Sample records for sulfite induced autoxidation

  1. Free-radical chemistry of sulfite.

    PubMed Central

    Neta, P; Huie, R E

    1985-01-01

    The free-radical chemistry of sulfite oxidation is reviewed. Chemical transformations of organic and biological molecules induced by sulfite oxidation are summarized. The kinetics of the free-radical oxidations of sulfite are discussed, as are the kinetics of the reactions of the sulfite-derived radicals SO3 and the peroxy derivative SO5 with organic compounds. PMID:3830699

  2. Evidence for C5 organosulfur secondary organic aerosol components from in-cloud processing of isoprene: Role of reactive SO4 and SO3 radicals

    NASA Astrophysics Data System (ADS)

    Szmigielski, Rafal

    2016-04-01

    Isoprene, an aliphatic unsaturated hydrocarbon (C5H8), is a key volatile released to the atmosphere by broad-leaf forest vegetation. Data obtained from field and laboratory experiments clearly prove that isoprene is a precursor of secondary organic aerosol (SOA). In this work evidence is provided that in-cloud transformations of isoprene coupled with S(IV)-autoxidation is a potentially important route for aqueous SOA through the formation of polar organosulfates and organosulfites with MWs of 182, 180 and 166, 164, respectively. Recently, MW 182 organosulfates have been observed in substantial abundance in ambient fine aerosol. Results from comprehensive LC/(-)ESI-QTRAP-MS/MS analysis revealed oxygenated polar species with a C5 skeleton bearing - OSO3H (MW 182, 180) and -OSO2H (MW 166, 164) moieties. The structures of these products were elucidated by detailed interpretation of negative-ion electrospray-ionization mass spectra, and additionally, in case of the MW 182 organosulfates, by comparison of chromatographic and mass spectrometric profiles with synthesized standards. The formation of C5 organosulfur products is explained through sulfate/sulfite radical-induced oxidation in the aqueous particle phase.

  3. Factors Supporting Cysteine Tolerance and Sulfite Production in Candida albicans

    PubMed Central

    Hennicke, Florian; Grumbt, Maria; Lermann, Ulrich; Ueberschaar, Nico; Palige, Katja; Böttcher, Bettina; Jacobsen, Ilse D.; Staib, Claudia; Morschhäuser, Joachim; Monod, Michel; Hube, Bernhard; Hertweck, Christian

    2013-01-01

    The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity. PMID:23417561

  4. Adverse reactions to sulfites

    PubMed Central

    Yang, William H.; Purchase, Emerson C.R.

    1985-01-01

    Sulfites are widely used as preservatives in the food and pharmaceutical industries. In the United States more than 250 cases of sulfite-related adverse reactions, including anaphylactic shock, asthmatic attacks, urticaria and angioedema, nausea, abdominal pain and diarrhea, seizures and death, have been reported, including 6 deaths allegedly associated with restaurant food containing sulfites. In Canada 10 sulfite-related adverse reactions have been documented, and 1 death suspected to be sulfite-related has occurred. The exact mechanism of sulfite-induced reactions is unknown. Practising physicians should be aware of the clinical manifestations of sulfite-related adverse reactions as well as which foods and pharmaceuticals contain sulfites. Cases should be reported to health officials and proper advice given to the victims to prevent further exposure to sulfites. The food industry, including beer and wine manufacturers, and the pharmaceutical industry should consider using alternative preservatives. In the interim, they should list any sulfites in their products. PMID:4052897

  5. A self-assembled fluorescent organic nanoprobe and its application for sulfite detection in food samples and living systems.

    PubMed

    Gao, Tang; Cao, Xiaozheng; Ge, Peng; Dong, Jie; Yang, Shuqi; Xu, Huan; Wu, Yong; Gao, Feng; Zeng, Wenbin

    2017-05-23

    Sulfur dioxide (SO 2 ) is a widely distributed air pollutant, and humans can easily be exposed to sulfite by inhaling SO 2 , thus inducing respiratory responses and diseases. Hence, to develop a rapid, sensitive and selective method for detection of sulfites is of great importance. Herein, we designed and synthesized a novel tetraphenyl imidazole compound TIBM with aggregation-induced emission enhancement (AIEE). TIBM can self-assemble into well-organized nanoparticles and is reported as an excellent probe for detection of sulfite with high selectivity and sensitivity. The nanoprobe performed very well for the detection of sulfite with an ultrafast detection time (15 s) and an ultralow detection limit (7.4 nM), which is superior to most of the reported probes. Moreover, the nanoprobe was successfully used to detect sulfite in food samples with a favorable accuracy. In addition, we developed paper-based devices for point-of-care detection of sulfite with naked eyes. Furthermore, due to its high water solubility, cell membrane permeability and good biocompatibility, the nanoproboe was further applied to detect sulfite in living systems. This study may offer some helpful insights for designing other AIE-based fluorescent nanosensors for various analytes.

  6. [Mechanisms of tolerance to sulfur dioxide and sodium metabisulfite].

    PubMed

    Atzori, L; Corriga, A M; Cannas, E; Congiu, L

    1997-01-01

    Inhalation of sulphur dioxide (250 ppm), (SO2) or sodium metabisulfite (80 mM) (MBS) aerosol or perfusion with MBS (3 mM) induced a reduction in compliance and conductance in the isolated, perfused and ventilated guinea pig lung. Pretreatment of the lung with sodium sulfite (3 mM), a dissolution product of SO2 and MBS, reduced the bronchoconstriction induced by SO2 and MBS. Bronchoconstriction induced by SO2 and MBS in associated to increased levels of Calcitonin gene-Related Peptide (CGRP) in the perfusate effinent, indicating activation of sensory nerves. The release of CGRP induced by SO2 and MBS was not affected by sodium sulfite. Sulfite treatment did not modify lung reactivity towards acethylcholine, bradykinin, serotonin, histamine and substance P (fragment 5-11). An inhibitory effect by sulfite was observed on bronchoconstriction induced by neurokinin A (fragment 4-10). Since bronchoconstriction induced by SO2 and MBS appears to be mediated by neurokinin A release and action, sulfite may act by affecting its signal transduction pathway. In conclusion, the results indicate that during exposure to some environmental and occupational pollutants, e.g. SO2 and MBS, critical modifications of sulfhydryl groups on smooth muscle receptors may occur. We hypothesise this as a possible step in the development of tolerance and hyperreactivity.

  7. Localized periorbital edema as a clinical manifestation of sulfite sensitivity.

    PubMed

    Park, H S; Nahm, D

    1996-08-01

    Sulfite is commonly used in pharmaceuticals as a preservative. We report a unique clinical presentation of localized periorbital edema on the left eye after administration of sulfite-containing dexamethasone. The patient's sulfite sensitivity was confirmed by sulfite oral provocation test: periorbital edema on the same site developed after ingestion of 200 mg sodium bisulfite. She was non-atopic and did not complain of any respiratory symptoms. Allergy skin prick test with 100 mg/ml sodium bisulfite showed a negative result. She also has aspirin-sensitive urticaria which was confirmed by oral provocation test. In conclusion, sulfite can induce a localized periorbital edema, an uncommon manifestation in sensitive patients. Further investigations are needed to clarify the pathogenetic mechanisms.

  8. Localized periorbital edema as a clinical manifestation of sulfite sensitivity.

    PubMed Central

    Park, H. S.; Nahm, D.

    1996-01-01

    Sulfite is commonly used in pharmaceuticals as a preservative. We report a unique clinical presentation of localized periorbital edema on the left eye after administration of sulfite-containing dexamethasone. The patient's sulfite sensitivity was confirmed by sulfite oral provocation test: periorbital edema on the same site developed after ingestion of 200 mg sodium bisulfite. She was non-atopic and did not complain of any respiratory symptoms. Allergy skin prick test with 100 mg/ml sodium bisulfite showed a negative result. She also has aspirin-sensitive urticaria which was confirmed by oral provocation test. In conclusion, sulfite can induce a localized periorbital edema, an uncommon manifestation in sensitive patients. Further investigations are needed to clarify the pathogenetic mechanisms. PMID:8878807

  9. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants.

    PubMed

    Kurmanbayeva, Assylay; Brychkova, Galina; Bekturova, Aizat; Khozin, Inna; Standing, Dominic; Yarmolinsky, Dmitry; Sagi, Moshe

    2017-01-01

    In response to oxidative stress the biosynthesis of the ROS scavenger, glutathione is induced. This requires the induction of the sulfate reduction pathway for an adequate supply of cysteine, the precursor for glutathione. Cysteine also acts as the sulfur donor for the sulfuration of the molybdenum cofactor, crucial for the last step of ABA biosynthesis. Sulfate and sulfite are, respectively, the precursor and intermediate for cysteine biosynthesis and there is evidence for stress-induced sulfate uptake and further downstream, enhanced sulfite generation by 5'-phosphosulfate (APS) reductase (APR, EC 1.8.99.2) activity. Sulfite reductase (SiR, E.C.1.8.7.1) protects the chloroplast against toxic levels of sulfite by reducing it to sulfide. In case of sulfite accumulation as a result of air pollution or stress-induced premature senescence, such as in extended darkness, sulfite can be oxidized to sulfate by sulfite oxidase. Additionally sulfite can be catalyzed to thiosulfate by sulfurtransferases or to UDP-sulfoquinovose by SQD1, being the first step toward sulfolipid biosynthesis.Determination of total sulfur in plants can be accomplished using many techniques such as ICP-AES, high-frequency induction furnace, high performance ion chromatography, sulfur combustion analysis, and colorimetric titration. Here we describe a total sulfur detection method in plants by elemental analyzer (EA). The used EA method is simple, sensitive, and accurate, and can be applied for the determination of total S content in plants.Sulfate anions in the soil are the main source of sulfur, required for normal growth and development, of plants. Plants take up sulfate ions from the soil, which are then reduced and incorporated into organic matter. Plant sulfate content can be determined by ion chromatography with carbonate eluents.Sulfite is an intermediate in the reductive assimilation of sulfate to the essential amino acids cysteine and methionine, and is cytotoxic above a certain threshold if not rapidly metabolized and can wreak havoc at the cellular and whole plant levels. Plant sulfite content affects carbon and nitrogen homeostasis Therefore, methods capable of determining sulfite levels in plants are of major importance. Here we present two robust laboratory protocols which can be used for sulfite detection in plants.Thiosulfate is an essential sulfur intermediate less toxic than sulfite which is accumulating in plants in response to sulfite accumulation. The complexity of thiosulfate detection is linked to its chemical properties. Here we present a rapid, sensitive, and accurate colorimetric method based on the enzymatic conversion of thiosulfate to thiocyanate.The plant sulfolipid sulfoquinovosyldiacylglycerol (SQDG) accounts for a large fraction of organic sulfur in the biosphere. Aside from sulfur amino acids, SQDG represents a considerable sink for sulfate in plants and is the only sulfur-containing anionic glycerolipid that is found in the photosynthetic membranes of plastids. We present the separation of sulfolipids from other fatty acids in two simple ways: by one- and two-dimensional thin-layer chromatography.

  10. Adaptation of Candida albicans to Reactive Sulfur Species

    PubMed Central

    Chebaro, Yasmin; Lorenz, Michael; Fa, Alice; Zheng, Rui; Gustin, Michael

    2017-01-01

    Candida albicans is an opportunistic fungal pathogen that is highly resistant to different oxidative stresses. How reactive sulfur species (RSS) such as sulfite regulate gene expression and the role of the transcription factor Zcf2 and the sulfite exporter Ssu1 in such responses are not known. Here, we show that C. albicans specifically adapts to sulfite stress and that Zcf2 is required for that response as well as induction of genes predicted to remove sulfite from cells and to increase the intracellular amount of a subset of nitrogen metabolites. Analysis of mutants in the sulfate assimilation pathway show that sulfite conversion to sulfide accounts for part of sulfite toxicity and that Zcf2-dependent expression of the SSU1 sulfite exporter is induced by both sulfite and sulfide. Mutations in the SSU1 promoter that selectively inhibit induction by the reactive nitrogen species (RNS) nitrite, a previously reported activator of SSU1, support a model for C. albicans in which Cta4-dependent RNS induction and Zcf2-dependent RSS induction are mediated by parallel pathways, different from S. cerevisiae in which the transcription factor Fzf1 mediates responses to both RNS and RSS. Lastly, we found that endogenous sulfite production leads to an increase in resistance to exogenously added sulfite. These results demonstrate that C. albicans has a unique response to sulfite that differs from the general oxidative stress response, and that adaptation to internal and external sulfite is largely mediated by one transcription factor and one effector gene. PMID:28235888

  11. Oxidizing action of purine N-oxide esters.

    PubMed

    Stöhrer, G; Salemnick, G

    1975-01-01

    A technique involving O-acetylation of purine N-oxide derivatives in buffered aqueous solutions has permitted studies of the reactivity of many compounds for which the O-acetyl derivatives are not otherwise available. The oxidizing properties of a variety of N-acetoxypurines have been measured through their ability to oxidize iodide ion ot iodine, a reaction which is representative of a more general oxidizing ability. Those esters that oxidize iodide ion also catalyze the autoxidation of sulfite, a property characteristic of radicals. The same esters also oxidize cysteine to cysteic acid and tryptophan, tyrosine, and uric acid to yet uncharacterized products. Their oxidizing reactivity was compared with the ability of the same esters to react as electrophiles in another assay that measured the rate of formation of pyridine substitution products. The sulfate ester of 3-hydroxyxanthine has been synthesized. Its reactivity is qualitatively the same as that of 3-acetoxyxanthine but proceeds at a higher rate. Syntheses of S-(8-xanthyl)-N-acetylcysteine, 8-(2-hydroxyethylthio)xanthine, and 1-methyl-8-mehtylmercaptoguanine are also described.

  12. Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves

    PubMed Central

    Brychkova, Galina; Yarmolinsky, Dmitry; Batushansky, Albert; Grishkevich, Vladislav; Khozin-Goldberg, Inna; Fait, Aaron; Amir, Rachel; Fluhr, Robert; Sagi, Moshe

    2015-01-01

    Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants. PMID:27135342

  13. Free Radical Mechanisms in Autoxidation Processes.

    ERIC Educational Resources Information Center

    Simic, Michael G.

    1981-01-01

    Discusses the use of steady-state radiation chemistry and pulse radiolysis for the generation of initial free radicals and formation of peroxy radicals in the autoxidation process. Provides information regarding the autoxidation process. Defines autoxidation reactions and antioxidant action. (CS)

  14. Bacterial sulfite dehydrogenases in organotrophic metabolism: separation and identification in Cupriavidus necator H16 and in Delftia acidovorans SPH-1.

    PubMed

    Denger, Karin; Weinitschke, Sonja; Smits, Theo H M; Schleheck, David; Cook, Alasdair M

    2008-01-01

    The utilization of organosulfonates as carbon sources by aerobic or nitrate-reducing bacteria usually involves a measurable, uncharacterized sulfite dehydrogenase. This is tacitly assumed to be sulfite : ferricytochrome-c oxidoreductase [EC 1.8.2.1], despite negligible interaction with (eukaryotic) cytochrome c: the enzyme is assayed at high specific activity with ferricyanide as electron acceptor. Purified periplasmic sulfite dehydrogenases (SorAB, SoxCD) are known from chemoautotrophic growth and are termed 'sulfite oxidases' by bioinformatic services. The catalytic unit (SorA, SoxC; termed 'sulfite oxidases' cd02114 and cd02113, respectively) binds a molybdenum-cofactor (Moco), and involves a cytochrome c (SorB, SoxD) as electron acceptor. The genomes of several bacteria that express a sulfite dehydrogenase during heterotrophic growth contain neither sorAB nor soxCD genes; others contain at least four paralogues, for example Cupriavidus necator H16, which is known to express an inducible sulfite dehydrogenase during growth with taurine (2-aminoethanesulfonate). This soluble enzyme was enriched 320-fold in four steps. The 40 kDa protein (denatured) had an N-terminal amino acid sequence which started at position 42 of the deduced sequence of H16_B0860 (termed 'sulfite oxidase' cd02114), which we named SorA. The neighbouring gene is an orthologue of sorB, and the sorAB genes were co-transcribed. Cell fractionation showed SorA to be periplasmic. The corresponding enzyme in Delftia acidovorans SPH-1 was enriched 270-fold, identified as Daci_0055 (termed 'sulfite oxidase' cd02110) and has a cytochrome c encoded downstream. We presume, from genomic data for bacteria and archaea, that there are several subgroups of sulfite dehydrogenases, which all contain a Moco, and transfer electrons to a specific cytochrome c.

  15. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats.

    PubMed

    Ozsoy, Ozlem; Aras, Sinem; Ozkan, Ayse; Parlak, Hande; Aslan, Mutay; Yargicoglu, Piraye; Agar, Aysel

    2016-07-01

    Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains. © The Author(s) 2014.

  16. Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system.

    PubMed

    Gu, Yurong; Liu, Tongzhou; Wang, Hongjie; Han, Huili; Dong, Wenyi

    2017-12-31

    As one of the most reactive species, hydrated electron (e aq - ) is promising for reductive decomposition of recalcitrant organic pollutants, such as perfluorooctane sulfonate (PFOS). In this study, PFOS decomposition using a vacuum ultraviolet (VUV)/sulfite system was systematically investigated in comparison with sole VUV and ultraviolet (UV)/sulfite systems. A fast and nearly complete (97.3%) PFOS decomposition was observed within 4h from its initial concentration of 37.2μM in the VUV/sulfite system. The observed rate constant (k obs ) for PFOS decomposition in the studied system was 0.87±0.0060h -1 , which was nearly 7.5 and 2 folds faster than that in sole VUV and UV/sulfite systems, respectively. Compared to previously studied UV/sulfite system, VUV/sulfite system enhanced PFOS decomposition in both weak acidic and alkaline pH conditions. In weak acidic condition (pH6.0), PFOS predominantly decomposed via direct VUV photolysis, whereas in alkaline condition (pH>9.0), PFOS decomposition was mainly induced by e aq - generated from both sulfite and VUV photolytic reactions. At a fixed initial solution pH (pH10.0), PFOS decomposition kinetics showed a positive linear dependence with sulfite dosage. The co-presence of humic acid (HA) and NO 3 - obviously suppressed PFOS decomposition, whereas HCO 3 - showed marginal inhibition. A few amount of short chain perfluorocarboxylic acids (PFCAs) were detected in PFOS decomposition process, and a high defluorination efficiency (75.4%) was achieved. These results suggested most fluorine atoms in PFOS molecule ultimately mineralized into fluoride ions, and the mechanisms for PFOS decomposition in the VUV/sulfite system were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Protective role of curcumin against sulfite-induced structural changes in rats' medial prefrontal cortex.

    PubMed

    Noorafshan, Ali; Asadi-Golshan, Reza; Abdollahifar, Mohammad-Amin; Karbalay-Doust, Saied

    2015-08-01

    Sodium metabisulfite as a food preservative can affect the central nervous system. Curcumin, the main ingredient of turmeric has neuroprotective activity. This study was designed to evaluate the effects of sulfite and curcumin on the medial prefrontal cortex (mPFC) using stereological methods. Thirty rats were randomly divided into five groups. The rats in groups I-V received distilled water, olive oil, curcumin (100 mg/kg/day), sodium metabisulfite (25 mg/kg/day), and sulfite + curcumin, respectively, for 8 weeks. The brains were subjected to the stereological methods. Cavalieri and optical disector techniques were used to estimate the total volume of mPFC and the number of neurons and glial cells. Intersections counting were applied on the thick vertical uniform random sections to estimate the dendrites length, and classify the spines. Non-parametric tests were used to analyze the data. The mean mPFC volume, neurons number, glia number, dendritic length, and total spines per neuron were 3.7 mm(3), 365,000, 180,000, 1820 µm, and 1700 in distilled water group, respectively. A reduction was observed in the volume of mPFC (∼8%), number of neurons (∼15%), and number of glia (∼14%) in mPFC of the sulfite group compared to the control groups (P < 0.005). Beside, dendritic length per neuron (∼10%) and the total spines per neuron (mainly mushroom spines) (∼25%) were reduced in the sulfite group (P < 0.005). The sulfite-induced structural changes in mPFC and curcumin had a protective role against the changes in the rats.

  18. Seasonal survey of the composition and degradation state of particulate organic matter in the Rhone River using lipid tracers

    NASA Astrophysics Data System (ADS)

    Galeron, M.-A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J.-F.

    2014-10-01

    Lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France). This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant-derived particulate organic matter (POM), with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Major terrigenous contributors to our samples are gymnosperms, and more precisely their roots and stems, as evidenced by the presence of high proportions of ω-hydroxydocosanoic acid (a suberin biomarker). The high amounts of coprostanol detected clearly show that the Rhone River is significantly affected by sewage waters. Specific sterol degradation products were quantified and used to assess the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation-inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could affect the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea.

  19. Application of high-resolution, two-dimensional 1H and 13C nuclear magnetic resonance techniques to the characterization of lipid oxidation products in autoxidized linoleoyl/linolenoylglycerols.

    PubMed

    Silwood, C J; Grootveld, M

    1999-07-01

    Subjection of polyunsaturated fatty acid (PUFA)-rich culinary oils to standard frying episodes generates a range of lipid oxidation products (LOP), including saturated and alpha,beta-unsaturated aldehydes which arise from the thermally induced fragmentation of conjugated hydroperoxydiene precursors. Since such LOP are damaging to human health, we have employed high-resolution, two-dimensional 1H-1H relayed coherence transfer, 1H-1H total correlation, 1H-13C heteronuclear multiple quantum correlation, and 1H-1H J-resolved nuclear magnetic resonance (NMR) spectroscopic techniques to further elucidate the molecular structures of these components present in (i) a model linoleoylglycerol compound (1,3-dilinolein) allowed to autoxidize at ambient temperature and (ii) PUFA-rich culinary oils subjected to repeated frying episodes. The above techniques readily facilitate the resolution of selected vinylic and aldehydic resonances of LOP which appear as complex overlapping patterns in conventional one-dimensional spectra, particularly when employed in combination with solvent-induced spectral shift modifications. Hence, much useful multi-component information regarding the identity and/or classification of glycerol-bound conjugated hydroperoxydiene and hydroxydiene adducts, and saturated and alpha,beta-unsaturated aldehydes, present in autoxidized PUFA matrices is provided by these NMR methods. Such molecular information is of much value to researchers investigating the deleterious health effects of LOP available in the diet.

  20. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process.

    PubMed

    Li, Xuchun; Fang, Jingyun; Liu, Guifang; Zhang, Shujuan; Pan, Bingcai; Ma, Jun

    2014-10-01

    Hydrated electron (e(aq)(-)), which is listed among the most reactive reducing species, has great potential for removal and detoxification of recalcitrant contaminants. Here we provided quantitative insight into the availability and conversion of e(aq)(-) in a newly developed sulfite/UV process. Using monochloroacetic acid as a simple e(aq)(-)-probe, the e(aq)(-)-induced dehalogenation kinetics in synthetic and surface water was well predicted by the developed models. The models interpreted the complex roles of pH and S(IV), and also revealed the positive effects of UV intensity and temperature quantitatively. Impacts of humic acid, ferrous ion, carbonate/bicarbonate, and surface water matrix were also examined. Despite the retardation of dehalogenation by electron scavengers, the process was effective even in surface water. Efficiency of the process was discussed, and the optimization approaches were proposed. This study is believed to better understand the e(aq)(-)-induced dehalogenation by the sulfite/UV process in a quantitative manner, which is very important for its potential application in water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    PubMed Central

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  2. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Seasonal survey of the composition and degradation state of particulate organic matter in the Rhône River using lipid tracers

    NASA Astrophysics Data System (ADS)

    Galeron, M.-A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J.-F.

    2015-03-01

    Lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhône River (France). This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrestrial higher-plant contribution to the particulate organic matter (POM), with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Major terrigenous contributors to our samples are gymnosperms, and more precisely their roots and stems, as evidenced by the presence of high proportions of ω-hydroxydocosanoic acid (a suberin biomarker). The high amounts of coprostanol detected clearly show that the Rhône River is significantly affected by sewage waters. Specific sterol degradation products were quantified and used to assess the part of biotic and abiotic degradation of POM within the river. Higher-plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of mammal or human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation-inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could affect the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea.

  4. Evaluation of the antioxidant and cytotoxic activity of arzanol, a prenylated alpha-pyrone-phloroglucinol etherodimer from Helichrysum italicum subsp.microphyllum.

    PubMed

    Rosa, Antonella; Deiana, Monica; Atzeri, Angela; Corona, Giulia; Incani, Alessandra; Melis, M Paola; Appendino, Giovanni; Dessì, M Assunta

    2007-01-30

    Various phenolics and (mero)terpenoids from Helichrysum italicum subsp. microphyllum, a plant endemic to Sardinia, were investigated for their capacity to inhibit non-enzymatic lipid peroxidation. These compounds were studied in simple in vitro systems, under conditions of autoxidation and of iron (EDTA)-mediated oxidation of linoleic acid at 37 degrees C. Arzanol, a pyrone-phloroglucinol etherodimer, and helipyrone, a dimeric pyrone, showed antioxidant activity, and could protect linoleic acid against free radical attack in assays of autoxidation and EDTA-mediated oxidation. Methylarzanol, as well as the sesquiterpene alcohol rosifoliol, showed a decreased, but still significant, protective effect against linoleic acid oxidation. Arzanol and helipyrone were also tested in an assay of thermal (140 degrees C) autoxidation of cholesterol, where arzanol showed significant antioxidant activity. The cytotoxicity of arzanol was further evaluated in VERO cells, a line of fibroblasts derived from monkey kidney. Arzanol, at non-cytotoxic concentrations, showed a strong inhibition of TBH-induced oxidative stress in VERO cells. The results of the present work suggest that the natural compound arzanol exerts useful antioxidant properties in different in vitro systems of lipid peroxidation.

  5. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines.

    PubMed

    Garaguso, Ivana; Nardini, Mirella

    2015-07-15

    Wine exerts beneficial effects on human health when it is drunk with moderation. Nevertheless, wine may also contain components negatively affecting human health. Among these, sulfites may induce adverse effects after ingestion. We examined total polyphenols and flavonoids content, phenolics profile and antioxidant activity of eight organic red wines produced without sulfur dioxide/sulfites addition in comparison to those of eight conventional red wines. Polyphenols and flavonoids content were slightly higher in organic wines in respect to conventional wines, however differences did not reach statistical significance. The phenolic acids profile was quite similar in both groups of wines. Antioxidant activity was higher in organic wines compared to conventional wines, although differences were not statistically significant. Our results indicate that organic red wines produced without sulfur dioxide/sulfites addition are comparable to conventional red wines with regard to the total polyphenols and flavonoids content, the phenolics profile and the antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  7. Paracoccus denitrificans PD1222 Utilizes Hypotaurine via Transamination Followed by Spontaneous Desulfination To Yield Acetaldehyde and, Finally, Acetate for Growth

    PubMed Central

    Felux, Ann-Katrin; Denger, Karin; Weiss, Michael; Cook, Alasdair M.

    2013-01-01

    Hypotaurine (HT; 2-aminoethane-sulfinate) is known to be utilized by bacteria as a sole source of carbon, nitrogen, and energy for growth, as is taurine (2-aminoethane-sulfonate); however, the corresponding HT degradation pathway has remained undefined. Genome-sequenced Paracoccus denitrificans PD1222 utilized HT (and taurine) quantitatively for heterotrophic growth and released the HT sulfur as sulfite (and sulfate) and HT nitrogen as ammonium. Enzyme assays with cell extracts suggested that an HT-inducible HT:pyruvate aminotransferase (Hpa) catalyzes the deamination of HT in an initial reaction step. Partial purification of the Hpa activity and peptide fingerprinting-mass spectrometry (PF-MS) identified the Hpa candidate gene; it encoded an archetypal taurine:pyruvate aminotransferase (Tpa). The same gene product was identified via differential PAGE and PF-MS, as was the gene of a strongly HT-inducible aldehyde dehydrogenase (Adh). Both genes were overexpressed in Escherichia coli. The overexpressed, purified Hpa/Tpa showed HT:pyruvate-aminotransferase activity. Alanine, acetaldehyde, and sulfite were identified as the reaction products but not sulfinoacetaldehyde; the reaction of Hpa/Tpa with taurine yielded sulfoacetaldehyde, which is stable. The overexpressed, purified Adh oxidized the acetaldehyde generated during the Hpa reaction to acetate in an NAD+-dependent reaction. Based on these results, the following degradation pathway for HT in strain PD1222 can be depicted. The identified aminotransferase converts HT to sulfinoacetaldehyde, which desulfinates spontaneously to acetaldehyde and sulfite; the inducible aldehyde dehydrogenase oxidizes acetaldehyde to yield acetate, which is metabolized, and sulfite, which is excreted. PMID:23603744

  8. Autoxidation and toxicant-induced oxidation of lipid and DNA in monkey liver: reduction of molecular damage by melatonin.

    PubMed

    Cabrer, J; Burkhardt, S; Tan, D X; Manchester, L C; Karbownik, M; Reiter, R J

    2001-11-01

    Melatonin, the main secretory product of the pineal gland, is a free radical scavenger and antioxidant which protects against oxidative damage due to a variety of toxicants. However, there is little information regarding melatonin's antioxidative capacity in tissues of primates. In this study we examined the protective effects of melatonin in monkey liver homogenates against lipid damage that occurred as a result of autoxidation or that induced by exogenous addition of H202 and ferrous iron (Fe2+). Additionally, we tested melatonin's protective effect against oxidative damage to DNA induced by chromium(III) (CrIII) plus H202. The levels of malondialdehyde and 4-hydroxyalkenals were assayed as an index of lipid peroxidation, and the concentrations of 8-hydroxydeoxyguanosine (8-OHdG) as an endpoint of oxidative DNA damage. The increases in malondialdehyde+4-hydroxyalkenals concentrations as a consequence of autoxidation or after the addition of H202 plus Fe2+ to the homogenates were time-dependent. The accumulation of these damaged products due to either auto-oxidative processes or induced by H202 and Fe2+ were significantly reduced by melatonin in a concentration-dependent-manner. The levels of 8-OHdG were elevated in purified monkey liver DNA incubated with a combination of CrCl3 plus H2O2. This rise in oxidatively damaged DNA was prevented by 10 microM concentration of melatonin. Also, melatonin reduced the damage to DNA that was caused by auto-oxidative processes. These findings in monkey liver tissue document the ability of melatonin to protect against oxidative damage to both lipid and DNA in primate tissue, as observed previously in rodent tissue. The findings provide support for the use of melatonin as suitable agent to reduce damage inflicted by free radical species in primates.

  9. The real radical generator other than main-product hydroperoxide in lipid autoxidation.

    PubMed

    Morita, Makio; Tokita, Masako

    2006-01-01

    The theory of initiation in lipid autoxidation, which deals with the supply of radicals to the chain reaction, has not been substantively advanced for several decades. Most researchers have long assumed a mechanism of initiation in which main-product hydroperoxide is centrally responsible for autocatalytic radical generation. However, this paper, in which we investigate autoxidizing methyl linoleate, presents decisive evidence against such an assumption: Autoxidation-accelerating activity under mild conditions was not found in the chromatographically separated main-product hydroperoxide fraction but was found in other fractions; and highly active substances with structures containing a peroxide-linked dimer with two hydroperoxy groups were actually obtained.

  10. Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease.

    PubMed

    Mazzei, Luca; Cianci, Michele; Benini, Stefano; Bertini, Leonardo; Musiani, Francesco; Ciurli, Stefano

    2016-01-01

    Urease is the most efficient enzyme known to date, and catalyzes the hydrolysis of urea using two Ni(II) ions in the active site. Urease is a virulence factor in several human pathogens, while causing severe environmental and agronomic problems. Sporosarcina pasteurii urease has been used extensively in the structural characterization of the enzyme. Sodium sulfite has been widely used as a preservative in urease solutions to prevent oxygen-induced oxidation, but its role as an inhibitor has also been suggested. In the present study, isothermal titration microcalorimetry was used to establish sulfite as a competitive inhibitor for S. pasteurii urease, with an inhibition constant of 0.19mM at pH7. The structure of the urease-sulfite complex, determined at 1.65Å resolution, shows the inhibitor bound to the dinuclear Ni(II) center of urease in a tridentate mode involving bonds between the two Ni(II) ions in the active site and all three oxygen atoms of the inhibitor, supporting the observed competitive inhibition kinetics. This coordination mode of sulfite has never been observed, either in proteins or in small molecule complexes, and could inspire synthetic coordination chemists as well as biochemists to develop urease inhibitors based on this chemical moiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Autoxidation of sulphur dioxide in the presence of alcohols under conditions related to the tropospheric aqueous phase

    NASA Astrophysics Data System (ADS)

    Ziajka, J.; Pasiuk-Bronikowska, W.

    In this work attempts were made to elucidate the monoterpenic alcohol inhibition of the S(IV) autoxidation by comparing the inhibiting activity of cis-verbenol (C 10H 15OH), myrtenol (C 10H 15OH) and nopol (C 11H 17OH) with that of ethanol (C 2H 5OH) and 2-propanol (C 3H 7OH). Results of laboratory experiments on the kinetics of S(IV) autoxidation in the presence of these alcohols were interpreted using the equation derived by Alyea and Bäckström (J. Am. Chem. Soc. 51 (1929) 90), brought into relationship with the actual mechanistic knowledge on the reactivity of the inhibitors with respect to sulphate radicals. The rate constants for the reaction: alc+SO 4·- (+O 2)→SO 42-+H ++HO 2+ald involving cis-verbenol and myrtenol have been determined as equal to, respectively, 5.4×10 9 and 4.2×10 9 M-1 s-1. These results were obtained under the assumption that the main chain termination is due to simultaneous scavenging SO 5·- radical anions by Fe II and SO 4·- radical anions by an alcohol. In the case of nopol the rough estimate gave for the rate constant of the latter reaction a value of 9.0×10 9 M-1 s-1 burdened with an error caused by the sulphoxy radical induced autoxidation of nopol. The studied airborne compounds of biological origin were shown to be potentially significant modifiers of the acidity formation in clouds and a sink for sulphoxy radicals participating in further transformations of these compounds.

  12. Cholesterol and related sterols autoxidation.

    PubMed

    Zerbinati, Chiara; Iuliano, Luigi

    2017-10-01

    Cholesterol is a unique lipid molecule providing the building block for membranes, hormones, vitamin D and bile acid synthesis. Metabolism of cholesterol involves several enzymes acting on the sterol nucleus or the isooctyl tail. In the recent years, research interest has been focused on oxysterols, cholesterol derivatives generated by the addition of oxygen to the cholesterol backbone. Oxysterols can be produced enzymatically or by autoxidation. Autoxidation of cholesterol proceeds through type I or type II mechanisms. Type I autoxidation is initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system. Type II autoxidation occurs stoichiometrically by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The vulnerability of cholesterol towards high reactive species has raised considerable interest for mechanistic studies and for the potential biological activity of oxysterols, as well as for the use of oxysterols as biomarkers for the non-invasive study of oxidative stress in vivo. Copyright © 2017. Published by Elsevier Inc.

  13. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.

    PubMed

    Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok

    2010-08-01

    Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.

  14. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity

    PubMed Central

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-01-01

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit FeII-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail. PMID:26610529

  15. Sulfite hypersensitivity. A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnison, A.F.; Jacobsen, D.W.

    Sulfiting agents (sulfur dioxide and the sodium and potassium salts of bisulfite, sulfite, and metabisulfite) are widely used as preservatives in foods, beverages, and pharmaceuticals. Within the past 5 years, there have been numerous reports of adverse reactions to sulfiting agents. This review presents a comprehensive compilation and discussion of reports describing reactions to ingested, inhaled, and parenterally administered sulfite. Sulfite hypersensitivity is usually, but not exclusively, found within the chronic asthmatic population. Although there is some disagreement on its prevalence, a number of studies have indicated that 5 to 10% of all chronic asthmatics are sulfite hypersensitive. This reviewmore » also describes respiratory sulfur dioxide sensitivity which essentially all asthmatics experience. Possible mechanisms of sulfite hypersensitivity and sulfur dioxide sensitivity are discussed in detail. Sulfite metabolism and the role of sulfite oxidase in the detoxification of exogenous sulfite are reviewed in relationship to the etiology of sulfite hypersensitivity. 147 references.« less

  16. The determination of sulfite levels and its oxidation in plant leaves.

    PubMed

    Brychkova, Galina; Yarmolinsky, Dmitry; Fluhr, Robert; Sagi, Moshe

    2012-07-01

    Sulfur is the sixth most abundant element in life and an important building block of proteins and cellular metabolites. Plants like bacteria can synthesize their sulfur-containing biomolecules from sulfate, where sulfite is an intermediate of the sulfur assimilation pathway. Above a certain threshold SO(2)/sulfite is cytotoxic and is rapidly metabolized to avoid damage. However, the existing data show considerable differences in basal sulfite levels both between species and apparent discrepancies in measured levels in the same species. In order to resolve this question we employed a sulfite detection method using chicken sulfite oxidase and developed an independent enzymatic assay, based on the specific detection of sulfite by sulfite reductase and compared those measurements to a modified colorimetric fuchsin-based method, specific for sulfite detection. We show here that when properly used the sulfite levels detected by the three methods can yield identical results. Furthermore, to examine the capacity of the plant to detoxify sulfite we injected sub-lethal sulfite solutions (yet, several folds higher than the basal levels) into Arabidopsis and tomato leaves and monitored the excess sulfite turnover. Within 3h of sulfite injection, more than 80% of the injected sulfite in Arabidopsis and 91% in tomato were oxidized to sulfate, demonstrating the high capacity of the sulfite oxidation mechanism/s in plants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Risk analysis of sulfites used as food additives in China.

    PubMed

    Zhang, Jian Bo; Zhang, Hong; Wang, Hua Li; Zhang, Ji Yue; Luo, Peng Jie; Zhu, Lei; Wang, Zhu Tian

    2014-02-01

    This study was to analyze the risk of sulfites in food consumed by the Chinese people and assess the health protection capability of maximum-permitted level (MPL) of sulfites in GB 2760-2011. Sulfites as food additives are overused or abused in many food categories. When the MPL in GB 2760-2011 was used as sulfites content in food, the intake of sulfites in most surveyed populations was lower than the acceptable daily intake (ADI). Excess intake of sulfites was found in all the surveyed groups when a high percentile of sulfites in food was in taken. Moreover, children aged 1-6 years are at a high risk to intake excess sulfites. The primary cause for the excess intake of sulfites in Chinese people is the overuse and abuse of sulfites by the food industry. The current MPL of sulfites in GB 2760-2011 protects the health of most populations. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma.

    PubMed

    Herken, Emine Nur; Kocamaz, Erdogan; Erel, Ozcan; Celik, Hakim; Kucukatay, Vural

    2009-08-01

    Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.

  19. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving sulfite... at dissolving sulfite mills. ...

  20. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving sulfite... at dissolving sulfite mills. ...

  1. Effects of Reduced Sulfur Compounds on Pd-catalytic Hydrodechlorination of TCE in Groundwater by Cathodic H2 under Electrochemically-induced Oxidizing Conditions

    PubMed Central

    Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N.

    2014-01-01

    Reduced sulfur compounds (RSCs) poison Pd catalysts for catalytic hydrodechlorination of contaminants in anoxic groundwater. This study investigates the effects of RSCs on Pd-catalytic hydrodechlorination of trichloroethylene (TCE) in oxic groundwater. Water electrolysis in an undivided electrolytic cell is used to produce H2 for TCE hydrodechlorination under oxidizing conditions. TCE is efficiently hydrodechlorinated to ethane, with significant accumulation of H2O2 under acidic conditions. Presence of sulfide at concentrations less than 93.8 μM moderately inhibits TCE hydrodechlorination and H2O2 production. Presence of sulfite at low concentrations (≤ 1 mM) significantly enhances TCE decay, while at high concentration (3 mM) inhibits initially and enhances afterwards when sulfite concentration declines to less than 1 mM. Using radical scavenging experiments and electron spin resonance assay, SO3•− which is generated from sulfite under oxidizing conditions is validated as the new reactive species contributing to the enhancement. This study reveals a distinct mechanism of effect of sulfite on TCE hydrodechlorination by Pd and H2 in oxic groundwater and presents an alternative approach to increasing resistance of Pd to RSCs poisoning. PMID:23962132

  2. Sulfite Reductase Protects Plants against Sulfite Toxicity1[W][OA

    PubMed Central

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-01-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum ‘Rheinlands Ruhm’) and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation. PMID:23221833

  3. Differential sensitivity of duckweeds (Lemnaceae) to sulfite: I. Carbon assimilation and frond replication rate as factors influencing sulfite phytotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemoto, B.K.; Noble, R.D.

    1986-01-01

    The thiol content and hydrogen sulfide emission responses of duckweeds (Lemnaceae) differentially sensitive to sulfite enrichment were studied, at two levels of irradiance. The objectives were to examine the relationship of selected parameters of sulfite metabolism to sulfite sensitivity, and the role of light level on modifying sulfite metabolic responses and duckweed sulfite sensitivity. Under low light, thiol contents were increased 30 to 40% by sulfite in all three duckweeds examined. Hydrogen sulfide was emitted by all three species, and emission rates were up to four times higher in the sulfite tolerant duckweed Lemna valdiviana. Under high light, sulfite increasedmore » thiol contents by an average of 40% in L. valdiviana and Spirodela oligorhiza, but only 20% in Lemna gibba. The greater light enhancement of thiol content exhibited by L. valdiviana and S. oligorhiza may be indicative of larger or more numerous sulfur sinks. Hydrogen sulfide emission rates were also enhanced under high light, and L. gibba exhibited a 17% increase relative to its low light rate. In comparison, L. valdiviana and S. oligorhiza exhibited 55% and 60% increases, respectively. The ability to form elevated internal thiols and hydrogen sulfide were found to be important to sulfite tolerance in duckweeds. Enhancement of both processes under high light may contribute to increased tolerance of sulfite in L. gibba and S. oligorhiza. It is hypothesized that thiol production and hydrogen sulfide emission are important sulfite detoxification processes in duckweeds, and enhancement of sulfite detoxification is fundamental to the modification of duckweed sulfite sensitivity by the photoenvironment. 25 refs., 3 tabs.« less

  4. Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V.

    Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conservedmore » in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.« less

  5. High fluorescence emission silver nano particles coated with poly (styrene-g-soybean oil) graft copolymers: Antibacterial activity and polymerization kinetics.

    PubMed

    Hazer, Baki; Kalaycı, Özlem A

    2017-05-01

    Autoxidation of poly unsaturated fatty acids makes negative effect on foods. In this work, this negative effect was turned to a great advantage using autoxidized soybean oil as a macroperoxide nanocomposite initiator containing silver nano particles in free radical polymerization of vinyl monomers. The synthesis of soybean oil macro peroxide was carried out by exposing soybean oil to air oxygen with the presence of silver nanoparticles (Ag NPs) at room temperature. Autoxidized soybean oil macroperoxide containing silver nanoparticles (Agsbox) successfully initiated the free radical polymerization of styrene in order to obtain Polystyrene (PS)-g-soybean oil graft copolymer containing Ag NPs. Both autoxidized soybean oil and PS-g-sbox with Ag NPs showed a surface plasmon resonance and high fluorescence emission. Overall rate constant (K) of styrene polymerization initiated by autoxidized soybean oil macroperoxide with Ag NPs was found to be K=1.95.10 -4 Lmol -1 s -1 at 95°C. Antibacterial efficiency was observed in the PS-g-soybean oil graft copolymer film samples containing Ag NPs. 1 H NMR and GPC techniques were used for the structural analysis of the fractionated polymeric oils. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Picomolar quantitation of free sulfite in foods by means of [57Co]hydroxocobalamin and radiometric chromatography of [57Co]sulfitocobalamin. Method, applications and significance of coexisting sulfides.

    PubMed

    Beck, R A; Anes, J M; Savini, L M; Mateer, R A

    2000-06-09

    The concentration dependent reaction of sulfite with 57Co-labeled hydroxocobalamin (OH57CoCbl) to produce a sulfitocobalamin (SO(3)57CoCbl) adduct served as a quantification strategy for foodborne sulfite residues freely extracted into pH 5.2, 0.05 M acetate buffer. SO(3)57CoCbl was then resolved using SP-Sephadex C-25 gel chromatography and its radiometric detection allowed calculation of a standard logit plot from which unknown sulfite concentrations could be determined. The sulfite detection range was 6.0 nM-0.3 pM with respective relative standard deviations of 4.4-29.4% for 50-microl samples. Individual incidences of foodborne sulfite intolerances provoked by L-cysteine or sulfite additive use in bakery products, which remained undetected using conventional sulfite analytical methods, underscored the quantitative value of the method. The analytical significance and occurrences of detectable sulfides coexisting with foodborne sulfite residues was also addressed.

  7. Intramuscular Cobinamide Sulfite in a Rabbit Model of Sub-Lethal Cyanide Toxicity

    PubMed Central

    Brenner, Matthew; Kim, Jae G.; Mahon, Sari B.; Lee, Jangwoen; Kreuter, Kelly A.; Blackledge, William; Mukai, David; Patterson, Steve; Mohammad, Othman; Sharma, Vijay S.; Boss, Gerry R.

    2009-01-01

    Objective To determine the ability of an intramuscular cobinamide sulfite injection to rapidly reverse the physiologic effects of cyanide toxicity. Background Exposure to cyanide in fires and industrial exposures and intentional cyanide poisoning by terrorists leading to mass casualties is an ongoing threat. Current treatments for cyanide poisoning must be administered intravenously, and no rapid treatment methods are available for mass casualty cyanide exposures. Cobinamide is a cobalamin (vitamin B12) analog with an extraordinarily high affinity for cyanide that is more water-soluble than cobalamin. We investigated the use of intramuscular cobinamide sulfite to reverse cyanide toxicity induced physiologic changes in a sublethal cyanide exposure animal model. Methods New Zealand white rabbits were given 10 mg sodium cyanide intravenously over 60 minutes. Quantitative diffuse optical spectroscopy and continuous wave near infrared spectroscopy monitoring of tissue oxy- and deoxyhemoglobin concentrations were performed concurrently with blood cyanide level measurements and cobinamide levels. Immediately after completion of the cyanide infusion, the rabbits were injected intramuscularly with cobinamide sulfite (n=6) or inactive vehicle (controls, n=5). Results Intramuscular administration led to rapid mobilization of cobinamide and was extremely effective at reversing the physiologic effects of cyanide on oxyhemoglobin and deoxyhemoglobin extraction. Recovery time to 63% of their baseline values in the central nervous system was in a mean of 1032 minutes in the control group and 9 minutes in the cobinamide group with a difference of 1023 minutes (95% confidence interval [CI] 116, 1874 minutes). In muscle tissue, recovery times were 76 and 24 minutes with a difference of 52 minutes (95% CI 7, 98min). Red blood cell cyanide levels returned towards normal significantly faster in cobinamide sulfite-treated animals than in control animals. Conclusions Intramuscular cobinamide sulfite rapidly and effectively reverses the physiologic effects of cyanide poisoning, suggesting that a compact cyanide antidote kit can be developed for mass casualty cyanide exposures. PMID:20045579

  8. Pattern formation in the iodate-sulfite-thiosulfate reaction-diffusion system.

    PubMed

    Liu, Haimiao; Pojman, John A; Zhao, Yuemin; Pan, Changwei; Zheng, Juhua; Yuan, Ling; Horváth, Attila K; Gao, Qingyu

    2012-01-07

    Sodium polyacrylate-induced pH pattern formation and starch-induced iodine pattern formation were investigated in the iodate-sulfite-thiosulfate (IST) reaction in a one-side fed disc gel reactor (OSFR). As binding agents of the autocatalyst of hydrogen ions or iodide ions, different content of sodium polyacrylate or starch has induced various types of pattern formation. We observed pH pulses, striped patterns, mixed spots and stripes, and hexagonal spots upon increasing the content of sodium polyacrylate and observed iodine pulses, branched patterns, and labyrinthine patterns upon increasing the starch content in the system. Coexistence of a pH front and an iodine front was also studied in a batch IST reaction-diffusion system. Both pH and iodine front instabilities were observed in the presence of sodium polyacrylate, i.e., cellular fronts and transient Turing structures resulting from the decrease in diffusion coefficients of activators. The mechanism of multiple feedback may explain the different patterns in the IST reaction-diffusion system.

  9. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving... production of pulp at dissolving sulfite mills. ...

  10. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving... production of pulp at dissolving sulfite mills. ...

  11. 40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving... production of pulp at dissolving sulfite mills. ...

  12. Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses

    Treesearch

    X.L. Luo; Junyong Zhu; Roland Gleisner; H.Y. Zhan

    2011-01-01

    This article reports the effect of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. A wet cellulosic substrate of bleached kraft eucalyptus pulp and two wet sulfite-pretreated lignocellulosic substrates of aspen and lodgepole pine were pressed to various moisture (solids) contents by variation of pressing pressure and pressing...

  13. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite.

    PubMed

    Nair, Bindu; Elmore, Amy R

    2003-01-01

    Sodium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Potassium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are inorganic salts that function as reducing agents in cosmetic formulations. All except Sodium Metabisulfite also function as hair-waving/straightening agents. In addition, Sodium Sulfite, Potassium Sulfite, Sodium Bisulfite, and Sodium Metabisulfite function as antioxidants. Although Ammonium Sulfite is not in current use, the others are widely used in hair care products. Sulfites that enter mammals via ingestion, inhalation, or injection are metabolized by sulfite oxidase to sulfate. In oral-dose animal toxicity studies, hyperplastic changes in the gastric mucosa were the most common findings at high doses. Ammonium Sulfite aerosol had an acute LC(50) of >400 mg/m(3) in guinea pigs. A single exposure to low concentrations of a Sodium Sulfite fine aerosol produced dose-related changes in the lung capacity parameters of guinea pigs. A 3-day exposure of rats to a Sodium Sulfite fine aerosol produced mild pulmonary edema and irritation of the tracheal epithelium. Severe epithelial changes were observed in dogs exposed for 290 days to 1 mg/m(3) of a Sodium Metabisulfite fine aerosol. These fine aerosols contained fine respirable particle sizes that are not found in cosmetic aerosols or pump sprays. None of the cosmetic product types, however, in which these ingredients are used are aerosolized. Sodium Bisulfite (tested at 38%) and Sodium Metabisulfite (undiluted) were not irritants to rabbits following occlusive exposures. Sodium Metabisulfite (tested at 50%) was irritating to guinea pigs following repeated exposure. In rats, Sodium Sulfite heptahydrate at large doses (up to 3.3 g/kg) produced fetal toxicity but not teratogenicity. Sodium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite were not teratogenic for mice, rats, hamsters, or rabbits at doses up to 160 mg/kg. Generally, Sodium Sulfite, Sodium Metabisulfite, and Potassium Metabisulfite were negative in mutagenicity studies. Sodium Bisulfite produced both positive and negative results. Clinical oral and ocular-exposure studies reported no adverse effects. Sodium Sulfite was not irritating or sensitizing in clinical tests. These ingredients, however, may produce positive reactions in dermatologic patients under patch test. In evaluating the positive genotoxicity data found with Sodium Bisulfite, the equilibrium chemistry of sulfurous acid, sulfur dioxide, bisulfite, sulfite, and metabisulfite was considered. This information, however, suggests that some bisulfite may have been present in genotoxicity tests involving the other ingredients and vice versa. On that basis, the genotoxicity data did not give a clear, consistent picture. In cosmetics, however, the bisulfite form is used at very low concentrations (0.03% to 0.7%) in most products except wave sets. In wave sets, the pH ranges from 8 to 9 where the sulfite form would predominate. Skin penetration would be low due to the highly charged nature of these particles and any sulfite that did penetrate would be converted to sulfate by the enzyme sulfate oxidase. As used in cosmetics, therefore, these ingredients would not present a genotoxicity risk. The Cosmetic Ingredient Review Expert Panel concluded that Sodium Sulfite, Potassium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are safe as used in cosmetic formulations.

  14. Further insights into the oxidation chemistry and biochemistry of the serotonergic neurotoxin 5,6-dihydroxytryptamine.

    PubMed

    Singh, S; Dryhurst, G

    1990-11-01

    The neurodegenerative properties of the serotonergic neurotoxin 5,6-dihydroxytryptamine (5,6-DHT) are widely believed to result from its autoxidation in the central nervous system. The autoxidation chemistry of 5,6-DHT has been studied in aqueous solution at pH 7.2. The reaction is initiated by direct oxidation of the indolamine by molecular oxygen with resultant formation of the corresponding o-quinone 1 and H2O2. A rapid nucleophilic attack by 5,6-DHT on 1 leads to 2,7'-bis(5,6-dihydroxytryptamine) (6) which is more rapidly autoxidized than 5,6-DHT to give the corresponding diquinone 7 along with 2 mol of H2O2. The accumulation of 6 in the reaction solution during the autoxidation of 5,6-DHT despite its more rapid autoxidation indicates that diquinone 7 chemically oxidizes 5,6-DHT (2 mol) to quinone 1 so that an autocatalytic cycle is established. The H2O2 formed as a byproduct of these autoxidation reactions can undergo Fenton chemistry catalyzed by trace transition metal ion contaminants with resultant formation of the hydroxyl radical, HO., which directly oxidizes 5,6-DHT to a radical intermediate (9a/9b). This radical is directly attacked by O2 to yield quinone 1 and superoxide radical anion, O2.-, which further facilitates Fenton chemistry by reducing, inter alia, Fe3+ to Fe2+. A minor side reaction of 1 with water leads to formation of at least two trihydroxytryptamines. Diquinone 7 ultimately reacts with 6, 5,6-DHT, and perhaps trihydroxytryptamines, leading via a sequence of coupling and oxidation reactions to a black indolic melanin polymer. Enzymes such as tyrosinase, ceruloplasmin, and peroxidase and rat brain mitochondria catalyze the oxidation of 5,6-DHT to form dimer 7 and, ultimately, indolic melanin. The role of the autoxidation and the enzyme-mediated and mitochondria-promoted oxidations of 5,6-DHT in expressing the neurodegenerative properties of the indolamine are discussed.

  15. Determining the Origin and Fate of Particulate Plant-Derived Organic Matter in the Rhone River (France) : A Lipid Tracer Review

    NASA Astrophysics Data System (ADS)

    Galeron, M. A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J. F.

    2014-12-01

    A number of lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France), with a main focus on phytosterols, such as sitosterol, desmosterol, brassicasterol and cholesterol. This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant derived particulate organic matter (POM) with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Specific sitosterol and cholesterol degradation products were quantified and used to estimate the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could play a role in the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea. Although sitosterol has been commonly used as a tracer of the terrestrial origin of POM in rivers, we show here that is it also found in phytoplankton, which highlights the need to use different tracers to determine the origin of POM in rivers. As part of the set of tracers we use, we have identified betulin to be an interesting candidate, although limited to a number of angiosperms species. Not only can we trace betulin to an unequivocal terrestrial origin, we also identified its specific degradation products, allowing us to trace the degradation state of angiosperm particulate debris in rivers, as well as the type of degradation undergone.

  16. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations, restrictions, or explanation. This...

  17. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations, restrictions, or explanation. This...

  18. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations, restrictions, or explanation. This...

  19. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations, restrictions, or explanation. This...

  20. Sulfite-containing Canadian pharmaceutical products available in 1991.

    PubMed Central

    Miyata, M; Schuster, B; Schellenberg, R

    1992-01-01

    OBJECTIVE: To compile an inclusive list of Canadian pharmaceutical products available in 1991 that contained sulfites. DATA SOURCES: Written and oral responses from 94 pharmaceutical companies selected from the 1989 Compendium of Pharmaceuticals and Specialties. RESULTS: A list of sulfite-containing pharmaceutical products was compiled from data supplied by the 90 responding companies. Companies whose products contained no sulfites were separately identified. CONCLUSIONS: Sulfites are present in many pharmaceutical products and are one of many excipients and additives that have been reported to cause severe adverse reactions. The provided list should be a useful aid for health care practitioners when prescribing pharmaceutical products for sulfite-sensitive patients. PMID:1483237

  1. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  2. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  3. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  4. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  5. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite...

  6. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  7. Formation and stability of Vitamin E enriched nanoemulsions stabilized by Octenyl Succinic Anhydride modified starch

    USDA-ARS?s Scientific Manuscript database

    Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...

  8. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  9. 40 CFR 63.444 - Standards for the pulping system at sulfite processes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for the pulping system at sulfite processes. (a) The owner or operator of each sulfite process... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards for the pulping system at sulfite processes. 63.444 Section 63.444 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  10. Concentration of simple aldehydes by sulfite-containing double-layer hydroxide minerals: implications for biopoesis

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.

  11. Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain

    NASA Astrophysics Data System (ADS)

    Liang, Fang; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2014-11-01

    SO2 is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO2 from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 μmol/(m2·s), NaHCO3 concentration of 6 g/L, initial cell density (OD540) of 0.8 and pH of 9-10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO2- 3 to SO2- 4, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ≤20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO2, assuming there is adequate control of the pH.

  12. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and effective for the determination of high levels of sulfites in dried fruits.

  13. Potential bronchoconstrictor stimuli in acid fog.

    PubMed Central

    Balmes, J R; Fine, J M; Gordon, T; Sheppard, D

    1989-01-01

    Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and niric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction. PMID:2539989

  14. Reevaluation of Monier-Williams method for determining sulfite in food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, C.R.; Daniels, D.H.; Joe, F.L. Jr.

    The Monier-Williams distillation procedure has a long history of successful use for determining sulfite in fruit products and wine; however, a systematic evaluation of its accuracy and precision with other food matrices has not been undertaken. The authors found that Monier-Williams distillation yielded >90% recovery of sulfite added to foods such as table grapes, hominy, dried mangoes, and lemon juice. Less than 85% recovery was obtained with broccoli, soda crackers, cheese-peanut butter crackers, mushrooms, and potato chips. These results may, in fact, accurately reflect the residual levels of sulfite if a portion of the sulfite undergoes irreversible reaction with somemore » food components. Analysis of commercial food products gave sulfite levels as 25 ppm in cream sherry.« less

  15. A new diketopyrrolopyrrole-based probe for sensitive and selective detection of sulfite in aqueous solution

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Cui, Yu; Li, Yexin; Zheng, Luyi; Xie, Lijun; Ning, Rui; Liu, Zheng; Lu, Junling; Zhang, Gege; Liu, Chunxiang; Zhang, Guangyou

    2015-02-01

    A new probe was synthesized by incorporating an α,β -unsaturated ketone to a diketopyrrolopyrrole fluorophore. The probe had exhibited a selective and sensitive response to the sulfite against other thirteen anions and biothiols (Cys, Hcy and GSH), through the nucleophilic addition of sulfite to the alkene of probe with the detection limit of 0.1 μM in HEPES (10 mM, pH 7.4) THF/H2O (1:1, v/v). Meanwhile, it could be easily observed that the probe for sulfite changed from pink to colorless by the naked eye, and from pink to blue under UV lamp after the sulfite was added for 20 min. The NMR and Mass spectral analysis demonstrated the expected addition of sulfite to the Cdbnd C bonds.

  16. Chemiluminescence Study of the Autoxidation of cis-1,4-Polyisoprene

    NASA Technical Reports Server (NTRS)

    Mendenhall, G. David; Nathan, Richard A.; Golub, Morton A.

    1978-01-01

    The free-radical mechanism for the autoxidation of cis-1,4-polyisoprene (natural rubber or its synthetic counterpart) has been investigated extensively. An important feature of this mechanism, and indeed also of the autoxidation of hydrocarbons generally, is that it is a chain process propagated by alkyl and peroxy radicals and terminated through bimolecular reactions involving these same radicals. In the usual oxidation situation, that is, at all oxygen pressures greater than a few torr, the alkyl radicals are rapidly converted to peroxy radicals, and the termination step proceeds almost exclusively through the latter radicals. The bimolecular decay of the peroxy radicals is accompanied by a weak emission of light or chemiluminescence. Kinetic evidence is consistent with an electronically excited ketone produced in the termination reaction as the source of the emission. The first observation of chemiluminescence from the oxidative degradation of polymers was reported by Ashby, who dealt mainly with polypropylene but made passing mention of several other polymers. Subsequently, a number of papers have appeared dealing with oxidative chemiluminescence from a variety of polymers. In this paper we report the first detailed study of the chemiluminescence emitted in the autoxidation of cis-1,4-polyisoprene. The chemiluminescence technique is extremely sensitive and can follow rates of oxidation that are too slow to be measured conveniently by other means. This work thus offered the potential of throwing new light on the autoxidation of cis-1,4-polyisoprene, especially in the very early stages or under ambient conditions where conventional spectroscopic procedures are rather insensitive.

  17. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei.

    PubMed Central

    Townsend, G T; Suflita, J M

    1997-01-01

    The inhibition of aryl reductive dehalogenation reactions by sulfur oxyanions has been demonstrated in environmental samples, dehalogenating enrichments, and the sulfate-reducing bacterium Desulfomonile tiedjei; however, this phenomenon is not well understood. We examined the effects of sulfate, sulfite, and thiosulfate on reductive dehalogenation in the model microorganism D. tiedjei and found separate mechanisms of inhibition due to these oxyanions under growth versus nongrowth conditions. Dehalogenation activity was greatly reduced in extracts of cells grown in the presence of both 3-chlorobenzoate, the substrate or inducer for the aryl dehalogenation activity, and either sulfate, sulfite, or thiosulfate, indicating that sulfur oxyanions repress the requisite enzymes. In extracts of fully induced cells, thiosulfate and sulfite, but not sulfate, were potent inhibitors of aryl dehalogenation activity even in membrane fractions lacking the cytoplasmically located sulfur oxyanion reductase. These results suggest that under growth conditions, sulfur oxyanions serve as preferred electron acceptors and negatively influence dehalogenation activity in D. tiedjei by regulating the amount of active aryl dehalogenase in cells. Additionally, in vitro inhibition by sulfur oxyanions is due to the interaction of the reactive species with enzymes involved in dehalogenation and need not involve competition between two respiratory processes for reducing equivalents. Sulfur oxyanions also inhibited tetrachloroethylene dehalogenation by the same mechanisms, further indicating that chloroethylenes are fortuitously dehalogenated by the aryl dehalogenase. The commonly observed inhibition of reductive dehalogenation reactions under sulfate-reducing conditions may be due to similar regulation mechanisms in other dehalogenating microorganisms that contain multiple respiratory activities. PMID:9293011

  18. Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids.

    PubMed

    Monte, Joseana R; Laurito-Friend, Debora F; Ferraz, André; Milagres, Adriane M F

    2018-04-26

    Sugarcane bagasses from three experimental sugarcane hybrids and a mill-reference sample were used to compare the efficiency and mode of action of acid and alkaline sulfite pretreatment processes. Varied chemical loads and reaction temperatures were used to prepare samples with distinguished characteristics regarding xylan and lignin removals, as well as sulfonation levels of residual lignins. The pretreatment with low sulfite loads (5%) under acidic conditions (pH 2) provided maximum glucose yield of 70% during enzymatic hydrolysis with cellulases (10 FPU/g) and β-glucosidases (20 UI/g bagasse). In this case, glucan enzymatic conversion from pretreated materials was mostly associated with extensive xylan removal (70-100%) and partial delignification occurred during the pretreatment. The use of low sulfite loads under acidic conditions required pretreatment temperatures of 160°C. In contrast, at a lower pretreatment temperature (120°C), alkaline sulfite process achieved similar glucan digestibility, but required a higher sulfite load (7.5%). Residual xylans from acid pretreated materials were almost completely hydrolysed by commercial enzymes, contrasting with relatively lower xylan to xylose conversions observed in alkaline pretreated samples. Efficient xylan removal during acid sulfite pretreatment and also during enzymatic digestion can be useful to enhance glucan accessibility and digestibility by cellulases. Alkaline sulfite process also provided substrates with high glucan digestibility, mainly associated with delignification and sulfonation of residual lignins. The results demonstrate that temperature, pH and sulfite can be combined for reducing lignocellulose recalcitrance and achieve similar glucan conversion rates in the alkaline and acid sulfite pretreated bagasses. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  19. Autoxidation of unsaturated lipids in food emulsion.

    PubMed

    Sun, Yue-E; Wang, Wei-Dong; Chen, Hong-Wei; Li, Chao

    2011-05-01

    Unsaturated lipids having various physiological roles are of significance in biochemistry, nutrition, medicine, and food. However, the susceptibility of lipids to oxidation is a major cause of quality deterioration in food emulsions. The reaction mechanism and factors that influence oxidation are appreciably different for emulsified lipids and bulk lipids. This article gives a brief overview of the current knowledge on autoxidation of oil-in-water food emulsions, especially those that contain unsaturated lipids, which are important in the food industry. Autoxidation of unsaturated lipids in oil-in-water emulsion is discussed, and so also their oxidation mechanism, the major factors influencing oxidation, determination measures, research status, and the problems encountered in recent years. Some effective strategies for controlling lipid oxidation in food emulsion have been presented in this review.

  20. Kinetics and mechanism of degradation of some 2-sulfanilamidopyrimidine derivatives. Part III. The use of Hammett equation for kinetic investigation of 2-sulfanilamidopyrimidine derivatives autoxidation.

    PubMed

    Zajac, M

    1977-01-01

    General first-order rate constants for autoxidation of sulfadiazine, sulfamerazine, sulfadimidine, sulfaperine and sulfamethoxydiazine in the air oxygen atmosphere, in solutions of pH 4-7, at 403, 411 and 418 K were determined from the absorbance measurements in 0-1 mole/dm3 HCl at 243 or 333 nm, using the so-called "subtraction technique". The thermodynamic parameters of this reaction were determined (deltaHa, deltaH not equal to, deltaS not equal to, deltaG not equal to and logA). The effect of the substituents in positions 4, 5 and 6 of the pyrimidine ring on the rate of autoxidation was interpreted in terms of the Hammett equation.

  1. Copper increases the ability of 6-hydroxydopamine to generate oxidative stress and the ability of ascorbate and glutathione to potentiate this effect: potential implications in Parkinson's disease.

    PubMed

    Cruces-Sande, Antón; Méndez-Álvarez, Estefanía; Soto-Otero, Ramón

    2017-06-01

    Copper is an essential metal for the function of many proteins related to important cellular reactions and also involved in the synaptic transmission. Although there are several mechanisms involved in copper homeostasis, a dysregulation in this process can result in serious neurological consequences, including degeneration of dopaminergic neurons. 6-Hydroxydopamine is a dopaminergic neurotoxin mainly used in experimental models of Parkinson's disease, whose neurotoxicity has been related to its ability to generate free radicals. In this study, we examined the effects induced by copper on 6-OHDA autoxidation. Our data show that both Cu + and Cu 2+ caused an increase in • OH production by 6-OHDA autoxidation, which was accompanied by an increase in the rate of both p-quinone formation and H 2 O 2 accumulation. The presence of ascorbate greatly enhanced this process by establishing a redox cycle which regenerates 6-OHDA from its p-quinone. However, the presence of glutathione did not change significantly the copper-induced effects. We observed that copper is able to potentiate the ability of 6-OHDA to cause both lipid peroxidation and protein oxidation, with the latter including a reduction in free-thiol content and an increase in carbonyl content. Ascorbate also increases the lipid peroxidation induced by the action of copper and 6-OHDA. Glutathione protects against the copper-induced lipid peroxidation, but does not reduce its potential to oxidize free thiols. These results clearly demonstrate the potential of copper to increase the capacity of 6-OHDA to generate oxidative stress and the ability of ascorbate to enhance this potential, which may contribute to the destruction of dopaminergic neurons. © 2017 International Society for Neurochemistry.

  2. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur.

    PubMed

    Frederiksen, Trine-Maria; Finster, Kai

    2003-06-01

    The enzymatic pathways of elemental sulfur and thiosulfate disproportionation were investigated using cell-free extract of Desulfocapsa sulfoexigens. Sulfite was observed to be an intermediate in the metabolism of both compounds. Two distinct pathways for the oxidation of sulfite have been identified. One pathway involves APS reductase and ATP sulfurylase and can be described as the reversion of the initial steps of the dissimilatory sulfate reduction pathway. The second pathway is the direct oxidation of sulfite to sulfate by sulfite oxidoreductase. This enzyme has not been reported from sulfate reducers before. Thiosulfate reductase, which cleaves thiosulfate into sulfite and sulfide, was only present in cell-free extract from thiosulfate disproportionating cultures. We propose that this enzyme catalyzes the first step in thiosulfate disproportionation. The initial step in sulfur disproportionation was not identified. Dissimilatory sulfite reductase was present in sulfur and thiosulfate disproportionating cultures. The metabolic function of this enzyme in relation to elemental sulfur or thiosulfate disproportionation was not identified. The presence of the uncouplers HQNO and CCCP in growing cultures had negative effects on both thiosulfate and sulfur disproportionation. CCCP totally inhibited sulfur disproportionation and reduced thiosulfate disproportionation by 80% compared to an unamended control. HQNO reduced thiosulfate disproportionation by 80% and sulfur disproportionation by 90%.

  3. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Efficiency of population-dependent sulfite against Brettanomyces bruxellensis in red wine.

    PubMed

    Longin, Cédric; Degueurce, Claudine; Julliat, Frédérique; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2016-11-01

    Brettanomyces bruxellensis is considered as a spoilage yeast encountered mainly in red wine. It is able to reduce vinylphenols from phenolic acids to ethylphenols. These volatiles are responsible for the phenolic "Brett character" described as animal, farm, horse sweat and animal leather odors. Other molecules are responsible for organoleptic deviations described as "mousiness taint". SO 2 is the product most often used by winemakers to prevent B. bruxellensis growth. Usually, the recommended molecular dose of SO 2 (active SO 2 , mSO 2 ) is highly variable, from 0.3 to 0.8mg/L. But these doses do not take into account differences of strain resistance to sulfites or population levels. Moreover, SO 2 is known as a chemical stressor inducing a viable but nonculturable (VBNC) state of B. bruxellensis. These cells, which are non-detectable by plate counting, can lead to new contamination when the amount of sulfite decreases over time. Consequently, we first assessed the effect of SO 2 levels in red wine on two strains with phenotypically different sulfite resistances. Then, we studied the relationship between amounts of SO 2 (0, 0.5, 0.9 and 1.1mg/L active SO 2 ) and population levels (10 3 , 10 4 and 10 5 cells/mL) in red wine. Yeasts were enumerated by both plate counting and flow cytometry over time using viability dye. Our results showed different SO 2 resistances according to the strain used. A relationship between yeast population level and SO 2 resistance was demonstrated: the higher the yeast concentration, the lower the efficiency of SO 2 . Under certain conditions, the VBNC state of B. bruxellensis was highlighted in red wine. Yeasts in this VBNC state did not produce 4-EP. Moreover, cells became culturable again over time. All these results provide new information enabling better management of sulfite addition during wine aging. Copyright © 2016. Published by Elsevier Ltd.

  5. Comparison of the ion exclusion chromatographic method with the Monier-Williams method for determination of total sulfite in foods.

    PubMed

    Kim, H J

    1989-01-01

    Experimental data comparing the alkali extraction/ion exclusion chromatographic method with the Monier-Williams method for determination of total sulfite are presented in (a) enzymatic and nonenzymatic browning systems, (b) vegetables containing naturally occurring sulfite, and (c) a carbohydrate-type food additive, erythorbic acid. Excellent agreement, with a linear correlation coefficient of 0.99, was observed in fresh potato samples homogenized with sulfite and allowed to react for different time intervals (enzymatic browning system). A good overall correlation was observed in dehydrated, sulfited apple samples heated for different times (nonenzymatic browning system); however, as heating time increased, higher results were obtained by the Monier-Williams method than by the alkali extraction/ion exclusion chromatographic method. The results of determining sulfite in the alkali trapping solution following acid distillation or acid treatment without heat suggested that this deviation was due to a fraction of sulfite bound to the browning reaction products in such a way that it was released by acid distillation but not by alkali extraction or acid treatment without heat. Similar behavior was demonstrated in cabbage with naturally occurring sulfite, which was released by acid distillation but not by alkali extraction or acid treatment without heat. The ion exclusion chromatographic method could overcome interference by the volatile caramelization reaction products in the Monier-Williams determination of erythorbic acid.

  6. Survey of sulfites in wine and various Turkish food and food products intended for export, 2007-2010.

    PubMed

    Ulca, P; Öztürk, Y; Senyuva, H Z

    2011-01-01

    Surveys were carried out between 2007 and 2010 to determine the total levels of sulfites in 1245 samples of wines, dried apricots, dried vegetables, nuts, juices and purees, frozen foods and cereals containing dried fruit supplied by food inspectors and by food producers for testing or for export certification. Sulfite analysis of wine was carried out using the Ripper method with an LOQ of 5 mg l(-1) and for dried and other foods the Monier-Williams distillation procedure was employed with an LOQ of 10 mg kg(-1). In the survey all wines contained measurable sulfites, but with the exception of one sample of white wine they were otherwise below Turkish Food Codex limits of 160 mg kg(-1) for red wine, 210 mg kg(-1) to white wine and 235 mg kg(-1) for sparkling wine. None of the cereal products, frozen foods, juices or purees contained sulfites above 10 mg kg(-1). However, all dried apricot samples contained significant levels of sulfite with around 40% having levels exceeding the Turkish limit of 2000 mg kg(-1). Significant levels of sulfite were found in other samples of dried fruit with even a fruit and nut bar containing 1395 mg kg(-1) of sulfite, suggesting the dried fruit ingredients contained levels above regulatory limits.

  7. Effects of sulfite on the uptake and binding of benzo[a]pyrene diol epoxide in cultured murine respiratory epithelial cells.

    PubMed Central

    Green, J L; Jones, B C; Reed, G A

    1994-01-01

    Sulfur dioxide (SO2) may act as a cocarcinogen with benzo[a]pyrene (BaP) in the respiratory tract. We have modeled this effect by examining the interactions of 7r,8t-dihydroxy-9t,10t-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) with sulfite, the physiological form of SO2, in a murine respiratory epithelial cell line (C10). We exposed C10 cells to [3H]-anti-BPDE and determined the effects of 1 and 10 mM sulfite on the uptake and subcellular localization of labeled products. Autoradiographic analysis showed that sulfite doubled the nuclear localization of anti-BPDE-derived materials after a 4-hr incubation period. The net nuclear localization of anti-BPDE-derived materials was not affected by sulfite during the first 60 min, but nuclear localization continued to increase in the sulfite-containing incubations throughout the 4-hr incubation period. Little increase in nuclear localization of anti-BPDE-derived material was noted in the incubations without sulfite after 60 min. Subcellular fractionation was performed to determine the amount of label associated with cytosolic and nuclear fractions and to determine covalent binding to protein and DNA. Sulfite produced a modest increase in the amount of [3H]-anti-BPDE-derived products bound to protein; however, binding to nuclear DNA increased by more than 200% with 10 mM sulfite. Analysis of the supernatants from the cytosolic and nuclear fractions of cells exposed to anti-BPDE and sulfite demonstrated the presence of 7r,8t,9t-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene-10c-su lfonate (BPT-10-sulfonate). [3H]-BPT-10-sulfonate was unable to enter C10 cells, suggesting that it is formed intracellularly.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. Figure 2. Figure 3. Figure 3. Figure 3. Figure 3. Figure 3. Figure 3. Figure 4. PMID:8033853

  8. Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase.

    PubMed

    Kalimuthu, Palraj; Tkac, Jan; Kappler, Ulrike; Davis, Jason J; Bernhardt, Paul V

    2010-09-01

    This paper describes a highly sensitive electrochemical (voltammetric) determination of sulfite using a combination of Starkeya novella sulfite dehydrogenase (SDH), horse heart cytochrome c (cyt c), and a self-assembled monolayer of 11-mercaptoundecanol (MU) cast on a gold electrode. The biosensor was optimized in terms of pH and the ratio of cyt c/SDH. The electrocatalytic oxidation current of sulfite increased linearly from 1 to 6 microM at the enzyme-modified electrode with a correlation coefficient of 0.9995 and an apparent Michaelis constant (K(M,app)) of 43 microM. Using an amperometric method, the low detection limit for sulfite at the enzyme-modified electrode was 44 pM (signal-to-noise ratio = 3). The modified electrode retained a stable response for 3 days while losing only ca. 4% of its initial sensitivity during a 2 week storage period in 50 mM Tris buffer solution at 4 degrees C. The enzyme electrode was successfully used for the determination of sulfite in beer and white wine samples. The results of these electrochemical analyses agreed well with an independent spectrophotometric method using Ellman's reagent, but the detection limit was far superior using the electrochemical method.

  9. Safety issues of high-concentrated hydrogen peroxide production used as rocket propellant

    NASA Astrophysics Data System (ADS)

    Romantsova, O. V.; Ulybin, V. B.

    2015-04-01

    The article dwells on the possibility of production of high-concentrated hydrogen peroxide with the Russian technology of isopropyl alcohol autoxidation. Analysis of fire/explosion hazards and reasons of insufficient quality is conducted for the technology. Modified technology is shown. Non-standard fire/explosion characteristics required for integrated fire/explosion hazards rating for modified hydrogen peroxide production based on the autoxidation of isopropyl alcohol are defined.

  10. Contact allergy to air-exposed geraniol: clinical observations and report of 14 cases.

    PubMed

    Hagvall, Lina; Karlberg, Ann-Therese; Christensson, Johanna Bråred

    2012-07-01

    The fragrance terpene geraniol forms sensitizing compounds via autoxidation and skin metabolism. Geranial and neral, the two isomers of citral, are the major haptens formed in both of these activation pathways. To investigate whether testing with oxidized geraniol detects more cases of contact allergy than testing with pure geraniol. The pattern of reactions to pure and oxidized geraniol, and metabolites/autoxidation products, was studied to investigate the importance of autoxidation or cutaneous metabolism in contact allergy to geraniol. Pure and oxidized geraniol were tested at 2.0% petrolatum in 2227 and 2179 consecutive patients, respectively. In parallel, geranial, neral and citral were tested in 2152, 1626 and 1055 consecutive patients, respectively. Pure and oxidized geraniol gave positive patch test reactions in 0.13% and 0.55% of the patients, respectively. Eight of 11 patients with positive patch test reactions to oxidized geraniol also reacted to citral or its components. Relevance for the positive patch test reactions in relation to the patients' dermatitis was found in 11 of 14 cases. Testing with oxidized geraniol could detect more cases of contact allergy to geraniol. The reaction pattern of the 14 cases presented indicates that both autoxidation and metabolism could be important in sensitization to geraniol. © 2012 John Wiley & Sons A/S.

  11. On the structure and dynamics of the hydrated sulfite ion in aqueous solution--an ab initio QMCF MD simulation and large angle X-ray scattering study.

    PubMed

    Eklund, Lars; Hofer, Thomas S; Pribil, Andreas B; Rode, Bernd M; Persson, Ingmar

    2012-05-07

    Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism has been applied in conjunction to experimental large angle X-ray scattering to study the structure and dynamics of the hydrated sulfite ion in aqueous solution. The results show that there is a considerable effect of the lone electron-pair on sulfur concerning structure and dynamics in comparison with the sulfate ion with higher oxidation number and symmetry of the hydration shell. The S-O bond distance in the hydrated sulfite ion has been determined to 1.53(1) Å by both methods. The hydrogen bonds between the three water molecules bound to each sulfite oxygen are only slightly stronger than those in bulk water. The sulfite ion can therefore be regarded as a weak structure maker. The water exchange rate is somewhat slower for the sulfite ion than for the sulfate ion, τ(0.5) = 3.2 and 2.6 ps, respectively. An even more striking observation in the angular radial distribution (ARD) functions is that the for sulfite ion the water exchange takes place in close vicinity of the lone electron-pair directed at its sides, while in principle no water exchange did take place of the water molecules hydrogen bound to sulfite oxygens during the simulation time. This is also confirmed when detailed pathway analysis is conducted. The simulation showed that the water molecules hydrogen bound to the sulfite oxygens can move inside the hydration shell to the area outside the lone electron-pair and there be exchanged. On the other hand, for the hydrated sulfate ion in aqueous solution one can clearly see from the ARD that the distribution of exchange events is symmetrical around the entire hydration sphere.

  12. Effect of Sulfites on Antioxidant Activity, Total Polyphenols, and Flavonoid Measurements in White Wine

    PubMed Central

    Garaguso, Ivana

    2018-01-01

    Polyphenols content and antioxidant activity are directly related to the quality of wine. Wine also contains sulfites, which are added during the winemaking process. The present study aimed to evaluate the effects of sulfites on the assays commonly used to measure the antioxidant activity and polyphenols and flavonoids content of white wines. The effects of sulfites were explored both in the standard assays and in white wine. The addition of sulfites (at 1–10 μg) in the standard assays resulted in a significant, positive interference in the Folin–Ciocalteu’s assay used for polyphenols measurements and in both the Ferric Reducing Antioxidant Power and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation decolorization assays, which were used for antioxidant activity evaluation. A negative interference of sulfites (at 1–20 μg) was observed for the colorimetric aluminium-chloride flavonoids assay. The addition of sulfites to organic white wines (at 25–200 mg/L wine) clearly resulted in a significant overestimation of antioxidant activity and polyphenols content, and in an underestimation of flavonoids concentration. To overcome sulfite interferences, white wines were treated with cross-linked polyvinylpyrrolidone. The total polyphenols content and antioxidant activity measurements obtained after polyvinylpyrrolidone treatment were significantly lower than those obtained in the untreated wines. Flavonoids were expected to be higher after polyvinylpyrrolidone treatment, but were instead found to be lower than for untreated wines, suggesting that in addition to sulfites, other non-phenolic reducing compounds were present in white wine and interfered with the flavonoid assay. In view of our results, we advise that a purification procedure should be applied in order to evaluate the quality of white wine. PMID:29522434

  13. 40 CFR 430.45 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory... dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or pollutant property Kg... dissolving sulfite pulp facilities where viscose grade pulp is produced] Pollutant or pollutant property Kg...

  14. Isolated sulfite oxidase deficiency.

    PubMed

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  15. 40 CFR 430.45 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite... biocides: Subpart D [NSPS for dissolving sulfite pulp facilities where nitration grade pulp is produced... all times. Subpart D [NSPS for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  16. Redox and fungicidal properties of phthalocyanine metal complexes as related to active oxygen.

    PubMed

    Vol'pin, M E; Novodarova, G N; Krainova NYu; Lapikova, V P; Aver'yanov, A A

    2000-10-01

    Some chemical and fungicidal effects of 20 phthalocyanines of Co, Fe, Cu, and Al were studied. Under dark conditions, these complexes reduced nitroblue tetrazolium in the presence of KCN, accelerated the autoxidation of ascorbate or hydroquinone and decomposed hydrogen peroxide. In the later reaction, hydroxyl radical was generated as evidenced with the deoxyribose assay. The inhibition by superoxide dismutase and catalase of catalyzed autoxidation of ascorbate suggests the participation of superoxide anion-radical and hydrogen peroxide in the reaction. Most complexes were toxic to the fungus Magnaporthe grisea which causes blast disease of rice. The toxicity was enhanced by light being diminished by antioxidant reagents sequestering active oxygen species. Some complexes (including nontoxic ones), after 1-day contact with a leaf surface of the disease-susceptible rice cultivar, induced the fungitoxicity of leaf diffusate. This toxicity was also light-activated and sensitive to antioxidant reagents. Several complexes, when added to inocula, decreased 2-3 times the frequency of the compatible symptoms of the blast. It is suggested that in planta, the dark redox activity of phthalocyanines along with their photosensitization promote the generation of active oxygen, which damages the parasite and, therefore, favors disease resistance.

  17. Cholesterol Autoxidation Revisited: Debunking the Dogma Associated with the Most Vilified of Lipids.

    PubMed

    Zielinski, Zosia A M; Pratt, Derek A

    2016-06-08

    The longstanding dogma that cholesterol (chol) autoxidation gives chol 7-hydroperoxide (7-OOH) as the sole primary product is shown to be invalid. In fact, the epimers of each of chol 4-OOH, 6-OOH, and 7-OOH are readily formed. Although the C4-H bond that must be cleaved to produce the chol 4-OOH and 6-OOH products is significantly stronger than the C7-H bond, H-atom abstraction from C4 is facilitated by H-bond formation between the attacking peroxyl radical and the 3β-OH. Chol 5α-OOH is also formed, but only in the presence of a good H-atom donor. Chol 5α-OOH and 6-OOH undergo Hock fragmentation to yield the secosterols implicated in cardiovascular and neurodegenerative diseases, suggesting that they are likely to arise simply from autoxidation and not from reactions with O3 or (1)O2.

  18. 40 CFR 430.44 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite... dissolving sulfite pulp facilities where nitration, viscose, or cellophane pulps are produced] Pollutant or... ton of product. Subpart D [BAT effluent limitations for dissolving sulfite pulp facilities where...

  19. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORY Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  20. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  1. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  2. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  3. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  4. 40 CFR 430.52 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... [Bisulfite liquor/surface condensers; BPT effluent limitations for papergrade sulfite facilities where blow... range of 5.0 to 9.0 at all times. Subpart E [Bisulfite liquor/barometric condensers; BPT effluent... [Acid sulfite liquor/surface condensers; BPT effluent limitations for papergrade sulfite facilities...

  5. 40 CFR 430.52 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... [Bisulfite liquor/surface condensers; BPT effluent limitations for papergrade sulfite facilities where blow... range of 5.0 to 9.0 at all times. Subpart E [Bisulfite liquor/barometric condensers; BPT effluent... [Acid sulfite liquor/surface condensers; BPT effluent limitations for papergrade sulfite facilities...

  6. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized food...

  7. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized food...

  8. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized food...

  9. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized food...

  10. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized food...

  11. 40 CFR 430.44 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Dissolving Sulfite Subcategory § 430.44 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration, viscose, or cellophane pulps are produced... discharged in kgal per ton of product. Subpart D [BAT effluent limitations for dissolving sulfite pulp...

  12. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine

    Treesearch

    J.Y. Zhu; X.J. Pan; G.S. Wang; R. Gleisner

    2009-01-01

    This study established a novel process using sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust and efficient bioconversion of softwoods. The process consists of sulfite treatment of wood chips under acidic conditions followed by mechanical size reduction using disk refining. The results indicated that after the SPORL pretreatment of...

  13. Exploring surface characterization and electrostatic property of Hybrid Pennisetum during alkaline sulfite pretreatment for enhanced enzymatic hydrolysability.

    PubMed

    Yang, Ming; Wang, Jingfeng; Hou, Xincun; Wu, Juying; Fan, Xifeng; Jiang, Fan; Tao, Pan; Wang, Fan; Peng, Pai; Yang, Fangxia; Zhang, Junhua

    2017-11-01

    The surface characterization and electrostatic property of Hybrid Pennisetum (HP) after alkaline sulfite pretreatment were explored for enhanced enzymatic hydrolysability. The O/C ratio in HP increased from 0.34 to 0.60, and C1 concentration decreased from 62.5% to 31.6%, indicating that alkaline sulfite pretreatment caused poorer lignin but richer carbohydrate on HP surface. Zeta potential and sulfur element analysis indicated that more enzymes would preferably adsorb on the carbohydrate surface of alkaline sulfite pretreated HP because the lignin was sulfonated, which facilitated the decrease of non-productive adsorption. Glucose yield of alkaline sulfite pretreated HP reached to 100% by synergistic action of cellulase and xylanase in the hydrolysis, which was significantly higher than that of NaOH pretreated, and the concentration of glucose released was 1.52times higher. The results suggested that alkaline sulfite pretreatment had potential for improving the HP hydrolysability, and the surface characterization and electrostatic property facilitated the enzymatic digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Presence of sulphites in different types of partly processed meat products prepared for grilling

    NASA Astrophysics Data System (ADS)

    Korićanac, V.; Vranić, D.; Trbović, D.; Petronijević, R.; Parunović, N.

    2017-09-01

    In the period January 2016 to May 2017, the presence and levels of sulfite were examined in 270 samples of hamburger, sausage (various types), pljeskavica (Serbian-style meat patties of various types) and ćevapi or ćevapčići (grill kebabs) from the Serbian market. Some (12.59%) of these partly processed meat products contained sulfites, expressed as SO2, at levels above 10 mg/kg, and so did not meet requirements laid down in the National Regulation. In the remainder of the meat products (87.41%), sulfite contents were below 10 mg/kg, which is considered as “not detected”. By groups, 100% of hamburgers, 91.76% of sausages and 90.48% of pljeskavica met requirements of National Regulation. The meat product group with the biggest percentage of non-compliant meat products in which sulfites were detected was the ćevapi or ćevapčići - 18.10% of them contained sulfites. All in all, most of the partly processed meat products from the Serbian market met the National Regulation regarding sulfite content, and they were safe for consumption. Nonetheless, the high percentage of ćevapi or ćevapčići that contained sulfites leads us to conclude that regular and periodic control is necessary and one of the most important steps in ensuring safe and quality meat products for consumers.

  15. Case studies on sugar production from underutilized woody biomass using sulfite chemistry

    Treesearch

    J.Y. Zhu; M. Subhosh Chandra; Roland Gleisner; William Gilles; Johnway Gao; Gevan Marrs; Dwight Anderson; John Sessions

    2015-01-01

    We examined two case studies to demonstrate the advantages of sulfite chemistry for pretreating underutilized woody biomass to produce sugars through enzymatic saccharification. In the first case study, we evaluated knot rejects from a magnesium-basedsulfite mill for direct enzymatic sugar production.We found that the sulfite mill rejects are an excellent feedstock for...

  16. Isomers and energy landscapes of micro-hydrated sulfite and chlorate clusters

    NASA Astrophysics Data System (ADS)

    Hey, John C.; Doyle, Emily J.; Chen, Yuting; Johnston, Roy L.

    2018-03-01

    We present putative global minima for the micro-hydrated sulfite SO32-(H2O)N and chlorate ClO32(H2O)N systems in the range 3≤N≤15 found using basin-hopping global structure optimization with an empirical potential. We present a structural analysis of the hydration of a large number of minimized structures for hydrated sulfite and chlorate clusters in the range 3≤N≤50. We show that sulfite is a significantly stronger net acceptor of hydrogen bonding within water clusters than chlorate, completely suppressing the appearance of hydroxyl groups pointing out from the cluster surface (dangling OH bonds), in low-energy clusters. We also present a qualitative analysis of a highly explored energy landscape in the region of the global minimum of the eight water hydrated sulfite and chlorate systems. This article is part of the theme issue `Modern theoretical chemistry'.

  17. Enumeration of Enterobacter cloacae after chloramine exposure.

    PubMed Central

    Watters, S K; Pyle, B H; LeChevallier, M W; McFeters, G A

    1989-01-01

    Growth of Enterobacter cloacae on various media was compared after disinfection. This was done to examine the effects of monochloramine and chlorine on the enumeration of coliforms. The media used were TLY (nonselective; 5.5% tryptic soy broth, 0.3% yeast extract, 1.0% lactose, and 1.5% Bacto-Agar), m-T7 (selective; developed to recover injured coliforms), m-Endo (selective; contains sodium sulfite), TLYS (TLY with sodium sulfite), and m-T7S (m-T7 with sodium sulfite). Sodium sulfite in any medium improved the recovery of chloramine-treated E. cloacae. However, sodium sulfite in TLYS and m-T7S did not significantly improve the detection of chlorine-treated E. cloacae, and m-Endo was the least effective medium for recovering chlorinated bacteria. Differences in recovery of chlorine- and chloramine-treated E. cloacae are consistent with mechanistic differences between the disinfectants. PMID:2619309

  18. Isomers and energy landscapes of micro-hydrated sulfite and chlorate clusters.

    PubMed

    Hey, John C; Doyle, Emily J; Chen, Yuting; Johnston, Roy L

    2018-03-13

    We present putative global minima for the micro-hydrated sulfite SO 3 2- (H 2 O) N and chlorate ClO 3 - (H 2 O) N systems in the range 3≤ N ≤15 found using basin-hopping global structure optimization with an empirical potential. We present a structural analysis of the hydration of a large number of minimized structures for hydrated sulfite and chlorate clusters in the range 3≤ N ≤50. We show that sulfite is a significantly stronger net acceptor of hydrogen bonding within water clusters than chlorate, completely suppressing the appearance of hydroxyl groups pointing out from the cluster surface (dangling OH bonds), in low-energy clusters. We also present a qualitative analysis of a highly explored energy landscape in the region of the global minimum of the eight water hydrated sulfite and chlorate systems.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Authors.

  19. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment - comparison with dietary reference carotenoids.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-04-15

    Recently isolated spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1 are sources of carotenoids (∼fifteen distinct yellow and orange pigments and ∼thirteen distinct pink pigments, respectively). They are glycosides of oxygenated lycopene derivatives (apo-lycopenoids) and are assumed to be more heat- and gastric-stable than common carotenoids. In this study, the oxidation by O2 of the bacterial carotenoids was initiated by free iron (Fe(II) and Fe(III)) or by heme iron (metmyoglobin) in a mildly acidic aqueous solution mimicking the gastro-intestinal compartment and compared to the oxidation of the common dietary carotenoids β-carotene, lycopene and astaxanthin. Under these conditions, all bacterial carotenoids appear more stable in the presence of heme iron vs. free iron. Carotenoid autoxidation initiated by Fe(II) is relatively fast and likely involves reactive oxygen-iron species derived from Fe(II) and O2. By contrast, the corresponding reaction with Fe(III) is kinetically blocked by the slow preliminary reduction of Fe(III) into Fe(II) by the carotenoids. The stability of carotenoids toward autoxidation increases as follows: β-carotene

  20. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  1. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  2. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  3. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  4. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  5. Enhancing expression of SSU1 genes in Saccharomyces uvarum leads to an increase in sulfite tolerance and a transcriptome profile change.

    PubMed

    Liu, X Z; Sang, M; Zhang, X A; Zhang, T K; Zhang, H Y; He, X; Li, S X; Sun, X D; Zhang, Z M

    2017-05-01

    Saccharomyces uvarum is a good wine yeast species that may have great potential for the future. However, sulfur tolerance of most S. uvarum strains is very poor. In addition there is still little information about the SSU1 gene of S. uvarum, which encodes a putative transporter conferring sulfite tolerance. In order to analyze the function of the SSU1 gene, two expression vectors that contained different SSU1 genes were constructed and transferred into a sulfite-tolerant S. uvarum strain, A9. Then sulfite tolerance, SO2 production, and PCR, sequencing, RT-qPCR and transcriptome analyses were used to access the function of the S. uvarum SSU1 gene. Our results illustrated that enhancing expression of the SSU1 gene can promote sulfite resistance in S. uvarum, and an insertion fragment ahead of the additional SSU1 gene, as seen in some alleles, could affect the expression of other genes and the sulfite tolerance level of S. uvarum. This is the first report on enhancing the expression of the SSU1 gene of S. uvarum. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Interactions between macromolecule-bound antioxidants and Trolox during liposome autoxidation: A multivariate approach.

    PubMed

    Çelik, Ecem Evrim; Rubio, Jose Manuel Amigo; Andersen, Mogens L; Gökmen, Vural

    2017-12-15

    The interactions between free and macromolecule-bound antioxidants were investigated in order to evaluate their combined effects on the antioxidant environment. Dietary fiber (DF), protein and lipid-bound antioxidants, obtained from whole wheat, soybean and olive oil products, respectively and Trolox were used for this purpose. Experimental studies were carried out in autoxidizing liposome medium by monitoring the development of fluorescent products formed by lipid oxidation. Chemometric methods were used both at experimental design and multivariate data analysis stages. Comparison of the simple addition effects of Trolox and bound antioxidants with measured values on lipid oxidation revealed synergetic interactions for DF and refined olive oil-bound antioxidants, and antagonistic interactions for protein and extra virgin olive oil-bound antioxidants with Trolox. A generalized version of logistic function was successfully used for modelling the oxidation curve of liposomes. Principal component analysis revealed two separate phases of liposome autoxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Protection of ascorbic acid from copper(II)-catalyzed oxidative degradation in the presence of flavonoids: quercetin, catechin and morin.

    PubMed

    Beker, Bilge Yildoğan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat

    2011-08-01

    Protection of ascorbic acid (AA) (vitamin C) from Cu(II)-catalyzed autoxidation is an important aspect of antioxidant chemistry. The autoxidation of AA in the absence and presence of Cu(II) ions was investigated in aerated solution at room temperature and I = 0.1 ionic strength (KNO(3)); the effects of three different flavonoids of similar structure (quercetin, morin and catechin) and their mixtures on the AA system were studied. The concentration of unoxidized AA remaining in solution was measured with the modified cupric ion reducing antioxidant capacity spectrophotometric method. The Cu(II)-catalyzed oxidation at pH 4.5 followed first-order kinetics with respect to AA concentration. Catalytic autoxidation of AA was inhibited to a greater extent by stable quercetin and morin complexes of Cu(II) than by catechin complex. The inhibitive effectiveness order of mixtures gives information about possible synergistic or antagonistic combinations of flavonoid antioxidants, which should be further confirmed with other antioxidant tests.

  8. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food.

    PubMed

    Irwin, Sally V; Fisher, Peter; Graham, Emily; Malek, Ashley; Robidoux, Adriel

    2017-01-01

    Sulfites and other preservatives are considered food additives to limit bacterial contamination, and are generally regarded as safe for consumption by governmental regulatory agencies at concentrations up to 5000 parts per million (ppm). Consumption of bactericidal and bacteriostatic drugs have been shown to damage beneficial bacteria in the human gut and this damage has been associated with several diseases. In the present study, bactericidal and bacteriostatic effects of two common food preservatives, sodium bisulfite and sodium sulfite, were tested on four known beneficial bacterial species common as probiotics and members of the human gut microbiota. Lactobacillus species casei, plantarum and rhamnosus, and Streptococcus thermophilus were grown under optimal environmental conditions to achieve early log phase at start of experiments. Bacterial cultures were challenged with sulfite concentrations ranging between 10 and 3780 ppm for six hours. To establish a control, a culture of each species was inoculated into media containing no sulfite preservative. By two hours of exposure, a substantial decrease (or no increase) of cell numbers (based on OD600 readings) were observed for all bacteria types, in concentrations of sulfites between 250-500 ppm, compared to cells in sulfite free media. Further testing using serial dilution and drop plates identified bactericidal effects in concentrations ranging between 1000-3780 ppm on all the Lactobacillus species by 4 hours of exposure and bactericidal effects on S. thermophilus in 2000ppm NaHSO3 after 6 hours of exposure.

  9. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food

    PubMed Central

    2017-01-01

    Sulfites and other preservatives are considered food additives to limit bacterial contamination, and are generally regarded as safe for consumption by governmental regulatory agencies at concentrations up to 5000 parts per million (ppm). Consumption of bactericidal and bacteriostatic drugs have been shown to damage beneficial bacteria in the human gut and this damage has been associated with several diseases. In the present study, bactericidal and bacteriostatic effects of two common food preservatives, sodium bisulfite and sodium sulfite, were tested on four known beneficial bacterial species common as probiotics and members of the human gut microbiota. Lactobacillus species casei, plantarum and rhamnosus, and Streptococcus thermophilus were grown under optimal environmental conditions to achieve early log phase at start of experiments. Bacterial cultures were challenged with sulfite concentrations ranging between 10 and 3780 ppm for six hours. To establish a control, a culture of each species was inoculated into media containing no sulfite preservative. By two hours of exposure, a substantial decrease (or no increase) of cell numbers (based on OD600 readings) were observed for all bacteria types, in concentrations of sulfites between 250–500 ppm, compared to cells in sulfite free media. Further testing using serial dilution and drop plates identified bactericidal effects in concentrations ranging between 1000–3780 ppm on all the Lactobacillus species by 4 hours of exposure and bactericidal effects on S. thermophilus in 2000ppm NaHSO3 after 6 hours of exposure. PMID:29045472

  10. Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification

    Treesearch

    D.S. Zhang; Q. Yang; J.Y. Zhu; X.J. Pan

    2013-01-01

    SPORL (Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose) pretreatment was applied to switchgrass and optimized through an experimental design using Response Surface Methodology within the range of temperature (163–197 °C), time (3–37 min), sulfuric acid dosage (0.8–4.2% on switchgrass), and sodium sulfite dosage (0.6–7.4% on switchgrass)....

  11. Kinetics and mechanism of oxidation of super-reduced cobalamin and cobinamide species by thiosulfate, sulfite and dithionite.

    PubMed

    Dereven'kov, Ilia A; Salnikov, Denis S; Makarov, Sergei V; Boss, Gerry R; Koifman, Oskar I

    2013-11-21

    We studied the kinetics of reactions of cob(I)alamin and cob(I)inamide with thiosulfate, sulfite, and dithionite by UV-Visible (UV-Vis) and stopped-flow spectroscopy. We found that the two Co(I) species were oxidized by these sulfur-containing compounds to Co(II) forms: oxidation by excess thiosulfate leads to penta-coordinate complexes and oxidation by excess sulfite or dithionite leads to hexa-coordinate Co(II)-SO2(-) complexes. The net scheme involves transfer of three electrons in the case of oxidation by thiosulfate and one electron for oxidation by sulfite and dithionite. On the basis of kinetic data, the nature of the reactive oxidants was suggested, i.e., HS2O3(-) (for oxidation by thiosulfate), S2O5(2-), HSO3(-), and aquated SO2 (for oxidation by sulfite), and S2O4(2-) and SO2(-) (for oxidation by dithionite). No difference was observed in kinetics with cob(i)alamin or cob(i)inamide as reductants.

  12. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  13. Hibiscus chlorotic ringspot virus coat protein upregulates sulfur metabolism genes for enhanced pathogen defense.

    PubMed

    Gao, Ruimin; Ng, Florence Kai Lin; Liu, Peng; Wong, Sek-Man

    2012-12-01

    In both Hibiscus chlorotic ringspot virus (HCRSV)-infected and HCRSV coat protein (CP) agroinfiltrated plant leaves, we showed that sulfur metabolism pathway related genes-namely, sulfite oxidase (SO), sulfite reductase, and adenosine 5'-phosphosulfate kinase-were upregulated. It led us to examine a plausible relationship between sulfur-enhanced resistance (SED) and HCRSV infection. We broadened an established method to include different concentrations of sulfur (0S, 1S, 2S, and 3S) to correlate them to symptom development of HCRSV-infected plants. We treated plants with glutathione and its inhibitor to verify the SED effect. Disease resistance was induced through elevated glutathione contents during HCRSV infection. The upregulation of SO was related to suppression of symptom development induced by sulfur treatment. In this study, we established that HCRSV-CP interacts with SO which, in turn, triggers SED and leads to enhanced plant resistance. Thus, we have discovered a new function of SO in the SED pathway. This is the first report to demonstrate that the interaction of a viral protein and host protein trigger SED in plants. It will be interesting if such interaction applies generally to other host-pathogen interactions that will lead to enhanced pathogen defense.

  14. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: A pilot-scale evaluation

    Treesearch

    J.Y. Zhu; M. Subhosh Chandra; Feng Gu; Roland Gleisner; J.Y. Zhu; John Sessions; Gevan Marrs; Johnway Gao; Dwight Anderson

    2015-01-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid–liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the...

  15. Theoretical estimation of equilibrium sulfur isotope fractionations among aqueous sulfite species: Implications for isotope models of microbial sulfate reduction

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Farquhar, J.; Guo, W.

    2015-12-01

    Sulfite (sensu lato), an intermediate in a variety sulfur redox processes, plays a particularly important role in microbial sulfate reduction. It exists intracellularly as multiple species between sets of enzymatic reactions that transform sulfate to sulfide, with the exact speciation depending on pH, T, and ionic strength. However, the complex speciation of sulfite is ignored in current isotope partitioning models of microbial sulfate reduction and simplified solely to the pyramidal SO32- (sulfite sensu stricto), due to a lack of appropriate constraints. We theoretically estimated the equilibrium sulfur isotope fractionations (33S/32S, 34S/32S, 36S/32S) among all documented sulfite species in aqueous solution, including sulfite (SO32-), bisulfite isomers and dimers ((HS)O3-, (HO)SO2-, S2O52-), and SO2(aq), through first principles quantum mechanical calculations. The calculations were performed at B3LYP/6-31+G(d,p) level using cluster models with 30-40 water molecules surrounding the solute. Our calculated equilibrium fractionation factors compare well to the available experimental constraints and suggest that the minor and often-ignored tetrahedral (HS)O3- isomer of bisulfite strongly influences isotope partitioning behavior in the sulfite system under most environmentally relevant conditions, particularly fractionation magnitudes and unusual temperature dependence. For example, we predict that sulfur isotope fractionation between sulfite and bulk bisulfite in solution should have an apparent inverse temperature dependence due to the influence of (HS)O3- and its increased stability at higher temperatures. Our findings highlight the need to appropriately account for speciation/isomerization of sulfur species in sulfur isotope studies. We will also present similar calculation results of other aqueous sulfur compounds (e.g., H2S/HS-, SO42-, S2O32-, S3O62-, and poorly documented SO22- species), and discuss the implication of our results for microbial sulfate reduction models and other sulfur-redox processes in nature.

  16. Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests.

    PubMed

    Ito, Kaori; Yamamoto, Takayuki; Oyama, Yuriko; Tsuruma, Rieko; Saito, Eriko; Saito, Yoshikazu; Ozu, Takeshi; Honjoh, Tsutomu; Adachi, Reiko; Sakai, Shinobu; Akiyama, Hiroshi; Shoji, Masahiro

    2016-09-01

    Enzyme-linked immunosorbent assay (ELISA) is commonly used to determine food allergens in food products. However, a significant number of ELISAs give an erroneous result, especially when applied to highly processed food. Accordingly, an improved ELISA, which utilizes an extraction solution comprising the surfactant sodium lauryl sulfate (SDS) and reductant 2-mercaptoethanol (2-ME), has been specially developed to analyze food allergens in highly processed food by enhancing analyte protein extraction. Recently, however, the use of 2-ME has become undesirable. In the present study, a new extraction solution containing a human- and eco-friendly reductant, which is convenient to use at the food manufacturing site, has been established. Among three chemicals with different reducing properties, sodium sulfite, tris(3-hydroxypropyl)phosphine, and mercaptoethylamine sodium sulfite was selected as a 2-ME substitute. The protein extraction ability of SDS/0.1 M sodium sulfite solution was comparable to that of SDS/2-ME solution. Next, the ELISA performance for egg, milk, wheat, peanut, and buckwheat was evaluated by using model-processed foods and commercially available food products. The data showed that the SDS/0.1 M sulfite ELISA significantly correlated with the SDS/2-ME ELISA for all food allergens examined (p < 0.01), thereby establishing the validity of the SDS/0.1 M sulfite ELISA performance. Furthermore, the new SDS/0.1 M sulfite solution was investigated for its applicability to the lateral-flow (LF) test. The result demonstrated the successful analysis of food allergens in processed food, showing consistency with the SDS/0.1 M sulfite ELISA results. Accordingly, a harmonized analysis system for processed food comprising a screening LF test and a quantitative ELISA with identical extraction solution has been established. The ELISA based on the SDS/0.1 M sulfite extraction solution has now been authorized as the revised official method for food allergen analysis in Japan.

  17. Consensus structures of the Mo(v) sites of sulfite-oxidizing enzymes derived from variable frequency pulsed EPR spectroscopy, isotopic labelling and DFT calculations.

    PubMed

    Enemark, John H

    2017-10-10

    Sulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (P i ) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here. Errors in some of the previously proposed structures are corrected.

  18. Catechol-Cation Synergy in Wet Adhesive Materials

    NASA Astrophysics Data System (ADS)

    Maier, Gregory Peter

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is impaired by high salt, pH, and hydration. However, mussels have evolved effective strategies for wet adhesion despite these impediments. Inspection of mussel foot proteins (Mfps) provides insights into adhesive adaptations. Catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues are present in high mole percent in the interfacial Mfps. The siderophore cyclic trichrysobactin also contains high mole percent of catechol and lysine and serves as a simplified mimic of Mfps. This work is focused on use of Mfp-mimetic siderophores and synthetic siderophore analogs as model systems for dissecting the chemical and physical interactions that enable wet adhesion. Variation in number and identity of functional groups appended to the synthetic siderophore analogs allows identification of the specific contributions of those functional groups to wet adhesion. Both catechol and amine functional groups are critical to strong wet adhesion. The primary amine of lysine and catechol cooperatively displace interfacial hydration and bind to the underlying substrate. Variation in the amine identity as well as the amine to catechol ratio within siderophore analogs also has a significant impact on wet adhesive performance. Catechol undergoes a pH-dependent autoxidation in which higher pH leads to faster oxidation by dioxygen. This oxidation abolishes all adhesion of Mfps to mica by pH 7.5, yet many applications of synthetic wet adhesives require adhesion at physiological or oceanic pH. A better understanding of catechol redox chemistry is critical to the design of wet adhesives. To this end, the pH-dependent autoxidation of catechol and substituted catechols was investigated and results are consistent with a mechanism in which O2 oxidizes both the mono-deprotonated and di-deprotonated catechol. A linear Hammett correlation for the pH-independent second order rate constants for catechol autoxidation indicates that catechols become resistant to autoxidation when functionalized with electron withdrawing groups and more susceptible to autoxidation when functionalized with electron donating groups. Analysis of substituent effects through Hammett correlation allows for selection of functionalized catechols with redox properties ideally suited for a given application.

  19. Molecular characterization of southern bluefin tuna myoglobin (Thunnus maccoyii).

    PubMed

    Nurilmala, Mala; Ochiai, Yoshihiro

    2016-10-01

    The primary structure of southern bluefin tuna Thunnus maccoyii Mb has been elucidated by molecular cloning techniques. The cDNA of this tuna encoding Mb contained 776 nucleotides, with an open reading frame of 444 nucleotides encoding 147 amino acids. The nucleotide sequence of the coding region was identical to those of other bluefin tunas (T. thynnus and T. orientalis), thus giving the same amino acid sequences. Based on the deduced amino acid sequence, bioinformatic analysis was performed including phylogenic tree, hydropathy plot and homology modeling. In order to investigate the autoxidation profiles, the isolation of Mb was performed from the dark muscle. The water soluble fraction was subjected to ammonium sulfate fractionation (60-90 % saturation) followed by preparative gel electrophoresis. Autoxidation profiles of Mb were delineated at pH 5.6, 6.5 and 7.4 at temperature 37 °C. The autoxidation rate of tuna Mb was slightly higher than that of horse Mb at all pH examined. These results revealed that tuna myoglobin was unstable than that of horse Mb mainly at acidic pH.

  20. Analysis of palmitoyl apo-astaxanthinals, apo-astaxanthinones, and their epoxides by UHPLC-PDA-ESI-MS.

    PubMed

    Weesepoel, Yannick; Gruppen, Harry; de Bruijn, Wouter; Vincken, Jean-Paul

    2014-10-22

    Food products enriched with fatty acid-esterified xanthophylls may result in deviating dietary apo-carotenoids. Therefore, free astaxanthin and its mono- and dipalmitate esters were subjected to two degradation processes in a methanolic model system: light-accelerated autoxidation and hypochlorous acid/hypochlorite (HOCl/OCl(-)) bleaching. Reversed phase ultrahigh-performance liquid chromatography photodiode array with in-line electrospray ionization mass spectrometry (RP-UHPLC-PDA-ESI-MS) was used for assessment of degradation products. Apo-astaxanthinals and -astaxanthinones containing 3 (apo-9) to 10 (apo-8') conjugated double bonds were found upon autoxidation for all three types of astaxanthin (except free apo-8'-astaxanthinal). Fragmentation of [M + H](+) and [M + Na](+) parent masses of apo-astaxanthins from dipalmitate astaxanthin indicated palmitate esterification. Astaxanthin monopalmitate degradation resulted in a mixture of free and palmitate apo-astaxanthins. HOCl/OCl(-) rapidly converted the astaxanthins into a mixture of epoxy-apo-9- and epoxy-apo-13-astaxanthinones. The palmitate ester bond was hardly affected by autoxidation, whereas for HOCl/OCl(-) the ester bond of the apo-astaxanthin palmitoyl esters was degraded.

  1. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.

    PubMed

    Yan, Shijuan; Liang, Yating; Zhang, Jindan; Chen, Zhuang; Liu, Chun-Ming

    2015-08-01

    Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode.

    PubMed

    Rawal, Rachna; Chawla, Sheetal; Pundir, Chandra Shekhar

    2012-01-15

    A sulfite oxidase (SO(X)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto carboxylated gold coated magnetic nanoparticles (Fe(3)O(4)@GNPs) electrodeposited onto the surface of a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) chemistry. An amperometric sulfite biosensor was fabricated using SO(X)/Fe(3)O(4)@GNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode. The working electrode was characterized by Fourier Transform Infrared (FTIR) Spectroscopy, Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS) before and after immobilization of SO(X). The biosensor showed optimum response within 2s when operated at 0.2V (vs. Ag/AgCl) in 0.1 M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and detection limit were 0.50-1000 μM and 0.15 μM (S/N=3) respectively. Biosensor was evaluated with 96.46% recovery of added sulfite in red wine and 1.7% and 3.3% within and between batch coefficients of variation respectively. Biosensor measured sulfite level in red and white wines. There was good correlation (r=0.99) between red wines sulfite value by standard DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) method and the present method. Enzyme electrode was used 300 times over a period of 4 months, when stored at 4 °C. Biosensor has advantages over earlier biosensors that it has excellent electrocatalysis towards sulfite, lower detection limit, higher storage stability and no interference by ascorbate, cysteine, fructose and ethanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lin, Xiaojuan; Wang, Jinting; Jiang, Feng; Wei, Li; Chen, Guanghao; Hao, Xiaodi

    2016-07-01

    Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m3-d Pb(II) and 2.6 g/m3-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater.

  4. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment

    PubMed Central

    Zhang, Liang; Lin, Xiaojuan; Wang, Jinting; Jiang, Feng; Wei, Li; Chen, Guanghao; Hao, Xiaodi

    2016-01-01

    Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m3-d Pb(II) and 2.6 g/m3-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater. PMID:27455890

  5. pH-Induced Lignin Surface Modification to Reduce Nonspecific Cellulase Binding and Enhance Enzymatic Saccharification of Lignocelluloses

    Treesearch

    Hongming Lou; J.Y. Zhu; Tian Qing Lan; Huranran Lai; Xueqing Qiu

    2013-01-01

    We studied the mechanism of the significant enhancement in the enzymatic saccharification of lignocelluloses at an elevated pH of 5.5–6.0. Four lignin residues with different sulfonic acid contents were isolated from enzymatic hydrolysis of lodgepole pine pretreated by either dilute acid (DA) or sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL...

  6. 40 CFR 430.00 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subcategorization scheme Types of products covered in the subpart A Dissolving Kraft Dissolving pulp at kraft mills... unbleached kraft chemical recovery system (Va). D Dissolving Sulfite Pulp at dissolving sulfite mills for the...

  7. 40 CFR 430.00 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subcategorization scheme Types of products covered in the subpart A Dissolving Kraft Dissolving pulp at kraft mills... unbleached kraft chemical recovery system (Va). D Dissolving Sulfite Pulp at dissolving sulfite mills for the...

  8. 40 CFR 430.00 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subcategorization scheme Types of products covered in the subpart A Dissolving Kraft Dissolving pulp at kraft mills... unbleached kraft chemical recovery system (Va). D Dissolving Sulfite Pulp at dissolving sulfite mills for the...

  9. 40 CFR 430.51 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... follows: (1) The calcium-, magnesium-, or sodium-based sulfite pulp segment consists of papergrade sulfite mills where pulp and paper are produced using an acidic cooking liquor of calcium, magnesium, or sodium...

  10. 40 CFR 430.51 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... follows: (1) The calcium-, magnesium-, or sodium-based sulfite pulp segment consists of papergrade sulfite mills where pulp and paper are produced using an acidic cooking liquor of calcium, magnesium, or sodium...

  11. 40 CFR 430.51 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... follows: (1) The calcium-, magnesium-, or sodium-based sulfite pulp segment consists of papergrade sulfite mills where pulp and paper are produced using an acidic cooking liquor of calcium, magnesium, or sodium...

  12. 40 CFR 430.51 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... follows: (1) The calcium-, magnesium-, or sodium-based sulfite pulp segment consists of papergrade sulfite mills where pulp and paper are produced using an acidic cooking liquor of calcium, magnesium, or sodium...

  13. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  14. Autoxidative and Cyclooxygenase-2 Catalyzed Transformation of the Dietary Chemopreventive Agent Curcumin*

    PubMed Central

    Griesser, Markus; Pistis, Valentina; Suzuki, Takashi; Tejera, Noemi; Pratt, Derek A.; Schneider, Claus

    2011-01-01

    The efficacy of the diphenol curcumin as a cancer chemopreventive agent is limited by its chemical and metabolic instability. Non-enzymatic degradation has been described to yield vanillin, ferulic acid, and feruloylmethane through cleavage of the heptadienone chain connecting the phenolic rings. Here we provide evidence for an alternative mechanism, resulting in autoxidative cyclization of the heptadienone moiety as a major pathway of degradation. Autoxidative transformation of curcumin was pH-dependent with the highest rate at pH 8 (2.2 μm/min) and associated with stoichiometric uptake of O2. Oxidation was also catalyzed by recombinant cyclooxygenase-2 (COX-2) (50 nm; 7.5 μm/min), and the rate was increased ≈10-fold by the addition of 300 μm H2O2. The COX-2 catalyzed transformation was inhibited by acetaminophen but not indomethacin, suggesting catalysis occurred by the peroxidase activity. We propose a mechanism of enzymatic or autoxidative hydrogen abstraction from a phenolic hydroxyl to give a quinone methide and a delocalized radical in the heptadienone chain that undergoes 5-exo cyclization and oxygenation. Hydration of the quinone methide (measured by the incorporation of O-18 from H218O) and rearrangement under loss of water gives the final dioxygenated bicyclopentadione product. When curcumin was added to RAW264.7 cells, the bicyclopentadione was increased 1.8-fold in cells activated by LPS; vanillin and other putative cleavage products were negligible. Oxidation to a reactive quinone methide is the mechanistic basis of many phenolic anti-cancer drugs. It is possible, therefore, that oxidative transformation of curcumin, a prominent but previously unrecognized reaction, contributes to its cancer chemopreventive activity. PMID:21071447

  15. Protection of dopamine towards autoxidation reaction by encapsulation into non-coated- or chitosan- or thiolated chitosan-coated-liposomes.

    PubMed

    Trapani, A; Mandracchia, D; Tripodo, G; Cometa, S; Cellamare, S; De Giglio, E; Klepetsanis, P; Antimisiaris, S G

    2018-05-26

    The aim of this work is to evaluate the potential of non-coated-, chitosan-(CS)- or chitosan-glutathione conjugate- (CS-GSH)-coated liposomes to protect the neurotransmitter Dopamine (DA) from the autoxidation reaction in neutral/alkaline conditions. This may be of interest in the development of nanotechnology-based approaches to improve Parkinson's disease treatment because decreased ROS production and reduced DA associated neurotoxicity are expected. For the mentioned purposes, DA-loaded vesicles were prepared by the Dried Reconstituted Vesicles (DRV) method, and were subsequently coated using solutions of polycations. As for the mean diameters of liposomes so prepared, the CS-GSH coated liposomes showed a significant decrease in size compared to the corresponding non-coated and CS-coated vesicles. The surface charge of DA-loaded non-coated liposomes was -10.8 mV, whereas the CS or CS-GSH coated vesicles showed a slightly positive ζ-potential. The capability of the herein studied vesicles to prevent DA autoxidation was evaluated by visual inspection, monitoring DA/lipid ratio as such and under stressed conditions. The results suggest that liposome formulations partially protect the neurotransmitter from the autoxidation reaction. In particular, the CS-GSH coated liposomes were more stable than the corresponding CS-coated and non-coated ones against the oxidative damage and were found to deliver the neurotransmitter in a sustained manner. Probably, this is due to the localization of the neurotransmitter in the core of the vesicles as indicated by XPS which confirmed the absence of the neurotransmitter on the surface of these vesicles. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite, sodium...

  17. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite, sodium...

  18. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite, sodium...

  19. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite, sodium...

  20. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite, sodium...

  1. Development of an amperometric sulfite biosensor based on SO(x)/PBNPs/PPY modified ITO electrode.

    PubMed

    Rawal, Rachna; Pundir, C S

    2012-11-01

    A sulfite oxidase (SO(x)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto prussian blue nanoparticles/polypyrrole composite (PBNPs/PPY) electrodeposited onto the surface of indium tin oxide (ITO) electrode. An amperometric sulfite biosensor was fabricated using SO(x)/PBNPs/PPY/ITO electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The working electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of SO(x). The biosensor showed optimum response within 2s, when operated at 20 mV s⁻¹ in 0.1M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and minimum detection limit were 0.5-1000 μM and 0.12 μM (S/N=3) respectively. There was good correlation (r=0.99) between red wine samples sulfite value by standard DTNB method and the present method. The sensor was evaluated with 97% recovery of added sulfite in red wine samples and 2.2% and 4.3% within and between batch coefficients of variation respectively. The sensor was employed for determination of sulfite level in red and white wine samples. The enzyme electrode was used 200 times over a period of 3 months when stored at 4 °C. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effects of pH on the formation of 4(5)-Methylimidazole in glucose/ammonium sulfate and glucose/ammonium sulfite caramel model reactions.

    PubMed

    Wu, Xinlan; Kong, Fansheng; Huang, Minghui; Yu, Shujuan

    2015-10-01

    The objective of the present study was to detail the change of 4(5)-Methylimidazole (4-MI) in sulfite and sulfate reactions with different initial pH values. Glucose/ammonium sulfate and glucose/ammonium sulfite reaction systems with initial pH conditions 4.9, 5.9, 6.9, 8.0 and 8.6, were heated at 100°C for 2h, respectively. Higher concentration of methylglyoxal (MGO) and 4-MI was detected in thermal treated glucose/ammonium sulfite reaction system than that in sulfate system. The SO 3 2- reacting with MGO and other precursors of 4-MI at higher pH conditions prevented 4-MI formation. However, no inhibition of 4-MI was found at lower pH conditions due to higher reactivity of the nucleophilic NH 4 + than SO 3 2- . The browning intensity of the sulfite system changed scarcely at higher pH values, which was possibly caused by the polyreaction between SO 3 2- and carbonyl, instead of the intermolecular polymerisation of carbonyl in the advanced stage of the Maillard reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film.

    PubMed

    Sartori, Elen Romão; Vicentini, Fernando Campanhã; Fatibello-Filho, Orlando

    2011-12-15

    The modification of a glassy carbon electrode with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film for the development of a biosensor is proposed. This approach provides an efficient method used to immobilize polyphenol oxidase (PPO) obtained from the crude extract of sweet potato (Ipomoea batatas (L.) Lam.). The principle of the analytical method is based on the inhibitory effect of sulfite on the activity of PPO, in the reduction reaction of o-quinone to catechol and/or the reaction of o-quinone with sulfite. Under the optimum experimental conditions using the differential pulse voltammetry technique, the analytical curve obtained was linear in the concentration of sulfite in the range from 0.5 to 22 μmol L(-1) with a detection limit of 0.4 μmol L(-1). The biosensor was applied for the determination of sulfite in white and red wine samples with results in close agreement with those results obtained using a reference iodometric method (at a 95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Decreased immunoglobulin E (IgE) binding to cashew allergens following sodium sulfite treatment and heating.

    PubMed

    Mattison, Christopher P; Desormeaux, Wendy A; Wasserman, Richard L; Yoshioka-Tarver, Megumi; Condon, Brian; Grimm, Casey C

    2014-07-16

    Cashew nut and other nut allergies can result in serious and sometimes life-threatening reactions. Linear and conformational epitopes within food allergens are important for immunoglobulin E (IgE) binding. Methods that disrupt allergen structure can lower IgE binding and lessen the likelihood of food allergy reactions. Previous structural and biochemical data have indicated that 2S albumins from tree nuts and peanuts are potent allergens, and that their structures are sensitive to strong reducing agents such as dithiothreitol. This study demonstrates that the generally regarded as safe (GRAS) compound sodium sulfite effectively disrupted the structure of the cashew 2S albumin, Ana o 3, in a temperature-dependent manner. This study also showed that sulfite is effective at disrupting the disulfide bond within the cashew legumin, Ana o 2. Immunoblotting and ELISA demonstrated that the binding of cashew proteins by rabbit IgG or IgE from cashew-allergic patients was markedly lowered following treatment with sodium sulfite and heating. The results indicate that incorporation of sodium sulfite, or other food grade reagents with similar redox potential, may be useful processing methods to lower or eliminate IgE binding to food allergens.

  5. [Molecular evolution of the sulphite efflux gene SSU1 in Saccharomyces cerevisiae].

    PubMed

    Peng, Li-Xin; Sun, Fei-Fei; Huang, Yan-Yan; Li, Zhen-Chong

    2013-11-01

    The SSU1 gene encoding a membrane sulfite pump is a main facilitator invovled in sulfite efflux. In Saccharomyce cerevisiae, various range of resistance to sulfite was observed among strains. To explore the evolution traits of SSU1 gene, the population data of S. cerevisiae were collected and analyzed. The phylogenetic analysis indicated that S. cerevisiae population can be classified into three sub-populations, and the positive selection was detected in population by McDonald-Kreitman test. The anaylsis of Ka/Ks ratios further showed that S. cerevisiae sub-population was undergoing positive selection. This finding was also supported by PAML branch model. Nine potential positive selection sites were predicted by branch-site model, and four sites exclusively belong to the sub-population under positive seletion. The data from ssulp protein structure demonstrated that three sites are substitutions between polar and hydrophobic amino acids, and only one site of substitutaion from basic amino acid to basic amino acid (345R/K). Because amino acid pKa values are crucial for sulfite pump to maintain their routine function, positive selection of these amino acid substitutions might affect sulfite efflux efficient.

  6. Spectroscopic Characterization of YedY: The Role of Sulfur Coordination in a Mo(V) Sulfite Oxidase Family Enzyme Form

    PubMed Central

    Yang, Jing; Rothery, Richard; Sempombe, Joseph

    2011-01-01

    Electronic paramagnetic resonance, electronic absorption, and magnetic circular dichroism spectroscopies have been performed on YedY, a SUOX fold protein with a Mo domain that is remarkably similar to that found in chicken sulfite oxidase, A. thaliana plant sulfite oxidase, and the bacterial sulfite dehydrogenase from S. novella. Low-energy dithiolene→Mo and cysteine thiolate→Mo charge transfer bands have been assigned for the first time in a Mo(V) form of a SUOX fold protein, and the spectroscopic data have been used to interpret the results of bonding calculations. The analysis shows that second coordination sphere effects modulate dithiolene and cysteine sulfur covalency contributions to the Mo bonding scheme. Namely, a more acute Ooxo-Mo-SCys-C dihedral angle results in increased cysteine thiolate S→Mo charge transfer and a high g1 in the EPR spectrum. The spectrosocopic results, coupled with the available structural data, indicate that these second coordination sphere effects may play key roles in modulating the active site redox potential, facilitating hole superexchange pathways for electron transfer regeneration, and affecting the type of reactions catalyzed by sulfite oxidase family enzymes. PMID:19860477

  7. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    PubMed

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  9. SO2 Adsorption on CeO2(100) and CeO2(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R.

    2016-09-13

    The adsorption and reaction of sulfur dioxide, SO2, was studied on oxidized and reduced CeOX(100) and compared to previous results on CeOX(111). SO2 adsorbs on oxidized CeO2(100) as sulfite, SO32-, at 200 K and sulfite is the only adsorbate observed on the surface at any temperature. The sulfite desorbs monotonically from 200 to 700 K. The adsorption and desorption of SO2 does not result in any change in the Ce4+ oxidation state. SO2 also adsorbs as sulfite on reduced CeO1.7(100) at 200 K. There is also a small amount of elemental sulfur, S0, formed. As the sample is heated themore » sulfite decomposes into sulfide, S2-. Roughly 25 % of the adsorbed S either desorbs or diffuses into the bulk of the reduced ceria. The decomposition, and resulting formation of S2- and O2-, re-oxidize some of the Ce3+ to Ce4+. Unlike what has been observed following the adsorption and reaction of many other molecules, the adsorption and reaction of SO2 is virtually identical on CeOX(100) and CeOX(111).« less

  10. Asthma and Food Allergies

    MedlinePlus

    ... and vegetables. Sulfites may be used in certain processed foods, provided they are listed on labels in quantities ... is sensitive to sulfites, be cautious about any processed or prepared food. Last Updated 11/21/2015 Source Nutrition: What ...

  11. Enhanced Electron Injection and Exciton Confinement for Pure Blue Quantum-Dot Light-Emitting Diodes by Introducing Partially Oxidized Aluminum Cathode.

    PubMed

    Wang, Zhibin; Cheng, Tai; Wang, Fuzhi; Bai, Yiming; Bian, Xingming; Zhang, Bing; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2018-05-31

    Stable and efficient red (R), green (G), and blue (B) light sources based on solution-processed quantum dots (QDs) play important roles in next-generation displays and solid-state lighting technologies. The brightness and efficiency of blue QDs-based light-emitting diodes (LEDs) remain inferior to their red and green counterparts, due to the inherently unfavorable energy levels of different colors of light. To solve these problems, a device structure should be designed to balance the injection holes and electrons into the emissive QD layer. Herein, through a simple autoxidation strategy, pure blue QD-LEDs which are highly bright and efficient are demonstrated, with a structure of ITO/PEDOT:PSS/Poly-TPD/QDs/Al:Al2O3. The autoxidized Al:Al2O3 cathode can effectively balance the injected charges and enhance radiative recombination without introducing an additional electron transport layer (ETL). As a result, high color-saturated blue QD-LEDs are achieved with a maximum luminance over 13,000 cd m -2 , and a maximum current efficiency of 1.15 cd A -1 . The easily controlled autoxidation procedure paves the way for achieving high-performance blue QD-LEDs.

  12. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.

    PubMed

    Severino, Joyce Ferreira; Goodman, Bernard A; Kay, Christopher W M; Stolze, Klaus; Tunega, Daniel; Reichenauer, Thomas G; Pirker, Katharina F

    2009-04-15

    Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and (-)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O(2)(-)) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O(2)(-) oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O(2)(-) oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.

  13. A streamlined isolation method and the autoxidation profiles of tuna myoglobin.

    PubMed

    Nurilmala, Mala; Ushio, Hideki; Watabe, Shugo; Ochiai, Yoshihiro

    2018-05-01

    Determination of the redox state of myoglobin (Mb) gives useful information for evaluating the quality of tuna meat. To attain this purpose, a fast streamlined method has been established basically based on preparative native gel electrophoresis to isolate Mb from the dark muscle of Pacific bluefin tuna. Crude Mb fraction was prepared from dark muscle by ammonium sulfate saturation fractionation and subsequently Mb was purified by preparative native gel electrophoresis under the isoelectric pH of the Mb, resulting in absorption (or trapping) of all the contaminating proteins in the gel. Purified Mb was converted to oxy form with a trace amount of sodium hydrosulfite, and subsequently dialyzed against 50 mM sodium citrate (pH 5.6) or 50 mM sodium phosphate (pH 6.5). The purified tuna Mb was examined for the temperature and pH dependencies of autoxidation using horse Mb as a reference. Tuna Mb was oxidized 2.5-3 times faster than horse Mb irrespective of the pH conditions examined. The highest autoxidation rates both at 0 and 37 °C were observed at pH 5.6. These data were comparable to those obtained for Mbs isolated by conventional chromatographic methods.

  14. Roles of oxyanions in promoting the partial oxidation of styrene on Ag(110): nitrate, carbonate, sulfite, and sulfate.

    PubMed

    Zhou, Ling; Madix, Robert J

    2010-11-02

    The promotion roles of nitrate, carbonate, sulfite, and sulfate in oxidation of styrene on Ag(110) have been studied by means of temperature-programmed reaction spectroscopy (TPRS) and X-ray photoelectron spectroscopy (XPS). While isolated nitrate leads only to the secondary oxidation of styrene, a surface co-covered by nitrate, oxygen, and 0.1 ML cesium promotes a low-temperature epoxidation pathway. XPS indicates that adsorbed surface oxygen is the oxidant in this selective reaction pathway, and, though it affects the reactivity of the surface oxygen, nitrate is a spectator. Carbonate acts as an oxygen transfer agent and exhibits similar reactivity and selectivity as an oxidant for styrene as does atomic oxygen on Ag(110). The reactivities of sulfite and sulfate are strongly dependent on their surface structures, the c(6 × 2) sulfite showing the capacity to transfer oxygen to styrene.

  15. Isolation of Assimilatory- and Dissimilatory-Type Sulfite Reductases from Desulfovibrio vulgaris

    PubMed Central

    Lee, Jin-Po; LeGall, Jean; Peck, Harry D.

    1973-01-01

    Bisulfite reductase (desulfoviridin) and an assimilatory sulfite reductase have been purified from extracts of Desulfovibrio vulgaris. The bisulfite reductase has absorption maxima at 628, 580, 408, 390, and 279 nm, and a molecular weight of 226,000 by sedimentation equilibrium, and was judged to be free of other proteins by disk electrophoresis and ultracentrifugation. On gels, purified bisulfite reductase exhibited two green bands which coincided with activity and protein. The enzyme appears to be a tetramer but was shown to have two different types of subunits having molecular weights of 42,000 and 50,000. The chromophore did not form an alkaline ferrohemochromogen, was not reduced with dithionite or borohydride, and did not form a spectrally visible complex with CO. The assimilatory sulfite reductase has absorption maxima at 590, 545, 405 and 275 nm and a molecular weight of 26,800, and appears to consist of a single polypeptide chain as it is not dissociated into subunits by sodium dodecyl sulfate. By disk electrophoresis, purified sulfite reductase exhibited a single greenish-brown band which coincided with activity and protein. The sole product of the reduction was sulfide, and the chromophore was reduced by borohydride in the presence of sulfite. Carbon monoxide reacted with the reduced chromophore but it did not form a typical pyridine ferrohemochromogen. Thiosulfate, trithionate, and tetrathionate were not reduced by either enzyme preparation. In the presence of 8 M urea, the spectrum of bisulfite reductase resembles that of the sulfite reductase, thus suggesting a chemical relationship between the two chromophores. Images PMID:4725615

  16. An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products

    PubMed Central

    Lamas, Alexandre; Miranda, José Manuel; Vázquez, Beatriz; Cepeda, Alberto; Franco, Carlos Manuel

    2016-01-01

    In recent years, the use of nitrites and sulfites as food preservatives has been a cause for concern due to the health problems that these additives can cause in humans. Natural products have been studied as an alternative, but most of them have hardly been applied in the food industry for technological and economic reasons. In this sense, organic salts such as sodium acetate are a good alternative due to their affordability. Thus, this study evaluated the capacity of sodium nitrite, sodium sulfite, a sodium acetate product (TQI C-6000), and chitosan to inhibit two important foodborne pathogens, Salmonella enterica and Listeria monocytogenes. The MIC of each chemical was in vitro evaluated and their antibacterial action was subsequently checked in situ using minced meat as a food model. MIC values of sodium nitrite (10,000 mg/L) and sodium sulfite (50,000 mg/L) for Salmonella enterica were higher than the values allowed by legislation (450 mg/L for sulfites and 150 mg/L for nitrites). Additionally, the sodium acetate product caused the inhibition of Salmonella enterica and Listeria at a relative low quantity. The two foodborne pathogens were inhibited in the food model with 1% of the sodium acetate product. Additionally, there were no significant differences between sodium nitrite, sodium sulfite, and sodium acetate products in the inhibition of Salmonella enterica and Listeria monocytogenes in the food model. Thus, products based on sodium acetate can be an alternative to traditional preservatives in food products. PMID:28231169

  17. An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products.

    PubMed

    Lamas, Alexandre; Miranda, José Manuel; Vázquez, Beatriz; Cepeda, Alberto; Franco, Carlos Manuel

    2016-10-31

    In recent years, the use of nitrites and sulfites as food preservatives has been a cause for concern due to the health problems that these additives can cause in humans. Natural products have been studied as an alternative, but most of them have hardly been applied in the food industry for technological and economic reasons. In this sense, organic salts such as sodium acetate are a good alternative due to their affordability. Thus, this study evaluated the capacity of sodium nitrite, sodium sulfite, a sodium acetate product (TQI C-6000), and chitosan to inhibit two important foodborne pathogens, Salmonella enterica and Listeria monocytogenes . The MIC of each chemical was in vitro evaluated and their antibacterial action was subsequently checked in situ using minced meat as a food model. MIC values of sodium nitrite (10,000 mg/L) and sodium sulfite (50,000 mg/L) for Salmonella enterica were higher than the values allowed by legislation (450 mg/L for sulfites and 150 mg/L for nitrites). Additionally, the sodium acetate product caused the inhibition of Salmonella enterica and Listeria at a relative low quantity. The two foodborne pathogens were inhibited in the food model with 1% of the sodium acetate product. Additionally, there were no significant differences between sodium nitrite, sodium sulfite, and sodium acetate products in the inhibition of Salmonella enterica and Listeria monocytogenes in the food model. Thus, products based on sodium acetate can be an alternative to traditional preservatives in food products.

  18. The octahaem MccA is a haem c-copper sulfite reductase.

    PubMed

    Hermann, Bianca; Kern, Melanie; La Pietra, Luigi; Simon, Jörg; Einsle, Oliver

    2015-04-30

    The six-electron reduction of sulfite to sulfide is the pivot point of the biogeochemical cycle of the element sulfur. The octahaem cytochrome c MccA (also known as SirA) catalyses this reaction for dissimilatory sulfite utilization by various bacteria. It is distinct from known sulfite reductases because it has a substantially higher catalytic activity and a relatively low reactivity towards nitrite. The mechanistic reasons for the increased efficiency of MccA remain to be elucidated. Here we show that anoxically purified MccA exhibited a 2- to 5.5-fold higher specific sulfite reductase activity than the enzyme isolated under oxic conditions. We determined the three-dimensional structure of MccA to 2.2 Å resolution by single-wavelength anomalous dispersion. We find a homotrimer with an unprecedented fold and haem arrangement, as well as a haem bound to a CX15CH motif. The heterobimetallic active-site haem 2 has a Cu(I) ion juxtaposed to a haem c at a Fe-Cu distance of 4.4 Å. While the combination of metals is reminiscent of respiratory haem-copper oxidases, the oxidation-labile Cu(I) centre of MccA did not seem to undergo a redox transition during catalysis. Intact MccA tightly bound SO2 at haem 2, a dehydration product of the substrate sulfite that was partially turned over due to photoreduction by X-ray irradiation, yielding the reaction intermediate SO. Our data show the biometal copper in a new context and function and provide a chemical rationale for the comparatively high catalytic activity of MccA.

  19. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods

    Treesearch

    G. S. Wang; X. J. Pan; Junyong Zhu; Roland Gleisner; D. Rockwood

    2009-01-01

    This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180[...

  20. 7 CFR 205.301 - Product composition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT... aids; (5) Contain sulfites, nitrates, or nitrites added during the production or handling process, Except, that, wine containing added sulfites may be labeled “made with organic grapes”; (6) Be produced...

  1. 7 CFR 205.301 - Product composition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT... aids; (5) Contain sulfites, nitrates, or nitrites added during the production or handling process, Except, that, wine containing added sulfites may be labeled “made with organic grapes”; (6) Be produced...

  2. 7 CFR 205.301 - Product composition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT... aids; (5) Contain sulfites, nitrates, or nitrites added during the production or handling process, Except, that, wine containing added sulfites may be labeled “made with organic grapes”; (6) Be produced...

  3. 7 CFR 205.301 - Product composition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT... aids; (5) Contain sulfites, nitrates, or nitrites added during the production or handling process, Except, that, wine containing added sulfites may be labeled “made with organic grapes”; (6) Be produced...

  4. Genetics Home Reference: isolated sulfite oxidase deficiency

    MedlinePlus

    ... Metabolic Disorders (CLIMB) March of Dimes: Amino Acid Metabolism Disorders The Compassionate Friends GeneReviews (1 link) Isolated Sulfite Oxidase Deficiency ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific Articles on PubMed (1 link) PubMed OMIM (1 link) ...

  5. Immunological comparison of sulfite oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, V.; Barber, M.J.

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibitedmore » S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.« less

  6. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on monooxo Mo(IV) and bisoxo Mo(VI) bis-dithiolenes: insights into the mechanism of oxo transfer in sulfite oxidase and its relation to the mechanism of DMSO reductase.

    PubMed

    Ha, Yang; Tenderholt, Adam L; Holm, Richard H; Hedman, Britt; Hodgson, Keith O; Solomon, Edward I

    2014-06-25

    Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two complexes [Mo(IV)O(bdt)2](2-) and [Mo(VI)O2(bdt)2](2-) (bdt = benzene-1,2-dithiolate(2-)) that relate to the reduced and oxidized forms of sulfite oxidase (SO). These are compared with those of previously studied dimethyl sulfoxide reductase (DMSOr) models. DFT calculations supported by the data are extended to evaluate the reaction coordinate for oxo transfer to a phosphite ester substrate. Three possible transition states are found with the one at lowest energy, stabilized by a P-S interaction, in good agreement with experimental kinetics data. Comparison of both oxo transfer reactions shows that in DMSOr, where the oxo is transferred from the substrate to the metal ion, the oxo transfer induces electron transfer, while in SO, where the oxo transfer is from the metal site to the substrate, the electron transfer initiates oxo transfer. This difference in reactivity is related to the difference in frontier molecular orbitals (FMO) of the metal-oxo and substrate-oxo bonds. Finally, these experimentally related calculations are extended to oxo transfer by sulfite oxidase. The presence of only one dithiolene at the enzyme active site selectively activates the equatorial oxo for transfer, and allows facile structural reorganization during turnover.

  7. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern and ancient environments. PMID:26733949

  8. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.

    PubMed

    Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab-scale MD-SANI process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Use of Tissue Metabolite Analysis and Enzyme Kinetics To Discriminate between Alternate Pathways for Hydrogen Sulfide Metabolism.

    PubMed

    Augustyn, Kristie D Cox; Jackson, Michael R; Jorns, Marilyn Schuman

    2017-02-21

    Hydrogen sulfide (H 2 S) is an endogenously synthesized signaling molecule that is enzymatically metabolized in mitochondria. The metabolism of H 2 S maintains optimal concentrations of the gasotransmitter and produces sulfane sulfur (S 0 )-containing metabolites that may be functionally important in signaling. Sulfide:quinone oxidoreductase (SQOR) catalyzes the initial two-electron oxidation of H 2 S to S 0 using coenzyme Q as the electron acceptor in a reaction that requires a third substrate to act as the acceptor of S 0 . We discovered that sulfite is a highly efficient acceptor and proposed that sulfite is the physiological acceptor in a reaction that produces thiosulfate, a known metabolic intermediate. This model has been challenged by others who assume that the intracellular concentration of sulfite is very low, a scenario postulated to favor reaction of SQOR with a considerably poorer acceptor, glutathione. In this study, we measured the intracellular concentration of sulfite and other metabolites in mammalian tissues. The values observed for sulfite in rat liver (9.2 μM) and heart (38 μM) are orders of magnitude higher than previously assumed. We discovered that the apparent kinetics of oxidation of H 2 S by SQOR with glutathione as the S 0 acceptor reflect contributions from other SQOR-catalyzed reactions, including a novel glutathione:CoQ reductase reaction. We used observed metabolite levels and steady-state kinetic parameters to simulate rates of oxidation of H 2 S by SQOR at physiological concentrations of different S 0 acceptors. The results show that the reaction with sulfite as the S 0 acceptor is a major pathway in liver and heart and provide insight into the potential dynamics of H 2 S metabolism.

  10. The possible role of thiosulfate in the precipitation of 34S-rich barite in some Mississippi Valley-type deposits

    USGS Publications Warehouse

    Spirakis, C.S.

    1991-01-01

    The precipitation of extremely 34S-rich barite in the late stage of mineralization in the Mississippi Valleytype deposits of the Illinois-Kentucky district (U.S.A.) may be explained by reactions involving thiosulfate (S2O3=). Inorganic processes are known to concentrate 34S in the sulfonate site of thiosulfate and 32S in the sulfate site. In the mineralizing solution, these inorganic processes may have fractionated sulfur between the two sites by about 40 per mil. At the low temperatures of the late barite stage of mineralization, bacteria are known to metabolize thiosulfate by various reactions. In one of these, dissimilatory reduction, hydrogen sulfide and sulfite are produced. Isotopically light sulfite is preferentially reduced to sulfide by bacteria to leave a residual sulfite enriched in 34S. Part of the residual sulfite may be oxidized to form isotopically heavy sulfate; part may recombine with hydrogen sulfide to form thiosulfate. The recombination also enriches the sulfonate site in 34S and the sulfane site in 32S. Recycling the newly formed thiosulfate through the above steps further enriches sulfite and sulfate from oxidation of sulfite in 34S. During genesis of the ores, the aggregate effect of these reactions may have been the precipitation of extremely 34S-rich barite. The sequence of reactions suggested above requires the presence of organic matter. Previously proposed reactions to account for the precipitation of sulfide minerals and fluorite and for the carbonate paragenesis also require the presence of organic matter. Thus, organic matter in the host rocks may cause the various ore-zone reactions and account for the localization of the ores. ?? 1991 Springer-Verlag.

  11. 40 CFR 430.55 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...

  12. 40 CFR 430.55 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...

  13. 40 CFR 430.55 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...

  14. 40 CFR 430.55 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...

  15. 40 CFR 430.55 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...

  16. Cellulose extraction from orange peel using sulfite digestion reagents.

    PubMed

    Bicu, Ioan; Mustata, Fanica

    2011-11-01

    Orange peel (OP) was used as raw material for cellulose extraction. Two different pulping reagents were used, sodium sulfite and sodium metabisulfite. The effect of the main process parameters, sulfite agent dosage and reaction duration, on cellulose yield was investigated. A central composite rotatable design involving two variables at five levels and response surface methodology were used for the optimization of cellulose recovery. Other two invariable parameters were reaction temperature and hydromodulus. The optimum yields, referred to the weight of double extracted OP, were 40.4% and 45.2% for sodium sulfite and sodium metabisulfite digestions, respectively. The crude celluloses were bleached with hypochlorite and oxygen. The physicochemical characterization data of these cellulose materials indicate good levels of purity, low crystallinities, good whitenesses, good water retention and moderate molecular weights. According to these specific properties the recovered celluloses could be used as fillers, water absorbents, or as raw materials for cellulose derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.

    PubMed

    Saito, Tsuguyuki; Nishiyama, Yoshiharu; Putaux, Jean-Luc; Vignon, Michel; Isogai, Akira

    2006-06-01

    Never-dried native celluloses (bleached sulfite wood pulp, cotton, tunicin, and bacterial cellulose) were disintegrated into individual microfibrils after oxidation mediated by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical followed by a homogenizing mechanical treatment. When oxidized with 3.6 mmol of NaClO per gram of cellulose, almost the totality of sulfite wood pulp and cotton were readily disintegrated into long individual microfibrils by a treatment with a Waring Blendor, yielding transparent and highly viscous suspensions. When observed by transmission electron microscopy, the wood pulp and cotton microfibrils exhibited a regular width of 3-5 nm. Tunicin and bacterial cellulose could be disintegrated by sonication. A bulk degree of oxidation of about 0.2 per one anhydroglucose unit of cellulose was necessary for a smooth disintegration of sulfite wood pulp, whereas only small amounts of independent microfibrils were obtained at lower oxidation levels. This limiting degree of oxidation decreased in the following order: sulfite wood pulp > cotton > bacterial cellulose, tunicin.

  18. Allergenic activity of an air-oxidized ethoxylated surfactant.

    PubMed

    Karlberg, Ann-Therese; Bodin, Anna; Matura, Mihaly

    2003-11-01

    Ethoxylated surfactants are used in household and industrial cleaners, topical pharmaceuticals, cosmetics and laundry products. Polyethers, e.g. ethoxylated surfactants and polyethylene glycols, are oxidized by atmospheric oxygen (autoxidized) when stored and handled. We have previously shown that a chemically well-defined non-ionic surfactant, the ethoxylated alcohol penta-ethylene glycol mono-n-dodecyl ether (C12E5), forms a complex mixture of autoxidation products when exposed to air. Predictive testing in guinea pigs showed that the surfactant itself is a non-sensitizer, but that oxidation products formed are skin sensitizers. The aim of this study was to investigate the sensitizing capacity of a total oxidation mixture of C12E5 obtained after autoxidation. The allergenic activity of different oxidation products is discussed as well as the clinical importance of the findings. This study shows that the non-ionic surfactant C12E5 containing 20% oxidation products is a sensitizing mixture. The result accords with what is observed for other compounds that are unstable when in contact with air, e.g. limonene and linalool, major fragrance terpenes. Studies regarding the clinical relevance of our findings should be performed. However, it is already clear from this study that precautions must be taken in handling and storage of ethoxylated surfactants to avoid formation of allergenic mixtures.

  19. Water treatment method

    DOEpatents

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  20. Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification

    Treesearch

    Zhiqiang Li; Zehui Jiang; Benhua Fei; Zhiyong Cai; Xuejun Pan

    2014-01-01

    The response and behavior of bamboo green, timber, and yellow of moso bamboo (Phyllostachys heterocycla) to three pretreatments, sulfite (SPORL), dilute acid (DA), and alkali (NaOH), were investigated and compared with varied chemical loadings at 180

  1. The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, James A.; Wilson, Heather L.; Pushie, M. Jake

    Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants atmore » position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 {angstrom} resolution and to 2.4 {angstrom} resolution in the presence of sulfite, and the C185A variant to 2.8 {angstrom} resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo{sup VI} state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density functional theory calculations of the trioxo form of the cofactor reasonably reproducd the Mo=O distances of the complex; however, the calculated Mo-S distances were slightly longer than either crystallographic or EXAFS measurements. Taken together, these results indicate that the active sites of the C185S and C185A variants are essentially catalytically inactive, the crystal structures of C185S and C185A variants contain a fully oxidized, trioxo form of the cofactor, and Tyr322 can undergo a conformational change that is relevant to the reaction mechanism. Additional DFT calculations demonstrated that such methods can reasonably reproduce the geometry and bond lengths of the active site.« less

  2. Preparation, Characterization, and Selectivity Study of Mixed-Valence Sulfites

    ERIC Educational Resources Information Center

    Silva, Luciana A.; de Andrade, Jailson B.

    2010-01-01

    A project involving the synthesis of an isomorphic double sulfite series and characterization by classical inorganic chemical analyses is described. The project is performed by upper-level undergraduate students in the laboratory. This compound series is suitable for examining several chemical concepts and analytical techniques in inorganic…

  3. Water treatment method

    DOEpatents

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  4. 76 FR 68181 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Combustion Sources at Kraft, Soda, Sulfite, and Stand-Alone Semichemical Pulp Mills (Renewal) AGENCY... electronic docket, go to http://www.regulations.gov . Title: NESHAP for Chemical Recovery Combustion Sources... chemical recovery combustion sources at kraft, soda, sulfite, and stand-alone semichemical pulp mills cause...

  5. A DFT investigation of the blue bottle experiment: E∘half-cell analysis of autoxidation catalysed by redox indicators.

    PubMed

    Limpanuparb, Taweetham; Roongruangsree, Pakpong; Areekul, Cherprang

    2017-11-01

    The blue bottle experiment is a collective term for autoxidation reactions catalysed by redox indicators. The reactions are characterized by their repeatable cycle of colour changes when shaken/left to stand and intricate chemical pattern formation. The blue bottle experiment is studied based on calculated solution-phase half-cell reduction potential of related reactions. Our investigation confirms that the reaction in various versions of the blue bottle experiment published to date is mainly the oxidation of an acyloin to a 1,2-dicarbonyl structure. In the light of the calculations, we also propose new non-acyloin reducing agents for the experiment. These results can help guide future experimental studies on the blue bottle experiment.

  6. Hemin potentiates nitric oxide-mediated nitrosation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) to 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline.

    PubMed

    Lakshmi, Vijaya M; Clapper, Margie L; Chang, Wen-Chi; Zenser, Terry V

    2005-03-01

    Heme has been reported to be an important contributor to endogenous N-nitrosation within the colon and to the enhanced incidence of colon cancer observed with increased intake of red meat. This study uses the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) as a target to evaluate hemin potentiation of nitric oxide (NO)-mediated nitrosation. Formation of 14C-2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) was monitored by HPLC following incubation of 10 microM IQ with the NO donor spermine NONOate (1.2 microM NO/min) at pH 7.4 in the presence or absence of hemin. N-NO-IQ formation due to autoxidation of NO was at the limit of detection (0.1 microM) and increased 22-fold in the presence of 10 microM hemin and an in situ system for generating H2O2 (glucose oxidase/glucose). A linear increase in N-NO-IQ formation was observed from 1 to 10 microM hemin. Significant nitrosamine formation occurred at fluxes of NO and H2O2 as low as 0.024 and 0.25 microM/min, respectively. Potentiation by hemin was not affected by a 400-fold excess flux of H2O2 over NO or a 4.8-fold excess flux of NO over H2O2. Reactive nitrogen species produced by hemin potentiation had a 46-fold greater affinity for IQ than those produced by autoxidation. Azide inhibited autoxidation, suggesting involvement of the nitrosonium ion, NO+. Hemin potentiation was inhibited by NADH, but not azide, suggesting oxidative nitrosylation with NO2* or a NO2*-like species. IQ and 2,3-diaminonaphthylene were much better targets for nitrosation than the secondary amine morpholine. Apc(min) mice with dextran sulfate sodium-induced colitis demonstrated increased levels of urinary nitrite and nitrate consistent with increased expression of iNOS and NO synthesis. As reported previously, identical conditions increased fecal N-nitroso compounds. Thus, hemin potentiation of NO-mediated nitrosation of heterocyclic amines provides a testable mechanism by which red meat consumption can generate N-nitroso compounds and initiate colon cancer under inflammatory conditions, such as colitis.

  7. 40 CFR 430.54 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limitations apply to all dischargers in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant or pollutant... [Supplemental BAT effluent limitations] Pollutant or pollutant property Maximum for any 1 day kg/kkg (or pounds...

  8. 40 CFR 430.56 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dischargers in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant or pollutant property PSES Maximum for any... Pollutant or pollutant property Supplemental PSES Maximum for any 1 day kg/kkg (or pounds per 1,000 lb) of...

  9. 40 CFR 430.56 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dischargers in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant or pollutant property PSES Maximum for any... Pollutant or pollutant property Supplemental PSES Maximum for any 1 day kg/kkg (or pounds per 1,000 lb) of...

  10. 40 CFR 430.56 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dischargers in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant or pollutant property PSES Maximum for any... Pollutant or pollutant property Supplemental PSES Maximum for any 1 day kg/kkg (or pounds per 1,000 lb) of...

  11. Using a combined hydrolysis factor to optimize high titer ethanol production from sulfite-pretreated poplar without detoxification

    Treesearch

    Jingzhi Zhang; Feng Gu; J.Y. Zhu; Ronald S. Zalesny Jr.

    2015-01-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to poplar NE222 chips in a range of chemical loadings, temperatures, and times. The combined hydrolysis factor (CHF) as a pretreatment severity accurately predicted xylan dissolution by SPORL. Good correlations between CHF and pretreated...

  12. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants.

    PubMed

    Sanmartín-Suárez, Carolina; Soto-Otero, Ramón; Sánchez-Sellero, Inés; Méndez-Álvarez, Estefanía

    2011-01-01

    Dimethyl sulfoxide is an amphiphilic compound whose miscibility with water and its ability to dissolve lipophilic compounds make it an appreciated solvent in biomedical research. However, its reported antioxidant properties raise doubts about its use as a solvent in evaluating new antioxidants. The goal of this investigation was to evaluate its antioxidant properties and carry out a comparative study on the antioxidant properties of some known neuroprotective antioxidants in the presence and absence of dimethyl sulfoxide. The antioxidant properties of dimethyl sulfoxide were studied in rat brain homogenates by determining its ability to reduce both lipid peroxidation (TBARS formation) and protein oxidation (increase in protein carbonyl content and decrease in free thiol content) induced by ferrous chloride/hydrogen peroxide. Its ability to reduce the production of hydroxyl radicals by 6-hydroxydopamine autoxidation was also estimated. The same study was also performed with three known antioxidants (α-phenyl-N-tert-butylnitrone; 2-methyl-2-nitrosopropane; 5,5-dimethyl-1-pyrroline N-oxide) in the presence and absence of dimethyl sulfoxide. Our results showed that dimethyl sulfoxide is able to reduce both lipid peroxidation and protein carbonyl formation induced by ferrous chloride/hydrogen peroxide in rat brain homogenates. It can also reduce the production of hydroxyl radicals during 6-hydroxydopamine autoxidation. However, it increases the oxidation of protein thiol groups caused by ferrous chloride/hydrogen peroxide in rat brain homogenate. Despite the here reported antioxidant and pro-oxidant properties of dimethyl sulfoxide, the results obtained with α-phenyl-N-tert-butylnitrone, 2-methyl-2-nitrosopropane, and 5,5-dimethyl-1-pyrroline N-oxide corroborate the antioxidant properties attributed to these compounds and support the potential use of dimethyl sulfoxide as a solvent in the study of the antioxidant properties of lipophilic compounds. Dimethyl sulfoxide is a very useful solvent that may be used at relatively low concentrations in the development of new antioxidants with neuroprotective properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Thermal Stability of Jet Fuels: Kinetics of Forming Deposit Precursors

    NASA Technical Reports Server (NTRS)

    Naegeli, David W.

    1997-01-01

    The focus of this study was on the autoxidation kinetics of deposit precursor formation in jet fuels. The objectives were: (1) to demonstrate that laser-induced fluorescence is a viable kinetic tool for measuring rates of deposit precursor formation in jet fuels; (2) to determine global rate expressions for the formation of thermal deposit precursors in jet fuels; and (3) to better understand the chemical mechanism of thermal stability. The fuels were isothermally stressed in small glass ampules in the 120 to 180 C range. Concentrations of deposit precursor, hydroperoxide and oxygen consumption were measured over time in the thermally stressed fuels. Deposit precursors were measured using laser-induced fluorescence (LIF), hydroperoxides using a spectrophotometric technique, and oxygen consumption by the pressure loss in the ampule. The expressions, I.P. = 1.278 x 10(exp -11)exp(28,517.9/RT) and R(sub dp) = 2.382 x 10(exp 17)exp(-34,369.2/RT) for the induction period, I.P. and rate of deposit precursor formation R(sub dp), were determined for Jet A fuel. The results of the study support a new theory of deposit formation in jet fuels, which suggest that acid catalyzed ionic reactions compete with free radical reactions to form deposit precursors. The results indicate that deposit precursors form only when aromatics are present in the fuel. Traces of sulfur reduce the rate of autoxidation but increase the yield of deposit precursor. Free radical chemistry is responsible for hydroperoxide formation and the oxidation of sulfur compounds to sulfonic acids. Phenols are then formed by the acid catalyzed decomposition of benzylic hydroperoxides, and deposit precursors are produced by the reaction of phenols with aldehydes, which forms a polymer similar to Bakelite. Deposit precursors appear to have a phenolic resin-like structure because the LIF spectra of the deposit precursors were similar to that of phenolic resin dissolved in TAM.

  14. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    PubMed

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  15. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.

    PubMed

    Wang, Jianxu; Xia, Jicheng; Feng, Xinbin

    2017-01-15

    Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg -1 ) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg -1 . The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating ligand for phytoextraction due to its great potential to enhance Hg accumulation in plants while decreasing bioavailable Hg concentration in the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Autoxidation as a source of gas-phase highly-oxidized multifunctional compounds (HOM) - measured by chemical ionization spectrometry (CIMS) utilizing various reagent ion chemistries

    NASA Astrophysics Data System (ADS)

    Rissanen, M.; Kurten, T.; Mauldin, L.; Ehn, M.

    2017-12-01

    Secondary organic aerosol (SOA) constitutes the largest fraction of atmospheric submicron particulate matter. Despite its importance to the Earth's radiative balance, mainly by acting as a source of cloud condensation nuclei (CCN), the molecular details of the first-steps of atmospheric new particle formation keep eluding researchers. Recently a gas-phase autocatalytic oxidation mechanism (=autoxidation) was invoked to explain the very fast formation of highly-oxidized multifunctional organic compounds (HOMs), and it was shown to provide the needed prompt condensable matter that forms the smallest of the atmospheric particles. Of detailed autoxidation progressions, only cyclohexene ozonolysis initiated oxidation has been described by quantum chemical computations, and it was quickly recognized that further reaction steps are needed (such as endoperoxidation) to explain the formation of the observed HOM products from biogenic terpenes. Also it was realized that the simplest group additivity principles commonly applied to derive saturation vapor pressures do not suffice to determine the vapor pressures of multiple hydroperoxide and other oxidized functionalities containing HOM products. Thereby the fraction of the lowest volatility products is less than previously assumed, which could indicate reactive uptake of HOM products. In the AGU fall meeting I will present our most recent findings on resolving the (i) detailed molecular mechanisms generating HOMs, (ii) their actual vapor pressures, and (iii) their interaction with the environment.

  17. Unusually weak oxygen binding, physical properties, partial sequence, autoxidation rate and a potential phosphorylation site of beluga whale (Delphinapterus leucas) myoglobin.

    PubMed

    Stewart, J M; Blakely, J A; Karpowicz, P A; Kalanxhi, E; Thatcher, B J; Martin, B M

    2004-03-01

    We purified myoglobin from beluga whale (Delphinapterus leucas) muscle (longissimus dorsi) with size exclusion and cation exchange chromatographies. The molecular mass was determined by mass spectrometry (17,081 Da) and the isoelectric pH (9.4) by capillary isoelectric focusing. The near-complete amino acid sequence was determined and a phylogeny indicated that beluga was in the same clad as Dall's and harbor porpoises. There were consensus motifs for a phosphorylation site on the protein surface with the most likely site at serine-117. This motif was common to all cetacean myoglobins examined. Two oxygen-binding studies at 37 degrees C indicated dissociation constants (20.5 and 23.6 microM) 5.7-6.6 times larger than horse myoglobin (3.6 microM). The autoxidation rate of beluga myoglobin at 37 degrees C, pH 7.2 was 0.218+/-0.028 h(-1), 1/3 larger than reported for myoglobin of terrestrial mammals. There was no clear sequence change to explain the difference in oxygen binding or autoxidation although substitutions (N66 and T67) in an invariant rich sequence (HGNTV) distal to the heme may play a role. Structural models based on the protein sequence and constructed on topologies of known templates (horse and sperm whale crystal structures) were not adequate to assess perturbation of the heme pocket.

  18. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite pretreatment to overcome recalcitrance of lignocellulose

    Treesearch

    X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu

    2010-01-01

    The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....

  19. Multicomponent self-assembly of a pentanuclear Ir-Zn heterometal-organic polyhedron for carbon dioxide fixation and sulfite sequestration.

    PubMed

    Li, Xuezhao; Wu, Jinguo; He, Cheng; Zhang, Rong; Duan, Chunying

    2016-04-14

    By incorporating a fac-tris(4-(2-pyridinyl)phenylamine)iridium as the backbone of the tripodal ligand to constrain the coordination geometry of Zn(II) ions, a pentanuclear Ir-Zn heterometal-organic luminescent polyhedron was obtained via a subcomponent self-assembly for carbon dioxide fixation and sulfite sequestration.

  20. Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase

    USDA-ARS?s Scientific Manuscript database

    Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterised with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion ha...

  1. 40 CFR 430.51 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this part apply to this subpart. (b) Sulfite cooking liquor is defined as bisulfite cooking liquor when the pH of the liquor is between 3.0 and 6.0 and as acid sulfite cooking liquor when the pH is less... mills where pulp and paper are produced using an acidic cooking liquor of calcium, magnesium, or sodium...

  2. A strong protective action of guttiferone-A, a naturally occurring prenylated benzophenone, against iron-induced neuronal cell damage.

    PubMed

    Figueredo, Yanier Núñez; García-Pupo, Laura; Cuesta Rubio, Osmany; Delgado Hernández, René; Naal, Zeki; Curti, Carlos; Pardo Andreu, Gilberto L

    2011-01-01

    Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 µM. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA-Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.

  3. Competition H(D) Kinetic Isotope Effects in the Autoxidation of Hydrocarbons

    PubMed Central

    Muchalski, Hubert; Levonyak, Alexander J.; Xu, Libin; Ingold, Keith U.; Porter, Ned A.

    2016-01-01

    Hydrogen atom transfer is central to many important radical chain sequences. We report here a method for determination of both the primary and secondary isotope effects for symmetrical substrates by the use of NMR. Intramolecular competition reactions were carried out on substrates having an increasing number of deuterium atoms at symmetry-related sites. Products that arise from peroxyl radical abstraction at each position of the various substrates reflect the competition rates for H(D) abstraction. The primary KIE for autoxidation of tetralin was determined to be 15.9 ± 1.4, a value that exceeds the maximum predicted by differences in H(D) zero-point energies (~7) and strongly suggests that H atom abstraction by the peroxyl radical occurs with substantial quantum mechanical tunneling. PMID:25533605

  4. Competition H(D) kinetic isotope effects in the autoxidation of hydrocarbons.

    PubMed

    Muchalski, Hubert; Levonyak, Alexander J; Xu, Libin; Ingold, Keith U; Porter, Ned A

    2015-01-14

    Hydrogen atom transfer is central to many important radical chain sequences. We report here a method for determination of both the primary and secondary isotope effects for symmetrical substrates by the use of NMR. Intramolecular competition reactions were carried out on substrates having an increasing number of deuterium atoms at symmetry-related sites. Products that arise from peroxyl radical abstraction at each position of the various substrates reflect the competition rates for H(D) abstraction. The primary KIE for autoxidation of tetralin was determined to be 15.9 ± 1.4, a value that exceeds the maximum predicted by differences in H(D) zero-point energies (∼7) and strongly suggests that H atom abstraction by the peroxyl radical occurs with substantial quantum mechanical tunneling.

  5. A new automated colorimetric method for measuring total oxidant status.

    PubMed

    Erel, Ozcan

    2005-12-01

    To develop a new, colorimetric and automated method for measuring total oxidation status (TOS). The assay is based on the oxidation of ferrous ion to ferric ion in the presence of various oxidant species in acidic medium and the measurement of the ferric ion by xylenol orange. The oxidation reaction of the assay was enhanced and precipitation of proteins was prevented. In addition, autoxidation of ferrous ion present in the reagent was prevented during storage. The method was applied to an automated analyzer, which was calibrated with hydrogen peroxide and the analytical performance characteristics of the assay were determined. There were important correlations with hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide solutions (r=0.99, P<0.001 for all). In addition, the new assay presented a typical sigmoidal reaction pattern in copper-induced lipoprotein autoxidation. The novel assay is linear up to 200 micromol H2O2 Equiv./L and its precision value is lower than 3%. The lower detection limit is 1.13 micromol H2O2 Equiv./L. The reagents are stable for at least 6 months on the automated analyzer. Serum TOS level was significantly higher in patients with osteoarthritis (21.23+/-3.11 micromol H2O2 Equiv./L) than in healthy subjects (14.19+/-3.16 micromol H2O2 Equiv./L, P<0.001) and the results showed a significant negative correlation with total antioxidant capacity (TAC) (r=-0.66 P<0.01). This easy, stable, reliable, sensitive, inexpensive and fully automated method that is described can be used to measure total oxidant status.

  6. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.

    PubMed

    Höfler, Saskia; Lorenz, Christin; Busch, Tjorven; Brinkkötter, Mascha; Tohge, Takayuki; Fernie, Alisdair R; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2016-07-01

    Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence. © 2016 Scandinavian Plant Physiology Society.

  7. Determination of ammonium on an integrated microchip with LED-induced fluorescence detection.

    PubMed

    Xue, Shuhua; Uchiyama, Katsumi; Li, Hai-Fang

    2012-01-01

    A simply fabricated microfluidic device integrated with a fluorescence detection system has been developed for on-line determination of ammonium in aqueous samples. A 365-nm light-emitting diode (LED) as an excitation source and a minor band pass filter were mounted into a polydimethylsiloxane (PDMS)-based microchip for the purpose of miniaturization of the entire analytical system. The ammonium sample reacted with o-phthaldialdehyde (OPA) on-chip with sodium sulfite as reducing reagent to produce a fluorescent isoindole derivative, which can emit fluorescence signal at about 425 nm when excited at 365 nm. Effects of pH, flow rate of solutions, concentrations of OPA-reagent, phosphate and sulfite salt were investigated. The calibration curve of ammonium in the range of 0.018-1.8 microg/mL showed a good linear relationship with R2 = 0.9985, and the detection limit was (S/N = 3) 3.6 x 10(-4) microg/mL. The relative standard deviation was 2.8% (n = 11) by calculating at 0.18 microg/mL ammonium for repeated detection. The system was applied to determine the ammonium concentration in rain and river waters, even extent to other analytes fluorescence detection by the presented device.

  8. Air pollution indications and growth of spruce and pine near a sulfite plant

    Treesearch

    Lars Westman

    1976-01-01

    A preliminary study has been made around a sulfite plant in the north of Sweden. The emission of sulfur dioxide increased considerably in 1950 as a consequence of the introduction of lye-burning. Using the pH in pine bark and two common lichen epiphytes as indicators, the resistant Parmelia physodes and the very sensitive Alectoria implexa...

  9. Sulfur we breathe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, J.W.

    1978-03-01

    The standards set to control the level of SO/sub 2/ in the atmosphere may not be having a proportionate effect on the formation of air-borne sulfates and sulfites and thus may not be protecting us from their harmful effects. The relationship of SO/sub 2/ levels to sulfate and sulfite concentrations is a much more complex issue than is recognized by existing regulations.

  10. Molecular structure of sodium lignosulfonate from different sources and their properties as dispersant of TiO2 slurry

    Treesearch

    Haifeng Zhou; Dongjie Yang; Junyong Zhu

    2016-01-01

    The molecular structure and properties of four sodium lignosulfates (LSs) derived from pulping or bioethanol production were evaluated and compared. SXP and SAL were produced by sulfite pulping and sulfonation reaction of lignin from alkali pulping of poplar, respectively. LS-180 and LS-150 were from sulfite pretreatment to overcome recalcitrance of lignocelluloses (...

  11. Biorefinery lignosulfonates from sulfite-pretreated softwoods as dispersant for graphite

    Treesearch

    Yanlin Qin; Lixuan Yu; Ruchun Wu; Dongjie Yang; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Two biorefinery lignosulfonates (LSs), Ca-LS-DF and Na-LS-LP were, respectively, isolated from pilot-scale sulfite-pretreated spent liquor of lodgepole pine and fermentation residue of Douglas-fir harvest forest residue. The molecular weights of Na-LS-LP and Ca-LS-DF were approximately 9 000 and 11 000 Da, respectively. The two LSs were applied as dispersant for...

  12. Bioconversion of woody biomass to biofuel and lignin co-product using sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL)

    Treesearch

    Junyong Zhu; Chao Zhang; Roland Gleisner; Carl Houtman; Xuejun Pan

    2016-01-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) promises to provide efficient bioconversion of woody biomass into bioethanol and lignin co-products. Results from several laboratory and pilot-scale studies are presented to demonstrate SPORL performance, with comparisons to competing technologies. Excellent ethanol yields of up to...

  13. Ethanol production from non-detoxified whole slurry of sulfite-pretreated empty fruit bunches at a low cellulase loading

    Treesearch

    Jinlan Cheng; Shao-Yuan Leu; J.Y. Zhu; Thomas W. Jeffries

    2014-01-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to an empty fruit bunches (EFB) for ethanol production. SPORL facilitated delignification through lignin sulfonation and dissolution of xylan to result in a highly digestible substrate. The pretreated whole slurry was enzymatically saccharified at a solids loading of 18% using a...

  14. Comparison of Dilute Acid and Sulfite Pretreatment for enzymatic Saccharification of Earlywood and Latewood of Douglas Fir

    Treesearch

    Chao Zhang; Xiaochun Lei; C. Tim Scott; J.Y. Zhu; Kecheng Li

    2014-01-01

    This study applied dilute acid (DA) and sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) to deconstruct earlywood and latewood cell walls of Douglas fir for fermentable sugars production through subsequent enzymatic hydrolysis. DA pretreatment removed almost all the hemicelluloses, while SPORL at initial pH=4.5 (SP-B) removed significant...

  15. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo.

    PubMed

    Aliwarga, Theresa; Raccor, Brianne S; Lemaitre, Rozenn N; Sotoodehnia, Nona; Gharib, Sina A; Xu, Libin; Totah, Rheem A

    2017-11-01

    Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid (AA) oxidation that have important cardioprotective and signaling properties. AA is an ω-6 polyunsaturated fatty acid (PUFA) that is prone to autoxidation. Although hydroperoxides and isoprostanes are major autoxidation products of AA, EETs are also formed from the largely overlooked peroxyl radical addition mechanism. While autoxidation yields both cis- and trans-EETs, cytochrome P450 (CYP) epoxygenases have been shown to exclusively catalyze the formation of all regioisomer cis-EETs, on each of the double bonds. In plasma and red blood cell (RBC) membranes, cis- and trans-EETs have been observed, and both have multiple physiological functions. We developed a sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay that separates cis- and trans- isomers of EETs and applied it to determine the relative distribution of cis- vs. trans-EETs in reaction mixtures of AA subjected to free radical oxidation in benzene and liposomes in vitro. We also determined the in vivo distribution of EETs in several tissues, including human and mouse heart, and RBC membranes. We then measured EET levels in heart and RBC of young mice compared to old. Formation of EETs in free radical reactions of AA in benzene and in liposomes exhibited time- and AA concentration-dependent increase and trans-EET levels were higher than cis-EETs under both conditions. In contrast, cis-EET levels were overall higher in biological samples. In general, trans-EETs increased with mouse age more than cis-EETs. We propose a mechanism for the non-enzymatic formation of cis- and trans-EETs involving addition of the peroxyl radical to one of AA's double bonds followed by bond rotation and intramolecular homolytic substitution (S H i). Enzymatic formation of cis-EETs by cytochrome P450 most likely occurs via a one-step concerted mechanism that does not allow bond rotation. The ability to accurately measure circulating EETs resulting from autoxidation or enzymatic reactions in plasma and RBC membranes will allow for future studies investigating how these important signaling lipids correlate with heart disease outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1985-01-01

    The purple photosynthetic bacterium Chromatium vinosum, strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide --> sulfur --> sulfate, sulfite --> sulfate, and thiosulfate --> sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.

  17. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  18. A synthetic GFP-like chromophore undergoes base-catalyzed autoxidation into acylimine red form.

    PubMed

    Ivashkin, Pavel E; Lukyanov, Konstantin A; Lukyanov, Sergey; Yampolsky, Ilia V

    2011-04-15

    Fluorescent proteins are widely used in modern experimental biology, but much controversy exists regarding details of maturation of different types of their chromophores. Here we studied possible mechanisms of DsRed-type red chromophore formation using synthetic biomimetic GFP-like chromophores, bearing an acylamino substituent, corresponding to an amino acid residue at position 65. We have shown these model compounds to readily react with molecular oxygen to produce a highly unstable DsRed-like acylimine, isolated in the form of stable derivatives. Under the same aerobic conditions an unusual red-shifted imide chromophore--a product of 4-electron oxidation of Gly65 residue--is formed. Our data showed that GFP chromophore is prone to autoxidation at position 65 Cα by its chemical nature with basic conditions being the only key factor required.

  19. Oxidation mechanism of diethyl ether: a complex process for a simple molecule.

    PubMed

    Di Tommaso, Stefania; Rotureau, Patricia; Crescenzi, Orlando; Adamo, Carlo

    2011-08-28

    A large number of organic compounds, such as ethers, spontaneously form unstable peroxides through a self-propagating process of autoxidation (peroxidation). Although the hazards of organic peroxides are well known, the oxidation mechanisms of peroxidizable compounds like ethers reported in the literature are vague and often based on old experiments, carried out in very different conditions (e.g. atmospheric, combustion). With the aim to (partially) fill the lack of information, in this paper we present an extensive Density Functional Theory (DFT) study of autoxidation reaction of diethyl ether (DEE), a chemical that is largely used as solvent in laboratories, and which is considered to be responsible for various accidents. The aim of the work is to investigate the most probable reaction paths involved in the autoxidation process and to identify all potential hazardous intermediates, such as peroxides. Beyond the determination of a complex oxidation mechanism for such a simple molecule, our results suggest that the two main reaction channels open in solution are the direct decomposition (β-scission) of DEE radical issued of the initiation step and the isomerization of the peroxy radical formed upon oxygen attack (DEEOO˙). A simple kinetic evaluation of these two competing reaction channels hints that radical isomerization may play an unexpectedly important role in the global DEE oxidation process. Finally industrial hazards could be related to the hydroperoxide formation and accumulation during the chain propagation step. The resulting information may contribute to the understanding of the accidental risks associated with the use of diethyl ether.

  20. Atmospheric autoxidation is increasingly important in urban and suburban North America

    NASA Astrophysics Data System (ADS)

    Praske, Eric; Otkjær, Rasmus V.; Crounse, John D.; Caleb Hethcox, J.; Stoltz, Brian M.; Kjaergaard, Henrik G.; Wennberg, Paul O.

    2018-01-01

    Gas-phase autoxidation—regenerative peroxy radical formation following intramolecular hydrogen shifts—is known to be important in the combustion of organic materials. The relevance of this chemistry in the oxidation of organics in the atmosphere has received less attention due, in part, to the lack of kinetic data at relevant temperatures. Here, we combine computational and experimental approaches to investigate the rate of autoxidation for organic peroxy radicals (RO2) produced in the oxidation of a prototypical atmospheric pollutant, n-hexane. We find that the reaction rate depends critically on the molecular configuration of the RO2 radical undergoing hydrogen transfer (H-shift). RO2 H-shift rate coefficients via transition states involving six- and seven-membered rings (1,5 and 1,6 H-shifts, respectively) of α-OH hydrogens (HOC-H) formed in this system are of order 0.1 s‑1 at 296 K, while the 1,4 H-shift is calculated to be orders of magnitude slower. Consistent with H-shift reactions over a substantial energetic barrier, we find that the rate coefficients of these reactions increase rapidly with temperature and exhibit a large, primary, kinetic isotope effect. The observed H-shift rate coefficients are sufficiently fast that, as a result of ongoing NOx emission reductions, autoxidation is now competing with bimolecular chemistry even in the most polluted North American cities, particularly during summer afternoons when NO levels are low and temperatures are elevated.

  1. [Standardization and regulation of the rate of the superoxide-generating adrenaline autoxidation reaction used for evaluation of pro/antioxidant properties of various materials].

    PubMed

    Sirota, T V

    2016-11-01

    The superoxide-generating reaction of adrenaline autoxidation is widely used for determination of the activity of superoxide dismutase and pro/antioxidant properties of various materials. There are two variants of the spectrophotometric registration of the products of this reaction. The first is based on registration of adrenochrome, as adrenaline autooxidation product at 347 nm; the second employs nitro blue tetrazolium (NBT) and registration of diformazan, a product of NBT reduction at 560 nm. In the present work, recommendations for the standardization of the reaction rate in both variants have been proposed. The main approach consists in the use of the pharmaceutical form of 0.1% adrenaline hydrochloride solution. Although each of two adrenaline preparations available in the Russian market has some features in kinetic behavior of its autooxidation; they are applicable in the superoxide generating system based on adrenaline autooxidation. Performing measurements at 560 nm, the reaction rate can be regulated by lowering the concentration of added adrenaline, whereas during spectrophotometric registration at 347 nm, this cannot be done. These features of adrenaline autoxidation may be due to the fact that the intrinsic multistage process of the conversion of adrenaline to adrenochrome, which is recorded at 347 nm, is coupled with the transition of electrons from adrenaline and intermediate products of its oxidation to oxygen, carbon dioxide, and carbonate bicarbonate ions, which is detected in the presence of added NBT.

  2. Fermentation kinetics for xylitol production by a Pichia stipitis D-xylulokinase mutant previously grown in spent sulfite liquor

    Treesearch

    Rita C.L.B. Rodrigues; Chenfeng Lu; Bernice Liu; Thomas W. Jeffries

    2008-01-01

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3[delta]) to convert these sugars into useful products. FPL-YS30 produces a...

  3. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases

    PubMed Central

    Müller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander

    2015-01-01

    The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods. PMID:25343514

  4. Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion.

    PubMed

    Khaldy, Hoda; Escames, Germaine; León, Josefa; Bikjdaouene, Leila; Acuña-Castroviejo, Darío

    2003-01-01

    Previous studies showed a synergistic effect of melatonin and deprenyl against dopamine (DA) autoxidation in vitro. Since oxidative stress is implicated in Parkinson's disease (PD), we explored the effects of melatonin plus deprenyl administration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in C57/Bl6 mice. Melatonin, but not deprenyl prevents the inhibition of mitochondrial complex I and the oxidative damage in nigrostriatal neurons induced by MPTP. With the dose used deprenyl recovers 50% DA levels and tyrosine hydroxylase activity depressed by the neurotoxin, normalizing locomotor activity of mice. Melatonin, which was unable to counteract MPTP-induced DA depletion and inhibition of tyrosine hydroxylase activity, potentiates the effect of deprenyl on catecholamine turnover and mice ambulatory activity. These results suggest a dissociation of complex I inhibition from DA depletion in this model of Parkinson's disease. The data also support that a combination of melatonin, which improves mitochondrial electron transport chain and reduces oxidative damage, and deprenyl, which promotes the specific function of the rescued neurons, i.e. DA turnover, may be a promising strategy for the treatment of PD.

  5. Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development.

    PubMed

    Wiedemann, Gertrud; Hermsen, Corinna; Melzer, Michael; Büttner-Mainik, Annette; Rennenberg, Heinz; Reski, Ralf; Kopriva, Stanislav

    2010-06-03

    A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the DeltaSiR1 mutants. While DeltaSiR1 mutants showed no obvious alteration in sulfur metabolism, their regeneration from protoplasts and their ability to produce mature spores was significantly affected, highlighting an unexpected link between moss sulfate assimilation and development, that is yet to be characterized. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Genetic characterization of strains of Saccharomyces uvarum from New Zealand wineries.

    PubMed

    Zhang, Hanyao; Richards, Keith D; Wilson, Sandra; Lee, Soon A; Sheehan, Hester; Roncoroni, Miguel; Gardner, Richard C

    2015-04-01

    We present a genetic characterization of 65 isolates of Saccharomyces uvarum isolated from wineries in New Zealand, along with the complete nucleotide sequence of a single sulfite-tolerant isolate. The genome of the New Zealand isolate averaged 99.85% nucleotide identity to CBS7001, the previously sequenced strain of S. uvarum. However, three genomic segments (37-87 kb) showed 10% nucleotide divergence from CBS7001 but 99% identity to Saccharomyces eubayanus. We conclude that these three segments appear to have been introgressed from that species. The nucleotide sequence of the internal transcribed spacer (ITS) region from other New Zealand isolates were also very similar to that of CBS7001, and hybrids showed complete genetic compatibility for some strains, with tetrads giving four viable progeny that showed 2:2 segregations of marker genes. Some strains showed high tolerance to sulfite, with genetic analysis indicating linkage of this trait to the transcription factor FZF1, but not to SSU1, the sulfite efflux pump that it regulates in order to confer sulfite tolerance in Saccharomyces cerevisiae. The fermentation characteristics of selected strains of S. uvarum showed exceptionally good cold fermentation characteristics, superior to the best commercially available strains of S. cerevisiae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. New medium for rapid screening and enumeration of Clostridium perfringens in foods.

    PubMed Central

    Erickson, J E; Deibel, R H

    1978-01-01

    A rapid and sensitive procedure for estimating low numbers of Clostridium perfringens has been investigated and compared to methods used currently in the food industry. The new liquid medium, RPM (rapid perfringens medium), was compared with sulfite-polymyxin-sulfadiazine agar and tryptose-sulfite-cycloserine agar in recovery studies with naturally contaminated and with inoculated foods. The medium consists of a mixture of litmus milk and fluid thioglycolate medium fortified with glucose, peptone, gelatin, yeast extract, sodium chloride, and ferrous sulfate. Selectivity is based on an antibiotic system (polymyxin B sulfate and neomycin sulfate) incorporated into the medium, coupled with an incubation temprature of 46 to 48 degrees C for 24 h. Tubes were scored as positive if a stormy fermentation was observed. All tubes demonstrating stormy fermentation were confirmed as containing C. perfringens. Of a total of 774 naturally contaminated food samples, 546 samples (71%) were found to contain C. perfringens with RPM, whereas only 168 (22%) of the samples were positive using sulfite-polymyxin-sulfadiazine agar. C. perfringens was isolated from 71% of 85 other samples using RPM as compared to 14% with tryptose-sulfite-cycloserine agar. Enumeration studies on 14 individual samples using the most probable number technique also demonstrated greater sensitivity with RPM. PMID:213019

  8. Carbon Monoxide-Reacting Pigment from Desulfotomaculum nigrificans and Its Possible Relevance to Sulfite Reduction

    PubMed Central

    Trudinger, P. A.

    1970-01-01

    The separation of an autoxidizable brown pigment, P582, from Desulfotomaculum nigrificans is described. It reacted with Na2S2O4 and was characterized by absorption maxima in the oxidized state at 392, 582, and 700 nm. In the presence of Na2S2O4, P582 formed complexes with CO and, under alkaline conditions, pyridine. There was no reaction with cyanide. The molecular weight of P582 was approximately 145,000, and the purest preparations contained Fe, Zn, and acid-labile sulfide but not Cu, Mo, or Mn. Preparations of P582 catalyzed the reduced methyl viologen (MVH)-linked reduction of sulfite, hydroxylamine, and nitrite but not of sulfate, thiosulfate, or nitrate. Reduced pyridine nucleotides did not substitute for MVH. A major product of the MVH-sulfite reaction was sulfide. CO partially inhibited the enzymatic activities. Sulfite, hydroxylamine, and nitrite and CO caused changes in the spectrum of Na2S2O4-reduced P582. Fe2+-chelating reagents reacted with part of the Fe of P582 and caused partial losses of labile sulfide and enzymatic activity. The spectral and CO-reacting properties of P582 were, however, unaffected by chelating agents. The reaction between P582 and chelating agents was stimulated by reducing agents. PMID:5473884

  9. Tol1, a fission yeast phosphomonoesterase, is an in vivo target of lithium, and its deletion leads to sulfite auxotrophy.

    PubMed

    Miyamoto, R; Sugiura, R; Kamitani, S; Yada, T; Lu, Y; Sio, S O; Asakura, M; Matsuhisa, A; Shuntoh, H; Kuno, T

    2000-07-01

    Lithium is the drug of choice for the treatment of bipolar affective disorder. The identification of an in vivo target of lithium in fission yeast as a model organism may help in the understanding of lithium therapy. For this purpose, we have isolated genes whose overexpression improved cell growth under high LiCl concentrations. Overexpression of tol1(+), one of the isolated genes, increased the tolerance of wild-type yeast cells for LiCl but not for NaCl. tol1(+) encodes a member of the lithium-sensitive phosphomonoesterase protein family, and it exerts dual enzymatic activities, 3'(2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase. tol1(+) gene-disrupted cells required high concentrations of sulfite in the medium for growth. Consistently, sulfite repressed the sulfate assimilation pathway in fission yeast. However, tol1(+) gene-disrupted cells could not fully recover from their growth defect and abnormal morphology even when the medium was supplemented with sulfite, suggesting the possible implication of inositol polyphosphate 1-phosphatase activity for cell growth and morphology. Given the remarkable functional conservation of the lithium-sensitive dual-specificity phosphomonoesterase between fission yeast and higher-eukaryotic cells during evolution, it may represent a likely in vivo target of lithium action across many species.

  10. Cobalt nanoparticles encapsulated in nitrogen-rich carbon nanotubes as efficient catalysts for organic pollutants degradation via sulfite activation.

    PubMed

    Wu, Deming; Ye, Peng; Wang, Manye; Wei, Yi; Li, Xiaoxia; Xu, Aihua

    2018-06-15

    The activation of sulfite by heterogeneous catalysts displays a great potential in the development of new sulfate radials based technologies for wastewater treatment. Herein, cobalt nanoparticles embedded in N-doped carbon nanotubes (Co@NC) were prepared by a simple pyrolysis method. Due to the synergistic effects of the cobalt nanoparticles and N-doped carbon nanotubes, the Co@NC catalyst intrinsically shows an outstanding efficiency, excellent reusability and high stability in the catalytic oxidation of methyl orange (MO) in the presence of sulfite and dioxygen. The structure and efficiency of the catalyst was significantly affected by the content of cobalt and pyrolysis temperature. Several quenching experiments and electron paramagnetic resonance were carried out to investigate the catalytic mechanism. It is found that hydroxyl and sulfate radicals worked together to degrade MO in the system. The formation and decomposition of peroxymonosulfate may be an important route of these reactive radicals production. The effect of different anions, bicarbonate concentration, initial solution pH and dye types on the performance of the catalyst was also studied. This study can open a new approach for design and preparation of encapsulated cobalt in carbon materials as effective catalysts for pollutants degradation via sulfite activation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Enrichment of sulfidogenic bacteria from the human intestinal tract.

    PubMed

    Feng, Yuan; Stams, Alfons J M; de Vos, Willem M; Sánchez-Andrea, Irene

    2017-02-01

    Hydrogen sulfide is formed in the human intestinal tract as the end product of the anaerobic microbial degradation of sulfur compounds present in mucus, bile or proteins. Since human gut microbial sulfur metabolism has been poorly characterized, we aimed to identify and isolate the microorganisms involved in sulfide formation. Fresh fecal samples from one healthy donor and one diagnosed with irritable bowel syndrome were used as inocula for enrichments that were supplemented with sulfate or sulfite as electron acceptors in combination with different electron donors. After two transfers, cultures with high sulfide production were selected and the phylogenetic composition of the enriched microbial communities was determined. Sulfite respiration and cysteine degradation were the dominant sulfidogenic processes, and the most abundant bacteria enriched belonged to Bilophila and Clostridium cluster XIVa. Different isolates were obtained and remarkably included a novel sulfite reducer, designated strain 2C. Strain 2C belongs to the Veillonellaceae family of Firmicutes phylum and showed limited (91%) 16S rRNA gene sequence similarity with that of known Sporomusa species and hence may represent a novel genus. This study indicates that bacteria that utilize sulfite and organic sulfur compounds rather than merely sulfate are relevant for human intestinal sulfur metabolism. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Structure-reactivity relationship in the oxidation of carotenoid pigments of the pepper (Capsicum annuum L.).

    PubMed

    Pérez-Gálvez, A; Mínguez-Mosquera, M I

    2001-10-01

    The relationship between the degradation rate and structure of each pigment of the pepper carotenoid profile was studied in mixtures of dehydrated fruit with lipid substrates of differing degrees of unsaturation and in different proportions (20 and 40%). The differences in structural nature of the carotenoids present in the pepper fruit produce a variable rate of oxidation, resulting in nonuniform degradation. The yellow xanthophylls and beta-carotene have the highest rates of oxidation, with the ketocarotenoids and violaxanthin degrading at lower rates. Autoxidation is greater or lesser depending on the functional groups, which stabilize the radical intermediaries of the reaction. The behavior of capsanthin and capsorubin is that expected of carotenoids having structures that include keto groups: a markedly greater stability to autoxidation processes. This increases their antioxidant capacity, adding to their beneficial impact by reducing the proliferation of radical processes, which are detrimental to health.

  13. Comment on "Photo-assisted degradation of 2, 4, 6-trichlorophenol by an advanced reduction process based on sulfite anion radical: Degradation, dechlorination and mineralization" [Chemosphere 191 (2018) 156-165].

    PubMed

    Tang, Min

    2018-07-01

    The sulfite-mediated photoreduction (SMP) with UV-C light showed promising performances especially for dechlorination of chlorinated organic compounds (e.g., 2, 4, 6-trichlorophenol (TCP)). The investigation of SMP for TCP is commented and proposed in order to clarify the mechanisms involved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Efficacy of chitosan in inhibiting the oxidation of (+)-catechin in white wine model solutions.

    PubMed

    Chinnici, Fabio; Natali, Nadia; Riponi, Claudio

    2014-10-08

    The efficacy of chitosan and sulfites in inhibiting the oxidation of (+)-catechin in aerated model white wines has been compared by monitoring the browning development and the generation of oxidized phenolic compounds. In addition, the protecting effects of these two additives toward the oxidative decay of varietal thiols were investigated. Chitosan effectively contrasted the browning onset in model solutions all along the entire duration of the experimentation. Color development was limited and comparable in both the sulfite and chitosan added samples. Thanks to its polyelectrolyte behavior, chitosan adsorbed up to 80% of the more hydrophilic oxidized phenolic species and chelated 70 and 30% of Fe and Cu added to the solutions, respectively. Thiol oxidation was significantly lowered by chitosan, suggesting that this additive could contribute to maintain the varietal character of wines coming from aromatic grapes and vinified with reduced sulfite amounts.

  15. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinicmore » and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.« less

  16. Short communication: possible mechanism for inhibiting the formation of polymers originated from 5-hydroxymethyl-2-furaldehyde by sulfite groups in the dairy thermal process.

    PubMed

    Guan, Yong-Guang; Zhu, Si-Ming; Yu, Shu-Juan; Xu, Xian-Bing; Zhu, Li-Cai

    2013-05-01

    5-Hydroxymethyl-2-furaldehyde can undergo polymerization to form high-molecular weight molecules via the Maillard reaction during dairy thermal treatment. In this study, the effect of sulfite group on polymer formation, especially in inhibiting the formation of high-molecular weight polymers has been described. Results showed that the sulfite group significantly inhibited the increase of polymer molecular weight via prevention of the polymerization of 5-hydroxymethyl-2-furaldehyde. The formation of an intermolecular dimer based on the glucose molecule through Schiff base cyclization can lead to a competitive reaction with 1,2-enolization to reduce 5-hydroxymethyl-2-furaldehyde formation, which might be another factor in reducing the formation of high-molecular weight polymers. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Oral challenge test with sodium metabisulfite in steroid-dependent asthmatic patients.

    PubMed

    Prieto, L; Juyol, M; Paricio, A; Martínez, M A; Palop, J; Castro, J

    1988-01-01

    Oral challenge tests were carried out with sodium metabisulfite solution doses of 0.5, 1, 10, 25, 50 mg and encapsulated doses of 100 and 200 mg, as well as with lactose-placebo, on 44 non-atopic patients with steroid-dependent bronchial asthma, without clinical evidence of intolerance to these agents. Only those patients with an acceptable and not very labile pulmonary function were tested. A single-blind challenge protocol was performed in 22 patients (sodium metabisulfite solutions at pH 2.2 to 2.6) and the positive responses were confirmed by double-blind challenge. The other 22 were tested directly in a double-blind manner (pH4). Initially, 6/44 presented a positive reaction. However, a careful analysis and the confirmation by double-blind challenge of the positive responses obtained with the single-blind test, allowed us to identify 4 false positive responses. Thus, the true prevalence of sulfite sensitivity in our population is 4.5%. A patient with intolerance to sulfite agents also suffered aspirin-induced asthma. The labile tendency of the pulmonary function of the asthmatic patients may have contributed to some false positive reactions and probably explain the very high prevalence found in some studies. It does not appear that the variations of pH decisively influence the result of the challenge test.

  18. Health effects of sulfur-related environmental air pollution. V. Lung structure.

    PubMed

    Takenaka, S; Godleski, J J; Heini, A; Karg, E; Kreyling, W G; Ritter, B; Schulz, H; Ziesenis, A; Heyder, J

    1999-05-01

    The lungs of 8 male beagle dogs were examined morphologically and morphometrically after exposure for 13 mo to a respirable sulfur(IV) aerosol at a mass concentration of 1.53 mg m(-3) (16.5 h/day), and to an acidic sulfate aerosol carrying 15.2 micromol m(-3) hydrogen ions into the lungs (6 h/day). An additional eight dogs served as unexposed controls. Standard morphometric analyses of both the surface epithelia of the conducting airways and the alveolar region were performed. These analyses showed no difference between the exposure group and control group. However, there was a tendency to an increase in the volume density of bronchial glands in the exposure group. Five of eight exposed animals showed thickened ridges (knob-like structures) at the entrance to alveoli in the alveolar duct and alveolar sac. Transmission electron microscopy revealed that the thickening was mainly due to type II cell proliferation. As the previous experiment using sulfite aerosol only showed no alterations in the proximal alveolar regions, the changes observed may be considered as effects of acidic sulfate aerosol alone or in combination with sulfite. These findings suggest that sulfur aerosols have the potential to induce epithelial alterations in the proximal alveolar region, which is a primary target for air pollutants.

  19. A Snapshot of the Plant Glycated Proteome

    PubMed Central

    Bilova, Tatiana; Lukasheva, Elena; Brauch, Dominic; Greifenhagen, Uta; Paudel, Gagan; Tarakhovskaya, Elena; Frolova, Nadezhda; Mittasch, Juliane; Balcke, Gerd Ulrich; Tissier, Alain; Osmolovskaya, Natalia; Vogt, Thomas; Wessjohann, Ludger A.; Birkemeyer, Claudia; Milkowski, Carsten; Frolov, Andrej

    2016-01-01

    Glycation is the reaction of carbonyl compounds (reducing sugars and α-dicarbonyls) with amino acids, lipids, and proteins, yielding early and advanced glycation end products (AGEs). The AGEs can be formed via degradation of early glycation intermediates (glycoxidation) and by interaction with the products of monosaccharide autoxidation (autoxidative glycosylation). Although formation of these potentially deleterious compounds is well characterized in animal systems and thermally treated foods, only a little information about advanced glycation in plants is available. Thus, the knowledge of the plant AGE patterns and the underlying pathways of their formation are completely missing. To fill this gap, we describe the AGE-modified proteome of Brassica napus and characterize individual sites of advanced glycation by the methods of liquid chromatography-based bottom-up proteomics. The modification patterns were complex but reproducible: 789 AGE-modified peptides in 772 proteins were detected in two independent experiments. In contrast, only 168 polypeptides contained early glycated lysines, which did not resemble the sites of advanced glycation. Similar observations were made with Arabidopsis thaliana. The absence of the early glycated precursors of the AGE-modified protein residues indicated autoxidative glycosylation, but not glycoxidation, as the major pathway of AGE formation. To prove this assumption and to identify the potential modifying agents, we estimated the reactivity and glycative potential of plant-derived sugars using a model peptide approach and liquid chromatography-mass spectrometry-based techniques. Evaluation of these data sets together with the assessed tissue carbohydrate contents revealed dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, ribulose, erythrose, and sucrose as potential precursors of plant AGEs. PMID:26786108

  20. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging.

    PubMed

    Mohanty, Joy G; Nagababu, Enika; Rifkind, Joseph M

    2014-01-01

    Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H2O2). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H2O2 that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation (p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from circulation. The contribution of oxidative stress to the removal of RBCs by macrophages involves caspase-3 activation, which requires oxidative stress. RBC oxidative stress, therefore, plays a significant role in inducing RBC aging.

  1. Techno-economics of integrating bioethanol production from spent sulfite liquor for reduction of greenhouse gas emissions from sulfite pulping mills.

    PubMed

    Petersen, Abdul M; Haigh, Kate; Görgens, Johann F

    2014-01-01

    Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.

  2. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.

    PubMed

    Kawano, Yusuke; Onishi, Fumito; Shiroyama, Maeka; Miura, Masashi; Tanaka, Naoyuki; Oshiro, Satoshi; Nonaka, Gen; Nakanishi, Tsuyoshi; Ohtsu, Iwao

    2017-09-01

    Sulfate (SO 4 2- ) is an often-utilized and well-understood inorganic sulfur source in microorganism culture. Recently, another inorganic sulfur source, thiosulfate (S 2 O 3 2- ), was proposed to be more advantageous in microbial growth and biotechnological applications. Although its assimilation pathway is known to depend on O-acetyl-L-serine sulfhydrylase B (CysM in Escherichia coli), its metabolism has not been extensively investigated. Therefore, we aimed to explore another yet-unidentified CysM-independent thiosulfate assimilation pathway in E. coli. ΔcysM cells could accumulate essential L-cysteine from thiosulfate as the sole sulfur source and could grow, albeit slowly, demonstrating that a CysM-independent thiosulfate assimilation pathway is present in E. coli. This pathway is expected to consist of the initial part of the thiosulfate to sulfite (SO 3 2- ) conversion, and the latter part might be shared with the final part of the known sulfate assimilation pathway [sulfite → sulfide (S 2- ) → L-cysteine]. This is because thiosulfate-grown ΔcysM cells could accumulate a level of sulfite and sulfide equivalent to that of wild-type cells. The catalysis of thiosulfate to sulfite is at least partly mediated by thiosulfate sulfurtransferase (GlpE), because its overexpression could enhance cellular thiosulfate sulfurtransferase activity in vitro and complement the slow-growth phenotype of thiosulfate-grown ΔcysM cells in vivo. GlpE is therefore concluded to function in the novel CysM-independent thiosulfate assimilation pathway by catalyzing thiosulfate to sulfite. We applied this insight to L-cysteine overproduction in E. coli and succeeded in enhancing it by GlpE overexpression in media containing glucose or glycerol as the main carbon source, by up to ~1.7-fold (1207 mg/l) or ~1.5-fold (1529 mg/l), respectively.

  3. Corrosion Mechanisms and Behavior of a P-130X GR/6063 Al Composite in Aqueous Environments

    DTIC Science & Technology

    1990-09-01

    form sulfuric and sulfurous acids . Of these, sulfurous acid is the most serious corrosive material and can exist in a variety of concentrations...performed on the composite in 3.5% sodium chloride and 5.0% >dium sulfate solutions. The effects of pH, the presence of sulfite ions, various heat...sodium sulfate solutions. The effects of pH, the presence of sulfite ions, various heat treatments, and electrolyte aeration were investigated. Some tests

  4. Characterization of the "viable but nonculturable" (VBNC) state in the wine spoilage yeast Brettanomyces.

    PubMed

    Serpaggi, Virginie; Remize, Fabienne; Recorbet, Ghislaine; Gaudot-Dumas, Eliane; Sequeira-Le Grand, Anabelle; Alexandre, Hervé

    2012-06-01

    Although the viable but not culturable (VBNC) state has been studied in detail in bacteria, it has been suggested that maintenance of viability with loss of culturability also exists in eukaryotic cells, such as in the wine spoilage yeast Brettanomyces. To provide conclusive evidence for the existence of a VBNC state in this yeast, we investigated its capacity to become viable and nonculturable after sulfite stress, and its ability to recover culturability after stressor removal. Sulfite addition induced loss of culturability but maintenance of viability. Increasing the medium pH to decrease the concentration of toxic SO(2) allowed yeast cells to become culturable again, thus demonstrating the occurrence of a VBNC state in Brettanomyces upon SO(2) exposure. Relative to culturable Brettanomyces, VBNC yeast cells were found to display a 22% decrease in size on the basis of laser granulometry. Assays for 4-ethylguaiacol and 4-ethylphenol, volatile phenols produced by Brettanomyces, indicated that spoilage compound production could persist in VBNC cells. These morphological and physiological changes in VBNC Brettanomyces were coupled to extensive protein pattern modifications, as inferred by comparative two-dimensional electrophoresis and mass spectrometric analyses. Upon identification of 53 proteins out of the 168 spots whose abundance was significantly modified in treated cells relative to control, we propose that the SO(2)-induced VBNC state in Brettanomyces is characterized by a reduced glycolytic flux coupled to changes in redox homeostatis/protein turnover-related processes. This study points out the existence of common mechanisms between yeast and bacteria upon entry to the VBNC state. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Attenuation of Sulfite-Induced Testicular Injury in Rats by Zingiber officinale Roscoe.

    PubMed

    Afkhami Fathabad, Akbar; Shekarforoush, Shahnaz; Hoseini, Maryam; Ebrahimi, Zahra

    2017-08-18

    Sulfite salts, including sodium metabisulfte, are widely used as preservatives in foods and pharmaceutical agents. Previous studies suggest that oxidative stress may be an important mediator of testicular injury. The present study was designed to elucidate the effect of exposure to sodium metabisulfite by gavage without or with Zingiber officinale (ginger) extract on the rat testes. Thirty-two male Wistar rats were randomly divided into control, ginger-treated (500 mg/kg/day), sodium metabisulfite- (SMB-) treated (260 mg/kg/day), and SMB + ginger- (SZ-) treated groups. After 28 days, the rats were anesthetized by ether and, after laparotomy, blood was collected from the heart to determine testosterone level by the enzyme-linked immunosorbent assay (ELISA) kit. Then left testes and cauda epididymis of all animals were removed for histological examination and sperm analysis, and right testes were removed for assessing lipid peroxidation (indexed by malondialdehyde [MDA]) and antioxidant enzymes. The results showed that spermatogenesis, epididymal morphometry, and sperm parameters were affected by SMB. There was a significant increase in MDA level and a significant reduction in the activities of glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) in the SMB-treated rats compared to the control. Ginger treatment of SMB-exposed rats significantly increased testosterone level and the number of different spermatogenic cells. The level of MDA reversed to the control levels and the activities of GPx and GR were significantly increased when SMB was coadministered with ginger extract. It is concluded that coadministration of ginger, through its antioxidant and androgenic properties, exerts a protective effect against SMB-induced testicular oxidative stress.

  6. Nitrogen dioxide absorption in aqueous sodium sulfite

    NASA Astrophysics Data System (ADS)

    Shen, Chen Hua

    The Clean Air Act of 1990 requires additional reduction of acid gases, sulfur dioxide, and nitrogen oxides released into the atmosphere from coal-fired electric power plants. In the case of older existing power plants, a possible retrofit strategy is to oxidize nitric oxide (NO, the major constituent of NOsbX in flue gas) to nitrogen dioxide (NOsb2) by the addition of methanol or other hydrocarbons into the duct at an optimum temperature regime. NOsb2 can then be removed by either modifying existing SOsb2 control equipment or by adding a limestone (CaCOsb3) slurry scrubbing process. Limestone reacts with SOsb2 to from CaSOsb3, and the free sulfite (SO{sb3sp{=}}) in the solution is reactive toward NOsb2. The focus of this research is to study the reaction between NOsb2 and aqueous sulfite at elevated temperature and in the presence of gas phase Osb2. The removal of NOsb2 by limestone slurry scrubbing involves the reaction between NOsb2 and SO{sb3sp{=}}, bisulfite (HSO{sb3sp{-}}) and water. The reactions between NOsb2 and SO{sb3sp{=}}/HSO{sb3sp{-}} are first order in both reactants, while the NOsb2-water reaction is second order in NOsb2 concentration. The rate constants of the above reactions and the NOsb2-thiosulfate (Ssb2O{sb3sp{=}}) reaction were determined at 55sp°C. SO{sb3sp{=}} was found to be the most reactive toward NOsb2, while the contribution of chemical reaction still dominated in the absorption of NOsb2 into water. The effect of gas phase SOsb2 and Osb2, and liquid phase additives such as Ssb2O{sb3sp{=}}, Casp{++}, Mgsp{++}, and Clsp{-} on NOsb2 absorption was also investigated. The absorption of NOsb2 catalyzes free radical reactions that lead to sulfite oxidation. A semi-empirical model was proposed to relate the rate of sulfite oxidation to the rate of NOsb2 absorption. Thiosulfate inhibits sulfite oxidation by providing an alternative route for the termination of the free radical reactions, and a fundamental model was derived to quantify the effect of Ssb2O{sb3sp{=}} on sulfite oxidation. The absorption of NOsb2 into aqueous bisulfide (HSsp{-}) was studied in an attempt to discover alternative scrubbing technologies. The reaction between NOsb2 and HSsp{-} is twice as fast as the NOsb2-SO{sb3sp{=}} reaction at 55sp°C. A semi-empirical model was proposed to relate NOsb2 absorption to HSsp{-} oxidation. This study has shown that acceptable level of NOsb2 removal by a conventional limestone slurry scrubber is not probable. However, aqueous scrubbing of NOsb2 by Nasb2SOsb3 and Nasb2S solutions are viable options. Furthermore, significant reduction in hold tank liquid depth and/or oxidizing air stoichiometry is possible by NOsb2 injection.

  7. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy.

    PubMed

    Enemark, John H; Astashkin, Andrei V; Raitsimring, Arnold M

    2008-12-01

    SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.g. (17)O, (33)S, (35)Cl and (37)Cl) and to simplify the interpretation of the spectra. Isotopically labelled model Mo(V) compounds provide further insight into the electronic and geometric structures and chemical reactions of the enzymes. Recently, blocked forms of SOEs having co-ordinated sulfate, the reaction product, were detected using (33)S (I=3/2) labelling. This blocking of product release is a possible contributor to fatal human sulfite oxidase deficiency in young children.

  8. High Content Analysis technology for evaluating the joint toxicity of sunset yellow and sodium sulfite in vitro.

    PubMed

    Qu, Daofeng; Gu, Yanpei; Feng, Lifang; Han, Jianzhong

    2017-10-15

    Foods contain various additives that affect our daily lives. At present, food additive safety evaluation standards are based on the toxicity of single additives, but food additives are often used in combination and may have additive, synergistic or antagonistic actions. The current study investigated the toxicity of food additives and mechanisms of damage in HepG2 cells using High Content Analysis (HCA). We used the CCK-8 assay to determine cell viability, providing an experimental basis for determining the safety of food additives. All of the food additives tested were observed to decrease the growth of HepG2 cells in a dose-dependent manner. Sunset yellow and sodium sulfite had IC50 values of 1.06, and 0.30g/L at 24h, respectively. HCA showed that both sunset yellow and sodium sulfite had synergistic effects on cell number, membrane permeability, mitochondrial membrane potential, intracellular calcium level, oxidative stress, and high dose group DNA damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagvall, Lina; Baron, Jens Malte; Boerje, Anna

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktailmore » consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.« less

  10. Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: is there oxidative stress in uremia?

    PubMed

    Miyata, T; Fu, M X; Kurokawa, K; van Ypersele de Strihou, C; Thorpe, S R; Baynes, J W

    1998-10-01

    Advanced glycation end products (AGEs), formed by non-enzymatic glycation and oxidation (glycoxidation) reactions, have been implicated in the pathogenesis of several diseases, including normoglycemic uremia. AGE research in uremia has focused on the accumulation of carbohydrate-derived adducts generated by the Maillard reaction. Recent studies, however, have demonstrated that one AGE, the glycoxidation product carboxymethyllysine (CML), could be derived not only from carbohydrates but also from oxidation of polyunsaturated fatty acids in vitro, raising the possibility that both carbohydrate and lipid autoxidation might be increased in uremia. To address this hypothesis, we applied gas chromatography-mass spectrometry and high performance liquid chromatography to measure protein adducts formed in uremic plasma by reactions between carbonyl compounds and protein amino groups: pentosidine derived from carbohydrate-derived carbonyls, malondialdehyde (MDA)-lysine derived from lipid-derived carbonyls, and CML originating possibly from both sources. All three adducts were elevated in uremic plasma. Plasma CML levels were mainly (>95%) albumin bound. Their levels were not correlated with fructoselysine levels and were similar in diabetic and non-diabetic patients on hemodialysis, indicating that their increase was not driven by glucose. Pentosidine and MDA-lysine were also increased in plasma to the same extent in diabetic and non-diabetic hemodialysis patients. Statistical analysis indicated that plasma levels of CML correlated weakly (P < 0.05) with those of pentosidine and MDA-lysine, but that pentosidine and MDA-lysine varied independently (P > 0.5). These data suggest that the increased levels of AGEs in blood, and probably in tissues, reported in uremia implicate a broad derangement in non-enzymatic biochemistry involving alterations in autoxidation of both carbohydrates and lipids.

  11. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens.

    PubMed

    Hagvall, Lina; Baron, Jens Malte; Börje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.

  12. [Interference for Various Quench Agents of Chemical Disinfectants on Detection of Endotoxin Activities in Water].

    PubMed

    Zhang, Can; Liu, Wen-jun; Shi, Yun; An, Dai-zhi; Bai, Miao; Xu, Wen

    2015-05-01

    The quenching agents such as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite and sodium hyposulfite are commonly used for quenching the residual disinfectant in water. In this paper, in order to select the optimal type and concentration range of quenching agents prior to the Limulus assays, the interference effects of each quenching agent at different concentrations on endotoxin detection were investigated by the Limulus assays of kinetic-turbidity. Our results identified that, as for 0-1.0% concentration of histidine, ascorbic acid, Tween-80, sodium sulfite (pH unadjusted and pH neutral), interference on the Limulus assays was existed. Hence, these quenching agents could not be applied as neutralizers prior to Limulus assays. Although, there was no interference on endotoxin detection for the glycine, a yellow color, developed by the quenching products of glycine and glutaric dialdehyde, contributed to false positive results. Hence, glycine should not be used as quenching agents in Limulus assays for samples containing glutaric dialdehyde. Compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite, 0-1.0% concentration of sodium hyposulfite elicited no obvious interference, while 1.0%-5.0% concentration of sodium hyposulfite illustrated exhibition effect for endotoxin detection. All in all, compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80 and sodium sulfite, sodium hyposulfite is suitable for quenching chemicals prior to endotoxin detection and less than 0.5% of concentration is allowable.

  13. A critical role for autoxidation in the alpha-pinene + OH aerosol system

    EPA Science Inventory

    Oxidation of monoterpenes results in efficient formation of secondary organic aerosol (SOA) and is included as an SOA source in most chemical transport models. However, current model parameterizations lack a mechanistic dependence of monoterpene SOA on NOx and oxidant identity (e...

  14. Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to α-tocopherol for the preservation of omega-3 oils.

    PubMed

    Guitard, Romain; Paul, Jean-François; Nardello-Rataj, Véronique; Aubry, Jean-Marie

    2016-12-15

    22 natural polyphenols are compared to 7 synthetic antioxidants including BHT, BHA, TBHQ and PG with regard to their ability to protect omega-3 oils from autoxidation. The antioxidant efficiency of phenols is assessed using the DPPH test and the measurement of oxygen consumption during the autoxidation of oils rich in omega-3 fatty acids. Also, the bond dissociation enthalpies (BDE) of the Ar-OH bonds are calculated and excellent correlations between thermodynamic, kinetic and oxidation data are obtained. It is shown that kinetic rates of hydrogen transfer, number of radicals scavenged per antioxidant molecule, BDE and formation of antioxidant dimers from the primary radicals play an important role regarding the antioxidant activity of phenols. Based on this, it is finally shown that myricetin, rosmarinic and carnosic acids are more efficient than α-tocopherol and synthetic antioxidants for the preservation of omega-3 oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Anti-oxidative effects of rooibos tea extract on autoxidation and thermal oxidation of lipids.

    PubMed

    Fukasawa, Ryo; Kanda, Ayato; Hara, Setsuko

    2009-01-01

    Powdered rooibos tea extract (RTE), which is rich in polyphenols, is made from rooibos tea by freeze-drying. "Rooibos" is Afrikaans for "red bush," and the scientific name is "Aspalathus linearis." It is a broom-like member of the legume family of plants and is used to make an herbal tea which has been popular in South Africa for generations and is now consumed in many countries. In the present work, the anti-oxidative effect of RTE on oils and fats in autoxidation or thermal oxidation was studied, and it was confirmed that RTE has a very strong anti-oxidative effect on emulsifying oils owing to the water-soluble polyphenols such as rutin and quercetin contained in RTE. RTE was found to have a strong ability to quench radicals generated in the water phase, and to confer higher thermal stability against deep fat frying than tocopherol. But RTE showed little anti-oxidative effect on frying oil because of its lower oil-solubility.

  16. Effect of pepper lipoxygenase activity and its linked reactions on pigments of the pepper fruit.

    PubMed

    Jarén-Galán, M; Mínguez-Mosquera, M I

    1999-11-01

    The products formed during the enzymatic reaction catalyzed by the lipoxygenase of pepper (variety Agridulce) have in vitro a strong destructive action on the carotenoid pigments of the fruit. When conditions and proportions of enzyme and pigments are similar to those found in the fruit, and at a reaction temperature of 20 degrees C, almost 30% of the pigments are destroyed after 24 h of reaction. Of this amount, 2.5% is due to autoxidation of pigments, 4. 5% to oxidation induced by the presence of linoleic under saturating conditions, and the remaining 22% to the presence in the medium of reaction products of the lipoxygenase-catalyzed reaction. When the enzyme acts under substrate-saturating conditions, the rate of pigment destruction by lipoxygenase can be considered maximal at the experimental temperature. The fact that in vitro pepper lipoxygenase induces a heavy destruction of pigments and that, in vivo, its activity remains almost constant during over-ripening could explain why up to 40% of the pigment content in some varieties is lost during the postharvest period.

  17. Anti-inflammatory effects of phenolic crude extracts from five fractions of Corchorus Olitorius L.

    PubMed

    Yan, Yeong-Yu; Wang, Yue-Wen; Chen, Su-Lin; Zhuang, Shu-Ru; Wang, Chin-Kun

    2013-06-01

    Corchorus olitorius L. is grown in Taiwan during summer. Tender leaves are crushed and washed by running water before eating. Five fractions including crude phenolic extracts (using 80 per cent aqueous acetone) of whole plant, leaf, stem, washed leaf (WL) and dried water washing material (WW) were used in this study. Linoleic acid autoxidation inhibitions on all fractions were higher than that on α-tocopherol. Except for WL and WW, other fractions also showed DPPH radical scavenging efficiency. The effect of all fractions on the regulation of inflammatory responses in lipopolysaccharide (LPS)-stimulated J774A.1 macrophage cells was investigated. All fractions diminished LPS-induced protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Nitric oxide (NO) and prostaglandin E2 (PGE(2)), downstream products, were also suppressed in dose-dependent manners, except for WL and WW. Oxidative modification and loss of leaf phenolics after kneading and washing greatly affected DPPH radical scavenging and inflammatory responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The hydrogen peroxide impact on larval settlement and metamorphosis of abalone Haliotis diversicolor supertexta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua

    2008-08-01

    Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.

  19. The Chemical Reaction of Glutathione and trans-2-Hexenal in Grape Juice Media To Form Wine Aroma Precursors: The Impact of pH, Temperature, and Sulfur Dioxide.

    PubMed

    Clark, Andrew C; Deed, Rebecca C

    2018-02-07

    The aldehyde 3-S-glutathionylhexanal is an intermediate which is produced during the formation of the wine aroma precursor 3-S-glutathionylhexanol, after the reaction of glutathione with trans-2-hexenal. This study was conducted to assess whether the chemical, as opposed to the enzymatic, production of 3-S-glutathionylhexanal could occur at a significant rate in grape juice. LC-MS/MS was used in low- and high-resolution modes, in combination with functional group derivatization, to identify and quantitate products. In comparison to cysteine, glutathione was found to induce less cyclized products on reaction with trans-2-alkanals and the glutathione-derived products were more reactive to hydrogen sulfite. The zero-order rates for 3-S-glutathionylhexanal formation in model grape juice were 1.08 ± 0.08 and 0.45 ± 0.05 mg/(L·day) glutathione equivalents at 25 and 13 °C, respectively, and the reaction rate increased 3-fold by increasing the pH from 3.2 to 3.8. 3-S-Glutathionylhexanal was detected in all five white grape juices examined. The concentration of the aldehyde could be increased by up to 10-fold after being released from hydrogen sulfite, demonstrating a potentially novel source for the production of varietal thiol aroma compounds in wine.

  20. Chronic inhalation study of mice subjected to diethylhydroxylamine, nitroethane, and diethylamine hydrogen sulfite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heicklen, J.; Lundgard, R.; Partymiller, K.

    1982-04-01

    Institute of Cancer Research Swiss strain mice were subjected to the inhalation of 10.3 +/- 3.7 ppm diethylhydroxylamine, 10.1 +/- 4.1 ppm nitroethane, and the vapor of diethylamine hydrogen sulfite for over 2 years. Histopathologic evaluation of all organs indicated only a few significant findings. The incidence of all tumors, as well as subcutaneous tumors (principally fibrosarcomas), increased in exposed males with marginal statistical significance (P = 0.12 and 0.048, respectively). The incidence of all tumors in exposed females decreased with marked statistical significance (P < 0.0005).

  1. 40 CFR Appendix A to Subpart Hhhh... - Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (class A). 3.2.5One 10-mL pipette (class A). 3.2.6One 50-mL graduated cylinder (class A). 3.2.7A pH meter, standardized using pH 7 and pH 10 buffers. 3.2.8Magnetic stirrer. 3.2.9Magnetic stirring bars. 3.2.10Several 5... mL of 1 M sodium sulfite into a stirred 250-mL beaker. 3.5.1.2Using a standardized pH meter, measure...

  2. Chemically synthesized glycosides of hydroxylated flavylium ions as suitable models of anthocyanins: binding to iron ions and human serum albumin, antioxidant activity in model gastric conditions.

    PubMed

    Al Bittar, Sheiraz; Mora, Nathalie; Loonis, Michèle; Dangles, Olivier

    2014-12-11

    Polyhydroxylated flavylium ions, such as 3',4',7-trihydroxyflavylium chloride (P1) and its more water-soluble 7-O-β-d-glucopyranoside (P2), are readily accessible by chemical synthesis and suitable models of natural anthocyanins in terms of color and species distribution in aqueous solution. Owing to their catechol B-ring, they rapidly bind FeIII, weakly interact with FeII and promote its autoxidation to FeIII. Both pigments inhibit heme-induced lipid peroxidation in mildly acidic conditions (a model of postprandial oxidative stress in the stomach), the colorless (chalcone) forms being more potent than the colored forms. Finally, P1 and P2 are moderate ligands of human serum albumin (HSA), their likely carrier in the blood circulation, with chalcones having a higher affinity for HSA than the corresponding colored forms.

  3. Staphylococcus aureus CstB is a novel multidomain persulfide dioxygenase-sulfurtransferase involved in hydrogen sulfide detoxification

    PubMed Central

    Shen, Jiangchuan; Keithly, Mary E.; Armstrong, Richard N.; Higgins, Khadine A.; Edmonds, Katherine A.; Giedroc, David P.

    2016-01-01

    Hydrogen sulfide (H2S) is both a lethal gas and an emerging gasotransmitter in humans, suggesting that cellular H2S level must be tightly regulated. CstB is encoded by the cst operon of the major human pathogen Staphylococcus aureus (S. aureus) and is under the transcriptional control of the persulfide sensor CstR and H2S. Here we show that CstB is a multifunctional Fe(II)-containing persulfide dioxygenase (PDO), analogous to the vertebrate protein ETHE1 (Ethylmalonic Encephalopathy Protein 1). Chromosomal deletion of ethe1 is fatal in vertebrates. In the presence of molecular oxygen (O2), hETHE1 oxidizes glutathione persulfide (GSSH) to generate sulfite and reduced glutathione. In contrast, CstB oxidizes major cellular low molecular weight (LMW) persulfide substrates from S. aureus, coenzyme A persulfide (CoASSH) and bacillithiol persulfide (BSSH), directly to generate thiosulfate (TS) and reduced thiols, thereby avoiding the cellular toxicity of sulfite. Both Cys201 in the N-terminal PDO domain (CstBPDO) and Cys408 in the C-terminal rhodanese domain (CstBRhod) strongly enhance the TS generating activity of CstB. CstB also possesses persulfide transferase (PT; reverse rhodanese) activity which generates TS when provided with LMW persulfides and sulfite, as well as conventional thiosulfate transferase (TST; rhodanese) activity; both activities require Cys408. CstB protects S. aureus against H2S toxicity with C201S and C408S cstB genes unable to rescue a NaHS-induced ΔcstB growth phenotype. Induction of the cst operon by NaHS reveals that functional CstB impacts the cellular TS concentrations. These data collectively suggest that CstB may have evolved to facilitate the clearance of LMW persulfides that occur upon the elevation of the level of cellular H2S and hence may have an impact on bacterial viability under H2S stress, in concert with the other enzymes encoded by the cst operon. PMID:26177047

  4. Surface Structure Dependence of SO 2 Interaction with Ceria Nanocrystals with Well-Defined Surface Facets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluri, Uma; Li, Meijun; Cook, Brandon G.

    2015-12-31

    The effects of the surface structure of ceria (CeO2) on the nature, strength, and amount of species resulting from SO2 adsorption were studied using in situ IR and Raman spectroscopies coupled with mass spectrometry, along with first-principles calculations based on density functional theory (DFT). CeO2 nanocrystals with different morphologies, namely, rods (representing a defective structure), cubes (100 facet), and octahedra (111 facet), were used to represent different CeO2 surface structures. IR and Raman spectroscopic studies showed that the structure and binding strength of adsorbed species from SO2 depend on the shape of the CeO2 nanocrystals. SO2 adsorbs mainly as surfacemore » sulfites and sulfates at room temperature on CeO2 rods, cubes, and octahedra that were either oxidatively or reductively pretreated. The formation of sulfites is more evident on CeO2 octahedra, whereas surface sulfates are more prominent on CeO2 rods and cubes. This is explained by the increasing reducibility of the surface oxygen in the order octahedra < cubes < rods. Bulk sulfites are also formed during SO2 adsorption on reduced CeO2 rods. The formation of surface sulfites and sulfates on CeO2 cubes is in good agreement with our DFT results of SO2 interactions with the CeO2(100) surface. CeO2 rods desorb SO2 at higher temperatures than cubes and octahedra nanocrystals, but bulk sulfates are formed on CeO2 rods and cubes after high-temperature desorption whereas only some surface sulfates/sulfites are left on octahedra. This difference is rationalized by the fact that CeO2 rods have the highest surface basicity and largest amount of defects among the three nanocrystals, so they bind and react with SO2 strongly and are the most degraded after SO2 adsorption cycles. The fundamental understanding obtained in this work on the effects of the surface structure and defects on the interaction of SO2 with CeO2 provides insights for the design of more sulfur-resistant CeO2-based catalysts.« less

  5. Surface Structure Dependence of SO 2 Interaction with Ceria Nanocrystals with Well-defined Surface Facets

    DOE PAGES

    Tumuluri, Uma; Li, Meijun; Cook, Brandon G.; ...

    2015-12-02

    The effects of the surface structure of ceria (CeO 2) on the nature, strength, and amount of species resulting from SO 2 adsorption were studied using in situ IR and Raman spectroscopies coupled with mass spectrometry, along with first-principles calculations based on density functional theory (DFT). CeO 2 nanocrystals with different morphologies, namely, rods (representing a defective structure), cubes (100 facet), and octahedra (111 facet), were used to represent different CeO 2 surface structures. IR and Raman spectroscopic studies showed that the structure and binding strength of adsorbed species from SO 2 depend on the shape of the CeO 2more » nanocrystals. SO 2 adsorbs mainly as surface sulfites and sulfates at room temperature on CeO 2 rods, cubes, and octahedra that were either oxidatively or reductively pretreated. The formation of sulfites is more evident on CeO 2 octahedra, whereas surface sulfates are more prominent on CeO 2 rods and cubes. This is explained by the increasing reducibility of the surface oxygen in the order octahedra < cubes < rods. Bulk sulfites are also formed during SO 2 adsorption on reduced CeO 2 rods. The formation of surface sulfites and sulfates on CeO 2 cubes is in good agreement with our DFT results of SO 2 interactions with the CeO 2(100) surface. CeO 2 rods desorb SO2 at higher temperatures than cubes and octahedra nanocrystals, but bulk sulfates are formed on CeO 2 rods and cubes after high-temperature desorption whereas only some surface sulfates/sulfites are left on octahedra. This difference is rationalized by the fact that CeO 2 rods have the highest surface basicity and largest amount of defects among the three nanocrystals, so they bind and react with SO 2 strongly and are the most degraded after SO 2 adsorption cycles. The fundamental understanding obtained in this work on the effects of the surface structure and defects on the interaction of SO 2 with CeO 2 provides insights for the design of more sulfur-resistant CeO 2-based catalysts.« less

  6. Investigation of the chemical pathway of gaseous nitrogen dioxide formation during flue gas desulfurization with dry sodium bicarbonate injection

    NASA Astrophysics Data System (ADS)

    Stein, Antoinette Weil

    The chemical reaction pathway for the viable flue gas desulfurization process, dry sodium bicarbonate injection, was investigated to mitigate undesirable plume discoloration. Based on a foundation of past findings, a simplified three-step reaction pathway was hypothesized for the formation of the plume-discoloring constituent, NO2. As the first step, it was hypothesized that sodium sulfite formed by sodium bicarbonate reaction with flue gas SO 2. As the second step, it was hypothesized that sodium nitrate formed by sodium sulfite reaction with flue gas NO. And as the third step, it was hypothesized that NO2 and sodium sulfate formed by sodium nitrate reaction with SO2. The second and third hypothesized steps were experimentally investigated using an isothermal fixed bed reactor. As reported in the past, technical grade sodium sulfite was found to be un-reactive with NO and O2. Freshly prepared sodium sulfite, maintained unexposed to moist air, was shown to react with NO and O2 resulting in a mixture of sodium nitrite and sodium nitrate together with a significant temperature rise. This reaction was found to proceed only when oxygen was present in the flue gas. As reported in the past, technical grade sodium nitrate was shown to be un-reactive with SO2. But freshly formed sodium nitrate kept unexposed to humidity was found to be reactive with SO2 and O 2 resulting in the formation of NO2 and sodium sulfate polymorphic Form I. The NO2 formation by this reaction was shown to be temperature dependent with maximum formation at 175°C. Plume mitigation methods were studied based on the validated three-step reaction pathway. Mitigation of NO2 was exhibited by limiting oxygen concentration in the flue gas to a level below 5%. It was also shown that significant NO2 mitigation was achieved by operating below 110°C or above 250°C. An innovative NO2 mitigation method was patented as a result of the findings of this study. The patented process incorporated a process step of sodium sulfite injection to remove flue gas NO prior to sodium bicarbonate injection.

  7. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms.

    PubMed

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K

    2015-06-08

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  8. Microtox Aquatic Toxcity of Petrodiesel and Biodiesel Blends: The Role of Biodiesel's Autoxidation Products

    EPA Science Inventory

    The acute Microtox toxicity of the water accommodated fraction (WAF) of six commercial soybean biodiesel/petrodiesel blends was investigated at different oil loads. We analyzed five fatty acid methyl esters (FAMEs), C10 - C24 n-alkanes, four aromatics, methanol, and tota...

  9. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli

    PubMed Central

    2012-01-01

    Background Escherichia coli has two L-cysteine biosynthetic pathways; one is synthesized from O-acetyl L-serine (OAS) and sulfate by L-cysteine synthase (CysK), and another is produced via S-sulfocysteine (SSC) from OAS and thiosulfate by SSC synthase (CysM). SSC is converted into L-cysteine and sulfite by an uncharacterized reaction. As thioredoxins (Trx1 and Trx2) and glutaredoxins (Grx1, Grx2, Grx3, Grx4, and NrdH) are known as reductases of peptidyl disulfides, overexpression of such reductases might be a good way for improving L-cysteine production to accelerate the reduction of SSC in E. coli. Results Because the redox enzymes can reduce the disulfide that forms on proteins, we first tested whether these enzymes catalyze the reduction of SSC to L-cysteine. All His-tagged recombinant enzymes, except for Grx4, efficiently convert SSC into L-cysteine in vitro. Overexpression of Grx1 and NrdH enhanced a 15-40% increase in the E. coliL-cysteine production. On the other hand, disruption of the cysM gene cancelled the effect caused by the overexpression of Grx1 and NrdH, suggesting that its improvement was due to the efficient reduction of SSC under the fermentative conditions. Moreover, L-cysteine production in knockout mutants of the sulfite reductase genes (ΔcysI and ΔcysJ) and the L-cysteine synthase gene (ΔcysK) each decreased to about 50% of that in the wild-type strain. Interestingly, there was no significant difference in L-cysteine production between wild-type strain and gene deletion mutant of the upstream pathway of sulfite (ΔcysC or ΔcysH). These results indicate that sulfite generated from the SSC reduction is available as the sulfur source to produce additional L-cysteine molecule. It was finally found that in the E. coliL-cysteine producer that co-overexpress glutaredoxin (NrdH), sulfite reductase (CysI), and L-cysteine synthase (CysK), there was the highest amount of L-cysteine produced per cell. Conclusions In this work, we showed that Grx1 and NrdH reduce SSC to L-cysteine, and the generated sulfite is then utilized as the sulfur source to produce additional L-cysteine molecule through the sulfate pathway in E. coli. We also found that co-overexpression of NrdH, CysI, and CysK increases L-cysteine production. Our results propose that the enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from SSC is a novel method for improvement of L-cysteine production. PMID:22607201

  10. The Effect of Sepsis on the Erythrocyte.

    PubMed

    Bateman, Ryon M; Sharpe, Michael D; Singer, Mervyn; Ellis, Christopher G

    2017-09-08

    Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin's affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca 2+ homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O₂-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction.

  11. Reexamination of the ORAC assay: effect of metal ions.

    PubMed

    Nkhili, E; Brat, P

    2011-05-01

    The oxygen radical absorbance capacity (ORAC) assay method has been employed extensively in the field of antioxidant and oxidative stress. It uses fluorescein as probe for oxidation by peroxyl radical. Hundreds of reports have been published on the use of this method to determine antioxidant capacity in food and biological samples. The question is whether the results of all these reports are influenced by antioxidant autoxidation, which occurs during the ORAC test. Indeed, the presence of metal ions in the studied matrix will influence antioxidant stability, thereby leading to the underestimation of their antioxidant properties. Ethylenediaminetetraacetic acid hydrate (EDTA) can be used as a metal complexation agent. This paper examines the effect of the addition of EDTA on the ORAC values of pure compounds (quercetin, ascorbic, and dehydroascorbic acid) and five food juices (kiwi, orange, tomato, red grape, and apple). Metal complexation by EDTA (80 μM) clearly increased the ORAC values, given that the antioxidant was protected against rapid autoxidation incited by trace metal ions within samples and then by free radicals. Our finding also undoubtedly demonstrated that the number of literature values is potentially underestimated.

  12. Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains.

    PubMed

    Sabokbar, Nayereh; Khodaiyan, Faramarz

    2016-01-01

    Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel beverage by kefir grains. The effects of two different variables, fermentation, temperature (19 and 25 °C) and kefir grain amount (5 %w/v and 8 %w/v), on total phenolic content (TPC) and antioxidant activities of beverage were examined during a fermentation time of 32 h. TPC and antioxidant activities including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power, inhibition effect upon linoleic acid autoxidation and inhibition effect upon ascorbate autoxidation increased significantly (p < 0.05) during fermentation, but metal chelating effect showed no significant difference. The highest increases were observed when the temperature of 25 °C and kefir grain amount of 8 %w/v were applied. Results proved antioxidant activities of beverages were desirable and fermentation by kefir grains has the ability to enhance these antioxidant activities, as compared with unfermented beverage. Also pomegranate juice and whey were suitable media for producing a novel dairy-juice beverage.

  13. The central active site arginine in sulfite oxidizing enzymes alters kinetic properties by controlling electron transfer and redox interactions.

    PubMed

    Hsiao, Ju-Chun; McGrath, Aaron P; Kielmann, Linda; Kalimuthu, Palraj; Darain, Farzana; Bernhardt, Paul V; Harmer, Jeffrey; Lee, Mihwa; Meyers, Kimberley; Maher, Megan J; Kappler, Ulrike

    2018-01-01

    A central conserved arginine, first identified as a clinical mutation leading to sulfite oxidase deficiency, is essential for catalytic competency of sulfite oxidizing molybdoenzymes, but the molecular basis for its effects on turnover and substrate affinity have not been fully elucidated. We have used a bacterial sulfite dehydrogenase, SorT, which lacks an internal heme group, but transfers electrons to an external, electron accepting cytochrome, SorU, to investigate the molecular functions of this arginine residue (Arg78). Assay of the SorT Mo centre catalytic competency in the absence of SorU showed that substitutions in the central arginine (R78Q, R78K and R78M mutations) only moderately altered SorT catalytic properties, except for R78M which caused significant reduction in SorT activity. The substitutions also altered the Mo-centre redox potentials (Mo VI/V potential lowered by ca. 60-80mV). However, all Arg78 mutations significantly impaired the ability of SorT to transfer electrons to SorU, where activities were reduced 17 to 46-fold compared to SorT WT , precluding determination of kinetic parameters. This was accompanied by the observation of conformational changes in both the introduced Gln and Lys residues in the crystal structure of the enzymes. Taking into account data collected by others on related SOE mutations we propose that the formation and maintenance of an electron transfer complex between the Mo centre and electron accepting heme groups is the main function of the central arginine, and that the reduced turnover and increases in K Msulfite are caused by the inefficient operation of the oxidative half reaction of the catalytic cycle in enzymes carrying these mutations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A novel approach to realize SANI process in freshwater sewage treatment--Use of wet flue gas desulfurization waste streams as sulfur source.

    PubMed

    Jiang, Feng; Zhang, Liang; Peng, Guo-Liang; Liang, Si-Yun; Qian, Jin; Wei, Li; Chen, Guang-Hao

    2013-10-01

    SANI (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) process has been approved to be a sludge-minimized sewage treatment process in warm and coastal cities with seawater supply. In order to apply this sulfur-based process in inland cold areas, wet flue gas desulfurization (FGD) can be simplified and integrated with SANI process, to provide sulfite as electron carrier for sulfur cycle in sewage treatment. In this study, a lab-scale system of the proposed novel process was developed and run for over 200 days while temperature varied between 30 and 5 °C, fed with synthetic FGD wastewaters and sewage. The sulfite-reducing upflow anaerobic sludge bed (SrUASB) reactor, as the major bioreactor of the system, removed 86.9% of organics while the whole system removed 94% of organics even when water temperature decreased to around 10 °C. The bactericidal effect of sulfite was not observed in the SrUASB reactor, while thiosulfate was found accumulated under psychrophilic conditions. The sludge yield of the SrUASB reactor was determined to be 0.095 kg VSS/kg COD, higher than of sulfate reduction process but still much lower than of conventional activated sludge processes. The dominant microbes in the SrUASB reactor were determined as Lactococcus spp. rather than sulfate-reducing bacteria, but sulfite reduction still contributed 85.5% to the organic carbon mineralization in this reactor. Ammonia and nitrate were effectively removed in the aerobic and anoxic filters, respectively. This study confirms the proposed process was promising to achieve sludge-minimized sewage treatment integrating with flue gas desulfurization in inland and cold areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation.

    PubMed

    Pyne, Prosenjit; Alam, Masrure; Rameez, Moidu Jameela; Mandal, Subhrangshu; Sar, Abhijit; Mondal, Nibendu; Debnath, Utsab; Mathew, Boby; Misra, Anup Kumar; Mandal, Amit Kumar; Ghosh, Wriddhiman

    2018-04-18

    The SoxXAYZB(CD) 2 -mediated pathway of bacterial sulfur-chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite, but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate-oxidation, possesses a soxCDYZAXOB operon. Knock-out-mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate-oxidation, whereas thiosulfate-to-tetrathionate-conversion is Sox-independent. Expression of two glutathione-metabolism-related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate-dependent oxygen-consumption pattern of whole-cells, and sulfur-oxidizing enzyme activities of cell-free-extracts, measured in the presence/absence of thiol-inhibitors/glutathione, corroborated glutathione-involvement in tetrathionate-oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase three- and ten-fold during thiosulfate-to-tetrathionate-conversion and tetrathionate-oxidation, respectively. A thdT-knocked-out mutant did not oxidize tetrathionate, but converted half of the supplied 40-mM-S thiosulfate to tetrathionate. Knock-out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ∼20-mM-S thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ-dependent thiosulfate dehydrogenation, whereas its PQQ-independent thiol-transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite, respectively. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  16. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms

    PubMed Central

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K.

    2015-01-01

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB. PMID:27682089

  17. Determination of free and total sulfur(IV) compounds in coconut water using high-resolution continuum source molecular absorption spectrometry in gas phase.

    PubMed

    Oliveira, Michael L; Brandao, Geovani C; de Andrade, Jailson B; Ferreira, Sergio L C

    2018-03-01

    This work proposes a method for the determination of free and total sulfur(IV) compounds in coconut water samples, using the high-resolution continuum source molecular absorption spectrometry. It is based on the measurement of the absorbance signal of the SO 2 gas generate, which is resultant of the addition of hydrochloric acid solution on the sample containing the sulfating agent. The sulfite bound to the organic compounds is released by the addition of sodium hydroxide solution, before the generation of the SO 2 gas. The optimization step was performed using multivariate methodology involving volume, concentration and flow rate of hydrochloric acid. This method was established by the sum of the absorbances obtained in the three lines of molecular absorption of the SO 2 gas. This strategy allowed a procedure for the determination of sulfite with limits of detection and quantification of 0.36 and 1.21mgL -1 (for a sample volume of 10mL) and precision expressed as relative standard deviation of 5.4% and 6.4% for a coconut water sample containing 38.13 and 54.58mgL -1 of free and total sulfite, respectively. The method was applied for analyzing five coconut water samples from Salvador city, Brazil. The average contents varied from 13.0 to 55.4mgL -1 for free sulfite and from 24.7 to 66.9mgL -1 for total sulfur(IV) compounds. The samples were also analyzed employing the Ripper´s procedure, which is a reference method for the quantification of this additive. A statistical test at 95% confidence level demonstrated that there is no significant difference between the results obtained by the two methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus.

    PubMed

    Grossoehme, Nicholas; Kehl-Fie, Thomas E; Ma, Zhen; Adams, Keith W; Cowart, Darin M; Scott, Robert A; Skaar, Eric P; Giedroc, David P

    2011-04-15

    All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027-0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes.

  19. Control of Copper Resistance and Inorganic Sulfur Metabolism by Paralogous Regulators in Staphylococcus aureus*

    PubMed Central

    Grossoehme, Nicholas; Kehl-Fie, Thomas E.; Ma, Zhen; Adams, Keith W.; Cowart, Darin M.; Scott, Robert A.; Skaar, Eric P.; Giedroc, David P.

    2011-01-01

    All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027–0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes. PMID:21339296

  20. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

  1. Myeloperoxidase potentiates nitric oxide-mediated nitrosation.

    PubMed

    Lakshmi, Vijaya M; Nauseef, William M; Zenser, Terry V

    2005-01-21

    Nitrosation is an important reaction elicited by nitric oxide (NO). To better understand how nitrosation occurs in biological systems, we assessed the effect of myeloperoxidase (MPO), a mediator of inflammation, on nitrosation observed during NO autoxidation. Nitrosation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ; 10 mum) to 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) was monitored by HPLC. Using the NO donor spermine NONOate at pH 7.4, MPO potentiated N-NO-IQ formation. The minimum effective quantity of necessary components was 8.5 nm MPO, 0.25 mum H(2)O(2)/min, and 0.024 mum NO/min. Autoxidation was only detected at >/=1.2 mum NO/min. MPO potentiation was not affected by a 40-fold excess flux of H(2)O(2) over NO or less than a 2.4-fold excess flux of NO over H(2)O(2). Potentiation was due to an 8.8-fold increased affinity of MPO-derived nitrosating species for IQ. Autoxidation was inhibited by azide, suggesting involvement of the nitrosonium ion, NO(+). MPO potentiation was inhibited by NADH, but not azide, suggesting oxidative nitrosylation with NO(2)(.) or an NO(2)(.)-like species. MPO nonnitrosative oxidation of IQ with 0.3 mm NO(2)(-) at pH 5.5 was inhibited by azide, but not NADH, demonstrating differences between MPO oxidation of IQ with NO compared with NO(2)(-). Using phorbol ester-stimulated human neutrophils, N-NO-IQ formation was increased with superoxide dismutase and inhibited by catalase and NADH, but not NaN(3). This is consistent with nitrosation potentiation by MPO, not peroxynitrite. Increased N-NO-IQ formation was not detected with polymorphonuclear neutrophils from two unrelated MPO-deficient patients. Results suggest that the highly diffusible stable gas NO could initiate nitrosation at sites of neutrophil infiltration.

  2. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.

    PubMed

    Nishida, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2014-06-04

    A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution.

  3. QTL Dissection of Lag Phase in Wine Fermentation Reveals a New Translocation Responsible for Saccharomyces cerevisiae Adaptation to Sulfite

    PubMed Central

    Zimmer, Adrien; Durand, Cécile; Loira, Nicolás; Durrens, Pascal; Sherman, David James; Marullo, Philippe

    2014-01-01

    Quantitative genetics and QTL mapping are efficient strategies for deciphering the genetic polymorphisms that explain the phenotypic differences of individuals within the same species. Since a decade, this approach has been applied to eukaryotic microbes such as Saccharomyces cerevisiae in order to find natural genetic variations conferring adaptation of individuals to their environment. In this work, a QTL responsible for lag phase duration in the alcoholic fermentation of grape juice was dissected by reciprocal hemizygosity analysis. After invalidating the effect of some candidate genes, a chromosomal translocation affecting the lag phase was brought to light using de novo assembly of parental genomes. This newly described translocation (XV-t-XVI) involves the promoter region of ADH1 and the gene SSU1 and confers an increased expression of the sulfite pump during the first hours of alcoholic fermentation. This translocation constitutes another adaptation route of wine yeast to sulfites in addition to the translocation VIII-t-XVI previously described. A population survey of both translocation forms in a panel of domesticated yeast strains suggests that the translocation XV-t-XVI has been empirically selected by human activity. PMID:24489712

  4. The role of extended Fe4S4 cluster ligands in mediating sulfite reductase hemoprotein activity.

    PubMed

    Cepeda, Marisa R; McGarry, Lauren; Pennington, Joseph M; Krzystek, J; Elizabeth Stroupe, M

    2018-05-28

    The siroheme-containing subunit from the multimeric hemoflavoprotein NADPH-dependent sulfite reductase (SiR/SiRHP) catalyzes the six electron-reduction of SO 3 2- to S 2- . Siroheme is an iron-containing isobacteriochlorin that is found in sulfite and homologous siroheme-containing nitrite reductases. Siroheme does not work alone but is covalently coupled to a Fe 4 S 4 cluster through one of the cluster's ligands. One long-standing hypothesis predicted from this observation is that the environment of one iron-containing cofactor influences the properties of the other. We tested this hypothesis by identifying three amino acids (F437, M444, and T477) that interact with the Fe 4 S 4 cluster and probing the effect of altering them to alanine on the function and structure of the resulting enzymes by use of activity assays, X-ray crystallographic analysis, and EPR spectroscopy. We showed that F437 and M444 gate access for electron transfer to the siroheme-cluster assembly and the direct hydrogen bond between T477 and one of the cluster sulfides is important for determining the geometry of the siroheme active site. Copyright © 2018. Published by Elsevier B.V.

  5. Globins Scavenge Sulfur Trioxide Anion Radical*

    PubMed Central

    Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.

    2015-01-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  6. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression.

    PubMed

    Bellanti, Francesco; Villani, Rosanna; Tamborra, Rosanna; Blonda, Maria; Iannelli, Giuseppina; di Bello, Giorgia; Facciorusso, Antonio; Poli, Giuseppe; Iuliano, Luigi; Avolio, Carlo; Vendemiale, Gianluigi; Serviddio, Gaetano

    2018-05-01

    The complete mechanism accounting for the progression from simple steatosis to steatohepatitis in nonalcoholic fatty liver disease (NAFLD) has not been elucidated. Lipotoxicity refers to cellular injury caused by hepatic free fatty acids (FFAs) and cholesterol accumulation. Excess cholesterol autoxidizes to oxysterols during oxidative stress conditions. We hypothesize that interaction of FAs and cholesterol derivatives may primarily impair mitochondrial function and affect biogenesis adaptation during NAFLD progression. We demonstrated that the accumulation of specific non-enzymatic oxysterols in the liver of animals fed high-fat+high-cholesterol diet induces mitochondrial damage and depletion of proteins of the respiratory chain complexes. When tested in vitro, 5α-cholestane-3β,5,6β-triol (triol) combined to FFAs was able to reduce respiration in isolated liver mitochondria, induced apoptosis in primary hepatocytes, and down-regulated transcription factors involved in mitochondrial biogenesis. Finally, a lower protein content in the mitochondrial respiratory chain complexes was observed in human non-alcoholic steatohepatitis. In conclusion, hepatic accumulation of FFAs and non-enzymatic oxysterols synergistically facilitates development and progression of NAFLD by impairing mitochondrial function, energy balance and biogenesis adaptation to chronic injury. Copyright © 2017. Published by Elsevier B.V.

  7. Influence of UV lamp, sulfur(IV) concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications.

    PubMed

    Xiao, Qian; Wang, Ting; Yu, Shuili; Yi, Peng; Li, Lei

    2017-03-15

    Bromate (BrO 3 - ) is a possible human carcinogen regulated worldwide at a strict standard of 10 μg/L in drinking water. Removal of BrO 3 - by advanced reduction processes (ARPs) has attracted much attention due to its high reduction efficiency and easier combination with ultraviolet (UV) disinfection. In this study, we employed a UV/sulfite process to degrade BrO 3 - and studied the effects of UV lamp, sulfur(IV) concentration, and pH on effectiveness of the system in degrading BrO 3 - . Low-pressure UV lamps (UV-L) instead of medium-pressure UV lamps (UV-M) were selected because of the high ultraviolet-C (UV-C) efficiency of UV-L. The increased sulfur(IV) concentration is proportionally correlated with enhanced degradation kinetics. BrO 3 - reduction was improved by increasing pH when pH is within 6.0-9.0, and principal component analysis demonstrated that pH is the most influential factor over sulfur(IV) concentration and type of UV lamp. Degradation mechanisms at different pH levels were subsequently investigated. Results showed that the reduction reactions are induced by hydrated electron (e aq - ) at pH > 9.0, by H at pH 4.0, and by both e aq - and H at pH 7.0. Effective quantum efficiency for the formation of e aq - and H in the photocatalytic systems was determined to be 0.109 ± 0.001 and 0.034 ± 0.001 mol E -1 , respectively. Furthermore, mass balance calculation of bromine and sulfur at pH 7 showed that bromide, sulfate and possibly dithionate ions were the major products, and a degradation pathway was proposed accordingly. Moreover, UV/sulfite processes could reduce the initial bromate concentration of 0.1 mM by 82% and 95% in the presence and absence of O 2 in tap water respectively, and 99% in the absence of O 2 in deionized water within 20 min at pH 9.0 and 2.0 mM sulfur (IV). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Effect of Sepsis on the Erythrocyte

    PubMed Central

    Bateman, Ryon M.; Sharpe, Michael D.; Singer, Mervyn; Ellis, Christopher G.

    2017-01-01

    Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin’s affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca2+ homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O2-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction. PMID:28885563

  9. Molecular action mechanism against apoptosis by aqueous extract from guava budding leaves elucidated with human umbilical vein endothelial cell (HUVEC) model.

    PubMed

    Hsieh, Chiu-Lan; Huang, Chien-Ning; Lin, Yuh-Charn; Peng, Robert Y

    2007-10-17

    Chronic cardiovascular and neurodegenerative complications induced by hyperglycemia have been considered to be associated most relevantly with endothelial cell damages (ECD). The protective effects of the aqueous extract of Psidium guajava L. budding leaves (PE) on the ECD in human umbilical vein endothelial cell (HUVEC) model were investigated. Results revealed that glyoxal (GO) and methylglyoxal (MGO) resulting from the glycative and autoxidative reactions of the high blood sugar glucose (G) evoked a huge production of ROS and NO, which in turn increased the production of peroxynitrite, combined with the activation of the nuclear factor kappaB (NFkappaB), leading to cell apoptosis. High plasma glucose activated p38-MAPK, and high GO increased the expressions of p38-MAPK and JNK-MAPK, whereas high MGO levels induced the activity of ERK-MAPK. Glucose and dicarbonyl compounds were all found to be good inducers of intracellular PKCs, which together with MAPK acted as the upstream triggering factor to activate NFkappaB. Conclusively, high plasma glucose together with dicarbonyl compounds can trigger the signaling pathways of MAPK and PKC and induce cell apoptosis through ROS and peroxynitrite stimulation and finally by NFkappaB activation. Such effects of PE were ascribed to its high plant polyphenolic (PPP) contents, the latter being potent ROS inhibitors capable of blocking the glycation of proteins, which otherwise could have brought forth severe detrimental effects to the cells.

  10. Photographic fixative poisoning

    MedlinePlus

    Photographic developer poisoning; Hydroquinone poisoning; Quinone poisoning; Sulfite poisoning ... Poisonous ingredients include: Hydroquinones Quinones Sodium ... fixative can also break down (decompose) to form sulfur dioxide ...

  11. The influence of sulfur configuration in 1 H NMR chemical shifts of diasteromeric five-membered cyclic sulfites.

    PubMed

    Obregón-Mendoza, Marco A; Sánchez-Castellanos, Mariano; Cuevas, Gabriel; Gnecco, Dino; Cassani, Julia; Poveda-Jaramillo, Juan C; Reynolds, William F; Enríquez, Raúl G

    2017-03-01

    The effect of the stereochemistry of the sulfur atom on 1 H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete 1 H and 13 C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism.

    PubMed

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-06-01

    The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2 (-) scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays. Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2(-) scavenging, DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3',4'-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  13. Protective effects of apomorphine against zinc-induced neurotoxicity in cultured cortical neurons.

    PubMed

    Hara, Hirokazu; Maeda, Asuka; Kamiya, Tetsuro; Adachi, Tetsuo

    2013-01-01

    There is evidence that excessive zinc (Zn(2+)) release from presynaptic terminals following brain injuries such as ischemia and severe epileptic seizures induces neuronal cell death. Apomorphine (Apo), a dopamine receptor agonist, has been shown to have pleiotropic biological functions. In this study, we investigated whether Apo protects cultured cortical neurons from neurotoxicity provoked by excessive Zn(2+) exposure. Pretreatment with Apo dose- and time-dependently ameliorated Zn(2+) neurotoxicity. In addition, pretreatment with Apo prevented intracellular nicotinamide adenine dinucleotide (NAD(+)) and ATP depletion caused by Zn(2+) exposure. Dopamine receptor antagonists did not influence Apo protection against Zn(2+) neurotoxicity. Apo is shown to be autoxidized to produce oxidized products such as reactive oxygen species and quinones. N-Acetylcysteine, a thiol compound, partially reduced Apo protection. Entry of Zn(2+) into neurons is thought to be a critical step of Zn(2+) neurotoxicity. Interestingly, we found that pretreatment with Apo decreased elevation of intracellular Zn(2+) levels after Zn(2+) exposure and induced mRNA expression of the zinc transporter ZnT1, which transports intracellular Zn(2+) out of cells, and metallothionein. Taken together, these results suggest that the protective effects of Apo are regulated, at least in part, by its oxidized products, and preventing intracellular accumulation of Zn(2+) contributes to Apo protection against Zn(2+) neurotoxicity.

  14. Advanced Integrated Fuel/Combustion Systems

    DTIC Science & Technology

    2004-01-01

    disulfides to form sulfonic acids and sulfones, which are removed by phase separation, leaving the thiophenic com- pounds unreacted. Briefly, for the...additives result in an increased oxidation rate and substantially reduced deposition. The increased oxidation rate is due to the removal of these...ability to follow the formation and/or removal of the species during thermal-oxidative exposure is invaluable in understanding the autoxidative

  15. Lipid-modifying enzymes in oat and faba bean.

    PubMed

    Yang, Zhen; Piironen, Vieno; Lampi, Anna-Maija

    2017-10-01

    The aim was to study lipase, lipoxygenase (LOX) and peroxygenase (POX) activities in oat and faba bean samples to be able to evaluate their potential in formation of lipid-derived off-flavours. Lipase and LOX activities were measured by spectroscopy, and POX activities via the formation of epoxides. An ultra-high performance liquid chromatography method was developed to study the formation of fatty acid epoxides. The epoxides of esters were measured by gas chromatography. Mass spectroscopy was used to verify the identity of the epoxides. Both oat and faba bean possessed high lipase activities. In faba bean, LOX catalysed the formation of hydroperoxides, whose break-down products are the likely cause of off-flavours. Since oat had low LOX activity, autoxidation is needed to initiate lipid oxidation. Oat had high POX activity, which is able to convert hydroperoxides to epoxy and hydroxy fatty acids that could contribute significantly to off-flavours. POX activity in the faba bean was low. Thus, in faba bean volatile lipid oxidation products could rapidly be formed by LOX, whereas in oat reactions are slower due to the need of autoxidation prior to further reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microkinetic modeling of the autoxidative curing of an alkyd and oil-based paint model system

    NASA Astrophysics Data System (ADS)

    Oakley, Lindsay H.; Casadio, Francesca; Shull, Kenneth R.; Broadbelt, Linda J.

    2015-11-01

    Elucidating the curing and aging mechanisms of alkyd and other oil-based paints is valuable for the fields of conservation and bio-based coatings. Recent research has demonstrated the limitations of artificial aging in predicting the actual properties of paints that are hundreds of years old. Kinetic modeling offers pathways to develop a realistic and dynamic description of the composition of these oil-based paint coatings and facilitates the exploration of the effects of various environmental conditions on their long-term chemical stability. This work presents the construction of a kinetic Monte Carlo framework from elementary steps for the cobalt-catalyzed autoxidative curing of an ethyl linoleate model system up to the formation of single cross-links. Kinetic correlations for reaction families of similar chemistry are employed to reduce the number of parameters required to calculate rate constants in Arrhenius form. The model, developed from mechanisms proposed in the literature, shows good agreement with experiment for the formation of primary products in the early stages of curing. The model has also revealed that the mechanisms proposed in the literature for the formation of secondary products, such as volatile aldehydes, are still not well established, and alternative routes are under evaluation.

  17. Optimization of processing conditions to improve antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains.

    PubMed

    Sabokbar, Nayereh; Khodaiyan, Faramarz; Moosavi-Nasab, Marzieh

    2015-06-01

    A central composite design (CCD) was used to evaluate the effects of fermentation temperature (20-30 ºC) and kefir grains amount (2-8%w/v) on total phenolic content and antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains. The response surface methodology (RSM) showed that the significant second-order polynomial regression equation with high R(2) (>0.86) was successfully fitted for all response as function of independent variable. The overall optimum region was found to be at the combined level of 7.56%w/v kefir grains and temperature of 24.82 ºC with the highest value for total phenolic content (TPC) and antioxidant activities. At this optimum point TPC, 1, 1-Diphenyl-2-picrylhydrazyl radical scavenging, metal chelating effect, reducing power, inhibition of linoleic acid autoxidation and inhibition of ascorbate autoxidation were 165.02 mgGA/l, 0.38 ml/1 ml, 0.757 (absorbance at 700 nm), 46.12 %, 65.33 % and 21 %, respectively. No significant difference (p < 0.05) was found between actual values and predicated values.

  18. Enhancement of ethylenethiourea recoveries in food analyses by addition of cysteine hydrochloride.

    PubMed

    Sack, C A

    1995-01-01

    The effectiveness of cysteine hydrochloride (Cys-HCl) as a preservative of ethylenethiourea (ETU) in product matrixes and during analysis was studied. ETU recoveries were adversely affected by certain product matrixes when fortified directly into the product. Recoveries in 8 selected food items were 0-92% when analyzed 30 min after fortification and 0-51% when analyzed after 24 h. When Cys-HCl was added to product prior to fortification, recoveries increased to 71-95% even after frozen storage for 2-4 weeks. Cys-HCl was added during analysis of 53 untreated items. Recoveries improved an average of 15% with Cys-HCl. Without Cys-HCl, recoveries were erratic (20-98%), but with Cys-HCl, recoveries were 68-113%. Other antioxidants (sodium sulfite, butylated hydroxyanisole, butylated hydroxytoluene, and vitamins A and C) also were evaluated as ETU preservatives. When lettuce was treated first with sodium sulfite and then fortified with ETU, recoveries averaged 86%; without sodium sulfite, they averaged 1%. The other antioxidants were less effective for preserving ETU in lettuce, giving only 8-46% recoveries. The effect of oxidizers (potassium bromate, sodium hypochlorite, and hydrogen peroxide) on ETU recovery was also determined. Recovery of ETU from a baby food product (pears and pineapple) was 82%; with oxidizers, recoveries were 0-8%.

  19. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venceslau, Sofia S.; Cort, John R.; Baker, Erin S.

    2013-11-29

    Highlights: •DsrC is known to interact with the dissimilatory sulfite reductase enzyme (DsrAB). •We show that, however, most cellular DsrC is not associated with DsrAB. •A gel-shift assay was developed that allows monitoring of the DsrC redox state. •The DsrC intramolecularly oxidized state could only be produced by arginine treatment. -- Abstract: Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC, which has two conserved redox-active cysteines. DsrC was initially believed to be a third subunit of DsrAB. Here, we report a study of the distribution of DsrC in cellmore » extracts to show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we developed a cysteine-labelling gel-shift assay to monitor the DsrC redox state and behaviour, and procedures to produce the different redox forms. The oxidized state of DsrC with an intramolecular disulfide bond, which is proposed to be a key metabolic intermediate, could be successfully produced for the first time by treatment with arginine.« less

  20. Isolation, growth, and metabolism of an obligately anaerobic, selenate- respiring bacterium, strain SES-3

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.

  1. Lactate Racemase Nickel-Pincer Cofactor Operates by a Proton-Coupled Hydride Transfer Mechanism.

    PubMed

    Rankin, Joel A; Mauban, Robert C; Fellner, Matthias; Desguin, Benoît; McCracken, John; Hu, Jian; Varganov, Sergey A; Hausinger, Robert P

    2018-03-09

    Lactate racemase (LarA) of Lactobacillus plantarum contains a novel organometallic cofactor with nickel coordinated to a covalently tethered pincer ligand, pyridinium-3-thioamide-5-thiocarboxylic acid mononucleotide, but its function in the enzyme mechanism has not been elucidated. This study presents direct evidence that the nickel-pincer cofactor facilitates a proton-coupled hydride transfer (PCHT) mechanism during LarA-catalyzed lactate racemization. No signal was detected by electron paramagnetic resonance spectroscopy for LarA in the absence or presence of substrate, consistent with a +2 metal oxidation state and inconsistent with a previously proposed proton-coupled electron transfer mechanism. Pyruvate, the predicted intermediate for a PCHT mechanism, was observed in quenched solutions of LarA. A normal substrate kinetic isotope effect ( k H / k D of 3.11 ± 0.17) was established using 2-α- 2 H-lactate, further supporting a PCHT mechanism. UV-visible spectroscopy revealed a lactate-induced perturbation of the cofactor spectrum, notably increasing the absorbance at 340 nm, and demonstrated an interaction of the cofactor with the inhibitor sulfite. A crystal structure of LarA provided greater resolution (2.4 Å) than previously reported and revealed sulfite binding to the pyridinium C4 atom of the reduced pincer cofactor, mimicking hydride reduction during a PCHT catalytic cycle. Finally, computational modeling supports hydride transfer to the cofactor at the C4 position or to the nickel atom, but with formation of a nickel-hydride species requiring dissociation of the His200 metal ligand. In aggregate, these studies provide compelling evidence that the nickel-pincer cofactor acts by a PCHT mechanism.

  2. Low Tyramine Headache Diet

    MedlinePlus

    ... caution Monosodium Glutamate (MSG) Nitrates Nitrites Sulfites Aspartame Fats, Oils, and Misc. Allowed All cooking oils and fats Commercial salad dressing with allowed ingredients, vinegars All ...

  3. Assessment of dietary exposure in the French population to 13 selected food colours, preservatives, antioxidants, stabilizers, emulsifiers and sweeteners.

    PubMed

    Bemrah, Nawel; Leblanc, Jean-Charles; Volatier, Jean-Luc

    2008-01-01

    The results of French intake estimates for 13 food additives prioritized by the methods proposed in the 2001 Report from the European Commission on Dietary Food Additive Intake in the European Union are reported. These 13 additives were selected using the first and second tiers of the three-tier approach. The first tier was based on theoretical food consumption data and the maximum permitted level of additives. The second tier used real individual food consumption data and the maximum permitted level of additives for the substances which exceeded the acceptable daily intakes (ADI) in the first tier. In the third tier reported in this study, intake estimates were calculated for the 13 additives (colours, preservatives, antioxidants, stabilizers, emulsifiers and sweeteners) according to two modelling assumptions corresponding to two different food habit scenarios (assumption 1: consumers consume foods that may or may not contain food additives, and assumption 2: consumers always consume foods that contain additives) when possible. In this approach, real individual food consumption data and the occurrence/use-level of food additives reported by the food industry were used. Overall, the results of the intake estimates are reassuring for the majority of additives studied since the risk of exceeding the ADI was low, except for nitrites, sulfites and annatto, whose ADIs were exceeded by either children or adult consumers or by both populations under one and/or two modelling assumptions. Under the first assumption, the ADI is exceeded for high consumers among adults for nitrites and sulfites (155 and 118.4%, respectively) and among children for nitrites (275%). Under the second assumption, the average nitrites dietary exposure in children exceeds the ADI (146.7%). For high consumers, adults exceed the nitrite and sulfite ADIs (223 and 156.4%, respectively) and children exceed the nitrite, annatto and sulfite ADIs (416.7, 124.6 and 130.6%, respectively).

  4. [Ion chromatography of L-ascorbic acid, sulfite and thiosulfate using their postcolumn reactions with cerium (IV) and fluorescence detection of cerium (III)].

    PubMed

    Chen, Q; Hu, K; Miura, Y

    1999-09-01

    An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected.

  5. Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability.

    PubMed

    Fan, Lan-Feng; Tang, Sen-Lin; Chen, Chang-Po; Hsieh, Hwey-Lian

    2012-01-01

    Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined three sites: from the lower estuarine brackish-water reach (site GR and mangrove vegetation site, GM) to the upper estuarine tidal freshwater reach (site HR), as well as from surface to a 50-cm depth. The partial sequence of sulfite reductase (dsrB) genes was used as a molecular marker of SSRP, linked to polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) techniques. SSRP communities of the DGGE profiles varied with sites according to one-way analyses of similarities (Global R = 0.69, P = 0.001). Using cluster analysis, the DGGE profile was found to show site-specific clusters and a distinct depth zonation (five, six, and two SSRP communities at the GM, GR, and HR sites, respectively). SSRP composition was highly correlated to the combination of salinity, reduced sulfur, and total organic carbon contents (BIO-ENV analysis, r ( s ) = 0.56). After analyzing a total of 35 dsrB sequences in the DGGE gel, six groups with 15 phylotypes were found, which were closely related to marine-freshwater gradient. Moreover, sequences neighboring sulfite-reducing prokaryotes were observed, in addition to those affiliated to sulfate-reducing prokaryotes. Four phylotypes harvested in HR resembled the genus Desulfitobacterium, a sulfite-reducing prokaryote, which failed to use sulfate as an electron acceptor and were active in freshwater and sulfate-limited habitat. The other five phylotypes in the HR reach belonged to the sulfate-reducing prokaryotes of the genera Desulfatiferula, Desulfosarcina, Desulfovibrio, and Desulfotomaculum, which appeared to tolerate low salinity and low sulfate supply. SSRP phylotypes at the mangrove-vegetated GM site (five phylotypes in two groups) were phylogenetically less diverse, when compared with those at the non-mangrove-vegetated GR site (three phylotypes in three groups) and the tidally influenced freshwater HR site (nine phylotypes in five groups). Phylotypes found at GR and GM were all affiliated to marine sulfate-reducing prokaryote strains of the genera Desulfofaba, Desulfobotulus, Desulfatiferula, Desulfosarcina, and Desulfotomaculum. Notably, a phylotype recorded in the surface sediment at GR resembled the genus Desulfobulbus, which was recorded from freshwater environment consisting of the freshwater input at GR during ebb tides.

  6. Autoxidation and Oxygen Binding Properties of Recombinant Hemoglobins with Substitutions at the αVal-62 or βVal-67 Position of the Distal Heme Pocket*

    PubMed Central

    Tam, Ming F.; Rice, Natalie W.; Maillett, David H.; Simplaceanu, Virgil; Ho, Nancy T.; Tam, Tsuey Chyi S.; Shen, Tong-Jian; Ho, Chien

    2013-01-01

    The E11 valine in the distal heme pocket of either the α- or β-subunit of human adult hemoglobin (Hb A) was replaced by leucine, isoleucine, or phenylalanine. Recombinant proteins were expressed in Escherichia coli and purified for structural and functional studies. 1H NMR spectra were obtained for the CO and deoxy forms of Hb A and the mutants. The mutations did not disturb the α1β2 interface in either form, whereas the H-bond between αHis-103 and βGln-131 in the α1β1 interfaces of the deoxy α-subunit mutants was weakened. Localized structural changes in the mutated heme pocket were detected for the CO form of recombinant Hb (rHb) (αV62F), rHb (βV67I), and rHb (βV67F) compared with Hb A. In the deoxy form the proximal histidyl residue in the β-subunit of rHb (βV67F) has been altered. Furthermore, the interactions between the porphyrin ring and heme pocket residues have been perturbed in rHb (αV62I), rHb (αV62F), and rHb (βV67F). Functionally, the oxygen binding affinity (P50), cooperativity (n50), and the alkaline Bohr Effect of the three α-subunit mutants and rHb (βV67L) are similar to those of Hb A. rHb (βV67I) and rHb (βV67F) exhibit low and high oxygen affinity, respectively. rHb (βV67F) has P50 values lower that those reported for rHb (αL29F), a B10 mutant studied previously in our laboratory (Wiltrout, M. E., Giovannelli, J. L., Simplaceanu, V., Lukin, J. A., Ho, N. T., and Ho, C. (2005) Biochemistry 44, 7207–7217). These E11 mutations do not slow down the autoxidation and azide-induced oxidation rates of the recombinant proteins. Results from this study provide new insights into the roles of E11 mutants in the structure-function relationship in hemoglobin. PMID:23867463

  7. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venceslau, Sofia S.; Cort, John R.; Baker, Erin Shammel

    2013-11-29

    Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC having two conserved cysteine residues. Here, we report a study of the distribution of DsrC in cell extracts, a cysteine-labelling gel-shift assay to monitor its redox state and behaviour, and procedures to produce the different redox forms. We show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we successfully produced DsrC with an intramolecular disulfide bond (oxidized state) by treatment withmore » arginine.« less

  8. Electrochemical oxidation of sulfites by DWCNTs, MWCNTs, higher fullerenes and manganese

    NASA Astrophysics Data System (ADS)

    Uzun, Dzhamal; Pchelarov, George; Dimitrov, Ognian; Vassilev, Sasho; Obretenov, Willi; Petrov, Konstantin

    2018-03-01

    Different electrocatalysts were tested for oxidation of sulfites to sulfates, namely, manganese thin films deposited on fullerenes and carbon nanotubes. The results presented clearly show that electrodes containing HFs (higher fullerenes), DWCNTs (double-wall carbon nanotubes) and manganese acetate are effective catalysts in S/O2 fuel cells. HFs and DWCNTs have high catalytic activity and can be employed as standalone catalysts. Manganese was deposited on DWCNTs, HFs and fullerenes C60/C70 by a thermal process. The electrocatalysts were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical testing was carried out by plotting the E/V polarization curve. The polarization curves of the electrodes composed of pristine DWCNTs showed the lowest overpotentials.

  9. 6-HYDROXYDOPAMINE INDUCES MITOCHONDRIAL ERK ACTIVATION

    PubMed Central

    Kulich, Scott M.; Horbinski, Craig; Patel, Manisha; Chu, Charleen T.

    2007-01-01

    Reactive oxygen species (ROS) are implicated in 6-hydroxydopamine (6-OHDA) injury to catecholaminergic neurons; however, the mechanism(s) are unclear. In addition to ROS generated during autoxidation, 6-OHDA may initiate secondary cellular sources of ROS that contribute to toxicity. Using a neuronal cell line, we found that catalytic metalloporphyrin antioxidants conferred protection if added 1 hour after exposure to 6-OHDA, whereas the hydrogen peroxide scavenger catalase failed to protect if added more than 15 min after 6-OHDA. There was a temporal correspondence between loss of protection and loss of the ability of the antioxidant to inhibit 6-OHDA-induced ERK phosphorylation. Time course studies of aconitase inactivation, as an indicator of intracellular superoxide, and MitoSOX red, a mitochondria targeted ROS indicator, demonstrate early intracellular ROS followed by a delayed phase of mitochondrial ROS production, associated with phosphorylation of a mitochondrial pool of ERK. Furthermore, upon initiation of mitochondrial ROS and ERK activation, 6-OHDA-injured cells became refractory to rescue by metalloporphyrin antioxidants. Together with previous studies showing that inhibition of the ERK pathway confers protection from 6-OHDA toxicity, and that phosphorylated ERK accumulates in mitochondria of degenerating human Parkinson’s disease neurons, these studies implicate mitochondrial ERK activation in Parkinsonian oxidative neuronal injury. PMID:17602953

  10. Impact of SO(2) on Arabidopsis thaliana transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep sequencing.

    PubMed

    Hamisch, Domenica; Randewig, Dörte; Schliesky, Simon; Bräutigam, Andrea; Weber, Andreas P M; Geffers, Robert; Herschbach, Cornelia; Rennenberg, Heinz; Mendel, Ralf R; Hänsch, Robert

    2012-12-01

    High concentrations of sulfur dioxide (SO(2) ) as an air pollutant, and its derivative sulfite, cause abiotic stress that can lead to cell death. It is currently unknown to what extent plant fumigation triggers specific transcriptional responses. To address this question, and to test the hypothesis that sulfite oxidase (SO) is acting in SO(2) detoxification, we compared Arabidopsis wildtype (WT) and SO knockout lines (SO-KO) facing the impact of 600 nl l(-1) SO(2) , using RNAseq to quantify absolute transcript abundances. These transcriptome data were correlated to sulfur metabolism-related enzyme activities and metabolites obtained from identical samples in a previous study. SO-KO plants exhibited remarkable and broad regulative responses at the mRNA level, especially in transcripts related to sulfur metabolism enzymes, but also in those related to stress response and senescence. Focusing on SO regulation, no alterations were detectable in the WT, whereas in SO-KO plants we found up-regulation of two splice variants of the SO gene, although this gene is not functional in this line. Our data provide evidence for the highly specific coregulation between SO and sulfur-related enzymes like APS reductase, and suggest two novel candidates for involvement in SO(2) detoxification: an apoplastic peroxidase, and defensins as putative cysteine mass storages. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  11. Effect of cinnamaldehyde on melanosis and spoilage of Pacific white shrimp (Litopenaeus vannamei) during storage.

    PubMed

    Mu, Honglei; Chen, Hangjun; Fang, Xiangjun; Mao, Jinlin; Gao, Haiyan

    2012-08-15

    Shrimp is a very perishable product and postmortem changes occur rapidly. Sulfiting agents were once and are still widely used as a preservative in the shrimp industry. However, the application of sulfite in shrimp may pose a risk to human health. Thus development of a natural preservative as a sulfite alternative to extend the shelf life of Pacific white shrimp is urgently needed. The effects of cinnamaldehyde essential oil (1 and 5 g kg(-1) ) on the shelf life of Pacific white shrimp stored at 4 °C were investigated. As the concentration of cinnamaldehyde increased, residual polyphenoloxidase (PPO) enzyme activity decreased. Kinetic analysis showed that cinnamaldehyde was a noncompetitive inhibitor for the oxidation of L-DOPA (L-3,4-dihydroxyphenylalanine) by PPO of Pacific white shrimp. Based on this study, shrimp treated with 5 g kg(-1) cinnamaldehyde possessed the lowest aerobic plate count, total volatile basic nitrogen, and pH values in all treatments after 10 days of storage. According to the results of L*, cinnamaldehyde showed inhibitory activity toward the formation of melanosis. Treatment with cinnamaldehyde could improve the sensory properties and extend the shelf life of Pacific white shrimp to 8 days. Therefore, cinnamaldehyde could be used as a promising natural preservative for inhibiting melanosis and preventing the growth of microbes during the chilled storage of Pacific white shrimp. Copyright © 2012 Society of Chemical Industry.

  12. Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodium-Ion Battery.

    PubMed

    Liu, Qi; Mu, Daobin; Wu, Borong; Wang, Lei; Gai, Liang; Wu, Feng

    2017-02-22

    The solid-electrolyte interface (SEI) film in a sodium-ion battery is closely related to capacity fading and cycling stability of the battery. However, there are few studies on the SEI film of sodium-ion batteries and the mechanism of SEI film formation is unclear. The mechanism for the reduction of ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), ethylene sulfite (ES), 1,3-propylene sulfite (PS), and fluorinated ethylene carbonate (FEC) is studied by DFT. The reaction activation energies, Gibbs free energies, enthalpies, and structures of the transition states are calculated. It is indicated that VC, ES, and PS additives in the electrolyte are all easier to form organic components in the anode SEI film by one-electron reduction. The priority of one-electron reduction to produce organic SEI components is in the order of VC>PC>EC; two-electron reduction to produce the inorganic Na 2 CO 3 component is different and follows the order of EC>PC>VC. Two-electron reduction for sulfites ES and PS to form inorganic Na 2 SO 3 is harder than that of carbonate ester reduction. It is also suggested that the one- and two-electron reductive decomposition pathway for FEC is more feasible to produce inorganic NaF components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    PubMed

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  14. Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films

    PubMed Central

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2017-01-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 μm (m2 d bar)−1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 μm (m2 d)−1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient. PMID:28149835

  15. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    NASA Astrophysics Data System (ADS)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  16. The effects of nitrite on the survival of Clostridium sporogenes and the autoxidation properties of the Kavurma.

    PubMed

    Yetim, Hasan; Kayacier, Ahmed; Kesmen, Zulal; Sagdic, Osman

    2006-02-01

    Kavurma is a traditional cooked (fried) meat product manufactured to preserve meat. Some bacterial genera, e.g., clostridia are important in kavurma. The objective of this study was to determine the influence of nitrite and the traditional cooking process on the survival and proliferation of Clostridium botulinum and the autoxidation properties of the kavurma. For this purpose, Clostridium sporogenes having similar characteristics to C. botulinum was used, and the samples were inoculated with 10(6) CFU/g C. sporogenes cells before the traditional cooking. The final products were packaged and stored under refrigeration for 6 months, and then the oxidation parameters (TBA, peroxide and free fatty acid values) and C. sporogenes counts of samples were determined. It was observed that C. sporogenes could survive during the traditional cooking process and storage. However, counts decreased during storage; for example, nitrite containing samples initially had 3.21logCFU/g C. sporogenes and 2.73logCFU/g at the end of storage. While nitrite had a slight antimicrobial effect on clostridia, it significantly reduced the TBA, peroxide and FFA values of the samples. In conclusion, it is suggested that addition of 100ppm of nitrite might be useful in kavurma processing because of its role in limiting oxidation as well as its antimicrobial effect.

  17. Synthesis and characterization of the 6 alpha- and 6 beta-hydroxylated derivatives of corticosterone, 11-dehydrocorticosterone, and 11-deoxycortisol.

    PubMed

    Kraan, G P; van Wee, K T; Wolthers, B G; van der Molen, J C; Nagel, G T; Drayer, N M; van Leusen, D

    1993-10-01

    This report describes the synthesis of 6 alpha, 17,21- and 6 beta, 17,21-trihydroxypregn-4-ene-3,20-dione, 6 alpha, 7,21- and 6 beta, 11 beta, 21-trihydroxypregn-4-ene-3,20-dione, and--for the first time--that of 6 alpha, 21- and 6 beta, 21-dihydroxypregn-4-ene-3,11,20-trione. The former four compounds were prepared by 6-hydroxylation of 17,21-trihydroxypregn-4-ene-3,20-dione and 11 beta, 21-dihydroxypregn-4-ene-3,20-dione, respectively. This was achieved by autoxidation or by oxidation with 3-chloroperbenzoic acid, of the 3-methoxy-pregna-3,5-dienes of the latter two steroids. The yield of the 6 beta-hydroxylated steroids, but not of their corresponding 6 alpha-epimers, was higher using autoxidation than the peracid. The two 6-hydroxylated pregnenetriones were prepared from 6 alpha, 21-diacetoxy-11 beta-hydroxypregn-4-ene-3,20-dione and 6 beta, 21-diacetoxy-11 beta-hydroxypregn-4-ene-3,20-dione, respectively, by oxidation with pyridinium chlorochromate. The above-mentioned six steroids were identified and characterized by nuclear magnetic resonance, infrared, ultraviolet, high performance liquid chromatography, gas chromatography, and mass spectrometry.

  18. Pronounced non-Arrhenius behaviour of hydrogen-abstractions from toluene and derivatives by phthalimide-N-oxyl radicals: a theoretical study.

    PubMed

    Hermans, Ive; Jacobs, Pierre; Peeters, Jozef

    2008-02-28

    Abstraction of hydrogen atoms by pthalimide-N-oxyl radicals is an important step in the N-hydroxyphthalimide catalyzed autoxidation of hydrocarbons. In this contribution, the temperature dependency of this reaction is evaluated by a detailed transition state theory based kinetic analysis for the case of toluene. Tunneling was found to play a very important role, enhancing the rate constant by a factor of 20 at room temperature. As a result, tunneling, in combination with the existence of two distinct rotamers of the transition state, causes a pronounced temperature dependency of the pre-exponential frequency factor, and, as a consequence, marked curvature of the Arrhenius plot. This explains why earlier experimental studies over a limited temperature range around 300 K found formal Arrhenius activation energies and pre-factors that are 4 kcal mol(-1) and three orders of magnitude smaller than the actual energy barrier and the corresponding frequency factor, respectively. Also as a consequence of tunneling, substitution of a deuterium atom for a hydrogen atom causes a large decrease in the rate constant, in agreement with the measured kinetic isotope effects. The present theoretical analysis, complementary to the experimental rate coefficient data, allows for a reliable prediction of the rate coefficient at higher temperatures, relevant for actual autoxidation processes.

  19. Advantages and limitations of common testing methods for antioxidants.

    PubMed

    Amorati, R; Valgimigli, L

    2015-05-01

    Owing to the importance of antioxidants in the protection of both natural and man-made materials, a large variety of testing methods have been proposed and applied. These include methods based on inhibited autoxidation studies, which are better followed by monitoring the kinetics of oxygen consumption or of the formation of hydroperoxides, the primary oxidation products. Analytical determination of secondary oxidation products (e.g. carbonyl compounds) has also been used. The majority of testing methods, however, do not involve substrate autoxidation. They are based on the competitive bleaching of a probe (e.g. ORAC assay, β-carotene, crocin bleaching assays, and luminol assay), on reaction with a different probe (e.g. spin-trapping and TOSC assay), or they are indirect methods based on the reduction of persistent radicals (e.g. galvinoxyl, DPPH and TEAC assays), or of inorganic oxidizing species (e.g. FRAP, CUPRAC and Folin-Ciocalteu assays). Yet other methods are specific for preventive antioxidants. The relevance, advantages, and limitations of these methods are critically discussed, with respect to their chemistry and the mechanisms of antioxidant activity. A variety of cell-based assays have also been proposed, to investigate the biological activity of antioxidants. Their importance and critical aspects are discussed, along with arguments for the selection of the appropriate testing methods according to the different needs.

  20. Impact of Lipid and Protein Co-oxidation on Digestibility of Dairy Proteins in Oil-in-Water (O/W) Emulsions.

    PubMed

    Obando, Mónica; Papastergiadis, Antonios; Li, Shanshan; De Meulenaer, Bruno

    2015-11-11

    Enrichment of polyunsaturated fatty acids (PUFAs) is a growing trend in the food industry. However, PUFAs are known to be susceptible to lipid oxidation. It has been shown that oxidizing lipids react with proteins present in the food and that as a result polymeric protein complexes are produced. Therefore, the aim of this work was to investigate the impact of lipid and protein co-oxidation on protein digestibility. Casein and whey protein (6 mg/mL) based emulsions with 1% oil with different levels of PUFAs were subjected to respectively autoxidation and photo-oxidation. Upon autoxidation at 70 °C, protein digestibility of whey protein based emulsions containing fish oil decreased to 47.7 ± 0.8% after 48 h, whereas in the controls without oil 67.8 ± 0.7% was observed. Upon photo-oxidation at 4 °C during 30 days, mainly casein-based emulsions containing fish oil were affected: the digestibility amounted to 43.9 ± 1.2%, whereas in the control casein solutions without oil, 72.6 ± 0.2% of the proteins were digestible. Emulsions containing oils with high PUFA levels were more prone to lipid oxidation and thus upon progressive oxidation showed a higher impact on protein digestibility.

  1. Effects of dietary fatty acids and cholesterol excess on liver injury: A lipidomic approach.

    PubMed

    Serviddio, Gaetano; Bellanti, Francesco; Villani, Rosanna; Tamborra, Rosanna; Zerbinati, Chiara; Blonda, Maria; Ciacciarelli, Marco; Poli, Giuseppe; Vendemiale, Gianluigi; Iuliano, Luigi

    2016-10-01

    Lipid accumulation is the hallmark of Non-alcoholic Fatty Liver Disease (NAFLD) and has been suggested to play a role in promoting fatty liver inflammation. Previous findings indicate that during oxidative stress conditions excess cholesterol autoxidizes to oxysterols. To date, the role of oxysterols and their potential interaction with fatty acids accumulation in NASH pathogenesis remains little investigated. We used the nutritional model of high fatty acids (HFA), high cholesterol (HCh) or high fat and high cholesterol (HFA+FCh) diets and explored by a lipidomic approach, the blood and liver distribution of fatty acids and oxysterols in response to dietary manipulation. We observed that HFA or HCh diets induced fatty liver without inflammation, which was otherwise observed only after supplementation of HFA+HCh. Very interestingly, the combination model was associated with a specific oxysterol fingerprint. The present work provides a complete analysis of the change in lipids and oxysterols profile induced by different lipid dietary model and their association with histological alteration of the liver. This study allows the generation of interesting hypotheses on the role of interaction of lipid and cholesterol metabolites in the liver injury during NAFLD development and progression. Moreover, the changes in the concentration and quality of oxysterols induced by a combination diet suggest a novel potential pathogenic mechanism in the progression from simple steatosis to steatohepatitis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide.

    PubMed

    Knickle, Allison; Fernando, Wasundara; Greenshields, Anna L; Rupasinghe, H P Vasantha; Hoskin, David W

    2018-05-06

    Myricetin is a dietary phytochemical with anticancer activity; however, the effect of myricetin on breast cancer cells remains unclear. Here, we show that myricetin inhibited the growth of triple-negative breast cancer (TNBC) cells but was less inhibitory for normal cells. The effect of myricetin was comparable to epigallocatechin gallate and doxorubicin, and greater than resveratrol and cisplatin. Myricetin-treated TNBC cells showed evidence of early and late apoptosis/necrosis, which was associated with intracellular reactive oxygen species (ROS) accumulation, extracellular regulated kinase 1/2 and p38 mitogen-activated protein kinase activation, mitochondrial membrane destabilization and cytochrome c release, and double-strand DNA breaks. The antioxidant N-acetyl-cysteine protected myricetin-treated TNBC cells from cytotoxicity due to DNA damage. Myricetin also induced hydrogen peroxide (H 2 O 2 ) production in cell-free culture medium, as well as in the presence of TNBC cells and normal cells. In addition, deferriprone-mediated inhibition of intracellular ROS generation via the iron-dependent Fenton reaction and inhibition of extracellular ROS accumulation with superoxide dismutase plus catalase prevented myricetin-induced cytotoxicity in TNBC cell cultures. We conclude that the cytotoxic effect of myricetin on TNBC cells was due to oxidative stress initiated by extracellular H 2 O 2 formed by autoxidation of myricetin, leading to intracellular ROS production via the Fenton reaction. Copyright © 2018. Published by Elsevier Ltd.

  3. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    PubMed Central

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  4. 40 CFR 430.56 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium... mass limitations are provided as guidance: Subpart E Pollutant or pollutant property Supplemental PSES...

  5. 40 CFR 430.56 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium... mass limitations are provided as guidance: Subpart E Pollutant or pollutant property Supplemental PSES...

  6. Amine-controlled assembly of metal-sulfite architecture from 1D chains to 3D framework.

    PubMed

    Austria, Cristina; Zhang, Jian; Valle, Henry; Zhang, Qichun; Chew, Emily; Nguyen, Dan-Tam; Gu, J Y; Feng, Pingyun; Bu, Xianhui

    2007-08-06

    Whereas open-framework materials have been made in a variety of chemical compositions, few are known in which 3-connected SO3(2)- anions serve as basic building units. Here, we report four new metal-sulfite polymeric structures, (ZnSO3)Py (1, py = pyridine), (ZnSO3)2(2,2'-bipy)H2O (2, 2,2'-bipy = 2,2'-bipyridine), (ZnSO3)2(TMDPy) (3, TMDPy = 4,4'-trimethylenedipyridine), and (MnSO3)2en (4, en = ethylenediamine) that have been synthesized hydrothermally and structurally characterized. In these compounds, low-dimensional 1D and 2D inorganic subunits are assembled into higher 2D or 3D covalent frameworks by organic ligands. In addition to the structure-directing effect of organic ligands, the flexible coordination chemistry of Zn2+ and SO3(2)- also contributes to the observed structural diversity. In compounds 1-3, Zn2+ sites alternate with trigonal pyramidal SO3(2)- anions to form three types of [ZnSO3]n chains, whereas in compound 4, a 2D-corrugated [MnSO3]n layer is present. Compound 1 features a rail-like chain with pendant pyridine rings. The pi-pi interaction between 2,2'-bipy ligands is found between adjacent chains in compound 2, resulting in 2D sheets that are further stacked through interlayer hydrogen bonds. Compound 3 exhibits a very interesting inorganic [(ZnSO3)2]n chain constructed from two chairlike subunits, and such chains are bridged by TMDPy ligands into a 2D sheet. In compound 4, side-by-side helical chains permeate through 2D-corrugated [MnSO3]n layers, which are pillared by neutral ethylenediamine molecules into a 3D framework that can be topologically represented as a (3,6)-connected net. The results presented here illustrate the rich structural chemistry of metal-sulfites and the potential of sulfite anions as a unique structural building block for the construction of novel open-framework materials, in particular, those containing polymeric inorganic subunits that may have interesting physical properties such as low-dimensional magnetism or electronic properties.

  7. Protective performances of two anti-graffiti treatments towards sulfite and sulfate formation in SO 2 polluted model environment

    NASA Astrophysics Data System (ADS)

    Carmona-Quiroga, Paula María; Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar; Blanco-Varela, María Teresa; Martínez-Ramírez, Sagrario

    2010-11-01

    Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO 2 and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ("Protectosil Antigraffiti" marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 ± 0.03 ppm of SO 2 and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO 2 and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO 2 capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM. However, support for sulfur accumulation in hydrated cement mortar is provided by means of EDX. In case of a second anti-graffiti considered, Protectosil, no influence of the anti-graffiti treatment on the SO 2 uptake of any of the building materials was observed.

  8. Fatty acids attached to all-trans-astaxanthin alter its cis-trans equilibrium, and consequently its stability, upon light-accelerated autoxidation.

    PubMed

    de Bruijn, Wouter J C; Weesepoel, Yannick; Vincken, Jean-Paul; Gruppen, Harry

    2016-03-01

    Fatty acid esterification, common in naturally occurring astaxanthin, has been suggested to influence both colour stability and degradation of all-trans-astaxanthin. Therefore, astaxanthin stability was studied as influenced by monoesterification and diesterification with palmitate. Increased esterification decelerated degradation of all-trans-astaxanthin (RP-UHPLC-PDA), whereas, it had no influence on colour loss over time (spectrophotometry). This difference might be explained by the observation that palmitate esterification influenced the cis-trans equilibrium. Free astaxanthin produced larger amounts of 9-cis isomer whereas monopalmitate esterification resulted in increased 13-cis isomerization. The molar ratios of 9-cis:13-cis after 60min were 1:1.7 (free), 1:4.8 (monopalmitate) and 1:2.6 (dipalmitate). The formation of 9-cis astaxanthin, with its higher molar extinction coefficient than that of all-trans-astaxanthin, might compensate for colour loss induced by conjugated double bond cleavage. As such, it was concluded that spectrophotometry is not an accurate measure of the degradation of the all-trans-astaxanthin molecule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An experimental design method leading to chemical Turing patterns.

    PubMed

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2009-05-08

    Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.

  10. Alcohol Intolerance

    MedlinePlus

    ... ingredients commonly found in alcoholic beverages, especially in beer or wine, can cause intolerance reactions. These include: Sulfites or other preservatives Chemicals, grains or other ingredients Histamine, a byproduct of fermentation or brewing In some cases, reactions can be ...

  11. Experimental estimation of the bisulfite isomer quotient as a function of temperature: Implications for sulfur isotope fractionations in aqueous sulfite solutions

    NASA Astrophysics Data System (ADS)

    Eldridge, Daniel L.; Mysen, Bjorn O.; Cody, George D.

    2018-01-01

    Bisulfite (HSO3-) and sulfite (SO32-) compounds play key roles in numerous geochemical and biochemical processes extending from the atmosphere to the subseafloor biosphere. Despite decades of spectroscopic investigations, the molecular composition of HSO3- in solution remains uncertain and, thus, the role of bisulfite in (bio)chemical and isotope fractionation processes is unclear. We report new experimental estimates for the bisulfite isomer quotient (Qi = [(HO)SO2-]/[(HS)O3-]; [] = concentration) as a function of temperature from the interpretation of Raman spectra collected from aqueous NaHSO3 solutions contained in fused silica capsules. In pure NaHSO3 solutions (1Na+:1HSO3-, stoichiometric) over [NaHSO3] = 0.2-0.4 m (moles/kg H2O), the following relationship is obtained:

  12. Shifts in Methanogenic Subpopulations Measured with Antibody Probes in a Fixed-Bed Loop Anaerobic Bioreactor Treating Sulfite Evaporator Condensate

    PubMed Central

    Macario, Alberto J. L.; de Macario, Everly Conway; Ney, Ulrich; Schoberth, Siegfried M.; Sahm, Hermann

    1989-01-01

    A fixed-bed loop, high-rate anaerobic bioreactor treating sulfite evaporator condensate was sampled when it reached steady state and afterwards following perturbations during a 14-month period. By using immunotechnology, it was observed that shifts in methanogenic subpopulations occurred in association with perturbations, such as restarting and relocating the biomass into a different tank. Methanogens related to Methanobacterium bryantii MoHG and Methanobrevibacter smithii ALI were numerous throughout the observation period, while Methanosarcina mazei S6 and Methanosarcina thermophila TM1 were found in the early and late samples, respectively. Also, Methanobacterium formicicum was more numerous at the top portion of the bioreactor, while Methanobrevibacter arboriphilus AZ and DC were at the bottom. Sample formalinization required for prolonged storage proved suitable for antigen preservation. Images PMID:16347990

  13. Shifts in methanogenic subpopulations measured with antibody probes in a fixed-bed loop anaerobic bioreactor treating sulfite evaporator condensate.

    PubMed

    Macario, A J; Conway de Macario, E; Ney, U; Schoberth, S M; Sahm, H

    1989-08-01

    A fixed-bed loop, high-rate anaerobic bioreactor treating sulfite evaporator condensate was sampled when it reached steady state and afterwards following perturbations during a 14-month period. By using immunotechnology, it was observed that shifts in methanogenic subpopulations occurred in association with perturbations, such as restarting and relocating the biomass into a different tank. Methanogens related to Methanobacterium bryantii MoHG and Methanobrevibacter smithii ALI were numerous throughout the observation period, while Methanosarcina mazei S6 and Methanosarcina thermophila TM1 were found in the early and late samples, respectively. Also, Methanobacterium formicicum was more numerous at the top portion of the bioreactor, while Methanobrevibacter arboriphilus AZ and DC were at the bottom. Sample formalinization required for prolonged storage proved suitable for antigen preservation.

  14. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    PubMed Central

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  15. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    PubMed

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  16. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase–rhodanese fusion protein functions in sulfur assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motl, Nicole; Skiba, Meredith A.; Kabil, Omer

    Hydrogen sulfide (H2S) is a signaling molecule that is toxic at elevated concentrations. In eukaryotes, it is cleared via a mitochondrial sulfide oxidation pathway, which comprises sulfide quinone oxidoreductase, persulfide dioxygenase (PDO), rhodanese, and sulfite oxidase and converts H2S to thiosulfate and sulfate. Natural fusions between the non-heme iron containing PDO and rhodanese, a thiol sulfurtransferase, exist in some bacteria. However, little is known about the role of the PDO–rhodanese fusion (PRF) proteins in sulfur metabolism. Herein, we report the kinetic properties and the crystal structure of a PRF from the Gram-negative endophytic bacterium Burkholderia phytofirmans. The crystal structures ofmore » wild-type PRF and a sulfurtransferase-inactivated C314S mutant with and without glutathione were determined at 1.8, 2.4, and 2.7 Å resolution, respectively. We found that the two active sites are distant and do not show evidence of direct communication. The B. phytofirmans PRF exhibited robust PDO activity and preferentially catalyzed sulfur transfer in the direction of thiosulfate to sulfite and glutathione persulfide; sulfur transfer in the reverse direction was detectable only under limited turnover conditions. Together with the kinetic data, our bioinformatics analysis reveals that B. phytofirmans PRF is poised to metabolize thiosulfate to sulfite in a sulfur assimilation pathway rather than in sulfide stress response as seen, for example, with the Staphylococcus aureus PRF or sulfide oxidation and disposal as observed with the homologous mammalian proteins.« less

  17. Sodium sulfite pH-buffering effect for improved xylose-phenylalanine conversion to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine during an aqueous Maillard reaction.

    PubMed

    Cui, Heping; Duhoranimana, Emmanuel; Karangwa, Eric; Jia, Chengsheng; Zhang, Xiaoming

    2018-04-25

    The yield of the Maillard reaction intermediate (MRI), prepared in aqueous medium, is usually unsatisfactory. However, the addition of sodium sulfite could improve the conversion of xylose-phenylalanine (Xyl-Phe) to the MRI (N-(1-deoxy-d-xylulos-1-yl)-phenylalanine) in aqueous medium. Sodium sulfite (Na 2 SO 3 ) showed a significant pH-buffering effect during the Maillard reaction, which accounted for its facilitation of the N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. The results revealed that the pH could be maintained at a relatively high level (above 7.0) for an optimized pH-buffering effect when Na 2 SO 3 (4.0%) was added before the reaction of Xyl-Phe. Thus, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine increased from 47.23% to 74.86%. Furthermore, the addition moment of Na 2 SO 3 and corresponding solution pH were crucial factors in regulating the pH-buffering effect of Na 2 SO 3 on N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. Based on the pH-buffering effect of Na 2 SO 3 and maintaining the optimal pH 7.4 relatively stable, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine was successfully improved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Catabolism of Naphthalenesulfonic Acids by Pseudomonas sp. A3 and Pseudomonas sp. C22

    PubMed Central

    Brilon, C.; Beckmann, W.; Knackmuss, H.-J.

    1981-01-01

    Naphthalene and two naphthalenesulfonic acids were degraded by Pseudomonas sp. A3 and Pseudomonas sp. C22 by the same enzymes. Gentisate is a major metabolite. Catabolic activities for naphthalene, 1-naphthalenesulfonic acid, and 2-naphthalenesulfonic acid are induced by growth with naphthalene, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, methylnaphthalene, or salicylate. Gentisate is also an inducer in strain A3. Inhibition kinetics show that naphthalene and substituted naphthalenes are hydroxylated by the same naphthalene dioxygenase. Substrates with nondissociable substituents such as CH3, OCH3, Cl, or NO2 are hydroxylated in the 7,8-position, and 4-substituted salicylates are accumulated. If CO2H, CH2CO2H, or SO3H are substituents, hydroxylation occurs with high regioselectivity in the 1,2-position. Thus, 1,2-dihydroxy-1,2-dihydronaphthalene-2-carboxylic acids are formed quantitatively from the corresponding naphthalenecarboxylic acids. Utilization of naphthalenesulfonic acids proceeds by the same regioselective 1,2-dioxygenation which labilizes the C—SO3− bond and eliminates sulfite. PMID:16345814

  19. Electrolyte formulations

    DOEpatents

    Zhu, Ye; Strand, Deidre; Cheng, Gang

    2018-05-29

    An electrochemical cell including a silicon-based anode and an electrolyte, where the electrolyte is formulated to contain solvents having cyclic sulfone or cyclic sulfite chemical structure. Specific additional solvent and salt combinations yield superior performance in these electrochemical cells.

  20. 40 CFR 63.861 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite, and...

  1. 40 CFR 63.861 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite, and...

  2. Polyethylene glycol promotes autoxidation of cytochrome c.

    PubMed

    Sato, Wataru; Uchida, Takeshi; Saio, Tomohide; Ishimori, Koichiro

    2018-06-01

    Cytochrome c (Cyt c) was rapidly oxidized by molecular oxygen in the presence, but not absence of PEG. The redox potential of heme c was determined by the potentiometric titration to be +236 ± 3 mV in the absence of PEG, which was negatively shifted to +200 ± 4 mV in the presence of PEG. The underlying the rapid oxidation was explored by examining the structural changes in Cyt c in the presence of PEG using UV-visible absorption, circular dichroism, resonance Raman, and fluorescence spectroscopies. These spectroscopic analyses suggested that heme oxidation was induced by a modest tertiary structural change accompanied by a slight shift in the heme position (<1.0 Å) rather than by partial denaturation, as is observed in the presence of cardiolipin. The near-infrared spectra showed that PEG induced dehydration from Cyt c, which triggered heme displacement. The primary dehydration site was estimated to be around surface-exposed hydrophobic residues near the heme center: Ile81 and Val83. These findings and our previous studies, which showed that hydrated water molecules around Ile81 and Val83 are expelled when Cyt c forms a complex with CcO, proposed that dehydration of these residues is functionally significant to electron transfer from Cyt c to CcO. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. NQO1 and CYP450 reductase decrease the systemic exposure of rifampicin-quinone and mediate its redox cycle in rats.

    PubMed

    Shi, Fuguo; Li, Xiaobing; Pan, Hong; Ding, Li

    2017-01-05

    Rifampicin (RIF) is used in regimens for infections caused by Mycobacteria accompanied by serious adverse reactions. Rifampicin-quinone (RIF-Q) is a major autoxidation product of RIF. It is not clear whether RIF-Q plays a role in RIF induced adverse reactions. Investigation of the systemic exposure of RIF-Q is helpful to better understand the role of RIF-Q in RIF induced adverse reactions. In this study, a simple and reproducible high performance liquid chromatography-mass spectrometry (LC-MS) method involving a procedure to prevent the RIF from oxidation for simultaneous quantification of RIF and RIF-Q in rat plasma has been developed and validated, and applied to elucidate the systemic exposure of RIF-Q in rats. The pharmacokinetics data showed that the systemic exposure of RIF-Q was very low (0.67% of RIF, AUC 0-24 ) in rats after oral administration of RIF. However, RIF-Q may undergo the redox cycle in vivo by the evidence that the majority of RIF-Q was reduced to RIF after an oral dose of RIF-Q. Pretreatment with the NAD(P)H: quinone oxidoreductase 1 (NQO1) specific inhibitor dicoumarol and/or cytochrome P450 reductase (CPR) inhibitor diphenyleneiodonium suppressed the redox cycle and significantly increased the systemic exposure of RIF-Q. The inhibitors also attenuated the redox cycle induced reactive oxygen species formation and cytotoxicity in RIF-Q-treated HepG2 cells. These results indicate that NQO1 and CPR play an important role in redox cycle of RIF-Q and may thus contribute to RIF-induced adverse reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evaluation of the Flavor Contribution of Products of the Maillard Reaction

    DTIC Science & Technology

    the Maillard - type reaction between the products of autoxidized polyunsaturated fatty acids and free amino groups of phospholipids and within meat...intermolecular browning-type reaction with free amino groups, polymerization, etc., are liable to occur. Changes in these labile substances are known...proteins, and between the free amino groups of phospholipids and the monosaccharides present in meat. The reaction was elucidated and its products characterized and evaluated for its contribution to meat flavor.

  5. Production of hydroxyl radical by redox active flavonoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyanaraman, B.; Hodnick, W.F.; Pardini, R.S.

    1986-05-01

    The authors have previously shown that flavonoids autoxidize and generate superoxide (O/sub 2//sup -/) and hydrogen peroxide (H/sub 2/O/sub 2/), suggesting that hydroxyl radical (OH) could be formed via the metal-ion catalyzed Haber-Weiss reaction. In the presence of ethylenediamine tetraacetic acid (EDTA) and 5,5-dimethyl-1-pyrroline-1-oxide (DMPO), myricetin, quercetagetin and quercetin gave an ESR signal for the DMPO-OH spin adduct, and the DMPO-Eto adduct in the presence of excess ethanol, indicating the production of free OH. The addition of FeCl/sub 3/ to the reaction mixture resulted in a dramatic increase in the DMPO-OH signal. Without chelator (EDTA) there was no signal andmore » the presence of diethylenetriamine-pentaacetic acid (DETAPAC) greatly diminished the signal. The presence of superoxide dismutase (SOD) had no effect on the signal while catalase completely abrogated the signal. The addition of Fe (III)-EDTA to flavonoid solutions under anaerobic conditions produced time dependent auxochromic shifts in their absorption spectra and resulted in the reduction of Fe (III) to Fe (II). These data suggest that the flavonoids autoxidize to produce O/sub 2//sup -/ and H/sub 2/O/sub 2/ by dismutation and in the presence of Fe (III)-EDTA the flavonoid can directly reduce the Fe (III) to Fe (II) resulting in the production of OH through Fenton chemistry.« less

  6. Autoxidation of jet fuels: Implications for modeling and thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Chin, L.P.

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to modelmore » the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.« less

  7. Thiol Reactivity of Curcumin and Its Oxidation Products.

    PubMed

    Luis, Paula B; Boeglin, William E; Schneider, Claus

    2018-04-16

    The polypharmacological effects of the turmeric compound curcumin may be partly mediated by covalent adduction to cellular protein. Covalent binding to small molecule and protein thiols is thought to occur through a Michael-type addition at the enone moiety of the heptadienedione chain connecting the two methoxyphenol rings of curcumin. Here we show that curcumin forms the predicted thiol-Michael adducts with three model thiols, glutathione, N-acetylcysteine, and β-mercaptoethanol. More abundant, however, are respective thiol adducts of the dioxygenated spiroepoxide intermediate of curcumin autoxidation. Two electrophilic sites at the quinone-like ring of the spiroepoxide are identified. Addition of β-mercaptoethanol at the 5'-position of the ring gives a 1,7-dihydroxycyclopentadione-5' thioether, and addition at the 1'-position results in cleavage of the aromatic ring from the molecule, forming methoxyphenol-thioether and a tentatively identified cyclopentadione aldehyde. The curcuminoids demethoxy- and bisdemethoxycurcumin do not form all of the possible thioether adducts, corresponding with their increased stability toward autoxidation. RAW264.7 macrophage-like cells activated with phorbol ester form curcumin-glutathionyl and the 1,7-dihydroxycyclopentadione-5'-glutathionyl adducts. These studies indicate that the enone of the parent compound is not the only functional electrophile in curcumin, and that its oxidation products provide additional electrophilic sites. This suggests that protein binding by curcumin may involve oxidative activation into reactive quinone methide and spiroepoxide electrophiles.

  8. 40 CFR 430.54 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium... apply to non-continuous dischargers: Subpart E [Supplemental BAT effluent limitations] Pollutant or...

  9. 40 CFR 430.54 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium... apply to non-continuous dischargers: Subpart E [Supplemental BAT effluent limitations] Pollutant or...

  10. The Possible Reduction Mechanism of Volatile Sulfur Compounds during Durian Wine Fermentation Verified in Modified Buffers.

    PubMed

    Lu, Yuyun; Fong, Alicia Sarah Yoke Ling; Chua, Jian-Yong; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan

    2018-06-15

    Durian fruit is rich in volatile sulfur compounds (VSCs), especially thiols and disulfides, which contribute to its onion-like odor. After fermentation, these VSCs were reduced to trace or undetectable levels in durian wine. The possible reduction mechanism of these VSCs (especially diethyl disulfide and ethanethiol) was investigated in a modified buffer in the presence of sulfite at different pH. An interconversion between diethyl disulfide and ethanethiol was found to be dependent on the pH: the higher the pH, the higher production of ethanethiol. It is suggested that, during durian wine fermentation, disulfides endogenous to durian pulp might be firstly converted into their corresponding thiols in the presence of reductant sulfite formed by yeast. The produced thiols as well as the thiols endogenous to the durian pulp were then removed by the mannoproteins of yeast lees.

  11. Cellulase production from spent sulfite liquor and paper-mill waste fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Yinbo; Zhao Xin; Gao Peiji

    1991-12-31

    Since a high proportion of the overall cost of the conversion of cellulosics to useful products is the expense of cellulose production (1), it is desirable to develop new processes for producing large amounts of cellulase inexpensively. So far, most of the research work on cellulose production has been carried out using milled cellulose powder and inorganic salts as substrates, which significantly increases the cost of enzyme production. In order to reduce the cost of raw materials, we tried to develop from industrial wastes a new medium for the production of cellulose. In this report, we describe a simple methodmore » by which an all-waste medium, which was composed of spent ammonium sulfite liquor and cellulosic waste of a paper mill, and a catabolite derepression mutant of Penicillium decumbens were used to produce the enzyme efficiently.« less

  12. Rapamycin reverses paraquat-induced acute lung injury in a rat model through inhibition of NFκB activation

    PubMed Central

    Chen, Da; Ma, Tao; Liu, Xiao-Wei; Yang, Chen; Liu, Zhi

    2015-01-01

    Objective: To evaluate the role of rapamycin (RAPA) in paraquat (PQ)-induced acute lung injury. Methods: Lung tissues were stained with HE and lung histology was observed. Mortality rate, and neutrophil and leukocyte count in blood and bronchoalveolar lavage fluid (BALF) were recorded. Protein content in BALF was determined by Coomassie blue staining. Malondialdehyde (MDA) content, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity in blood were determined by thiobarbituric acid (TBA) assay, pyrogallol autoxidation method, and modified Haefman method, respectively. The NF-κB activity was measured by gel electrophoretic mobility shift assay (EMSA). Carbon dioxide partial pressure (PaCO2), partial pressure of oxygen (PaO2) and pH values were measured by automated blood gas analyzer. Results: HE staining results demonstrated RAPA alleviated pathological changes of acute alveolitis in SD rats. Trend of protein content in BALF was PQ group > RAPA treatment group > control group (P < 0.05). Neutrophil and leukocyte count in RAPA treatment group was significantly lower than PQ group at 3, 5, and 7 days after injection (P < 0.05). Trend of MDA content was RAPA treatment group > PQ group > control group (P < 0.05). Trend of GSH-Px and SOD activity was control group > RAPA treatment group > PQ group (P < 0.05). Compared with PQ group, PaO2 in RAPA treatment group was markedly higher and PaCO2 was lower (P < 0.05). Conclusion: PQ-induced acute lung injury was effectively reversed with RAPA, through inhibition of NF-κB activation. PMID:26191153

  13. Discovery and Targeted LC-MS/MS of Purified Polerovirus Reveals Differences in the Virus-Host Interactome Associated with Altered Aphid Transmission

    PubMed Central

    Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J.; Thannhauser, Theodore W.; Gray, Stewart M.

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions. PMID:23118947

  14. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission.

    PubMed

    Cilia, Michelle; Peter, Kari A; Bereman, Michael S; Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J; Thannhauser, Theodore W; Gray, Stewart M

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.

  15. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse.

    PubMed

    Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André

    2016-03-01

    Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %.

  16. 40 CFR 430.41 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite...

  17. 40 CFR 430.41 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory...

  18. 40 CFR 430.41 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory...

  19. 40 CFR 430.41 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite...

  20. 40 CFR 430.41 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite...

  1. Minimize Solvent Oxidation with NO X Pre-Scrubbing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, Andrew; Sachde, Darshan; Vance, Austyn

    A novel method to remove nitrogen dioxide (NO 2) from the flue gas of coal-fired power plants with CO 2 capture was further developed for commercial implementation. The technology leverages the equipment and chemistry in an existing (sulfur dioxide) SO 2 polishing scrubber upstream of the main CO 2 capture unit to remove the NO 2, preventing degradation of the CO 2 capture solvent and formation of nitrosamines (environmental hazards). The research in this report focuses on further evaluation of the chemical additives and operating conditions associated with the NO 2 removal process to define conditions for commercial scale testingmore » and deployment. Experimental work systematically evaluated a series of potential additives to minimize the oxidation of sulfite in a representative SO 2 pre-scrubber solution (sulfite, in turn, absorbs NO 2). The additive combinations and concentrations were varied alongside important process conditions such as temperature, oxygen concentration, and metals present in solution to mimic the conditions expected in a commercial system. Important results of the parametric experimental work include identifying a new, potent sulfite oxidation inhibitor, revealing the importance of combining inhibitors with metal chelating agents, validation of a low-cost additive process, and development of a new semi-empirical model to represent mechanisms associated with sulfite oxidation. In addition, the experimental work reveled the impact of operating at higher temperatures (representative of a field test unit), which will guide the selection and concertation of additives as well. Engineering analysis found that waste solutions from the pre-scrubber with NO 2 additives may potentially be integrated with existing processes on site (e.g., flue gas desulfurization unit). In addition, techno-economic analysis identified potential net savings as large as $1.30/tonne CO 2 captured and quantified the potential benefit of low cost additive options actively being pursued by the development team. Finally, the experimental results and engineering analysis supported the development of a detailed field testing plan and protocol to evaluate the technology at near-commercial scale. The field test preparation included development of procedures to introduce chemical additives to an existing SO 2 polishing unit and identification of representative flue gas conditions based on a review of existing plants. These activities will have direct bearing on operation and design of commercial units.« less

  2. Time-Temperature Studies of High Temperature Deterioration Phenomena in Lubricant Systems: Synthetic Ester Lubricants.

    DTIC Science & Technology

    1983-09-01

    or esti- mated iii gas phase combustion studies. Results of kinetic analysis of cleavage product formation are consistent with two modes of their...Hydroperoxi de Determi nation 168 Soluble Iron Determination 169 Materials 169 Results and Discussion 171 Wear with Pure and Autoxidized n-Hexadecane...184th ACS Neeting in Kansas City, Iissouri. A novel HPLC procedure used for ....lysis of .utoxidation products throug.out ur studies Is des irCe ie rdrL

  3. A new photostabilizer: Hydrogenated benzoin derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, K.; Ohkatsu, Y.

    1993-12-31

    It is found that synergistic effects based on combined use of HALS (hindered Amine Light Stabilizers) with phenolic antioxidants consist of the action of HALS as hydrogen donor to quinones, derived from the phenol in autoxidation, excited by uv light. The finding has been realized as a new photostabilizer of hydrogenated benzoin derivatives. They are generally characterized by multifunctions. The o,o`-dihydroxyl-substituted derivatives inter alia extend the life of a phenolic antioxidant co-used, as hydrogen donor, as well as ultimately act as uv absorber.

  4. Development of a Method to Determine The Autoxidation of Turbine Fuels.

    DTIC Science & Technology

    1992-05-01

    By 6 G.E. Fodor D.W. Naegeli Belvoir Fuels and Lubricants Research Facility (SwRI) Southwest Research Institute San Antonio, Texas Under Contract to -6...G.E., Naegeli , D.W., Kohl, K.B., and Cuellar, Jr., J.P., "Development of a Test Method to Determine Potential Peroxide Content in Turbine Fuels...June 1985. 5. Fodor, G.E. and Naegeli , D.W., "Development of a Test Method to Determine Potential Peroxide Content in Turbine Fuels," Conference

  5. Mangifera indica L. extract (Vimang) inhibits Fe2+-citrate-induced lipoperoxidation in isolated rat liver mitochondria.

    PubMed

    Pardo Andreu, Gilberto; Delgado, René; Velho, Jesus; Inada, Natalia M; Curti, Carlos; Vercesi, Anibal E

    2005-05-01

    The extract of Mangifera indica L. (Vimang) is able to prevent iron mediated mitochondrial damage by means of oxidation of reduced transition metals required for the production of superoxide and hydroxyl radicals and direct free radical scavenging activity. In this study we report for the first time the iron-complexing ability of Vimang as a primary mechanism for protection of rat liver mitochondria against Fe2+ -citrate-induced lipoperoxidation. Thiobarbituric acid reactive substances (TBARS) and antimycin A-insensitive oxygen consumption were used as quantitative measures of lipoperoxidation. Vimang at 10 microM mangiferin concentration equivalent induced near-full protection against 50 microM Fe2+ -citrate-induced mitochondrial swelling and loss of mitochondrial transmembrane potential (DeltaPsi). The IC50 value for Vimang protection against Fe2+ -citrate-induced mitochondrial TBARS formation (7.89+/-1.19 microM) was around 10 times lower than that for tert-butylhydroperoxide mitochondrial induction of TBARS formation. The extract also inhibited the iron citrate induction of mitochondrial antimycin A-insensitive oxygen consumption, stimulated oxygen consumption due to Fe2+ autoxidation and prevented Fe3+ ascorbate reduction. The extracted polyphenolic compound, mainly mangiferin, could form a complex with Fe2+, accelerating Fe2+ oxidation and the formation of more stable Fe3+ -polyphenol complexes, unable to participate in Fenton-type reactions and lipoperoxidation propagation phase. The strong DPPH radical scavenging activity with an apparent IC50 of 2.45+/-0.08 microM suggests that besides its iron-complexing capacity, Vimang could also protect mitochondria from Fe2+ -citrate lipoperoxidation through direct free radical scavenging ability, mainly lipoperoxyl and alcoxyl radicals, acting as both a chain-breaking and iron-complexing antioxidant. These results are of pharmacological relevance since Vimang could be a potential candidate for antioxidant therapy in diseases related to abnormal intracellular iron distribution or iron overload.

  6. Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals.

    PubMed

    Amorati, Riccardo; Zotova, Julija; Baschieri, Andrea; Valgimigli, Luca

    2015-11-06

    Magnolol and honokiol, the bioactive phytochemicals contained in Magnolia officinalis, are uncommon antioxidants bearing isomeric bisphenol cores substituted with allyl functions. We have elucidated the chemistry behind their antioxidant activity by experimental and computational methods. In the inhibited autoxidation of cumene and styrene at 303 K, magnolol trapped four peroxyl radicals, with a kinh of 6.1 × 10(4) M(-1) s(-1) in chlorobenzene and 6.0 × 10(3) M(-1) s(-1) in acetonitrile, and honokiol trapped two peroxyl radicals in chlorobenzene (kinh = 3.8 × 10(4) M(-1) s(-1)) and four peroxyl radicals in acetonitrile (kinh = 9.5 × 10(3) M(-1) s(-1)). Their different behavior arises from a combination of intramolecular hydrogen bonding among the reactive OH groups (in magnolol) and of the OH groups with the aromatic and allyl π-systems, as confirmed by FT-IR spectroscopy and DFT calculations. Comparison with structurally related 3,3',5,5'-tetramethylbiphenyl-4,4'-diol, 2-allylphenol, and 2-allylanisole allowed us to exclude that the antioxidant behavior of magnolol and honokiol is due to the allyl groups. The reaction of the allyl group with a peroxyl radical (C-H hydrogen abstraction) proceeds with rate constant of 1.1 M(-1) s(-1) at 303 K. Magnolol and honokiol radicals do not react with molecular oxygen and produce no superoxide radical under the typical settings of inhibited autoxidations.

  7. UPLC-ESI-MS study of the oxidation markers released from tannin depolymerization: toward a better characterization of the tannin evolution over food and beverage processing.

    PubMed

    Mouls, Laetitia; Fulcrand, Hélène

    2012-11-01

    Condensed tannins take an important part in the sensory quality of food and beverage. Sensory analyses are usually carried out with various tannin fractions isolated from food or beverage, and their interpretation are limited by the lack of knowledge in the fine and accurate molecular composition of the tannin fractions. Besides, the studies of the chemical reactivity conducted in model solutions with 'simple' flavanols allow a better understanding of their evolution pathways, but they cannot take into account their reactivity as polymers, specifically regarding oxidation. In particular, competition between intramolecular and intermolecular reactions may strongly impact on the tannin structures (size, branching and conformation) and consequently on their properties. An ultra-performance liquid chromatography-mass spectrometry electrospray ionization mass spectrometer analytical method was thus developed in order to identify oxidized tannins generated by autoxidation. Given the difficulties to separate and detect tannins with high DP, samples were depolymerized by chemical depolymerization prior to analysis. Since the linkages created by oxidation are not cleavable in the usual depolymerization conditions (contrarily to the original interflavanic linkages), specific oxidation residues are released from tannins structures after their autoxidation. Oxidation markers of both intermolecular and intramolecular mechanisms have been identified; these are mainly dimers and trimers, more or less oxidized, and some contain additional hydroxyl groups. Furthermore, the nature of the subunits (extension vs terminal) making up these dimers and trimers was clearly established. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Hemoglobin redox reactions and red blood cell aging.

    PubMed

    Rifkind, Joseph M; Nagababu, Enika

    2013-06-10

    The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.

  9. Comparative study of antioxidant, metal chelating and antiglycation activities of Momordica charantia flesh and pulp fractions.

    PubMed

    Ghous, Tahseen; Aziz, Nouman; Mehmood, Zahid; Andleeb, Saiqa

    2015-07-01

    Momordica charantia is commonly used as a vegetable and folk medicine in most parts of South Asia. This study aims to determine and compare the antioxidant, metal chelating and antiglycation activities of aqueous extracts of M. charantia fruit flesh (MCF) and fruit pulp (MCP) fractions. Our results show that MCP has pronounced DPPH and ABTS radical scavenging potential compared to MCF. In the antiglycation assay both fractions illustrated considerable inhibitory activities against the formation of AGEs induced by glucose with an efficacy of 75 and 67% with 150 μl of MCP and MCF extracts respectively, almost equal to 0.3mM amino guanidine. Results for metal catalysed protein fragmentation and autoxidative and glycoxidation assays demonstrate that MCF and MCP inhibited metal catalysed protein fragmentation. The percentage of relative standard deviation for three replicate measurements of 150 μl of MCF and MCP was < 3.0% for antiglycation. The antioxidant assays with regression values of MCP (0.981 and 0.991) and MCF (0.967 and 0.999) were also recorded. We conclude that both extracts possess high antioxidant and antiglycation activities and are equally good sources of antioxidant and antiglycating agents.

  10. Potential Repercussions Associated with Halanaerobium Colonization of Hydraulically Fractured Shales

    NASA Astrophysics Data System (ADS)

    Booker, A. E.; Borton, M.; Daly, R. A.; Nicora, C.; Welch, S.; Dusane, D.; Johnston, M.; Sharma, S.; Mouser, P. J.; Cole, D. R.; Lipton, M. S.; Wrighton, K. C.; Wilkins, M.

    2017-12-01

    Hydraulic fracturing of black shale formations has greatly increased U.S. oil and natural gas recovery. Bacterial Halanaerobium strains become the dominant microbial community member in produced fluids from many fractured shales, regardless of their geographic location. Halanaerobium is not native to the subsurface, but is inadvertently introduced during the drilling and fracturing process. The accumulation of biomass in pipelines and reservoirs is detrimental due to possible well souring, microbially-induced corrosion, and pore clogging. Here, we used Halanaerobium strains isolated from a hydraulically fractured well in the Utica Shale, proteogenomics, isotopic and geochemical field observations, and laboratory growth experiments to identify detrimental effects associated with Halanaerobium growth. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic datasets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes that can convert thiosulfate to sulfide. Furthermore, laboratory growth curves confirmed the capability of Halanaerobium to grow across a wide range of pressures (14-7000 PSI). Shotgun proteomic measurements were used to track the higher abundance of rhodanese and anaerobic sulfite reductase enzymes present when thiosulfate was available in the growth media. This technique also identified a higher abundance of proteins associated with the production of extracellular polymeric substances when Halanaerobium was grown under increasing pressures. Halanaerobium culture based assays identified thiosulfate-dependent sulfide production, while pressure incubations revealed higher cellular attachment to quartz surfaces. Increased production of sulfide and organic acids during stationary growth phase suggests that fermentative Halanaerobium use thiosulfate to remove excess reductant, aiding in NAD+ recovery. Additionally, the increased cellular attachment to surfaces under pressure indicates Halanaerobium has the capability of forming cellular clusters that could clog the shale fracture network and limit natural gas recovery. These findings bring awareness to the detrimental effects that could arise from Halanaerobium growth in hydraulically fractured shales throughout the U.S.

  11. Influence of Different Electron Donors and Acceptors on Dehalorespiration of Tetrachloroethene by Desulfitobacterium frappieri TCE1

    PubMed Central

    Gerritse, Jan; Drzyzga, Oliver; Kloetstra, Geert; Keijmel, Mischa; Wiersum, Luit P.; Hutson, Roger; Collins, Matthew D.; Gottschal, Jan C.

    1999-01-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 μm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35°C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H2, formate, l-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H2) are oxidized to acetate and CO2. When l-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 μmol of chloride released · min−1 · mg of protein−1). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate. PMID:10583967

  12. Mercaptosuccinate Dioxygenase, a Cysteine Dioxygenase Homologue, from Variovorax paradoxus Strain B4 Is the Key Enzyme of Mercaptosuccinate Degradation

    PubMed Central

    Brandt, Ulrike; Schürmann, Marc; Steinbüchel, Alexander

    2014-01-01

    The versatile thiol mercaptosuccinate has a wide range of applications, e.g. in quantum dot research or in bioimaging. Its metabolism is investigated in Variovorax paradoxus strain B4, which can utilize this compound as the sole source of carbon and sulfur. Proteomic studies of strain B4 resulted in the identification of a putative mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, possibly representing the key enzyme in the degradation of mercaptosuccinate. Therefore, the putative mercaptosuccinate dioxygenase was heterologously expressed, purified, and characterized in this study. The results clearly demonstrated that the enzyme utilizes mercaptosuccinate with concomitant consumption of oxygen. Thus, the enzyme is designated as mercaptosuccinate dioxygenase. Succinate and sulfite were verified as the final reaction products. The enzyme showed an apparent Km of 0.4 mm, and a specific activity (Vmax) of 20.0 μmol min−1 mg−1 corresponding to a kcat of 7.7 s−1. Furthermore, the enzyme was highly specific for mercaptosuccinate, no activity was observed with cysteine, dithiothreitol, 2-mercaptoethanol, and 3-mercaptopropionate. These structurally related thiols did not have an inhibitory effect either. Fe(II) could clearly be identified as metal cofactor of the mercaptosuccinate dioxygenase with a content of 0.6 mol of Fe(II)/mol of enzyme. The recently proposed hypothesis for the degradation pathway of mercaptosuccinate based on proteome analyses could be strengthened in the present study. (i) Mercaptosuccinate is first converted to sulfinosuccinate by this mercaptosuccinate dioxygenase; (ii) sulfinosuccinate is spontaneously desulfinated to succinate and sulfite; and (iii) whereas succinate enters the central metabolism, sulfite is detoxified by the previously identified putative molybdopterin oxidoreductase. PMID:25228698

  13. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.I.

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less

  14. Endogenous sulfur dioxide aggravates myocardial injury in isolated rat heart with ischemia and reperfusion.

    PubMed

    Zhang, Suqing; Du, Junbao; Jin, Hongfang; Li, Wei; Liang, Yinfang; Geng, Bin; Li, Shukui; Zhang, Chunyu; Tang, Chaoshu

    2009-02-27

    Ischemia-reperfusion (I/R) injury is an important clinical problem. This article investigated the role of sulfur dioxide (SO2) in the regulation of cardiac function and in the pathogenesis of cardiac I/R injury in isolated rat heart. Rat hearts isolated on a Langendorff apparatus were divided into control, I/R, I/R+SO2, and I/R+hydroxamate groups. Hydroxamate is an inhibitor of SO2 synthetase. I/R treatment was ischemia for 2 hr in hypothermic solution (4 degrees C), then reperfusion/rewarming (37 degrees C) for 60 min. Cardiac function was monitored by MacLab analog to a digital converter. Determination of sulfite content involved reverse-phase high performance liquid chromatography with fluorescence detection. Myoglobin content of coronary perfusate was determined at 410 nm. Myocardial malondialdehyde (MDA) was determined by thiobarbituric acid method, and conjugated diene (CD) was extracted by chloroform. 5,50-Dithiobis-2-nitrobenzoic acid was used to determine glutathione (GSH). The results showed that I/R treatment obviously increased myocardial sulfite content, and sulfite content of myocardium was negatively correlated with the recovery rate of left-ventricle developed pressure and positively correlated with the leakage of myoglobin. In postreperfusion, myocardial function recovery was decreased by SO2. During reperfusion, myocardium-released enzymes, MDA and CD level were increased but myocardial GSH content was depressed with the treatment of SO2 donor. Incubation of myocardial tissue with SO2 significantly increased MDA and CD generation. Endogenous SO2 might be involved in the pathogenesis of myocardial I/R injury, and its mechanism might be associated with an increase in lipid peroxide level and a decrease in GSH generation.

  15. Microorganisms with Novel Dissimilatory (Bi)Sulfite Reductase Genes Are Widespread and Part of the Core Microbiota in Low-Sulfate Peatlands ▿ †

    PubMed Central

    Steger, Doris; Wentrup, Cecilia; Braunegger, Christina; Deevong, Pinsurang; Hofer, Manuel; Richter, Andreas; Baranyi, Christian; Pester, Michael; Wagner, Michael; Loy, Alexander

    2011-01-01

    Peatlands of the Lehstenbach catchment (Germany) house as-yet-unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic of microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a 6-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented “core” members (up to 1% to 1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparisons of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance of ∼1 to 400 km) identified that one Syntrophobacter-related and nine novel dsrAB lineages are widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-based DGGE data were not correlated with geographic distance but could be explained largely by soil pH and wetland type, implying that the distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by local environmental conditions. PMID:21169452

  16. On the interpretation of quantitative structure–function activity relationship data for lactate oxidase

    PubMed Central

    Yorita, Kazuko; Misaki, Hideo; Palfey, Bruce A.; Massey, Vincent

    2000-01-01

    The native flavin, FMN, has been removed from the l-lactate oxidase of Aerococcus viridans, and the apoprotein reconstituted with 12 FMN derivatives with various substituents at the flavin 6- and 8-positions. Impressive linear relationships are exhibited between the sum of the Hammett σpara and σortho parameters and the redox potentials of the free flavins, and between the redox potentials of the free and enzyme-bound flavins. Rapid reaction kinetics studies of the reconstituted enzymes with the substrates l-lactate and l-mandelate show an increase in the reduction rate constant with increasing redox potential, except that, with lactate, a limiting rate constant of ≈700 s−1 is obtained with flavins of high potential. Similar breakpoints are found in plots of the rate constants for flavin N5-sulfite adduct formation and for the reaction of the reduced enzymes with molecular oxygen. These results are interpreted in terms of a two-step equilibrium preceding the chemical reaction step, in which the second equilibrium step provides an upper limit to the rate with which the particular substrate or ligand is positioned with the flavin in the correct fashion for the observed chemical reaction to occur. The relationship of rate constants for flavin reduction and N5-sulfite adduct formation with flavin redox potential below the observed breakpoint indicate development of significant negative charge in the transition states of the reactions. In the case of reduction by substrate, the results are consistent either with a hydride transfer mechanism or with the so called “carbanion” mechanism, in which the substrate α-proton is abstracted by an enzyme base protected from exchange with solvent. These conclusions are supported by substrate α-deuterium isotope effects and by solvent viscosity effects on sulfite binding. PMID:10706608

  17. Sulfur-Bearing Phases Detected by Evolved Gas Analysis of the Rocknest Aeolian Deposit, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Mcadam, Amy Catherine; Franz, Heather Bryant

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from approx.450 to 800 C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2(approx. 3-22 micro-mol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (approx.41-109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (approx.1-5 nmol) and CS2(approx.0.2-1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.

  18. Study on using I - as heavy atom perturber in cyclodextrin-induced room temperature phosphorimetry

    NASA Astrophysics Data System (ADS)

    Li, Longdi; Hai, Xuan; Tong, Aijun

    2000-07-01

    A cyclodextrin induced room temperature phosphorimetry (CD-RTP) for determine β-NOA, which using I- as a heavy atom perturber (HAP) and sodium sulfite as a deoxygenator, was developed. The phosphorescence peak wavelength maxima λex/λem=287/496 521 nm. The analytical curve of β-NOA gives a linear dynamic range of 2.0×10-7-6.0×10-6 mol/l and a detection limit of 4×10-8 mol/l. The relative standard deviation (RSD; n=7) was 3.2% for the 4.0×10-6 mol/l β-NOA in spiked apple samples. The influence of I- concentration on RTP lifetime of β-NOA was studied in detail, the static Stern-Volmer equation for phosphorescence was derived and the luminescence kinetic parameters were calculated. It is found that the relation between I- concentration (x) and RTP lifetime (τ) can be expressed as τ=1.047 e-0.354x and the rate constants of phosphorescence emission kp and non-radiation process ki from T1→S0 were 0.9551s-1 and 0.4276 s-1l-1mol, respectively.

  19. 7 CFR 205.301 - Product composition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Product composition. 205.301 Section 205.301 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards..., Except, that, wine containing added sulfites may be labeled “made with organic grapes”; (6) Be produced...

  20. 40 CFR 63.868 - Delegation of authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Delegation of authority. 63.868 Section 63.868 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS..., Soda, Sulfite, and Stand-Alone Semichemical Pulp Mills § 63.868 Delegation of authority. (a) In...

  1. Food Intolerance vs. Food Allergy: What's the Difference?

    MedlinePlus

    ... can cause cramping, constipation and diarrhea. Sensitivity to food additives. For example, sulfites used to preserve dried fruit, canned goods and wine can trigger asthma attacks in sensitive people. ... Sometimes the mere thought of a food may make you sick. The reason is not ...

  2. 40 CFR 430.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.46 Pretreatment standards for existing sources (PSES). Except as...

  3. 40 CFR 430.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.46 Pretreatment standards for existing sources (PSES). Except as...

  4. Sulfites and the wine metabolome.

    PubMed

    Roullier-Gall, Chloé; Hemmler, Daniel; Gonsior, Michael; Li, Yan; Nikolantonaki, Maria; Aron, Alissa; Coelho, Christian; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2017-12-15

    In a context of societal concern about food preservation, the reduction of sulfite input plays a major role in the wine industry. To improve the understanding of the chemistry involved in the SO 2 protection, a series of bottle aged Chardonnay wines made from the same must, but with different concentrations of SO 2 added at pressing were analyzed by ultrahigh resolution mass spectrometry (FT-ICR-MS) and excitation emission matrix fluorescence (EEMF). Metabolic fingerprints from FT-ICR-MS data could discriminate wines according to the added concentration to the must but they also revealed chemistry-related differences according to the type of stopper, providing a wine metabolomics picture of the impact of distinct stopping strategies. Spearman rank correlation was applied to link the statistically modeled EEMF components (parallel factor analysis (PARAFAC)) and the exact mass information from FT-ICR-MS, and thus revealing the extent of sulfur-containing compounds which could show some correlation with fluorescence fingerprints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of Oxygen-Supply Rates on Growth of Escherichia coli

    PubMed Central

    McDaniel, L. E.; Bailey, E. G.; Zimmerli, A.

    1965-01-01

    The effect of oxygen-supply rates on bacterial growth was studied in commercially available unbaffled and baffled flasks with the use of Escherichia coli in a synthetic medium as a test system. The amount of growth obtained depended on the oxygen-supply rate. Based on oxygen-absorption rates (OAR) measured by the rate of sulfite oxidation, equal OAR values in different types of flasks did not give equal amounts of growth. However, growth was essentially equal at the equal sulfite-oxidation rates when these were determined in the presence of killed whole cultures. Specific growth rates were reduced only at oxygen-supply rates much lower than those at which the total amount of growth was reduced. For the physical set-up used in this work and with the biological system employed, Bellco 598 flasks and flasks fitted with Biotech stainless-steel baffles gave satisfactory results at workable broth volumes; unbaffled and Bellco 600 flasks did not. PMID:14264837

  6. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass.

    PubMed

    Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan

    2013-02-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effect of electrochemical redox reaction on growth and metabolism of Saccharomyces cerevisiae as an environmental factor.

    PubMed

    Na, Kwan Byung; Hwang, Tae Sik; Lee, Sung Hun; Ahn, Dae Hee; Park, Doo Hyun

    2007-03-01

    The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.

  8. Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development

    PubMed Central

    Drögemüller, Cord; Tetens, Jens; Sigurdsson, Snaevar; Gentile, Arcangelo; Testoni, Stefania; Lindblad-Toh, Kerstin; Leeb, Tosso

    2010-01-01

    Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development. PMID:20865119

  9. Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill.

    PubMed

    Zhou, Weili; Imai, Tsuyoshi; Ukita, Masao; Li, Fusheng; Yuasa, Akira

    2007-01-01

    Serious inhibition was found in the regular up-flow anaerobic sludge blanket (UASB) reactor in treating the evaporator condensate from a sulfite pulp mill, which contained high strength sulfur compounds. After applying the direct limited aeration in the UASB, the inhibition was alleviated gradually and the activity of the microorganisms was recovered. The COD removal rate increased from 40% to 80% at the organic loading rate of 8kgCODm(-3)d(-1) and a hydraulic retention time of 12h. Limited aeration caused no oxygen inhibition to the anaerobic microorganisms but instigated sulfide oxidization and H(2)S removal, which was beneficial to the methanogens. The experiment confirmed the feasibility of applying limited aeration in the anaerobic reactor to alleviate the sulfide inhibition. It also proved that the anaerobic system was actually aerotolerant. SEM observation showed that the predominant microorganisms partly changed from rod-shaped methanogens to cocci after the UASB reactor was aerated.

  10. Comparison of lignin extraction processes: Economic and environmental assessment.

    PubMed

    Carvajal, Juan C; Gómez, Álvaro; Cardona, Carlos A

    2016-08-01

    This paper presents the technical-economic and environmental assessment of four lignin extraction processes from two different raw materials (sugarcane bagasse and rice husks). The processes are divided into two categories, the first processes evaluates lignin extraction with prior acid hydrolysis step, while in the second case the extraction processes are evaluated standalone for a total analysis of 16 scenarios. Profitability indicators as the net present value (NPV) and environmental indicators as the potential environmental impact (PEI) are used through a process engineering approach to understand and select the best lignin extraction process. The results show that both economically and environmentally process with sulfites and soda from rice husk presents the best results; however the quality of lignin obtained with sulfites is not suitable for high value-added products. Then, the soda is an interesting option for the extraction of lignin if high quality lignin is required for high value-added products at low costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Measurement of superoxide dismutase-like activity in peel and pulp of apple from Anshan acres

    NASA Astrophysics Data System (ADS)

    Zhao, Lijuan

    2018-04-01

    Pyrogallol autoxidation method was used for measurement of SOD-like activity. They are 259.56 u/g and 148.78 u/g in peel and pulp of apple from Anshan acres. The proper-conditions for this measurement was determined through experiment as following: detection wavelength of spectrophotometer 325nm, buffer system Tris-HAc, concentration of Tris-HAc solution 50 mmoL and pH8.2. The inhibition rate of SOD-L again pyrogallol antioxidation are 92% and 90% in peel and pulp of apple.

  12. Lipid oxidation. Part 2. Oxidation products of olive oil methyl esters.

    PubMed

    Pokorný, J; Tài, P; Parízková, H; Smidrkalová, E; El-Tarras, M F; Janícek, G

    1976-01-01

    Olive oil was converted into methyl esters which were autoxidized at 60 degrees C. The composition of oxidized products was determined by the comparison of infrared spectra and NMR spectra of the original and acetylated samples, the sample reduced with potassium iodide and the acetylated reduced sample. Oxidized products were separated by preparative thin layer chromatography on silica gel and characterized by selective detection and by infrared spectrometry of the fractions. The oxidation products consisted of hydroperoxido butyl oleate, substituted hydroperoxides, mono- and disubstituted monomeric derivatives and a small amount of oligomers.

  13. DEVELOPMENT OF A MATHEMATICAL BASIS FOR RELATING SLUDGE PROPERTIES TO FGD-SCRUBBER OPERATING VARIABLES

    EPA Science Inventory

    The report gives results of research to investigate prospects for increasing the size of calcium sulfite sludge particles in flue gas desulfurization systems. The approach included four work packages: a literature survey and development of a mathematical basis for predicting calc...

  14. DEMONSTRATION OF WELLMAN-LORD/ALLIED CHEMICAL FGD TECHNOLOGY: DEMONSTRATION TEST SECOND YEAR RESULTS

    EPA Science Inventory

    The report gives results of an evaluation of the performance (over a 2-year period) of a full-scale flue gas desulfurization (FGD) unit to demonstrate the Wellman-Lord/Allied Chemical process. The process is regenerable, employing sodium sulfite wet scrubbing, thermal regeneratio...

  15. Decreased immunoglobulin E (IgE) binding to cashew allergens following sodium sulfite treatment and heating

    USDA-ARS?s Scientific Manuscript database

    Cashew nut and other nut allergies can result in serious and sometimes life threatening reactions. Linear and conformational epitopes within food allergens are important for immunoglobulin E binding. Methods that disrupt allergen structure can reduce immunoglobulin E binding and lessen the likelih...

  16. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL pretreated lodgepole pine

    USDA-ARS?s Scientific Manuscript database

    The performances of 5 yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, ...

  17. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined unbleached kraft and semi-chemical mills, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft...

  18. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined unbleached kraft and semi-chemical mills, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft...

  19. PHOTOGRAPHIC FILM DEVELOPER

    DOEpatents

    Berry, F.G.

    1958-06-24

    S>An improved photographic developer is presented having very high energy development fine grain characteristics and a long shelf life. These characteristics are obtained by the use of aminoacetic acid in the developer, the other constituents of which are: sodium sulfite, hydroquinone, sodiunn borate, boric acid and potassium bromide, 1-phenyl-3-pyrazolidone.

  20. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C078)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  1. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C093)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  2. PRECIPITATION CHEMISTRY OF MAGNESIUM SULFITE HYDRATES IN MAGNESIUM OXIDE SCRUBBING

    EPA Science Inventory

    The report gives results of laboratory studies defining the precipitation chemistry of MgSO3 hydrates. The results apply to the design of Mg-based scrubbing processes for SO2 removal from combustion flue gas. In Mg-based scrubbing processes, MgSO3 precipitates as either trihydrat...

  3. CHLORINE ABSORPTION IN S(IV) SOLUTIONS

    EPA Science Inventory

    The report gives results of measurements of the rate of Chlorine (Cl2) absorption into aqueous sulfite/bisulfite -- S(IV) -- solutions at ambient temperature using a highly characterized stirred-cell reactor. The reactor media were 0 to 10 mM S(IV) with pHs of 3.5-8.5. Experiment...

  4. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural...

  5. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. (a) General. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw...

  6. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. (a) General. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw...

  7. Changes are in Store for Pulping Technology

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    The pulp and paper industry are being forced by economic considerations and air pollution regulations to consider alternatives to the use of sulfur systems, be they kraft, acid or neutral sulfite. To meet environmental requirements and combat erosion of profits, modernized non-sulfur pulping methods will increasingly appear on the scene. (BT)

  8. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. (a) General. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw...

  9. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural...

  10. 40 CFR 430.47 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.47 Pretreatment standards for new sources (PSNS). Except as provided in...

  11. 40 CFR 415.206 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Sulfite Production Subcategory § 415.206 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR...

  12. 40 CFR 430.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.46 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7...

  13. 40 CFR 430.47 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.47 Pretreatment standards for new sources (PSNS). Except as provided in...

  14. 40 CFR 430.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.46 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7...

  15. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    PubMed

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral pH indicated good agreement between thermodynamic and kinetic considerations for various key reactions involved, further validating the proposed mechanisms involved in both the autoxidation and the copper-catalyzed oxidation of NH2Q in circumneutral pH solutions. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Ferrous ion as a reducing agent in the generation of antibiofilm nitric oxide from a copper-based catalytic system.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2018-05-01

    The work found that the electron-donating properties of ferrous ions (Fe 2+ ) can be used for the conversion of nitrite (NO 2 - ) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe 2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe 2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe 2+ -to-Fe 3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe 2+ and reduce its autoxidation to Fe 3+ . These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe 2+ was observed on nitrifying bacteria biofilms in PBS at pH 6. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock

    PubMed Central

    Macarthur, Heather; Westfall, Thomas C.; Riley, Dennis P.; Misko, Thomas P.; Salvemini, Daniela

    2000-01-01

    A major feature of septic shock is the development of a vascular crisis characterized by nonresponsiveness to sympathetic vasoconstrictor agents and the subsequent irreversible fall in blood pressure. In addition, sepsis, like other inflammatory conditions, results in a large increase in the production of free radicals, including superoxide anions (O2⨪) within the body. Here we show that O2⨪ reacts with catecholamines deactivating them in vitro. Moreover, this deactivation would appear to account for the hyporeactivity to exogenous catecholamines observed in sepsis, because administration of a superoxide dismutase (SOD) mimetic to a rat model of septic shock to remove excess O2⨪ restored the vasopressor responses to norepinephrine. This treatment with the SOD mimetic also reversed the hypotension in these animals; suggesting that deactivation of endogenous norepinephrine by O2⨪ contributes significantly to this aspect of the vascular crisis. Indeed, the plasma concentrations of both norepinephrine and epinephrine in septic rats treated with the SOD mimetic were significantly higher than in untreated rats. Interestingly, the plasma concentrations for norepinephrine and epinephrine were inversely related to the plasma concentrations of adrenochromes, the product of the autoxidation of catecholamines initiated by O2⨪. We propose, therefore, that the use of a SOD mimetic represents a new paradigm for the treatment of septic shock. By removing O2⨪, exogenous and endogenous catecholamines are protected from autoxidation. As a result, both hyporeactivity and hypotension are reversed, generation of potentially toxic adrenochromes is reduced, and survival rate is improved. PMID:10944234

  18. Enhancing the natural folate level in wine using bioengineering and stabilization strategies.

    PubMed

    Liu, Yazheng; Walkey, Christopher J; Green, Timothy J; van Vuuren, Hennie J J; Kitts, David D

    2016-03-01

    Folate deficiency is linked to many diseases, some of which may have higher probability in individuals with alcohol-induced alterations in one-carbon metabolism. Our study shows that folate content in commercial wine is not related to white or red varieties, but associated with the yeast that is used to produce the wine. The stability of folate in these wines, once opened for consumption, did not correlate with total phenolic or sulfite content. In addition, we employed yeast bioengineering to fortify wine with folate. We confirmed by overexpression that FOL2 was the key gene encoding the rate-limiting step of folate biosynthesis in wine yeast. In this study, we also show that overexpression of other folate biosynthesis genes, including ABZ1, ABZ2, DFR1, FOL1 and FOL3, had no effect on folate levels in wine. Ensuring stability of the increased natural folate in all wines was achieved by the addition of ascorbate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    PubMed

    El-Sayed, Ashraf S A; Yassin, Marwa A; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  20. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin

    Treesearch

    Zhaojiang Wang; JY Zhu; Yingjuan Fu; Menghua Qin; Zhiyong Shao; Jungang Jiang; Fang Yang

    2013-01-01

    Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) is a relatively...

  1. Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts

    USDA-ARS?s Scientific Manuscript database

    Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrol...

  2. Robust enzymatic saccharification of a Douglas-fir forest harvest residue by SPORL

    Treesearch

    Shao-Yuan Leu; J.Y. Zhu; Roland Gleisner; John Sessions; Gevan Marrs

    2013-01-01

    Forest harvest residues can be a cost-effective feedstock for a biorefinery, but the high lignin content of forest residues is a major barrier for enzymatic sugar production. Sulfite pretreatment to overcome strong recalcitrance of lignocelluloses (SPORL) was applied to a Douglas-fir (Pseudotsuga menziesii (Mirb) Franco var. menziesii) forest residue...

  3. Lignosulfonate To Enhance Enzymatic Saccharification of Lignocelluloses: Role of Molecular Weight and Substrate Lignin

    Treesearch

    Haifeng Zhou; Hongming Lou; Dongjie Yang; J.Y. Zhu; Xueqing Qiu

    2013-01-01

    This study conducted an investigation of the effect of lignosulfonate (LS) on enzymatic saccharification of lignocelluloses. Two commercial LSs and one laboratory sulfonated kraft lignin were applied to Whatman paper, dilute acid and SPORL (sulfite pretreatment to overcome recalcitrance of lignocelluloses) pretreated aspen, and kraft alkaline and SPORL pretreated...

  4. 40 CFR Appendix A-4 to Part 60 - Test Methods 6 through 10B

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sources Method 6A—Determination of sulfur dioxide, moisture, and carbon dioxide emissions from fossil fuel... fossil fuel combustion sources Method 6C—Determination of Sulfur Dioxide Emissions From Stationary... with SO2 to form particulate sulfite and by reacting with the indicator. If free ammonia is present...

  5. 40 CFR Appendix A-4 to Part 60 - Test Methods 6 through 10B

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sources Method 6A—Determination of sulfur dioxide, moisture, and carbon dioxide emissions from fossil fuel... fossil fuel combustion sources Method 6C—Determination of Sulfur Dioxide Emissions From Stationary... with SO2 to form particulate sulfite and by reacting with the indicator. If free ammonia is present...

  6. 40 CFR Appendix A-4 to Part 60 - Test Methods 6 through 10B

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sources Method 6A—Determination of sulfur dioxide, moisture, and carbon dioxide emissions from fossil fuel... fossil fuel combustion sources Method 6C—Determination of Sulfur Dioxide Emissions From Stationary... with SO2 to form particulate sulfite and by reacting with the indicator. If free ammonia is present...

  7. 40 CFR Appendix A-4 to Part 60 - Test Methods 6 through 10B

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sources Method 6A—Determination of sulfur dioxide, moisture, and carbon dioxide emissions from fossil fuel... fossil fuel combustion sources Method 6C—Determination of Sulfur Dioxide Emissions From Stationary... reacting with SO2 to form particulate sulfite and by reacting with the indicator. If free ammonia is...

  8. 40 CFR Appendix A-4 to Part 60 - Test Methods 6 through 10B

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sources Method 6A—Determination of sulfur dioxide, moisture, and carbon dioxide emissions from fossil fuel... fossil fuel combustion sources Method 6C—Determination of Sulfur Dioxide Emissions From Stationary... with SO2 to form particulate sulfite and by reacting with the indicator. If free ammonia is present...

  9. 40 CFR 430.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... times. Subpart C [BCT effluent limitations for unbleached kraft-neutral sulfite semi-chemical (cross recovery) process and/or a combined unbleached kraft and semi-chemical process, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system] Pollutant or...

  10. 40 CFR 430.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... times. Subpart C [BCT effluent limitations for unbleached kraft-neutral sulfite semi-chemical (cross recovery) process and/or a combined unbleached kraft and semi-chemical process, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system] Pollutant or...

  11. Removal of Brettanomyces bruxellensis from red wine using membrane filtration

    USDA-ARS?s Scientific Manuscript database

    While sulfites help limit growth of the spoilage yeast, Brettanomyces, SO2 has been reported to decrease cell size, thereby potentially decreasing the porosities of filtration membranes required for removal. B. bruxellensis strains B1b and F3 were inoculated into red wines and after 12 days, half th...

  12. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses

    Treesearch

    ZJ Wang; TQ Lan; JY Zhu

    2013-01-01

    Nonspecific (nonproductive) binding (adsorption) of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) is a relatively new process, but demonstrated robust performance for sugar and biofuel...

  13. MERCURY REMOVAL FROM STACK GAS BY AQUEOUS SCRUBBING

    EPA Science Inventory

    Fundamental results will be obtained on the reaction kinetics in mass transfer boundary layers for the following systems:

  1. Sensing Free Sulfur Dioxide in Wine

    PubMed Central

    Monro, Tanya M.; Moore, Rachel L.; Nguyen, Mai-Chi; Ebendorff-Heidepriem, Heike; Skouroumounis, George K.; Elsey, Gordon M.; Taylor, Dennis K.

    2012-01-01

    Sulfur dioxide (SO2) is important in the winemaking process as it aids in preventing microbial growth and the oxidation of wine. These processes and others consume the SO2 over time, resulting in wines with little SO2 protection. Furthermore, SO2 and sulfiting agents are known to be allergens to many individuals and for that reason their levels need to be monitored and regulated in final wine products. Many of the current techniques for monitoring SO2 in wine require the SO2 to be separated from the wine prior to analysis. This investigation demonstrates a technique capable of measuring free sulfite concentrations in low volume liquid samples in white wine. This approach adapts a known colorimetric reaction to a suspended core optical fiber sensing platform, and exploits the interaction between guided light located within the fiber voids and a mixture of the wine sample and a colorimetric analyte. We have shown that this technique enables measurements to be made without dilution of the wine samples, thus paving the way towards real time in situ wine monitoring. PMID:23112627

  2. Determination of sulfur in kerosene by combustion and molecular absorption spectrometry in the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruschak, M.L.; Syty, A.

    1982-08-01

    A technique of nonflame molecular adsorption in the gas phase developed for the determination of sulfite trapped in tetrachloromercurate, is described herein for application to the determination of total sulfur in kerosene. The burner head is removed from the atomic absorption spectrometer and replaced with a flow-through absorption cell. A special reaction vessel is used to evolve SO/sub 2/ from the sulfite in a precise and convenient manner. The transient absorbance caused by the SO/sub 2/, as it is carried through the absorption cell, is measured. Both spiked and unspiked samples of kerosene were analyzed, and the reproducibility of themore » repeated runs is evidenced by a relative standard deviation from the mean of 5% for the unspiked kerosene and 4% for the spiked kerosene. If the detection level is defined as that concentration of S which gives a % S twice the standard deviation from the mean yields, the detection limit for the present method is 0.002% S by weight in kerosene.« less

  3. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue.

    PubMed

    Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2018-02-01

    A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Acidification of prehydrolysis liquor and spent liquor of neutral sulfite semichemical pulping process.

    PubMed

    Fatehi, Pedram; Gao, Weijiue; Sun, Yonghui; Dashtban, Mehdi

    2016-10-01

    Acidification has been commercialized for producing kraft lignin from black liquor of kraft pulping process. This work intended to evaluate the effectiveness of acidification in extracting lignocelluloses from the spent liquor of neutral sulfite semichemical pulping (NSSC) process and from prehydrolysis liquor (PHL) of kraft-based dissolving pulp production process. The results showed that the NSSC and PHL spent liquors had some lignin-carbohydrate complexes (LCC), and that the square weighted counts of particles with a chord length of 50-150μm in the spent liquors were significantly increased as pH dropped to 1.5. Interestingly, the acidification reduced the lignosulfonate/lignin content of NSSC and PHL by 13% or 20%, while dropped their oligosugars content by 75% and 38%, respectively. On a dry basis, the precipitates had more carbon, hydrogen and a high heating value of 18-22MJ/kg, but less oxygen, than spent liquors. The precipitates of PHL could be used as fuel. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.

    PubMed

    Zhou, Jie; Ouyang, Jia; Xu, Qianqian; Zheng, Zhaojuan

    2016-12-01

    The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous β-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Study on the removal of iron impurities in methanesulfonic acid tin plating bath

    NASA Astrophysics Data System (ADS)

    Hou-li, LIU; Jian-Jun, CHEN; Hong-Liang, PAN

    2018-03-01

    This thesis investigated the the influence of sodium sulfite as reducing agent on the recovery rate of tin ion. The approach is that HZ016 type cation exchange resin was used to adsorb Sn2+ and Fe2+ in electroplated tin solution first. After adsorption, the resin was removed by sulfuric acid, which was added with NaOH to adjust pH value to form precipitation and separate tin. X-ray diffraction (XRD) and energy spectrum (EDS) method were used to analyze the composition of the precipitates adjusted by pH. The results show that when the mass ratio of resin to bath is 1:2, the adsorption efficiency of resin reaches 98.3% and 97.1% respectively, and the elution efficiency of tin and iron reaches 95.1% and 94% respectively when the mass ratio of resin to eluent sulfuric acid is 1:4. Sodium sulfite was added to increase the efficiency of tin recovery by 8.1%. EDS and XRD atlas showed that after pH regulation, the main composition of the filtration precipitation was the hydroxides of tin.

  7. Effect of commercially available egg cures on the survival of juvenile salmonids

    USGS Publications Warehouse

    Clements, S.; Chitwood, R.; Schreck, C.B.

    2011-01-01

    There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  8. Tracing the `ninth sulfur' of the nitrogenase cofactor via a semi-synthetic approach

    NASA Astrophysics Data System (ADS)

    Tanifuji, Kazuki; Lee, Chi Chung; Sickerman, Nathaniel S.; Tatsumi, Kazuyuki; Ohki, Yasuhiro; Hu, Yilin; Ribbe, Markus W.

    2018-05-01

    The M-cluster is the [(homocitrate)MoFe7S9C] active site of nitrogenase that is derived from an 8Fe core assembled viacoupling and rearrangement of two [Fe4S4] clusters concomitant with the insertion of an interstitial carbon and a `ninth sulfur'. Combining synthetic [Fe4S4] clusters with an assembly protein template, here we show that sulfite can give rise to the ninth sulfur that is incorporated in the catalytically important belt region of the cofactor after the radical S-adenosyl-l-methionine-dependent carbide insertion and the concurrent 8Fe-core rearrangement have already taken place. Based on the differential reactivity of the formed cluster species, we also propose a new [Fe8S8C] cluster intermediate, the L*-cluster, which is similar to the [Fe8S9C] L-cluster, but lacks the ninth sulfur from sulfite. This work provides a semi-synthetic tool for protein reconstitution that could be widely applicable for the functional analysis of other FeS systems.

  9. Tracing the 'ninth sulfur' of the nitrogenase cofactor via a semi-synthetic approach.

    PubMed

    Tanifuji, Kazuki; Lee, Chi Chung; Sickerman, Nathaniel S; Tatsumi, Kazuyuki; Ohki, Yasuhiro; Hu, Yilin; Ribbe, Markus W

    2018-05-01

    The M-cluster is the [(homocitrate)MoFe 7 S 9 C] active site of nitrogenase that is derived from an 8Fe core assembled viacoupling and rearrangement of two [Fe 4 S 4 ] clusters concomitant with the insertion of an interstitial carbon and a 'ninth sulfur'. Combining synthetic [Fe 4 S 4 ] clusters with an assembly protein template, here we show that sulfite can give rise to the ninth sulfur that is incorporated in the catalytically important belt region of the cofactor after the radical S-adenosyl-L-methionine-dependent carbide insertion and the concurrent 8Fe-core rearrangement have already taken place. Based on the differential reactivity of the formed cluster species, we also propose a new [Fe 8 S 8 C] cluster intermediate, the L*-cluster, which is similar to the [Fe 8 S 9 C] L-cluster, but lacks the ninth sulfur from sulfite. This work provides a semi-synthetic tool for protein reconstitution that could be widely applicable for the functional analysis of other FeS systems.

  10. Structural characterization of a hydroperoxo nickel complex and its autoxidation: mechanism of interconversion between peroxo, superoxo, and hydroperoxo species.

    PubMed

    Rettenmeier, Christoph A; Wadepohl, Hubert; Gade, Lutz H

    2015-04-13

    Pincer-stabilized nickel(I) complexes readily react with molecular oxygen to form dinuclear 1,2-μ-peroxo-bridged nickel(II) complexes, which are the major components of a dynamic equilibrium with the corresponding mononuclear superoxo species. The peroxo complexes further react with hydrogen peroxide to give the corresponding nickel(II) hydroperoxides. One of these hitherto elusive species was characterized by X-ray diffraction for the first time [O-O bond length: 1.492(2) Å]. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Claim of Anti-Cataract Potential of Heliotropium indicum: A Myth or Reality?

    PubMed

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Afari, Clement; Asiamah, Emmanuel Akomanin

    2015-12-01

    Heliotropium indicum has several uses in traditional medicine attributable to its numerous bioactive compounds. It is used as a traditional remedy for cataracts in Ghana without any scientific verification. This study aimed at verifying the anti-cataract properties of an aqueous whole plant extract of H. indicum. The effect (cataract score) of 30, 100, and 300 mg kg(-1) extract (bid for 21 days, per os) on the development of 30 µmol kg(-1) sodium selenite-induced cataract in 10-day-old rat pups was investigated. Soluble lens proteins alpha A and alpha B crystallins, total lens protein, total lens glutathione, and aquaporin 0 in enucleated lens homogenates were determined spectrophotometrically using commercially available kits. Histopathological studies on the lenses were also performed. The 2,2-diphenyl-1-picrylhydrazyl scavenging effect and linoleic acid autoxidation (antioxidant properties) of the extract (0.1-3.0 mg ml(-1)), compared to n-propyl gallate, were ascertained using standard procedures. Cataract scores showed that the extract, at all dose levels, significantly alleviated selenite-induced cataracts (P ≤ 0.001). Markers of lens transparency (aquaporin 0, alpha A and B crystallins), as well as total lens proteins and lens glutathione levels, were significantly preserved (P ≤ 0.01-0.001). The extract exhibited activity relevant for scavenging free radicals and inhibition of lipid peroxidation. Epithelial and lens fiber integrity in the histopathological assessment were maintained with HIE treatment. The aqueous whole plant extract of H. indicum significantly inhibited the development of cataracts in rats via multiple mechanisms.

  12. Analysis of Oxidative Stress and Wound-Inducible Dinor Isoprostanes F1 (Phytoprostanes F1) in Plants1

    PubMed Central

    Imbusch, Ruth; Mueller, Martin J.

    2000-01-01

    Isoprostanes F2 are arachidonate autoxidation products in mammals that have been shown to be induced during several human disorders associated with enhanced free-radical generation. Isoprostanes F2 represent not only extremely reliable markers of oxidative stress in vivo, but they also exert potent biological effects. Therefore, it has been postulated that isoprostanoids are mediators of oxidant injury in vivo. Higher plants, however, do not synthesize arachidonic acid or isoprostanes. Here we show that a series of isoprostane F2 analogs termed phytoprostanes F1 (previously dinor isoprostanes F1) are formed by an analogous pathway from α-linolenate in plants. High-performance liquid chromatography and gas chromatography-mass spectrometry methods using [18O]3phytoprostanes F1 as internal standard have been developed to quantify phytoprostanes F1. In fresh peppermint (Mentha piperita) leaves, phytoprostanes F1 were found in free form (76 ng/g of dry weight) and at about 150-fold higher levels esterified in lipids. It is notable that these levels of phytoprostanes F1 are more than two orders of magnitude higher than the basal levels of isoprostanes F2 in mammalian tissues. Furthermore, wounding, as well as butyl hydroperoxide or cupric acetate stress triggered a dramatic increase of free and esterified phytoprostanes F1. Thus phytoprostanes F1 may represent a sensitive measure of oxidative damage in plants similar to isoprostanes in mammals. However, one of the most exciting issues to be clarified is the possibility that linolenate-derived phytoprostanes F1 exert biological activities in plants and/or animals. PMID:11080305

  13. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis.

    PubMed

    Vejux, A; Malvitte, L; Lizard, G

    2008-07-01

    Oxysterols are 27-carbon atom molecules resulting from autoxidation or enzymatic oxidation of cholesterol. They are present in numerous foodstuffs and have been demonstrated to be present at increased levels in the plasma of patients with cardiovascular diseases and in atherosclerotic lesions. Thus, their role in lipid disorders is widely suspected, and they might also be involved in important degenerative diseases such as Alzheimer's disease, osteoporosis, and age-related macular degeneration. Since atherosclerosis is associated with the presence of apoptotic cells and with oxidative and inflammatory processes, the ability of some oxysterols, especially 7-ketocholesterol and 7beta-hydroxycholesterol, to trigger cell death, activate inflammation, and modulate lipid homeostasis is being extensively studied, especially in vitro. Thus, since there are a number of essential considerations regarding the physiological/pathophysiological functions and activities of the different oxysterols, it is important to determine their biological activities and identify their signaling pathways, when they are used either alone or as mixtures. Oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever. Moreover, a substantial accumulation of polar lipids in cytoplasmic multilamellar structures has been observed with cytotoxic oxysterols, suggesting that cytotoxic oxysterols are potent inducers of phospholipidosis. This basic knowledge about oxysterols contributes to a better understanding of the associated pathologies and may lead to new treatments and new drugs. Since oxysterols have a number of biological activities, and as oxysterol-induced cell death is assumed to take part in degenerative pathologies, the present review will focus on the cytotoxic activities of these compounds, the corresponding cell death signaling pathways, and associated events (oxidation, inflammation, and phospholipidosis).

  14. Biological activities of 7-dehydrocholesterol-derived oxysterols: implications for Smith-Lemli-Opitz syndrome[S

    PubMed Central

    Korade, Zeljka; Xu, Libin; Shelton, Richard; Porter, Ned A.

    2010-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is a metabolic and developmental disorder caused by mutations in the gene encoding the enzyme 7-dehydrocholesterol reductase (Dhcr7). This reductase catalyzes the last step in cholesterol biosynthesis, and levels of 7-dehydrocholesterol (7-DHC), the substrate for this enzyme, are elevated in SLOS patients as a result of this defect. Our group has previously shown that 7-DHC is extremely prone to free radical autoxidation, and we identified about a dozen different oxysterols formed from oxidation of 7-DHC. We report here that 7-DHC-derived oxysterols reduce cell viability in a dose- and time-dependent manner, some of the compounds showing activity at sub-micromolar concentrations. The reduction of cell survival is caused by a combination of reduced proliferation and induced differentiation of the Neuro2a cells. The complex 7-DHC oxysterol mixture added to control Neuro2a cells also triggers the gene expression changes that were previously identified in Dhcr7-deficient Neuro2a cells. Based on the identification of overlapping gene expression changes in Dhcr7-deficient and 7-DHC oxysterol-treated Neuro2a cells, we hypothesize that some of the pathophysiological findings in the mouse SLOS model and SLOS patients might be due to accumulated 7-DHC oxysterols. PMID:20702862

  15. Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli.

    PubMed

    Havelius, Kajsa G V; Reschke, Stefan; Horn, Sebastian; Döring, Alexander; Niks, Dimitri; Hille, Russ; Schulzke, Carola; Leimkühler, Silke; Haumann, Michael

    2011-02-07

    YedY from Escherichia coli is a new member of the sulfite oxidase family of molybdenum cofactor (Moco)-containing oxidoreductases. We investigated the atomic structure of the molybdenum site in YedY by X-ray absorption spectroscopy, in comparison to human sulfite oxidase (hSO) and to a Mo(IV) model complex. The K-edge energy was indicative of Mo(V) in YedY, in agreement with X- and Q-band electron paramagnetic resonance results, whereas the hSO protein contained Mo(VI). In YedY and hSO, molybdenum is coordinated by two sulfur ligands from the molybdopterin ligand of the Moco, one thiolate sulfur of a cysteine (average Mo-S bond length of ∼2.4 Å), and one (axial) oxo ligand (Mo═O, ∼1.7 Å). hSO contained a second oxo group at Mo as expected, but in YedY, two species in about a 1:1 ratio were found at the active site, corresponding to an equatorial Mo-OH bond (∼2.1 Å) or possibly to a shorter Mo-O(-) bond. Yet another oxygen (or nitrogen) at a ∼2.6 Å distance to Mo in YedY was identified, which could originate from a water molecule in the substrate binding cavity or from an amino acid residue close to the molybdenum site, i.e., Glu104, that is replaced by a glycine in hSO, or Asn45. The addition of the poor substrate dimethyl sulfoxide to YedY left the molybdenum coordination unchanged at high pH. In contrast, we found indications that the better substrate trimethylamine N-oxide and the substrate analogue acetone were bound at a ∼2.6 Å distance to the molybdenum, presumably replacing the equatorial oxygen ligand. These findings were used to interpret the recent crystal structure of YedY and bear implications for its catalytic mechanism.

  16. Environmental sulfur dioxide: toxicity toward the alveolar macrophage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butenhoff, J.L.

    This study was designed to determine if SO/sub 2/ and/or its associated ions in solution (H/sub 3/O/sup +/, HSO/sub 3//sup -/, SO/sub 3//sup =/ and SO/sub 4//sup =/) are cytotoxic to rat PAM cells in primary culture. The indices of cytotoxicity which were evaluated included cell viability uptake of particles and viable bacteria, inhibition of antioxidant enzymes, cell surface morphology and oxygen utilization. For determining effects on cell viability, function and morphology, exposures were conducted for 20 hours at either 30 or 37 deg. C in Leighton culture tubes of polystyrene petri dishes. In both instances, cells were attached tomore » glass. Cell viability dose-response curves were obtained with H/sub 3/O/sup +/ (HCl and H/sub 2/SO/sub 4/), SO/sub 2/ (dissolved gas), HSO/sub 3//sup -/, SO/sub 3//sup =/ and SO/sub 4//sup =/. Buffer strength and pH were varied to determine the effect of these various molecular species on viability. Sulfur dioxide gas exhibited a weak protentiating effect on H/sub 3/O/sup +/ toxicity below pH 6.4. Significant viability loss did not occur above pH 6.4. Particle uptake was diminished significantly at sulfite concentration greater than or equal to 500 uM, pH 7.2. Sulfite was found to be a potent competitive inhibitor of GSH-peroxidase in vitro. A slight yet significant change in cell morphology occurred at sulfite concentrations of 200 uM and 4000 uM and pH 7.2. There was a significant difference in O/sub 2/ utilization between control and 4000 uM exposed cells, indicating a potential diminution in cell-surface mediated respiratory stimulation. Based on these studies, sulfur dioxide gas exposure may have an effect on alveolar macrophage function depending on the ambient concentration of the gas and its accumulation in the airspaces of the lung.« less

  17. Condensed tannin-sulfonate derivatives in cold-setting wood-laminating adhesives

    Treesearch

    Roland E. Kreibich; Richard W. Hemingway

    1987-01-01

    Extraction of southern pine bark with 4.0 percent sodium sulfite and 0.4-percent sodium carbonate(based on ovendry bark weight) gives epicatechin-(4β)-sulfonate and oligomeric procyanidin-4-sulfonatee that show great promise to replace about 50 percent of the phenol-resorcinol-formaldehyde resin in coldsetting wood-laminating adhesives. Bonds in Douglas-fir...

  18. Efficient ethanol production from beetle-killed lodgepole pine using SPORL technology and Saccharomyces cerevisiae without detoxification

    Treesearch

    Junyong Zhu; Xiaolin Luo; Shen Tian; Roland Gleisner; Jose Negron; Eric Horn

    2011-01-01

    This study applied Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) to evaluate the potential of mountain pine beetle-killed lodgepole pine for ethanol production using conventional Saccharomyces cerevisiae without hydrolysate detoxification. The results indicate that the beetle-killed trees are more susceptible to SPORL pretreatment than live...

  19. Using low temperature to balance enzymatic saccharification and furan formation during SPORL pretreatment of Douglas-fir

    Treesearch

    C. Zhang; C.J. Houtman; J.Y. Zhu

    2014-01-01

    tComparing analytical results for Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses(SPORL) of Douglas-fir (Pseudotsuga menziesii) at two different temperatures shows that the apparentactivation energy of sugar degradation is higher than that of hemicellulose hydrolysis, approximately161 kJ/mole versus 100 kJ/mole. Thus, one can...

  20. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.

    ERIC Educational Resources Information Center

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…

  1. Production of ethanol from xylose by Candida shehatae grown under continuous or fed-batch conditions

    Treesearch

    T. W. Jeffries; M. A. Alexander

    1990-01-01

    Xylose is a major component of angiosperm lignocellulosic residues. It is available from a number of different sources in the forest products industry, including fiberboard manufacture, sulfite waste liquors, production of dissolving pulp, and the hydrolysis of hardwood residues. Hydrolysis of wood for the production of liquid fuels, particularly ethanol, has been...

  2. Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from aspen

    Treesearch

    S. Tian; W. Zhu; Roland Gleisner; X.J. Pan; Junyong Zhu

    2011-01-01

    This study reports comparative evaluations of sugar and ethanol production from a native aspen (Populus tremuloides) between sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) and dilute acid (DA) pretreatments. All aqueous pretreatments were carried out in a laboratory wood pulping digester using wood chips at 170°C with a liquid to...

  3. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cervisiae without detoxification

    Treesearch

    S. Tian; X.L. Luo; X.S. Yang; J.Y. Zhu

    2010-01-01

    This study reports an ethanol yield of 270 L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before...

  4. Multistep process to produce fermentable sugars and lignosulfonates from softwood enzymolysis residues

    Treesearch

    Yalan Liu; Jinwu Wang; Michael P. Wolcott

    2016-01-01

    The residual solids from enzymatic hydrolysis are usually burned to produce energy and have been explored as a feedstock for various products including activated carbon and lignin based polymers. These products require additional procedures unrelated to the existing biorefinery equipment. In the current study, we proposed successive sulfite treatments to utilize the...

  5. 40 CFR Table 1 to Subpart Mm of... - General Provisions Applicability to Subpart MM

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Subpart MM 1 Table 1 to Subpart MM of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Combustion Sources at Kraft, Soda, Sulfite, and Stand-Alone Semichemical Pulp Mills Pt. 63, Subpt. MM, Table 1 Table 1 to Subpart MM of Part 63—General Provisions Applicability to Subpart MM General provisions...

  6. 40 CFR Table 1 to Subpart Mm of... - General Provisions Applicability to Subpart MM

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Subpart MM 1 Table 1 to Subpart MM of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Combustion Sources at Kraft, Soda, Sulfite, and Stand-Alone Semichemical Pulp Mills Pt. 63, Subpt. MM, Table 1 Table 1 to Subpart MM of Part 63—General Provisions Applicability to Subpart MM General provisions...

  7. 40 CFR Table 1 to Subpart Mm of... - General Provisions Applicability to Subpart MM

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Subpart MM 1 Table 1 to Subpart MM of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Combustion Sources at Kraft, Soda, Sulfite, and Stand-Alone Semichemical Pulp Mills Pt. 63, Subpt. MM, Table 1 Table 1 to Subpart MM of Part 63—General Provisions Applicability to Subpart MM General provisions...

  8. 40 CFR Table 1 to Subpart Mm of... - General Provisions Applicability to Subpart MM

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Subpart MM 1 Table 1 to Subpart MM of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Combustion Sources at Kraft, Soda, Sulfite, and Stand-Alone Semichemical Pulp Mills Pt. 63, Subpt. MM, Table 1 Table 1 to Subpart MM of Part 63—General Provisions Applicability to Subpart MM General provisions...

  9. 40 CFR Table 1 to Subpart Mm of... - General Provisions Applicability to Subpart MM

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Subpart MM 1 Table 1 to Subpart MM of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Combustion Sources at Kraft, Soda, Sulfite, and Stand-Alone Semichemical Pulp Mills Pt. 63, Subpt. MM, Table 1 Table 1 to Subpart MM of Part 63—General Provisions Applicability to Subpart MM General provisions...

  10. Recycling paper-pulp waste liquors

    NASA Technical Reports Server (NTRS)

    Sarbolouki, M. N.

    1981-01-01

    Papermills in U.S. annually produce 3 million tons of sulfite waste liquor solids; other fractions of waste liquor are monomeric sugars and lignosulfonates in solution. Recovery of lignosulfonates involves precipitation and cross-linking of sulfonates to form useful solid ion-exchange resin. Contamination of sugars recovered from liquor is avoided by first converting them to ethanol, then removing ethanol by distillation.

  11. Chemical Model Systems for Cellular Nitros(yl)ation Reactions

    PubMed Central

    Daiber, Andreas; Schildknecht, Stefan; Müller, Johanna; Bachschmid, Markus M.; Ullrich, Volker

    2014-01-01

    S-nitros(yl)ation belongs to the redox-based posttranslational modifications of proteins but the underlying chemistry is controversial. In contrast to current concepts involving the autoxidation of nitric oxide (•NO, nitrogen monoxide), we and others have proposed the formation of peroxynitrite (oxoperoxonitrate(1-)) as an essential intermediate. This requires low cellular fluxes of •NO and superoxide (•O2−), for which model systems have been introduced. We here propose two new systems for nitros(yl)ation that avoid the shortcomings of previous models. Based on the thermal decomposition of 3-morpholinosydnonimine, equal fluxes of •NO and •O2− were generated and modulated by the addition of •NO donors or Cu,Zn-superoxide dismutase. As reactants for S-nitros(yl)ation, NADP+-dependent isocitrate dehydrogenase and glutathione were employed, for which optimal S-nitros(yl)ation was observed at nanomolar fluxes of •NO and •O2− at a ratio of about 3:1. The previously used reactants phenol and diaminonaphthalene, (C- and N-nitrosation) demonstrated potential participation of multiple pathways for nitros(yl)ation. According to our data, neither peroxynitrite nor autoxidation of •NO was as efficient as the 3•NO/1•O2− system in mediating S-nitros(yl)ation. In theory this could lead to an elusive nitrosonium (nitrosyl cation)-like species in the first step and to N2O3 in the subsequent reaction. Which of these two species or whether both together will participate in biological S-nitros(yl)ation remains to be elucidated. Finally, we developed several hypothetical scenarios to which the described U flux model could apply, providing conditions that allow either direct electrophilic substitution at a thiolate or S-nitros(yl)ation via transnitrosation from S-nitrosoglutathione. PMID:19477267

  12. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.

    PubMed

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-10-28

    The food industry is interested in the utilization of nanoemulsions stabilized by natural emulsifiers, but little research has been conducted to determine the oxidative stability of such emulsions. In this study, two natural (lecithin and quillaja saponin) and two synthetic (Tween 80 and sodium dodecyl sulfate) surfactants were used to fabricate omega-3 nanoemulsion using high pressure homogenization (microfluidization). Initially, all the nanoemulsions contained small (d from 45 to 89 nm) and anionic (ζ-potential from -8 to -65 mV) lipid droplets (pH 7). The effect of pH, ionic strength, and temperature on the physical stability of the nanoemulsion system was examined. Nanoemulsion stabilized with Tween 80, quillaja saponin, or sodium dodecyl sulfate (SDS) exhibited no major changes in particle size or visible creaming in the pH range of 3 to 8. All nanoemulsions were relatively stable to salt addition (0 to 500 mM NaCl, pH 7.0). Nanoemulsions stabilized with SDS and quillaja saponin were stable to heating (30 to 90 °C). The impact of surfactant type on lipid oxidation was determined in the presence and absence of the singlet oxygen photosensitizers, riboflavin, and rose bengal. Riboflavin and rose bengal accelerated lipid oxidation when compare to samples without photosensitizers. Lipid hydroperoxide formation followed the order Tween 80 > SDS > lecithin > quillaja saponin, and propanal formation followed the order lecithin > Tween 80 > SDS > quillaja saponin at 37 °C for autoxidation. The same order of oxidative stability was observed in the presence of photosensitized oxidation promoted by riboflavin. Quillaja saponin consistently produced the most oxidatively stable emulsions, which could be due to its high free radical scavenging capacity.

  13. New Insights into the Electroreduction of Ethylene Sulfite as Electrolyte Additive for Facilitating Solid Electrolyte Interphase of Lithium Ion Battery

    PubMed Central

    Sun, Youmin; Wang, Yixuan

    2017-01-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIB) the supermolecular clusters [(ES)Li+(PC)m](PC)n (m=1–2; n=0, 6, and 9) were used to investigate the electroreductive decompositions of the electrolyte additive, ethylene sulfite (ES), as well as the solvent, propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has lower energy barrier than those of paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or the reduction potential dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A>C>D, which further signifies the importance of the concerted new path in facilitating the SEI. The hybrid models, the supermolecular cluster augmented by polarized continuum model, PCM-[(ES)Li+(PC)2](PC)n (n=0,6, and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li+ in [(ES)Li+(PC)2](PC)n (n=6, and 9) partially compensates the overestimation of solvent effects arising from the PCM model for the naked (ES)Li+(PC)2, and the theoretical reduction potential with PCM-[(ES)Li+(PC)2](PC)6 (1.90–1.93V) agrees very well with the experimental one (1.8–2.0V). PMID:28220165

  14. New insights into the electroreduction of ethylene sulfite as an electrolyte additive for facilitating solid electrolyte interphase formation in lithium ion batteries.

    PubMed

    Sun, Youmin; Wang, Yixuan

    2017-03-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIBs) the supermolecular clusters [(ES)Li + (PC) m ](PC) n (m = 1-2; n = 0, 6 and 9) were used to investigate the electroreductive decompositions of the electrolyte additive ethylene sulfite (ES) as well as the solvent propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has a much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has a lower energy barrier than paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or reduction potential and dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A > C > D, which further signifies the importance of the concerted new path in facilitating the SEI formation. The hybrid models, the supermolecular clusters augmented by a polarized continuum model, PCM-[(ES)Li + (PC) 2 ](PC) n (n = 0, 6 and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li + in [(ES)Li + (PC) 2 ](PC) n (n = 6 and 9) partially compensates the overestimation of solvent effects arising from the PCM for the naked (ES)Li + (PC) 2 , and the theoretical reduction potential of PCM-[(ES)Li + (PC) 2 ](PC) 6 (1.90-1.93 V) agrees very well with the experimental one (1.8-2.0 V).

  15. Oxidative protein modification as predigestive mechanism of the carnivorous plant Dionaea muscipula: an hypothesis based on in vitro experiments.

    PubMed

    Galek, H; Osswald, W F; Elstner, E F

    1990-01-01

    Aqueous leaf extracts from Dionaea muscipula contain quinones such as the naphthoquinone plumbagin that couple to different NADH-dependent diaphorases, producing superoxide and hydrogen peroxide upon autoxidation. Upon preincubation of Dionaea extracts with certain diaphorases and NADH in the presence of serumalbumin (SA), subsequent tryptic digestion of SA is facilitated. Since the secretroy glands of Droseracea contain proteases and possibly other degradative enzymes it is suggested that the presence of oxygen-activating redox cofactors in the extracts function as extracellular predigestive oxidants which render membrane-bound proteins of the prey (insects) more susceptible to proteolytic attacks.

  16. Properties of extracts from defatted rice bran by its subcritical water treatment.

    PubMed

    Wiboonsirikul, Jintana; Kimura, Yukitaka; Kadota, Megumi; Morita, Hisahiro; Tsuno, Takuo; Adachi, Shuji

    2007-10-17

    Defatted rice bran was extracted with water and subcritical water at 50-250 degrees C for 5 min. The highest extract yield was achieved at 200 degrees C, at which the maximum amounts of protein and carbohydrate were also obtained. The total phenolic and furfural contents, radical scavenging activity, and antioxidative activity for the autoxidation of linoleic acid increased with increasing treatment temperature. The bran extracts exhibited emulsifying activity except for the extract prepared at 250 degrees C, which was concomitant with the disappearance of its high-molecular-mass substances. The extract prepared at 200 degrees C also had the highest emulsion-stabilizing activity.

  17. Fe-catalyzed thermal conversion of sodium lignosulfonate to graphene

    Treesearch

    Sung Phil Mun; Zhiyong Cai; Jilei Zhang

    2013-01-01

    Sodium lignosulfonate (LS) from sulfite pulping processing was used as a carbon source to synthesize graphene. LS was mixed with Fe nanoparticles (FeNPs) as a catalyst and thermally treated at 1000 °C for 1 h. The Raman spectrum and X-ray diffraction pattern suggested that graphene sheets were formed in LS thermally treated with FeNPs (Fe-HTLS). Scanning...

  18. Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF)

    Treesearch

    W. Zhu; Carl J. Houtman; J.Y. Zhu; Roland Gleisner; K.F. Chen

    2012-01-01

    A combined hydrolysis factor (CHF) was developed to predict xylan hydrolysis during pretreatments of native aspen (Populus tremuloides) wood chips. A natural extension of previously developed kinetic models allowed us to account for the effect of catalysts by dilute acid and two sulfite pretreatments at different pH values....

  19. Preparation and characterization of cellulose nanocrystals from the bio-ethanol residuals

    Treesearch

    Lanxing Du; Jinwu Wang; Yang Zhang; Chusheng Qi; Michael Wolcott; Zhiming Yu

    2017-01-01

    This study was to explore the conversion of low-cost bio-residuals into high value-added cellulose nanocrystals. Two enzymatic hydrolyzed residuals (i.e., HRMMW and HRSPW) were collected from two different bio-ethanol producing processes—hydrolyzing medium-milled wood (MMW) and hydrolyzing acid sulfite pretreated wood (SPW), respectively. The results showed that both...

  20. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine

    Treesearch

    W. Zhu; Junyong Zhu; Roland Gleisner; X.J. Pan

    2010-01-01

    This study investigated the effects of chemical pretreatment and disk-milling conditions on energy consumption for size-reduction and the efficiency of enzymatic cellulose saccharification of a softwood. Lodgepole pine wood chips produced from thinnings of a 100-year-old unmanaged forest were pretreated by hot-water, dilute-acid, and two SPORL processes (Sulfite...

Top