation stage has also been identified. Hydrothermal alteration consists of an early episode of silicification, two intermediate episodes (propylitic and phyllic), and a late argillic episode. Silver mineralization primarily belongs to the late paragenetic sequence III. Freibergite is the dominant and most important Ag-mineral in the deposit. Detailed ore mineralogy of Bianjiadayuan freibergite reveals evidence of chemical heterogeneity down to the microscale. Silver-rich sulfosalts in the late paragenetic sequence III are largely derived from a series of retrograde and solid-state reactions that redistribute Ag via decomposition and exsolution during cooling, illustrating that documentation of post-mineralization processes is essential for understanding silver ore formation. Sulfur and lead isotope compositions of sulfides, and comparison with those of local various geological units, indicate that the ore-forming fluids, lead, and other metals have a magmatic origin, suggesting a close genetic association between the studied Ag-Pb-Zn veins and the local granitic intrusion. Fluid cooling coupled with decreases in fO2 and fS2 are the factors inferred to have led to a decrease of silver solubility in the hydrothermal fluid, and successively promoted extensive Ag deposition.

  18. Modern applications for a total sulfur reduction distillation method - what’s old is new again

    PubMed Central

    2014-01-01

    Background The use of a boiling mixture of hydriodic acid, hypophosphorous acid, and hydrochloric acid to reduce any variety of sulfur compounds has been in use in various applications since the first appearance of this method in the literature in the 1920’s. In the realm of sulfur geochemistry, this method remains a useful, but under-utilized technique. Presented here is a detailed description of the distillation set-up and procedure, as well as an overview of potential applications of this method for marine sulfur biogeochemistry/isotope studies. The presented applications include the sulfur isotope analysis of extremely low amounts of sulfate from saline water, the conversion of radiolabeled sulfate into sulfide, the extraction of refractory sulfur from marine sediments, and the use of this method to assess sulfur cycling in Aarhus Bay sediments. Results The STrongly Reducing hydrIodic/hypoPhosphorous/hydrochloric acid (STRIP) reagent is capable of rapidly reducing a wide range of sulfur compounds, including the most oxidized form, sulfate, to hydrogen sulfide. Conversion of as little as approximately 5 micromole sulfate is possible, with a sulfur isotope composition reproducibility of 0.3 permil. Conclusions Although developed many decades ago, this distillation method remains relevant for many modern applications. The STRIP distillation quickly and quantitatively converts sulfur compounds to hydrogen sulfide which can be readily collected in a silver nitrate trap for further use. An application of this method to a study of sulfur cycling in Aarhus Bay demonstrates that we account for all of the sulfur compounds in pore-water, effectively closing the mass balance of sulfur cycling. PMID:24808759

  19. Fabrication Studies of Ternary Rare Earth Sulfides for Infrared Applications.

    DTIC Science & Technology

    1982-05-01

    crystal growth by vapor transport. The objective was to achieve small , high purity, theoretically dense crystals for optical property characterization...Weapons Center White Oak Silver Spring MD 20910 Dr. S. Musikant General Electric Co - RESD 3198 Chestnut Street Philadelphia PA 19101 Dr. W. White

  20. Le gisement Ag sbnd Hg de Zgounder (Jebel Siroua, Anti-Atlas, Maroc) : un épithermal néoprotérozoïque de type Imiter

    NASA Astrophysics Data System (ADS)

    Marcoux, Éric; Wadjinny, Ahmed

    2005-12-01

    The Zgounder ore deposit (Anti-Atlas, Morocco), is hosted in a PII-PIII Proterozoic volcanosedimentary series. Disseminated mineralization is dominated by mercuriferous native silver (2 to 30 wt.% Hg), with few silver sulfosalts (acanthite, pearceite), arsenopyrite and base-metal sulfides. Arsenic grade of arsenopyrite and homogenisation temperatures of fluid inclusions indicate initial conditions of high temperature (above 400 °C). Lead isotope compositions comfort a Late-Proterozoic age and a crustal origin for metals. Similarities are obvious with the neighbouring silver ore deposit of Imiter and lead to consider Zgounder as another example of Neoproterozoic epithermal deposit in the Anti-Atlas of Morocco, a region that appears more and more as a silver metallogenic province. To cite this article: É. Marcoux, A. Wadjinny, C. R. Geoscience 337 (2005).

  1. Adamantyl- and Furanyl-Protected Nanoscale Silver Sulfide Clusters.

    PubMed

    Bestgen, Sebastian; Yang, Xiaoxun; Issac, Ibrahim; Fuhr, Olaf; Roesky, Peter W; Fenske, Dieter

    2016-07-11

    The silver salts of 1-adamantanethiol (AdSH) and furan-2-ylmethanethiol (FurCH2 SH) were successfully applied as building blocks for ligand-protected Ag2 S nanoclusters. The reaction of the silver thiolates [AgSAd]x and [AgSCH2 Fur]x with S(SiMe3 )2 and 1,5-bis(diphenylphosphino)pentane (dpppt) afforded three different clusters with 58, 94 and, 190 silver atoms. The intensely colored compounds [Ag58 S13 (SAd)32 ] (1), [Ag94 S34 (SAd)26 (dpppt)6 ] (2), and [Ag190 S58 (SCH2 Fur)74 (dpppt)8 ] (3) were structurally characterized by single-crystal X-ray diffraction and exhibit different cluster core geometries and ligand shells. The diameters of the well-defined sphere-shaped nanoclusters range from 2.2 nm to 3.5 nm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Biooxidation of gold-bearing sulfide ore and subsequent biological treatment of cyanidation residues].

    PubMed

    Kanaev, A T; Bulaev, A G; Semenchenko, G V; Kanaeva, Z K; Shilmanova, A A

    2016-01-01

    The percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide. The gold and silver recovery rates by cyanidation were 64.0 and 57.3%, respectively. The gold and silver recovery rates by thiosulfate leaching were 64.0 and 57.3%, respectively. Gold and silver recovery rates from unoxidized ore (control experiment) by cyanidation were 20.9 and 26.8%, respectively. Thiosulfate leaching of unoxidized ore allowed the extraction of 38.8 and 24.2% of the gold and silver, respectively. Cyanidation residues were treated with bacteria of the genus Alcaligenes in order to destruct cyanide.

  3. Small-scale and large-scale testing of photo-electrochemically activated leaching technology in Aprelkovo and Delmachik Mines

    NASA Astrophysics Data System (ADS)

    Sekisov, AG; Lavrov, AYu; Rubtsov, YuI

    2017-02-01

    The paper gives a description of tests and trials of the technology of heap gold leaching from rebellious ore in Aprelkovo and Delmachik Mines. Efficiency of leaching flowsheets with the stage-wise use of activated solutions of different reagents, including active forms of oxygen, is evaluated. Carbonate-peroxide solutions are used at the first stage of leaching to oxidize sulfide and sulfide-arsenide ore minerals to recover iron and copper from them. The second stage leaching uses active cyanide solutions to leach encapsulated and disperse gold and silver.

  4. Mineralogy, paragenesis, and mineral zoning of the Bulldog Mountain vein system, Creede District, Colorado

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Heald Whitehouse-Veaux, Pamela

    1994-01-01

    The Bulldog Mountain vein system, Creede district, Colorado, is one of four major epithermal vein systems from which the bulk of the district's historical Ag-Pb-Zn-Cu production has come. Ores deposited along the vein system were discovered in 1965 and were mined from 1969 to 1985.Six temporally gradational mineralization stages have been identified along the Bulldog Mountain vein system, each with a characteristic suite of minerals deposited or leached and a characteristic distribution within the vein system; some of these stages are also strongly zoned within the vein system. Stage A was dominated by deposition of rhodochrosite along the lower levels of the Bulldog Mountain ore zone. Stage B in the northern parts of the ore zone is characterized by abundant fine-grained sphalerite and galena, with lesser tetrahedrite and minor chlorite and hematite. With increasing elevation to the south, stage B ores become progressively more barite and silver rich, with alternating barite and fine-grained sphalerite + galena generations; native silver + or - acanthite assemblages are also locally abundant within southern stage B barite sulfide ores, whereas chalcopyrite and other Cu and Ag sulfides and sulfosalts are present erratically in minor amounts. Stage C in the upper and northern portions of the ore zone is characterized by abundant quartz and fluorite, minor adularia, hematite, Mn siderite, sphalerite, and galena, and major leaching of earlier barite; to the south, some barite and sulfides may have been deposited. Stage D sphalerite and galena were deposited in the upper and northern portions of the ore zone; a barite- and silver-rich facies of this stage may also be present in the southern portions of the vein system. Late in stage D, mineralogically complex assemblages containing chalcopyrite, tetrahedrite, polybasite, bornite, pyrargyrite, and a variety of other sulfides and sulfosalts were deposited in modest amounts throughout the vein system. This complex assemblage marked the transition to stage E. During stage E, the final sulfide stage, abundant botryoidal pyrite and marcasite with lesser stibnite, sphalerite, and sulfosalts were deposited primarily along the top of the Bulldog Mountain ore zone. Stage F, the final mineralization stage along the vein system, is marked by wire silver and concurrent leaching of earlier sulfides and sulfosalts; this stage may reflect the transition to a supergene environment.The sequence of mineralization stages identified in this study along the Bulldog Mountain system can be correlated with corresponding stages identified by other researchers along the OH and P veins, and the southern Amethyst vein system. Mineral zoning patterns identified along the Bulldog Mountain vein system also parallel larger scale zoning patterns across the central and southern Creede district.The complex variations in mineral assemblages documented in time and space along the Bulldog Mountain vein system were produced by the combined effects of many processes. Large-scale changes in vein mineralogy over time produced discrete mineralization stages. Short-term mineralogical fluctuations produced complex interbanding of mineralogically distinct generations. Fluid chemistry evolution within the vein system produced large-scale lateral zoning patterns within certain stages. Hypogene leaching substantially modified the distributions of some minerals. Finally, structural activity, mineral deposition, and mineral leaching modified fluid flow pathways repeatedly during mineralization, and so added to the complex mineral distribution patterns within the vein system.

  5. Are silver nanoparticles always toxic in the presence of environmental anions?

    PubMed

    Guo, Zhi; Chen, Guiqiu; Zeng, Guangming; Yan, Ming; Huang, Zhenzhen; Jiang, Luhua; Peng, Chuan; Wang, Jiajia; Xiao, Zhihua

    2017-03-01

    Increasing amounts of silver nanoparticles (AgNPs) are expected to enter the ecosystems where their toxicity in the environment is proposed. In this study, we exploited the effect of environmental anions on AgNP toxicity. AgNP were mixed with various environmental anions, and then exposed to Escherichia coli to determine the effect on bacteria growth inhibition. The results demonstrated that AgNP are not always toxic in the presence of sulfide, but can stimulate microbial growth at certain concentrations. Environmental chloride and phosphate anions cannot induce the stimulation because of their weak capacity to control the release of Ag + from AgNP. Ag + that released from AgNP is proven to be responsible for AgNP toxicity. Moreover, we found that AgNP toxicity is dependent on sulfuration rate. At the same sulfuration rate, AgNP shows an identical pattern of toxicity. This study indicates that only sulfide of the tested environmental anions can induce AgNP stimulation to microbial growth in a sulfuration rate dependent pattern and the toxicity originate from Ag + that released from AgNP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Enhancement of the performance of cadmium sulfide quantum dot solar cells using a platinum-polyaniline counter electrode and a silver nanoparticle-sensitized photoanode

    NASA Astrophysics Data System (ADS)

    Nourolahi, Hamzeh; Bolorizadeh, Mohammadagha A.; Dorri, Navid; Behjat, Abbas

    2017-07-01

    A metal-polymer nanocomposite of platinum-polyaniline (Pt/PANI) was deposited on fluorine-doped tin oxide glass substrates to function as a counter electrode for polysulfide redox reactions in cadmium sulfide quantum dot-sensitized solar cells. In addition, front-side illuminated photoelectrodes were sensitized by silver (Ag) nanoparticles (NPs) as an interfacial layer between a transparent conducting oxide substrate and a TiO2 layer. This configuration, i.e., both the Pt/PANI counter electrode and the Ag NPs in the photoanode, leads to 1.92% in the power-conversion efficiency (PCE) of the fabricated cells. A PCE enhancement of around 21% was obtained for the Ag NPs-sensitized photoanodes, as compared with the Ag NPs-free one. The improved performance can be attributed to the easier transport of excited electrons and the inhibition of charge recombination due to the application of an Ag NPs layer. Electrochemical impedance spectroscopy measurements showed that once Ag NPs are incorporated in a photoanode, electron transport time decreases in the photoanode structure.

  7. An assessment of silver copper sulfides for photovoltaic applications: theoretical and experimental insights† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ta03376h Click here for additional data file. Click here for additional data file.

    PubMed Central

    Savory, Christopher N.; Ganose, Alex M.; Travis, Will; Atri, Ria S.; Palgrave, Robert G.

    2016-01-01

    As the worldwide demand for energy increases, low-cost solar cells are being looked to as a solution for the future. To attain this, non-toxic earth-abundant materials are crucial, however cell efficiencies for current materials are limited in many cases. In this article, we examine the two silver copper sulfides AgCuS and Ag3CuS2 as possible solar absorbers using hybrid density functional theory, diffuse reflectance spectroscopy, XPS and Hall effect measurements. We show that both compounds demonstrate promising electronic structures and band gaps for high theoretical efficiency solar cells, based on Shockley–Queisser limits. Detailed analysis of their optical properties, however, indicates that only AgCuS should be of interest for PV applications, with a high theoretical efficiency. From this, we also calculate the band alignment of AgCuS against various buffer layers to aid in future device construction. PMID:27774149

  8. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    USGS Publications Warehouse

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays from any external contemporary hydrothermal activity. Subsequent fracturing is localized by the embrittled wallrock to provide high-permeability fracture arrays that constrain vapor expansion with minimization of heat loss. The Sulfide Stage vein sequence is then a consequence of destabilization of metal-vapor species in response to depressurization and decrease in vapor density. The geology, mineralogy, fluid inclusion and stable isotope data and geothermometry for high-sulfidation, bulk-tonnage and lode deposits are quite different from those for epithermal gold-silver deposits such as McLaughlin, California that formed near-surface in groundwater-dominated hydrothermal systems where magmatic fluid has been diluted to less than about 30%. High sulfidation gold deposits are better termed 'Solfataric Gold Deposits' to emphasize this distinction. The magmatic-vapor expansion hypothesis also applies to the phenomenology of acidic geothermal systems in active volcanic systems and equivalent magmatic-vapor discharges on the flanks of submarine volcanoes. ?? 2010.

  9. The Kongsberg silver deposits, Norway: Ag-Hg-Sb mineralization and constraints for the formation of the deposits

    NASA Astrophysics Data System (ADS)

    Kotková, Jana; Kullerud, Kåre; Šrein, Vladimír; Drábek, Milan; Škoda, Radek

    2018-04-01

    The Kongsberg silver district has been investigated by microscopy and electron microprobe analysis, focusing primarily on the Ag-Hg-Sb mineralization within the context of the updated mineral paragenesis. The earliest mineralization stage is represented by sulfides, including acanthite, and sulfosalts. Native silver formed initially through breakdown of early Ag-bearing phases and later through influx of additional Ag-bearing fluids and silver remobilization. The first two generations of native silver were separated in time by the formation of Ni-Co-Fe sulfarsenides and the monoarsenide niccolite along rims of silver crystals. The presence of As-free sulfosalts and the absence of di- and tri-arsenides suggest a lower arsenic/sulfur activity ratio for the Kongsberg deposits compared to other five-element deposits. Native silver shows binary Ag-Hg and Ag-Sb solid solutions, in contrast to the ternary Ag-Hg-Sb compositions typical for other deposits of similar type. Antimonial silver together with allargentum, dyscrasite, and pyrargyrite was documented exclusively from the northern area of the district. Elsewhere, the only Sb-bearing minerals are polybasite and tetrahedrite/freibergite. Hg-rich silver (up to 21 wt% Hg) has been documented only in the central-western area. Myrmekite of freibergite and chalcopyrite reflects exsolution from an original Ag-poor tetrahedrite upon cooling, while myrmekite of pyrite and silver, forming through breakdown of low-temperature phases (argentopyrite or lenaite) upon heating, characterizes the Kongsberg silver district. Based on the stabilities of minerals and mineral assemblages, the formation of the silver mineralization can be constrained to temperatures between 180 and 250 °C.

  10. New insights into the formation of silver-based nanoparticles under natural and semi-natural conditions.

    PubMed

    Wimmer, Andreas; Kalinnik, Anna; Schuster, Michael

    2018-05-10

    For the first time, the natural formation of silver-based nanoparticles (Ag-b-NPs) was studied in field investigations of two pre-alpine lakes in Germany that contain geogenic silver traces in the sub-ng L -1 range. Light-sensitive microorganisms most likely accumulate and transport these silver traces from deeper water layers to the surface. At the surface of the eutrophic lake, approximately 40% of total silver (5.7 ng L -1 ) consisted of Ag-b-NPs, whereas in the oligotrophic lake with similar enrichment of silver species, no Ag-b-NPs were detected. Additional lab experiments with nature-related Ag(I) concentrations in the lower-ng L -1 range and natural organic matter with total organic carbon values of ≤5 mg L -1 revealed that, contrary to common interpretation in the literature, Ag-b-NPs are also or even preferably formed in the dark. Particle size increases gradually with increasing reaction time, showing that Ostwald ripening occurs even at such low particle concentrations. When sulfide ions are present, smaller Ag-b-NPs with a narrower size distribution are formed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Genetic environment of germanium-bearing gold-silver vein ores from the Wolyu mine, Republic of Korea

    NASA Astrophysics Data System (ADS)

    Yun, Seong-Taek; So, Chil-Sup; Choi, Sang-Hoon; Shelton, Kevin L.; Koo, Ja-Hak

    1993-04-01

    The Wolyu mine is one of the largest vein-type gold-silver-bearing epithermal systems in the Youngdong district and is the first gold-silver deposit in Korea found to contain significant germanium, in the form of argyrodite (Ag8GeS6). Mineralized veins (78.9 ± 1.2 Ma) crosscutting Late Cretaceous hostrock tuff and quartz porphyry (81.5 ± 1.8 Ma) consist of three stages of quartz and carbonates, the first of which contains pyrite, basemetal sulfides and Au-Ag-minerals. Stage I Au-Ag-Ge-mineralized veins show a systematic variation of mineral assemblage with time: (1) quartz + pyrite; (2) quartz + pyrite + sphalerite + electrum + argentite; (3) carbonate + quartz + sphalerite + electrum + argentite; (4) carbonate + native silver + argentite + Ag-sulfosalts + argyrodite + sphalerite. Calculated values of temperature and sulfur activity are: assemblage (1), 360-280°C and 10-7-10-10; (2), 280-210°C and 10-10-10-14; (3), 210-180°C and 10-14-10-16; (4), 180-155°C and 10-17-10-18. These data, the frequent association of gold with sulfides, and the abundance of pyrite in alteration zones indicate that decreasing sulfur activity and cooling were important in triggering gold deposition. Hydrogen and oxygen isotope compositions of ore fluids display a systematic variation with increasing time. Within the main Ag-Au-Ge mineralization, δD and δ 18O values decrease with the transition from quartz to carbonate deposition (from -78 and -2.8% to -90 and -8.7%., respectively), indicating increasing involvement (mixing) of less evolved meteoric water which resulted in progressive cooling and dilution of ore fluids in the shallow (≈ 370 600 m) Wolyu epithermal system.

  12. Polyphase enrichment and redistribution processes in silver-rich mineral associations of the hydrothermal fluorite-barite-(Ag-Cu) Clara deposit, SW Germany

    NASA Astrophysics Data System (ADS)

    Keim, Maximilian F.; Walter, Benjamin F.; Neumann, Udo; Kreissl, Stefan; Bayerl, Richard; Markl, Gregor

    2018-03-01

    The silver-copper sulfide mineralization associated with the fluorite-barite vein system at the Clara deposit in SW Germany shows large scale vertical zoning. Low to moderate silver contents prevail in the upper 350 m, whereas high silver contents occur in the subsequent 450 m of the currently known vein system. This change in Ag tenor is related to conspicuous mineralogical changes with depth. A detailed petrographic and fluid inclusion study identifies evidence for five subsequent hydrothermal and one alteration stage—all contributing to mineralogical diversity. The vertical Ag zoning, however, is attributed only to the first of these stages. During this first stage, increasing oxidation of ascending hydrothermal fluids (90-160 °C, 24.2-26.7 wt% NaCl+CaCl2) led to the formation of high-Ag tetrahedrite-tennantite in the lower parts and basically Ag-free enargite in the upper parts of the vein system. The subsequent hydrothermal stage led to significant mineralogical changes, but inherited the pre-existing Ag zonation. In this second hydrothermal stage, which was related to fluids similar in composition to those of the first stage (70-125 °C, 23.1-26.5 wt% NaCl+CaCl2), dissolution of high Ag-tetrahedrite-tennantite resulted in the formation of complex Ag-sulfosalts together with moderately Ag-bearing tetrahedrite-tennantite and chalcopyrite. The first two stages were formed by fluid mixing of a sedimentary and a hot basement fluid. The influx of fluids with high Ag, Bi and Pb activity during stage 3 and 5 resulted in the local replacement of earlier Ag-sulfosalts by galena and Ag-(Bi)-sulfosalts. The fourth stage is marked by partial dissolution of sulfides and sulfosalts by a late, hot, undiluted basement fluid (250 °C, 18.7-20.9 wt% NaCl+CaCl2) precipitating fluorite, barite and quartz. Finally, supergene alteration lead to the dissolution of silver-bearing phases and the precipitation of acanthite and native silver. The study illustrates, how metal tenor and mineralogy are decoupled in vertically extensive, polyphase hydrothermal vein systems. This may be pertinent to similarly zoned polymetallic vein systems.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanatzidis, Mercouri; Riley, Brian; Chun, Jaehun

    This report documents the work done under NEUP grant to examine the capability of novel chalcogels and some binary metal chalcogenides as a host matrix for the capture of gaseous iodine and the feasibility of their iodine-laden materials to be converted into a permanent waste form. The presented work was conducted over last two years. A number of novel chalcogels Zn 2Sn 2S 6, Sb 4Sn 4S 12, NiMoS 4, CoMoS 4, antimony sulfide (SbS x) chalcogels, silver functionalized chalcogels and binary metal sulfides (Sb 2S 3) were developed and studies for their iodine absorption efficacies. A new and simplemore » route was devised for the large scale preparation of antimony sulfide chalcogel. The chalcogel was obtained by treating Sb 2S 3 with Na 2S in the presence of water followed by addition of formamide. The obtained gels have a low-density sponge like network of meso porous nature having BET surface area of 125 m 2/g. The chalcogels, silver functionalized chalcogel and the binary metal sulfides were exposed to iodine vapors in a closed container. Silver-functionalized chalcogels and Sb 2S 3 powders showed iodine uptake up to 100 wt%, the highest iodine uptake of 200 wt% was observed for the SbS-III chalcogel. The PXRD patterns of iodine-laden specimens revealed that iodine shows spontaneous chemisorption to the matrix used. The iodine loaded chalcogels and the binary chalcogenides were sealed under vacuum in fused silica ampoules and heated in a temperature controlled furnace. The consolidated products were analyzed by PXRD, energy dispersive spectroscopy (EDS), UV-Vis and Raman spectroscopy. The final products were found to be amorphous in most of the cases with high amount (~4-35 wt%) of iodine and aapproximately ~60- 90 % of the absorbed iodine could be consolidated into the final waste form. Alginate reinforced composite scaffolds with SbS/SnS chalcogels and Sb 2S 3 bulk powder were also fabricated aiming to study their efficacy as host matrices in capturing the gaseous molecular iodine in dynamic mode from nuclear spent fuel. The obtained composites looks robust in comparison to their respective pristine chalcogels and Sb 2S 3 bulk powder.« less

  14. Colorimetric detection of endogenous hydrogen sulfide production in living cells

    NASA Astrophysics Data System (ADS)

    Ahn, Yong Jin; Lee, Young Ju; Lee, Jaemyeon; Lee, Doyeon; Park, Hun-Kuk; Lee, Gi-Ja

    2017-04-01

    Hydrogen sulfide (H2S) has received great attention as a third gaseous signal transmitter, following nitric oxide and carbon monoxide. In particular, H2S plays an important role in the regulation of cancer cell biology. Therefore, the detection of endogenous H2S concentrations within biological systems can be helpful to understand the role of gasotransmitters in pathophysiology. Although a simple and inexpensive method for the detection of H2S has been developed, its direct and precise measurement in living cells remains a challenge. In this study, we introduced a simple, facile, and inexpensive colorimetric system for selective H2S detection in living cells using a silver-embedded Nafion/polyvinylpyrrolidone (PVP) membrane. This membrane could be easily applied onto a polystyrene microplate cover. First, we optimized the composition of the coating membrane, such as the PVP/Nafion mixing ratio and AgNO3 concentration, as well as the pH of the Na2S (H2S donor) solution and the reaction time. Next, the in vitro performance of a colorimetric detection assay utilizing the silver/Nafion/PVP membrane was evaluated utilizing a known concentration of Na2S standard solution both at room temperature and at 37 °C in a 5% CO2 incubator. As a result, the sensitivity of the colorimetric assay for H2S at 37 °C in the incubator (0.0056 Abs./μM Na2S, R2 = 0.9948) was similar to that at room temperature (0.0055 Abs./μM Na2S, R2 = 0.9967). Moreover, these assays were less sensitive to interference from compounds such as glutathione, L-cysteine (Cys), and dithiothreitol than to the H2S from Na2S. This assay based on the silver/Nafion/PVP membrane also showed excellent reproducibility (2.8% RSD). Finally, we successfully measured the endogenous H2S concentrations in live C6 glioma cells by s-(5‧-adenosyl)-L-methionine stimulation with and without Cys and L-homocysteine, utilizing the silver/Nafion/PVP membrane. In summary, colorimetric assays using silver/Nafion/PVP-coated membranes can be simple, robust, and reliable tools for the detection of H2S that can avoid the complicated and labor-intensive analytical approach used in conventional biology. In addition, we expect that this assay will demonstrate a powerful ability to study pathophysiological pathways that involve H2S.

  15. Gold in minerals and the composition of native gold

    USGS Publications Warehouse

    Jones, Robert Sprague; Fleischer, Michael

    1969-01-01

    Gold occurs in nature mainly as the metal and as various alloys. It forms complete series of solid solutions with silver, copper, nickel, palladium, and platinum. In association with the platinum metals, gold occurs as free gold as well as in solid solution. The native elements contain the most gold, followed by the sulfide minerals. Several gold tellurides are known, but no gold selenides have been reported, and only one sulfide, the telluride-sulfide mineral nagyagite, is known. The nonmetallic minerals carry the least gold, and the light-colored minerals generally contain less gold than the dark minerals. Some conclusions in the literature are conflicting in regard to the relation of fineness of native gold to its position laterally and vertically within a lode, the nature of the country rocks, and the location and size of nuggets in a streambed, as well as to the variation of fineness within an individual nugget.

  16. Transfer printed silver nanowire transparent conductors for PbS-ZnO heterojunction quantum dot solar cells.

    PubMed

    Hjerrild, Natasha E; Neo, Darren C J; Kasdi, Assia; Assender, Hazel E; Warner, Jamie H; Watt, Andrew A R

    2015-04-01

    Transfer-printed silver nanowire transparent conducting electrodes are demonstrated in lead sulfide-zinc oxide quantum dot solar cells. Advantages of using this transparent conductor technology are increased junction surface energy, solution processing, and the potential cost reduction of low temperature processing. Joule heating, device aging, and film thickness effects are investigated to understand shunt pathways created by nanowires protruding perpendicular to the film. A V(oc) of 0.39 ± 0.07 V, J(sc) of 16.2 ± 0.2 mA/cm(2), and power conversion efficiencies of 2.8 ± 0.4% are presented.

  17. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh

    PubMed Central

    Wilbanks, Elizabeth G; Jaekel, Ulrike; Salman, Verena; Humphrey, Parris T; Eisen, Jonathan A; Facciotti, Marc T; Buckley, Daniel H; Zinder, Stephen H; Druschel, Gregory K; Fike, David A; Orphan, Victoria J

    2014-01-01

    Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the ‘pink berry’ consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and 34S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0–500 μm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ34S-sulfide decreased from 6‰ to −31‰ from the exterior to interior of the berry. These values correspond to sulfate–sulfide isotopic fractionations (15–53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria. PMID:24428801

  18. Base and precious metal occurrences along the San Andreas Fault, Point Delgada, California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Sorg, D.H.; Ohlin, H.N.; Heropoulos, Chris

    1979-01-01

    Previously unrecognized veins containing lead, zinc, and copper sulfide minerals at Point Delgada, Calif., are associated with late Mesozoic(?) and Tertiary volcanic and sedimentary rocks of the Franciscan assemblage. Sulfide minerals include pyrite, sphalerite, galena, and minor chalcopyrite, and galena-rich samples contain substantial amounts of silver. These minerals occur in a quartz-carbonate gangue along northeast-trending faults and fractures that exhibit (left?) lateral and vertical slip. The sense of fault movement and the northeasterly strike are consistent with predicted conjugate fault sets of the present San Andreas fault system. The sulfide mineralization is younger than the Franciscan rocks of Point Delgada and King Range, and it may have accompanied or postdated the inception of San Andreas faulting. Mineralization largely preceded uplift, the formation of a marine terrace, and the emplacement of landslide-related debris-flow breccias that overlie the mineralized rocks and truncate the sulfide veins. These field relations indicate that the sulfide mineralization and inception of San Andreas faulting were clearly more recent than the early Miocene and that the mineralization could be younger than about 1.2 m.y. The sulfide veins at Point Delgada may be of economic significance. However, prior to any exploitation of the occurrence, economic and environmental conflicts of interest involving private land ownership, the Shelter Cove home development, and proximity of the coast must be resolved.

  19. Seeded growth of gold nanorods: the effect of sulfur-containing quenching agents

    NASA Astrophysics Data System (ADS)

    Gobbo, Alberto; Marin, Riccardo; Canton, Patrizia

    2018-03-01

    Herein we present a study on the efficacy of selected sulfur-containing species as growth quenchers and metal ion scavengers in the framework of gold nanorod (GNR) synthesis. The here utilized seeded growth method is the reference GNR synthesis approach. However, GNRs synthesized according to it are prone to morphological changes upon aging, promoted by the presence of unreacted metal ions in the stock suspension. This, in turn, leads to optical property changes. Sodium sulfide is an efficient GNR growth quencher and metal ion scavenger, because sulfide ion has a strong affinity towards noble metals used for the GNRs' synthesis. Moving from these considerations, different sulfur-containing molecules were selected and their interaction with GNR surface was investigated: sulfate, sulfite, thiourea, and dodecyl sulfate were chosen for their difference in terms of net charge, size, and hydrophobicity. We initially assessed the best synthesis conditions in terms of reaction time, seed amount, silver concentration, and quencher amount. Consequently, the quencher/scavenger was varied. Thiourea, sulfite, and sulfate ions all showed a feeble, yet non-negligible, interaction with metals. Although sodium sulfide turned out to be the most efficient quencher/scavenger, also dodecyl sulfate showed evidences of adsorption on the GNR surface, probably prompted by hydrophobic interactions. These findings are expected to contribute as a background for further advancements in the perfection of GNR synthetic approaches specifically in terms of post-synthesis treatments.

  20. The effect of sulfate concentration on (sub)millimeter-scale sulfide δ 34S in hypersaline cyanobacterial mats over the diurnal cycle

    NASA Astrophysics Data System (ADS)

    Fike, David A.; Finke, Niko; Zha, Jessica; Blake, Garrett; Hoehler, Tori M.; Orphan, Victoria J.

    2009-10-01

    Substantial isotopic fractionations are associated with many microbial sulfur metabolisms and measurements of the bulk δ 34S isotopic composition of sulfur species (predominantly sulfates and/or sulfides) have been a key component in developing our understanding of both modern and ancient biogeochemical cycling. However, the interpretations of bulk δ 34S measurements are often non-unique, making reconstructions of paleoenvironmental conditions or microbial ecology challenging. In particular, the link between the μm-scale microbial activity that generates isotopic signatures and their eventual preservation as a bulk rock value in the geologic record has remained elusive, in large part because of the difficulty of extracting sufficient material at small scales. Here we investigate the potential for small-scale (˜100 μm-1 cm) δ 34S variability to provide additional constraints for environmental and/or ecological reconstructions. We have investigated the impact of sulfate concentrations (0.2, 1, and 80 mM SO 4) on the δ 34S composition of hydrogen sulfide produced over the diurnal (day/night) cycle in cyanobacterial mats from Guerrero Negro, Baja California Sur, Mexico. Sulfide was captured as silver sulfide on the surface of a 2.5 cm metallic silver disk partially submerged beneath the mat surface. Subsequent analyses were conducted on a Cameca 7f-GEO secondary ion mass spectrometer (SIMS) to record spatial δ 34S variability within the mats under different environmental conditions. Isotope measurements were made in a 2-dimensional grid for each incubation, documenting both lateral and vertical isotopic variation within the mats. Typical grids consisted of ˜400-800 individual measurements covering a lateral distance of ˜1 mm and a vertical depth of ˜5-15 mm. There is a large isotopic enrichment (˜10-20‰) in the uppermost mm of sulfide in those mats where [SO 4] was non-limiting (field and lab incubations at 80 mM). This is attributed to rapid recycling of sulfur (elevated sulfate reduction rates and extensive sulfide oxidation) at and above the chemocline. This isotopic gradient is observed in both day and night enrichments and suggests that, despite the close physical association between cyanobacteria and select sulfate-reducing bacteria, photosynthetic forcing has no substantive impact on δ 34S in these cyanobacterial mats. Perhaps equally surprising, large, spatially-coherent δ 34S oscillations (˜20-30‰ over 1 mm) occurred at depths up to ˜1.5 cm below the mat surface. These gradients must arise in situ from differential microbial metabolic activity and fractionation during sulfide production at depth. Sulfate concentrations were the dominant control on the spatial variability of sulfide δ 34S. Decreased sulfate concentrations diminished both vertical and lateral δ 34S variability, suggesting that small-scale variations of δ 34S can be diagnostic for reconstructing past sulfate concentrations, even when original sulfate δ 34S is unknown.

  1. Mineralogy and Geochemical Processes of Carbonate Mineral-rich Sulfide Mine Tailings, Zimapan, Mexico

    NASA Astrophysics Data System (ADS)

    McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.

    2009-12-01

    Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in the tailings include gypsum, quartz, pyrite, mica, talc, amphiboles, and feldspars. Oxidation products identified include copiapite as well as various iron oxides. Future results are expected to reveal most of the heavy metals to be adsorbed by or coprecipitate with iron oxides, with most of the oxidized arsenic staying in the soluble form. The mobility of the colloidal form of the oxides and associated heavy metals within the carbonate mineral-rich tailings need additional study.

  2. Friction and transfer of copper, silver, and gold to iron in the presence of various adsorbed surface films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.

  3. Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Dilbert, C.A.

    1984-01-01

    Soil samples were collected over the North Silver Bell porphyry copper deposit near Tucson, Arizona. Volatile elements and compounds in gases derived from the soils and metallic elements in the soils were analyzed in order: (1) to see which volatile constituents of the soils might be indicative of the ore body or the alteration zones; and (2) to distinguish the ore and alteration zones by comparison of trace elements in the soil. Plots of analytical data on trace elements in soils indicated a typical distribution pattern for metals around a porphyry copper deposit, with copper, molybdenum, and arsenic concentrations higher over the ore body, and zinc, lead, and silver concentrations higher over the alteration zones. Higher than average concentrations of helium, carbon disulfide, and sulfur dioxide adsorbed on soils were found over the ore body, whereas higher concentrations of carbon dioxide and carbonyl sulfide were found over the alteration zones. ?? 1984.

  4. Zeta-potential and particle size studies of silver sulphide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vikash, E-mail: vikash@csr.res.in; Tarachand,; Ganesan, V.

    Silver sulfide (Ag{sub 2}S) nanoparticles (NPs) were prepared successfully for the first time using diethylene glycol (DEG) as a surfactant. X-ray diffraction (XRD) data revealed single phase nature of the compound and energy-dispersive X-ray (EDX) confirmed its nominal composition. Their sizes were 43 nm from XRD, 50 nm from atomic force microscopy (AFM) and 19 nm & 213 nm from dynamic light scattering (DLS); their differences have been discussed. Autotitration study of zeta potential of these NPs in deionized water by DLS at different pH values confirmed an isoelectric point at pH = 5.14 and their very unstable nature in deionized water.

  5. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    PubMed

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  6. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    USGS Publications Warehouse

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  7. Improved Understanding of In Situ Chemical Oxidation Soil Reactivity

    DTIC Science & Technology

    2007-12-01

    solution (potassium dichromate (BDH Laboratories), sulfuric acid (EM Science), and mercury sulphate (EM Science)) and a sulfuric acid reagent solution... sulfuric acid (EM Science) and silver sulphate (Alfa Aesar)) were added to each reaction tube. The reagents ( sulfuric acid /potassium dichromate...example, under basic conditions, sulfide can be oxidized to sulfate by excess permanganate while sulfur and tetrathionate might also be produced due

  8. Chemistry Related to Semiconductor Growth Involving Organometallics

    DTIC Science & Technology

    1990-05-11

    Biodegradation ( bioleaching --solubilization of minerals via microorganisms) nas been patented and used in conjunction with traditional mineral and... bioleach work, Lundgren, Torma, Karaivko and Ivanov reported that Thiobacillus ferrooxidans (370) was used to oxidize gallium sulfide (Ga2S3) to gallium...multimillion dollar loss of gallium, gold and silver. Our laboratories have shown that bacteria found to be successful in a three year gallium bioleach

  9. 40Ar/39Ar Dating of Zn-Pb-Ag Mineralization in the Northern Brooks Range, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Layer, Paul W.; Newberry, Rainer J.

    2004-01-01

    The 40Ar/39Ar laser step-heating method potentially can be used to provide absolute ages for a number of formerly undatable, low-temperature ore deposits. This study demonstrates the use of this method by determining absolute ages for Zn-Pb-Ag sediment-hosted massive sulfide deposits and vein-breccia occurrences found throughout a 300-km-long, east-west-trending belt in the northern Brooks Range, Alaska. Massive sulfide deposits are hosted by Mississippian to Pennsylvanian(?) black carbonaceous shale, siliceous mudstone, and lesser chert and carbonate turbidites of the Kuna Formation (e.g., Red Dog, Anarraaq, Lik (Su), and Drenchwater). The vein-breccia occurrences (e.g., Husky, Story Creek, West Kivliktort Mountain, Vidlee, and Kady) are hosted by a deformed but only weakly metamorphosed package of Upper Devonian to Lower Mississippian mixed continental and marine clastic rocks (the Endicott Group) that stratigraphically underlie the Kuna Formation. The vein-breccias are mineralogically similar to, but not spatially associated with, known massive sulfide deposits. The region's largest shale-hosted massive sulfide deposit is Red Dog; it has reserves of 148 Mt grading 16.6 percent zinc, 4.5 percent lead, and 77 g of silver per tonne. Hydrothermally produced white mica in a whole-rock sample from a sulfide-bearing igneous sill within the Red Dog deposit yielded a plateau age of 314.5 Ma. The plateau age of this whole-rock sample records the time at which temperatures cooled below the argon closure temperature of the white mica and is interpreted to represent the minimum age limit for massive sulfide-related hydrothermal activity in the Red Dog deposit. Sulfide-bearing quartz veins at Drenchwater crosscut a hypabyssal intrusion with a maximum biotite age of 337.0 Ma. Despite relatively low sulfide deposition temperatures in the vein-breccia occurrences (162°-251°C), detrital white mica in sandstone immediately adjacent to large vein-breccia zones was partially to completely recrystallized. The 40Ar/39Ar age spectra and inverse isochron plots of the multicomponent whole-rock sandstone samples are more complex than those of single minerals. However, different minerals have different Ca/K and Cl/K ratios and closure temperatures, and these properties were used to identify portions of spectra dominated by argon release from specific minerals. 40Ar/39Ar laser step-heating analyses of Late Devonian sandstone whole rocks produced spectra that record a two-stage resetting history: a Carboniferous hydrothermal event first and later Mesozoic to Tertiary events, which are in agreement with geologic constraints. The 40Ar/39Ar ages and the similar mineralogy, lead isotope composition, and relative stratigraphic positions support the interpretation that the shale-hosted massive sulfide deposits and most vein-breccia occurrences are temporally and genetically related, and that they are different expressions of Carboniferous basinal dewatering.

  10. Selective solvent-free chromium detection using cadmium-free quantum dots

    NASA Astrophysics Data System (ADS)

    Meylemans, Heather A.; Baca, Alfred J.; Cambrea, Lee R.; Ostrom, Gregory S.

    2017-07-01

    Currently, the method of choice to test for the presence of chromium in water is to submit samples to a lab for testing. We present a simple field-ready test that is selective for the presence of chromium at concentrations of 100 ppb or greater. The Environmental Protection Agency maximum contaminant level (MCL) for total chromium is 100 ppb. This test uses a simple on/off fluorescent screening employing the use of silver indium sulfide (AgInS2) quantum dots (QDs). These QDs were impregnated into cotton pads to simplify field testing without the need for solvents or other liquid chemicals to be present. The change in fluorescence is instant and can be readily observed by eye with the use of a UV flashlight.

  11. Protecting health.

    PubMed

    Armour, Margaret-Ann; Linetsky, Asya; Ashick, Donna

    2008-10-01

    Water-soluble heavy metal salts injure health when they leach into water supplies. It is important that students who may later be employed in industries generating aqueous solutions of such salts are aware of the methods that can be used to recover the metal salt or transform it to non-health threatening products. The research was in the management of small quantities of hazardous wastes, such as are generated in school, college, and university teaching laboratories; in research laboratories; in industrial quality control and testing laboratories; and in small industries. Methods for the recovery of silver, nickel, and cobalt salts from relatively small volumes of aqueous solutions of their soluble salts were developed and tested. Where it was not practical to recover the metal salt, the practice has been to convert it to a water-insoluble salt, often the sulfide. This requires the use of highly toxic reagents. It was found that a number of heavy metal salts can be precipitated as the silicates, returning them to the form in which they are found in the natural ore. These salts show similar solubility properties to the sulfides in neutral, acidic, and basic aqueous solutions. The work has determined the conditions, quantities, and solution acidity that result in the most effective precipitation of the heavy metal salt. The concentration of the metal ions remaining in solution was measured by AA and ICP spectrometry. Specific methods have been developed for the conversion of salts of mercury and chromium to nonsoluble products.

  12. Toxicity reduction of photo processing wastewaters

    USGS Publications Warehouse

    Wang, W.

    1992-01-01

    The photo processing industry can be characterized by treatment processes and subsequent silver recovery. The effluents generated all contain various amounts of silver. The objectives of this study were to determine toxicity of photo processing effluents and to explore their toxicity mitigation. Six samples, from small shops to a major photo processing center, were studied. Two samples (I and VI) were found to be extremely toxic, causing 100 and 99% inhibition of duckweed frond reproduction, respectively, and were used for subsequent toxicity reduction experiments. Lime and sodium sulfide were effective for the toxicity reduction of Sample VI; both reduced its toxicity to negligible. Sample I was far more toxic and was first diluted to 2.2% and then treated with 0.5 g lime/100 mL, reducing toxicity from 100% to 12% inhibition.

  13. Fractionation of silver isotopes in native silver explained by redox reactions

    NASA Astrophysics Data System (ADS)

    Mathur, Ryan; Arribas, Antonio; Megaw, Peter; Wilson, Marc; Stroup, Steven; Meyer-Arrivillaga, Danilo; Arribas, Isabel

    2018-03-01

    Scant data exist on the silver isotope composition of native silver specimens because of the relative newness of the technique. This study increases the published dataset by an order of magnitude and presents 80 silver new isotope analyses from native silver originating from a diverse set of worldwide deposits (8 deposit types, 33 mining districts in five continents). The measured isotopic range (defined as δ109Ag/107Ag in per mil units compared to NIST 978 Ag isotope standard) is +2.1 to -0.86‰ (2σ errors less than 0.015); with no apparent systematic correlations to date with deposit type or even within districts. Importantly, the data centering on 0‰ all come from high temperature hypogene/primary deposits whereas flanking and overlapping data represent secondary supergene deposits. To investigate the causes for the more fractionated values, several laboratory experiments involving oxidation of silver from natural specimens of Ag-rich sulfides and precipitation and adsorption of silver onto reagent grade MnO2 and FeOOH were conducted. Simple leach experiments demonstrate little Ag isotope fractionation occurred through oxidation of Ag from native Ag (Δsolution-native109Ag = 0.12‰). In contrast, significant fractionation occurred through precipitation of native Ag onto MnO2 (up to Δsolution-MnO2109Ag = 0.68‰, or 0.3amu). Adsorption of silver onto the MnO2 and FeOOH did not produce as large fractionation as precipitation (mean value of Δsolution-MnO2109Ag = 0.10‰). The most likely cause for the isotopic variations seen relates to redox effects such as the reduction of silver from Ag (I) to Ag° that occurs during precipitation onto the mineral surface. Since many Ag deposits have halos dominated by MnO2 and FeOOH phases, potential may exist for the silver isotope composition of ores and surrounding geochemical haloes to be used to better understand ore genesis and potential exploration applications. Aside from the Mn oxides, surface fluid silver isotope compositions might provide information about geochemical reactions relevant to both environmental and hydrometallurgical applications.

  14. Selective Metallization of Well Aligned PS-b-P2VP Block Copolymers in Thin Films and in Confined Geometries

    NASA Astrophysics Data System (ADS)

    Sievert, James D.; Watkins, James J.; Russell, Thomas P.

    2006-03-01

    Well aligned, microphase-separated structures of styrene-2-vinylpyridine block copolymers are being used as templates for macromolecule-metal nanocomposites. These composites are either prepared as thin films or confined in nanoporous aluminum oxide membranes. Under optimal conditions, templates are prepared as thin films or confined nanorods and metallized without disturbing the ordered structure. We have developed a procedure that deposits metal within the polymer using supercritical carbon dioxide-soluble metal precursors. The use of supercritical carbon dioxide allows for selective metallization of the polymer at or below the glass transition, without disrupting the morphology. In addition, similar procedures have been investigated using metal salts and acids. Using these techniques, metals and metal-sulfides including silver, gold, platinum and zinc sulfide have been selectively deposited.

  15. Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters

    DOE PAGES

    Hellstern, Thomas R.; Kibsgaard, Jakob; Tsai, Charlie; ...

    2017-09-22

    Molybdenum sulfides have been identified as promising materials for catalyzing the hydrogen evolution reaction (HER) in acid, with active edge sites that exhibit some of the highest turnover frequencies among nonpreciousmetal catalysts. The thiomolybdate [Mo 3S 13] 2- nanocluster catalyst contains a structural motif that resembles the active site of MoS 2 and has been reported to be among the most active forms of molybdenum sulfide. Herein, we improve the activity of the [Mo 3S 13] 2- catalysts through catalyst-support interactions. We synthesize [Mo 3S 13] 2- on gold, silver, glassy carbon, and copper supports to demonstrate the ability tomore » tune the hydrogen binding energy of [Mo 3S 13] 2- using catalyst-support electronic interactions and optimize HER activity.« less

  16. Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellstern, Thomas R.; Kibsgaard, Jakob; Tsai, Charlie

    Molybdenum sulfides have been identified as promising materials for catalyzing the hydrogen evolution reaction (HER) in acid, with active edge sites that exhibit some of the highest turnover frequencies among nonpreciousmetal catalysts. The thiomolybdate [Mo 3S 13] 2- nanocluster catalyst contains a structural motif that resembles the active site of MoS 2 and has been reported to be among the most active forms of molybdenum sulfide. Herein, we improve the activity of the [Mo 3S 13] 2- catalysts through catalyst-support interactions. We synthesize [Mo 3S 13] 2- on gold, silver, glassy carbon, and copper supports to demonstrate the ability tomore » tune the hydrogen binding energy of [Mo 3S 13] 2- using catalyst-support electronic interactions and optimize HER activity.« less

  17. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures.

    PubMed

    Faramarzi, Mohammad Ali; Sadighi, Armin

    2013-03-01

    The synthesis of inorganic nanomaterials and nanostructures by the means of diverse physical, chemical, and biological principles has been developed in recent decades. The nanoscale materials and structures creation continue to be an active area of researches due to the exciting properties of the resulting nanomaterials and their innovative applications. Despite physical and chemical approaches which have been used for a long time to produce nanomaterials, biological resources as green candidates that can replace old production methods have been focused in recent years to generate various inorganic nanoparticles (NPs) or other nanoscale structures. Cost-effective, eco-friendly, energy efficient, and nontoxic produced nanomaterials using diverse biological entities have been received increasing attention in the last two decades in contrast to physical and chemical methods owe using toxic solvents, generate unwanted by-products, and high energy consumption which restrict the popularity of these ways employed in nanometric science and engineering. In this review, the biosynthesis of gold, silver, gold-silver alloy, magnetic, semiconductor nanocrystals, silica, zirconia, titania, palladium, bismuth, selenium, antimony sulfide, and platinum NPs, using bacteria, actinomycetes, fungi, yeasts, plant extracts and also informational bio-macromolecules including proteins, polypeptides, DNA, and RNA have been reported extensively to mention the current status of the biological inorganic nanomaterial production. In other hand, two well-known wet chemical techniques, namely chemical reduction and sol-gel methods, used to produce various types of nanocrystalline powders, metal oxides, and hybrid organic-inorganic nanomaterials have presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Polyhedral Oligomeric Silsesquioxane Polymer-Caged Silver Nanoparticle as a Smart Colorimetric Probe for the Detection of Hydrogen Sulfide.

    PubMed

    Zhang, Yue; Shen, Hui-Yan; Hai, Xin; Chen, Xu-Wei; Wang, Jian-Hua

    2017-01-17

    The rapid and accurate detection of hydrogen sulfide is of great concern due to its unique role on environmental pollution and signal transmission in physiological systems. Herein, we report a smart colorimetric probe for the selective detection of H 2 S. The probe is prepared via a surfactant-free route with cross-linked polyhedral oligomeric silsesquioxane (POSS) polymer cage as capping ligand and reducing agent under microwave irradiation, called poly-POSS-formaldehyde polymer (PPF) cage-AgNPs or PPF-AgNPs for short. The caged silver nanoparticles are well-dispersed with narrow size distribution within 6.0-8.4 nm. Chloride ions and aldehyde groups in PPF make the nucleation and growth of Ag nanoparticles accomplished within a very short time of 1 min. The positively charged PPF-AgNPs exhibit excellent selectivity to H 2 S against other anionic species and thiols due to the specific Ag-H 2 S interaction, where the favorable protection effect of PPF polymer cage from the nanoparticle aggregation is demonstrated. The colorimetric probe presents a quick response to H 2 S (<3 min) and favorable sensitivity within a linear range of 0.7-10 μM along with a detection limit of 0.2 μM. The probe is well demonstrated by analysis of H 2 S in various water and biological samples.

  19. Fate of Zinc and Silver Engineered Nanoparticles in ...

    EPA Pesticide Factsheets

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage systems before reaching wastewater treatment plants. To address this knowledge gap, laboratory-scale systems fed with raw wastewater were used to evaluate the transformation of ZnO- and Ag-NPs within sewerage transfer networks. Two experimental systems were established and spiked with either Ag- and ZnO-NPs or with their dissolved salts, and the wastewater influent and effluent samples from both systems were thoroughly characterised. X-ray absorption spectroscopy (XAS) was used to assess the extent of the chemical transformation of both forms of Zn and Ag during transport through the model systems. The results indicated that both ZnO- and Ag-NPs underwent significant transformation during their transport through the sewerage network. Reduced sulphur species represented the most important endpoint for these NPs in the sewer with slight differences in terms of speciation; ZnO converted largely to Zn sulfide, while Ag was also sorbed to cysteine and histidine. Importantly, both ionic Ag and Ag-NPs formed secondary Ag sulfide nanoparticles in the sewerage network as revealed by TEM analysis. Ag-cysteine was also shown to be a major species in biofilms. These results were verified in the

  20. Evaluation of a Ag/Ag 2S reference electrode with long-term stability for electrochemistry in ionic liquids

    DOE PAGES

    Horwood, Corie; Stadermann, Michael

    2018-02-08

    We report on a reference electrode designed for use in ionic liquids, based on a silver wire coated with silver sulfide. The reference electrode potential is determined by the concentrations of Ag + and S 2-, which are established by the solubility of the Ag 2S coating on the Ag wire. While potential shifts of >100 mV during an experiment have been reported when using silver or platinum wire quasi-reference electrodes, the reference electrode reported here provides a stable potential over several months of experimental use. Additionally, our reference electrode can be prepared and used in a normal air atmosphere,more » and does not need to be assembled and used in a glovebox, or protected from light. In conclusion, the reference electrode has been characterized by voltammetry measurements of ferrocene and cobaltocenium hexafluorophosphate, and was found to slowly drift to more positive potentials at a rate of <1 mV/day for five of the six ionic liquids investigated.« less

  1. VASQUEZ PEAK WILDERNESS STUDY AREA, AND ST. LOUIS PEAK, AND WILLIAMS FORK ROADLESS AREAS, COLORADO.

    USGS Publications Warehouse

    Theobald, P.K.; Bielski, A.M.

    1984-01-01

    A mineral-resource survey was conducted during the years 1979-82 in the Vasquez Peak Wilderness Study Area and in the St. Louis Peak and Williams Fork Roadless Areas, central Front Range, Colorado. Probable resource potential for the occurrence of copper, lead, zinc, and silver in massive sulfide deposits has been identified in calcareous metamorphic rocks in the northern part of the St. Louis Peak Roadless Area and in the southern part of the Williams Fork Roadless Area. A probable resource potential for vein-type uranium deposits is identified along the Berthoud Pass fault zone in the eastern part of the Vasquez Peak Wilderness Study Area. A large area encompassing the eastern and southeastern part of each of the three areas has probable and substantiated potential for either high-grade lead-zinc-silver vein deposits, or larger, lower-grade clustered vein deposits. A probable resource potential for stockwork molybdenum deposits related to porphyry molybdenum type mineralization exists beneath the lead-zinc-silver-rich veins. The nature of the geologic terrane indicates little likelihood for the occurrence of organic fuels.

  2. Evaluation of a Ag/Ag 2S reference electrode with long-term stability for electrochemistry in ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwood, Corie; Stadermann, Michael

    We report on a reference electrode designed for use in ionic liquids, based on a silver wire coated with silver sulfide. The reference electrode potential is determined by the concentrations of Ag + and S 2-, which are established by the solubility of the Ag 2S coating on the Ag wire. While potential shifts of >100 mV during an experiment have been reported when using silver or platinum wire quasi-reference electrodes, the reference electrode reported here provides a stable potential over several months of experimental use. Additionally, our reference electrode can be prepared and used in a normal air atmosphere,more » and does not need to be assembled and used in a glovebox, or protected from light. In conclusion, the reference electrode has been characterized by voltammetry measurements of ferrocene and cobaltocenium hexafluorophosphate, and was found to slowly drift to more positive potentials at a rate of <1 mV/day for five of the six ionic liquids investigated.« less

  3. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of early PGM in combination with the newly formed mineral species Sb-paolovite-insizwaite-geversite-maslovite, niggliite, tetraferroplatinum, rustenburgite-atokite-zvyagintsevite, moncheite, majakite, plumbopalladinite, polarite in association with altaite. The late minerals of the middle stage include stannopalladinite, tatianaite-taimyrite, Ag-Pd-Pt tetraauricupride, and cuproauride. PGM and Au-Ag minerals of the late stage are represented by sobolevskite-sudburyite-kotulskite, maslovite-michenerite, low-Sb paolovite, hessite, cabriite, Au-Ag minerals with fineness of 870-003, froodite, Sb-free insizwaite, Bi-free geversite, and Sb-free niggliite. Electrum and küstelite in PGM aggregates are not zoned. Crystals of Au-Ag minerals that grow over PGM minerals are smoothly zoned. Their zoning may be direct (crystal margins are enriched in Ag), inverse, oscillatory, and complex. Despite favorable annealing conditions, exsolution structures are not identified in Au-Ag minerals from the Noril'sk ores. Sperrylite—the latest of pneumatolytic PGM—occurs as metacrysts up to 14 cm in size. Sperrylite, which replaces high-Sb minerals, contains up to 11 wt % Sb. Pneumatolytic noble-metal minerals originated under the effect of the fluids released during crystallization of sulfide melts in an extremely reductive setting and at extremely low fS2; temperature drops from ~450 to ~350°C. Metamorphic-hydrothermal Ag mineralization (native silver, Hg-silver, sulfides and selenides, chalcopyrite-lenaite solid solutions, argentopentlandite), Pd mineralization (vysotskite, palladoarsenide, vincentite, Sb-free Ag-paolovite, malyshevite, native palladium), and Pt mineralization (kharaelakhite, cooperite, native platinum) develop in those parts of orebodies that are affected by low-grade metamorphism.

  4. Measurement of H2S in vivo and in vitro by the monobromobimane method

    PubMed Central

    Shen, Xinggui; Kolluru, Gopi K.; Yuan, Shuai; Kevil, Christopher

    2015-01-01

    The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with RP-HPLC. The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide-dibimane. The resultant fluorescent sulfide-dibimane (SDB) is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2 nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels. PMID:25725514

  5. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessinger, Brad; Apps, John A.

    2003-03-23

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent,more » those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur concentration of 0.01 m, host rock sulfidation can explain the origin of arsenic and antimony minerals within the paragenetic sequence.« less

  6. Anomalous concentrations of zinc and copper in highmoor peat bog, southeast coast of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Bobrov, V. A.; Bogush, A. A.; Leonova, G. A.; Krasnobaev, V. A.; Anoshin, G. N.

    2011-08-01

    When examining the peat deposit discovered in Vydrinaya bog, South Baikal region, the authors encountered anomalous Zn and Cu concentrations for highmoors being up to 600-500 ppm on a dry matter basis in the Early Holocene beds (360-440 cm) formed 11 000-8500 years ago. It has been demonstrated that Zn and Cu are present inside the plant cells of peat moss in the form of authigenic sulfide minerals of micron size. Apart from Zn and Cu, native Ag particles (5-7 um) have been encountered in the peat of the Vydrinaya bog at a depth of 390-410 cm; these particles formed inside the organic matter of the plasma membrane of peat moss containing Ca, Al, S, and Cu. This study suggests probable patterns of the formation of zinc sulfides, copper sulfides, and native silver in peat moss. The results obtained indicate that biogenic mineral formation plays a significant role in this system, which is a very important argument in the discussion on the ore genesis, in which physicochemical processes are normally favored, while the role of living matter is quite frequently disregarded.

  7. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  8. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  9. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1987-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  10. Evidence for de-sulfidation to form native electrum in the Fire Creek epithermal gold-silver deposit, north-central Nevada

    NASA Astrophysics Data System (ADS)

    Perez, J.; Day, J. M.; Cook, G. W.

    2012-12-01

    The Fire Creek property is a newly developed and previously unstudied epithermal Au-Ag deposit located in the Northern Shoshone range of north central Nevada. The mineralization occurs within and above en echelon N-NW trending basaltic dykes that are hosted within a co-genetic and bimodal suite of mid-Miocene basalts and andesites formed in association with the Yellowstone hotspot-track. Previous studies of Au-Ag mineralization in the Great Basin have focused primarily on extensively mined and/or low-grade deposits. Therefore, the ability for unrestricted sampling of a major Au-Ag deposit early in its exploration and development represents an opportunity for refined understanding of epithermal ore genesis processes. New petrology reveals at least two distinct pulses of mineralization that in relative order of timing are: 1) S-rich veins which are associated with initial host-rock alteration; 2) quartz- and/or calcite-rich veins which vary from fine-grained to lath-like quartz crystals with large calcite crystals in vein centers. Native electrum occurs only within the second phase of mineralization and typically occurs within quartz and adjacent to cross-cut first-phase S-rich veins. In places the electrum appears to replace or form overgrowths around existing sulfide phases. High levels of gold and silver are found in both the first (0.8 g Au/tonne) and second-phase pulses (37 g Au/tonne). Fire Creek shares many similarities with its northern neighbor, the Mule Canyon Au-Ag deposit, with high Fe sulfide contents for some of the ores, altered wall-rocks and the presence of narrow and discontinuous gold-bearing siliceous veins. Like Fire Creek, Mule Canyon possesses two distinct mineralizing phases, a sulfide rich and a late stage calcite/silica assemblage. The first pulse appears to be identical in both locations with a variation of disseminated to euhedral iron-sulfides and associated intense alteration of host rock. However, Fire Creek differs from Mule Canyon in that the second phase of mineralization shows spatial and petrographic association with coarser silica and carbon phases. Conversely associations of electrum in Mule Canyon are typically with chalcedony or opal veins and hydrothermal breccia matrices (John et al. Econ. Geol. 98, 425-463, 2003). Opal and chalcedony phases do not appear within fracture-filled veins in Fire Creek, but occur as cap rocks on the surface. These associations are likely driven by impingement of basaltic dikes into ground waters in both the Fire Creek and Mule Canyon deposits. However, in the case of Fire Creek, our study demonstrates that there is a clear spatial dependence between the electrum, primary S-rich mineralized veins and phases of coarse carbonate and silica. We postulate that this occurs through increased brecciation and sub-surface boiling of hydrothermal fluids leading to de-sulfidation and a marked change in alteration and mineral assemblage.

  11. Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, western United States: Characteristics, distribution, and relationship to Magmatism

    USGS Publications Warehouse

    John, D.A.

    2001-01-01

    Numerous important Miocene and early Pliocene epithermal Au-Ag deposits are present in the northern Great Basin. Most deposits are spatially and temporally related to two magmatic assemblages: bimodal basalt-rhyolite and western andesite. These magmatic assemblages are petrogenetic suites that reflect variations in tectonic environment of magma generation. The bimodal assemblage is a K-rich tholeiitic series formed during continental rifting. Rocks in the bimodal assemblage consist mostly of basalt to andesite and rhyolite compositions that generally contain anhydrous and reduced mineral assemblages (e.g., quartz + fayalite rhyolites). Eruptive forms include mafic lava flows, dikes, cinder and/or spatter cones, shield volcanoes, silicic flows, domes, and ash-flow calderas. Fe-Ti oxide barometry indicates oxygen fugacities between the magnetite-wustite and fayalite-magnetite-quartz oxygen buffers for this magmatic assemblage. The western andesite assemblage is a high K calc-alkaline series that formed a continental-margin are related to subduction of oceanic crust beneath the western coast of North America. In the northern Great Basin, most of the western andesite assemblage was erupted in the Walker Lane belt, a zone of transtension and strike-slip faulting. The western andesite assemblage consists of stratovolcanoes, dome fields, and subvolcanic plutons, mostly of andesite and dacite composition. Biotite and hornblende phenocrysts are abundant in these rocks. Oxygen fugacities of the western andesite assemblage magmas were between the nickel-nickel oxide and hematite-magnetite buffers, about two to four orders of magnitude greater than magmas of the bimodal assemblage. Numerous low-sulfidation Au-Ag deposits in the bimodal assemblage include deposits in the Midas (Ken Snyder), Sleeper, DeLamar, Mule Canyon, Buckhorn, National, Hog Ranch, Ivanhoe, and Jarbidge districts; high-sulfidation gold and porphyry copper-gold deposits are absent. Both high- and low-sulfidation gold-silver and porphyry copper-gold deposits are affiliated with the western andesite assemblage and include the Comstock Lode, Tonopah, Goldfield, Aurora, Bodie, Paradise Peak, and Rawhide deposits. Low-sulfidation Au-Ag deposits in the bimodal assemblage formed under relatively low oxygen and sulfur fugacities and have generally low total base metal (Cu + Pb + Zn) contents, low Ag/Au ratios, and notably high selenide mineral contents compared to temporally equivalent low-sulfidation deposits in the western andesite assemblage. Petrologic studies suggest that these differences may reflect variations in the magmatic-tectonic settings of the associated magmatic assemblages-deposits in the western andesite assemblage formed from oxidized, water-rich, subduction-related calc-alkaline magmas, whereas deposits in the bimodal assemblage were associated with reduced, water-poor tholeiitic magmas derived from the lithospheric mantle during continental extension. The contrasting types and characteristics of epithermal deposits and their affinities with associated igneous rocks suggest that a genetic relationship is present between these Au-Ag deposits and their temporally associated magmatism, although available data do not prove this relationship for most low-sulfidation deposits.

  12. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1986-03-11

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  13. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1986-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction.

  14. Modern scientific evidence pertaining to criminal investigations in the Chosun dynasty era (1392-1897 A.C.E.) in Korea.

    PubMed

    Nam, Yun Sik; Won, Sung-Ok; Lee, Kang-Bong

    2014-07-01

    A guidebook detailing the process of forensic investigation was written in 1440 A.C.E. It outlines the fundamentals and details of each element of criminal investigation during the era of the Chosun dynasty in Korea. Because this old guidebook was written in terms of personal experience rather than on scientific basis, it includes many fallacies from the perspective of modern forensic science. However, the book describes methods to form a scientific basis for the experiments performed. We demonstrate the modern scientific basis for ancient methods to monitor trace amounts of blood and detect lethal arsenic poisoning from a postmortem examination as described in this old forensic guidebook. Traces of blood and arsenic poisoning were detected according to the respective color changes of brownish red, due to the reaction of ferric ions in blood with acetic ions of vinegar, and dark blue, due to the reaction of silver with arsenic sulfide. © 2014 American Academy of Forensic Sciences.

  15. A method for measuring sulfide toxicity in the nematode Caenorhabditis elegans.

    PubMed

    Livshits, Leonid; Gross, Einav

    2017-01-01

    Cysteine catabolism by gut microbiota produces high levels of sulfide. Excessive sulfide can interfere with colon function, and therefore may be involved in the etiology and risk of relapse of ulcerative colitis, an inflammatory bowel disease affecting millions of people worldwide. Therefore, it is crucial to understand how cells/animals regulate the detoxification of sulfide generated by bacterial cysteine catabolism in the gut. Here we describe a simple and cost-effective way to explore the mechanism of sulfide toxicity in the nematode Caenorhabditis elegans ( C. elegans ). •A rapid cost-effective method to quantify and study sulfide tolerance in C. elegans and other free-living nematodes.•A cost effective method to measure the concentration of sulfide in the inverted plate assay.

  16. Assessment of mineral resource tracts in the Chugach National Forest, Alaska

    USGS Publications Warehouse

    Nelson, Steven W.; Miller, Marti L.

    2000-01-01

    Locatable minerals have been produced from the Chugach National Forest (CNF) for nearly 100 years. Past gold production has come from the Kenai Peninsula and the Girdwood, Port Wells, and Valdez areas. Copper and by-product gold and silver have been produced from mines at Ellamar, on Latouche Island, and near Valdez. Many of the past-producing properties were not mined out and contain significant inferred reserves of gold, copper, lead, zinc, and silver. This report outlines mineral resource areas (tracts) that contain both identified and undiscovered mineral resources. These tracts were drawn on the basis of one or more of the following criteria: (1) geochemical anomalies, (2) favorable geologic units, (3) presence of mines, prospects or mineral occurrences, and (4) geophysical anomalies. Bliss (1989) used six mineral deposit models to describe the types of deposits known from the CNF. Of these deposit types, only four are sufficiently known and defined in the CNF to be suitable for consideration in outlining and ranking of mineral resource tracts; these deposit types are: (1) Cyprus-type massive sulfide, (2) Chugach-type low-sulfide goldquartz veins, (3) placer gold, and (4) polymetallic vein. The U.S. Bureau of Mines indicated that most of the inferred mineral reserves in the CNF would not be economic to produce under current prices. Small-scale placer gold operations are a possible exception. Other known resources that have recorded past production (oil, coal, rock, sand, and gravel) are not addressed in this report.

  17. Geochronology of the Sleeper deposit, Humboldt County, Nevada: epithermal gold-silver mineralization following emplacement of a silicic flow-dome complex

    USGS Publications Warehouse

    Conrad, J.E.; McKee, E.H.; Rytuba, J.J.; Nash, J.T.; Utterback, W.C.

    1993-01-01

    The high-grade gold-silver deposits at the Sleeper mine are low sulfidation, quartz-adularia-type epithermal deposits, formed during the final stages of igneous hydrothermal activity of a small middle Miocene silicic flow-dome complex in north-central Nevada. There were multiple pulses of alteration and mineralization but all occurred within a period of less than 2 m.y. Later supergene alteration formed opal and alunite about 5.4 Ma but produced no Au or Ag mineralization other than some remobilization to produce locally rich pockets of secondary Au and Ag enrichment and is unrelated to the older magmatic hydrothermal system. The Sleeper deposit in the northern part of the Great Basin is genetically related to bimodal volcanism that followed a long period of arc-related andesitic volcanism in the same general region. -from Authors

  18. Contribution of the hydrostatic pressure to the shape of silver island particles

    NASA Astrophysics Data System (ADS)

    Anno, E.; Hoshino, R.

    1984-09-01

    We have investigated the shape change of silver island particles caused by the surface energy reduction. When the surface energy was reduced by the reaction with hydrogen sulfide, the flattening of the particles was observed. As is well known, the similar shape change takes place when the particle size increases. Therefore, the particle shape is considered to depend both on the surface energy and the particle size. From this consideration, we predict the contribution of the hydrostatic pressure P to the particle shape. As evidence of this contribution, we consider the existence of the critical size below which P is larger than the adhesive force FA between deposit and substrate surface. Investigating the influence of the flattening due to the surface energy reduction on the size distribution, the critical size is found and estimated to be about 80 Å in diameter. This value is comparable with that estimated from the condition P = FA.

  19. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1987-01-06

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  20. Geochemical and mineralogical characterization of the abandoned Valzinco (lead-zinc) and Mitchell (gold) mine sites prior to reclamation, Spotsylvania County, Virginia

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Johnson, Adam N.; Seal, Robert R.; Meier, Allen L.; Briggs, Paul L.; Piatak, Nadine M.

    2006-01-01

    The Virginia gold-pyrite belt, part of the central Virginia volcanic-plutonic belt, hosts numerous abandoned metal mines. The belt extends from about 50 km south of Washington, D.C., for approximately 175 km to the southwest into central Virginia. The rocks that comprise the belt include metamorphosed volcanic and clastic (noncarbonate) sedimentary rocks that were originally deposited during the Ordovician). Deposits that were mined can be classified into three broad categories: 1. volcanic-associated massive sulfide deposits, 2. low-sulfide quartz-gold vein deposits, 3. gold placer deposits, which result from weathering of the vein deposits The massive sulfide deposits were historically mined for iron and pyrite (sulfur), zinc, lead, and copper but also yielded byproduct gold and silver. The most intensely mineralized and mined section of the belt is southwest of Fredericksburg, in the Mineral district of Louisa and Spotsylvania counties. The Valzinco Piatak lead-zinc mine and the Mitchell gold prospect are abandoned sites in Spotsylvania County. As a result of environmental impacts associated with historic mining, both sites were prioritized for reclamation under the Virginia Orphaned Land Program administered by the Virginia Department of Mines, Minerals, and Energy (VDMME). This report summarizes geochemical data for all solid sample media, along with mineralogical data, and results of weathering experiments on Valzinco tailings and field experiments on sediment accumulation in Knights Branch. These data provide a framework for evaluating water-rock interactionsand geoenvironmental signatures of long-abandoned mines developed in massive sulfide deposits and low-sulfide gold-quartz vein deposits in the humid temperate ecosystem domain in the eastern United States.

  1. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.

    PubMed

    Sima, Mihaela; Dold, Bernhard; Frei, Linda; Senila, Marin; Balteanu, Dan; Zobrist, Jurg

    2011-05-30

    Sulfidic mine tailings have to be classified as one of the major source of hazardous materials leading to water contamination. This study highlights the processes leading to sulfide oxidation and acid mine drainage (AMD) formation in the active stage of two tailings impoundments located in the southern part of the Apuseni Mountains, in Romania, a well-known region for its long-term gold-silver and metal mining activity. Sampling was undertaken when both impoundments were still in operation in order to assess their actual stage of oxidation and long-term behavior in terms of the potential for acid mine drainage generation. Both tailings have high potential for AMD formation (2.5 and 3.7 wt.% of pyrite equivalent, respectively) with lesser amount of carbonates (5.6 and 3.6 wt.% of calcite equivalent) as neutralization potential (ABA=-55.6 and -85.1 tCaCO(3)/1000 t ) and showed clear signs of sulfide oxidation yet during operation. Sequential extraction results indicate a stronger enrichment and mobility of elements in the oxidized tailings: Fe as Fe(III) oxy-hydroxides and oxides (transformation from sulfide minerals, leaching in oxidation zone), Ca mainly in water soluble and exchangeable form where gypsum and calcite are dissolved and higher mobility of Cu for Ribita and Pb for Mialu. Two processes leading to the formation of mine drainage at this stage could be highlighted (1) a neutral Fe(II) plume forming in the impoundment with ferrihydrite precipitation at its outcrop and (2) acid mine drainage seeping in the unsaturated zone of the active dam, leading to the formation of schwertmannite at its outcrop. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Electrochemical Applications in Metal Bioleaching.

    PubMed

    Tanne, Christoph Kurt; Schippers, Axel

    2017-12-10

    Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified biohydrometallurgical processing. This chapter focuses on metal sulfide dissolution via bioleaching and does not include other biohydrometallurgical processes such as microbial metal recovery from solution.

  3. Measurement of H2S in vivo and in vitro by the monobromobimane method.

    PubMed

    Shen, Xinggui; Kolluru, Gopi K; Yuan, Shuai; Kevil, Christopher G

    2015-01-01

    The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with reversed phase high-performance liquid chromatography (RP-HPLC). The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide dibimane (SDB). The resultant fluorescent SDB is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2 nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels. © 2015 Elsevier Inc. All rights reserved.

  4. Comparison of hot hydroxylamine hydrochloride and oxalic acid leaching of stream sediment and coated rock samples as anomaly enhancement techniques

    USGS Publications Warehouse

    Filipek, L.H.; Chao, T.T.; Theobald, P.K.

    1982-01-01

    A hot hydroxylamine hydrochloride (H-Hxl) extraction in 25% acetic acid is compared with the commonly used oxalic acid extraction as a method of anomaly enhancement for Cu and Zn in samples from two very different metal deposits and climatic environments. Results obtained on minus-80-mesh stream sediments from an area near the Magruder massive sulfide deposit in Lincoln County, Georgia, where the climate is humid subtropical, indicate that H-Hxl enhances the anomaly for Cu by a factor of 2 and for Zn by a factor of 1.5, compared to the oxalic method. Analyses of Fe oxide-coated rock samples from outcrops overlying the North Silver Bell porphyry copper deposit near Tucson, Arizona, where the climate is semi-arid to arid, indicate that both techniques effectively outline the zones of hydrothermal alteration. The H-Hxl extraction can also perform well in high-carbonate or high-clay environments, where other workers have suggested that oxalic acid is not very effective. Therefore, the H-Hxl method is recommended for general exploration use. ?? 1982.

  5. KALMIOPSIS WILDERNESS, OREGON.

    USGS Publications Warehouse

    Page, Norman J; Miller, Michael S.

    1984-01-01

    Geologic, geochemical, geophysical field and laboratory, and mine and prospect studies conducted in the Kalmiopsis Wilderness, Oregon indicate that areas within and immediately adjacent to the wilderness have substantiated mineral-resource potential. The types of mineral resources which occur in these areas include massive sulfide deposits containing copper, zinc, lead, silver and gold; podiform chromite deposits; laterite deposits containing nickel, cobalt, and chromium; lode gold deposits; and placer gold deposits. Past production from existing mines is estimated to have been at least 7000 troy oz of gold, 4000 long tons of chromite, and few tens of tons of copper ore.

  6. Internal structure of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant

    PubMed Central

    Yamaguchi, Noriko; Mitome, Masanori; Kotone, Akiyama-Hasegawa; Asano, Maki; Adachi, Kouji; Kogure, Toshihiro

    2016-01-01

    Microparticles containing substantial amounts of radiocesium collected from the ground in Fukushima were investigated mainly by transmission electron microscopy (TEM) and X-ray microanalysis with scanning TEM (STEM). Particles of around 2 μm in diameter are basically silicate glass containing Fe and Zn as transition metals, Cs, Rb and K as alkali ions, and Sn as substantial elements. These elements are homogeneously distributed in the glass except Cs which has a concentration gradient, increasing from center to surface. Nano-sized crystallites such as copper- zinc- and molybdenum sulfide, and silver telluride were found inside the microparticles, which probably resulted from the segregation of the silicate and sulfide (telluride) during molten-stage. An alkali-depleted layer of ca. 0.2 μm thick exists at the outer side of the particle collected from cedar leaves 8 months after the nuclear accident, suggesting gradual leaching of radiocesium from the microparticles in the natural environment. PMID:26838055

  7. Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging.

    PubMed

    Tang, Rui; Xue, Jianpeng; Xu, Baogang; Shen, Duanwen; Sudlow, Gail P; Achilefu, Samuel

    2015-01-27

    The large size of many near-infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. In this study, we developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emission from 500 to 1200 nm and a QD core diameter between 1.5 and 9 nm. Conjugation of a tumor-avid cyclic pentapeptide (Arg-Gly-Asp-DPhe-Lys) resulted in monodisperse, water-soluble QDs (hydrodynamic diameter < 10 nm) without loss of the peptide's high binding affinity to tumor-associated integrins (KI = 1.8 nM/peptide). Fluorescence and electron microscopy showed that selective integrin-mediated internalization was observed only in cancer cells treated with the peptide-labeled QDs, demonstrating that the unlabeled hydrophilic nanoparticles exhibit characteristics of negatively charged fluorescent dye molecules, which typically do not internalize in cells. The biodistribution profiles of intravenously administered QDs in different mouse models of cancer reveal an exceptionally high tumor-to-liver uptake ratio, suggesting that the small sized QDs evaded conventional opsonization and subsequent high uptake in the liver and spleen. The seamless tunability of the QDs over a wide spectral range with only a small increase in size, as well as the ease of labeling the bright and noncytotoxic QDs with biomolecules, provides a platform for multiplexing information, tracking the trafficking of single molecules in cells, and selectively targeting disease biomarkers in living organisms without premature QD opsonization in circulating blood.

  8. Ultrasmall visible-to-near-infrared emitting silver-sulfide quantum dots for cancer detection and imaging

    NASA Astrophysics Data System (ADS)

    Tang, Rui; Xu, Baogang; Shen, Duanwen; Sudlow, Gail; Achilefu, Samuel

    2018-02-01

    The large size of many near infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. We developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emission from visible to near-infrared in spectrum and a QD core diameter between less than 5 nm. Further functionalization of these Ag2S QDs with different type of molecules such as targeting peptides, retains monodisperse, relatively small water soluble QDs without loss of the functionality of the peptide's high binding affinity to cancerous tumor. Fluorescence and electron microscopy showed that selective integrin-mediated internalization was observed only in cancer cells treated with the peptide-labeled QDs, demonstrating that the unlabeled hydrophilic nanoparticles exhibit characteristics of negatively charged fluorescent dye molecules, which typically do not internalize in cells. The biodistribution profiles of intravenously administered QDs in different mouse models of cancer reveal an exceptionally high tumor-to-liver uptake ratio, suggesting that the small sized QDs evaded conventional opsonization and subsequent high uptake in the liver and spleen. The seamless tunability of the QDs over a wide spectral range with only a small increase in size, as well as the ease of labeling the bright and non-cytotoxic QDs with biomolecules, provides a platform for multiplexing information, tracking the trafficking of single molecules in cells, and selectively targeting disease biomarkers in living organisms without premature QD opsonization in circulating blood.

  9. Quick and Selective Dual Mode Detection of H2S Gas by Mobile App Employing Silver Nanorods Array.

    PubMed

    Gahlaut, Shashank Kumar; Yadav, Kavita; Sharan, Chandrashekhar; Singh, Jitendra Pratap

    2017-12-19

    Hydrogen sulfide (H 2 S) is a hazardous gas, which not only harms living beings but also poses a significant risk to damage materials placed in culture and art museums, due to its corrosive nature. We demonstrate a novel approach for selective rapid detection of H 2 S gas using silver nanorods (AgNRs) arrays on glass substrates at ambient conditions. The arrays were prepared by glancing angle deposition method. The colorimetric and water wetting properties of as-fabricated arrays were found to be highly sensitive toward the sulfurization, in the presence of H 2 S gas with a minimal concentration in ppm range. The performance of AgNRs as H 2 S gas sensor is investigated by its sensing ability of 5 ppm of gas with an exposure time of only 30 s. We have developed an android-based mobile app to monitor real-time colorimetric detection of H 2 S. The wettability detection has been carried out by a mobile camera. A comparative analysis for different gases reveals the highest sensitivity and selectivity of the array AgNRs toward H 2 S. The rapid detection has also been demonstrated for H 2 S emission from aged wool fabric. Thus, high sensing ability of AgNRs toward H 2 S gas may have potential applications in health monitoring and art conservation.

  10. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    PubMed

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  11. Methods for collection and analysis of geopressured geothermal and oil field waters

    USGS Publications Warehouse

    Lico, Michael S.; Kharaka, Yousif K.; Carothers, William W.; Wright, Victoria A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, .and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C2 through C5) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  12. Measurement of plasma hydrogen sulfide in vivo and in vitro

    PubMed Central

    Shen, Xinggui; Pattillo, Christopher B.; Pardue, Sibile; Bir, Shyamal C.; Wang, Rui; Kevil, Christopher G.

    2015-01-01

    The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H2S in plasma down to nanomolar levels, using monobromobimane (MBB). The current standard assay using methylene blue provides erroneous results that do not actually measure H2S. The method presented herein involves derivatization of sulfide with excess MBB in 100 mM Tris–HCl buffer (pH 9.5, 0.1 mM DTPA) for 30 min in 1% oxygen at room temperature. The fluorescent product sulfide-dibimane (SDB) is analyzed by RP-HPLC using an eclipse XDB-C18 (4.6×250 mm) column with gradient elution by 0.1% (v/v) trifluoroacetic acid in acetonitrile. The limit of detection for sulfide-dibimane is 2 nM and the SDB product is very stable over time, allowing batch storage and analysis. In summary, our MBB method is suitable for sensitive quantitative measurement of free hydrogen sulfide in multiple biological samples such as plasma, tissue and cell culture lysates, or media. PMID:21276849

  13. Noble metal superparticles and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Hu, Yongxing

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less

  14. Revealing the Influence of Silver in Ni-Ag Catalysts on the Selectivity of Higher Olefin Synthesis from Stearic Acid

    NASA Astrophysics Data System (ADS)

    Danyushevsky, V. Ya.; Murzin, V. Yu.; Kuznetsov, P. S.; Shamsiev, R. S.; Katsman, E. A.; Khramov, E. V.; Zubavichus, Y. V.; Berenblyum, A. S.

    2018-01-01

    Results on the conversion of stearic acid to olefins over Ni-Ag/γ-Al2O3 catalysts are presented. XANES and EXAFS experiments in situ and DFT calculations were applied to reveal the structure of active sites therein. It is shown that the introduction of Ag to Ni catalysts leads to an increase in the olefin yield. After a reduction in hydrogen (350°C, 3 h) alumina-supported nanoparticles of nickel sulfides and metallic Ag are formed. The role of metal hydrides formed during the reaction is extensively discussed.

  15. A Preliminary Study on the Synthesis and Characterization of Multilayered Ag/Co Magnetic Nanowires Fabricated via the Electrodeposition Method

    PubMed Central

    Peng, Cheng-Hsiung; Wu, Tsung-Yung; Hwang, Chyi-Ching

    2013-01-01

    A single-bath electrodeposition method was developed to integrate multilayer Ag/Co nanowires with a commercial anodic alumina oxide (AAO) template with a pore diameter of 100–200 nm. An electrolyte system containing silver nitride and cobalt sulfide was studied using cyclic voltammetry, and the electrodeposition rate was varied to optimize the electrodeposition conditions. A constant stepwise potential and a variable cation ratio of [Co2+]/[Ag+] were used during electrodeposition. After the dissolution of the template in aqueous NaOH solution, multilayered Ag/Co nanowires were obtained with a composition of [Co]/[Ag80Co20], as identified by XRD and TEM, when [Co2+]/[Ag+] = 150. By annealing at 200°C for 1 h, uniformly structured (Co99.57/Ag100) nanowires were obtained. Compared with pure Co nanowires, the magnetic hysteresis loops showed a greater magnetic anisotropy for (Co99.57/Ag100) nanowires than for pure Co nanowires, corresponding to a change in the easy axis upon magnetization. PMID:24072985

  16. Geology of the Vienna Mineralized Area, Blaine and Camas Counties, Idaho

    USGS Publications Warehouse

    Mahoney, J. Brian; Horn, Michael C.

    2005-01-01

    The Vienna mineralized area of south-central Idaho was an important silver-lead-producing district in the late 1800s and has intermittently produced lead, silver, zinc, copper, and gold since that time. The district is underlain by biotite granodiorite of the Cretaceous Idaho batholith, and all mineral deposits are hosted by the biotite granodiorite. The granodiorite intrudes Paleozoic sedimentary rocks of the Sun Valley Group, is overlain by rocks of the Eocene Challis Volcanic Group, and is cut by numerous northeast-trending Eocene faults and dikes. Two mineralogically and texturally distinct vein types are present in a northwest- and east-trending conjugate shear-zone system. The shear zones postdate granodiorite emplacement and joint formation, but predate Eocene fault and dike formation. Ribbon veins consist of alternating bands of massive vein quartz and silver-sulfide (proustite and pyrargyrite) mineral stringers. The ribbon veins were sheared and brecciated during multiple phases of injection of mineralizing fluids. A quartz-sericite-pyrite-galena vein system was subsequently emplaced in the brecciated shear zones. Both vein systems are believed to be the product of mesothermal, multiphase mineralization. K-Ar dating of shear-zone sericite indicates that sericitization occurred at 80.7?2.8 Ma; thus mineralization in the Vienna mineralized area probably is Late Cretaceous in age.

  17. GEOLOGY, SULFUR ISOTOPES AND THE ORIGIN OF THE HEATH STEELE ORE DEPOSITS, NEWCASTLE, N.B., CANADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechow, E.

    The Heath Steele mine is located 35 miles northwest of Newcastle, New Brunswick, Canada. Middle Ordovician Tetagouche Group rocks, consisting of siliceous and basic volcanic rocks, and fine-grained quartz sericite schists and porphyry, have been folded into a steeply plunging recumbent anticline. The ore deposits of zinc, lead, and copper are associated with minor folding and/or sheared dilatent zones at or near the contact between porphyry and fine-grained senicitic schist. Mineralogically the sulfide bodies consist of early, euhedral arsenopyrite, magnetite, and pyrite, followed by interstitial pyrrhotite, sphalerite, chalcopyrite and galena. Minor minerals are ternantite-tetrahedrite, bismuthinite, marcasite, hematite, and some graphite.more » Supergene minerals consist of chalcocite, covellite, and marcasite with a little native silver. Little hypogene replacement has taken place between the minerals, which show a "porphyritic" texture. Sulfur isotope ratios were determined for over 150 sulfide and sulfate specimens from five of the seven ore bodies, and from granite, acid and basic volcanics, porphyry, and sediments. The results indicate that there is no detectable fractionation either during hypogene mineralization or supergene enrichment. The spread (21.82 to 22.02) covered by the ratios is narrow, and suggestive of a well homogenized source of mineral solutions. The enrichment of S/sup 34/ in the ore sulfides and the presence of graphite, evident from mineralographic studies and mass spectrometric analysis, suggests reduction of original sulfates (known to be enriched in S/sup 34/) by organic carbon at temperatures in excess of 500 deg C. A calculation based on the isotopic exchange reaction between sulfide and sulfate under equilibrium conditions and the spread of the ratios indicates a temperature of 700 to 800 deg C for the source. Finally the ratios determined for sulfides in a gneissic granite close to Heath Steele have the same ratio as the ore. These factors are considered to be diagnostic of a magmatic hydrothermal origin for the orp deposits. It is believed that an original source bed has been buried until suitable temperatures were reached to cause granitization, reduction of sulfates, and mobilization of the resulting sulfides to form ore deposits at favorable loci. (auth)« less

  18. Use of sulfide-containing liquors for removing mercury from flue gases

    DOEpatents

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  19. Use of sulfide-containing liquors for removing mercury from flue gases

    DOEpatents

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2003-01-01

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  20. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes

    USGS Publications Warehouse

    Kalnejais, Linda H.; Martin, W. R.; Bothner, Michael H.

    2015-01-01

    To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment–water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.

  1. Technique for Simultaneous Determination of [35S]Sulfide and [14C]Carbon Dioxide in Anaerobic Aqueous Samples †

    PubMed Central

    Taylor, Craig D.; Ljungdahl, Per O.; Molongoski, John J.

    1981-01-01

    A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide. PMID:16345742

  2. Potential for Sulfide Mineral Deposits in Australian Waters

    NASA Astrophysics Data System (ADS)

    McConachy, Timothy F.

    The world is witnessing a paradigm shift in relation to marine mineral resources. High-value seafloor massive sulfides at active convergent plate boundaries are attracting serious commercial attention. Under the United Nations Convention on the Law of the Sea, maritime jurisdictional zones will increase by extending over continental margins and ocean basins. For Australia, this means a possible additional 3.37 million km2 of seabed. Australia's sovereign responsibility includes, amongst other roles, the management of the exploitation of nonliving resources and sea-bed mining. What, therefore, is the potential in Australia's marine jurisdiction for similar deposits to those currently attracting commercial attention in neighboring nations and for other types/styles of sulfide deposits? A preliminary review of opportunities suggests the following: (i) volcanogenic copper—lead—zinc—silver—gold mineralization in fossil arcs and back arcs in eastern waters Norfolk Ridge and the Three Kings Ridge; (ii) Mississippi Valley-type lead—zinc—silver mineralization in the NW Shelf area; (iii) ophiolite-hosted copper mineralization in the Macquarie Ridge Complex in the Southern Ocean; and (iv) submerged extensions of prospective land-based terranes, one example being offshore Gawler Craton for iron oxide—copper—gold deposits. These areas would benefit from pre-competitive surveys of detailed swath bathymetry mapping, geophysical surveys, and sampling to help build a strategic inventory of future seafloor mineral resources for Australia.

  3. Electrochemical hydrogen sulfide biosensors.

    PubMed

    Xu, Tailin; Scafa, Nikki; Xu, Li-Ping; Zhou, Shufeng; Abdullah Al-Ghanem, Khalid; Mahboob, Shahid; Fugetsu, Bunshi; Zhang, Xueji

    2016-02-21

    The measurement of sulfide, especially hydrogen sulfide, has held the attention of the analytical community due to its unique physiological and pathophysiological roles in biological systems. Electrochemical detection offers a rapid, highly sensitive, affordable, simple, and real-time technique to measure hydrogen sulfide concentration, which has been a well-documented and reliable method. This review details up-to-date research on the electrochemical detection of hydrogen sulfide (ion selective electrodes, polarographic hydrogen sulfide sensors, etc.) in biological samples for potential therapeutic use.

  4. The partitioning behavior of silver in a vapor brine rhyolite melt assemblage

    NASA Astrophysics Data System (ADS)

    Simon, Adam C.; Pettke, Thomas; Candela, Philip A.; Piccoli, Philip M.

    2008-03-01

    The partitioning of silver in a sulfur-free rhyolite melt-vapor-brine assemblage has been quantified at 800 °C, pressures of 100 and 140 MPa and f≈NNO (nickel-nickel oxide). Silver solubility (±2 σ) in rhyolite increases 5-fold from 105 ± 21 to 675 ± 98 μg/g as pressure increases from 100 to 140 MPa. Nernst-type partition coefficients (DAgi,j±2σ) describing the mass transfer of silver at 100 MPa between vapor and melt, brine and melt and vapor and brine are 32 ± 30, 1151 ± 238 and 0.026 ± 0.004, respectively. At 140 MPa, values for DAgi,j(±2σ) for vapor and melt, brine and melt, and vapor and brine are 32 ± 10, 413 ± 172 and 0.06 ± 0.03, respectively. Apparent equilibrium constant values (±2 σ) describing the exchange of silver and sodium between vapor and melt, KAg,Nav/m, at 100 and 140 MPa are 105 ± 68 and 14 ± 6. The average values (±2 σ) for silver and sodium exchange between brine and melt, KAg,Nab/m, at 100 and 140 MPa are 313 ± 288 and 65 ± 12. These data indicate that the mass transfer of silver from rhyolite melt to an exsolved volatile phase(s) is enhanced at 100 MPa relative to 140 MPa, suggesting that decompression increases the silver ore-generative potential of an evolving silicate magma. Model calculations using the new data suggest that the evolution of low-density, aqueous fluid (i.e., vapor) may be responsible for the the silver tonnage of many porphyry-type and perhaps epithermal-type ore deposits. For example, Halter et al. (Halter W. E., Pettke T. and Heinrich C. A. (2002) The origin of Cu/Au ratios in porphyry-type ore deposits. Science296, 1842-1844) used detailed silicate and sulfide melt inclusion and vapor and brine fluid inclusions analyses to estimate a melt volume on the order of 15 km 3 to satisfy the copper budget at the Bajo de la Alumbrera copper-, gold-, silver-ore deposit. Using their melt volume estimate with the data presented here, model calculations for a 15-km 3 felsic melt, saturated with pyrrhotite and magnetite, suggest that a low-salinity magmatic vapor may scavenge on the order of 7 × 10 12 g of silver from the melt. This quantity of silver exceeds the discovered 2 × 10 9 g of Ag at Alumbrera. Calculated tonnages for numerous other deposits yield similar results. The excess silver in the vapor, remaining after porphyry formation, is then available to precipitate at lower PTconditions in the stratigraphically higher epithermal environment. These data suggest that silver, and perhaps other ore metals, in the porphyry-epithermal continuum may be derived solely from the time-integrated flux of dominantly low-salinity vapor exsolved from a series of sequential magma batches.

  5. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  6. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  7. Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry

    PubMed Central

    Shen, Xinggui; Chakraborty, Sourav; Dugas, Tammy R; Kevil, Christopher G

    2015-01-01

    Accurate measurement of hydrogen sulfide bioavailability remains a technical challenge due to numerous issues involving sample processing, detection methods used, and actual biochemical products measured. Our group and others have reported that reverse phase HPLC detection of sulfide dibimane (SDB) product from the reaction of H2S/HS− with monobromobimane allows for analytical detection of hydrogen sulfide bioavailability in free and other biochemical forms. However, it remains unclear whether possible interfering contaminants may contribute to HPLC SDB peak readings that may result in inaccurate measurements of bioavailable sulfide. In this study, we critically compared hydrogen sulfide dependent SDB detection using reverse phase HPLC (RP-HPLC) versus quantitative SRM electrospray ionization mass spectrometry (ESI/MS) to obtain greater clarity into the validity of the reverse phase HPLC method for analytical measurement of hydrogen sulfide. Using an LCQ-deca ion-trap mass spectrometer, SDB was identified by ESI/MS positive ion mode, and quantified by selected reaction monitoring (SRM) using hydrocortisone as an internal standard. Collision induced dissociation (CID) parameters were optimized at MS2 level for SDB and hydrocortisone. ESI/MS detection of SDB standard was found to be a log order more sensitive than RP-HPLC with a lower limit of 0.25 nM. Direct comparison of tissue and plasma SDB levels using RP-HPLC and ESI/MS methods revealed comparable sulfide levels in plasma, aorta, heart, lung and brain. Together, these data confirm the use of SDB as valid indicator of H2S bioavailability and highlights differences between analytical detection methods. PMID:24932544

  8. Fate of zinc and silver engineered nanoparticles in sewerage networks.

    PubMed

    Brunetti, Gianluca; Donner, Erica; Laera, Giuseppe; Sekine, Ryo; Scheckel, Kirk G; Khaksar, Maryam; Vasilev, Krasimir; De Mastro, Giuseppe; Lombi, Enzo

    2015-06-15

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage systems before reaching wastewater treatment plants. To address this knowledge gap, laboratory-scale systems fed with raw wastewater were used to evaluate the transformation of ZnO- and Ag-NPs within sewerage transfer networks. Two experimental systems were established and spiked with either Ag- and ZnO-NPs or with their dissolved salts, and the wastewater influent and effluent samples from both systems were thoroughly characterised. X-ray absorption spectroscopy (XAS) was used to assess the extent of the chemical transformation of both forms of Zn and Ag during transport through the model systems. The results indicated that both ZnO- and Ag-NPs underwent significant transformation during their transport through the sewerage network. Reduced sulphur species represented the most important endpoint for these NPs in the sewer with slight differences in terms of speciation; ZnO converted largely to Zn sulfide, while Ag was also sorbed to cysteine and histidine. Importantly, both ionic Ag and Ag-NPs formed secondary Ag sulfide nanoparticles in the sewerage network as revealed by TEM analysis. Ag-cysteine was also shown to be a major species in biofilms. These results were verified in the field using recently developed nanoparticle in situ deployment devices (nIDDs) which were exposed directly to sewerage network conditions by immersing them into a municipal wastewater network trunk sewer and then retrieving them for XAS analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Smelling Sulfur: Copper and Silver Regulate the Response of Human Odorant Receptor OR2T11 to Low-Molecular-Weight Thiols.

    PubMed

    Li, Shengju; Ahmed, Lucky; Zhang, Ruina; Pan, Yi; Matsunami, Hiroaki; Burger, Jessica L; Block, Eric; Batista, Victor S; Zhuang, Hanyi

    2016-10-03

    Mammalian survival depends on ultrasensitive olfactory detection of volatile sulfur compounds, since these compounds can signal the presence of rancid food, O 2 depleted atmospheres, and predators (through carnivore excretions). Skunks exploit this sensitivity with their noxious spray. In commerce, natural and liquefied gases are odorized with t-BuSH and EtSH, respectively, as warnings. The 100-million-fold difference in olfactory perception between structurally similar EtSH and EtOH has long puzzled those studying olfaction. Mammals detect thiols and other odorants using odorant receptors (ORs), members of the family of seven transmembrane G-protein-coupled receptors (GPCRs). Understanding the regulator cofactors and response of ORs is particularly challenging due to the lack of X-ray structural models. Here, we combine computational modeling and site-directed mutagenesis with saturation transfer difference (STD) NMR spectroscopy and measurements of the receptor response profiles. We find that human thiol receptor OR2T11 responds specifically to gas odorants t-BuSH and EtSH requiring ionic copper for its robust activation and that this role of copper is mimicked by ionic and nanoparticulate silver. While copper is both an essential nutrient for life and, in excess, a hallmark of various pathologies and neurodegenerative diseases, its involvement in human olfaction has not been previously demonstrated. When screened against a series of alcohols, thiols, sulfides, and metal-coordinating ligands, OR2T11 responds with enhancement by copper to the mouse semiochemical CH 3 SCH 2 SH and derivatives, to four-membered cyclic sulfide thietane and to one- to four-carbon straight- and branched-chain and five-carbon branched-chain thiols but not to longer chain thiols, suggesting compact receptor dimensions. Alcohols are unreactive.

  10. Atomic layer deposition of metal sulfide thin films using non-halogenated precursors

    DOEpatents

    Martinson, Alex B. F.; Elam, Jeffrey W.; Pellin, Michael J.

    2015-05-26

    A method for preparing a metal sulfide thin film using ALD and structures incorporating the metal sulfide thin film. The method includes providing an ALD reactor, a substrate, a first precursor comprising a metal and a second precursor comprising a sulfur compound. The first and the second precursors are reacted in the ALD precursor to form a metal sulfide thin film on the substrate. In a particular embodiment, the metal compound comprises Bis(N,N'-di-sec-butylacetamidinato)dicopper(I) and the sulfur compound comprises hydrogen sulfide (H.sub.2S) to prepare a Cu.sub.2S film. The resulting metal sulfide thin film may be used in among other devices, photovoltaic devices, including interdigitated photovoltaic devices that may use relatively abundant materials for electrical energy production.

  11. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  12. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  13. Method for Reduction of Silver Biocide Plating on Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Steele, John; Nalette, Timothy; Beringer, Durwood

    2013-01-01

    Silver ions in aqueous solutions (0.05 to 1 ppm) are used for microbial control in water systems. The silver ions remain in solution when stored in plastic containers, but the concentration rapidly decreases to non-biocidal levels when stored in metal containers. The silver deposits onto the surface and is reduced to non-biocidal silver metal when it contacts less noble metal surfaces, including stainless steel, titanium, and nickel-based alloys. Five methods of treatment of contact metal surfaces to deter silver deposition and reduction are proposed: (1) High-temperature oxidation of the metal surface; (2) High-concentration silver solution pre-treatment; (3) Silver plating; (4) Teflon coat by vapor deposition (titanium only); and (5) A combination of methods (1) and (2), which proved to be the best method for the nickel-based alloy application. The mechanism associated with surface treatments (1), (2), and (5) is thought to be the development of a less active oxide layer that deters ionic silver deposition. Mechanism (3) is an attempt to develop an equilibrium ionic silver concentration via dissolution of metallic silver. Mechanism (4) provides a non-reactive barrier to deter ionic silver plating. Development testing has shown that ionic silver in aqueous solution was maintained at essentially the same level of addition (0.4 ppm) for up to 15 months with method (5) (a combination of methods (1) and (2)), before the test was discontinued for nickel-based alloys. Method (1) resulted in the maintenance of a biocidal level (approximately 0.05 ppm) for up to 10 months before that test was discontinued for nickel-based alloys. Methods (1) and (2) used separately were able to maintain ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for stainless steel alloys. Method (3) was only utilized for titanium alloys, and was successful at maintaining ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for simple flat geometries, but not for geometries that are difficult to Teflon coat.

  14. Statistical analysis of stream water-quality data and sampling network design near Oklahoma City, central Oklahoma, 1977-1999

    USGS Publications Warehouse

    Brigham, Mark E.; Payne, Gregory A.; Andrews, William J.; Abbott, Marvin M.

    2002-01-01

    The sampling network was evaluated with respect to areal coverage, sampling frequency, and analytical schedules. Areal coverage could be expanded to include one additional watershed that is not part of the current network. A new sampling site on the North Canadian River might be useful because of expanding urbanization west of the city, but sampling at some other sites could be discontinued or reduced based on comparisons of data between the sites. Additional real-time or periodic monitoring for dissolved oxygen may be useful to prevent anoxic conditions in pools behind new low-water dams. The sampling schedules, both monthly and quarterly, are adequate to evaluate trends, but additional sampling during flow extremes may be needed to quantify loads and evaluate water-quality during flow extremes. Emerging water-quality issues may require sampling for volatile organic compounds, sulfide, total phosphorus, chlorophyll-a, Esherichia coli, and enterococci, as well as use of more sensitive laboratory analytical methods for determination of cadmium, mercury, lead, and silver.

  15. Analyzing silver concentration in soil using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.

    2018-03-01

    Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.

  16. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus; Zhang, Fen

    2014-05-13

    The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.

  17. A novel method for improving cerussite sulfidization

    NASA Astrophysics Data System (ADS)

    Feng, Qi-cheng; Wen, Shu-ming; Zhao, Wen-juan; Cao, Qin-bo; Lü, Chao

    2016-06-01

    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  18. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  19. The role of ophiolite in metallogeny of the Sikhote-Alin region

    NASA Astrophysics Data System (ADS)

    Kazachenko, V. T.; Perevoznikova, E. V.; Lavrik, S. N.; Skosareva, N. V.

    2012-06-01

    Metalliferous sediments of the Triassic siliceous formation of the Sikhote-Alin (manganese-silicate rocks and cherts with dispersed rhodochrosite, silicate-magnetite ores, and jasper) and skarns of the Dalnegorsk and Olginsk ore districts were initially the wash away products (Late Anisian-end of the Triassic) of the lateritic weathering crust on ophiolite in the islands. Manganese, iron, and other metals were deposited in the sediments of both lagoons (present-day, skarns) and island water areas (manganese-silicate and siliceousrhodochrosite rocks, silicate-magnetite ores, and jasper). Skarns contain boric and polymetallic ores thus indicating the occurrence of both shallow (periodically drying up) and quite deep (with hydrogen sulfide contamination zones) lagoons. Lead was deposited in protoliths of the skarn deposits in lagoons from the beginning of the Carboniferous to the beginning of the Late Anisian (initial island submergence). Tin, tin-leadzinc (with Ag), and silver-lead-zinc (with Sn and Au) vein deposits (Late Cretaceous-Paleogene) of the Taukha and Zhuravlevka Terrains contain lead deposited in the sediments flanking the islands of water areas with the hydrogen sulfide contamination zones, in the Carboniferous-Permian and Triassic metalliferous sediments.

  20. Method of forming components for a high-temperature secondary electrochemical cell

    DOEpatents

    Mrazek, Franklin C.; Battles, James E.

    1983-01-01

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  1. Sediment quality in Burlington Harbor, Lake Champlain, U.S.A.

    USGS Publications Warehouse

    Lacey, E.M.; King, J.W.; Quinn, J.G.; Mecray, E.L.; Appleby, P.G.; Hunt, A.S.

    2001-01-01

    Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2 > 0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ???PAHs and ???PCBs are potentially toxic and/or bioavailable. These predictions were supported by studies of biota in the Burlington Harbor watershed. There is a clear trend of decreasing PAH and trace metal contaminant concentrations with distance from the STP outfall.Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2>0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ??PAHs and ??PCBs are potentially toxic and/or bi

  2. Geological structure and prospects of noble metal ore mineralization of the Khayrkhan gabbroid massif (Western Mongolia)

    NASA Astrophysics Data System (ADS)

    Kurumshieva, K. R.; Gertner, I. F.; Tishin, P. A.

    2017-12-01

    An analysis of the distribution of noble metals in zones of sulfide mineralization makes it possible to justify the isolation of four ore-bearing horizons with a specific geochemical zonation. A rise in the gold content relative to palladium and platinum is observed from the bottom upwards along the section of the stratified series of gabbroids. The study of the mineral phases of sulphides and the noble minerals itself indicates the evolution of hydrothermal solutions, which determines the different activity and mobility of the fluid (mercury, tellurium, sulfur) and ore (copper, nickel, iron, platinum, gold and silver) components.

  3. In Situ Determination of Sulfide Turnover Rates in a Meromictic Alpine Lake

    PubMed Central

    Lüthy, Lucas; Fritz, Markus; Bachofen, Reinhard

    2000-01-01

    A push-pull method, previously used in groundwater analyses, was successfully adapted for measuring sulfide turnover rates in situ at different depths in the meromictic Lake Cadagno. In the layer of phototrophic bacteria at about 12 m in depth net sulfide consumption was observed during the day, indicating active bacterial photosynthesis. During the night the sulfide turnover rates were positive, indicating a net sulfide production from the reduction of more-oxidized sulfur compounds. Because of lack of light, no photosynthesis takes place in the monimolimnion; thus, only sulfide formation is observed both during the day and the night. Sulfide turnover rates in the oxic mixolimnion were always positive as sulfide is spontaneously oxidized by oxygen and as the rates of sulfide oxidation depend on the oxygen concentrations present. Sulfide oxidation by chemolithotrophic bacteria may occur at the oxicline, but this cannot be distinguished from spontaneous chemical oxidation. PMID:10653740

  4. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  5. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  6. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  7. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  8. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  9. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  10. New spectrophotometric methods for the determinations of hydrogen sulfide present in the samples of lake water, industrial effluents, tender coconut, sugarcane juice and egg

    NASA Astrophysics Data System (ADS)

    Shyla, B.; Nagendrappa, G.

    2012-10-01

    The new methods are working on the principle that iron(III) is reduced to iron(II) by hydrogen sulfide, catechol and p-toluidine the system 1/hydrogen sulfide the system 2, in acidic medium followed by the reduced iron forming complex with 1,10-phenanthroline with λmax 510 nm. The other two methods are based on redox reactions between electrolytically generated manganese(III) sulfate taken in excess and hydrogen sulfide followed by the unreacted oxidant oxidizing diphenylamine λmax 570 the system 3/barium diphenylamine sulphonate λmax 540 nm, the system 4. The increase/decrease in the color intensity of the dye products of the systems 1 and 2 or 3 and 4 are proportional to the concentration of hydrogen sulfide with its quantification range 0.035-1.40 μg ml-1/0.14-1.40 μg ml-1.

  11. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    NASA Astrophysics Data System (ADS)

    Lajin, Bassam; Francesconi, Kevin A.

    2016-06-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools.

  12. Method of forming components for a high-temperature secondary electrochemical cell

    DOEpatents

    Mrazek, F.C.; Battles, J.E.

    1981-05-22

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes is described. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutectic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  13. Apparatus for control of mercury

    DOEpatents

    Downs, William; Bailey, Ralph T.

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  14. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    DOE PAGES

    Adamic, M. L.; Lister, T. E.; Dufek, E. J.; ...

    2015-03-25

    This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Furthermore, precipitated silver iodide samples are usually mixed with niobium or silver powdermore » prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.« less

  15. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    PubMed

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  16. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  17. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules.

    PubMed

    Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo; Bernardes, Andréa Moura

    2016-11-01

    Photovoltaic modules (or panels) are important power generators with limited lifespans. The modules contain known pollutants and valuable materials such as silicon, silver, copper, aluminum and glass. Thus, recycling such waste is of great importance. To date, there have been few published studies on recycling silver from silicon photovoltaic panels, even though silicon technology represents the majority of the photovoltaic market. In this study, the extraction of silver from waste modules is justified and evaluated. It is shown that the silver content in crystalline silicon photovoltaic modules reaches 600g/t. Moreover, two methods to concentrate silver from waste modules were studied, and the use of pyrolysis was evaluated. In the first method, the modules were milled, sieved and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 94%. In the second method, photovoltaic modules were milled, sieved, subjected to pyrolysis at 500°C and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 92%. The first method is preferred as it consumes less energy and presents a higher yield of silver. This study shows that the use of pyrolysis does not assist in the extraction of silver, as the yield was similar for both methods with and without pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. One-step synthesis and structural features of CdS/montmorillonite nanocomposites.

    PubMed

    Han, Zhaohui; Zhu, Huaiyong; Bulcock, Shaun R; Ringer, Simon P

    2005-02-24

    A novel synthesis method was introduced for the nanocomposites of cadmium sulfide and montmorillonite. This method features the combination of an ion exchange process and an in situ hydrothermal decomposition process of a complex precursor, which is simple in contrast to the conventional synthesis methods that comprise two separate steps for similar nanocomposite materials. Cadmium sulfide species in the composites exist in the forms of pillars and nanoparticles, the crystallized sulfide particles are in the hexagonal phase, and the sizes change when the amount of the complex for the synthesis is varied. Structural features of the nanocomposites are similar to those of the clay host but changed because of the introduction of the sulfide into the clay.

  19. An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments.

    PubMed

    Bao, Shaopan; Wang, Han; Zhang, Weicheng; Xie, Zhicai; Fang, Tao

    2016-12-01

    The expanding production and usage of commercial silver nanoparticles (AgNPs) will inevitably increase their environmental release, with sediments as a substantial sink. However, little knowledge is available about the potential impacts of AgNPs on freshwater sediment microbial communities, as well as the interactions between microbial communities and biogeochemical factors in AgNPs polluted sediment. To address these issues, two different sediments: a eutrophic freshwater sediment and an oligotrophic freshwater sediment, were exposed to 1 mg/g of either AgNO 3 , uncoated AgNPs (35-nm and 75-nm), or polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) (30-50 nm) for 45 days. High-throughput sequencing of 16S ribosomal ribonucleic acid (16S rRNA) genes using the Illumina MiSeq platform was conducted to evaluate the effects of Ag addition on bacterial community composition. Moreover, sediment microbial biomass and activity were assessed by counting cultivable bacterial number and determining enzyme activities. During the 45-day exposure, compared with no amendment control, some treatments had resulted in significant changes and alterations of sediment biomass or bacterial enzyme activities shortly. While the microbial components at phylum level were rarely affected by AgNPs addition, and as confirmed by the statistical analysis with two-factor analysis of similarities (ANOSIM), there were no significant differences on bacterial community structure across the amended treatments. Redundancy analysis further demonstrated that chemical parameters acid-volatile sulfide (AVS) and simultaneously extracted silver (SE-Ag) in sediment significantly structured the overall bacterial community in sediments spiked with various silver species. In summary, these findings suggested that the ecotoxicity of AgNPs may be attenuated by the transformation under complex environmental conditions and the self-adaption of sediment microbial communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Ore genesis dating: implication of Sm-Nd method using sulfide minerals for mafic-ultramafic layered intrusions of Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Bayanova, Tamara; Steshenko, Ekaterina; Ekimova, Nadezhda

    2015-04-01

    The main method of dating the ore process was the Re-Os method of sulfides (Luck, Allegre, 1983; Walker et. al., 1991). However, studies of Re-Os systematics of sulfide minerals do not always give the correct ages and showing the disturbances of the Re-Os systematics. At the same time, Sm-Nd age of sulfides in good agreement with the U-Pb dating on zircon and baddeleyite and suggests that the Sm-Nd system of sulfides is more resistant to secondary alteration processes. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. In to Sm-Nd measurements steadily introduce new minerals-geochronometers (i.e. titanite, burbancite, eudialite etc.). Of these, sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of MOR hydrothermal sources has shown possible REE presence in the sulfide lattice (Rimskaya-Korsakova et. al., 2003). These are difficult to carry out because the concentrations of Sm and Nd isotopes in sulfides are much lower than those in chondrites (Rimskaya-Korsakova et. al., 2003). In (Kong et. al., 2000) sulfides from two metamorphosed chondrites were studied by instrumental neutron activation analysis (INAA) and ion probe. As shown, the level of REE in the sulfide phase determined by the ion probe is quite similar to that obtained by INAA. Although the concentrations of REE in the enstatite and the Fe, Si, Cr-rich inclusions are comparable to those in sulfide, estimates based on mass balance calculations show that the silicate inclusions would not noticeably contribute to the REE budget in sulfides (Kong et. al., 2000). For the first time in Russian geochemistry laboratories using sulfide and rock-forming minerals and WR in Sm-Nd method have been dated impregnated and brecciform ores of the following objects - Pilguyarvi Cu-Ni deposits, Pechenga (1965±87 Ma); impregnated (2433±83 Ma) and redeposited (1903±24 Ma) ores of Ahmavaara intrusion (Finland); Kolvitsa massif metagabbro (1990±92 Ma, which reflect the age of Sm-Nd system closure in sulfide minerals); olivine orthopyroxenites of Sopcha 'Ore bed' (2442±59 Ma); ore gabbronorites of Penikat PGE-bearing layered intrusion (2426±38 Ma (Ekimova et.al., 2011); Pt-Pd gabbro-pegmatite ores (2476± 41 Ma, which agrees well with the U-Pb zircon age - 2470±9 Ma (Bayanova, 2004) and gabbronorites (2483±86 Ma) of PGE Kievey deposit and Fedorova Tundra metagabbroids (2494±54 Ma); Monchetundra gabbronorites - 2489±49 Ma. All investigations are devoted to memory of academician RAS, professor F. Mitrofanov (Russia), he was a leader of scientific school for geology, geochemistry and metallogenesis of ore deposits. The studies were supported by the RFBR 13-05-00493, OFI-M 13-05-12055, Department of Earth Sciences RAS (programs 2 and 4), IGCP-599.

  1. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    PubMed Central

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments. PMID:26030258

  2. Methods for producing hydrogen (BI) sulfide and/or removing metals

    DOEpatents

    Truex, Michael J [Richland, WA; Peyton, Brent M [Pullman, WA; Toth, James J [Kennewick, WA

    2002-05-14

    The present invention is a process wherein sulfide production by bacteria is efficiently turned on and off, using pH adjustment. The adjustment of pH impacts sulfide production by bacteria by altering the relative amounts of H.sub.2 S and HS-- in solution and thereby control the inhibition of the bacterial metabolism that produces sulfide. This process can be used to make a bioreactor produce sulfide "on-demand" so that the production of sulfide can be matched to its use as a metal precipitation reagent. The present invention is of significance because it enables the use of a biological reactor, a cost effective sulfide production system, by making the biological reactor produce hydrogen sulfide "on demand", and therefore responsive to production schedules, waste stream generation rate, and health and safety requirements/goals.

  3. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    NASA Astrophysics Data System (ADS)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio

    2014-10-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV-VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag+) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg- 1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.

  4. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  5. Geology and geochemistry of epithermal precious metal vein systems in the intra-oceanic arcs of Palau and Yap, western Pacific

    USGS Publications Warehouse

    Rytuba, J.J.; Miller, W.R.

    1990-01-01

    The Palau and Yap arcs are part of an intra-oceanic island-arc-trench system which separates the Pacific and Philippine plates in the western Pacific Ocean. The 350-km-long Palau arc consists of over 200 islands while the 400-km-long Yap arc located to the north has only four major islands exposed. Four of the largest islands in Palau are composed primarily of early Eocene to mid-Miocene volcanic rocks and the four islands comprising Yap contain only Miocene volcanic rocks. Basalt and basaltic andesites of the Babelthuap Formation are the oldest volcanic rocks in Palau and are characterized by high MgO, Ni and Cr and low TiO2 and have a boninitic affinity. They form the central and southeastern parts of Babelthuap Island. Oligocene arc tholeiite flows having an age of 34-35.5 Ma comprise most of the three smaller volcanic islands in Palau and the western part of Babelthuap. The youngest volcanic rocks are dacitic intrusions having an age of 22.7-23.2 Ma. The Yap arc is unusual in that metamorphic rocks up to amphibolite grade form most of the islands. These are underlain by a melange composed of igneous and volcanic clasts as well as clasts from a dismembered copper-gold skarn deposit. Miocene volcanic rocks consisting of flows and volcaniclastic deposits overlie the melange and metamorphic complex. An epithermal precious-metal vein system hosted by flows and flow breccias of the Babelthuap Formation occurs in an area 1.5 km by 1 km on the southeast side of Babelthuap Island. Over 50 veins and mineralized breccias ranging up to 2 m in width and having a strike length up to 500 m contain from trace to 13.0 ppm gold. The veins consist of quartz with varying amounts of sulfides and iron oxides after sulfides and the mineralized breccias consist of brecciated country rock cemented by quartz and iron oxides after sulfides. The veins and mineralized breccias generally dip within 15?? of vertical and have two preferred orientations, north-northwest and north-northeast. Hydrothermal alteration of the host rocks consists of a widespread weak to moderately strong propylitic alteration and a more restricted sericitic alteration adjacent to the veins and shear zones. Sulfide minerals in the veins consist primarily of pyrite accompanied by lesser amounts of sphalerite, chalcopyrite, galena, acanthite, native silver, cerargyrite, and iodyrite in partly oxidized parts of the vein system. Gold is typically fine-grained, 1-20 microns, and occurs as native gold, electrum and gold-silver-telluride. Elements correlated with high gold concentrations include molybdenum, tellurium, bismuth, lead, silver, copper, zinc and arsenic. In Yap a similar vein system to that present in Palau is hosted by the Miocene Tomil Volcanics on the islands of Maap and Gagil Tamil. The quartz veins and quartz-cemented breccias contain up to 3.7 ppm gold and trace elements associated with the gold include tellurium, copper, silver and vanadium. Within the mineralized area an unusually iron-rich (3-20%), 4-m-thick, hot-spring deposit contains up to 1.04 ppm gold and high concentrations of tellurium, copper and vanadium. Hydrothermal eruption breccia beds are present within the deposit. The presence of the hot-spring deposit and banded and comb textures of the vein quartz suggest that the vein system presently exposed formed at a shallow level. The vein systems in Palau and Yap have similar textures, geochemical suites and alteration assemblages. Both vein systems formed late in the volcanic evolution of the intra-oceanic arc. Media tested for their effectiveness in geochemical exploration in the tropical, deeply weathered environment of Palau and Yap included stream sediments, heavy-mineral concentrates from stream sediments, and sediment from the mangrove coastal environment which is well developed around most of the islands of Yap and Palau. Geochemical surveys in both Yap and Palau of mangrove sediment show that adjacent to areas of gold mineralization, gold and tellu

  6. New spectrophotometric methods for the determinations of hydrogen sulfide present in the samples of lake water, industrial effluents, tender coconut, sugarcane juice and egg.

    PubMed

    Shyla, B; Nagendrappa, G

    2012-10-01

    The new methods are working on the principle that iron(III) is reduced to iron(II) by hydrogen sulfide, catechol and p-toluidine the system 1/hydrogen sulfide the system 2, in acidic medium followed by the reduced iron forming complex with 1,10-phenanthroline with λ(max) 510 nm. The other two methods are based on redox reactions between electrolytically generated manganese(III) sulfate taken in excess and hydrogen sulfide followed by the unreacted oxidant oxidizing diphenylamine λ(max) 570 the system 3/barium diphenylamine sulphonate λ(max) 540 nm, the system 4. The increase/decrease in the color intensity of the dye products of the systems 1 and 2 or 3 and 4 are proportional to the concentration of hydrogen sulfide with its quantification range 0.035-1.40 μg ml(-1)/0.14-1.40 μg ml(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effect of mint solution concentration on the absorption spectra of silver nanoparticles in thulium ions presence

    NASA Astrophysics Data System (ADS)

    Rasmagin, S. I.; Krasovskii, V. I.; Apresyan, L. A.; Novikov, I. K.; Krystob, V. I.; Kazaryan, M. A.

    2018-04-01

    By the method of green synthesis, silver nanoparticles were obtained in colloidal solutions. The solutions were modified with thulium ions. Using the method of electron microscopy and optical method, the properties of silver nanoparticles obtained are studied. The influence of change in concentration of the solution of mint and thulium ions on the properties of colloidal silver nanoparticles was studied.

  8. Sulfur speciation and sulfide oxidation in the water column of the Black Sea

    NASA Astrophysics Data System (ADS)

    Luther, George W., III; Church, Thomas M.; Powell, David

    We have applied sulfur speciation techniques to understand the chemistry and cycling of sulfur in Black Sea waters. The only reduced dissolved inorganic sulfur species detected (above the low minimum detection limits of the voltammetric methods employed) in the water column was hydrogen sulfide. The maximum concentration of sulfide (423 μM) is similar to previous reports. Using a cathodic stripping square wave voltammetry (CSSWV) method for nanomolar levels of sulfide, we determined the precise boundary between the "free" hydrogen sulfide (sulfidic) zone and the upper (oxic/suboxic) water column at the two stations studied. This boundary has apparently moved up by about 50 m in the past 20 years. Our results help demonstrate three chemically distinct zones of water in the central basin of the Black Sea: (1) the oxic [0-65 m], (2) the anoxic/nonsulfidic [65-100 m] and (3) the sulfidic [>100 m]. Sulfide bound to metals ("complexed" sulfide) is observed in both the oxic and anoxic/nonsulfidic zones of the water column. This supports previous studies on metal sulfide forms. From the electrochemical data, it is possible to estimate the strength of the complexation of sulfide to metals (log K = 10 to 11). Thiosulfate and sulfite were below our minimum detectable limit (MDL) of 50 nM using CSSWV. Elemental sulfur (MDL 5 nM) was detected below the onset of the hydrogen sulfide zone (90-100 m) with a maximum of 30-60 nM near 120 m. The sulfur speciation results for the Black Sea are lower by one order of magnitude or more than other marine systems such as the Cariaco Trench and salt marshes. New HPLC techniques were applied to detect thiols at submicromolar levels. The presence of thiols (2-mercaptoethylamine, 2-mercaptoethanol, N-acetylcysteine and glutathione) is correlated with the remineralization of organic matter at the oxic and anoxic/nonsulfidic interface. Water samples collected from the upper 50 m of the sulfidic zone showed significant sulfide oxidation on storage onboard ship even though they were filtered (0.2 μm) and handled to exclude oxygen contamination. Chemical additives such as formaldehyde, glutaraldehyde, hydroxylamine and ascorbic acid prevented or retarded the sulfide loss. Thiosulfate and azide did not inhibit sulfide loss. These studies suggest an anaerobic chemical oxidation of sulfide rather than a biological oxidation on stored and filtered samples.

  9. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  10. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Lee, Kunik (Inventor); Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  11. Sulfide minerals as new Sm-Nd geochronometers for ore genesis dating of mafic-ultramafic layered intrusions

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Ekimova, Nadezhda; Bayanova, Tamara

    2014-05-01

    The main method of dating the ore process was the Re-Os method of sulfides (Luck, Allegre, 1983; Walker et. al., 1991). However, studies of Re-Os systematics of sulfide minerals do not always give the correct ages and showing the disturbances of the Re-Os systematics. At the same time, Sm-Nd age of sulfides in good agreement with the U-Pb dating on zircon and baddeleyite and suggests that the Sm-Nd system of sulfides is more resistant to secondary alteration processes. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. The Sm-Nd investigations steadily employ new minerals-geochronometers. Of these, sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of MOR hydrothermal sources has shown possible REE presence in the sulfide lattice (Rimskaya-Korsakova et. al., 2003). These are difficult to carry out because the concentrations of Sm and Nd isotopes in sulfides are much lower than chondrites (Rimskaya-Korsakova et. al., 2003). For the first time in Russia with sulfide and rock-forming minerals and WR in Sm-Nd method have been dated impregnated and brecciform ores of the following objects: Pilguyarvi Cu-Ni deposits, Pechenga (1965±87 Ma); impregnated (2433±83 Ma) and redeposited (1903±24 Ma) ores of Ahmavaara intrusion (Finland); ore gabbronorites of Penikat PGE-bearing layered intrusion (2426±38 Ma (Ekimova et.al., 2011); Pt-Pd gabbro-pegmatite ores (2476± 41 Ma, which agrees with the U-Pb zircon age - 2470±9 Ma (Bayanova, 2004) and gabbronorites (2483±86 Ma) of PGE Kievei deposit and Fedorova Tundra metagabbroids (2494±54 Ma); Monchetundra gabbronorites - 2489±49 Ma. In (Kong et. al., 2000) sulfides from two metamorphosed chondrites studied by instrumental neutron activation analysis (INAA) and ion probe. As shown, the level of REE in the sulfide phase determined by the ion probe is quite similar to that obtained by INAA. Although the concentrations of REE in the enstatite and the Fe, Si, Cr-rich inclusions are comparable to those in sulfide, estimates based on mass balance calculations show that the silicate inclusions would not noticeably contribute to the REE budget in sulfides (Kong et. al., 2000). These studies were supported by the RFBR 13-05-00493, OFI-M 13-05-12055, State Earth Division Program #4 and IGCP-599.

  12. Antibacterial properties of Ag-doped hydroxyapatite layers prepared by PLD method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Kocourek, Tomáš; Jurek, Karel; Remsa, Jan; Mikšovský, Jan; Weiserová, Marie; Strnad, Jakub; Luxbacher, Thomas

    2010-12-01

    Thin hydroxyapatite (HA), silver-doped HA and silver layers were prepared using a pulsed laser deposition method. Doped layers were ablated from silver/HA targets. Amorphous and crystalline films of silver concentrations of 0.06 at.%, 1.2 at.%, 4.4 at.%, 8.3 at.% and 13.7 at.% were synthesized. Topology was studied using scanning electron microscopy and atomic force microscopy. Contact angle and zeta potential measurements were conducted to determine the wettability, surface free energy and electric surface properties. In vivo measurement (using Escherichia coli cells) of antibacterial properties of the HA, silver-doped HA and silver layers was carried out. The best antibacterial results were achieved for silver-doped HA layers of silver concentration higher than 1.2 at.%.

  13. Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions.

    PubMed

    Miller, Carrie L; Mason, Robert P; Gilmour, Cynthia C; Heyes, Andrew

    2007-04-01

    The complexation of Hg under sulfidic conditions influences its bioavailability for microbial methylation. Neutral dissolved Hg-sulfide complexes are readily available to Hg-methylating bacteria in culture, and thermodynamic models predict that inorganic Hg-sulfide complexes dominate dissolved Hg speciation under natural sulfidic conditions. However, these models have not been validated in the field. To examine the complexation of Hg in natural sulfidic waters, octanol/water partitioning methods were modified for use under environmentally relevant conditions, and a centrifuge ultrafiltration technique was developed. These techniques demonstrated much lower concentrations of dissolved Hg-sulfide complexes than predicted. Furthermore, the study revealed an interaction between Hg, dissolved organic matter (DOM), and sulfide that is not captured by current thermodynamic models. Whereas Hg forms strong complexes with DOM under oxic conditions, these complexes had not been expected to form in the presence of sulfide because of the stronger affinity of Hg for sulfide relative to its affinity for DOM. The observed interaction between Hg and DOM in the presence of sulfide likely involves the formation of a DOM-Hg-sulfide complex or results from the hydrophobic partitioning of neutral Hg-sulfide complexes into the higher-molecular-weight DOM. An understanding of the mechanism of this interaction and determination of complexation coefficients for the Hg-sulfide-DOM complex are needed to adequately assess how our new finding affects Hg bioavailability, sorption, and flux.

  14. Measurement of H2S in Crude Oil and Crude Oil Headspace Using Multidimensional Gas Chromatography, Deans Switching and Sulfur-selective Detection

    PubMed Central

    Heshka, Nicole E.; Hager, Darcy B.

    2015-01-01

    A method for the analysis of dissolved hydrogen sulfide in crude oil samples is demonstrated using gas chromatography. In order to effectively eliminate interferences, a two dimensional column configuration is used, with a Deans switch employed to transfer hydrogen sulfide from the first to the second column (heart-cutting). Liquid crude samples are first separated on a dimethylpolysiloxane column, and light gases are heart-cut and further separated on a bonded porous layer open tubular (PLOT) column that is able to separate hydrogen sulfide from other light sulfur species. Hydrogen sulfide is then detected with a sulfur chemiluminescence detector, adding an additional layer of selectivity. Following separation and detection of hydrogen sulfide, the system is backflushed to remove the high-boiling hydrocarbons present in the crude samples and to preserve chromatographic integrity. Dissolved hydrogen sulfide has been quantified in liquid samples from 1.1 to 500 ppm, demonstrating wide applicability to a range of samples. The method has also been successfully applied for the analysis of gas samples from crude oil headspace and process gas bags, with measurement from 0.7 to 9,700 ppm hydrogen sulfide. PMID:26709594

  15. Method and etchant to join ag-clad BSSCO superconducting tape

    DOEpatents

    Balachandran, Uthamalingam; Iyer, Anand N.; Huang, Jiann Yuan

    1999-01-01

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO.sub.3 followed by an aqueous solution of NH.sub.4 OH and H.sub.2 O.sub.2 for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO.sub.3 and to a combination of NH.sub.4 OH and H.sub.2 O.sub.2 to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed.

  16. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.

    PubMed

    Gorup, Luiz F; Longo, Elson; Leite, Edson R; Camargo, Emerson R

    2011-08-15

    A new method to stabilize silver nanoparticles by the addition of ammonia is proposed. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C. After approximately 12 min, a diluted ammonia solution was added to the reaction flask to form soluble diamine silver (I) complexes that played an important growth moderating role, making it possible to stabilize metallic silver nanoparticles with sizes as small as 1.6 nm after 17 min of reaction. Colloidal dispersions were characterized by UV-visible absorption spectroscopy, X-ray diffraction, and transmission electronic microscopy. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Ore mineralogy and textural zonation in the world-class epithermal Waihi Vein System, Hauraki Goldfield

    USGS Publications Warehouse

    Mauk, Jeffrey L.; Skinner, Erin G; Fyfe, Sarah J; Menzies, Andrew H; Lowers, Heather A.; Koenig, Alan E.

    2016-01-01

    The Waihi district in the Hauraki Goldfield of New Zealand contains adularia-sericite epithermal gold-silver veins that have produced more than 7.7 Moz gold. The outermost veins of the district (Martha, Favona, Moonlight, and Cowshed) contain abundant colloform, cherty, and black quartz fill textures, with minor crustiform and massive quartz. The central veins (Amaranth, Trio, and Union) contain predominantly massive and crustiform textures, and these veins are also commonly coarser grained than outermost veins. Pyrite, sphalerite, galena, chalcopyrite, electrum, and acanthite occur in both outermost and central veins; base metal sulfide minerals typically increase in abundance in deeper samples. Antimony-, arsenic-, and selenium-bearing minerals are most abundant in the Favona and Moonlight veins, whereas base metal sulfide minerals are more abundant in the central veins at Correnso. Throughout the Waihi vein system, electrum is by far the most widespread, abundant, and significant gold-bearing mineral, but LA-ICP-MS analyses show that arsenian pyrite also contains some gold. Mineralogical and textural data are consistent with the central veins forming at a deeper structural level, or from hydrothermal fluids with different chemistry, or both.

  18. Geochemical characterization of slags, other mines wastes, and their leachates from the Elizabeth and Ely mines (Vermont), the Ducktown mining district (Tennessee), and the Clayton smelter site (Idaho)

    USGS Publications Warehouse

    Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Meier, Allen L.; Briggs, Paul H.

    2003-01-01

    Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements. Two types of mine waste were examined in this study: sintered waste rock and slag. The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits), from the Copper Basin mining district near Ducktown, Tennessee (Besshi-type massive sulfide deposits), and from the Clayton silver mine in the Bayhorse mining district, Idaho (polymetallic vein and replacement deposits). The data in this report are presented as a compilation with minimal interpretation or discussion. A detailed discussion and interpretation of the slag data are presented in a companion paper. Data collected from sintered waste rock and slag include: (1) bulk rock chemistry, (2) mineralogy, (3) and the distribution of trace elements among phases for the slag samples. In addition, the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States.

  19. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    PubMed

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.

  20. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  1. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria.

    PubMed

    Cavassin, Emerson Danguy; de Figueiredo, Luiz Francisco Poli; Otoch, José Pinhata; Seckler, Marcelo Martins; de Oliveira, Roberto Angelo; Franco, Fabiane Fantinelli; Marangoni, Valeria Spolon; Zucolotto, Valtencir; Levin, Anna Sara Shafferman; Costa, Silvia Figueiredo

    2015-10-05

    Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem- and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 μg mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag(+) ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram-negative than Gram-positive, and similar against multidrug resistant and susceptible bacteria, with best result achieved using citrate and chitosan silver nanoparticles. The bactericidal effect of silver nanoparticle may, in the future, be translated into important therapeutic and clinical options, especially considering the shortage of new antimicrobials against the emerging antimicrobial resistant microorganisms, in particular against Gram-negative bacteria.

  2. Synthesis of Silver Polymer Nanocomposites and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Gavade, Chaitali; Shah, Sunil; Singh, N. L.

    2011-07-01

    PVA (Polyvinyl Alcohol) silver nanocomposites of different sizes were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and amine hydrazine as a reducing agent. The formation of the silver nanoparticles was noticed using UV- visible absorption spectroscopy. The UV-visible spectroscopy revealed the formation of silver nanoparticles by exhibiting the surface plasmon resonance. The bactericidal activity due to silver release from the surface was determined by the modification of conventional diffusion method. Salmonella typhimurium, Serratia sps and Shigella sps were used as test bacteria which are gram-negative type bacteria. Effect of the different sizes of silver nano particles on antibacterial efficiency was discussed. Zones of inhibition were measured after 24 hours of incubation at 37 °C which gave 20 mm radius for high concentration of silver nanoparticles.

  3. Nature and origin of the nonsulfide zinc deposits in the Sierra Mojada District, Coahuila, Mexico: constraints from regional geology, petrography, and isotope analyses

    NASA Astrophysics Data System (ADS)

    Kyle, J. Richard; Ahn, Hyein; Gilg, H. Albert

    2018-02-01

    The Sierra Mojada District comprises multiple types of near-surface mineral concentrations ranging from polymetallic sulfide zones, "nonsulfide Zn" (NSZ) deposits, and a silver-rich Pb carbonate deposit hosted by lower Cretaceous carbonate strata. Hypogene concentrations of Fe-Zn-Pb-Cu-Ag sulfides and sulfosalts are locally preserved and are associated with hydrothermal dolomite and silica. Alteration mineralogy and sulfur isotope data suggest primary Zn-Pb-Ag mineralization from circa 200 °C hydrothermal fluids. The NSZ deposits dominantly consist of smithsonite and hemimorphite associated with local Mn-Fe oxides. The Red Zinc Zone consists of strata-bound zones dominantly of hemimorphite that fills pores in residual and resedimented Fe oxides. The White Zinc Zone shows local dissolution features, including internal sediments interbanded with and cemented by smithsonite. Similar Pb isotopic compositions of smithsonite, hemimorphite, and cerussite to Sierra Mojada galena document that the NSZ deposits originated from polymetallic carbonate-replacement sulfide deposits, with flow of metal-bearing groundwater being controlled by local topography and structural features in this extensional terrane. Oxygen isotope values for Sierra Mojada smithsonite are relatively constant (δ18OVSMOW = 20.9 to 23.3‰) but are unusually low compared to other supergene smithsonites. Using δ18OVSMOW (- 8‰) of modern groundwater at nearby Cuatrociénegas, smithsonite formational temperatures are calculated to have been between 26 to 35 °C. Smithsonite precipitation was favored by near-neutral conditions typical of carbonate terranes, whereas hemimorphite precipitated by reaction with wallrock silica and locally, or episodically, more acidic conditions resulting from sulfide oxidation. Transition to, and stabilization of, the modern desert climate over the past 9000 years from the Late Pleistocene wetter, cooler climate of northern Mexico resulted in episodic drawdown of the water table and termination of local supergene metal mobilization.

  4. Antimicrobial activity of silver nanoparticles impregnated wound dressing

    NASA Astrophysics Data System (ADS)

    Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

    2013-06-01

    In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

  5. Removal of insoluble heavy metal sulfides from water.

    PubMed

    Banfalvi, Gaspar

    2006-05-01

    The necessity of heavy metal removal from wastewater has led to increasing interest in absorbents. We have developed a new approach to obtain high metal adsorption capacity by precipitating metal sulfides with sodium sulfide on the surface of bentonite and adhere them to the absorbent. This method allowed to remove approximately 90% of cadmium as CdS from 10(-4)-10(-6) M CdCl2 solutions. Additional reactions are related to the removal of excess sodium sulfide by the release of hydrogen sulfide and oxidation to sulfur using carbogen gas (5% CO2, 95% O2) followed by aeration.

  6. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jian-Yang; Hsueh, Yu-Lee; Huang, Jung-Jie, E-mail: jjhuang@mdu.edu.tw

    2014-06-01

    Silver nanowires were synthesized by the polyol method employing ethylene glycol, Poly(N-vinylpyrrolidone) (PVP) and silver nitrate (AgNO{sub 3}) as the precursors. Most of the studies used metal salts (PtCl{sub 2}, NaCl) as seed precursor to synthesize the silver nanowires. In the study, the metal salts were not used and the concentration of capping agent was changed to observe the aspect ratio of silver nanowires. The experimental results showed that controlling synthesis temperature, Poly(N-vinylpyrrolidone) (PVP) molecular weight, reactant concentrations, and addition rates of AgNO{sub 3} affects the growth characteristics of silver nanowires. Field-emission scanning electron microscopy, UV–vis spectrophotometry, and X-ray diffractometrymore » were employed to characterize the silver nanowires. As increasing the concentration of PVP, the silver nanowire diameter widened and resulted in a smaller aspect ratio. We successfully prepared silver nanowires (diameter: 170 nm, length: 20 μm). The silver nanowire thin film suspension showed high transmittance, low sheet resistance, and may be used for transparent conductive film applications. - Graphical abstract: The FE-SEM image shows that nanostructures with considerable quantities of silver nanowires can also be produced when the PVP (Mw=360 K)/AgNO{sub 3} molar ratio was 2.5. - Highlights: • The polyol method was used to synthesize of silver nanowire. • The metal seed precursors were not used before synthesizing the silver nanowires. • The silver nanowire diameter and length was 170 nm and 20 μm, respectively. • Silver nanowire film with high transmittance (>85%) and low sheet resistance (<110 Ω/sq)« less

  8. Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Keying; Liu, Zhifeng; Han, Jianhua; Zhang, Xueqi; Li, Yajun; Hong, Tiantian; Zhou, Cailou

    2015-07-01

    This paper describes a novel design of high-efficiency photoelectrochemical water splitting electrode, i.e., ordered TiO2 nanorod arrays (NRs) sensitized simultaneously with noble metal (Ag), binary metal sulfides (Ag2S) and ternary metal sulfides (Ag3CuS2) multiple photosensitizers for the first time. The TiO2/Ag/Ag2S/Ag3CuS2 NRs heterostructure is successfully synthesized through successive ion layer adsorption and reaction (SILAR) and a simple ion-exchange process based on ionic reaction mechanism. On the basis of an optimal quantity of Ag, Ag2S and Ag3CuS2 nanoparticles, such TiO2/Ag/Ag2S/Ag3CuS2 NRs exhibit a higher photoelectrochemical activity ever reported for TiO2-based nanoarrays in PEC water splitting, the photocurrent density is up to 9.82 mA cm-2 at 0.47 V versus Ag/AgCl, respectively. This novel architecture is able to increase electron collection efficiency and suppress carrier recombination via (i) a higher efficiency of light-harvesting through these multiple photosensitizers (Ag, Ag2S and Ag3CuS2); (ii) the efficient separation of photo-induced electrons and holes due to the direct electrical pathways; (iii) the surface plasmon resonance (SPR) effect of Ag nanoparticles, which enhances the efficient charge separation and high carrier mobility. This work is useful to explore feasible routes to further enhance the performance of oxide semiconductors for PEC water splitting to produce clean H2 energy.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bojeong; Miller, Jennifer H.; Monsegue, Niven

    Physical and chemical transformations and biological responses of silver nanoparticles (AgNPs) in wastewater treatment systems are of particular interest because of the extensive existing and continually growing uses of AgNPs in consumer products. In this study, we investigated the transformation of AgNPs and AgNO 3 during thermophilic anaerobic digestion and effects on selection or transfer of antibiotic resistance genes (ARGs). Ag 2S-NPs, sulfidation products of both AgNPs and AgNO 3, were recovered from raw and digested sludges and were analyzed by analytical transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS). TEM and XAS revealed rapid (≤20 min) Ag sulfidationmore » for both Ag treatments. Once transformed, Ag 2S-NPs (as individual NPs or an NP aggregate) persisted for the duration of the batch digestion. The digestion process produced Ag 2S-NPs that were strongly associated with sludge organics and/or other inorganic precipitates. Ag treatments (up to 1,000 mg Ag/kg) did not have an impact on the performance of thermophilic anaerobic digesters or ARG response, as indicated by quantitative polymerase chain reaction measurements of sul1, tet(W), and tet(O) and also intI1, an indicator of horizontal gene transfer of ARGs. Thus, rapid Ag sulfidation and stabilization with organics effectively sequester Ag and prevent biological interactions with the digester microbial community that could induce horizontal gene transfer or adversely impact digester performance through antimicrobial activity. This finding suggests that sulfide-rich anaerobic environments, such as digesters, likely have a high buffer capacity to mitigate the biological effects of AgNPs.« less

  10. A green synthesis method for large area silver thin film containing nanoparticles.

    PubMed

    Shinde, N M; Lokhande, A C; Lokhande, C D

    2014-07-05

    The green synthesis method is inexpensive and convenient for large area deposition of thin films. For the first time, a green synthesis method for large area silver thin film containing nanoparticles is reported. Silver nanostructured films are deposited using silver nitrate solution and guava leaves extract. The study confirmed that the reaction time plays a key role in the growth and shape/size control of silver nanoparticles. The properties of silver films are studied using UV-visible spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, Fourier-transform Raman (FT-Raman) spectroscopy and Photoluminescence (PL) techniques. Finally, as an application, these films are used effectively in antibacterial activity study. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Method and etchant to join Ag-clad BSSCO superconducting tape

    DOEpatents

    Balachandran, U.; Iyer, A.N.; Huang, J.Y.

    1999-03-16

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.

  12. Replacement of hazardous chromium impregnating agent from silver/copper/chromium-impregnated active carbon using triethylenediamine to remove hydrogen sulfide, trichloromethane, ammonia, and sulfur dioxide.

    PubMed

    Wu, Li-Chun; Chung, Ying-Chien

    2009-03-01

    Activated carbon (AC) is widely used as an effective adsorbent in many applications, including industrial-scale air purification systems and air filter systems in gas masks. In general, ACs without chemical impregnation are good adsorbents of organic vapors but poor adsorbents of low-molecular-weight or polar gases such as chlorine, sulfur dioxide (SO2), formaldehyde, and ammonia (NH3). Impregnated ACs modified with metallic impregnating agents (ASC-carbons; e.g., copper, chromium, and silver) enhance the adsorbing properties of the ACs for simultaneously removing specific poisonous gases, but disposal of the chromium metal salt used to impregnate the ACs has the potential to result in situations that are toxic to both humans and the environment, thereby necessitating the search for replaceable organic impregnating agents that represent a much lower risk. The aim of this study was to assess the gas removal efficiency of an AC in which the organic impregnating agent triethylenediamine (TEDA) largely replaced the metallic impregnating agent chromium. We assessed batch and continuous adsorption capacities in situ for removing simulated hydrogen sulfide (H2S), trichloromethane (CHCl3), NH3, and SO2 gases. Brunauer-Emmet-Teller measurements and scanning electron microscopy analyses identified the removal mechanism by which TEDA-impregnated AS-carbon (dechromium ASC-carbon) adsorbs gases and determined the removal capacity for H2S, CHCl3, NH3, and SO2 to be 311, 258, 272, and 223 mg/g-C, respectively. These results demonstrate that TEDA-impregnated AS-carbon is significantly more efficient than ASC-carbon in adsorbing these four gases. Organic TEDA-impregnating agents have also been proven to be a reliable and environmental friendly agent and therefore a safe replacement of the hazardous chromium found in conventional ASC-carbon used in removing toxic gases from the airstream.

  13. Chemical composition and varieties of fahlore-group minerals from Oligocene mineralization in the Rhodope area, Southern Bulgaria and Northern Greece

    NASA Astrophysics Data System (ADS)

    Repstock, Alexander; Voudouris, Panagiotis; Zeug, Manuela; Melfos, Vasilios; Zhai, Mingguo; Li, Hongzhong; Kartal, Tamara; Matuszczak, Julia

    2016-02-01

    Fahlore-group minerals in Oligocene magmatic-hydrothermal deposits from the central and eastern Rhodope area, Bulgaria and Greece (e.g. porphyry-epithermal systems at Pagoni Rachi, Maronia and Kassiteres-Sapes, polymetallic epithermal high- and intermediate-sulfidation veins at Kirki, Perama Hill, Mavrokoryfi, Pefka, Zvezdel-Pcheloyad and Madzharovo, skarn-carbonate replacement deposits at Laki, Davidkovo, Madan, Enyovche and intrusion-related deposits at Kimmeria), cover the whole range of the tetrahedrite-tennantite solid solution series and are dominated by zincian and ferroan varieties reflecting deposition from Zn-(and Fe)-rich fluids. The majority of the studied fahlores are "normal" fully-substituted with Cu (+Ag) close to 10 apfu. However, high-sulfidation epithermal deposits in Greece contain "Cu-excess" tetrahedrite-tennantite; those with extreme high Cu-excess > Fe + Zn occur in transitional high- to intermediate-sulfidation systems, whereas low "Cu-excess" tetrahedrite-tennantite with Zn > Cu-excess + Fe and Fe > Cu-excess + Zn are part of tellurides-bearing intermediate-sulfidation assemblages. The epithermal St. Demetrios and Pefka deposits display the most Cu-rich tetrahedrites (11.039 apfu Cu) and tennantite (11.784 apfu Cu) worldwide. Although Ag substitutes for Cu in the structure of Ag-rich tetrahedrite in several deposits, freibergite with 6.800 apfu Ag occurs only at Mavrokoryfi; in particular, the cadmian freibergite at Mavrokoryfi is the second finding of this variety worldwide. Tellurium-bearing fahlore varieties occur in association with enargite/luzonite and native gold in high-sulfidation ore assemblages. Tetravalent tellurium substitutes for trivalent As and Sb in goldfieldite and Te-rich tennantite and tetrahedrite at Mavrokoryfi, Perama Hill, St. Demetrios and Pefka deposits. Goldfieldite at Mavrokoryfi and Perama Hill is remarkably Te-rich (up to 3.766 apfu and 3.711 apfu Te, respectively), with total metal content of 10.591 apfu and are the closest natural occurrence to the theoretical synthetic endmember Cu10Te4S13. The telluride-bearing fahlores in several epithermal deposits in Greece do not represent decomposition products of early goldfieldite. They are possibly the result of a new influx of Te-rich magmatic volatiles in the system. Decreasing Te (and Cu)-content in tetrahedrite-tennantite solid solution series reflects an evolution from initial high-T, high-sulfidation, oxidizing conditions, towards lower-T and lower-sulfidation, more reduced conditions with time. Fahlores, although they are minor constituents in the studied mineralization types, are carriers of Ag (and Au in goldfieldite) and may be used as an exploration tool, since they are closely associated with either native gold, gold-silver tellurides or Ag-sulfosalts.

  14. Determination of colloidal and dissolved silver in water samples using colorimetric solid-phase extraction.

    PubMed

    Hill, April A; Lipert, Robert J; Porter, Marc D

    2010-03-15

    The increase in bacterial resistance to antibiotics has led to resurgence in the use of silver as a biocidal agent in applications ranging from washing machine additives to the drinking water treatment system on the International Space Station (ISS). However, growing concerns about the possible toxicity of colloidal silver to bacteria, aquatic organisms and humans have led to recently issued regulations by the US EPA and FDA regarding the usage of silver. As part of an ongoing project, we have developed a rapid, simple method for determining total silver, both ionic (silver(I)) and colloidal, in 0.1-1mg/L aqueous samples, which spans the ISS potable water target of 0.3-0.5mg/L (total silver) and meets the US EPA limit of 0.1mg/L in drinking water. The method is based on colorimetric solid-phase extraction (C-SPE) and involves the extraction of silver(I) from water samples by passage through a solid-phase membrane impregnated with the colorimetric reagent DMABR (5-[4-(dimethylamino)benzylidene]rhodanine). Silver(I) exhaustively reacts with impregnated DMABR to form a colored compound, which is quantified using a handheld diffuse reflectance spectrophotometer. Total silver is determined by first passing the sample through a cartridge containing Oxone, which exhaustively oxidizes colloidal silver to dissolved silver(I). The method, which takes less than 2 min to complete and requires only approximately 1 mL of sample, has been validated through a series of tests, including a comparison with the ICP-MS analysis of a water sample from ISS that contained both silver(I) and colloidal silver. Potential earth-bound applications are also briefly discussed. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. Evaluation of a Silver-Embedded Ceramic Tablet as a Primary and Secondary Point-of-Use Water Purification Technology in Limpopo Province, S. Africa

    PubMed Central

    Ehdaie, Beeta; Rento, Chloe T.; Son, Veronica; Turner, Sydney S.; Samie, Amidou; Dillingham, Rebecca A.

    2017-01-01

    The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet’s performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings. PMID:28095435

  16. Evaluation of a Silver-Embedded Ceramic Tablet as a Primary and Secondary Point-of-Use Water Purification Technology in Limpopo Province, S. Africa.

    PubMed

    Ehdaie, Beeta; Rento, Chloe T; Son, Veronica; Turner, Sydney S; Samie, Amidou; Dillingham, Rebecca A; Smith, James A

    2017-01-01

    The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet's performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings.

  17. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    NASA Astrophysics Data System (ADS)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  18. Mass spectrometry-compatible silver staining of histones resolved on acetic acid-urea-Triton PAGE.

    PubMed

    Pramod, Khare Satyajeet; Bharat, Khade; Sanjay, Gupta

    2009-05-01

    Acetic acid-Urea-Triton (AUT) PAGE is commonly used method to separate histone variants and their post-translationally modified forms. Coomassie staining is the preferred method for protein visualization; however, its sensitivity is less than that of silver staining. Though silver staining of histones in AUT-PAGE has been reported, the method is time-consuming, dependent on prior staining by Amido black and has not been reported suitable for mass spectrometry. Here, we propose 'SDS-Silver' method for rapid, sensitive and mass spectrometry-compatible staining of histones resolved on AUT-PAGE.

  19. Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 3: Komatiite geochemistry, and implications for ore forming processes

    NASA Astrophysics Data System (ADS)

    Barnes, Stephen J.; Hill, Robin E. T.; Evans, Noreen J.

    2004-11-01

    The Black Swan komatiite sequence is a package of dominantly olivine-rich cumulates with lesser volumes of spinifex textured rocks, interpreted as a section through an extensive komatiite lava flow field. The sequence hosts a number of nickel sulfide orebodies, including the Silver Swan massive shoot and the Cygnet and Black Swan disseminated orebodies. A large body of whole rock analyses on komatiitic rocks from the Black Swan area has been filtered for metasomatic effects. With the exception of mobile elements such as Ca and alkalis, most samples retain residual igneous geochemistry, and can be modelled predominantly by fractionation and accumulation of olivine. Whole rock MgO FeO relationships imply a relatively restricted range of olivine compositions, more primitive than the olivine which would have been in equilibrium with the transporting komatiite lavas, and together with textural data indicate that much of the cumulus olivine in the sequence was transported. Flow top compositions show evidence for chromite saturation, but the cumulates are deficient in accumulated chromite. Chromite compositions are typical of those found in compound flow-facies komatiites, and are distinct from those in komatiitic dunite bodies. Incompatible trace element abundances show three superimposed influences: control by the relative proportion of olivine to liquid; a signature of crustal contamination and an overprint of metasomatic introduction of LREE, Zr and Th. This overprint is most evident in cumulates, and relatively insignificant in the spinifex rocks. Platinum and palladium behaved as incompatible elements and are negatively correlated with MgO. They show no evidence for wholesale depletion due to sulfide extraction, which was evidently restricted to specific lava tubes or pathways. The lack of correspondence between PGE depletion and contamination by siliceous material implies that contamination alone is insufficient to generate S-saturation and ore formation in the absence of sulfide in the assimilant. Contamination signatures in spinifex-textured rocks may be a guide to Ni-sulfide mineralisation, but are not entirely reliable in the absence of other evidence. The widespread vesicularity of the sequence may be attributable to assimilated water rather than to primary mantle-derived volatiles, and cannot be taken as evidence for primary volatile-rich magmas. The characteristic signature of the Black Swan Succession is the presence of highly localised disseminated sulfide within a sequence showing more widespread evidence for crustal contamination and interaction with its immediate substrate. This has important implications for the applicability of trace element geochemistry in exploration for komatiite-hosted nickel deposits.

  20. Geology of epithermal silver-gold bulk-mining targets, bodie district, Mono County, California

    USGS Publications Warehouse

    Hollister, V.F.; Silberman, M.L.

    1995-01-01

    The Bodie mining district in Mono County, California, is zoned with a core polymetallic-quartz vein system and silver- and gold-bearing quartz-adularia veins north and south of the core. The veins formed as a result of repeated normal faulting during doming shortly after extrusion of felsic flows and tuffs, and the magmatic-hydrothermal event seems to span at least 2 Ma. Epithermal mineralization accompanied repeated movement of the normal faults, resulting in vein development in the planes of the faults. The veins occur in a very large area of argillic alteration. Individual mineralized structures commonly formed new fracture planes during separate fault movements, with resulting broad zones of veinlets growing in the walls of the major vein-faults. The veinlet swarms have been found to constitute a target estimated at 75,000,000 tons, averaging 0.037 ounce gold per ton. The target is amenable to bulkmining exploitation. The epithermal mineralogy is simple, with electrum being the most important precious metal mineral. The host veins are typical low-sulfide banded epithermal quartz and adularia structures that filled voids created by the faulting. Historical data show that beneficiation of the simple vein mineralogy is very efficient. ?? 1995 Oxford University Press.

  1. A facile solvothermal method to produce graphene-ZnS composites for superior photoelectric applications

    NASA Astrophysics Data System (ADS)

    Lei, Yun; Chen, Feifei; Li, Rong; Xu, Jun

    2014-07-01

    In this experiment, flake graphite (<30 μm) was prepared as raw materials. Graphite oxide is prepared with Hummers method by low temperature, middle temperature and high temperature, and further treated with super-sonic oscillation to get graphene oxide. Graphene-zinc sulfide composites were synthesized through a simple solvothermal method using thiourea or sodium sulfide as sulfur source in the ethylene glycol or ethylenediamine, respectively. The products were characterized by X-ray and SEM, and analyzed by the transient photocurrent response and electrochemical impedance spectra. The results indicate that the properties of graphene-zinc sulfide composites prepared with thiourea in ethylene glycol are superior to those of blank-ZnS and composites prepared with sodium sulfide and ethylenediamine, which is attributed to electron capture and transfer ability of graphene resulting in a more efficient separation of the photoexcited charge carriers from ZnS-graphene composites.

  2. Photovoltaic semiconductor materials based on alloys of tin sulfide, and methods of production

    DOEpatents

    Lany, Stephan

    2016-06-07

    Photovoltaic thin-film materials comprising crystalline tin sulfide alloys of the general formula Sn.sub.1-x(R).sub.xS, where R is selected from magnesium, calcium and strontium, as well as methods of producing the same, are disclosed.

  3. Discrimination among iron sulfide species formed in microbial cultures.

    PubMed

    Popa, R; Kinkle, B K

    2000-10-01

    A quantitative method for the study of iron sulfides precipitated in liquid cultures of bacteria is described. This method can be used to quantify and discriminate among amorphous iron sulfide (FeS(amorph)), iron monosulfide minerals such as mackinawite or greigite (FeS(min)), and iron disulfide minerals such as pyrite or marcasite (FeS(2min)) formed in liquid cultures. Degradation of iron sulfides is performed using a modified Cr(2+) reduction method with reflux distillation. The basic steps of the method are: first, separation of FeS(amorph); second, elimination of interfering species of S such as colloidal sulfur (S(c) degrees ), thiosulphate (S(2)O(3)(2-)) and polysulfides (S(x)(2-)); third, separation of FeS(min); and fourth, separation of FeS(2min). The final product is H(2)S which is determined after trapping. The efficiency of recovery is 96-99% for FeS(amorph), 76-88% for FeS(min), and >97% for FeS(2min). This method has a high reproducibility if the experimental conditions are rigorously applied and only glass conduits are used. A well ventilated fume hood must be used because of the toxicity and volatility of several reagents and products. The advantage relative to previously described methods are better resolution for iron sulfide species and use of the same bottles for both incubation of cultures and acid degradation. The method can also be used for Fe/S stoichiometry with sub-sampling and Fe analysis.

  4. Substoichiometric radiochemical determination of silver with potassium ethyl xanthate in photofilm washings.

    PubMed

    Reddy, P C; Rangamannar, B

    1990-05-01

    An accurate and rapid radiochemical method has been developed for the determination of microgram amount of silver employing potassium ethyl xanthate as a substoichiometric radiochemical reagent. The light yellow coloured silver ethyl xanthate formed was extracted into nitrobenzene from sulphuric acid media. The effect of foreign ions on the extraction was studied. The method was applied to the determination of silver content in photofilm washings.

  5. Polysaccharide-based bioflocculant template of a diazotrophic Bradyrhizobium japonicum 36 for controlled assembly of AgCl nanoparticles.

    PubMed

    Rasulov, Bakhtiyor A; Pattaeva, Mohichehra A; Yili, Abulimiti; Aisa, Haji Akber

    2016-08-01

    A simple and green method was developed for the biosynthesis of silver chloride nanoparticles, free from silver nanoparticles, using polysaccharide-based bioflocculant of a diazotrophic rhizobacteria Bradyrhizobium japonicum 36 strain. The synthesized silver chloride nanoparticles were characterized by UV-vis, XRD, FT-IR and TEM. The concentration-dependent and controllable method for silver chloride nanoparticles was developed. The biosynthesized silver chloride nanoparticles exhibited strong antimicrobial activity towards pathogenic microorganisms such as Escherichia coli, Staphylococcus aureus and Candida albicans. The synthesized silver chloride nanoparticles can be exploited as a promising new biocide bionanocomposite against pathogenic microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Arkachan: A new gold-bismuth-siderite-sulfide type of deposits in the West Verkhoyansky tin district, Yakutia

    NASA Astrophysics Data System (ADS)

    Gamyanin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Bortnikov, N. S.

    2015-11-01

    The formation sequence of orebodies, chemical composition of gangue and ore minerals, fluid inclusions, REE patterns, 40Ar/39Ar isotopic age, and relationships of stable isotopes (C, O, S) in minerals of the Arkachan gold-bismuth-siderite-sulfide deposit have been studied. The deposit has been localized in the Kuranakh Anticlinorium of the Verkhoyansky Fold-Nappe Belt at the intersection of the near-meridional Kygyltas and the NE-trending North Tirekhtyakh faults. The orebodies are extended (>2 km) and steeply dipping zones of veins and veinlets are hosted in Carbonaceous and Permian sandstones and siltstones deformed in anticlines and cut through by dikes pertaining to diorite-granodiorite-granite association. The deposit was formed during hydrothermal-metamorphic, productive main gold, silver-polymetallic, and silver-antimony stages. The orebodies are largely composed of quartz and siderite; arsenopyrite, pyrite, and pyrrhotite are widespread; bismuthinite, chalcopyrite, sphalerite, galena, and bismuth sulfosalts (gustavite, cosalite, matildite) are less abundant. The REE patterns of carbonates and quartz are characterized by a negative Eu anomaly. Three types of fluid inclusions (FI) in quartz and carbonates are distinguished: (I) liquid H2O + CO2 ± CH4 + NaCl, (II) gaseous CO2 ± CH4, and (III) aqueous salt solutions. The homogenization temperature and salinity of FI I vary from 385 to 280°C and 18.8 to 26.2 wt % NaCl equiv, respectively, whereas in FI III these parameters vary from 261 to 324°C and 3.7 to 9.5 wt % NaCl equiv. The pressure is estimated at 1830 to 1060 bar. The δ18O of quartz II associated with siderite I, native gold, and sulfosalts changes from +13.6 to 16.3‰(SMOW); δ18O and δ13C of siderite I related to gold-ore stage vary from +13.6 to +17.7‰ (SMOW) and from-6.0 to-3.0 (PDB). A wide range of δ34S from-5.7 to 16.0‰ (CDT) has been obtained for sulfides. The isotopic 40Ar/39Ar age of muscovite is 101.9 ± 1.4 Ma. The isotopic compositions of C, O, and S in fluids and their REE patterns suggest that magmatic components are predominant. Metamorphic H2O, CO2, and occasionally CH4 are derived from the apical part of a hidden intrusion, whereas sulfur is delivered from country rocks as a result of heating.

  7. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  8. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...

  9. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...

  10. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...

  11. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...

  12. Comparison on Bactericidal and Cytotoxic Effect of Silver Nanoparticles Synthesized by Different Methods

    NASA Astrophysics Data System (ADS)

    Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.

    2017-08-01

    Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.

  13. Positive electrode current collector for liquid metal cells

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.

    1984-01-01

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  14. Natural decrease of dissolved arsenic in a small stream receiving drainages of abandoned silver mines in Guanajuato, Mexico.

    PubMed

    Arroyo, Yann Rene Ramos; Muñoz, Alma Hortensia Serafín; Barrientos, Eunice Yanez; Huerta, Irais Rodriguez; Wrobel, Kazimierz; Wrobel, Katarzyna

    2013-11-01

    Arsenic release from the abandoned mines and its fate in a local stream were studied. Physicochemical parameters, metals/metalloids and arsenic species were determined. One of the mine drainages was found as a point source of contamination with 309 μg L(-1) of dissolved arsenic; this concentration declined rapidly to 10.5 μg L(-1) about 2 km downstream. Data analysis confirmed that oxidation of As(III) released from the primary sulfide minerals was favored by the increase of pH and oxidation reduction potential; the results obtained in multivariate approach indicated that self-purification of water was due to association of As(V) with secondary solid phase containing Fe, Mn, Ca.

  15. Wildlife toxicity testing

    USGS Publications Warehouse

    Hoffman, David J.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    Reports of anthropogenic environmental contaminants affecting free-ranging wildlife first began to accumulate during the Industrial Revolution of the 1850s. early reports included cases of arsenic and lead shot ingestion, and industrial smokestack emission toxicity. One early report described the death of fallow deer (Dama dama) due to arsenic emissions from a silver foundry in Germany in 1887, whereas another report described hydrogen sulfide fumes in the vicinity of a Texas oil field that resulted in a large die-off of both wild birds and mammals.1 Mortality in waterfowl and ring-necked pheasants (Phaisanus colchicus) due to the ingestion of spent lead shot was recognized at least as early as 1874 when lead-poisoned birds were reported in Texas and North Carolina.

  16. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  17. Chemical Bonding in Sulfide Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, David J.; Rosso, Kevin M.

    An understanding of chemical bonding and electronic structure in sulfide minerals is central to any attempt at understanding their crystal structures, stabilities and physical properties. It is also an essential precursor to understanding reactivity through modeling surface structure at the molecular scale. In recent decades, there have been remarkable advances in first principles (ab initio) methods for the quantitative calculation of electronic structure. These advances have been made possible by the very rapid development of high performance computers. Several review volumes that chart the applications of these developments in mineralogy and geochemistry are available (Tossell and Vaughan, 1992; Cygan andmore » Kubicki, 2001). An important feature of the sulfide minerals is the diversity of their electronic structures, as evidenced by their electrical and magnetic properties (see Pearce et al. 2006, this volume). Thus, sulfide minerals range from insulators through semiconductors to metals, and exhibit every type of magnetic behavior. This has presented problems for those attempting to develop bonding models for sulfides, and also led to certain misconceptions regarding the kinds of models that may be appropriate. In this chapter, chemical bonding and electronic structure models for sulfides are reviewed with emphasis on more recent developments. Although the fully ab initio quantitative methods are now capable of a remarkable degree of sophistication in terms of agreement with experiment and potential to interpret and predict behavior with varying conditions, both qualitative and more simplistic quantitative approaches will also be briefly discussed. This is because we believe that the insights which they provide are still helpful to those studying sulfide minerals. In addition to the application of electronic structure models and calculations to solid sulfides, work on sulfide mineral surfaces (Rosso and Vaughan 2006a,b) and solution complexes and clusters (Rickard and Luther, 2006) are discussed in detail later in this volume.« less

  18. Regeneration of polyborazylene

    DOEpatents

    Davis, Benjamin L.; Gordon, John C.

    2010-12-07

    Method of producing ammonia borane, comprising providing polyborazylene; digesting the polyborazylene with a dithiol-containing agent to produce a boro-sulfide compound and a byproduct; converting the byproduct to the boro-sulfide product of step (b) by reaction with a first alkyl-tin hydride; and, converting the boro-sulfide compound produced in steps (b) and (c) to ammonia borane by reaction with a second alkyl-tin hydride.

  19. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  20. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud

    2016-09-01

    In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Biao; Zhou, Keqing; Jiang, Saihua

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zincmore » sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.« less

  2. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  3. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Kumar, Deenadayalan Ashok; Palanichamy, V.; Roopan, Selvaraj Mohana

    2014-06-01

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10 min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis.

  4. OPTIMIZATION OF VOLTAMMETRIC METHODS FOR AN IN SITU DETERMINATION OF TOTAL SULFIDE IN ANOXIC POREWATER USING A MERCURY PLATED GOLD ELECTRODE

    EPA Science Inventory

    Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...

  5. Synthesis of pure colloidal silver nanoparticles with high electroconductivity for printed electronic circuits: the effect of amines on their formation in aqueous media.

    PubMed

    Natsuki, Jun; Abe, Takao

    2011-07-01

    This paper describes a practical and convenient method to prepare stable colloidal silver nanoparticles for use in printed electronic circuits. The method uses a dispersant and two kinds of reducing agents including 2-(dimethylamino) ethanol (DMAE), which play important roles in the reduction of silver ions in an aqueous medium. The effect of DMAE and dispersant, as well as the factors affecting particle size and morphology are investigated. In the formation of the silver nanoparticles, reduction occurs rapidly at room temperature and the silver particles can be separated easily from the mixture in a short time. In addition, organic solvents are not used. Pure, small and relatively uniform particles with a diameter less than 10 nm can be obtained that exhibit high electroconductivity. The silver nanoparticles are stable, and can be isolated as a dried powder that can be fully redispersed in deionized water. This method of producing colloidal silver nanoparticles will find practical use in electronics applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Fluorogenic Ag+–Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining

    PubMed Central

    Xie, Sheng; Wong, Alex Y. H.; Kwok, Ryan T. K.; Li, Ying; Su, Huifang; Lam, Jacky W. Y.

    2018-01-01

    Abstract Silver staining, which exploits the special bioaffinity and the chromogenic reduction of silver ions, is an indispensable visualization method in biology. It is a most popular method for in‐gel protein detection. However, it is limited by run‐to‐run variability, background staining, inability for protein quantification, and limited compatibility with mass spectroscopic (MS) analysis; limitations that are largely attributed to the tricky chromogenic visualization. Herein, we reported a novel water‐soluble fluorogenic Ag+ probe, the sensing mechanism of which is based on an aggregation‐induced emission (AIE) process driven by tetrazolate‐Ag+ interactions. The fluorogenic sensing can substitute the chromogenic reaction, leading to a new fluorescence silver staining method. This new staining method offers sensitive detection of total proteins in polyacrylamide gels with a broad linear dynamic range and robust operations that rival the silver nitrate stain and the best fluorescent stains. PMID:29575702

  7. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  8. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.

    PubMed

    Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-06-05

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  10. Some limitations on the possible composition of the ore-forming fluid

    USGS Publications Warehouse

    Barton, Paul B.

    1956-01-01

    The activity rations of various important anions (S, CO3, SO4, OH, F, and Cl) in hydrothermal solutions at the time of deposition are evaluated using a simple thermodynamic technique. The rations are interpreted in the light of the mineralogy of ore deposits and limites are placed on the variability of each ratio in hydrothermal solutions. All of the calculations are made for 25°C and cautious extrapolation to higher temperatures seems justified; however, additional data for elevated temperatures and pressures are needed before more than approximate values may be assigned to these ratios in the ore-forming fluid. The calculated partial pressure of CO2 in the ore fluid is generally less than one atmosphere, which suggests that a dense CO2 phase cannot be considered an importatn ore fluid for most deposits. The partial pressure of H2S is usually less than 10-4 atmospheres which makes it extremely difficult to defend the heory that metals (other than the easily complexible mercury, arsenic, antimony, and perhaps fols and silver) are transported in quantity as complex sulfide and hydrosulfides. The sulfate to sulfide ration is such that the oxidation potential at the time of deposition is defined by the following equation: Eh (in volts) = 0.22 ± 0.04 - 0.059 pH.

  11. Corrosion protection for silver reflectors

    DOEpatents

    Arendt, Paul N.; Scott, Marion L.

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  12. Method for the recovery of silver from waste photographic fixer solutions

    DOEpatents

    Posey, F.A.; Palko, A.A.

    The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration of decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.

  13. Method for the recovery of silver from waste photographic fixer solutions

    DOEpatents

    Posey, Franz A.; Palko, Aloysius A.

    1984-01-01

    The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration or decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.

  14. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

    NASA Astrophysics Data System (ADS)

    Vikentyev, I. V.

    2015-07-01

    Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from <10% (Galkinsk deposit) to 85% (Uchaly deposit). Major part of "invisible" gold occurs as micron- to nanoscale particles of Au minerals. The portion of gold structurally bound in pyrite lattice (from the bulk concentration of Au in pyrite) is estimated to be from few % (the Galkinsk deposit) to 20-25% (the Uchaly deposit). The presence of As and Sb in pyrite and sphalerite, as well as other trace elements (Te, Co, Mn, Cu, Hg, and Ag in both as well as Fe in sphalerite) stimulates the incorporation of Au in sulfide, but mostly in defect-associated, not isomorphic form. Micron particles of Ag sulfosalts (pyrargyrite, freibergite, stephanite, polybasite, pyrostilpnite, argentotetrahedrite, pearceite, proustite), Au-Ag alloys (from gold of high fineness to küstelite), Ag and Au-Ag tellurides (hessite, empressite, calaverite), and occasional Au-Ag sulfides (petrovskaite, uytenbogaardtite) were registered in the areas of Au enrichment of both deposits; selenotelluride (kurilite) particles were found on the Galkinsk deposit. Nanoscale (1-50 nm) native gold (spherical and disk-shaped particles, flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.

  15. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium.

    PubMed

    Dobrucka, Renata; Długaszewska, Jolanta

    2015-06-01

    Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV-visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM-EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.

  16. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agasti, Nityananda, E-mail: nnagasti@gmail.com; Singh, Vinay K.; Kaushik, N.K.

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in themore » presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.« less

  17. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides.

    PubMed

    Jood, Priyanka; Ohta, Michihiro

    2015-03-16

    Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS₂-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS₂ sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor.

  18. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    PubMed Central

    Jood, Priyanka; Ohta, Michihiro

    2015-01-01

    Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor. PMID:28787992

  19. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    PubMed Central

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  20. A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ashokraja, C.; Sakar, M.; Balakumar, S.

    2017-10-01

    We report the hemolysis properties of silver and silver oxide nanoparticles (NPs) prepared by chemical and green-synthesis methods. The prepared silver and silver oxide NPs were analyzed using UV-vis spectroscopy to confirm their formation by characterizing their surface plasmon resonance (SPR) and absorption band peaks respectively. The Fourier transmission infrared (FTIR) spectra of the materials showed the characteristic functional groups corresponding to the molecules present in leaf extracts, which is proposed to be acted as reducing and capping agents that are also found on the surface of silver and silver oxide nanoparticles that synthesized via green-synthesis method. Zeta potential analysis revealed the surface charge and stability of the prepared NPs. HRTEM images showed almost spherical shape nanoparticles with an average size of 15.2 and 31.5 nm for wet chemical synthesized silver and silver oxide nanoparticles respectively. In the case of green synthesized silver and silver oxide nanoparticles, it was observed to be 19.4 and 30.4 nm respectively. The order of hemolysis efficacy of the materials is found to be as follows: chemically synthesized Ag2O>  chemically synthesized Ag NPs followed by green-synthesized Ag2O and green-synthesized Ag NPs which showed almost similar hemolysis with respect to concentration. The relatively stable nature of the silver NPs could be attributed to their lower hemolysis efficacy, while the increased lysis properties of silver oxide could be attributed due to reductive/oxidative processes that give rise to the hemolysis through interfacial charge interactions with RBCs.

  1. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents

    PubMed Central

    Kędziora, Anna; Speruda, Mateusz; Rybka, Jacek; Łukowiak, Anna; Bugla-Płoskońska, Gabriela

    2018-01-01

    Silver is considered as antibacterial agent with well-known mode of action and bacterial resistance against it is well described. The development of nanotechnology provided different methods for the modification of the chemical and physical structure of silver, which may increase its antibacterial potential. The physico-chemical properties of silver nanoparticles and their interaction with living cells differs substantially from those of silver ions. Moreover, the variety of the forms and characteristics of various silver nanoparticles are also responsible for differences in their antibacterial mode of action and probably bacterial mechanism of resistance. The paper discusses in details the aforementioned aspects of silver activity. PMID:29393866

  2. Synthesis of silver nanoparticles: chemical, physical and biological methods

    PubMed Central

    Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B.

    2014-01-01

    Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This review presents an overview of silver nanoparticle preparation by physical, chemical, and biological synthesis. The aim of this review article is, therefore, to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries. PMID:26339255

  3. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Wang, Hua-Jie; Cao, Cui; Sun, Yuan-Yuan; Yang, Lin; Wang, Bao-Qing; Zhou, Jian-Guo

    2011-07-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  4. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects

    NASA Astrophysics Data System (ADS)

    Prabhu, Sukumaran; Poulose, Eldho K.

    2012-10-01

    Silver nanoparticles are nanoparticles of silver which are in the range of 1 and 100 nm in size. Silver nanoparticles have unique properties which help in molecular diagnostics, in therapies, as well as in devices that are used in several medical procedures. The major methods used for silver nanoparticle synthesis are the physical and chemical methods. The problem with the chemical and physical methods is that the synthesis is expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a feasible alternative. The major biological systems involved in this are bacteria, fungi, and plant extracts. The major applications of silver nanoparticles in the medical field include diagnostic applications and therapeutic applications. In most of the therapeutic applications, it is the antimicrobial property that is being majorly explored, though the anti-inflammatory property has its fair share of applications. Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity. This review provides a comprehensive view on the mechanism of action, production, applications in the medical field, and the health and environmental concerns that are allegedly caused due to these nanoparticles. The focus is on effective and efficient synthesis of silver nanoparticles while exploring their various prospective applications besides trying to understand the current scenario in the debates on the toxicity concerns these nanoparticles pose.

  5. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfide in wastewaters discharged by plants operating in all subcategories except the hair save or pulp... by plants operating in the hair save or pulp, non-chrome tan, retan-wet finish subcategory (subpart C...

  6. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfide in wastewaters discharged by plants operating in all subcategories except the hair save or pulp... by plants operating in the hair save or pulp, non-chrome tan, retan-wet finish subcategory (subpart C...

  7. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfide in wastewaters discharged by plants operating in all subcategories except the hair save or pulp... by plants operating in the hair save or pulp, non-chrome tan, retan-wet finish subcategory (subpart C...

  8. Desulfurization apparatus and method

    DOEpatents

    Rong, Charles; Jiang, Rongzhong; Chu, Deryn

    2013-06-18

    A method and system for desulfurization comprising first and second metal oxides; a walled enclosure having an inlet and an exhaust for the passage of gas to be treated; the first and second metal oxide being combinable with hydrogen sulfide to produce a reaction comprising a sulfide and water; the first metal oxide forming a first layer and the second metal oxide forming a second layer within the walled surroundings; the first and second layers being positioned so the first layer removes the bulk amount of the hydrogen sulfide from the treated gas prior to passage through the second layer, and the second layer removes substantially all of the remaining hydrogen sulfide from the treated gas; the first metal oxide producing a stoichiometrical capacity in excess of 500 mg sulfur/gram; the second metal oxide reacts with the hydrogen sulfide more favorably but has a stoichometrical capacity which is less than the first reactant; whereby the optimal amount by weight of the first and second metal oxides is achieved by utilizing two to three units by weight of the first metal oxide for every unit of the second metal oxide.

  9. Mechanism of Prophylaxis by Silver Compounds against Infection of Burns

    PubMed Central

    Ricketts, C. R.; Lowbury, E. J. L.; Lawrence, J. C.; Hall, M.; Wilkins, M. D.

    1970-01-01

    To clarify tthe mechanism by which local application of silver compounds protects burns against infection, an ion-specific electrode was used to measùre the concentration of silver ions in solutions. By this method it was shown that in burn dressings silver ions were reduced to a very low level by precipitation as silver chloride. The antibacterial effect was found to depend on the availability of silver ions from solution in contact with precipitate. Between 10-5 and 10-6 molar silver nitrate solution in water was rapidly bactericidal. The minimal amount of silver nitrate causing inhibition of respiration of skin in tissue culture was about 25 times the minimal concentration of silver nitrate that inhibited growth of Pseudomonas aeruginosa. PMID:4986877

  10. Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation

    DOEpatents

    Koermer, Gerald S [Basking Ridge, NJ; Moini, Ahmad [Princeton, NJ; Furbeck, Howard [Hamilton, NJ; Castellano, Christopher R [Ringoes, NJ

    2012-05-08

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver on a particulate alumina support, the silver having a diameter of less than about 20 nm. Methods of manufacturing catalysts are described in which ionic silver is impregnated on particulate hydroxylated alumina particles.

  11. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties

    PubMed Central

    Geethalakshmi, R; Sarada, DVL

    2012-01-01

    Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381

  12. Method for producing microcomposite powders using a soap solution

    DOEpatents

    Maginnis, Michael A.; Robinson, David A.

    1996-01-01

    A method for producing microcomposite powders for use in superconducting and non-superconducting applications. A particular method to produce microcomposite powders for use in superconducting applications includes the steps of: (a) preparing a solution including ammonium soap; (b) dissolving a preselected amount of a soluble metallic such as silver nitrate in the solution including ammonium soap to form a first solution; (c) adding a primary phase material such as a single phase YBC superconducting material in particle form to the first solution; (d) preparing a second solution formed from a mixture of a weak acid and an alkyl-mono-ether; (e) adding the second solution to the first solution to form a resultant mixture; (f) allowing the resultant mixture to set until the resultant mixture begins to cloud and thicken into a gel precipitating around individual particles of the primary phase material; (g) thereafter drying the resultant mixture to form a YBC superconducting material/silver nitrate precursor powder; and (h) calcining the YBC superconducting material/silver nitrate precursor powder to convert the silver nitrate to silver and thereby form a YBC/silver microcomposite powder wherein the silver is substantially uniformly dispersed in the matrix of the YBC material.

  13. Removal of brownish-black tarnish on silver-copper alloy objects with sodium glycinate

    NASA Astrophysics Data System (ADS)

    de Figueiredo, João Cura D.'Ars; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-10-01

    This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver-copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver-copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver-copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver-copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver-copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver-copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish-black tarnish. Absorption spectroscopy measured the percentage of silver and copper lixiviated in immersion baths, and very small quantities of these metals were detected. Infrared absorption spectroscopy and X-ray fluorescence characterized the obtained products. The greater efficiency of the sodium glycinate solution compared to the sodium acetylglycinate solution was explained by chelation and Hard-Soft Acid-Base Theory with the aid of quantum chemical calculations.

  14. Silver complexation and tandem mass spectrometry for differentiation of isomeric flavonoid diglycosides.

    PubMed

    Zhang, Junmei; Brodbelt, Jennifer S

    2005-03-15

    For detection and differentiation of isomeric flavonoids, electrospray ionization mass spectrometry is used to generate silver complexes of the type (Ag + flavonoid)+. Collisionally activated dissociation (CAD) of the resulting 1:1 silver/flavonoid complexes allows isomer differentiation of flavonoids. Eighteen flavonoid diglycosides constituting seven isomeric series are distinguishable from each other based on the CAD patterns of their silver complexes. Characteristic dissociation pathways allow identification of the site of glycosylation, the type of disaccharide (rutinose versus neohesperidose), and the type of aglycon (flavonol versus flavone versus flavanone). This silver complexation method is more universal than previous metal complexation methods, as intense silver complexes are observed even for flavonoids that lack the typical metal chelation sites. To demonstrate the feasibility of using silver complexation and tandem mass spectrometry to characterize flavonoids in complex mixtures, flavonoids extracted from grapefruit juice are separated by high-performance liquid chromatography and analyzed via a postcolumn complexation ESI-MS/MS strategy. Diagnostic fragmentation pathways of the silver complexes of the individual eluting flavonoids allow successful identification of the six flavonoids in the extract.

  15. The silver nanowires synthesized using different molecule weight of polyvinyl pyrrolidone for controlling diameter and length by one-pot polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Departement of Physics, Lampung University, Bandar Lampung; Triyana, K., E-mail: triyana@ugm.ac.id

    In this paper, we report our investigation on the effect of the molecular weight and molar ratio of polyvinyl pyrrolidone (PVP) and silver nitrate (AgNO{sub 3}) for controlling diameter and length of the silver nanowires synthesized with a high-aspect-ratio. The silver nanowires synthesized by one-pot polyol method at a constant temperature oil bath of 130°C. Different molecule weights of PVP, i.e. 55 K, 360 K, and 1300 K were used combined with different molar ratios of [PVP:Ag]. The UV–vis spectrophotometry and Field-emission scanning electron microscopy (FE-SEM) were employed to characterize the silver nanowires. The results show that the molecular weightmore » and molar ratio of [PVP:Ag] are very important for controlling growth and properties of the silver nanowires. The diameter and length of silver nanowires are obtained 80 to 140 nm and 30 to 70 µm, respectively. The higher molecular weight of PVP, the greater diameter and length of silver nanowires.« less

  16. Development of the rectal dosage form with silver-coated glass beads for local-action applications in lower sections of the gastrointestinal tract.

    PubMed

    Siczek, Krzysztof; Fichna, Jakub; Zatorski, Hubert; Karolewicz, Bożena; Klimek, Leszek; Owczarek, Artur

    2018-03-01

    Recent findings indicating the anti-inflammatory action of silver preparations through modulation of the gut microbiota and apoptosis of inflammatory cells predestine silver use in inflammatory bowel disease (IBD). The aim of our study was to validate the possibility of effective silver release from silver-coated glass beads for anti-inflammatory local application in the lower sections of the gastrointestinal (GI) tract. Silver-coated glass beads were prepared using magnetron method. Release of silver from the silver-coated glass bead surface was carried out in BIO-DIS reciprocating cylinder apparatus. Erosion of silver coating and indirect estimation of the silver release dynamics was assessed using scanning electron microscope. Rectal suppositories containing silver-coated glass beads were prepared using five different methods (M1-M5) and X-ray scanned for their composition. The XR microanalysis and the chemical composition analysis evidenced for a rapid (within 30 min) release of nearly 50% of silver from the coating of the glass beads, which remained stable up to 24 h of incubation. The most homogeneous distribution of beads in the entire volume of the suppository was obtained for formulation M5, where the molten base was poured into mold placed in an ice bath, and the beads were added after 10 s. Our study is the first to present the concept of enclosing silver-coated glass beads in the lipophilic suppository base to attenuate inflammation in the lower GI tract and promises efficient treatment with reduced side effects.

  17. Supergene oxidation of epithermal gold-silver mineralization in the Deseado massif, Patagonia, Argentina: response to subduction of the Chile Ridge

    NASA Astrophysics Data System (ADS)

    Sillitoe, Richard H.

    2018-06-01

    Radiometric ages for supergene alunite and jarosite effectively date the oxidation of former concentrations of pyrite and any associated sulfide minerals. These K-bearing sulfate minerals, formed under low-pH conditions, are uncommon supergene products in low-sulfidation epithermal deposits because of the general paucity of pyrite for acid generation. For this reason, the age of supergene oxidation—locally to depths of 200 m or more—in the epithermal Au-Ag deposits of the Deseado massif, located in the extra-Andean foreland of Patagonia, southern Argentina, has remained unknown. Although, theoretically, the oxidation could have taken place anytime between the Late Jurassic, when the Au-Ag mineralization formed, and Pleistocene, K-Ar ages for alunite and jarosite from two widely separated and unusually pyritic, Ag-bearing hydrothermal breccias (Lejano and Libanesa) show it to have been mid-Miocene, 13.8 ± 1.8 Ma. This is the time when the Deseado massif underwent appreciable regional-scale tectonic uplift and valley incision, following 140 myr during which the region was topographically subdued and the site of either fluvio-lacustrine or shallow-marine sedimentation. The uplift, combined with increasing aridity due to the orographic rain shadow caused by growth of the Patagonian Andes to the west and enhanced by global cooling, would have depressed regional groundwater tables, thereby promoting the supergene sulfide oxidation. The mid-Miocene uplift appears to have been triggered by development of a slab tear and slab window beneath the Deseado massif during early stages of subduction of the Chile oceanic-ridge spreading center at the Pacific margin. Supergene sulfide oxidation in both the Deseado massif and Atacama Desert of northern Chile was the result of Cenozoic uplift during progressive aridification, although the causes of these phenomena were radically different. However, when the supergene oxidation was taking place in the Deseado massif, up to 30 myr of supergene activity in the Atacama Desert were coming to an end because of the onset of hyperaridity.

  18. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  19. Nanoporous gold-based microbial biosensor for direct determination of sulfide.

    PubMed

    Liu, Zhuang; Ma, Hanyue; Sun, Huihui; Gao, Rui; Liu, Honglei; Wang, Xia; Xu, Ping; Xun, Luying

    2017-12-15

    Environmental pollution caused by sulfide compounds has become a major problem for public health. Hence, there is an urgent need to explore a sensitive, selective, and simple sulfide detection method for environmental monitoring and protection. Here, a novel microbial biosensor was developed using recombinant Escherichia coli BL21 (E. coli BL21) expressing sulfide:quinone oxidoreductase (SQR) for sulfide detection. As an important enzyme involved in the initial step of sulfide metabolism, SQR oxidizes sulfides to polysulfides and transfers electrons to the electron transport chain. Nanoporous gold (NPG) with its unique properties was selected for recombinant E. coli BL21 cells immobilization, and then glassy carbon electrode (GCE) was modified by the resulting E. coli/NPG biocomposites to construct an E. coli/NPG/GCE bioelectrode. Due to the catalytic oxidation properties of NPG for sulfide, the electrochemical reaction of the E. coli/NPG/GCE bioelectrode is attributed to the co-catalysis of SQR and NPG. For sulfide detection, the E. coli/NPG/GCE bioelectrode showed a good linear response ranging from 50μM to 5mM, with a high sensitivity of 18.35μAmM -1 cm -2 and a low detection limit of 2.55μM. The anti-interference ability of the E. coli/NPG/GCE bioelectrode is better than that of enzyme-based inhibitive biosensors. Further, the E. coli/NPG/GCE bioelectrode was successfully applied to the detection of sulfide in wastewater. These unique properties potentially make the E. coli/NPG/GCE bioelectrode an excellent choice for reliable sulfide detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. METAL COATED ARTICLES AND METHOD OF MAKING

    DOEpatents

    Eubank, L.D.

    1958-08-26

    A method for manufacturing a solid metallic uranium body having an integral multiple layer protective coating, comprising an inner uranium-aluminum alloy firmly bonded to the metallic uranium is presented. A third layer of silver-zinc alloy is bonded to the zinc-aluiminum layer and finally a fourth layer of lead-silver alloy is firmly bonded to the silver-zinc layer.

  1. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    NASA Astrophysics Data System (ADS)

    Junaidi, Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  2. Chromatographic separation of the theranostic radionuclide 111Ag from a proton irradiated thorium matrix

    DOE PAGES

    Mastren, Tara; Radchenko, Valery; Engle, Jonathan W.; ...

    2017-10-30

    Column chromatographic methods have been developed to separate no-carrier-added 111Ag from proton irradiated thorium targets and associated fission products as an ancillary process to an existing 225Ac separation design. In this paper, we report the separation of 111Ag both prior and subsequent to 225Ac recovery using CL resin, a solvent impregnated resin (SIR) that carries an organic solution of alkyl phosphine sulfides (R 3P = S) and alkyl phosphine oxides (R 3P = O). The recovery yield of 111Ag was 93 ± 9% with a radiochemical purity of 99.9% (prior) and 87 ± 9% with a radiochemical purity of 99.9%more » (subsequent to) 225Ac recovery. Both processes were successfully performed with insignificant impacts on 225Ac yields or quality. Measured equilibrium distribution coefficients for silver and ruthenium (a residual contaminant) on CL resin in hydrochloric and nitric acid media are reported, to the best of our knowledge, for the first time. Finally and additionally, measured cross sections for the production of 111Ag and 110mAg for the 232Th(p,f) 110m,111Ag reactions are reported within.« less

  3. Chromatographic separation of the theranostic radionuclide 111Ag from a proton irradiated thorium matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastren, Tara; Radchenko, Valery; Engle, Jonathan W.

    Column chromatographic methods have been developed to separate no-carrier-added 111Ag from proton irradiated thorium targets and associated fission products as an ancillary process to an existing 225Ac separation design. In this paper, we report the separation of 111Ag both prior and subsequent to 225Ac recovery using CL resin, a solvent impregnated resin (SIR) that carries an organic solution of alkyl phosphine sulfides (R 3P = S) and alkyl phosphine oxides (R 3P = O). The recovery yield of 111Ag was 93 ± 9% with a radiochemical purity of 99.9% (prior) and 87 ± 9% with a radiochemical purity of 99.9%more » (subsequent to) 225Ac recovery. Both processes were successfully performed with insignificant impacts on 225Ac yields or quality. Measured equilibrium distribution coefficients for silver and ruthenium (a residual contaminant) on CL resin in hydrochloric and nitric acid media are reported, to the best of our knowledge, for the first time. Finally and additionally, measured cross sections for the production of 111Ag and 110mAg for the 232Th(p,f) 110m,111Ag reactions are reported within.« less

  4. Synthesis of Nanosilver Particles in the Texture of Bank Notes to Produce Antibacterial Effect

    NASA Astrophysics Data System (ADS)

    Lari, Mohammad Hossein Asadi; Esmaili, Vahid; Naghavi, Seyed Mohammad Ebrahim; Kimiaghalam, Amir Hossein; Sharifaskari, Emadaldin

    Silver particles show antibacterial and antiseptic properties at the nanoscale. Such properties result from an alteration in the binding capacity of silver atoms in bits of less than 6.5nm which enables them to kill harmful organisms. Silver nanoparticles are now the most broadly used agents in the area of nanotechnology after carbon nanotubes. Given that currency bills are one of the major sources of bacterial disseminations and their contamination has recently been nominated as a critical factor in gastrointestinal infections and possibly colon cancers, here we propose a new method for producing antibacterial bank notes by using silver nanoparticles. Older bank notes are sprayed with acetone to clean the surface. The bank note is put into a petri-dish containing a solution of silver nitrate and ammonia so that it is impregnated. The bank notes are then reduced with the formaldehyde gas, which penetrates its texture and produces silver nanoparticles in the cellulose matrix. The side products of the reactions are quickly dried off and the procedure ends with the drying of the bank note. The transmission electron microscope (TEM) images confirmed the nanoscale size range for the formed particles while spectroscopy methods, such as XRD, provided proof for the metallic nature of the particles. Bacterial challenge tests then showed that no colonies of the three tested bacterium (Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa survived on the sample after a 72h incubation period. This study has provided a method for synthesizing silver NPs directly into the texture of fabrics and textiles (like that of bank notes) which can result in lower production costs, making the use of silver NPs economically beneficial. The method, specifically works on the fabric of bank notes, suggesting a method to tackle the transmission of bacteria through bank notes. Moreover, this study is a testament to the strong antibacterial nature of even low concentrations of silver NPs.

  5. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study.

    PubMed

    Eskelsen, Jeremy R; Xu, Jie; Chiu, Michelle; Moon, Ji-Won; Wilkins, Branford; Graham, David E; Gu, Baohua; Pierce, Eric M

    2018-02-06

    The dissolution of metal sulfides, such as ZnS, is an important biogeochemical process affecting fate and transport of trace metals in the environment. However, current studies of in situ dissolution of metal sulfides and the effects of structural defects on dissolution are lacking. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, we have examined biogenic ZnS nanoparticles produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium in the presence or absence of silver (Ag), and abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H 2 S-rich gas or Na 2 S solution. The size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were examined using high-resolution transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ∼10 nm) than the abiogenic ones (i.e., ∼3-5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ∼3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell TEM (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m 2 ) have a significantly higher surface energy than the abiogenic ZnS nanoparticles (γ = 0.277 J/m 2 ). Larger defect-bearing biogenic ZnS nanoparticles were thus more reactive than the smaller quantum-dot-sized ZnS nanoparticles. These findings provide new insight into the factors that affect the dissolution of metal sulfide nanoparticles in relevant natural and engineered scenarios, and have important implications for tracking the fate and transport of sulfide nanoparticles and associated metal ions in the environment. Moreover, our study exemplified the use of an in situ method (i.e., LCTEM) to investigate nanoparticle behavior (e.g., dissolution) in aqueous solutions.

  6. Highly efficient method for production of radioactive silver seed cores for brachytherapy.

    PubMed

    Cardoso, Roberta Mansini; de Souza, Carla Daruich; Rostelato, Maria Elisa Chuery Martins; Araki, Koiti

    2017-02-01

    A simple and highly efficient (shorter reaction time and almost no rework) method for production of iodine based radioactive silver seed cores for brachytherapy is described. The method allows almost quantitative deposition of iodine-131 on dozens of silver substrates at once, with even distribution of activity per core and insignificant amounts of liquid and solid radioactive wastes, allowing the fabrication of cheaper radioactive iodine seeds for brachytherapy. Copyright © 2016. Published by Elsevier Ltd.

  7. Limiting factors to advancing thermal battery technology for naval applications

    NASA Astrophysics Data System (ADS)

    Davis, Patrick B.; Winchester, Clinton S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  8. Photocatalytic degradation of H2S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel.

    PubMed

    Lashgari, Mohsen; Ghanimati, Majid

    2018-03-05

    H 2 S is a corrosive, flammable and noxious gas, which can be neutralized by dissolving in alkaline media and employed as H 2 -source by utilizing inside semiconductor-assisted/photochemical reactors. Herein, through a facile hydrothermal route, a ternary nanostructured solid-solution of iron, zinc and sulfur was synthesized in the absence and presence of Ag-dopant, and applied as efficient photocatalyst of hydrogen fuel production from H 2 S media. The effect of pH on the photocatalyst performance was scrutinized and the maximum activity was attained at pH=11, where HS - concentration is high. BET, diffuse reflectance and photoluminescence studies indicated that the ternary solid-solution photocatalyst, in comparison to its solid-solvent (ZnS), has a greater surface area, stronger photon absorption and less charge recombination, which justify its superiority. Moreover, the effect of silver-dopant on the photocatalyst performance was examined. The investigations revealed that although silver could boost the absorption of photons and increase the surface area, it could not appreciably enhance the photocatalyst performance due to its weak influence on retarding the charge-recombination process. Finally, the phenomenon was discussed in detail from mechanistic viewpoint. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Escondida Mine, Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Full resolution visible and near-infrared image (1.4 MB) Full resolution shortwave infrared image (1.6 MB) This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image covers 30 by 23 km (full images 30 x 37 km) in the Atacama Desert, Chile, and was acquired on April 23, 2000. The Escondida copper, gold, and silver open-pit mine is at an elevation of 3050 m, and began operations in 1990. Current capacity is 127,000 tons/day of ore; in 1999 production totaled 827,000 tons of copper, 150,000 ounces of gold, and 3.53 million ounces of silver. Primary concentrate of the ore is done on-site; the concentrate is then sent to the coast for further processing through a 170 km long, 9-inch pipe. Escondida is related geologically to three porphyry bodies intruded along the Chilean West Fissure Fault System. A high grade supergene cap overlies primary sulfide ore. The top image is a conventional 3-2-1 (near infrared, red, green) RGB composite. The bottom image displays shortwave infrared bands 4-6-8 (1.65um, 2.205um, 2.33um) in RGB, and highlights the different rock types present on the surface, as well as the changes caused by mining. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  10. Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone

    NASA Astrophysics Data System (ADS)

    Xiang, Feng; Gan, Weiping

    2018-01-01

    In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.

  11. Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction

    NASA Astrophysics Data System (ADS)

    Anis, Badawi; Mostafa, A. M.; El Sayed, Z. A.; Khalil, A. S. G.; Abouelsayed, A.

    2018-07-01

    We present the preparation of highly conducting, transparent, and flexible reduced graphene oxide/silver nanowires (rGO/SNWs) substrates using non-thermal laser photoreduction method. High quality monolayers graphene oxide (GO) solution has been prepared by the chemical oxidation of thermally expanded large area natural graphite. Silver nanowires was prepared by using the typical polyol method. Uniform hybrid GO/silver nanowires (GO/SNWs) was prepared by growing the nanowires from silver nuclei in the presence of GO. Uniform and high-quality rGO/SNWs thin films were prepared using a dip-coating technique and were reduced to highly electrically conductive graphene and transparent conductive films using non-thermal laser scribe method. The laser scribed rGO/SNWs hybrid film exhibited 80% transparency with 70 Ω □-1 after 20 min of dipping in GO/SNWs solution.

  12. Changes in optical spectra of silver nanoparticles doped europium ions

    NASA Astrophysics Data System (ADS)

    Rasmagin, S. I.; Krasovskii, V. I.; Novikov, I. K.; Kryshtob, V. I.; Kazaryan, M. A.

    2018-04-01

    Colloidal solutions of Ag silver nanoparticles were studied in the presence of Eu3+ ions and in the absence of their. Silver nanoparticles were created by the method of green synthesis using an aqueous solution of mint. Optical and electronic spectroscopy have been used to explore the interaction of these ions with silver nanoparticles.

  13. Some advances in the silver physical development of latent prints on paper

    NASA Astrophysics Data System (ADS)

    Cantu, Antonio A.; Leben, Deborah A.; Wilson, Kelley

    2003-09-01

    Silver physical development, a now-abandoned technique used for developing photographic film or paper, is one of the most powerful methods for visualizing latent prints on paper. The method develops the water-insoluble components in the print residue. These components include the "fats and oils" or lipids found on the skin of fingers. The resulting developed print, referred to as a silver physically developed (Ag-PD) print, is made up of (gray to black) silver particles adhered to the fingerprint residue. Such prints are usually intensified (made darker) with a hypochlorite treatment. This process converts silver to silver oxide making the Ag-PD print become a Ag2O-PD prints. Often such (Ag-PD or Ag2O-PD) prints are found on areas with heavy or patterned printing making them difficult to see. This work resolves this problem by chemically lightening the print and darkening (suppressing) the interfering background.

  14. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae.

    PubMed

    Kalpana, Duraisamy; Lee, Yang Soo

    2013-03-05

    Silver nanoparticles were synthesized by biological method using cultural filtrate of Klebsiella pneumoniae cultured under simulated microgravity and silver nitrate solution as precursor. The nanoparticles exhibited typical plasmon absorption maximum of silver nanoparticles between 405 and 407 nm. Spherical silver nanoparticles were found to have size between 15 and 37 nm by TEM analysis. XRD pattern corresponding to planes (111), (200), (220) (311) revealed the crystalline nature of the biosynthesized silver nanoparticles. FTIR spectrum proposed stabilization of silver nanoparticles by the protein molecules present in the cultural filtrate. The silver nanoparticles exhibited high bactericidal activity against Salmonella enterica, Escherichia coli and moderate bactericidal activity against Streptococcus pyogenes. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Preliminary results of spectral induced polarization measurements, Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Smith, Bruce D.; Tippens, C.L.; Flanigan, V.J.; Sadek, Hamdy

    1983-01-01

    Laboratory spectral induced polarization (SIP) measurements on 29 carbonaceous schist samples from the Wadi Bidah district show that most are associated with very long polarization decays or, equivalently, large time constants. In contrast, measurements on two massive sulfide samples indicate shorter polarization decays or smaller time constants. This difference in time constants for the polarization process results in two differences in the phase spectra in the frequency range of from 0.06 to 1Hz. First, phase values of carbonaceous rocks generally decrease as a function of increasing frequency. Second, phase values of massive sulfide-bearing rocks increase as a function of increasing frequency. These results from laboratory measurements agree well with those from other reported SIP measurements on graphites and massive sulfides from the Canadian Shield. Four SIP lines, measured by using a 50-m dipole-dipole array, were surveyed at the Rabathan 4 prospect to test how well the results of laboratory sample measurements can be applied to larger scale field measurements. Along one line, located entirely over carbonaceous schists, the phase values decreased as a function of increasing frequency. Along a second line, located over both massive sulfides and carbonaceous schists as defined by drilling, the phase values measured over carbonaceous schists decreased as a function of increasing frequency, whereas those measured over massive sulfides increased. In addition, parts of two lines were surveyed down the axes of the massive sulfide and carbonaceous units. The phase values along these lines showed similar differences between the carbonaceous schists and massive sulfides. To date, the SIP survey and the SIP laboratory measurements have produced the only geophysical data that indicate an electrical difference between the massive sulfide-bearing rocks and the surrounding carbonaceous rocks in the Wadi Bidah district. However, additional sample and field measurements in areas of known mineralization would fully evaluate the SIP method as applied to various geologic environments and styles of massive sulfide mineralization. Additionally, the efficiency of SIP surveys in delineating areas of sulfide mineralization might be improved by surveying lines down the axes of known electrical conductors. An evaluation of the applied research done on the SIP method to date suggests that this technique offers significant exploration applications to massive sulfide exploration in the Kingdom of Saudi Arabia.

  16. Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei

    2015-12-15

    Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less

  17. An experimental and theoretical method for determination of standard electrode potential for the redox couple diphenyl sulfone/diphenyl sulfide

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Wei, K. X.; Lv, J. S.

    2013-12-01

    DFT calculations were performed for diphenyl sulfide and diphenyl sulfone. The electrochemistry of diphenyl sulfide on the gold electrode was investigated by cyclic voltammety and the results show that standard electrode potential for redox couple diphenyl sulfone/diphenyl sulfide is 1.058 V, which is consistent with that of 1.057 calculated at B3LYP/6-31++G( d, p)-IEFPCM level. The front orbit theory and Mulliken charges of molecular explain well on the oxidation of diphenyl sulfide in oxidative desulfurization. According to equilibrium theory the experimental equilibrium constant in the oxidative desulfurization of H2O2, is 1.17 × 1048, which is consistent with the theoretical equilibrium constant is 2.18 × 1048 at B3LYP/6-31++G( d, p)-IEFPCM level.

  18. Comparison studies on catalytic properties of silver nanoparticles biosynthesized via aqueous leaves extract of Hibiscus rosa sinensis and Imperata cylindrica

    NASA Astrophysics Data System (ADS)

    Fairuzi, Afiza Ahmad; Bonnia, Noor Najmi; Akhir, Rabiatuladawiyah Md.; Akil, Hazizan Md; Yahya, Sabrina M.; Rahman, Norafifah A.

    2018-05-01

    Synthesis of silver nanoparticles has been developed by using aqueous leaves extract (ALE) of Hibiscus rosa sinensis (H. rosa sinensis) and Imperata cylindrica (I. cylindrica). Both plants extract acts as reducing and capping agent. The colour change in reaction mixture (pale yellow to dark brown) was observed during the synthesis process. The formation of silver nanoparticles was confirmed by surface Plasmon Resonance (SPR) at range 300-700 nm for both leaves using UV-Vis Spectroscopy. The reduction of silver ions to silver nanoparticles was completed within 2 hour for H. rosa sinensis and 30 minutes for I. cylindrica extract. The synthesized nanoparticles were characterized using UV-Vis spectroscopy, field emission scanning electron microscope (FESEM) and Fourier transform infrared (FTIR) spectroscopy. The morphology of silver nanoparticles was found to be different when synthesized using different plant extract. In addition, this study also reported on the effect of silver nanoparticles on the degradation of organic dye by sodium borohydride (NaBH4). The silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method compared to the conventional physical and physical methods. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer is established in the present study.

  19. Uncaria gambir Roxb. mediated green synthesis of silver nanoparticles using diethanolamine as capping agent

    NASA Astrophysics Data System (ADS)

    Labanni, A.; Zulhadjri; Handayani, D.; Arief, S.

    2018-01-01

    Studies of silver nanoparticles preparation has been developed increasingly due to the wide application in various areas and field, such as medicine, energy, catalysis, and electronic. An environmental-friendly method is needed to fabricate biocompatible silver nanoparticles without producing hazardous materials to the environment. In this study, we synthesized silver nanoparticles by green synthesis method, using leaf extract of gambir (Uncaria gambir Roxb.) as bioreducing agent and aqueous diethanolamine (DEA) solution as capping agents. The AgNO3/DEA molar ratio was varied to investigate the effect of DEA concentration to the properties of silver nanoparticles. The formation of silver nanoparticles was indicated by colour changes to yellowish brown and confirmed by result of UV-Vis spectrophotometer analysis which shown absorption band at 400 to 410 nm. The absorbance was increased to the reaction time of 24 hours, and was decrease by the increasing of DEA concentration in reaction. TEM analysis showed that prepared silver nanoparticles were spherical in shape with diameter of 3,5 - 45,5 nm. The diameter of DEA capped silver nanoparticles was 13 nm, smaller than uncapped silver nanoparticles which was 26 nm It exhibited good stability to time reaction of one month which was potential to be developed in some fields.

  20. An indirect method for quantitation of cellular zinc content of Timm-stained cerebellar samples by energy dispersive X-ray microanalysis.

    PubMed

    Farkas, I; Szerdahelyi, P; Kása, P

    1988-01-01

    The absolute concentration of zinc in the Purkinje cells of the rat cerebellum was determined by means of energy dispersive X-ray microanalysis (EDAX). Gelatine blocks with known zinc concentrations were stained by Timm's sulphide-silver method, and their silver concentrations were measured by EDAX. A linear correlation was found between the zinc and silver concentrations and this linear function was used as a quantitative calibration for evaluation of sulphide-silver staining, after perfusion with sodium-sulphide solution, fixation with glutaraldehyde, cryostat sectioning and staining of cerebellar samples in Timm's reagent.

  1. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO 3 contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO 3 concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  3. Magnetic MoS2 on multiwalled carbon nanotubes for sulfide sensing.

    PubMed

    Li, Chunxiang; Zhang, Dan; Wang, Jiankang; Hu, Pingan; Jiang, Zhaohua

    2017-07-04

    A novel hybrid metallic cobalt insided in multiwalled carbon nanotubles/molybdenum disulfide (Co@CNT/MoS 2 ) modified glass carbon electrode (GCE) was fabricated with a adhesive of Nafion suspension and used as chemical sensors for sulfide detection. Single-layered MoS 2 was coated on CNTs through magnetic traction force between paramagnetic monolayer MoS 2 and Co particles in CNTs. Co particles faciliated the collection of paramagnetic monolayer MoS 2 exfoliated from bulk MoS 2 in solution. Amperometric analysis, cycle voltammetry, cathodic stripping analysis and linear sweep voltammetry results showed the Co@CNT/MoS 2 modified GCE exhibited excellent electrochemical activity to sulfide in buffer solutions, but amperometric analysis was found to be more sensitive than the other methods. The amperometric response result indicated the Co@CNT/MoS 2 -modified GCE electrode was an excellent electrochemical sensor for detecting S 2- with a detection limit of 7.6 nM and sensitivity of 0.23 mA/μM. The proposed electrode was used for the determination of sulfide levels in hydrogen sulfide-pretreated fruits, and the method was also verified with recovery studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preliminary mineralogic, fluid inclusion, and stable isotope study of the Mahd adh Dhahab gold mine, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Rye, Robert O.; Hall, W.E.; Cunningham, C.G.; Czamanske, G.K.; Afifi, A.M.; Stacey, J.S.

    1983-01-01

    The Mahd adh Dhahab mine, located about 280 km northeast of Jiddah, Kingdom of Saudi Arabia, has yielded more than 2 million ounces of gold from periodic production during the past 3,000 years. A new orebody on the southern side of the ancient workings, known as the South orebody, is being developed by Gold Fields-Mahd adh Dhahab Limited. A suite of samples was collected from the newly exposed orebody for preliminary mineralogic, stable isotope, fluid inclusion, and geochemical studies. The Mahd adh Dhahab deposit is in the carapace of a Proterozoic epizonal rhyolite stock that domed pyroclastic and metasedimentary rocks of the Proterozoic Halaban group. Ore of gold, silver, copper, zinc, tellurium, and lead is associated with north-trending, steeply dipping quartz veins in a zone 1,000 m long and 400 m wide. The veins include an assemblage of quartz-chlorite-pyrite-hematite-chalcopyrite-sphalerite-precious metals, which is similar to the mineral assemblage at the epithermal deposit at Creede, Colorado. The primary ore contains abundant chalcopyrite, sphalerite, and pyrite in addition to a complex precious metal assemblage. Gold and silver occur principally as minute grains of telluride minerals disseminated in quartz-chlorite-hematite and as inclusions in chalcopyrite and sphalerite. Telluride minerals include petzite, hessite, and sylvanite. Free gold is present but not abundant. All of the vein-quartz samples contained abundant, minute inclusions of both low-density, vapor-rich fluids and liquid-rich fluids. Primary fluid inclusions yielded homogenization temperatures of from 110? to 238? C. Preliminary light-stable isotope studies of the sulfide minerals and quartz showed that all of the d34S values are between 1.2 and 6.3 per mil, which is a typical range for hydrothermal sulfide minerals that derive their sulfur from an igneous source. The data-suggest that the sulfide sulfur isotope geochemistry was controlled by exchange with la large sulfur isotope reservoir at depth. The d18O values of all stages of vein quartz in the South orebody range between 8.5 and 11.1 per mil. This range is similar to that for quartz from the North orebody and indicates that the hydrothermal system consisted of dominantly exchanged meteoric water, which was uniform in temperature and d18O content throughout the area during the entire period of mineralization. Lead isotope analyses of two galena samples indicate that the lead in the South orebody is less radiogenic than that from the North orebody and confirm that the lead was derived from oceanic crust approximately 700 Ma ago.

  5. Flow Synthesis of Silver Nanowires for Semitransparent Solar Cell Electrodes: A Life Cycle Perspective.

    PubMed

    Espinosa, Nieves; Søndergaard, Roar R; Jørgensen, Mikkel; Krebs, Frederik C

    2016-04-21

    Silver nanowires (AgNWs) were prepared on a 5 g scale using either the well-known batch synthesis following the polyol method or a new flow synthesis method. The AgNWs were employed as semitransparent electrode materials in organic photovoltaics and compared to traditional printed silver electrodes based on micron sized silver flakes using life cycle analysis and environmental impact analysis methods. The life cycle analysis of AgNWs confirms that they provide an avenue to low-impact semitransparent electrodes. We find that the benefit of AgNWs in terms of embodied energy is less pronounced than generally assumed but that the toxicological and environmental benefits are significant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aromatic and heterocyclic perfluoroalkyl sulfides. Methods of preparation

    PubMed Central

    2010-01-01

    Summary This review covers all of the common methods for the syntheses of aromatic and heterocyclic perfluoroalkyl sulfides, a class of compounds which is finding increasing application as starting materials for the preparation of agrochemicals, pharmaceutical products and, more generally, fine chemicals. A systematic approach is taken depending on the mode of incorporation of the SRF groups and also on the type of reagents used. PMID:20978611

  7. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract

    PubMed Central

    Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H

    2013-01-01

    The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. PMID:23620666

  8. Silver-catalyzed synthesis of amides from amines and aldehydes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  9. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  10. Denitrifying sulfide removal process on high-salinity wastewaters.

    PubMed

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at <10 g/L NaCl to autotrophic denitrifiers at >10 g/L NaCl.

  11. Stopping cross sections for 0.25-3.0-MeV He-4 ions in cadmium sulfide

    NASA Technical Reports Server (NTRS)

    Miller, W. E.; Hutchby, J. A.

    1975-01-01

    Stopping cross sections of He-4 ions with energies between 0.25 and 3.0 MeV have been measured for cadmium sulfide with a probable error of plus or minus 7% to 8%. The experimental method utilized the Rutherford backscattering technique and measured the energy loss of elastically scattered He-4 ions from films of cadmium sulfide sputtered on carbon substrates. The experimental data are compared with recent experimental and theoretical results.

  12. High conducting oxide--sulfide composite lithium superionic conductor

    DOEpatents

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  13. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    NASA Astrophysics Data System (ADS)

    Junaidi, Yunus, Muhammad; Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  14. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junaidi; Departement of Physics, Lampung University, Bandar Lampung; Triyana, Kuwat, E-mail: triyana@ugm.ac.id

    2016-04-19

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able tomore » control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less

  15. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Department of Physics, Lampung University, Bandar Lampung; Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were alsomore » able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less

  16. Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.

    PubMed

    Yu, Chen-Chiang; Baek, Jong Dae; Su, Chun-Hao; Fan, Liangdong; Wei, Jun; Liao, Ying-Chih; Su, Pei-Chen

    2016-04-27

    In this work we report a porous silver thin film cathode that was fabricated by a simple inkjet printing process for low-temperature solid oxide fuel cell applications. The electrochemical performance of the inkjet-printed silver cathode was studied at 300-450 °C and was compared with that of silver cathodes that were fabricated by the typical sputtering method. Inkjet-printed silver cathodes showed lower electrochemical impedance due to their porous structure, which facilitated oxygen gaseous diffusion and oxygen surface adsorption-dissociation reactions. A typical sputtered nanoporous silver cathode became essentially dense after the operation and showed high impedance due to a lack of oxygen supply. The results of long-term fuel cell operation show that the cell with an inkjet-printed cathode had a more stable current output for more than 45 h at 400 °C. A porous silver cathode is required for high fuel cell performance, and the simple inkjet printing technique offers an alternative method of fabrication for such a desirable porous structure with the required thermal-morphological stability.

  17. High-Throughput Fabrication Method for Producing a Silver-Nanoparticles-Doped Nanoclay Polymer Composite with Novel Synergistic Antibacterial Effects at the Material Interface.

    PubMed

    Cai, Shaobo; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2017-06-28

    In this study, we report a high-throughput fabrication method at industrial pilot scale to produce a silver-nanoparticles-doped nanoclay-polylactic acid composite with a novel synergistic antibacterial effect. The obtained nanocomposite has a significantly lower affinity for bacterial adhesion, allowing the loading amount of silver nanoparticles to be tremendously reduced while maintaining satisfactory antibacterial efficacy at the material interface. This is a great advantage for many antibacterial applications in which cost is a consideration. Furthermore, unlike previously reported methods that require additional chemical reduction processes to produce the silver-nanoparticles-doped nanoclay, an in situ preparation method was developed in which silver nanoparticles were created simultaneously during the composite fabrication process by thermal reduction. This is the first report to show that altered material surface submicron structures created with the loading of nanoclay enables the creation of a nanocomposite with significantly lower affinity for bacterial adhesion. This study provides a promising scalable approach to produce antibacterial polymeric products with minimal changes to industry standard equipment, fabrication processes, or raw material input cost.

  18. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Pugazhendhi, S.; Palanisamy, P. K.; Jayavel, R.

    2018-05-01

    Green synthesis techniques are developing as more simplistic and eco-friendly approach for the synthesis of metal nanoparticles compared to chemical reduction methods. Herein we report Synthesis of highly stable silver nanoparticles using Mirabillis jalapa seed extract as a reducing and capping agent. The as-prepared silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) to confirm the formation of silver nanoparticles by its characteristic surface plasmon resonance peak observed at 420 nm. The Powder X-ray diffraction (P-XRD) revealed the structure and crystalline nature of synthesized silver nanoparticles, The Fourier transform infra-red spectroscopic (FT-IR) revealed the presence of the biomolecules in the extract that acted as reducing as well stabilizing agent. The high resolution transmission electron microscopic (HRTEM) images divulged that the synthesized silver nanoparticles were spherical in shape and poly dispersed. The energy dispersive X-ray diffraction (EDX) profile revealed the elements present in the as-synthesized colloidal silver nanoparticles and its percentages. The Zeta potential measured for silver nanoparticles evidenced that the prepared silver nanoparticles owned high stability in room temperature itself. The as-synthesized silver nanoparticles (AgNPs) in colloidal form were showed good antimicrobial effects and it's were found to exhibit third order optical nonlinearity as studied by Z-scan technique using 532 nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215 M-50 diode pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles.

  19. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus.

    PubMed

    Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih

    2008-10-01

    Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.

  20. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  1. Ink composition for making a conductive silver structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Steven B.; Lewis, Jennifer A.

    An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in themore » ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.« less

  2. Flow injection method for the determination of silver concentration in drinking water for spacecrafts.

    PubMed

    Bruzzoniti, Maria Concetta; Kobylinska, Dorota Korte; Franko, Mladen; Sarzanini, Corrado

    2010-04-14

    A flow injection method has been developed for determination of silver. The method is based on a reduction reaction with sodium borohydride which leads to the formation of a colloidal species which is monitored at a wavelength of 390 nm. The reaction variables flow rate, sodium borohydride concentration and pH, which affect sensitivity, were investigated and their effects were established using a two-levels, three-factor experimental design. Further optimization of manifold variables (reaction coil and injection volume) allowed us to determine silver in the range 0.050-5.0 mg L(-1) with a minimum detectable concentration of 0.050 mg L(-1). Silver is added, as biocide, to drinking water for spacecrafts. The chemical species of silver, present in this kind of sample, were characterized by a procedure based on the selective retention of Ag(+) onto a 2.2.2. cryptand based substrate followed by determination of the non-bound and bound (after elution) Ag(+) by the FIA method. The method optimized was applied to a drinking water sample provided for the launch with the Automated Transfer Vehicle (ATV) module Jule Verne to the International Space Station (March 9, 2008). Copyright 2010 Elsevier B.V. All rights reserved.

  3. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun

    2013-12-01

    Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.

  4. Controllable synthesis of hierarchical nickel cobalt sulfide with enhanced electrochemical activity

    NASA Astrophysics Data System (ADS)

    Tie, Jinjin; Han, Jiaxi; Diao, Guiqiang; Liu, Jiwen; Xie, Zhuopeng; Cheng, Gao; Sun, Ming; Yu, Lin

    2018-03-01

    The composition of nickel cobalt sulfide has great influence on its electrochemical performance. Herein, the nickel cobalt sulfide with different composition and mixed phase were synthesized by one-step solvothermal method through changing the molar ratio of Ni to Co in the reaction system. The electrochemical measurements showed that the nickel cobalt sulfide with a theoretical molar ratio of Ni/Co to be 1.5:1.5 (NCS-2) demonstrates the superior pseudocapacitive performance with a high specific capacitance (6.47 F cm-2 at 10 mA cm-2) and a favorable Coulombic efficiency (∼99%). Whereas, when applied as the catalyst for hydrogen evolution reaction in 1 M KOH aqueous electrolyte, the nickel cobalt sulfide with a theoretical molar ratio of Ni/Co is 1:2 (NCS-1) displays better catalytic activity, and it requires a relatively lower overpotential of 282 mV to deliver the current density of 10 mA cm-2.

  5. Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with triethylenediamine.

    PubMed

    Wu, Li-Chun; Chang, Tsu-Hua; Chung, Ying-Chien

    2007-12-01

    Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-impregnated ASC-carbons removed the simulated gases.

  6. Measurements of atmospheric dimethylsulfide, hydrogen sulfide, and carbon disulfide during GTE/CITE 3

    NASA Technical Reports Server (NTRS)

    Cooper, David J.; Saltzman, Eric S.

    1993-01-01

    Measurements of atmospheric dimethylsulfide (DMS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were made over the North and South Atlantic Ocean as part of the Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 3) project. DMS and CS2 samples were collected and analyzed using an automated gas chromatography/flame photometric detection system with a sampling frequency of 10 min. H2S samples were collected using silver nitrate impregnated filters and analyzed by fluorescence quenching. The DMS data from both hemispheres have a bimodal distribution. Over the North Atlantic this reflects the difference between marine and continental air masses. Over the South Atlantic it may reflect differences in the sea surface source of DMS, corresponding to different air mass source regions. The median boundary layer H2S and CS2 levels were significantly higher in the northern hemisphere than the southern hemisphere, reflecting the higher frequency of samples influenced by pollutant and/or coastal emissions. Composite vertical profiles of DMS and H2S are similar to each other, are consistent with a sea surface source. Vertical profiles of CS2 have maxima in the free troposphere, implicating a continental source. The low levels of H2S and CS2 found in the southern hemisphere constrain the role of these compounds in global budgets to significantly less than previously estimated.

  7. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions

    DOEpatents

    Mrazek, Franklin C.; Smaga, John A.; Battles, James E.

    1983-01-01

    A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  8. Sulfide tails management within the framework of sustainable development in mineral sand mines--the case study of Sierra Rutile Ltd.

    PubMed

    Kallon, Senesie B; Jabati, Ansu M; Samura, Alusine

    2011-01-01

    The study discussed here assessed Sierra Rutile Ltd.'s (SRLs) water-cover sulfide tails management method. Monthly and quarterly water samples from SRLs Sulfide Tails Pond (STP), Total Tails Pond (TTP), and the Titan Domestic Pond (TDP) were analyzed for 15 months. Results indicated acceptable quality for the STP. From Student's t-test analysis, it was found that the mean pH of the TTP was significantly lower than that of the TDP (p < .05). Results did not indicate pollution of the TDP by SRLs tailings management. The water-cover method significantly suppressed sulfide oxidation in the STP. Concerns to be addressed, however, include potential overtopping of the pond, water level fluctuations, and the need for periodic reinforcement of the tailings embankments. A dedicated environmental monitoring campaign that includes other proximate water bodies is suggested; this should inform timely mitigation of any environmental contamination and promote sound environmental and public health outcomes.

  9. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    PubMed Central

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630

  10. Red tea leaves infusion as a reducing and stabilizing agent in silver nanoparticles synthesis

    NASA Astrophysics Data System (ADS)

    Pluta, K.; Tryba, A. M.; Malina, D.; Sobczak-Kupiec, A.

    2017-12-01

    Due to the unique properties of silver nanoparticles there is growing interest in their applications. Current trends in nanotechnology are focused on developing a new technique to synthesize nanoparticles using biological methods associated with the use of plant extracts, fungi, bacteria or essential oils. These methods are a promising alternative to conventional approaches which can minimize the use of hazardous substances. The silver nanoparticles synthesis using red tea infusion as a reducing and stabilizing agent and their characteristics have been described. Total antioxidant capacity using DPPH radical and total content of phenolic compounds by Folin-Ciocalteau method were measured in tea infusion. Synthesis of silver nanoparticles was carried out using chemical reduction at various temperatures. Furthermore, the effect of tea infusion volume added to reaction mixture on nanoparticles’ properties was investigated. Finally, nanosilver suspensions were characterized by UV-vis spectrophotometer, dynamic light scattering (DLS) scanning electron microscope (SEM) and transmission electron microscope (TEM). Moreover, phytotoxicity of silver nanoparticles was determined using Phytotestkit microbiotest.

  11. Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method.

    PubMed

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.

  12. A novel methylation derivatization method for δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Lehmann, Marco M; Fischer, Maria; Blees, Jan; Zech, Michael; Siegwolf, Rolf T W; Saurer, Matthias

    2016-01-15

    The oxygen isotope ratio (δ(18)O) of carbohydrates derived from animals, plants, sediments, and soils provides important information about biochemical and physiological processes, past environmental conditions, and geographical origins, which are otherwise not available. Nowadays, δ(18)O analyses are often performed on carbohydrate bulk material, while compound-specific δ(18)O analyses remain challenging and methods for a wide range of individual carbohydrates are rare. To improve the δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry (GC/Pyr-IRMS) we developed a new methylation derivatization method. Carbohydrates were fully methylated within 24 h in an easy-to-handle one-pot reaction in acetonitrile, using silver oxide as proton acceptor, methyl iodide as methyl group carrier, and dimethyl sulfide as catalyst. The precision of the method ranged between 0.12 and 1.09‰ for the δ(18)O values of various individual carbohydrates of different classes (mono-, di-, and trisaccharides, alditols), with an accuracy of a similar order of magnitude, despite high variation in peak areas. Based on the δ(18)O values of the main isomers, important monosaccharides such as glucose and fructose could also be precisely analyzed for the first time. We tested the method on standard mixtures, honey samples, and leaf carbohydrates extracted from Pinus sylvestris, showing that the method is also applicable to different carbohydrate mixtures. The new methylation method shows unrivalled accuracy and precision for δ(18)O analysis of various individual carbohydrates; it is fast and easy-to-handle, and may therefore find wide-spread application. Copyright © 2015 John Wiley & Sons, Ltd.

  13. The Tuscarora Au-Ag district: Eocene volcanic-hosted epithermal deposits in the Carlin gold region, Nevada

    USGS Publications Warehouse

    Castor, S.B.; Boden, D.R.; Henry, C.D.; Cline, J.S.; Hofstra, A.H.; McIntosh, W.C.; Tosdal, R.M.; Wooden, J.P.

    2003-01-01

    The Tuscarora mining district contains the oldest and the only productive Eocene epithermal deposits in Nevada. The district is a particularly clear example of association of low-sulfidation deposits with igneous activity and structure, and it is unusual in that it consists of two adjoining but physically and chemically distinct types of low-sulfidation deposits. Moreover, Tuscarora deposits are of interest because they formed contemporaneously with nearby, giant Carlin-type gold deposits. The Tuscarora deposits formed within the 39.9 to 39.3 Ma Tuscarora volcanic field, along and just outside the southeastern margin of the caldera-like Mount Blitzen volcanic center. Both deposit types formed at 39.3 Ma, contemporaneous with the only major intrusive activity in the volcanic field. No deposits are known to have formed during any of the intense volcanic phases of the field. Intrusions were the apparent heat source, and structures related to the Mount Blitzen center were conduits for hydrothermal circulation. The ore-forming fluids interacted dominantly with Eocene igneous rocks. The two deposit types occur in a northern silver-rich zone that is characterized by relatively high Ag/Au ratios (110-150), narrow alteration zones, and quartz and carbonate veins developed mostly in intrusive dacite, and in a southern gold-rich zone that is typified by relatively low Ag/Au ratios (4-14), more widespread alteration, and quartz-fissure and stockwork veins commonly developed in tuffaceous sedimentary rocks. The deposit types have similar fluid inclusion and Pb and S isotope characteristics but different geochemical signatures. Quartz veins from both zones have similar thermal and paragenetic histories and contain fluid inclusions that indicate that fluids cooled from between 260?? and 230??C to less than 200??C. Fluid boiling may have contributed to precious-metal deposition. Veins in both zones have relatively high As and Sb and low Bi, Te, and W. The silver zone has high Ca, Pb, Mn, Zn, Cd, Tl, and Se. The gold zone has high Hg and Mo. A few samples from an area of overlap between the two zones share chemical characteristics of both deposit types. The deposit types could represent a single zoned or evolving system in which hydrothermal fluids rose along structures within the silver zone, preferentially deposited Ag and base metals, and then spread into the gold zone. Alternatively, the deposit types could represent two distinct but temporally indistinguishable hydrothermal cells that only narrowly overlapped spatially. As noted in previous studies, the hydrothermal fluids that generated the Tuscarora and other epithermal deposits could have evolved from Carlin-type fluids by boiling and mixing with meteoric water. If so, the Tuscarora deposit may represent epithermal conditions above Carlin-type deposits, and Carlin-type deposits may lie beneath the district.

  14. Magnetic properties and phase transformations of iron sulfides synthesized under the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Li, S. H.; Chen, Y. H.

    2016-12-01

    The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.

  15. A paradox resolved: Sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy

    PubMed Central

    Freytag, John K.; Girguis, Peter R.; Bergquist, Derk C.; Andras, Jason P.; Childress, James J.; Fisher, Charles R.

    2001-01-01

    Vestimentiferan tubeworms, symbiotic with sulfur-oxidizing chemoautotrophic bacteria, dominate many cold-seep sites in the Gulf of Mexico. The most abundant vestimentiferan species at these sites, Lamellibrachia cf. luymesi, grows quite slowly to lengths exceeding 2 meters and lives in excess of 170–250 years. L. cf. luymesi can grow a posterior extension of its tube and tissue, termed a “root,” down into sulfidic sediments below its point of original attachment. This extension can be longer than the anterior portion of the animal. Here we show, using methods optimized for detection of hydrogen sulfide down to 0.1 μM in seawater, that hydrogen sulfide was never detected around the plumes of large cold-seep vestimentiferans and rarely detectable only around the bases of mature aggregations. Respiration experiments, which exposed the root portions of L. cf. luymesi to sulfide concentrations between 51–561 μM, demonstrate that L. cf. luymesi use their roots as a respiratory surface to acquire sulfide at an average rate of 4.1 μmol⋅g−1⋅h−1. Net dissolved inorganic carbon uptake across the plume of the tubeworms was shown to occur in response to exposure of the posterior (root) portion of the worms to sulfide, demonstrating that sulfide acquisition by roots of the seep vestimentiferan L. cf. luymesi can be sufficient to fuel net autotrophic total dissolved inorganic carbon uptake. PMID:11687647

  16. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo

    2016-05-01

    Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic ‘naphthalene’ moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems.

  17. Step-reduced synthesis of starch-silver nanoparticles.

    PubMed

    Raghavendra, Gownolla Malegowd; Jung, Jeyoung; Kim, Dowan; Seo, Jongchul

    2016-05-01

    In the present process, silver nanoparticles were directly synthesized in a single step by microwave irradiation of a mixture of starch, silver nitrate, and deionized water. This is different from the commonly adopted procedure for starch-silver nanoparticle synthesis in which silver nanoparticles are synthesized by preparing a starch solution as a reaction medium first. Thus, the additional step associated with the preparation of the starch solution was eliminated. In addition, no additional reducing agent was utilized. The adopted method was facile and straight forward, affording spherical silver nanoparticles with diameter below 10nm that exhibited good antibacterial activity. Further, influence of starch on the size of the silver nanoparticles was noticed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. GRANITE FIORDS WILDERNESS STUDY AREA, ALASKA.

    USGS Publications Warehouse

    Berg, Henry C.; Pittman, Tom L.

    1984-01-01

    Mineral surveys of the Granite Fiords Wilderness study area revealed areas with probable and substantiated mineral-resource potential. In the northeastern sector, areas of probable and substantiated resource potential for gold, sivler, and base metals in small, locally high grade vein and disseminated deposits occur in recrystallized Mesozoic volcanic, sedimentary, and intrusive rocks. In the central part, areas of probable resource potential for gold, silver, copper, and zinc in disseminated and locally massive sulfide deposits occur in undated pelitic paragneiss roof pendants. A molybdenite-bearing quartz vein has been prospected in western Granite Fiords, and molybdenum also occurs along with other metals in veins in the northeastern sector and in geochemical samples collected from areas where there is probable resource potential for low-grade porphyry molybdenum deposits in several Cenozoic plutons. No energy resource potential was identified in the course of this study.

  19. Silver nanostructures synthesis via optically induced electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung

    2016-06-01

    We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.

  20. A simple template method for hierarchical dendrites of silver nanorods and their applications in catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Peng; Zhang Milin; Hou Hongwei

    2008-03-04

    A novel strategy has been put forward to prepare hierarchical dendrites of silver nanorods via a simple integration method using 'Devarda's template' as a reducing agent and architecture template with the assistance of ultrasonic waves, in which the template was firstly fabricated and employed. The individual silver dendrite is composed of a long central trunk with secondary branches, which preferentially grew in a parallel direction with a definite angle to the trunk. The results reveal that the dendrites are single crystalline in nature and interestingly prove that the silver single crystal has the preferential orientation in <1 1 1> directionmore » in normal conditions. The contrast experiments demonstrated that both 'Devarda's template' and the ultrasonic irradiation are necessary for building hierarchically silver dendrites in a water system. Moreover, the experimental results show that the dendrites of silver nanorods are the superior electrode materials for the electrochemical sensors to detect directly NO{sub 2}{sup -} in aqueous solution.« less

  1. A Combined Theoretical and Experimental Study for Silver Electroplating

    PubMed Central

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  2. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue.

    PubMed

    Arjunan, Naresh Kumar; Murugan, Kadarkarai; Rejeeth, Chandrababu; Madhiyazhagan, Pari; Barnard, Donald R

    2012-03-01

    A biological method was used to synthesize stable silver nanoparticles that were tested as mosquito larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous 1 mM AgNO₃ to stable silver nanoparticles with an average size of 450 nm. The structure and percentage of synthesized nanoparticles was characterized by using ultraviolet spectrophotometry, X-Ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The median lethal concentrations (LC₅₀) of silver nanoparticles that killed fourth instars of Ae. aegypti, Cx. quinquefasciatus, and An. stephensi were 0.30, 0.41, and 2.12 ppm, respectively. Adult longevity (days) in male and female mosquitoes exposed as larvae to 0.1 ppm silver nanoparticles was reduced by ~30% (p<0.05), whereas the number of eggs laid by females exposed as larvae to 0.1 ppm silver nanoparticles decreased by 36% (p<0.05).

  3. A new chemical route to a hybrid nanostructure: room-temperature solid-state reaction synthesis of Ag@AgCl with efficient photocatalysis.

    PubMed

    Hu, Pengfei; Cao, Yali

    2012-08-07

    The room-temperature solid-state chemical reaction technique has been used to synthesize the silver nanoparticle-loaded semiconductor silver@silver chloride for the first time. It has the advantages of convenient operation, lower cost, less pollution, and mass production. This simple technique created a wide array of nanosized silver particles which had a strong surface plasmon resonance effect in the visible region, and built up an excellent composite structure of silver@silver chloride hybrid which exhibited high photocatalytic activity and stability towards decomposition of organic methyl orange under visible-light illumination. Moreover, this work achieved the control of composition of the silver@silver chloride composite simply by adjusting the feed ratio of reactants. It offers an alternative method for synthesising metal@semiconductor composites.

  4. Formation of hybrid nanocomposites polymethylolacrylamide/silver

    NASA Astrophysics Data System (ADS)

    Kolzunova, L. G.; Shchitovskaya, E. V.; Rodzik, I. G.

    2018-05-01

    In this study, polymethylolacrylamide/silver composites have been formed by incorporating silver nanoparticles into the pre-electrosynthesized polymer film. The composites were formed in a two-step process involving the sorption of silver nitrate by a polymer matrix followed by chemical reduction of Ag-ions. The presence of crystalline silver phase in the polymer was confirmed by X-ray phase analysis (XRD), plasmon resonance and scanning electron microscopy (SEM). The small-angle X-ray scattering (SAXS) method has obtained the distribution functions of silver particles over radii. It is established that the content of silver in composites without chitosan is 10-15 times higher than with its additive. The dependences of cyclic voltammetry in pure phosphate buffer (pH 6.86) and in the presence of hydrogen peroxide were obtained. It has been shown that polymer/silver composites exhibit selectivity to hydrogen peroxide.

  5. Quantitative determination of polysulfide in albumins, plasma proteins and biological fluid samples using a novel combined assays approach.

    PubMed

    Ikeda, Mayumi; Ishima, Yu; Shibata, Akitomo; Chuang, Victor T G; Sawa, Tomohiro; Ihara, Hideshi; Watanabe, Hiroshi; Xian, Ming; Ouchi, Yuya; Shimizu, Taro; Ando, Hidenori; Ukawa, Masami; Ishida, Tatsuhiro; Akaike, Takaaki; Otagiri, Masaki; Maruyama, Toru

    2017-05-29

    Hydrogen sulfide (H 2 S) signaling involves polysulfide (RSS n SR') formation on various proteins. However, the current lack of sensitive polysulfide detection assays poses methodological challenges for understanding sulfane sulfur homeostasis and signaling. We developed a novel combined assay by modifying Sulfide Antioxidant Buffer (SAOB) to produce an "Elimination Method of Sulfide from Polysulfide" (EMSP) treatment solution that liberates sulfide, followed with methylene blue (MB) sulfide detection assay. The combined EMSP-MB sulfide detection assay performed on low molecular weight sulfur species showed that sulfide was produced from trisulfide compounds such as glutathione trisulfide and diallyl trisulfide, but not from the thiol compounds such as cysteine, cystine and glutathione. In the case of plasma proteins, this novel combined detection assay revealed that approximately 14.7, 1.7, 3.9, 3.7 sulfide mol/mol released from human serum albumin, α 1 -anti-trypsin, α 1 -acid glycoprotein and ovalbumin, respectively, suggesting that serum albumin is a major pool of polysulfide in human blood circulation. Taken together with the results of albumins of different species, the liberated sulfide has a good correlation with cysteine instead of methionine, indicating the site of incorporation of polysulfide is cysteine. With this novel sulfide detention assay, approximately 8,000, 120 and 1100 μM of polysulfide concentrations was quantitated in human healthy plasma, saliva and tear, respectively. Our promising polysulfide specific detection assay can be a very important tool because quantitative determination of polysulfide sheds light on the functional consequence of protein-bound cysteine polysulfide and expands the research area of reactive oxygen to reactive polysulfide species. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis.

    PubMed

    Antunes, Elsa; Jacob, Mohan V; Brodie, Graham; Schneider, Philip A

    2017-12-01

    The contamination of water with silver has increased due to the widespread applications of products with silver employed as antimicrobial agent. Adsorption is a cost-effective method for silver removal from aqueous solution. In this study biochar, produced from the microwave assisted pyrolysis of biosolids, was used for silver removal from an aqueous solution. The adsorption kinetics, isotherms and thermodynamics were investigated to better understand the silver removal process by biochar. X-ray diffraction results demonstrated that silver removal was a combination two consecutive mechanisms, reduction and physical adsorption. The Langmuir model fitted the experimental data well, showing that silver removal was predominantly a surface mechanism. The thermodynamic investigation demonstrated that silver removal by biochar was an exothermic process. The final nanocomposite Ag-biochar (biochar plus silver) was used for methylene blue adsorption and photodegradation. This study showed the potential of using biochar produced from biosolids for silver removal as a promising solution to mitigate water pollution and an environmentally sustainable approach for biosolids management and re-use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

    The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

  8. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  9. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    PubMed

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    PubMed

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  11. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp

    PubMed Central

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025

  12. Precise micropatterning of silver nanoparticles on plastic substrates

    NASA Astrophysics Data System (ADS)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2017-04-01

    Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV-vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  13. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  14. Numerical modeling study of silver nano-filling based on grapefruit-type photonic crystal fiber sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Yibo; Zhang, Lei; Wang, Yuan

    2017-10-01

    In this letter, surface plasmon resonance sensors based on grapefruit-type photonic crystal fiber (PCF)with different silver nano-filling structure have been analyzed and compared though the finite element method (FEM). The regularity of the resonant wavelength changing with refractive index of the sample has been numerically simulated. The surface plasmon resonance (SPR) sensing properties have been numerically simulated in both areas of resonant wavelength and intensity detection. Numerical results show that excellent sensor resolution of 4.17×10-5RIU can be achieved as the radius of the filling silver nanowires is 150 nm by spectrum detection method. Comprehensive comparison indicates that the 150 nm silver wire filling structure is suitable for spectrum detection and 30 nm silver film coating structure is suitable for the amplitude detection.

  15. Fabrication and applications of copper sulfide (CuS) nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamraiz, Umair, E-mail: umairshamraiz@gmail.com; Hussain, Raja Azadar, E-mail: hussainazadar@gamil.com; Badshah, Amin, E-mail: aminbadshah@yahoo.com

    2016-06-15

    This review article presents different fabrication procedures (under the headlines of solvothermal routes, aerosol methods, solution methods and thermolysis), and applications (photocatalytic degradation, ablation of cancer cells, electrode material in lithium ion batteries and in gas sensing, organic solar cells, field emission properties, super capacitor applications, photoelectrochemical performance of QDSCs, photocatalytic reduction of organic pollutants, electrochemical bio sensing, enhanced PEC characteristics of pre-annealed CuS film electrodes) of copper sulfide (Covellite). - Highlights: • This review article presents the synthesis and applications of copper sulfide. • CuS has been used over the years for different applications in nanoscience. • Different syntheticmore » protocols are followed for their preparation which help in the possible modifications in the morphology of CuS.« less

  16. Method of preparing an electrochemical cell in uncharged state

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.

    1977-02-01

    A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.

  17. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  18. Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus.

    PubMed

    Manikprabhu, Deene; Cheng, Juan; Chen, Wei; Sunkara, Anil Kumar; Mane, Sunilkumar B; Kumar, Ram; das, Mousumi; N Hozzein, Wael; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    Synthesis of silver nanoparticles using microorganism are many, but there are only scanty reports using actinobacteria. In the present study, the actinobacterium of the genus Sinomonas was reported to synthesis silver nanoparticles for the first time. A photo-irradiation based method was developed for the synthesis of silver nanoparticles, which includes two day old cultural supernatant of novel species Sinomonas mesophila MPKL 26 and silver nitrate solution, exposed to sunlight. The preliminary synthesis of silver nanoparticles was noted by the color change of the solution from colorless to brown; the synthesis was further confirmed using UV-visible spectroscopy which shows a peak between 400 and 450nm. Spherical shape silver nanoparticles of size range 4-50nm were synthesized, which were characterized using transmission electron microscopy. The Fourier transform infrared spectroscopy result indicates that, the metabolite produced by the novel species S. mesophila MPKL 26 was the probable reducing/capping agent involved in the synthesis of silver nanoparticles. The synthesized silver nanoparticles maintained consistent shape with respect to different time periods. The synthesized silver nanoparticles were evaluated for the antimicrobial activity against multi drug resistant Staphylococcus aureus which show good antimicrobial activity. The method developed for synthesis is easy, requires less time (20min) and produces spherical shape nanoparticles of size as small as 4nm, having good antimicrobial activity. Hence, our study enlarges the scope of actinobacteria for the rapid biosynthesis of silver nanoparticles and can be used in formulating remedies for multi drug resistant S. aureus. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    NASA Astrophysics Data System (ADS)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  20. Determination of dextrose in peritoneal dialysis solution by localized surface plasmon resonance technique based on silver nanoparticles formation

    NASA Astrophysics Data System (ADS)

    Masrournia, Mahboube; Montazarolmahdi, Maliheh; Sani, Faramarz Aliasghari

    2017-07-01

    Determination of dextrose in peritoneal dialysis with a method based on silver nanoparticles (AgNPs) formation was investigated. In a green chemistry method, silver nanoparticles (AgNPs) were synthesized in the natural polymeric matrix of gelatin. The nanoparticles were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). Absorbance signal of AgNPs could be applied to determine the various concentrations of dextrose solutions. Drop wise and ultrasonic methods were used and compared with each other. The dynamic range of methods with limit of detection and relative standard deviations were obtained. Results for real sample (peritoneal dialysis) were satisfied.

  1. A new method for measuring low resistivity contacts between silver and YBa2Cu3O(7-x) superconductor

    NASA Technical Reports Server (NTRS)

    Hsi, Chi-Shiung; Haertling, Gene H.; Sherrill, Max D.

    1991-01-01

    Several methods of measuring contact resistivity between silver electrodes and YBa2Cu3O(7-x) superconductors were investigated; including the two-point, the three point, and the lap-joint methods. The lap-joint method was found to yield the most consistent and reliable results and is proposed as a new technique for this measurement. Painting, embedding, and melting methods were used to apply the electrodes to the superconductor. Silver electrodes produced good ohmic contacts to YBa2Cu3O(7-x) superconductors with contact resistivities as low as 1.9 x 10 to the -9th ohm sq cm.

  2. Facile Synthesis of Flower-Like Copper-Cobalt Sulfide as Binder-Free Faradaic Electrodes for Supercapacitors with Improved Electrochemical Properties

    PubMed Central

    Wang, Tianlei; Liu, Meitang; Ma, Hongwen

    2017-01-01

    Supercapacitors have been one of the highest potential candidates for energy storage because of their significant advantages beyond rechargeable batteries in terms of large power density, short recharging time, and long cycle lifespan. In this work, Cu–Co sulfides with uniform flower-like structure have been successfully obtained via a traditional two-step hydrothermal method. The as-fabricated Cu–Co sulfide vulcanized from precursor (P–Cu–Co sulfide) is able to deliver superior specific capacitance of 592 F g−1 at 1 A g−1 and 518 F g−1 at 10 A g−1 which are surprisingly about 1.44 times and 2.39 times higher than those of Cu–Co oxide electrode, respectively. At the same time, excellent cycling stability of P–Cu–Co sulfide is indicated by 90.4% capacitance retention at high current density of 10 A g−1 after 3000 cycles. Because of the introduction of sulfur during the vulcanization process, these new developed sulfides can get more flexible structure and larger reaction surface area, and will own richer redox reaction sites between the interfaces of active material/electrolyte. The uniform flower-like P–Cu–Co sulfide electrode materials will have more potential alternatives for oxides electrode materials in the future. PMID:28590417

  3. Facile Synthesis of Flower-Like Copper-Cobalt Sulfide as Binder-Free Faradaic Electrodes for Supercapacitors with Improved Electrochemical Properties.

    PubMed

    Wang, Tianlei; Liu, Meitang; Ma, Hongwen

    2017-06-07

    Supercapacitors have been one of the highest potential candidates for energy storage because of their significant advantages beyond rechargeable batteries in terms of large power density, short recharging time, and long cycle lifespan. In this work, Cu-Co sulfides with uniform flower-like structure have been successfully obtained via a traditional two-step hydrothermal method. The as-fabricated Cu-Co sulfide vulcanized from precursor (P-Cu-Co sulfide) is able to deliver superior specific capacitance of 592 F g -1 at 1 A g -1 and 518 F g -1 at 10 A g -1 which are surprisingly about 1.44 times and 2.39 times higher than those of Cu-Co oxide electrode, respectively. At the same time, excellent cycling stability of P-Cu-Co sulfide is indicated by 90.4% capacitance retention at high current density of 10 A g -1 after 3000 cycles. Because of the introduction of sulfur during the vulcanization process, these new developed sulfides can get more flexible structure and larger reaction surface area, and will own richer redox reaction sites between the interfaces of active material/electrolyte. The uniform flower-like P-Cu-Co sulfide electrode materials will have more potential alternatives for oxides electrode materials in the future.

  4. EXTRACTION AND QUANTITATIVE ANALYSIS OF ELEMENTAL SULFUR FROM SULFIDE MINERAL SURFACES BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. (R826189)

    EPA Science Inventory

    A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...

  5. Improving of enzyme immunoassay for detection and quantification of the target molecules using silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Syrvatka, Vasyl J.; Slyvchuk, Yurij I.; Rozgoni, Ivan I.; Gevkan, Ivan I.; Overchuk, Marta O.

    2014-02-01

    Modern routine enzyme immunoassays for detection and quantification of biomolecules have several disadvantages such as high cost, insufficient sensitivity, complexity and long-term execution. The surface plasmon resonance of silver nanoparticles gives reasons of creating new in the basis of simple, highly sensitive and low cost colorimetric assays that can be applied to the detection of small molecules, DNA, proteins and pollutants. The main aim of the study was the improving of enzyme immunoassay for detection and quantification of the target molecules using silver nanoparticles. For this purpose we developed method for synthesis of silver nanoparticles with hyaluronic acid and studied possibility of use these nanoparticles in direct determination of target molecules concentration (in particular proteins) and for improving of enzyme immunoassay. As model we used conventional enzyme immunoassays for determination of progesterone and estradiol concentration. We obtained the possibility to produce silver nanoparticles with hyaluronan homogeneous in size between 10 and 12 nm, soluble and stable in water during long term of storage using modified procedure of silver nanoparticles synthesis. New method allows to obtain silver nanoparticles with strong optical properties at the higher concentrations - 60-90 μg/ml with the peak of absorbance at the wavelength 400 nm. Therefore surface plasmon resonance of silver nanoparticles with hyaluronan and ultraviolet-visible spectroscopy provide an opportunity for rapid determination of target molecules concentration (especial protein). We used silver nanoparticles as enzyme carriers and signal enhancers. Our preliminary data show that silver nanoparticles increased absorbance of samples that allows improving upper limit of determination of estradiol and progesterone concentration.

  6. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; He, Wenchao; Liang, Dong; Bai, Chenguang

    2017-10-01

    The effect of Al2O3 and Al2O3/SiO2 ratio on the sulfide capacity of the molten aluminosilicate CaO-SiO2-Al2O3-MgO-TiO2 slag system with high Al2O3 content was measured at 1773 K (1500 °C) using a metal-slag equilibration method. The sulfide capacity between silicate-based and aluminate-based slag was also compared based on the thermodynamic analysis and structural characteristics of melts. At a fixed CaO/SiO2 ratio of 1.20, the sulfide capacity decreases with increasing Al2O3 content primarily due to the decrease of free oxygen (FO) and the activity of O2-. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.79 causes a significant increase in the sulfide capacity of the slags, and a slight increase is found when the Al2O3/SiO2 ratio is more than 0.79. The effect of the substitution of silica by alumina on the sulfide capacity of the slags was not only due to an increase in the activity of basic oxides ( a_{{{O}^{2 - } }} ) but also to a decrease in the stability of sulfide ( γ_{{{S}^{2 - } }} ). Moreover, a_{{{O}^{2 - } }} and γ_{{{S}^{2 - } }} increase in a similar degree, and the weaker binding electronegativity of Al3+ with oxygen atoms results in a slight increase in the final sulfide capacity in the aluminate-based slag system with Al2O3 ↔ SiO2 substitution. Five different sulfide capacity models were employed to predict the sulfide capacity, and the iso-sulfide capacity distribution diagram based on the Young's model was obtained in the high Al2O3 corner of the diagram.

  7. Ultralight Conductive Silver Nanowire Aerogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fang; Lan, Pui Ching; Freyman, Megan C.

    Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less

  8. Enhanced photoluminescence of Alq3 via patterned array silver dendritic nanostructures

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Hsiu; Hsieh, Ming-Hao; Lo, Shih-Shou

    2012-04-01

    Various silver nanostructures, semi-ball, jungle, and dendritic, are demonstrated by an electrical deposition process. The formation of silver nanostructures with various morphologies is studied by the mechanism of the diffusion limited aggregation (DLA) model. A array pattern of silver nanostructures can be obtained when the conductive substrate was used in a uniform electrical filed. A thickness 500 nm of Alq3 thin-film was covered on the silver nanostructure by thermal evaporation method. The strongest intensity of Alq3 green emission was observed when the pattern-array dendritic silver nanostructure was covered by Alq3. It can be explained with the plasmonic coupling due to the Alq3 and dendritic nanostructure. The result can help us to further application the patterned-array silver dendritic nanostructure for advanced opto-electronic device.

  9. Ultralight Conductive Silver Nanowire Aerogels

    DOE PAGES

    Qian, Fang; Lan, Pui Ching; Freyman, Megan C.; ...

    2017-09-05

    Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less

  10. BULK AND TEMPLATE-FREE SYNTHESIS OF SILVER NANOWIRES USING CAFFEINE AT ROOM TEMPERATURE

    EPA Science Inventory

    A simple eco-friendly one-pot method is described to synthesize bulk quantities of nanowires of silver (Ag) using caffeine without the need of reducing agent, surfactants, and/or large amounts of insoluble templates. Chemical reduction of silver salts with caffeine dramatically c...

  11. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue

    USDA-ARS?s Scientific Manuscript database

    A biological method was used to synthesize stable silver nanoparticles. The nanoparticles were tested as larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous AgNO3 to stable silver nanoparticles with average particle siz...

  12. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    PubMed

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Preparation and characterization of silver nanoparticles homogenous thin films

    NASA Astrophysics Data System (ADS)

    Hegazy, Maroof A.; Borham, E.

    2018-06-01

    The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.

  14. Mechanisms of Corrosion of Copper-Nickel Alloys in Sulfide-Polluted Seawater

    DTIC Science & Technology

    1981-02-01

    anaerobic bacteria, which convert the natural sulfate content of the seawater into sulfides. Also, the putrefaction of organic compounds containing...corrosion rate bozause the Cu2 0 growth3 292 probably follows a parabolic rate law. The corrosion behavior at high oxygen concentrations (> 7.0 g/m ) is...determined using the rotating ring disk electrode method or SRI’s recently developed rotating cylinder- collector electrode.3 In these methods, the

  15. Flow injection method for sulphide determination using an organic mercury compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaqoob, M.; Anwar, M.; Masood, A.S.

    1991-04-01

    A simple flow injection analysis method is described for the determination of soluble sulfide, based on the complexation of sulfide with p-hydroxymercurbenzoic acid, in the presence of dithizone used as an indicator. The reaction is very rapid, with a sampling rate of 90/hr. and requires a very short length post injection reaction coil. The detection limit and precision are 0.01 mM and 0.7%, respectively.

  16. Determination of silver in soils, sediments, and rocks by organic-chelate extraction and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Ball, J.W.; Nakagawa, H.M.

    1971-01-01

    A useful method for the determination of silver in soil, sediment, and rock samples in geochemical exploration has been developed. The sample is digested with concentrated nitric acid, and the silver extracted with triisooctyl thiophosphate (TOTP) in methyl isobutyl ketone (MIBK) after dilution of the acid digest to approximately 6 M. The extraction of silver into the organic extractant is quantitative and not affected by the nitric acid concentration from 4 M to 8 M, or by different volumes of TOTP-MIBK. The extracted silver is stable and remains in the organic phase up to several days. The silver concentration is determined by atomic absorption spectrophotometry. ?? 1971.

  17. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    NASA Astrophysics Data System (ADS)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  18. [Treatment of the infected wound with exposed silver-ring vascular graft and delayed Thiersch method of skin transplant covering ].

    PubMed

    Nenezić, Dragoslav; Pandaitan, Simon; Ilijevski, Nenad; Matić, Predrag; Gajin, Predag; Radak, Dorde

    2005-01-01

    Although the incidence of prosthetic infection is low (1%-6%), the consequences (limb loss or death) are dramatic for a patient, with high mortality rate (25%-75%) and limb loss in 40%-75% of cases. In case of Szilagyi's grade III infection, standard procedure consists of the excision of prosthesis and wound debridement. Alternative method is medical treatment. This is a case report of a patient with prosthetic infection of Silver-ring graft, used for femoropopliteal reconstruction, in whom an extreme skin necrosis developed in early postoperative period. This complication was successfully treated medically. After repeated debridement and wound-packing, the wound was covered using Thiersch skin graft.

  19. Electrochemical Study and Applications of Selective Electrodeposition of Silver on Quantum Dots.

    PubMed

    Martín-Yerga, Daniel; Rama, Estefanía Costa; Costa-García, Agustín

    2016-04-05

    In this work, selective electrodeposition of silver on quantum dots is described. The particular characteristics of the nanostructured silver thus obtained are studied by electrochemical and microscopic techniques. On one hand, quantum dots were found to catalyze the silver electrodeposition, and on the other hand, a strong adsorption between electrodeposited silver and quantum dots was observed, indicated by two silver stripping processes. Nucleation of silver nanoparticles followed different mechanisms depending on the surface (carbon or quantum dots). Voltammetric and confocal microscopy studies showed the great influence of electrodeposition time on surface coating, and high-resolution transmission electron microscopy (HRTEM) imaging confirmed the initial formation of Janus-like Ag@QD nanoparticles in this process. By use of moderate electrodeposition conditions such as 50 μM silver, -0.1 V, and 60 s, the silver was deposited only on quantum dots, allowing the generation of localized nanostructured electrode surfaces. This methodology can also be employed for sensing applications, showing a promising ultrasensitive electrochemical method for quantum dot detection.

  20. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A fast method for the determination of lead in honey samples using stabilizer-free silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bittar, Dayana Borges; Catelani, Tiago Augusto; Pezza, Leonardo; Pezza, Helena Redigolo

    2018-01-01

    A sensitive, rapid and robust method based on the use of stabilizer-free silver nanoparticles was developed for lead detection in honey. Silver nanoparticles were synthesized without the presence of any stabilizers using silver nitrate and sodium borohydride as precursors where the latter was applied as reducing agent. The optimization of the experimental variables (AgNO3 and NaBH4) for the formation of the nanoparticles was carried out using varying volumes of these solutions. Spectrophotometric measurements at 393 nm showed a linear working range between 0.0500 and 0.167 mg L- 1 lead (R = 0.994), with limits of detection (LOD) and quantification (LOQ) of 0.0135 and 0.0451 mg L- 1, respectively. The proposed method proved to be a significantly sensitive mechanism for lead detection in honey samples.

  2. Studies of reaction geometry in oxidation and reduction of the alkaline silver electrode

    NASA Technical Reports Server (NTRS)

    Butler, E. A.; Blackham, A. U.

    1971-01-01

    Two methods of surface area estimations of sintered silver electrodes have given roughness factors of 58 and 81. One method is based on constant current oxidation, the other is based on potentiostatic oxidation. Examination of both wire and sintered silver electrodes via scanning electron microscopy at various stages of oxidation have shown that important structural features are mounds of oxide. In potentiostatic oxidations these appear to form on sites instantaneously nucleated while in constant current oxidations progressive nucleation is indicated.

  3. An improved silver staining procedure for schizodeme analysis in polyacrylamide gradient gels.

    PubMed

    Gonçalves, A M; Nehme, N S; Morel, C M

    1990-01-01

    A simple protocol is described for the silver staining of polyacrylamide gradient gels used for the separation of restriction fragments of kinetoplast DNA [schizodeme analysis of trypanosomatids (Morel et al., 1980)]. The method overcomes the problems of non-uniform staining and strong background color which are frequently encountered when conventional protocols for silver staining of linear gels are applied to gradient gels. The method described has proven to be of general applicability for DNA, RNA and protein separations in gradient gels.

  4. Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method.

    PubMed

    Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui

    2016-04-20

    The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future.

  5. A refined electrofishing technique for collecting Silver Carp: Implications for management

    USGS Publications Warehouse

    Bouska, Wesley W.; Glover, David C.; Bouska, Kristen; Garvey, James E.

    2017-01-01

    Detecting nuisance species at low abundance or in newly established areas is critical to developing pest management strategies. Due to their sensitivity to disturbance and erratic jumping behavior, Silver Carp Hypophthalmichthys molitrix can be difficult to collect with traditional sampling methods. We compared catch per unit effort (CPUE) of all species from a Long Term Resource Monitoring (LTRM) electrofishing protocol to an experimental electrofishing technique designed to minimize Silver Carp evasion through tactical boat maneuvering and selective application of power. Differences in CPUE between electrofishing methods were detected for 2 of 41 species collected across 2 years of sampling at 20 sites along the Illinois River. The mean catch rate of Silver Carp using the experimental technique was 2.2 times the mean catch rate of the LTRM electrofishing technique; the increased capture efficiency at low relative abundance emphasizes the utility of this method for early detection. The experimental electrofishing also collected slightly larger Silver Carp (mean: 510.7 mm TL versus 495.2 mm TL), and nearly four times as many Silver Carp independently jumped into the boat during experimental transects. Novel sampling approaches, such as the experimental electrofishing technique used in this study, should be considered to increase probability of detection for aquatic nuisance species.

  6. Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour

    NASA Astrophysics Data System (ADS)

    Nakhjavani, Maryam; Nikkhah, V.; Sarafraz, M. M.; Shoja, Saeed; Sarafraz, Marzieh

    2017-10-01

    In this paper, silver nanoparticles are produced via green synthesis method using green tea leaves. The introduced method is cost-effective and available, which provides condition to manipulate and control the average nanoparticle size. The produced particles were characterized using x-ray diffraction, scanning electron microscopic images, UV visualization, digital light scattering, zeta potential measurement and thermal conductivity measurement. Results demonstrated that the produced samples of silver nanoparticles are pure in structure (based on the x-ray diffraction test), almost identical in terms of morphology (spherical and to some extent cubic) and show longer stability when dispersed in deionized water. The UV-visualization showed a peak in 450 nm, which is in accordance with the previous studies reported in the literature. Results also showed that small particles have higher thermal and antimicrobial performance. As green tea leaves are used for extracting the silver nanoparticles, the method is eco-friendly. The thermal behaviour of silver nanoparticle was also analysed by dispersing the nanoparticles inside the deionized water. Results showed that thermal conductivity of the silver nano-fluid is higher than that of obtained for the deionized water. Activity of Ag nanoparticles against some bacteria was also examined to find the suitable antibacterial application for the produced particles.

  7. Investigation of surface enhanced Raman spectroscopy for hemozoin detection in malaria diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan

    2016-03-01

    We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum.

  8. Novel method for synthesis of silver nanoparticles and their application on wool

    NASA Astrophysics Data System (ADS)

    Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria

    2015-08-01

    In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (RDye/Ag = [Dye]/[AgNO3]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy-dispersive X-ray spectroscopy (EDX). AgNPs loaded fabrics showed excellent antibacterial efficiency even after five washing cycles. To investigate the nature of interaction and bonding between the AgNPs and the wool substrate XPS measurements were performed.

  9. Biocompatible silver nanoparticles prepared with amino acids and a green method.

    PubMed

    de Matos, Ricardo Almeida; Courrol, Lilia Coronato

    2017-02-01

    The synthesis of nanoparticles is usually carried out by chemical reduction, which is effective but uses many toxic substances, making the process potentially harmful to the environment. Hence, as part of the search for environmentally friendly or green synthetic methods, this study aimed to produce silver nanoparticles (AgNPs) using only AgNO 3 , Milli-Q water, white light from a xenon lamp (Xe) and amino acids. Nanoparticles were synthetized using 21 amino acids, and the shapes and sizes of the resultant nanoparticles were evaluated. The products were characterized by UV-Vis, zeta potential measurements and transmission electron microscopy. The synthesis of silver nanoparticles with tryptophan and tyrosine, methionine, cystine and histidine was possible through photoreduction method. Spherical nanoparticles were produced, with sizes ranging from 15 to 30 nm. Tryptophan does not require illumination nor heating, and the solution color changes immediately after the mixing of reagents if sodium hydroxide is added to the solution (pH = 10). The Xe illumination acts as sodium hydroxide in the nanoparticles synthesis, releases H + and allows the reduction of silver ions (Ag + ) in metallic silver (Ag 0 ).

  10. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation

    PubMed Central

    Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I

    2013-01-01

    A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780

  11. Rapid Fabrication of Silver Nanowires through Photoreduction of Silver Nitrate from an Anodic-Aluminum-Oxide Template

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong

    2011-06-01

    A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.

  12. l-Cysteine-modified silver-functionalized silica-based material as an efficient solid-phase extraction adsorbent for the determination of bisphenol A.

    PubMed

    Li, Yuanyuan; Zhu, Nan; Li, Bingxiang; Chen, Tong; Ma, Yulong; Li, Qiang

    2018-02-01

    A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R 2  > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    NASA Astrophysics Data System (ADS)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  14. Theoretical studies of the low-lying states of ScO, ScS, VO, and VS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1986-01-01

    Bonding in the low-lying states of ScO, ScS, VO, and VS is theoretically studied. Excellent agreement is obtained with experimental spectroscopic constants for the low-lying states of ScO and VO. The results for VS and ScS show that the bonding in the oxides and sulfides is similar, but that the smaller electronegativity in S leads to a smaller ionic component in the bonding. The computed D0 of the sulfides are about 86 percent of the corresponding oxides, and the low-lying excited states are lower in the sulfides than in the corresponding oxides. The CPF method is shown to be an accurate and cost-effective method for obtaining reliable spectroscopic constants for these systems.

  15. Evaluation of biofilm performance as a protective barrier against biocorrosion using an enzyme electrode.

    PubMed

    Soleimani, S; Ormeci, B; Isgor, O B; Papavinasam, S

    2011-01-01

    Sulfide is known to be an important factor in microbiologically influenced corrosion (MIC) of metals and concrete deterioration in wastewater treatment structures and sewer pipelines. A sulfide biosensor was used to determine the effectiveness of Escherichia coli DH5 alpha biofilm as a protective barrier against MIC. The biofilm was shown to be effective in protecting surfaces from sulfide and helping to reduce MIC using amperometric measurements. The results also indicated that the growth conditions of E. coli DH5 alpha may have an impact on the performance of the biofilm as a sulfide barrier. The simple method provided in this work enables the comparison of several microbial biofilms and selection of the ones with potential to prevent MIC in a relatively short time.

  16. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  17. Antifungal evaluation studies of copper sulfide nano-aquaformulations and its impact on seed quality of rice ( Oryzae sativa)

    NASA Astrophysics Data System (ADS)

    Sidhu, Anjali; Barmota, Heena; Bala, Anju

    2017-11-01

    Surface capped copper sulfide nano-aquaformulations were prepared by in situ combination of copper ions with sulfide ions using sonochemical method, followed by microwave irradiations, in the presence of capping agents. Prepared nano-aquaformulations were characterized for particle size, morphology and optical properties. The in vitro antifungal evaluations studies indicated multifold efficacy against Alternaria alternata, Drechslera oryzae and Curvularia lunata in comparison to standard used. The in vivo seed treatment on discoloured paddy seeds showed the optimum results on application @ 7μg/ml for 2 h in case of citrate capped copper sulfide nanoformulation (NCuS3). Significant reduction in seed rot and seedling blight was observed with favourable effect on germination and growth parameters at this concentration.

  18. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.

    PubMed

    Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza

    2015-10-01

    Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices.

    PubMed

    Feichtmeier, Nadine S; Ruchter, Nadine; Zimmermann, Sonja; Sures, Bernd; Leopold, Kerstin

    2016-01-01

    Engineered silver nanoparticles (AgNPs) are implemented in food contact materials due to their powerful antimicrobial properties and so may enter the human food chain. Hence, it is desirable to develop easy, sensitive and fast analytical screening methods for the determination of AgNPs in complex biological matrices. This study describes such a method using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (GFAAS). A recently reported novel evaluation strategy uses the atomization delay of the respective GFAAS signal as significant indicator for AgNPs and thereby allows discrimination of AgNPs from ionic silver (Ag(+)) in the samples without elaborate sample pre-treatment. This approach was further developed and applied to a variety of biological samples. Its suitability was approved by investigation of eight different food samples (parsley, apple, pepper, cheese, onion, pasta, maize meal and wheat flour) spiked with ionic silver or AgNPs. Furthermore, the migration of AgNPs from silver-impregnated polypropylene food storage boxes to fresh pepper was observed and a mussel sample obtained from a laboratory exposure study with silver was investigated. The differences in the atomization delays (Δt(ad)) between silver ions and 20-nm AgNPs vary in a range from -2.01 ± 1.38 s for maize meal to +2.06 ± 1.08 s for mussel tissue. However, the differences were significant in all investigated matrices and so indicative of the presence/absence of AgNPs. Moreover, investigation of model matrices (cellulose, gelatine and water) gives the first indication of matrix-dependent trends. Reproducibility and homogeneity tests confirm the applicability of the method.

  20. A novel histochemical method of simultaneous detection by a single- or double-immunofluorescence and Bielschowsky's silver staining in teased rat sciatic nerves.

    PubMed

    Segura-Anaya, Edith; Flores-Miranda, Rommel; Martínez-Gómez, Alejandro; Dent, Myrna A R

    2018-07-01

    The Golgi silver method has been widely used in neuroscience for the study of normal and pathological morphology of neurons. The method has been steadily improved and Bielschowsky's silver staining method (BSSM) is widely used in various pathological conditions, like Alzheimer's disease. In this work, teased sciatic nerves were silver impregnated using BSSM. We also developed simultaneous staining by silver impregnation and single- or double-immunofluorescence of the same section in teased nerve preparations. We immunostained against non-myelinating Schwann cells and different myelinating Schwann cell domains. BSSM teased nerves show a strong staining of axons (black) and a gold-brown staining of myelinating and non-myelinating Schwann cells. We were also able to stain by immunofluorescence these BSSM teased nerves with specific molecular markers against non-myelinating Schwann cells, also against non-compact myelin such as the Schmidt-Lanterman incisures or paranodal regions and compact myelin, but not axons. In peripheral nerves, several silver impregnation methods have been used to stain nerves in paraffin sections, but not in teased nerves to enable the assessment of isolated nerve fibers. In conclusion, BSSM gives accurate information of nerve morphology and combining the procedure with immunofluorescence it would be very useful to study the molecular nerve domain organization of the nerve fibers, and to study the molecular pathology of axon degeneration, or myelin disorders, or of any peripheral neuropathy, also to study demyelination diseases in the central nervous system. Copyright © 2018. Published by Elsevier B.V.

  1. Geochemistry of Peruvian near-surface sediments

    NASA Astrophysics Data System (ADS)

    Böning, Philipp; Brumsack, Hans-Jürgen; Böttcher, Michael E.; Schnetger, Bernhard; Kriete, Cornelia; Kallmeyer, Jens; Borchers, Sven Lars

    2004-11-01

    Sixteen short sediment cores were recovered from the upper edge (UEO), within (WO) and below (BO) the oxygen minimum zone (OMZ) off Peru during cruise 147 of R/V Sonne. Solids were analyzed for major/trace elements, total organic carbon, total inorganic carbon, total sulfur, the stable sulfur isotope composition (δ 34S) of pyrite, and sulfate reduction rates (SRR). Pore waters were analyzed for dissolved sulfate/sulfide and δ 34S of sulfate. In all cores highest SRR were observed in the top 5 cm where pore water sulfate concentrations varied little due to resupply of sulfate by sulfide oxidation and/or diffusion of sulfate from bottom water. δ 34S of dissolved sulfate showed only minor downcore increases. Strong 32S enrichments in sedimentary pyrite (to -48‰ vs. V-CDT) are due to processes in the oxidative part of the sulfur cycle in addition to sulfate reduction. Manganese and Co are significantly depleted in Peruvian upwelling sediments most likely due to mobilization from particles settling through the OMZ, whereas release of both elements from reducing sediments only seems to occur in near-coastal sites. Cadmium, Mo and Re are exceptionally enriched in WO sediments (<600 m water depth). High Re and moderate Cd and Mo enrichments are seen in BO sediments (>600 m water depth). Re/Mo ratios indicate anoxic and suboxic conditions for WO and BO sediments, respectively. Cadmium and Mo downcore profiles suggest considerable contribution to UEO/WO sediments by a biodetrital phase, whereas Re presumably accumulates via diffusion across the sediment-water interface to precipitation depth. Uranium is distinctly enriched in WO sediments (due to sulfidic conditions) and in some BO sediments (due to phosphorites). Silver transfer to suboxic BO sediments is likely governed by diatomaceous matter input, whereas in anoxic WO sediments Ag is presumably trapped due to sulfide precipitation. Cadmium, Cu, Zn, Ni, Cr, Ag, and T1 predominantly accumulate via biogenic pre-concentration in plankton remains. Rhenium, Sb, As, V, U and Mo are enriched in accordance with seawater TE availability. Lead and Bi enrichment in UEO surface sediments is likely contributed by anthropogenic activity (mining). Accumulation rates of TOC, Cd, Mo, U, and V from Peruvian and Namibian sediments exceed those from the Oman Margin and Gulf of California due to enhanced preservation off Peru and Namibia.

  2. An experimental study of Fe-Ni exchange between sulfide melt and olivine at upper mantle conditions: implications for mantle sulfide compositions and phase equilibria

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    The behavior of nickel in the Earth's mantle is controlled by sulfide melt-olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe-Ni composition of molten sulfide in the Earth's upper mantle via sulfide melt-olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt X_{{{Ni}}}^{{{Sulfide}}}={{Ni}}/{{Ni+{Fe}}} (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of {f_{{{O}2}}} on Fe-Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31-46, 1995), "zero time" experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0 ± 1.0 log units more reduced than the fayalite-magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ - 1 or more oxidized (suite 4). For the reduced (suites 1-3) experiments, Fe-Ni distribution coefficients K_{{D}}{}={(X_{{{Ni}}}^{{{sulfide}}}/X_{{{Fe}}}^{{{sulfide}}})}/{(X_{{{Ni}}^{{{olivine}}}/X_{{{Fe}}}^{{{olivine}}})}} are small, averaging 10.0 ± 5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of K D (21.1-25.2). Compared to previous determinations at 100 kPa, values of K D from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (X_{{{Ni}}}^{{{sulfide}}} 0.4-0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6-0.7) at depths near 80-120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (X_{{{Ni}}}^{{{sulfide}}} 0.28) > 140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.

  3. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  4. Preparation and characterization of polyaniline-cadmium sulfide nanocomposite for gas sensor application

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.; Rafic, Sewench N.; Muhsen, Mustafa M.

    2017-09-01

    Polyaniline (PANI) was prepared by chemical oxidative polymerization of aniline monomers as emeraldine salt form. By the same method, polyaniline-cadmium sulfide nanocomposites were synthesized in the presence of different percentages (10-50 wt.%) of cadmium sulfide (CdS) which was prepared by using sol-gel method. The optical band gap was decrease with increasing of CdS concentration, that is obtained from UV-VIS measurements. From SEM and AFM, there is uniform distribution for cadmium sulfide nanoparticles in the PANI matrix. The electrical measurements of nanocomposites exhibit the effect of crystallite size and the high resistivity of CdS on the resistivity of nanocomposites. Emeraldine salt PANI, CdS and PANI-CdS nanocomposites were investigated as gas sensors. From this investigation, the sensitivity of PANI-CdS for NO2 gas increase with the increasing of operation temperature and the optimum sensitivity was obtained at 200∘C. The sensitivity of nanocomposites at best temperature (200∘C) was increased and faster response time with the increasing of CdS contents.

  5. Method of treating alkali metal sulfide and carbonate mixtures

    DOEpatents

    Kohl, Arthur L.; Rennick, Robert D.; Savinsky, Martin W.

    1978-01-01

    A method of removing and preferably recovering sulfur values from an alkali metal sulfide and carbonate mixture comprising the steps of (1) introducing the mixture in an aqueous medium into a first carbonation zone and reacting the mixture with a gas containing a major amount of CO.sub.2 and a minor amount of H.sub.2 S; (2) introducing the resultant product from step 1 into a stripping zone maintained at subatmospheric pressure, and contacting this product with steam to produce a gaseous mixture, comprising H.sub.2 S and water vapor, and a liquor of reduced sulfide content; (3) introducing the liquor of reduced sulfide content into a second carbonation zone, and reacting the liquor with substantially pure gaseous CO.sub.2 in an amount sufficient to precipitate bicarbonate crystals and produce an offgas containing CO.sub.2 and H.sub.2 S for use in step 1; (4) recovering the bicarbonate crystals from step 3, and thermally decomposing the crystals to produce an alkaline metal carbonate product and a substantially pure CO.sub.2 offgas for use in step 3.

  6. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    DOEpatents

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  7. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater.

    PubMed

    Zhai, Lin-Feng; Song, Wei; Tong, Zhong-Hua; Sun, Min

    2012-12-01

    Sulfide present in wastewaters and waste gases should be removed due to its toxicity, corrosivity, and malodorous property. Development of effective, stable, and feasible methods for sulfur recovery from sulfide attains a double objective of waste minimization and resource recovery. Here we report a novel fuel-cell-assisted iron redox (FC-IR) process for simultaneously recovering sulfur and electricity from synthetic sulfide wastewater. The FC-IR system consists of an oxidizing reactor where sulfide is oxidized to elemental sulfur by Fe(III), and a fuel cell where Fe(III) is regenerated from Fe(II) concomitantly with electricity producing. The oxidation of sulfide by Fe(III) is significantly dependent on solution pH. Increasing the pH from 0.88 to 1.96 accelerates the oxidation of sulfide, however, lowers the purity of the produced elemental sulfur. The performance of fuel cell is also a strong function of solution pH. Fe(II) is completely oxidized to Fe(III) when the fuel cell is operated at a pH above 6.0, whereas only partially oxidized below pH 6.0. At pH 6.0, the highest columbic efficiency of 75.7% is achieved and electricity production maintains for the longest time of 106 h. Coupling operation of the FC-IR system obtains sulfide removal efficiency of 99.90%, sulfur recovery efficiency of 78.6 ± 8.3%, and columbic efficiency of 58.6 ± 1.6%, respectively. These results suggest that the FC-IR process is a promising tool to recover sulfur and energy from sulfide. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers.

    PubMed

    Lin, Hui-Wen; Kustermans, Caroline; Vaiopoulou, Eleni; Prévoteau, Antonin; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2017-07-01

    The addition of iron salts is one of the most commonly used dosing strategies for sulfide control in sewers. However, iron salts decrease the sewage pH which not only reduces the effectiveness of sulfide precipitation but also enhances the release of residual sulfide to the sewer atmosphere. Equally important, concentrated iron salt solutions are corrosive and their frequent transport, handling, and on-site storage often come with Occupational Health and Safety (OH&S) concerns. Here, we experimentally demonstrated a novel sulfide control approach using electrochemical systems with parallel placed iron electrodes. This enabled combining anodic dissolved iron species release with cathodic hydroxyl anion production, which alleviates all the aforementioned concerns. A long-term experiment was successfully carried out achieving an average sulfide removal efficiency of 95.4 ± 4.4% at low voltage input of 2.90 ± 0.54 V over the course of 8 weeks. This electrochemical method was demonstrated to successfully achieve efficient sulfide control. In addition, it increases the sewage pH, thereby overcoming the drawbacks associated with the pH decrease in the case of conventional iron salt dosing. Ferrous ions were produced at an overall coulombic efficiency (CE) of 98.2 ± 1.2%, whereas oxygen evolution and direct sulfide oxidation were not observed. Short-term experiments showed that increasing either inter-electrode gap or current density increased the cell voltage associated with the increase in the ohmic drop of the system. Overall, this study highlights the practical potential of in-situ generation of dissolved iron species and simultaneous hydroxyl anion generation for efficient sulfide control in sewers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Selenium speciation in Lower Cambrian Se-enriched strata in South China and its geological implications

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng; Wen, Hanjie; Hu, Ruizhong; Zhao, Hui

    2011-12-01

    To understand the impact of Selenium (Se) into the biogeochemical cycle and implications for palaeo-redox environment, a sequential extraction method was utilized for samples including black shales, cherts, a Ni-Mo-Se sulfide layer, K-bentonite and phosphorite from Lower Cambrian Se-enriched strata in southern China. Seven species (water-soluble, phosphate exchangeable, base-soluble, acetic acid-soluble, sulfide/selenide associated, residual Se) and different oxidation states (selenate Se(VI), selenite Se(IV), organic Se, Se (0) and mineral Se(-II)) were determinated in this study. We found that the Ni-Mo-Se sulfide layer contained a significantly greater amount of Se(-II) associated with sulfides/selenides than those in host black shales and cherts. Furthermore, a positive correlation between the degree of sulfidation of iron (DOS) and the percentage of the sulfide/selenide-associated Se(-II) was observed for samples, which suggests the proportion of sulfide/selenide-associated Se(-II) could serve as a proxy for palaeo-redox conditions. In addition, the higher percentage of Se(IV) in K-bentonite and phosphorite was found and possibly attributed to the adsorption of Se by clay minerals, iron hydroxide surfaces and organic particles. Based on the negative correlations between the percentage of Se(IV) and that of Se(-II) in samples, we propose that the K-bentonite has been altered under the acid oxic conditions, and the most of black shale (and cherts) and the Ni-Mo-Se sulfide layer formed under the anoxic and euxinic environments, respectively. Concerning Se accumulation in the Ni-Mo-Se sulfide layer, the major mechanism can be described by (1) biotic and abiotic adsorption and further dissimilatory reduction from oxidized Se(VI) and Se(IV) to Se(-II), through elemental Se, (2) contribution of hydrothermal fluid with mineral Se(-II).

  10. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles.

    PubMed

    Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu

    2014-08-13

    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.

  11. Surface-enhanced Raman scattering from silver nanostructures with different morphologies

    NASA Astrophysics Data System (ADS)

    Zhang, W. C.; Wu, X. L.; Kan, C. X.; Pan, F. M.; Chen, H. T.; Zhu, J.; Chu, Paul K.

    2010-07-01

    Scanning electron microscopy and X-ray diffraction reveal that four different types of crystalline silver nanostructures including nanoparticles, nanowires, nanocubes, and bipyramids are synthesized by a solvothermal method by reducing silver nitrate with ethylene glycol using poly(vinylpyrrolidone) as an adsorption agent and adding different quantities of sodium chloride to the solution. These nanostructures which exhibit different surface plasma resonance properties in the ultraviolet-visible region are shown to be good surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G molecules. Our results demonstrate that the silver nanocubes, bipyramids with sharp corners and edges, and aggregated silver nanoparticles possess better SERS properties than the silver nanowires, indicating that they can serve as high-sensitivity substrates in SERS-based measurements.

  12. A possible oriented attachment growth mechanism for silver nanowire formation

    DOE PAGES

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; ...

    2015-04-06

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companionmore » molecular dynamics performed with the embedded atom method are in agreement with our experimental data.« less

  13. A possible oriented attachment growth mechanism for silver nanowire formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companionmore » molecular dynamics performed with the embedded atom method are in agreement with our experimental data.« less

  14. Preliminary experimental research for silver recovery from radiographic films

    NASA Astrophysics Data System (ADS)

    Cânda, L. R.; Ardelean, E.

    2017-01-01

    Global demand for silver remains steadily to about 1,000 million ounces (28349500 kg), of which around 600 million ounces (17009700 kg) are used in industrial applications. Extraction of silver from the ore is expensive and harmful to the environment and low efficiency. X-ray films represent an important worldwide consumer as research on recovery of silver from exposed radiographic films must be oriented to achieve a maximum recovery and a high purity silver, with methods through the by-products will be less polluting for the environment. The paper presents some laboratory tests referring to the recovery of silver from radiographic films by leaching with sodium hydroxide. Two series of experiments were performed with different amounts of used X-ray film.

  15. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    PubMed

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Synthesis of silver nanoparticle and its application.

    PubMed

    Pandian, A Muthu Kumara; Karthikeyan, C; Rajasimman, M; Dinesh, M G

    2015-11-01

    In this work, silver nanoparticles have been synthesized by wet chemical technique, green synthesis and microbial methods. Silver nitrate (10(-3)M) was used with aqueous extract to produce silver nanoparticles. From the results it was observed that the yield of nanoparticles was high in green synthesis. The size of the silver nanoparticles was determined from Scanning Electron Microscope analysis (SEM). Fourier Transform Infrared spectroscopy (FTIR) was carried out to determine the presence of biomolecules in them. Its cytotoxic effect was studied in cancerous cell line and normal cell line. MTT assay was done to test its optimal concentration and efficacy which gives valuable information for the use of silver nanoparticles for future cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    PubMed

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  18. Environment friendly approach for size controllable synthesis of biocompatible Silver nanoparticles using diastase.

    PubMed

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Anna, Kiran Kumar

    2017-01-01

    A green, facile method for the size selective synthesis of silver nanoparticles (AgNPs) using diastase as green reducing and stabilizing agent is reported. The thiol groups present in the diastase are mainly responsible for the rapid reaction rate of silver nanoparticles synthesis. The variation in the size and morphology of AgNPs were studied by changing the pH of diastase. The prepared silver nanoparticles were characterized by using UV-vis, XRD, FTIR, TEM and SAED. The FTIR analysis revealed the stabilization of diastase molecules on the surface of AgNPs. Additionally, in-vitro cytotoxicity experiments concluded that the cytotoxicity of the as-synthesized AgNPs towards mouse fibroblast (3T3) cell lines is dose and size dependent. Furthermore, the present method is an alternative to the traditional chemical methods of size controlled AgNPs synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  20. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  1. Silver in geological fluids from in situ X-ray absorption spectroscopy and first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Pokrovski, Gleb S.; Roux, Jacques; Ferlat, Guillaume; Jonchiere, Romain; Seitsonen, Ari P.; Vuilleumier, Rodolphe; Hazemann, Jean-Louis

    2013-04-01

    The molecular structure and stability of species formed by silver in aqueous saline solutions typical of hydrothermal settings were quantified using in situ X-ray absorption spectroscopy (XAS) measurements, quantum-chemical modeling of near-edge absorption spectra (XANES) and extended fine structure spectra (EXAFS), and first-principles molecular dynamics (FPMD). Results show that in nitrate-bearing acidic solutions to at least 200 °C, silver speciation is dominated by the hydrated Ag+ cation surrounded by 4-6 water molecules in its nearest coordination shell with mean Ag-O distances of 2.32 ± 0.02 Å. In NaCl-bearing acidic aqueous solutions of total Cl concentration from 0.7 to 5.9 mol/kg H2O (m) at temperatures from 200 to 450 °C and pressures to 750 bar, the dominant species are the di-chloride complex AgCl2- with Ag-Cl distances of 2.40 ± 0.02 Å and Cl-Ag-Cl angle of 160 ± 10°, and the tri-chloride complex AgCl32- of a triangular structure and mean Ag-Cl distances of 2.60 ± 0.05 Å. With increasing temperature, the contribution of the tri-chloride species decreases from ˜50% of total dissolved Ag in the most concentrated solution (5.9m Cl) at 200 °C to less than 10-20% at supercritical temperatures for all investigated solutions, so that AgCl2- becomes by far the dominant Ag-bearing species at conditions typical of hydrothermal-magmatic fluids. Both di- and tri-chloride species exhibit outer-sphere interactions with the solvent as shown by the detection, using FPMD modeling, of H2O, Cl-, and Na+ at distances of 3-4 Å from the silver atom. The species fractions derived from XAS and FPMD analyses, and total AgCl(s) solubilities, measured in situ in this work from the absorption edge height of XAS spectra, are in accord with thermodynamic predictions using the stability constants of AgCl2- and AgCl32- from Akinfiev and Zotov (2001) and Zotov et al. (1995), respectively, which are based on extensive previous AgCl(s) solubility measurements. These data are thus recommended for chemical equilibrium calculations in mineral-fluid systems above 200 °C. In contrast, our data disagree with SUPCRT-based datasets for Ag-Cl species, which predict large fractions of high-order chloride species, AgCl32- and AgCl43- in high-temperature saline fluids. Comparisons of the structural and stability data of Ag-Cl species derived in this study with those of their Au and Cu analogs suggest that molecular-level differences amongst the chloride complexes such as geometry, dipole moment, distances, and resulting outer-sphere interactions with the solvent may account, at least partly, for the observed partitioning of Au, Ag and Cu in vapor-brine and fluid-melt systems. In hydrothermal environments dominated by fluid-rock interactions, the contrasting affinity of these metals for sulfur ligands and the differences both in chemistry and stability of their main solid phases (Ag sulfides, Cu-Fe sulfides, and native Au) largely control the concentration and distribution of these metals in their economic deposits.

  2. Metal Oxide Nanoparticles in Electrospun Polymers and Their Fate in Aqueous Waste Streams

    NASA Astrophysics Data System (ADS)

    Hoogesteijn von Reitzenstein, Natalia

    Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays---water-soil, water-octanol, water-wastewater sludge and water-surfactant---were used to compare concentrations of silver sulfide ENPs (Ag2S-NP) and silver ENPs (AgNP) capped by four different coatings. The functional assays resulted in reproducible experiments which clearly showed variations between nanoparticle phase distributions; the findings may be a product of the effects of the different coatings of the ENPs used. In addition to phase distribution experiments, the production of hydroxyl radical (HO˙) by nanoscale titanium dioxide (TiO2) under simulated solar irradiation was investigated. Hydroxyl radical are a short-lived, highly reactive species produced by solar radiation in aquatic environments that affect ecosystem function and degrades pollutants. HO˙ is produced by photolysis of TiO2 and nitrate (NO3-); these two species were used in photolysis experiments to compare the relative loads of hydroxyl radical which nanoscale TiO2 may add upon release to natural waters. Para-chlorobenzoic acid (pCBA) was used as a probe. Measured rates of pCBA oxidation in the presence of various concentrations of TiO2 nanoparticles and NO3 - were utilized to calculate pseudo first order rate constants. Results indicate that, on a mass concentration basis in water, TiO2 produces hydroxyl radical steady state concentrations at 1.3 times more than the equivalent amount of NO3-; however, TiO 2 concentrations are generally less than one order of magnitude lower than concentrations of NO3-. This has implications for natural waterways as the amount of nanoscale TiO2 released from consumer products into natural waterways increases in proportion to its use.

  3. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    USGS Publications Warehouse

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase ± hornblende, biotite, and pyroxene phenocrysts. Seven epithermal gold-silver deposits with >1 Moz gold production, several large elemental sulfur deposits, and many large areas (10s to >100 km2) of hydrothermally altered rocks are present in the southern ancestral arc, especially south of latitude 40°N. These deposits are principally hosted by intermediate to silicic lava dome complexes; only a few deposits are associated with mafic- to intermediate-composition stratovolcanoes. Large deposits are most abundant and well developed in volcanic fields whose evolution spanned millions of years. Most deposits are hundreds of thousands to several million years younger than their host rocks, although some quartz-alunite deposits are essentially coeval with their host rocks. Variable composition and thickness of crustal basement is the primary control on mineralization along the length of the southern ancestral arc; most deposits and large alteration zones are localized in basement rock terranes with a strong continental affinity, either along the edge of the North American craton (Goldfield, Tonopah) or in an accreted terrane with continental affinities (Walker Lake terrane; Aurora, Bodie, Comstock Lode, Paradise Peak). Epithermal deposits and quartz-alunite alteration zones are scarce to absent in the northern part of the ancestral arc above an accreted island arc (Black Rock terrane) or unknown basement rocks (Modoc Plateau). Walker Lane structures and areas that underwent large magnitude extension during the Late Cenozoic (areas with Oligocene-early Miocene volcanic rocks dipping >40°) do not provide regional control on mineralization. Instead, these features may have served as local-scale conduits for mineralizing fluids.

  4. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, T.C.; Blanc, R.; Zeid, J.

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in themore » presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort to improve membrane coating solution stability resulted in the finding that membrane performance loss could be reversed for all poisoning cases except hydrogen sulfide exposure. This discovery offers the potential to extend membrane lifetime through cyclic regeneration. We also found that certain mixed carriers exhibited greater stability in reducing environments than exhibited by silver salt alone. These results offer promise that solutions to deal with carrier poisoning are possible. The main achievement of this program was the progress made in gaining a more complete understanding of the membrane stability challenges faced in the use of facilitated olefin transport membranes. Our systematic study of facilitated olefin transport uncovered the full extent of the stability challenge, including the first known identification of olefin conditioning and its impact on membrane development. We believe that significant additional fundamental research is required before facilitated olefin transport membranes are ready for industrial implementation. The best-case scenario for further development of this technology would be identification of a novel carrier that is intrinsically more stable than silver ions. If the stability problems could be largely circumvented by development of a new carrier, it would provide a clear breakthrough toward finally recognizing the potential of facilitated olefin transport. However, even if such a carrier is identified, additional development will be required to insure that the membrane matrix is a benign host for the olefin-carrier complexation reaction and shows good long-term stability.« less

  5. Assessment of sedimentary Cu availability: A comparison of biomimetic and AVS approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Mayer, L.M.

    1999-02-15

    Sedimentary Cu bioavailability during deposit feeding is determined by both the digestive physiology of the organisms and the geochemistry of the sediments. The authors assessed the contribution of these two factors by using a biomimetic approach involving extraction of Cu with digestive fluids of two deposit feeders and one suspension feeder and a geochemical approach measuring Cu associated with acid-volatile sulfide (AVS) in sediments. Cu bioavailability determined by the biomimetic method varied among species with varying digestive physiology but all showed a marked increase when SEM{sub Cu}-AVS {ge} 0, corroborating the premise underlying the AVS method in determining sedimentary Cumore » bioavailability. The existence of a positive SEM{sub Cu}-AVS threshold suggests the existence of additional Cu-binding phases or mixed Cu(I)--Cu(II) sulfides in sediments. In addition, Cu bioavailable to digestive fluids was much less than that measured as SEM{sub Cu}-AVS, indicating that the AVS method overestimates Cu bioavailability to digestive fluid of deposit feeders. Incubation of digestive fluids with two Cu-bound model phases, goethite and sulfide, corroborated the relative unavailability of sulfide-bound Cu. Subsurface deposit feeders feeding on anoxic sediments may be exposed to less Cu than their surface-feeding counterparts in Cu-contaminated environments.« less

  6. Multilevel modeling of retention and disinfection efficacy of silver nanoparticles on ceramic water filters.

    PubMed

    Mikelonis, Anne M; Lawler, Desmond F; Passalacqua, Paola

    2016-10-01

    This research examined how variations in synthesis methods of silver nanoparticles affect both the release of silver from ceramic water filters (CWFs) and disinfection efficacy. The silver nanoparticles used were stabilized by four different molecules: citrate, polyvinylpyrrolidone, branched polyethylenimine, and casein. A multilevel statistical model was built to quantify if there was a significant difference in: a) extent of silver lost, b) initial amount of silver lost, c) silver lost for water of different quality, and d) total coliform removal. Experiments were performed on location at Pure Home Water, a CWF factory in Tamale, Ghana using stored rainwater and dugout water (a local surface water). The results indicated that using dugout vs. rainwater significantly affects the initial (p-value 0.0015) and sustained (p-value 0.0124) loss of silver, but that silver type does not have a significant effect. On average, dugout water removed 37.5μg/L more initial silver and had 1.1μg/L more silver in the filtrate than rainwater. Initially, filters achieved 1.9 log reduction values (LRVs) on average, but among different silver and water types this varied by as much as 2.5 LRV units. Overall, bacterial removal effectiveness was more challenging to evaluate, but some data suggest that the branched polyethylenimine silver nanoparticles provided improved initial bacterial removal over filters which were not painted with silver nanoparticles (p-value 0.038). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Studies on the antimicrobial properties of colloidal silver nanoparticles stabilized by bovine serum albumin.

    PubMed

    Mathew, Thomas V; Kuriakose, Sunny

    2013-01-01

    Colloidal silver nanoparticles were synthesised using sol-gel method and these nanoparticles were stabilised by encapsulated into the scaffolds of bovine serum albumin. Silver nanoparticles and encapsulated products were characterised by FTIR, NMR, XRD, TG, SEM and TEM analyses. Silver nanoparticle encapsulated bovine serum albumin showed highly potent antibacterial activity towards the bacterial strains such as Staphylococcus aureus, Serratia marcescens, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    NASA Astrophysics Data System (ADS)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K.

    2016-05-01

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  9. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.

    2016-05-23

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  10. Physics and chemistry of antimicrobial behavior of ion-exchanged silver in glass.

    PubMed

    Borrelli, N F; Senaratne, W; Wei, Y; Petzold, O

    2015-02-04

    The results of a comprehensive study involving the antimicrobial activity in a silver ion-exchanged glass are presented. The study includes the glass composition, the method of incorporating silver into the glass, the effective concentration of the silver available at the glass surface, and the effect of the ambient environment. A quantitative kinetic model that includes the above factors in predicting the antimicrobial activity is proposed. Finally, experimental data demonstrating antibacterial activity against Staphylococcus aureus with correlation to the predicted model is shown.

  11. Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size

    PubMed Central

    Tsai, Dah-Shyang; Yang, Tzu-Sen; Huang, Yu-Sheng; Peng, Pei-Wen; Ou, Keng-Liang

    2016-01-01

    Being endowed with an ability of capturing and releasing oxygen, the ceria surface conventionally assumes the role of catalyzing redox reactions in chemistry. This catalytic effect also makes possible its cytotoxicity toward microorganisms at room temperature. To study this cytotoxicity, we synthesized the doped and undoped ceria particles of 8–9 nm in size using an inexpensive precipitation method and evaluated their disinfecting aptitudes with the turbidimetric and plate count methods. Among the samples being analyzed, the silver-doped ceria exhibits the highest sterilization ability, yet the undoped ceria is the most intriguing. The disinfection effect of undoped ceria is moderate in magnitude, demanding a physical contact between the ceria surface and bacteria cell wall, or the redox catalysis that can damage the cell wall and result in the cell killing. Evidently, this effect is short-range and depends strongly on dispersion of the nanoparticles. In contrast, the disinfection effects of silver-doped ceria reach out several millimeters since it releases silver ions to poison the surrounding microorganisms. Additionally, the aliovalent silver substitution creates more ceria defects. The synergetic combination, silver poisoning and heterogeneous redox catalysis, lifts and extends the disinfecting capability of silver-doped ceria to a superior level. PMID:27330294

  12. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities.

    PubMed

    Niraimathi, K L; Sudha, V; Lavanya, R; Brindha, P

    2013-02-01

    The present work focuses the use of the aqueous extract of Alternanthera sessilis Linn. (Amaranthaceae) in producing silver nanoparticles (AgNPs) from silver nitrate aqueous. Phytochemical analysis of the extract revealed the presence of alkaloid, tannins, ascorbic acid, carbohydrates and proteins and they serve as effective reducing and capping agents for converting silver nitrate into nanoparticles. The synthesized silver nanoparticles (AgNPs) were also tested for proteins and ascorbic acid. Its pH was also determined (5.63). The AgNPs obtained was characterized by UV-vis spectroscopy, FT-IR spectroscopy, SEM, Zeta sizer and TG-DSC. SEM images which revealed the presence of various shapes and sizes. FT-IR spectrum showed the AgNPs having a coating of proteins indicating a dual role of bio-molecules responsible for capping and efficient stabilization of the silver nanoparticles. Presence of impurities and melting point profile were screened by TG-DSC analyzer. AgNPs were synthesized from the silver nitrate through the reducing power of ascorbic acid present in A. sessilis leaves. In this study, we also investigated antimicrobial and antioxidant activity of green synthesized AgNPs. The antimicrobial activity is investigated by Bauer et al.'s method. Antioxidant activity was done by DPPH method. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Applying the silver-tube introduction method for thermal conversion elemental analyses and a new δ2H value for NBS 22 oil

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    The δ2HVSMOW–SLAP value of total hydrogen of the international measurement standard NBS 22 oil was determined by a new method of sealing water in silver tubes for use in a thermal conversion elemental analysis (TC/EA) reduction unit. The isotopic fractionation of water due to evaporation is virtually non-existent in this silver-tube method. A new value for the δ2HVSMOW–SLAP of NBS 22 oil, calibrated with isotopic reference waters, was determined to be −116.9 ± 0.8‰ (1σ and n = 31).

  14. Microgravity Researchers to Investigate Nanotechnology

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Cadmium sulfide -- a semiconductor material -- can be grown in nanoclusters. Small molecules of cadmium sulfide, shown here, can be prepared by traditional chemical methods. However, if larger, more uniform nanoparticles of cadmium sulfide could be fabricated, they may be used to improve electronic devices such as light emitting diodes and diode lasers. Using a NASA grant, Dr. Jimmy Mays of the University of Alabama at Birmingham is studying whether microgravity will enhance the size and shape of a nanoparticle. This experiment is managed by the Microgravity Research Program Office at NASA's Marshall Spce Flight Center in Huntsville, AL. Photo credit: NASA/Marshall Space Flight Center

  15. Microgravity

    NASA Image and Video Library

    2000-03-15

    Cadmium sulfide -- a semiconductor material -- can be grown in nanoclusters. Small molecules of cadmium sulfide, shown here, can be prepared by traditional chemical methods. However, if larger, more uniform nanoparticles of cadmium sulfide could be fabricated, they may be used to improve electronic devices such as light emitting diodes and diode lasers. Using a NASA grant, Dr. Jimmy Mays of the University of Alabama at Birmingham is studying whether microgravity will enhance the size and shape of a nanoparticle. This experiment is managed by the Microgravity Research Program Office at NASA's Marshall Spce Flight Center in Huntsville, AL. Photo credit: NASA/Marshall Space Flight Center

  16. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    PubMed

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mercury from mineral deposits and potential environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2003-01-01

    Mercury deposits are globally distributed in 26 mercury mineral belts. Three types of mercury deposits occur in these belts: silica-carbonate, hot-spring, and Almaden. Mercury is also produced as a by-product from several types of gold-silver and massive sulfide deposits, which account for 5% of the world's production. Other types of mineral deposits can be enriched in mercury and mercury phases present are dependent on deposit type. During processing of mercury ores, secondary mercury phases form and accumulate in mine wastes. These phases are more soluble than cinnabar, the primary ore mineral, and cause mercury deposits to impact the environment more so than other types of ore deposits enriched in mercury. Release and transport of mercury from mine wastes occur primarily as mercury-enriched particles and colloids. Production from mercury deposits has decreased because of environmental concerns, but by-product production from other mercury-enriched mineral deposits remains important.

  18. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties

    NASA Astrophysics Data System (ADS)

    de Jesús Ruíz-Baltazar, Álvaro; Reyes-López, Simón Yobbany; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro

    The exceptional properties of the silver nanoparticles offer several applications in the biomedicine field. The development of antibiotics which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is necessary to develop environmentally friendly methods for their synthesis. In this sense, the main objective of this work is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. The green synthesis route is based on the use of the Melissa officinalis as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against Staphylococcus aureus and Escherichia coli was confirmed. The silver nanoparticles obtained were characterized by transmission electron microscopy, X-ray diffraction, UV-vis, Raman and FT-IR spectroscopy. The observed results suggested that using Melissa officinalis, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the Staphylococcus aureus and Escherichia coli.

  19. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric

    NASA Astrophysics Data System (ADS)

    Vankar, Padma S.; Shukla, Dhara

    2012-06-01

    Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.

  20. Stability of colloidal silver nanoparticles trapped in lipid bilayer: effect of lecithin concentration and applied temperature.

    PubMed

    Barani, Hossein; Montazer, Majid; Braun, Hans-Georg; Dutschk, Victoria

    2014-12-01

    The use of silver nanoparticle on various substrates has been widespread because of its good antibacterial properties that directly depend on the stability of the silver nanoparticles in a colloidal suspension. In this study, the colloidal solutions of the silver nanoparticles were synthesised by a simple and safe method by using lecithin as a stabilising agent and their stability was examined at various temperatures. The effect of the lecithin concentrations on the stability of the synthesised silver nanoparticles was examined from 25 to 80°C at 5°C intervals, by recording the changes in the UV-vis absorption spectra, the hydrodynamic diameter and the light scattering intensity of the silver nanoparticles. In addition, the morphology of the synthesised silver nanoparticles was investigated with the low-voltage scanning electron microscopy and transmission electron microscopy. The results indicated that increasing temperature caused different changes in the size of the stabilised and the unstabilised silver nanoparticles. The size of the stabilised silver nanoparticles reduced from 38 to 36 nm during increasing temperature, which confirmed good stability.

  1. Synthesis and Characterization of Composite Hydroxyapatite-Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Charlena; Nuzulia, N. A.; Handika

    2017-03-01

    Hydroxyapatite (HAp) is commonly used as bone implant coating recently; however, the material has disadvantage such as lack of antibacterial properties, that can cause an bacterial infection. Addition of silver nanoparticles is expected to be able to provide antibacterial properties. Silver nanoparticles was obtained by reduction of AgNO3 using glucose monohydrate with microwave heating at 100p for 4 minutes. The composite of hydroxyapatite-silver nanoparticles was synthesized using chemical methods by coprecipitation suspension of Ca(OH)2 with (NH4)HPO4, followed by adding silver nanoparticles solution. The size of the synthesized silver nanoparticles was 30-50 nm and exhibited good antibacterial activity. Nevertheless, when it was composited with HAp to form HAp-AgNPs, there was no antibacterial activity due to very low concentration of silver nanoparticles. This was indicated by the absence of silver nanoparticles diffraction patterns. Infrared spectra indicated the presence of chemical shift and the results of scanning electron microscope showed size of the HAp-AgNPs composite was smaller than that of the HAp. This showed the interaction between HAp and the silver nanoparticles.

  2. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    NASA Astrophysics Data System (ADS)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  3. Preferential Solvation of Silver (I) Bromate in Methanol-Dimethylsulfoxide Mixtures

    NASA Astrophysics Data System (ADS)

    Janardhanan, S.; Kalidas, C.

    1984-06-01

    The solubiltiy of silver bromate, the Gibbs transfer energy of Ag+ and BrO3- and the solvent transport number in methanol-dimethyl sulfoxide mixtures are reported. The solubility of silver bromate increases with addition of DMSO. The Gibbs energy of transfer of the silver ion (based on the ferrocene reference method) decreases, while that of the bromate ion becomes slightly negative with the addition of DMSO. The solvent transport number A passes through a maximum (⊿ = 1.0 at XDMSO = 0.65. From these results, it is concluded that the silver ion is preferentially solvated by DMSO whereas the bromate ion shows no preferential solvation.

  4. ARSENIC DETERMINATION BY THE SILVER DIETHYLDITHIOCARBAMATE METHOD AND THE ELIMINATION OF METAL ION INTERFERENCE

    EPA Science Inventory

    The interference of metals with the determination of arsenic by the silver diethyldithiocarbamate (SDDC) Method was investigated. Low recoveries of arsenic are obtained when cobalt, chromium, molybdenum, nitrate, nickel or phosphate are at concentrations of 7 mg/l or above (indiv...

  5. Study of ecotoxicity of silver nanoparticles using algae

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.; Abramenko, N. B.

    2016-11-01

    Silver nanoparticles have been prepared and tested for their ecotoxicity using Chlorella vulgaris Beijer. algae as a hydrobiotic test organism and a photometric method of control. The toxicity was supposed to originate from Ag+ ions released into the aqueous solution. Also, the toxicity of the stabilizing agent was found to be comparable to that of silver nanoparticles.

  6. Preparation of the egg membrane bandage contained the antibacterial Ag nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jin; Duan, Guangwen; Fu, Yunzhi, E-mail: yzhfu@hainu.edu.cn

    Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous aloe leaf extracts as both the reducing and capping agent. Transmission electron microscopy analysis revealed the average size of silver nanoparticles approximately 18.05 nm. Fourier transform infrared spectroscopy observation showed the estimation of two kinds of binding sites between aqueous aloe leaf and aqueous aloe leaf with silver nanoparticles. In addition, the critical roles of the concentration of silver nitrate, temperature, and reaction time in the formation of silver nanoparticles had been illustrated. Furthermore, silver nanoparticles were deposited on egg membrane bandage, forming amore » new egg membrane bandage that contained silver nanoparticles that exhibiting excellent antibacterial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, which was 2.5 times stronger than the commercially available bandage. - Graphical Abstract: Display Omitted.« less

  7. Silver nanocluster catalytic microreactors for water purification

    NASA Astrophysics Data System (ADS)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  8. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    PubMed

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  9. Method for treating a nuclear process off-gas stream

    DOEpatents

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  10. Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.

    2005-09-01

    Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.

  11. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  12. Geology of the Copper King Mine area, Prairie Divide, Larimer County, Colorado (Part 1)

    USGS Publications Warehouse

    Sims, Paul Kibler; Phair, George

    1952-01-01

    The Copper King mine, in Larimer County, Colo., in the northern part of the Front Range of Colorado, was operated for a short time prior to World War II for copper and zino, but since 1949, when pitchblende was discovered on the mine dump, it has been worked for uranium. The bedrock in the mine area consists predominantly of pre-Cambrian (Silver Plums) granite with minor migmatite and metasediments--biotite-quartz-plagioclase gneiss, biotite schist, quartzite, amphibolite, amphibole skarn, and biotite skols. The metasediments occur as inclusions that trend northeast in the granite. This trend is essentially parallel to the prevailing foliation in the granite. At places the metasediments are crosscut sharply by the granite to form angular, partly discordant, steep-walled bodies in the granite. Faults, confined to a narrow zone that extends through the mine, cut both the pre-Cambrian rocks and the contained sulfide deposits. The Copper King fault, a breccia zone, contains a deposit of pitchblende; the other faults are believed to be later than the ore. The two types of mineral deposits--massive sulfide and pitchblende deposits--in the mine area, are of widely different mineralogy, age, and origin. The massive sulfide deposits are small and consist of pyrite, sphalerite, chalcopyrite, pyrrhotite, and in places magnetite in amphibole skarn, mice skols, and quartzite. The deposit at the Copper King mine has yielded small quantities of high-grade sphalerite ore. The massive sulfides are pyrometasomatic deposits of pre-Cambrian age. The pitchblende at the Copper King mine is principally in the Copper King vein, a tight, hard breccia zone that cuts through both granite and the massive sulfide deposit. A small part of the pitchblende is in small fractures near the vein and in boxwork pyrite adjacent to the vein; the post-ore faults, close to their intersection with the Copper King vein, contain some radioactive material, but elsewhere, so far as is known, they are barren. The pitchblende in the deposit forms a steeply plunging ore shoot that has a horizontal length of more than 50 feet and a vertical height of about 85 feet. The thickness of the ore shoot averages about 2 feet, but it ranges from a feather edge to about 4 feet. The hard pitch-blende is intimately intergrown with siderite; other gangue minerals include pyrite, quartz, and finely comminuted fragments of the wall rocks. The vein was repeatedly reopened during mineral deposition as shown by several stages of brecciation and recommended by the vein matter. The pitchblende deposit probably formed at intermediate temperatures and depths and, according to the Pb/U ratio, is about 60 million years old--an early Tertiary age.

  13. Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites

    USGS Publications Warehouse

    Piatak, N.M.; Seal, R.R.; Hammarstrom, J.M.

    2004-01-01

    Slag collected from smelter sites associated with historic base-metal mines contains elevated concentrations of trace elements such as Cu, Zn and Pb. Weathering of slag piles, many of which were deposited along stream banks, potentially may release these trace elements into the environment. Slags were sampled from the Ely and Elizabeth mines in the Vermont copper belt, from the copper Basin mining district at Ducktown, Tennessee and from the Clayton silver mine in the Bayhorse mining district, Idaho, in the USA. Primary phases in the slags include: olivine-group minerals, glass, spinels, sulfide minerals and native metals for Vermont samples; glass, sulfide minerals and native metals for the Ducktown sample; and olivine-group minerals, clinopyroxenes, spinels, sulfide minerals, native metals and other unidentified metallic compounds for Clayton slag. Olivine-group minerals and pyroxenes are dominantly fayalitic and hedenbergitic in composition, respectively and contain up to 1.25 wt.% ZnO. Spinel minerals range between magnetite and hercynite in composition and contain Zn (up to 2.07 wt.% ZnO), Ti (up to 4.25 wt.% TiO2) and Cr (up to 1.39 wt.% Cr2O3). Cobalt, Ni, Cu, As, Ag, Sb and Pb occur in the glass phase, sulfides, metallic phases and unidentified metallic compounds. Bulk slag trace-element chemistry shows that the metals of the Vermont and Tennessee slags are dominated by Cu (1900-13,500 mg/kg) and Zn (2310-10,200 mg/kg), whereas the Clayton slag is dominated by Pb (63,000 mg/kg), Zn (19,700 mg/kg), Cu (7550 mg/kg), As (555 mg/kg), Sn (363 mg/kg) and Ag (200 mg/kg). Laboratory-based leach tests indicate metals can be released under simulated natural conditions. Leachates from most slags were found to contain elevated concentrations of Cu and Zn (up to 1800 and 470 ??g/l, respectively), well in excess of the acute toxicity guidelines for aquatic life. For the Idaho slag, the concentration of Pb in the leachate (11,000 ??g/l) is also in excess of the acute toxicity guideline. Geochemical modeling of the leachate chemistry suggests that leachates from the Vermont, Tennessee and Clayton slags are saturated with amorphous silica and Al hydroxide. Therefore, the dissolution of silicate and oxide phases, the oxidation of sulfide phases, as well as the precipitation of secondary phases may control the composition of leachate from slags. The presence of secondary minerals on slag deposits in the field is evidence that these materials are reactive. The petrographic data and results of leaching tests from this study indicate slag may be a source of potentially toxic metals at abandoned mine sites.

  14. The effects of silver coating on friction coefficient and shear bond strength of steel orthodontic brackets.

    PubMed

    Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid

    2015-01-01

    Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.

  15. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of low-level silver by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    Damrau, D.L.

    1993-01-01

    Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.

  16. Towards field malaria diagnosis using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan

    2016-04-01

    We report three strategies of surface enhanced Raman spectroscopy (SERS) for β-hematin and hemozoin detection in malaria infected human blood, which can be potentially developed for field malaria diagnosis. In the first strategy, we used silver coated magnetic nanoparticles (Fe3O4@Ag) in combination with an external magnetic field to enhance the Raman signal of β-hematin. Then we developed two SERS methods without the requirement of magnetic field for malaria infection diagnosis. In Method 1, silver nanoparticles were synthesized separately and then mixed with lysed blood just like in traditional SERS measurements; while in Method 2, we developed an ultrasensitive SERS method by synthesizing silver nanoparticles directly inside the parasites of Plasmodium falciparum. Method 2 can be also used to detect single parasites in the ring stage.

  17. One-pot synthesis of silica-hybridized Ag{sub 2}S–CuS nanocomposites with tunable nonlinear optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann Mary, K.A.; Unnikrishnan, N.V., E-mail: nvu100@yahoo.com; Philip, Reji

    2015-10-15

    Highlights: • Silica modified QDs of CuS and Ag{sub 2}S is developed at room temperature. • Formation of Ag{sub 2}S/CuS nanocomposites is confirmed from XRD and FFT of HRTEM images. • The concentration dependent growth of silica modified QDs is discussed. • Nonlinear absorption observed in ns excitations is dominated by SA and ESA. • Tuning of optical limiting efficiency is achieved with relative Ag{sub 2}S content. - Abstract: In the present work we report a simple, facile route developed for preparing silica hybridized copper sulfide and silver sulfide quantum dots at room temperature. By adjusting the concentration of themore » precursors, Ag{sub 2}S can form Ag{sub 2}S–CuS nanocomposites which are self regulated in one pot. Their crystalline, structural and optical properties have been investigated in detail, and the optical limiting nature is studied from fluence-dependent transmittance measurements employing short (5 ns) laser pulses at 532 nm. Ag{sub 2}S nanoparticles are found to have large third order nonlinear optical coefficients with a relatively lower optical limiting threshold of 1.7 J cm{sup −2}, while the nonlinearity of the nanocomposites is found to lie in between that of Ag{sub 2}S and CuS nanoparticles. These results suggest pathways for designing good quality optical limiters with tunable optical limiting efficiencies by varying the constituent nanocrystal compositions.« less

  18. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix

    Past 3He shortages led to investigations into replacement options for neutron detectors in systems that previously used 3He-based technologies. The goal of this research was to investigate the feasibility of a full-scale lithium fluoride with silver activated zinc sulfide (LiF/ZnS) based neutron multiplicity counter. The LiF/ZnS based neutron multiplicity counter (LiNMC) was developed based on an iterative process between modeling and experimental measurements. Each active region of the LiNMC contains five sheets of LiF/ZnS sandwiched between six sheets of wavelength shifting plastic to form neutron detection stacks. The wavelength shifted scintillation light was collected by photomultiplier tubes located on eachmore » end of the stacks. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high density polyethylene blocks in the corners to reflect high energy neutrons and capture low energy neutrons. Preliminary calibration with a 252Cf neutron source showed that the LiNMC was able to achieve 36% neutron detection efficiency (ε) and an 11.7 μs neutron die-away time (τ) for a doubles Figure-of-merit (ε2/ τ) of 109. This is the highest doubles Figure-of-merit performance measured to-date for a 3He-free neutron multiplicity counter system. By the end of this project, the LiNMC’s basic components were integrated into a single laboratory scale system capable of proof-of-concept measurements.« less

  19. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit.

    PubMed

    Reddy, N Jayachandra; Nagoor Vali, D; Rani, M; Rani, S Sudha

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV-visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67μg/ml/24h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. © 2013.

  20. Characterization of the olfactory impact around a wastewater treatment plant: optimization and validation of a hydrogen sulfide determination procedure based on passive diffusion sampling.

    PubMed

    Colomer, Fernando Llavador; Espinós-Morató, Héctor; Iglesias, Enrique Mantilla; Pérez, Tatiana Gómez; Campos-Candel, Andreu; Lozano, Caterina Coll

    2012-08-01

    A monitoring program based on an indirect method was conducted to assess the approximation of the olfactory impact in several wastewater treatment plants (in the present work, only one is shown). The method uses H2S passive sampling using Palmes-type diffusion tubes impregnated with silver nitrate and fluorometric analysis employing fluorescein mercuric acetate. The analytical procedure was validated in the exposure chamber. Exposure periods ofat least 4 days are recommended. The quantification limit of the procedure is 0.61 ppb for a 5-day sampling, which allows the H2S immission (ground concentration) level to be measured within its low odor threshold, from 0.5 to 300 ppb. Experimental results suggest an exposure time greater than 4 days, while recovery efficiency of the procedure, 93.0+/-1.8%, seems not to depend on the amount of H2S collected by the samplers within their application range. The repeatability, expressed as relative standard deviation, is lower than 7%, which is within the limits normally accepted for this type of sampler. Statistical comparison showed that this procedure and the reference method provide analogous accuracy. The proposed procedure was applied in two experimental campaigns, one intensive and the other extensive, and concentrations within the H2S low odor threshold were quantified at each sampling point. From these results, it can be concluded that the procedure shows good potential for monitoring the olfactory impact around facilities where H2S emissions are dominant.

  1. Characterization of the olfactory impact around a wastewater treatment plant: Optimization and validation of a hydrogen sulfide determination procedure based on passive diffusion sampling.

    PubMed

    Colomer, Fernando Llavador; Espinós-Morató, Héctor; Iglesias, Enrique Mantilla; Pérez, Tatiana Gómez; Campos-Candel, Andreu; Coll Lozano, Caterina

    2012-08-01

    A monitoring program based on an indirect method was conducted to assess the approximation of the olfactory impact in several wastewater treatment plants (in the present work, only one is shown). The method uses H 2 S passive sampling using Palmes-type diffusion tubes impregnated with silver nitrate and fluorometric analysis employing fluorescein mercuric acetate. The analytical procedure was validated in the exposure chamber. Exposure periods of at least 4 days are recommended. The quantification limit of the procedure is 0.61 ppb for a 5-day sampling, which allows the H 2 S immission (ground concentration) level to be measured within its low odor threshold, from 0.5 to 300 ppb. Experimental results suggest an exposure time greater than 4 days, while recovery efficiency of the procedure, 93.0 ± 1.8%, seems not to depend on the amount of H 2 S collected by the samplers within their application range. The repeatability, expressed as relative standard deviation, is lower than 7%, which is within the limits normally accepted for this type of sampler. Statistical comparison showed that this procedure and the reference method provide analogous accuracy. The proposed procedure was applied in two experimental campaigns, one intensive and the other extensive, and concentrations within the H 2 S low odor threshold were quantified at each sampling point. From these results, it can be concluded that the procedure shows good potential for monitoring the olfactory impact around facilities where H 2 S emissions are dominant. [Box: see text].

  2. Short term serum pharmacokinetics of diammine silver fluoride after oral application

    PubMed Central

    2012-01-01

    Background There is growing interest in the use of diammine silver fluoride (DSF) as a topical agent to treat dentin hypersensitivity and dental caries as gauged by increasing published research from many parts of the world. While DSF has been available in various formulations for many years, most of its pharmacokinetic aspects within the therapeutic concentration range have never been fully characterized. Methods This preliminary study determined the applied doses (3 teeth treated), maximum serum concentrations, and time to maximum serum concentration for fluoride and silver in 6 adults over 4 h. Fluoride was determined using the indirect diffusion method with a fluoride selective electrode, and silver was determined using inductively coupled plasma-mass spectrometry. The mean amount of DSF solution applied to the 3 teeth was 7.57 mg (6.04 μL). Results Over the 4 hour observation period, the mean maximum serum concentrations were 1.86 μmol/L for fluoride and 206 nmol/L for silver. These maximums were reached 3.0 h and 2.5 h for fluoride and silver, respectively. Conclusions Fluoride exposure was below the U.S. Environmental Protection Agency (EPA) oral reference dose. Silver exposure exceeded the EPA oral reference dose for cumulative daily exposure over a lifetime, but for occasional use was well below concentrations associated with toxicity. This preliminary study suggests that serum concentrations of fluoride and silver after topical application of DSF should pose little toxicity risk when used in adults. Clinical trials registration NCT01664871. PMID:23272643

  3. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    PubMed

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  4. Charge transfer properties of pentacene adsorbed on silver: DFT study

    NASA Astrophysics Data System (ADS)

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-01

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  5. Orientation of N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide on silver nanoparticles: SERS studies.

    PubMed

    Anuratha, M; Jawahar, A; Umadevi, M; Sathe, V G; Vanelle, P; Terme, T; Meenakumari, V; Milton Franklin Benial, A

    2014-10-15

    In the present study, the silver nanoparticles were synthesized using a solution combustion method with urea as fuel. The prepared silver nanoparticles show an FCC crystalline structure with particle size of 59nm. FESEM image shows the prepared silver is a rod like structure. The surface-enhanced Raman scattering (SERS) spectrum indicates that the N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide (CS) molecule adsorbed on the silver nanoparticles. The spectral analysis reveals that the sulfonamide is adsorbed by tilted orientation on the silver surface. The Hatree Fock calculations were also performed to predict the vibrational motions of CS. This present investigation has been a model system to deduce the interaction of drugs with DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Formation of random and regular relief-phase structures on silver halide photographic emulsions by holographic methods

    NASA Astrophysics Data System (ADS)

    Ganzherli, N. M.; Gulyaev, S. N.; Gurin, A. S.; Kramushchenko, D. D.; Maurer, I. A.; Chernykh, D. F.

    2009-07-01

    The formation of diffusers and microlens rasters on silver halide emulsions by holographic methods is considered. Two techniques for converting amplitude holographic recording to relief-phase recording, selective curing and irradiation of the emulsion gelatin by short-wavelength UV radiation, are compared.

  7. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    NASA Astrophysics Data System (ADS)

    Lu, Haifei

    Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo excitation. These silver NDs acting as seeds can be re-grown into larger silver NDs with LSPR ranging from 490 nm to 590 nm, upon receiving LED irradiation with emission close to the LSPR of silver ND seeds, which are suspended in a precursor solution containing small silver nanoparticles. With the aid of centrifugation, silver NDs with high purity can be obtained. Furthermore, silver ND with a broad tuning range (LSPR 490 ~ 660 nm) can be synthesized from these seeds using irradiation from a 500 nm LED. Second, the optical properties of silver NDs and their SERS application for sensitive molecular detection are presented. Raman signal obtained from silver NDs show remarkable advantage over noble nanoparticles of other shaped, thus revealing their strong localized field enhancement. Experimental results demonstrate that average enhancement factor from individual silver ND may be as high as 106. In order to explore their application for biosensing and bioimaging, stable silica coated SERS tags based on silver ND producing high Raman intensity have been studied. Our experiment results indicate that 10-8 M 4-MBA in solution can be detected by silver NDs modified silicon chip through SERS. Simulation result on the geometry of silver ND/silica spacer/gold film/substrate shows that the Raman sensitivity of the NDs modified chip can be further improved with the insertion of a dielectric/conductor film between them. Finally, we present a photochemical method for the preparation of silver nanostructures preparation with the use of 633 nm laser. Silver nanostructures composed of silver nanoplates could be grown from small silver nanoparticles deposited on a glass substrate. The periodicity of the silver nanostructures is several micrometers, revealing that this photochemical method has the potential for "writing" silver pattern on a solid substrate. Raman spectroscopy has also been explored for real-time monitoring of silver nanostructure growth and SERS hotspots formation.

  8. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].

    PubMed

    Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao

    2015-04-01

    In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.

  9. Polypyrrole-MWCNT-Ag composites for electromagnetic shielding: Comparison between chemical deposition and UV-reduction approaches

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh

    2018-07-01

    In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.

  10. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    NASA Astrophysics Data System (ADS)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  11. A facile route towards large area self-assembled nanoscale silver film morphologies and their applications towards metal enhanced fluorescence

    DOE PAGES

    Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel; ...

    2017-04-19

    Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less

  12. Indirect spectrophotometric determination of sulfadiazine based on localized surface plasmon resonance peak of silver nanoparticles after cloud point extraction

    NASA Astrophysics Data System (ADS)

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Fattahi, Mohammad Reza; Khodaveisi, Javad

    2017-12-01

    A novel, efficient, easy to use, environmentally friendly and cost-effective methodology is developed for the indirect spectrophotometric determination of sulfadiazine in different samples. The method is based on the micelle-mediated extraction of silver sulfadiazine and converting the silver content of the resultant surfactant-rich phase to the silver nanoparticles via generation of [Ag(NH3)2]+ followed by its chemical reduction using ascorbic acid. The changes in the amplitude of localized surface plasmon resonance peak of silver nanoparticles as a function of sulfadiazine concentration in the sample solution was monitored using fiber optic linear array spectrophotometry at 457 nm. The experimental conditions were thoroughly investigated and optimized. Under the optimized condition, the developed procedure showed dynamic linear calibration within the range of 10.0-800.0 μg L- 1 with a detection limit of 2.8 μg L- 1 for sulfadiazine. The relative standard deviation of the method for six replicate measurements at 150.0 μg L- 1 of sulfadiazine was 4.7%. The developed method was successfully applied to the determination of sulfadiazine in different samples including well water, human urine, milk and pharmaceutical formulation.

  13. Preparation of silver nanoparticles in virgin coconut oil using laser ablation.

    PubMed

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-07

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.

  14. Preparation of silver nanoparticles in virgin coconut oil using laser ablation

    PubMed Central

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-01

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10−8, 1.6 × 10−8, 2.4 × 10−8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method. PMID:21289983

  15. A facile single-step synthesis of polyvinylpyrrolidone-silver nanocomposites using a conventional spray dryer

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Ho; Hyuck Kim, Yoon; Lee, Young Jin; Lee, Mi Jai; Kim, Jin-Ho; Hwang, Jonghee; Jeon, Dae-Woo

    2018-01-01

    We have developed a facile single-step synthesis of silver nanocomposite using a conventional spray dryer. We investigated the synthetic conditions by controlling the concentrations of the chemical reactants. Further, we confirmed the effect of the molecular weight of polyvinylpyrrolidones, and revealed that the molecular weight significantly affected the properties of the resultant silver nanocomposites. The long-term stability of the silver nanocomposites was tested, and little change was observed, even after storage for three months. Most of all, the simple commercial implementation, in combination with large-scale synthesis, possesses a variety of advantages, compared to conventional complicated and costly dry-process synthesis methods. Thus, our method presents opportunities for further investigation, for both lab-scale studies and large-scale industrial applications.

  16. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity

    PubMed Central

    Prasad, TNVKV; Elumalai, EK

    2011-01-01

    Objective To formulate a simple rapid procedure for bioreduction of silver nanoparticles using aqueous leaves extract of Moringa oleifera (M. oleifera). Methods 10 mL of leaf extract was mixed to 90 mL of 1 mM aqueous of AgNO3 and was heated at 60 - 80 °C for 20 min. A change from brown to reddish color was observed. Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM) was performed. Results TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions M. oleifera demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). Biological methods are good competents for the chemical procedures, which are eco-friendly and convenient. PMID:23569809

  17. Functional Iron Oxide-Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Trang, Vu Thi; Tam, Le Thi; Van Quy, Nguyen; Huy, Tran Quang; Thuy, Nguyen Thanh; Tri, Doan Quang; Cuong, Nguyen Duy; Tuan, Pham Anh; Van Tuan, Hoang; Le, Anh-Tuan; Phan, Vu Ngoc

    2017-06-01

    Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains ( Salmonella enteritidis and Klebsiella pneumoniae).

  18. Coupling multielectrode array recordings with silver labeling of recording sites to study cervical spinal network connectivity.

    PubMed

    Streeter, K A; Sunshine, M D; Patel, S R; Liddell, S S; Denholtz, L E; Reier, P J; Fuller, D D; Baekey, D M

    2017-03-01

    Midcervical spinal interneurons form a complex and diffuse network and may be involved in modulating phrenic motor output. The intent of the current work was to enable a better understanding of midcervical "network-level" connectivity by pairing the neurophysiological multielectrode array (MEA) data with histological verification of the recording locations. We first developed a method to deliver 100-nA currents to electroplate silver onto and subsequently deposit silver from electrode tips after obtaining midcervical (C3-C5) recordings using an MEA in anesthetized and ventilated adult rats. Spinal tissue was then fixed, harvested, and histologically processed to "develop" the deposited silver. Histological studies verified that the silver deposition method discretely labeled (50-μm resolution) spinal recording locations between laminae IV and X in cervical segments C3-C5. Using correlative techniques, we next tested the hypothesis that midcervical neuronal discharge patterns are temporally linked. Cross-correlation histograms produced few positive peaks (5.3%) in the range of 0-0.4 ms, but 21.4% of neuronal pairs had correlogram peaks with a lag of ≥0.6 ms. These results are consistent with synchronous discharge involving mono- and polysynaptic connections among midcervical neurons. We conclude that there is a high degree of synaptic connectivity in the midcervical spinal cord and that the silver-labeling method can reliably mark metal electrode recording sites and "map" interneuron populations, thereby providing a low-cost and effective tool for use in MEA experiments. We suggest that this method will be useful for further exploration of midcervical network connectivity. NEW & NOTEWORTHY We describe a method that reliably identifies the locations of multielectrode array (MEA) recording sites while preserving the surrounding tissue for immunohistochemistry. To our knowledge, this is the first cost-effective method to identify the anatomic locations of neuronal ensembles recorded with a MEA during acute preparations without the requirement of specialized array electrodes. In addition, evaluation of activity recorded from silver-labeled sites revealed a previously unappreciated degree of connectivity between midcervical interneurons. Copyright © 2017 the American Physiological Society.

  19. Silver diagnosis in neuropathology: principles, practice and revised interpretation

    PubMed Central

    2007-01-01

    Silver-staining methods are helpful for histological identification of pathological deposits. In spite of some ambiguities regarding their mechanism and interpretation, they are widely used for histopathological diagnosis. In this review, four major silver-staining methods, modified Bielschowsky, Bodian, Gallyas (GAL) and Campbell–Switzer (CS) methods, are outlined with respect to their principles, basic protocols and interpretations, thereby providing neuropathologists, technicians and neuroscientists with a common basis for comparing findings and identifying the issues that still need to be clarified. Some consider “argyrophilia” to be a homogeneous phenomenon irrespective of the lesion and the method. Thus, they seek to explain the differences among the methods by pointing to their different sensitivities in detecting lesions (quantitative difference). Comparative studies, however, have demonstrated that argyrophilia is heterogeneous and dependent not only on the method but also on the lesion (qualitative difference). Each staining method has its own lesion-dependent specificity and, within this specificity, its own sensitivity. This “method- and lesion-dependent” nature of argyrophilia enables operational sorting of disease-specific lesions based on their silver-staining profiles, which may potentially represent some disease-specific aspects. Furthermore, comparisons between immunohistochemical and biochemical data have revealed an empirical correlation between GAL+/CS-deposits and 4-repeat (4R) tau (corticobasal degeneration, progressive supranuclear palsy and argyrophilic grains) and its complementary reversal between GAL-/CS+deposits and 3-repeat (3R) tau (Pick bodies). Deposits containing both 3R and 4R tau (neurofibrillary tangles of Alzheimer type) are GAL+/CS+. Although no molecular explanations, other than these empiric correlations, are currently available, these distinctive features, especially when combined with immunohistochemistry, are useful because silver-staining methods and immunoreactions are complementary to each other. PMID:17401570

  20. Novel silver tubing method for quantitative introduction of water into high temperature conversion systems for stable hydrogen and oxygen isotopic measurements

    USGS Publications Warehouse

    Qi, Haiping; Groning, Manfred; Coplen, Tyler B.; Buck, Bryan; Mroczkowski, Stanley J.; Brand, Willi A.; Geilmann, Heike; Gehre, Matthias

    2010-01-01

    A new method to seal water in silver tubes for use in a TC/EA reduction unit using a semi-automated sealing apparatus can yield reproducibilities (1 standard deviation) of δ2H and &delta18O measurements of 1.0 ‰ and 0.06 ‰, respectively. These silver tubes containing reference waters may be preferred for calibration of H- and O-bearing materials analyzed with a TC/EA reduction unit. The new sealing apparatus employs a computer controlled stepping motor to produce silver tubes identical in length. The reproducibility of mass of water sealed in tubes (in a range of 200 to 400 µg) can be as good as 1 percent. Although silver tubes sealed with reference waters are robust and can be shaken or heated to 110 °C with no loss of integrity, they should not be frozen because the expansion during the phase transition of water to ice will break the cold seals and all water will be lost. They should be shipped in insulated containers. This new method eliminates air inclusions and isotopic fractionation of water associated with the loading of water into capsules using a syringe. The method is also more than an order of magnitude faster than preparing water samples in ordinary Ag capsules. Nevertheless, some laboratories may prefer loading water into silver capsules because expensive equipment is not needed, but they are cautioned to apply the necessary corrections for evaporation, back exchange with laboratory atmospheric moisture, and blank.

  1. Comparison between histochemical and immunohistochemical methods for diagnosis of sporotrichosis.

    PubMed Central

    Marques, M E; Coelho, K I; Sotto, M N; Bacchi, C E

    1992-01-01

    AIMS: To compare the efficacy of histochemical and immunohistochemical methods in detecting forms of Sporothrix schenckii in tissue. METHODS: Thirty five cutaneous biopsy specimens from 27 patients with sporotrichosis were stained by histochemical haematoxylin and eosin, periodic acid Schiff, and Gomori's methenamine silver methods and an immunohistochemical (avidin-biotin complex immunoperoxidase) (ABC) technique associated with a newly produced rabbit polyclonal antibody anti-Sporothrix schenckii. RESULTS: A total of 29 (83%) cases were positive by the ABC method used in association with anti-Sporothrix schenckii rabbit polyclonal antibodies. Histochemical methods, using silver staining, periodic acid Schiff, and conventional haematoxylin and eosin detected 37%, 23%, and 23% of forms of S schenckii, respectively. The ABC technique was significantly more reliable than periodic acid Schiff and silver staining techniques. CONCLUSIONS: It is concluded that immunostaining is an easy and rapid method which can efficiently increase the accuracy of the diagnosis of sporotrichosis in human tissue. Images PMID:1479036

  2. Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram; Manikandan, Nachiappan

    2011-12-01

    The silver nanoparticles were synthesized by chemical reduction method and the nanoparticles were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy and X-ray diffraction (XRD) studies. The synthesized silver nanoparticles were investigated to evaluate the antibacterial activity against urinary tract infectious (UTIs) bacterial pathogens. Thirty-two bacteria were isolated from mid urine samples of 25 male and 25 female patients from Thondi, Ramanathapuram District, Tamil Nadu, India and identified by conventional methods. Escherichia coli was predominant (47%) followed by Pseudomonas aeruginosa (22%), Klebsiella pneumoniae (19%), Enterobacter sp. (6%), Proteus morganii (3%) and Staphylococcus aureus (3%). The antibacterial activity of silver nanoparticles was evaluated by disc diffusion assay. P. aeruginosa showed maximum sensitivity (11 ± 0.58 mm) followed by Enterobacter sp. (8 ± 0.49 mm) at a concentration of 20 μg disc-1 and the sensitivity was highly comparable with the positive control kanamycin and tetracycline. K. pneumoniae, E. coli, P. morganii and S. aureus showed no sensitivity against all the tested concentrations of silver nanoparticles. The results provided evidence that, the silver nanoparticles might indeed be the potential sources to treat urinary tract infections caused by P. aeruginosa and Enterobacter sp.

  3. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Singaravelan, R.; Bangaru Sudarsan Alwar, S.

    2015-12-01

    This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.

  4. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less

  5. The synthesis and characterization of biotin-silver-dendrimer nanocomposites as novel bioselective labels

    NASA Astrophysics Data System (ADS)

    Malý, J.; Lampová, H.; Semerádtová, A.; Štofik, M.; Kováčik, L.

    2009-09-01

    This paper presents a synthesis of a novel nanoparticle label with selective biorecognition properties based on a biotinylated silver-dendrimer nanocomposite (AgDNC). Two types of labels, a biotin-AgDNC (bio-AgDNC) and a biotinylated AgDNC with a poly(ethylene)glycol spacer (bio-PEG-AgDNC), were synthesized from a generation 7 (G7) hydroxyl-terminated ethylenediamine-core-type (2-carbon core) PAMAM dendrimer (DDM) by an N,N'-dicyclohexylcarbodiimide (DDC) biotin coupling and a NaBH4 silver reduction method. Synthesized conjugates were characterized by several analytical methods, such as UV-vis, FTIR, AFM, TEM, ELISA, HABA assay and SPR. The results show that stable biotinylated nanocomposites can be formed either with internalized silver nanoparticles (AgNPs) in a DMM polymer backbone ('type I') or as externally protected ('type E'), depending on the molar ratio of the silver/DMM conjugate and type of conjugate. Furthermore, the selective biorecognition function of the biotin is not affected by the AgNPs' synthesis step, which allows a potential application of silver nanocomposite conjugates as biospecific labels in various bioanalytical assays, or potentially as fluorescence cell biomarkers. An exploitation of the presented label in the development of electrochemical immunosensors is anticipated.

  6. Can a novel silver nano coating reduce infections and maintain cell viability in vitro?

    PubMed

    Qureshi, Ammar T; Landry, Jace P; Dasa, Vinod; Janes, Marlene; Hayes, Daniel J

    2014-03-01

    Herein we report a facile layer-by-layer method for creating an antimicrobial coating composed of silver nanoparticles on medical grade titanium test discs. Nanoscale silver nanoparticle layers are attached to the titanium orthopedic implant material via aminopropyltriethoxy silane crosslinker that reacts with neighboring silane moieties to create an interconnected network. A monolayer of silane, followed by a monolayer of silver nanoparticles would form one self-assembled layer and this process can be repeated serially, resulting in increased silver nanoparticles deposition. The release rate of silver ion increases predictably with increasing numbers of layers and at appropriate thicknesses these coatings demonstrate 3-4 log reduction of viable Escherichia coli and Staphylococcus aureus bacteria. Increasing the thickness of the coatings resulted in reduced bacterial colonization as determined by fluorescent staining and image analysis. Interestingly, the cytotoxicity of murine 3T3 cells as quantified by fluorescent staining and flow cytometry, was minimal and did not vary significantly with the coating thickness. Additionally, these coatings are mechanically stable and resist delamination by orthogonal stress test. This simple layer-by-layer coating technique may provide a cost-effective and biocompatible method for reducing microbial colonization of implantable orthopedic devices.

  7. Synthesis and properties of silver nanoparticles in sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Patwari, D. Rajeshree; Eraiah, B.

    2018-04-01

    Rare earth doped Sodium Bismuth Borate glass samples with silver chloride were prepared by melt quenching method. X-Ray diffraction pattern was used to confirm the amorphous nature of the samples. UV-Visible Spectra was recorded to study the optical properties. Surface plasmon resonance (SPR) peak was observed due to the formation of silver nanoparticles before and after heat treatment and the presence of silver nanoparticles were confirmed by UV-Visible Spectral studies and transmission electron microscopy. The surface plasmon resonance band became wider and red shifted after longer heat treatment.

  8. Enzyme-catalysed deposition of ultrathin silver shells on gold nanorods: a universal and highly efficient signal amplification strategy for translating immunoassay into a litmus-type test.

    PubMed

    Yang, Xinjian; Gao, Zhiqiang

    2015-04-25

    On the basis of enzyme-catalysed reduction of silver ions and consequent deposition of ultrathin silver shells on gold nanorods, a highly efficient signal amplification method for immunoassay is developed. For a model analyte prostate-specific antigen, a 10(4)-fold improvement over conventional enzyme-linked immunosorbent assay is accomplished by leveraging on the cumulative nature of the enzymatic reaction and the sensitive response of plasnomic gold nanorods to the deposition the silver shells.

  9. Suitability of different silver enhancement methods applied to 1 nm colloidal gold particles: an immunoelectron microscopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stierhof, Y.D.; Humbel, B.M.; Schwarz, H.

    1991-03-01

    In order to exploit the recently introduced 1 nm gold colloids in routine electron microscopic labeling experiments, an efficient enhancement step for a better visualization of this small marker is a prerequisite. Efficiency and reproducibility of enhancement as well as growth homogeneity of gold particles were evaluated for three different silver intensifying solutions: silver lactate/hydroquinone/gum arabic, and the commercially available IntenSE M silver enhancement kit. The best results were obtained by using the silver lactate/hydroquinone/gum arabic mixture. The quality of enhancement of the IntenSE M kit was considerably increased by the addition of the protective colloid gum arabic.

  10. A facile route to synthesize nanogels doped with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, 160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, 5 nm) are synthesized "in situ" in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  11. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com; Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com

    2016-07-25

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, itmore » observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.« less

  12. Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries.

    PubMed

    Wang, Shuai; Tu, Jiguo; Yuan, Yan; Ma, Rui; Jiao, Shuqiang

    2016-01-28

    The paper reports a facile and cost effective method for fabricating sodium molybdenum sulfide nanoparticles through using MoS2 sheets as the precursor by sodium-modification. The electrochemical performances of sodium molybdenum sulfide nanoparticles are studied as anode materials for sodium-ion batteries. The galvanostatic charge-discharge measurements have been performed in a voltage range of 0.01-2.6 V vs. Na(+)/Na under different current densities, using the as-prepared sodium molybdenum sulfide nanoparticles as a working electrode. Typically, the initial discharge and charge capacities of sodium molybdenum sulfide nanoparticles are 475 and 380 mA h g(-1), respectively, at a current density of 20 mA g(-1). The sodium molybdenum sulfide nanoparticles exhibit high capacity with a reversible discharge capacity of about 190 mA h g(-1) after 100 cycles. It should be emphasized that the discharge reaction consists of two steps which correspond to voltage plateaus of 0.93 V and 0.85 V vs. Na(+)/Na in the first discharge curve of the Na/MoS2 battery, respectively. But there is only one apparent voltage plateau in the Na/Na-Mo-S battery, and it reduces to below 0.5 V vs. Na(+)/Na, which can enhance the power density. All of the findings demonstrate that sodium molybdenum sulfide nanoparticles have steady cycling performance and environmental and cost friendliness as next generation secondary batteries.

  13. A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Choudhary, Manoj Kumar; Kataria, Jyoti; Cameotra, Swaranjit Singh; Singh, Jagdish

    2016-01-01

    The significant antibacterial activity of silver nanoparticles draws the major attention toward the present nanobiotechnology. Also, the use of plant material for the synthesis of metal nanoparticles is considered as a green technology. In this context, a non-toxic, eco-friendly, and cost-effective method has been developed for the synthesis of silver nanoparticles using seed extract of mung beans ( Vigna radiata). The synthesized nanoparticles have been characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The UV-visible spectrum showed an absorption peak at around 440 nm. The different types of phytochemicals present in the seed extract synergistically reduce the Ag metal ions, as each phytochemical is unique in terms of its structure and antioxidant function. The colloidal silver nanoparticles were observed to be highly stable, even after 5 months. XRD analysis showed that the silver nanoparticles are crystalline in nature with face-centered cubic geometry and the TEM micrographs showed spherical particles with an average size of 18 nm. Further, the antibacterial activity of silver nanoparticles was evaluated by well-diffusion method and it was observed that the biogenic silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be useful for nanotechnology-based biomedical applications.

  14. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells

    PubMed Central

    2010-01-01

    Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P < 0.05), significantly decreased LDH (*P < 0.05) and significantly increased SOD (*P < 0.05) activities. However, the NO production, and Gpx, CAT, and Total antioxidant activities were not affected in MCF-7 breast cancer cells. PBMC were not altered by colloidal silver. Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy. PMID:21080962

  15. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    PubMed

    Valappil, Sabeel P; Higham, Susan M

    2014-01-01

    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  16. METHOD OF RECOVERING TRANSURANIC ELEMENTS OF AN ATOMIC NUMBER BELOW 95

    DOEpatents

    Seaborg, G.T.; James, R.A.

    1959-12-15

    The concentration of neptanium or plutonium by two carrier precipitation steps with identical carriers but using (after dissolution of the first carrier in nitric acid) a reduced quantity of carrier for the second precipitation is discussed. Carriers suitable are uranium(IV) hypophosphate, uranium(IV) pyrophosphate, uranium(IV) oxalate, thorium oxalate, thorium citrate, thorium tartrate, thorium sulfide, and uranium(IV) sulfide.

  17. Formation of Cadmium-Sulfide Nanowhiskers via Vacuum Evaporation and Condensation in a Quasi-Closed Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, A. P., E-mail: Alexei.Belyaev@pharminnotech.com; Antipov, V. V.; Rubets, V. P.

    Structural and technological studies of processes in which cadmium-sulfide nanowhiskers are synthesized in a quasi-closed volume by the method of vacuum evaporation and condensation are reported. It is demonstrated that the processes are in agreement with the classical vapor–liquid–crystal model. Micrographs of the objects in different formation stages are presented.

  18. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  19. Thin film photovoltaic cells having increased durability and operating life and method for making same

    DOEpatents

    Barnett, Allen M.; Masi, James V.; Hall, Robert B.

    1980-12-16

    A solar cell having a copper-bearing absorber is provided with a composite transparent encapsulating layer specifically designed to prevent oxidation of the copper sulfide. In a preferred embodiment, the absorber is a layer of copper sulfide and the composite layer comprises a thin layer of copper oxide formed on the copper sulfide and a layer of encapsulating glass formed on the oxide. It is anticipated that such devices, when exposed to normal operating conditions of various terrestrial applications, can be maintained at energy conversion efficiencies greater than one-half the original conversion efficiency for periods as long as thirty years.

  20. Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.

    2018-01-01

    We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.

Top