Relative toxicity of pyrolysis products of some synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Slattengren, C. L.; Furst, A.; Kourtides, D. A.; Parker, J. A.
1976-01-01
Nineteen samples of synthetic polymers were evaluated for relative toxicity in the course of characterizing materials intended for aircraft interior applications. The generic polymers included ABS, chlorinated PVC, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyaryl sulfone, polyether sulfone, polybismaleimide, and polyvinyl fluoride. Test results are presented, and compared in relative rankings with similar results on cellulosic materials and other synthetic polymers. Under these test conditions, the samples of synthetic polymers were either comparable to or significantly less toxic than the samples of commercial cellulosic materials.
Sulfonated polyphenylene polymers
Cornelius, Christopher J.; Fujimoto, Cy H.; Hickner, Michael A.
2007-11-27
Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.
NASA Astrophysics Data System (ADS)
Ahn, Kisang; Kim, Myeongjin; Kim, Kiho; Ju, Hyun; Oh, Ilgeun; Kim, Jooheon
2015-02-01
Organic/inorganic composite membranes, based on sulfonated poly(phenylene oxide) (SPPO) and hollow glass microspheres (HGMs), with various compositions are prepared for use as proton exchange membranes in direct methanol fuel cells (DMFCs). Reaction time between chlorosulfonic acid solution and PPO is controlled to improve proton conductivity of the SPPO membrane. As a result, SPPO at 38.2% sulfonation is selected as the optimum degree of sulfonation. Afterwards, SPPO is successfully introduced onto the surfaces of HGMs to increase their dispersion in the SPPO matrix. The ion exchange capacities (IEC) and proton conductivities of the membranes decrease with increasing amounts of the SPPO-HGMs, because of the decrease of ionic sites with increasing HGM content. The SPPO-HGM composite membranes exhibit proton conductivities ranging from 0.0350 to 0.0212 S cm-1 and low methanol permeability ranging from 1.02 × 10-6 to 3.41 × 10-7 cm2 s-1 at 20 °C. Furthermore, the SPPO-HGM 9 wt%/SPPO membrane presents a maximum power density of 81.5 mW cm-2 and open circuit voltage of 0.70 V.
Assessment of relative flammability and thermochemical properties of some thermoplastic materials
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermal mechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in an anaerobic and oxidative environment, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers which were evaluated included: acrylonitrile-butadiene-styrene, bisphenol A polycarbonate, bisphenol fluorenone carbonatedimethylsiloxane block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters including molding characteristics of some of the advanced polymers are described. Test results and relative rankings of some of the flammability, smoke and toxicity properties are presented.
Thermoplastic polymers for improved fire safety
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.
1976-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermomechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in anaerobic and oxidative environments, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers that were evaluated included: acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonatepoly (dimethyl siloxane) block polymer, phenolphthalein bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative ranking of some of the flammability, smoke, and toxicity properties are presented.
Two-week studies of survivors from exposures to pyrolysis gases
NASA Technical Reports Server (NTRS)
Bucci, T. J.; Hilado, C. J.; Marcussen, W. H.; Furst, A.
1978-01-01
Swiss Webster male mice which had survived near-lethal concentrations of pyrolysis gases from a variety of polymeric materials were killed two weeks after exposure, and the lungs, heart, liver, kidney, and spleen were examined. Microscopic examination revealed no significant effects on the liver, kidney, and spleen, while the effect on lungs could not be determined because of the high level of pathology in both experimental and control animals. The polymeric materials which were pyrolyzed were polyethylene, ABS, polycarbonate, polyaryl sulfone, polyether sulfone, polyphenylene sulfide, modified polyphenylene oxide, chlorinated polyvinyl chloride, polyvinylidene fluoride, and fluorene polycarbonate. It is suggested that tissue specimens should be examined 24 or 48 hr after exposure rather than 2 wks after exposure, since the 2 wk period permits healing to occur.
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.
1977-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use or being considered for use in aircraft interiors are described. The properties studied included thermomechanical properties such as glass-transition and melt temperature, changes in polymer enthalpy, thermogravimetric analysis in anerobic and oxidative environments, oxygen index, smoke evolution, relative toxicity of the volatile products of pyrolysis, and selected physical properties. The generic polymers evaluated included acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative rankings of some of the flammability, smoke, and toxicity properties are presented. Under these test conditions, some of the advanced polymers evaluated were significantly less flammable and toxic than or equivalent to polymers in current use.
Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes
Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM
2012-02-07
Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.
21 CFR 177.2500 - Polyphenylene sulfone resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
... consist of basic resin produced by reacting polyphenylene sulfide with peracetic acid such that the... sanction or approval. (c) Specifications. The glass transition temperature of the polymer is 360±5 °C as...
21 CFR 177.2500 - Polyphenylene sulfone resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
... consist of basic resin produced by reacting polyphenylene sulfide with peracetic acid such that the... sanction or approval. (c) Specifications. The glass transition temperature of the polymer is 360±5 °C as...
Nanoscale structure and morphology of sulfonated polyphenylenes via atomistic simulations
Abbott, Lauren J.; Frischknecht, Amalie L.
2017-01-23
We performed atomistic simulations on a series of sulfonated polyphenylenes systematically varying the degree of sulfonation and water content to determine their effect on the nanoscale structure, particularly for the hydrophilic domains formed by the ionic groups and water molecules. We found that the local structure around the ionic groups depended on the sulfonation and hydration levels, with the sulfonate groups and hydronium ions less strongly coupled at higher water contents. In addition, we characterized the morphology of the ionic domains employing two complementary clustering algorithms. At low sulfonation and hydration levels, clusters were more elongated in shape and poorlymore » connected throughout the system. As the degree of sulfonation and water content were increased, the clusters became more spherical, and a fully percolated ionic domain was formed. As a result, these structural details have important implications for ion transport.« less
21 CFR 177.2500 - Polyphenylene sulfone resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
... polyphenylene sulfide with peracetic acid such that the finished resins meet the specifications set forth in... glass transition temperature of the polymer is 360±5 °C as determined by the use of differential...
Concentration-response data on toxicity of pyrolysis gases from some natural and synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Huttlinger, N. V.
1978-01-01
Concentration-response data are presented on the toxic effects of the pyrolysis gases from some natural and synthetic polymers, using the toxicity screening test method developed at the University of San Francisco. The pyrolysis gases from wool, red oak, Douglas fir, polycaprolactam, polyether sulfone, polyaryl sulfone, and polyphenylene sulfide appeared to exhibit the concentration-response relationships commonly encountered in toxicology. Carbon monoxide seemed to be an important toxicant in the pyrolysis gases from red oak, Douglas fir, and polycaprolactam, but did not appear to have been the principal toxicant in the pyrolysis gases from polyether sulfone and polyphenylene sulfide.
Evaluation of 165 deg F reverse osmosis modules for washwater purification.
NASA Technical Reports Server (NTRS)
Hossain, S.; Goldsmith, R. L.; Tan, M.; Wydeven, T.; Leban, M. I.
1973-01-01
Three membrane systems have been evaluated for concentration at 165 F of wash-water contaminants. Membranes tested are polybenzimidazole (hollow fibers), cellulose acetate blend (spiral wound), and sulfonated polyphenylene oxide (plate-and-frame). Detailed membrane flux and rejection data are presented for 200-hr life tests with synthetic wash water, at two concentrations, and real wash water, at one concentration. Advantages and limitations of the membrane configurations, are discussed.
Flash fire propensity of materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.
1977-01-01
Flash fire test results on 86 materials, evaluated using the USF flash fire screening test, are presented. The materials which appear least prone to flash fires are PVC, polyphenylene oxide and sulfide, and polyether and polyaryl sulfone; these did not produce flash fires under these particular test conditions. The principal value of these screening tests at the present time is in identifying materials which appear prone to flash fires, and in identifying which formulations of a generic material are more or less prone to flash fires.
Dynamics of water in sulfonated poly(phenylene) membranes
NASA Astrophysics Data System (ADS)
Osti, Naresh; Etampawala, Thusitha; Shrestha, Umesh; Perahia, Dvora; Cornelius, Christopher
2011-03-01
The dynamics of water in networks formed by highly rigid ionic polymers, sulfonated poly(phenylene) as observed by quasi elastic neutron scattering (QENS) is presented. These rigid ionic polymers have potential as effective ion exchange membranes with impact on a large number of applications from water purification to clean energy, where its rigidity distinguishes it from other ionic polymers. Its transport characteristics are affected by its rigidness as well as by direct interactions with the solvent. Our QENS studies as a function of sulfonation levels, temperature and solvent content have shown that on the time scale of the measurement, the polymers are rigid. While macroscopically all samples swell, and transport water, the water molecules appear locally rather confined. Water however remind non-frozen to subzero temperatures. The results will be discussed in view of theoretical models including continues diffusion and hopping of solvent molecules.
Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products
Evans, Robert J.; Chum, Helena L.
1995-01-01
A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.
Characterization of vanadium ion uptake in sulfonated diels alder poly(phenylene) membranes
Lawton, Jamie; Jones, Amanda; Tang, Zhijiang; ...
2015-11-28
Sulfonated diels alder poly(phenylene) (SDAPP), alternative aromatic hydrocarbon membranes for vanadium redox flow batteries (VRFBs) are characterized using electron paramagnetic resonance (EPR). Membranes soaked in sulfuric acid and vanadyl sulfate are analyzed to determine the membrane environment in which the vanadyl ion (VO 2+) diffuses in the membranes. These results are compared to Nafion 117 membranes. In contrast to Nafion, the VO 2+ in SDAPP membranes exists in two different environments. The results of analysis of rotational diffusion determined from fits the EPR spectral lineshapes in comparison with previously reported permeation studies and measurements of partitioning functions reported here suggestmore » that the diffusion pathways in SDAPP are very different than in Nafion.« less
Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.
Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee
2017-04-01
Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.
Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes
Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.
2010-10-19
An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.
Toxicity of pyrolysis gases from synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Soriano, J. A.; Kosola, K. L.; Kourtides, D. A.; Parker, J. A.
1977-01-01
The screening test method was used to investigate toxicity in polyethylene, polystyrene, polymethyl methacrylate, polyaryl sulfone, polyether sulfone, polyphenyl sulfone, and polyphenylene sulfide. Changing from a rising temperature program to a fixed temperature program resulted on shorter times to animal responses. This effect was attributed in part to more rapid generation of toxicants. The toxicants from the sulfur containing polymers appeared to act more rapidly than the toxicants from the other polymers. It was not known whether this effect was due primarily to difference in concentration or in the nature of the toxicants. The carbon monoxide concentration found did not account for the results observed with the sulfur containing polymers. Polyphenyl sulfone appeared to exhibit the least toxicity among the sulfur containing polymers evaluated under these test conditions.
Effect of heating rate on toxicity of pyrolysis gases from some synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Soriano, J. A.; Kosola, K. L.
1977-01-01
The effect of heating rate on the toxicity of the pyrolysis gases from some synthetic polymers was investigate, using a screening test method. The synthetic polymers were polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, ABS, polyaryl sulfone, polyether sulfone, and polyphenylene sulfide. The toxicants from the sulfur-containing polymers appeared to act more rapidly than the toxicants from the other polymers. It is not known whether this effect is due primarily to differences in concentration or in the nature of the toxicants. The carbon monoxide concentrations found do not account for the observed results.
NASA Astrophysics Data System (ADS)
Fou, A. C.; Onitsuka, O.; Ferreira, M.; Rubner, M. F.; Hsieh, B. R.
1996-05-01
Light-emitting diodes have been fabricated from self-assembled multilayers of poly(p-phenylene vinylene) (PPV) and two different polyanions; polystyrene sulfonic acid (SPS) and polymethacrylic acid (PMA). The type of polyanion used to assemble the multilayer thin films was found to dramatically influence the behavior and performance of devices fabricated with indium tin oxide and aluminum electrodes. Light-emitting devices fabricated from PMA/PPV multilayers were found to exhibit luminance levels in the range of 20-60 cd/m2, a thickness dependent turn-on voltage and classical rectifying behavior with rectification ratios greater than 105. In sharp contrast, the devices based on SPS/PPV exhibited near symmetric current-voltage curves, thickness independent turn-on voltages and much lower luminance levels. The significant difference in device behavior observed between these two systems is primarily due to a doping effect induced either chemically or electrochemically by the sulfonic acid groups of SPS. It was also found that the performance of these devices depends on the type of layer that is in contact with the Al top electrode thereby making it possible to manipulate device efficiency at the molecular level.
Robust Multilayer Graphene-Organic Frameworks for Selective Separation of Monovalent Anions.
Zhao, Yan; Zhu, Jiajie; Li, Jian; Zhao, Zhijuan; Charchalac Ochoa, Sebastian Ignacio; Shen, Jiangnan; Gao, Congjie; Van der Bruggen, Bart
2018-05-30
The chemical and mechanical stability of graphene nanosheets was used in this work to design a multilayer architecture of graphene, grafted with sulfonated 4,4'-diaminodiphenyl sulfone (SDDS). Quaternized poly(phenylene oxide) (QPPO) was synthesized and mixed with SDDS (rGO-SDDS-rGO@QPPO), yielding a multilayer graphene-organic framework (MGOF) with positive as well as negative functional groups that can be applied as a versatile electrodriven membrane in electrodialysis (ED). Multilayer graphene-organic frameworks are a new class of multilayer structures, with an architecture having a tunable interlayer spacing connected by cationic polymer material. MGOF membranes were demonstrated to allow for an excellent selective separation of monovalent anions in aqueous solution. Furthermore, different types of rGO-SDDS-rGO@QPPO membranes were found to have a good mechanical strength, with a tensile strength up to 66.43 MPa. The membrane (rGO-SDDS-rGO@QPPO-2) also has a low surface electric resistance (2.79 Ω·cm 2 ) and a low water content (14.5%) and swelling rate (4.7%). In addition, the selective separation between Cl - and SO 4 2- of the MGOF membranes could be as high as 36.6%.
Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; ...
2015-11-14
In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm 2.« less
Interfacial adhesion of carbon fibers
NASA Technical Reports Server (NTRS)
Bascom, Willard D.
1987-01-01
Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Zhijiang; Lawton, Jamie S.; Sun, Che-Nan
2014-09-03
Here, sulfonated Diels-Alder poly(phenylene) (SDAPP) membranes were synthesized and characterized as potential electrolyte separators for vanadium redox flow batteries. The SDAPP membranes studied had ion exchange capacities of 1.4, 1.8 and 2.3 meq/g. Transmission electron microscopy imaging shows that the ionic domains in SDAPP are roughly 0.5 nm in dimension, while Nafion has a hydrophilic phase width of around 5 nm. The sulfuric acid uptake by SDAPP was higher than that for Nafion, but the materials had similar water uptake from solutions of various sulfuric acid concentrations. In equilibration with sulfuric acid concentrations ranging from 0–17.4 mol·kg -1, SDAPP withmore » a IEC of 2.3 meq/g had the highest conductivity, ranging from 0.21 to 0.05 S·cm -1, while SDAPP with a IEC of 1.8 had conductivity close to Nafion 117, ranging from 0.11 to 0.02 S·cm -1. With varying sulfuric acid concentration and temperature, vanadium permeability in SDAPP is positively correlated to the membrane's IEC. The vanadium permeability of SDAPP 2.3 is similar to that of Nafion, but permeability values for SDAPP 1.8 and SDAPP 1.4 are substantially lower. The vanadium permeation decreases with increasing electrolyte sulfuric acid concentration. Lastly, vanadium diffusion activation energy is about 20 kJ·mol -1 in both SDAPP and Nafion.« less
Thermochemical characterization of some thermally stable thermoplastic and thermoset polymers
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Gilwee, W. J., Jr.; Parker, J. A.
1979-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated include polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated include epoxy, bismaleimide, a modified phenolic, and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass-reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented, and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
The relative fire resistance of select thermoplastic materials. [for aircraft interiors
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The relative thermal stability, flammability, and related thermochemical properties of some thermoplastic materials currently used in aircraft interiors as well as of some candidate thermoplastics were investigated. Currently used materials that were evaluated include acrylonitrile butadiene styrene, bisphenol A polycarbonate, polyphenylene oxide, and polyvinyl fluoride. Candidate thermoplastic materials evaluated include: 9,9-bis(4-hydroxyphenyl)fluorene polycarbonate-poly(dimethylsiloxane) block polymer, chlorinated polyvinylchloride homopolymer, phenolphthalein polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylsulfone, and polyvinylidene fluoride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, A.K.; Huang, R.Y.M.
A newly developed thin-film composite (TFC) ultrafiltration membrane made of sulfonated poly(phenylene oxide) (SPPO) was used to establish the feasibility of separating L-phenylalanine from the fermentation broth containing a number of dissolved inorganic and organic solutes as an alternative approach to the currently used complex and uneconomical conventional ion-exchange schemes. It was found that the rejection of inorganic salts in a single component system was highly dependent on the feed solution concentration and varied inversely with it. The pH of the feed solution was found to have a strong effect on the rejection of L-phenylalanine, changing it from - 10more » to 90%. This rejection behavior was identical for the two TFC-SPPO membrane samples which had molecular weight cutoff ratings of 10,000 and 20,000, respectively, although the permeate flux of the latter sample was almost twice that of the former sample. It was found that glucose molecules were not rejected by the membrane. 11 refs., 18 figs., 2 tab.« less
NASA Technical Reports Server (NTRS)
1976-01-01
The development of suitable electrocoatings and subsequent application to nonconductive substrates are discussed. Substrates investigated were plastics or resin-treated materials such as FX-resin (phenolic-type resin) impregnated fiberglass mat, polyphenylene sulfide, polyether sulfone and polyimide-impregnated unidirectional fiberglass. Efforts were aimed at formulating a fire-resistant, low smoke emitting, thermally stable, easily cleaned coating material. The coating is to be used for covering substrate panels, such as aluminum, silicate foam, polymeric structural entities, etc., all of which are applied in the aircraft cabin interior and thus subject to the spillages, scuffing, spotting and the general contaminants which prevail in aircraft passenger compartments.
Assessment of relative flammability and thermochemical properties of some thermoplastic materials
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1977-01-01
Thermomechanical properties, flammability, oxygen index, relative toxicity of pyrolysis effluents, and char yields were studied for 12 advanced polymers which are candidates for use in aircraft interiors as decorative films, compression- and injection-molded parts and thermoplastic parts. Polymers sampled included polyphenylene sulfide, 9,9 bis (4-hydroxyphenol) fluorene polycarbonate-poly (dimethylsiloxane), polyether sulfone, polyvinyl fluoride and polyvinylidene fluoride. Availability of these samples, whether in commercial form or in test quantities, is specified. An estimate of relative fire resistance for the materials was obtained; the five polymers listed above were found to be the most fire resistant of the 12 sampled.
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
Surface and interfacial properties of carbon fibers
NASA Technical Reports Server (NTRS)
Bascom, Willard D.
1991-01-01
The adhesion strength of AS4 fibers to thermoplastic polymers was determined. The specific polymers were polycarbonate, polyphenylene oxide, polyetherimide, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate-polysiloxan copolymer. Data are also included for polysulfone. It was recognized at the outset that an absolute measure of the fiber matrix adhesion would be difficult. However, it is feasible to determine the fiber bond strengths to the thermoplastics relative to the bond strengths of the same fibers to epoxy polymers. It was anticipated, and in fact realized, that the adhesion of AS4 to the thermoplastic polymers was relatively low. Therefore, further objectives of the study were to identify means of increasing fiber/matrix adhesion and to try to determine why the adhesion of AS4 to thermoplastics is significantly less than to epoxy polymers.
Barique, Mohammad A; Wu, Libin; Takimoto, Naohiko; Kidena, Koh; Ohira, Akihiro
2009-12-10
The effects of water on the changes in morphology of sulfonated poly(phenylene sulfide) (SPPS) hydrocarbon polymer electrolyte membranes (PEM) with an ion exchange capacity (IEC) of 0-2.0 mequiv/g are investigated using small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). Wide-angle X-ray scattering (WAXS) was used to characterize the effect of direct sulfonation on the changes in membrane crystalline structure, and it was found that the crystallinity and crystallite domain size decrease and the volume of the amorphous region in the SPPS membranes increases with increasing IEC. The experimental data have been fitted to the Porod law for approaching the analysis of the sharpness of the polymer/water interface, development of the proton channel, or dispersion of water in the hydrated membranes. Porod plots showed positive deviation which revealed that the polymer/water interface in the hydrated SPPS membrane is not smooth but diffused and a well-developed proton channel does not form in the membrane.
Water dynamics in rigid ionomer networks.
Osti, N C; Etampawala, T N; Shrestha, U M; Aryal, D; Tyagi, M; Diallo, S O; Mamontov, E; Cornelius, C J; Perahia, D
2016-12-14
The dynamics of water within ionic polymer networks formed by sulfonated poly(phenylene) (SPP), as revealed by quasi-elastic neutron scattering (QENS), is presented. These polymers are distinguished from other ionic macromolecules by their rigidity and therefore in their network structure. QENS measurements as a function of temperature as the fraction of ionic groups and humidity were varied have shown that the polymer molecules are immobile while absorbed water molecules remain dynamic. The water molecules occupy multiple sites, either bound or loosely constrained, and bounce between the two. With increasing temperature and hydration levels, the system becomes more dynamic. Water molecules remain mobile even at subzero temperatures, illustrating the applicability of the SPP membrane for selective transport over a broad temperature range.
Addo Ntim, Susana; Thomas, Treye A; Begley, Timothy H; Noonan, Gregory O
2015-01-01
The potential for consumer exposure to nano-components in food contact materials (FCMs) is dependent on the migration of nanomaterials into food. Therefore, characterising the physico-chemical properties and potential for migration of constituents is an important step in assessing the safety of FCMs. A number of commercially available food storage products, purchased domestically within the United States and internationally, that claim to contain nanosilver were evaluated. The products were made of polyethylene, polypropylene and polyphenylene ether sulfone and all contained silver (0.001-36 mg kg(-1) of polymer). Silver migration was measured under various conditions, including using 3% acetic acid and water as food simulants. Low concentrations (sub-ppb levels) of silver were detected in the migration studies generally following a trend characterised by a surface desorption phenomenon, where the majority of the silver migration occurred in the first of three consecutive exposures. Silver nanoparticles were not detected in food simulants, suggesting that the silver migration may be due solely to ionic silver released into solution from oxidation of the silver nanoparticle surface. The absence of detectable silver nanoparticles was consistent with expectations from a physico-chemical view point. For the products tested, current USFDA guidance for evaluating migration from FCMs was applicable.
Kondaveeti, Sanath; Kakarla, Ramesh; Kim, Hong Suck; Kim, Byung-Goon; Min, Booki
2018-02-01
This study evaluates long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells with domestic wastewater. Low-cost separators tested in this study were nonwoven fabrics (NWF) of polypropylene (PP80, PP100), textile fabrics of polyphenylene sulfide (PPS), sulfonated polyphenylene sulfide (SPPS), and cellulose esters. NWF PP80 separator generated the highest power density of 280 mW/m 2 , which was higher than with ion-exchange membranes (cation exchange membrane; CEM = 271 mW/m 2 , cation exchange membrane; CMI = 196 mW/m 2 , Nafion = 260 mW/m 2 ). MFC operations with other size-selective separators such as SPPS, PPS, and cellulose esters exhibited power densities of 261, 231, and 250 mW/m 2 , respectively. During a 280-day operation, initial power density of PP80 (278 mW/m 2 ) was decreased to 257 mW/m 2 , but this decrease was smaller than with others (Nafion: 265-230 mW/m 2 ; PP100: 220-126 mW/m 2 ). The anode potential of around -430 mV did not change much with all separators in the long-term operation, but the initial cathode potential gradually decreased. Fouling analysis suggested that the presence of carbonaceous substance on Nafion and PP80 after 280 days of operation and Nafion was subject to be more biofouling.
Polyether-polyester graft copolymer
NASA Technical Reports Server (NTRS)
Bell, Vernon L. (Inventor)
1987-01-01
Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.
Toward Strong Thermoplastic Elastomers with Asymmetric Miktoarm Block Copolymer Architectures
2014-03-05
temperature [such as poly(phenylene oxide), PPO ].7,8 Yet, this method does not lift the volume fraction limitation, and the total hard phase fraction f...PS + f PPO must still remain below approximately 0.3. Being able to significantly displace the classical phase diagram and stabilize morphologies
Advanced separators based on aromatic polymer for high energy density lithium batteries
Zhang, Zhengcheng; Woo, Jung-Je; Amine, Khalil
2017-03-21
A process includes casting a solution including poly(phenylene oxide), inorganic nanoparticles, a solvent, and a non-solvent on a substrate; and removing the solvent to form a porous film; wherein: the porous film is configured for use as a porous separator for a lithium ion battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan
In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm 2.« less
Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi
2018-02-16
A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low dielectric fluorinated poly(phenylene ether ketone) film and coating
NASA Technical Reports Server (NTRS)
Cassidy, Patrick E. (Inventor); Tullos, Gordon L. (Inventor); St.clair, Anne K. (Inventor)
1990-01-01
The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials.
Methods for the determination of the anionic surfactant Dowfax 8390 are described. Dowfax is a complex mixture of various alkylated and sulfonated diphenyl oxides. The primary component of Dowfax is monoalkylated disulfonated diphenyl oxide (MADS). This work uses ion pairing chro...
Advanced Materials for PEM-Based Fuel Cell Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. McGrath; Donald G. Baird; Michael von Spakovsky
2005-10-26
Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due tomore » their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.« less
Acid monolayer functionalized iron oxide nanoparticle catalysts
NASA Astrophysics Data System (ADS)
Ikenberry, Myles
Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide nanoparticle syntheses and functionalizations for biomedical and catalytic applications, affecting understandings of surface charge and other material properties.
Yuan, Hua; Yu, Bing; Chi, Ming; Cheng, Yuanzhe; Lv, Chunxin
2018-01-01
Porous permeable films materials have very broad prospects in the treatment of sludge-containing waste water due to their large surface area and good microfiltration. In this work, highly ordered porous membranes have been prepared successfully on ice substrates using a poly(phenylene oxide) (BPPO)-SiO2 nanoparticle (NP) mixture by the breath figure method. Based on the theory of Pickering emulsion system and capillary flow, particle assisted membrane formation was analyzed. Another two sorts of new membranes SiO2/C membrane and hierarchical porous polymer (HPP) membrane, which were obtained by modification of the BPPO-SiO2 membrane by calcination and etching, were set up in a further study. Their properties were investigated through the methods of scanning electron microscopy (SEM), fourier transform infrared spectrometry (FTIR), ultraviolet spectrum (UV), capillary electrophoresis (CE), contact angle, and water flux tests. All these results demonstrate that both surface hydrophilicity and fouling resistance of the membrane would be improved by using SiO2 as a filler. The membranes with high permeability and antifouling properties were used for microfiltration applications. PMID:29570622
Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC
NASA Astrophysics Data System (ADS)
Li, Linling; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi
2013-03-01
We report a diffusion study on the polystyrene/poly(phenylene oxide) (PS/PPO) mixture consisted by the PS and PPO nanoparticles. Diffusion of liquid PS into glassy PPO (l-PS/g-PPO) is promoted by annealing the PS/PPO mixture at several temperatures below Tg of the PPO. By tracing the Tgs of the PS-rich domain behind the diffusion front using DSC, we get the relationships of PS weight fractions and diffusion front advances with the elapsed diffusion times at different diffusion temperatures using the Gordon-Taylor equation and core-shell model. We find that the plots of weight fraction of PS vs. elapsed diffusion times at different temperatures can be converted to a master curve by Time-Temperature superposition, and the shift factors obey the Arrhenius equation. Besides, the diffusion front advances of l-PS into g-PPO show an excellent agreement with the t1/2 scaling law at the beginning of the diffusion process, and the diffusion coefficients of different diffusion temperatures also obey the Arrhenius equation. We believe the diffusion mechanism for l-PS/g-PPO should be the Fickean law rather than the Case II, though there are departures of original linearity at longer diffusion times due to the limited liquid supply system. Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC
Su, Chi -Cheung; He, Meinan; Redfern, Paul C.; ...
2017-03-16
New fluorinated sulfones were synthesized and evaluated in high voltage lithium-ion batteries using LiNi 0.5Mn 1.5O 4 (LNMO) cathode. Fluorinated sulfones with an α-trifluoromethyl group exhibit enhanced oxidation stability, reduced viscosity and superior separator wettability as compared to their non-fluorinated counterparts. Finally, the improved performance in high voltage cells makes it a promising high voltage electrolyte for 5-V lithium-ion chemistry.
Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility
Jeffrey Luo; Nikolay Semenikhin; Huibin Chang; Robert J. Moon; Satish Kumar
2018-01-01
Cellulose nanofibrils (CNF) were sulfonated and the dispersion quality was compared to unfunctionalized and 2,2,6,6-tetramethylpiperdine-1-oxyl radical (TEMPO) post-oxidation treatment of existing CNF (mechanically fibrillated pulp). A post-sulfonation treatment on existing CNF in chlorosulfonic acid and dimethylformamide (DMF) resulted in sulfonated CNF that retained...
Advanced Integrated Fuel/Combustion Systems
2004-01-01
disulfides to form sulfonic acids and sulfones, which are removed by phase separation, leaving the thiophenic com- pounds unreacted. Briefly, for the...additives result in an increased oxidation rate and substantially reduced deposition. The increased oxidation rate is due to the removal of these...ability to follow the formation and/or removal of the species during thermal-oxidative exposure is invaluable in understanding the autoxidative
The development of polymer membranes and modules for air separation
NASA Astrophysics Data System (ADS)
Vinogradov, N. E.; Kagramanov, G. G.
2016-09-01
Technology of hollow fiber membrane and modules for air separation was developed. Hollow fibers from the polyphenylene oxide (PPO) having a diameter of 500 μm were obtained. The permeability of the fibers by oxygen was up to 250 Ba, while the separation factor by O2/N2 was 4.3. The membrane module has been made by using these fibers and tested for permeability of individual gases.
2015-12-01
and chemical stability. Also in Year 3, membranes were prepared by simultaneously electrospinning brominated poly(phenylene oxide) ( PPO ) and... PPO fibers (preventing water solubility when charged groups were added to the PPO ), as shown in Scheme 3. Subsequent mat processing included...brominated PPO fibers), and reaction of the resulting films with either trimethylamine or 1,2-dimethylimidazole to create cationic groups at those
Thin Robust Anion Exchange Membranes for Fuel Cell Applications
2014-01-01
water diffsuion. Here we use a Polyphenylene Oxide dibock polymer co-polymerized with polyvinyl benzyl trimethyl ammonium blocks ( PPO -b-PVBTMA[F...in PPO -b-PVBTMA[F-] AEM under saturated humidity environment ECS Transactions, 64 (3) 1185-1194 (2014) 1191 Conductivity of this membrane was...makes it a promising material for applications in anion exchange membrane fuel cells. Figure 5: Conductivity of PPO -b-PVBTMA[F-] under 95% Relative
Materials for foam type insulation
NASA Technical Reports Server (NTRS)
Hill, W. E.
1971-01-01
An internal foam fabrication is one of the concepts being considered for cryogenic insulation on the hydrogen tanks of the shuttle vehicle. The three-dimensional polyurethane used on the S-4 B tanks failed to meet the higher temperature requirements of the shuttle vehicle, however, and other foams under consideration include polyisocyanurates, polyphenylene oxides, polyimides, and polybenzimidazoles. Improved adhesive systems for attaching the foams to the interior tank wall are under study.
NASA Technical Reports Server (NTRS)
1973-01-01
A large scale gel production and storage facility and a small scale facility, the latter used for detailed visual examination of the gel/PPO foam interface, were developed. A subcontract was given to investigate techniques for the production of gelled liquid hydrogen, develop a process design for scale-up to a 1.89 cu m (500 gallon) gel production and storage facility, determine gel transfer characteristics, determine the solubility rate of gaseous helium in the gel, and investigate the gross gel/PPO foam interfacial phenomena. An inside-tank process for scaled-up production of gelled liquid hydrogen was selected. No detectable gel structure degradation occurred during repeated shearing. The viscosity of gelled liquid hydrogen at shear rates of 300/sec and higher is 2 to 5-fold greater than that of neat liquid hydrogen. No clogging problems were encountered during the transfer of gelled liquid hydrogen through warmed transfer lines. The solubility rate of helium in liquid hydrogen was significantly reduced by the presence of gel structure. The boil-off rates from gelled liquid hydrogen were reduced from 25 to 50 percent compared to those observed for the neat liquid hydrogen under compatible conditions. The polyphenylene oxide (PPO) foam insulation was found to be compatible with liquid ethane.
Chen, Guifen; Zhai, Shengyong; Zhai, Yanling; Zhang, Ke; Yue, Qiaoli; Wang, Lei; Zhao, Jinsheng; Wang, Huaisheng; Liu, Jifeng; Jia, Jianbo
2011-03-15
Graphene oxide (GO) obtained from chemical oxidation of flake graphite was derivatized with sulfonic groups to form sulfonic-functionalized GO (GO-SO(3)(-)) through four sulfonation routes: through amide formation between the carboxylic group of GO and amine of sulfanilic acid (AA-GO-SO(3)(-)), aryl diazonium reaction of sulfanilic acid (AD-GO-SO(3)(-)), amide formation between the carboxylic group of GO and amine of cysteamine and oxidation by H(2)O(2) (CA-GO-SO(3)(-)), and alkyl diazonium reaction of cysteamine and oxidation by H(2)O(2) (CD-GO-SO(3)(-)). Results of Fourier transform infrared spectroscopy and X-ray photoelectrospectrocopy showed that -SO(3)(-) groups were attached onto GO. Thermo gravimetric analysis showed that derivatization with sulfonic groups improved thermo stability of GO. X-ray diffraction results indicated that GO-SO(3)(-) had more ordered π-π stacking structure than the original GO. GO-SO(3)(-) and cationic polyelectrote, poly (diallyldimethylammoniumchloride) (PDDA) were adsorbed at indium tin oxide (ITO) glass surface through layer-by-layer assembling to form (GO-SO(3)(-)/PDDA)(n)/ITO multilayers. After tris-(2,2'-bipyridyl) ruthenium (II) dichloride (Ru(bpy)(3)(2+)) was incorporated into the multilayers, the obtained Ru(bpy)(3)(2+)/(GO-SO(3)(-)/PDDA)(n)/ITO electrodes can be used as electrochemiluminescence sensors for detection of organic amine with high sensitivity (limit of detection of 1 nM) and stability. Copyright © 2010 Elsevier B.V. All rights reserved.
Sulfonated polysulfone battery membrane for use in corrosive environments
Arnold, Jr., Charles; Assink, Roger
1987-01-01
For batteries containing strong oxidizing electrolyte and a membrane separating two electrolyte solutions, e.g., a zinc ferricyanide battery, an improved membrane is provided comprising an oxidative resistant, conductive, ion-selective membrane fabricated from a catenated aromatic polymer having an absence of tertiary hydrogens, e.g., a sulfonated polysulfone.
Review of oxidative degradations of certain heterocyclic polymers
NASA Technical Reports Server (NTRS)
Mayo, F. R.
1971-01-01
The curing and decompositions of polyphenylenes and several nitrogen-containing condensation polymers, particularly polybenzimidazoles and pyrones, are reviewed critically. It is concluded that the condensations are usually imperfect and incomplete and that in most of the published work the late stages of the condensation are complicated by the beginnings of the charring and carbonization processes. Most discussions of mechanisms in this range are highly speculative and of little value. The most promising fields for further research are at lower temperatures, where slow oxidation processes deserve study, and at higher temperatures, where it may be possible to influence carbonization processes to obtain better products.
Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air
NASA Astrophysics Data System (ADS)
Sundararaman, Ramanathan
Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk MgO catalysts for decomposition of sulfones showed that these catalysts are effective in decomposing oxidized sulfur compounds such as dibenzothiophene sulfone and 3-methyl benzothiophene sulfone to biphenyl and isopropyl benzene respectively and SO2. Study of catalyst structure-activity relationship revealed that in the range of 40--140 nm of MgO, crystallite size plays a critical role on activity of the catalyst for sulfone decomposition. In testing other alkali oxides, it was demonstrated that CaO was effective as a reagent in decomposing oxidized sulfur compounds in a crude oil at a much lower temperature than used for MgO based catalyst. Preliminary data on potential regeneration scheme of spent CaO is also discussed.
Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.
Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia
2018-03-07
Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.
Sulfonates: A novel class of organic sulfur compounds in marine sediments
NASA Astrophysics Data System (ADS)
Vairavamurthy, Appathurai; Zhou, Weiqing; Eglinton, Timothy; Manowitz, Bernard
1994-11-01
X-ray absorption near-edge structure spectroscopy (XANES) used to measure sulfur speciation in a variety of organic-rich marine sediments has established sulfonates as a novel and major component of sedimentary organic sulfur. The origins of sulfonates in sediments are not clear, although both biological and geochemical mechanisms are possible. The accumulation of oxidized sulfonate sulfur in reducing marine sediments was not known previously; hence, a new perspective in sulfur geochemistry is established. The biogeochemical implications of the presence of sulfonates in marine sediments are discussed.
Interlaminar fracture in carbon fiber/thermoplastic composites
NASA Technical Reports Server (NTRS)
Hinkley, J. A.; Bascom, W. D.; Allred, R. E.
1990-01-01
The surfaces of commercial carbon fibers are generally chemically cleaned or oxidized and then coated with an oligomeric sizing to optimize their adhesion to epoxy matrix resins. Evidence from fractography, from embedded fiber testing and from fracture energies suggests that these standard treatments are relatively ineffective for thermoplastic matrices. This evidence is reviewed and model thermoplastic composites (polyphenylene oxide/high strain carbon fibers) are used to demonstrate how differences in adhesion can lead to a twofold change in interlaminar fracture toughness. The potential for improved adhesion via plasma modification of fiber surfaces is discussed. Finally, a surprising case of fiber-catalyzed resin degradation is described.
NASA Astrophysics Data System (ADS)
Nebipasagil, Ali
Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamideterminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDELRTM foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and a,u-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivity of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and alpha,o-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology.
Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin
2017-06-14
Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.
Bacterial Metabolism of Arylsulfonates
Ripin, Marilyn J.; Noon, Kerry F.; Cook, Thomas M.
1971-01-01
Pseudomonas testosteroni H-8 utilizes as sole carbon source benzene sulfonate (BS), p-toluene sulfonate (pTS), and ethylbenzene sulfonate (EBS) but not higher homologs. Growth on BS was rapid (generation time, 3 hr) and efficient (Y = 57), and resulted in accumulation of sulfate. As the culture is acid-sensitive, the medium must be heavily buffered to permit extensive growth. The BS oxidase system is inducible. Cells grown on BS, but not glutamate, oxidized BS, pTS, or EBS without lag (QO2 = 50 to 100). Oxygen uptake on BS is temperature-dependent and sensitive to cyanide. Complete oxidation of 1 μmole of BS consumed approximately 5.7 μmoles of oxygen. PMID:5553286
Design and development of polyphenylene oxide foam as a reusable internal insulation for LH2 tanks
NASA Technical Reports Server (NTRS)
1975-01-01
Material specification and fabrication process procedures for foam production are presented. The properties of mechanical strength, modulus of elasticity, density and thermal conductivity were measured and related to foam quality. Properties unique to the foam such as a gas layer insulation, density gradient parallel to the fiber direction, and gas flow conductance in both directions were correlated with foam quality. Inspection and quality control tests procedures are outlined and photographs of test equipment and test specimens are shown.
Synthesis and effectiveness of overbased magnesium and calcium petroleum sulfonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fialkovskii, R.V.; Romanyutina, L.V.; Korbut, L.F.
Overbased sulfonate additives are widely used to improve the service properties of motor oils. This paper describes the preparation of an overbased magnesium sulfonate additive from MSG-8 oil and an investigation of its functional properties. In experiments, the solution of ammonium sulfate, fat diluted with I-20A oil to a 38% concentration, was heated and stirred continuously in the presence of water and excess magnesium oxide for a period of 4 h at 80-120/degree/C while stripping out the liberated ammonia with nitrogen. The resulting oil solution of magnesium sulfonate was dissolved in toluene. The toluene solution after cleanup was held undermore » vacuum to remove the solvent; the residue was an oil solution of overbased magnesium sulfonate. Their properties are tabulated. Comparative data are shown in Table 1 for a calcium sulfonate additive synthesized from the same intermediate (ammonium sulfate), using calcium hydroxide as the base. Test results on M-11 oil containing 5% of the magnesium or calcium additive are listed. It is shown that the magnesium additive gave better results from the calcium additive at the same concentration in terms of oxidation stability, corrosion properties, detergency, and dispersancy. 9 refs.« less
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...
Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates
NASA Astrophysics Data System (ADS)
Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit
2014-06-01
In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Wei, K. X.; Lv, J. S.
2013-12-01
DFT calculations were performed for diphenyl sulfide and diphenyl sulfone. The electrochemistry of diphenyl sulfide on the gold electrode was investigated by cyclic voltammety and the results show that standard electrode potential for redox couple diphenyl sulfone/diphenyl sulfide is 1.058 V, which is consistent with that of 1.057 calculated at B3LYP/6-31++G( d, p)-IEFPCM level. The front orbit theory and Mulliken charges of molecular explain well on the oxidation of diphenyl sulfide in oxidative desulfurization. According to equilibrium theory the experimental equilibrium constant in the oxidative desulfurization of H2O2, is 1.17 × 1048, which is consistent with the theoretical equilibrium constant is 2.18 × 1048 at B3LYP/6-31++G( d, p)-IEFPCM level.
Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids
Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.
2007-12-25
The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimoto, Cy H.; Kim, Soowhan; Stains, Ronald
Sulfonated Diels Alder poly(phenylene) (SDAPP) was examined for vanadium redox flow battery (VRFB) use. The ion exchange capacity (IEC) was varied from 1.4, 1.6 and 2.0 meq/g in order to tune the proton conductivity and vanadium permeability. Coulombic efficiencies between 92 to 99% were observed, depending on IEC (lower IEC, higher coulombic efficiencies). In all cases the SDAPP displayed comparable energy efficiencies (88 - 90%) to Nafion 117 (88%) at 50mA/cm2. Membrane durability also was dependent on IEC; SDAPP with the highest IEC lasted slightly over 50 cycles while SDAPP with the lowest IEC lasted over 400 cycles and testingmore » was discontinued only due to time constraints. Accelerated vanadium lifetime studies were initialed with SDAPP, by soaking films in a 0.1 M V5+ and 5.0 M total SO4-2 solution. The rate of degradation was also proportional with IEC; the 2 meq/g sample dissolved within 376 hours, the 1.6 meq/g sample dissolved after 860 hours, while the 1.4 meq/g sample broke apart after 1527 hours.« less
NASA Astrophysics Data System (ADS)
Kang, Na Rae; Lee, So Young; Shin, Dong Won; Hwang, Doo Sung; Lee, Kang Hyuck; Cho, Doo Hee; Kim, Ji Hoon; Lee, Young Moo
2016-03-01
A series of end-group cross-linked membranes (Az-XESPSN) were prepared by click reaction to investigate the effects of cross-linking on the morphology and proton transport properties of proton exchange membranes. The morphological transformations resulting from thermal annealing and cross-linking were observed by means of atomic force microscopy (AFM) and transmission electron microscopy (TEM). Compared to the non-cross-linked ESPSN membranes, the Az-XESPSN membranes exhibited lower water uptake and improved mechanical and chemical stabilities. In addition, the Az-XESPSN membranes exhibited higher proton conductivities (0.018-0.028 S cm-1) compared to those of the ESPSN membranes (0.0044-0.0053 S cm-1) and Nafion 212 (0.0061 S cm-1), particularly in conditions of elevated temperature (120 °C) and low relative humidity (35%). Such enhancements can be attributed to a synergistic effect of well-defined hydrophilic ionic clusters and triazole groups that function as proton carriers under anhydrous conditions. Furthermore, the Az-XESPSN membranes exhibited significantly enhanced single cell performance and long-term stability compared to those of ESPSN membranes.
Advanced Materials for PEM-Based Fuel Cell Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. McGrath
2005-10-26
Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 ÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂðC. However, application of these membranes is limited due to theirmore » high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.« less
Tang, Weijuan; Sheng, Huaming; Kong, John Y; Yerabolu, Ravikiran; Zhu, Hanyu; Max, Joann; Zhang, Minli; Kenttämaa, Hilkka I
2016-06-30
The oxidation of sulfur atoms is an important biotransformation pathway for many sulfur-containing drugs. In order to rapidly identify the sulfone functionality in drug metabolites, a tandem mass spectrometric method based on ion-molecule reactions was developed. A phosphorus-containing reagent, trimethyl phosphite (TMP), was allowed to react with protonated analytes with various functionalities in a linear quadrupole ion trap mass spectrometer. The reaction products and reaction efficiencies were measured. Only protonated sulfone model compounds were found to react with TMP to form a characteristic [TMP adduct-MeOH] product ion. All other protonated compounds investigated, with functionalities such as sulfoxide, N-oxide, hydroxylamino, keto, carboxylic acid, and aliphatic and aromatic amino, only react with TMP via proton transfer and/or addition. The specificity of the reaction was further demonstrated by using a sulfoxide-containing anti-inflammatory drug, sulindac, as well as its metabolite sulindac sulfone. A method based on functional group-selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer has been demonstrated for the identification of the sulfone functionality in protonated analytes. A characteristic [TMP adduct-MeOH] product ion was only formed for the protonated sulfone analytes. The applicability of the TMP reagent in identifying sulfone functionalities in drug metabolites was also demonstrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Jiangwei; Shi, Wenyan; Zhang, Fan
An,electrooxidative direct arylsulfonlylation of yones sulfintc acids via a radical tandem cyclization strategy has been developed for the construction of sulfonated ilicIenones:under oxidant, free conditions. This method provides a simple and efficient approach to prepare various sulfonylindenones in good to,excellent:Tyidds,, demonstrating the tremendous prospect of utilizing electrocatalysis in oxidative coupling, Notably, this reaction could Be easily scaled up with good, efficiency.
NASA Astrophysics Data System (ADS)
Nurhadi, Mukhamad
2017-02-01
Titania supported sulfonated coal was created as heterogeneous catalyst for epoxidation of 1-octene with aqueous hydrogen peroxide as oxidant at room temperature. The catalysts were prepared from coal that was sulfonated with H2SO4 (97%) and impregnated 7.2%wt with titanium(IV) isopropoxide (Ti(PrO)4). All catalysts coal (C), CS, Ti(7.2)-CS and Ti(7.2)-CSC were characterized by FTIR. The catalytic performance was tested for epoxidation of 1-octene with H2O2 aqueous as oxidant. It is found that Ti(7.2)-CS possessed the best catalytic performance and it gave the highest 1,2 epoxyoctene 322 µmol.
NASA Astrophysics Data System (ADS)
Ch'ng, Y. Y.; Loh, K. S.; Daud, W. R. W.; Mohamad, A. B.
2016-11-01
In this study, sulfonated graphene oxide (SGO) nanocomposite were produced as potential nanofiller to improve the properties of polymer electrolyte membrane (PEM) for fuel cell applications. The GO is produced by modified Hummers's method and the as-synthesized GO was used to prepare SGO with three distinctive precursors, namely 3- mercaptomethoxysilane (MPTMS), sulfanilic acid (SA) and butane sultone (BS). The SGO samples were characterized with several physical characterization techniques (XRD, FTIR, SEM-EDX and XPS) to provide the insights into the morphology; the state of homogenization; the crystallography and the functional groups. The experimental result indicated that the sulfonic acid group has been successfully incorporated with GO and can be used as filler in PEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Jie-Cen; Wan, Fang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002
A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybridmore » lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)« less
ERIC Educational Resources Information Center
Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.
2014-01-01
Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…
Haug, W; Schmidt, A; Nörtemann, B; Hempel, D C; Stolz, A; Knackmuss, H J
1991-01-01
Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases. PMID:1781678
Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah
2016-03-01
Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.
2015-03-01
Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.
NASA Technical Reports Server (NTRS)
1972-01-01
PPO form was tested for mechanical strength, for the effects of 100 thermal cycles from 450 K (359 F) to 21 K (-423 F) and for gas flow resistance characteristics. PPO foam panels were investigated for density variations, methods for joining panels were studied and panel joint thermal test specimens were fabricated. The range of foam panel thickness under investigation was extended to include 7 mm (0.3 in) and 70 mm (2.8 in) panels which also were tested for thermal performance.
Ayres, N.; Holt, D. J.; Jones, C.F.; Corum, L. E.; Grainger, D. W.
2009-01-01
A new polymer brush chemistry containing sulfonated carbohydrate repeat units has been synthesized from silicon substrates using ATRP methods and characterized both in bulk and using surface analysis. The polymer brush was designed to act as a mimic for the naturally occurring sulfonated glycosaminoglycan, heparin, commonly used for modifying blood-contacting surfaces both in vitro and in vivo. Surface analysis showed conversion of brush saccharide precursor chemistry to the desired sulfonated polymer product. The sulfonated polymer brush surface was further analyzed using three conventional in vitro tests for blood compatibility -- plasma recalcification times, complement activation, and thrombin generation. The sulfonated polymer brush films on silicon oxide wafers exhibited better assay performance in these blood component assays than the unsulfonated sugar functionalized polymer brush in all tests performed. PMID:19859552
Cui, Yue; Liu, Xiang-Yang; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian
2016-03-15
In this study, we have explored and compared the effectiveness of using (1) lab-fabricated forward osmosis (FO) membranes under both FO and reverse osmosis (RO) modes and (2) commercially available RO membranes under the RO mode for the removal of organic micro-pollutants. The lab-fabricated FO membranes are thin film composite (TFC) membranes consisting of a polyamide layer and a porous substrate cast from three different materials; namely, Matrimid, polyethersulfone (PESU) and sulfonated polyphenylene sulfone (sPPSU). The results show that the FO mode is superior to the RO mode in the removal of phenol, aniline and nitrobenzene from wastewater. The rejections of all three TFC membranes to all the three organic micro-pollutants under the FO processes are higher than 72% and can be even higher than 90% for aniline when a 1000 ppm aromatic aqueous solution and 1 M NaCl are employed as feeds. These performances outperform the results obtained from themselves and commercially available RO membranes under the RO mode. In addition, the rejection can be maintained even when treating a more concentrated feed solution (2000 ppm). The removal performance can be further enhanced by using a more concentrated draw solution (2 M). The water flux is almost doubled, and the rejection increment can reach up to 17%. Moreover, it was observed that annealing as a post-treatment would help compact the membrane selective layer and further enhance the separating efficiency. The obtained organic micro-pollutant rejections and water fluxes under various feasible operating conditions indicate that the FO process has potential to be a viable treatment for wastewater containing organic micro-pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Understanding Anion Transport in an Aminated Trimethyl Polyphenylene with High Anionic Conductivity
2012-01-01
published online DOI: 10.1002/polb.23164 ABSTRACT: An alkaline exchange membrane (AEM) based on an aminated trimethyl poly(phenylene) is studied in...3874–3882. 23 Cotts, R. M.; Hoch, M. J. R.; Sun, T.; Markert , J. T. J. Magn. Reson. (1969) 1989, 83, 252–266. 24 Tanner, J. E. J. Chem. Phys. 1970
NASA Technical Reports Server (NTRS)
Fewell, L. L.
1976-01-01
Analysis of the volatiles and sublimate produced when para-polyphenylene is pyrolyzed to constant weight under vacuum in the temperature range from 380 to 1000 C indicates that the polymer undergoes thermal degradation in two stages. The first stage involved dehydrohalogenation, which is essentially a curing reaction that produces crosslinking between polyphenylene chains resulting from the loss of chlorine from the polymer in the form of hydrogen chloride. The second stage of the thermal degradation is dehydrogenation because hydrogen is the major volatile species. Increasing amounts of polycyclic aromatic hydrocarbons (phenanthrene and 9, 10 benzphenanthrene) in the sublimate, concomitant with increasing C/H ratios of the polymeric residue with pyrolysis temperature, is consistent with the buildup of polynuclear structures in the polymer matrix.
NASA Astrophysics Data System (ADS)
Wang, Tingxia; Jiang, Yimin; Zhou, Yaxin; Du, Yongling; Wang, Chunming
2018-06-01
Active and durable electrocatalyst for hydrogen evolution reaction (HER) is pivotal to generate molecular hydrogen more energy-efficient, but directly grafting electrocatalyst on electrode material by a single-step method without compromising the catalytic activity and stability remains a challenge. Herein, an intriguing electrode, reduced graphene oxide modified carbon nanotube/reduced graphene oxide/polyphenylene sulfide (RGO-CNT/RGO/PPS) film, is used to replace conventional electrodes. In situ electrodeposition is proposed to fabricate CoP on the RGO-CNT/RGO/PPS (CoP-RGO-CNT/RGO/PPS) electrode and achieves a favorably electrical contact between CoP nanoparticles and RGO-CNT/RGO/PPS electrode due to without any polymer binder. Additionally, the coupling of different electrodeposition stages with scanning electron microscope (SEM) can investigate the nanostructure evolution of CoP nanoparticles, which gives valuable insights into the optimized electrodeposition cycles. The rational integration of RGO onto CNT/RGO/PPS film is an effective approach for enhancing its intrinsic electrical conductivity and favoring the formation of a high density of dispersive CoP nanoparticles. The CoP-RGO-CNT/RGO/PPS film has shown outstanding HER electrocatalytic behaviors performed a current density of 10 mA cm-2 at a relatively low overpotential of 160 mV with a Tafel slope of 60 mV dec-1 in acidic medium, which can be mainly attributed to the synergistic effect between optimized morphology and accelerated kinetics. Additionally, this film electrocatalyst exhibits a good HER activity and stability under both neutral and basic conditions.
Chen, Min; Yang, Bangpei; Chen, Changle
2015-12-14
The facile and reversible interconversion between neutral and oxidized forms of palladium complexes containing ferrocene-bridged phosphine sulfonate ligands was demonstrated. The activity of these palladium complexes could be controlled using redox reagents during ethylene homopolymerization, ethylene/methyl acrylate copolymerization, and norbornene oligomerization. Specifically in norbornene oligomerization, the neutral complexes were not active at all whereas the oxidized counterparts showed appreciable activity. In situ switching between the neutral and oxidized forms resulted in an interesting "off" and "on" behavior in norbornene oligomerization. This work provides a new strategy to control the olefin polymerization process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates
Baillod, Charles R.; Boyle, W. C.
1968-01-01
The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474
Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin
2017-02-01
The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.
reactivity monomers such as tetracyanoethylene (I), anthracene, naphthacene and pentacene . I was polymerized alone or copolymerized with anthracene...naphthacene, or pentacene . Soluble fractions of polyphenylene or polyanthryl were used as the catalyst in various concentrations so as to vary the...magnitude as high as that of anthracene, and had an activation energy of 8-11 kcal/mol. Naphthacene, pentacene , and polyphenylene also copolymerized
Zhang, Lanjun; Li, Zenghua; Li, Jinhu; Zhou, Yinbo; Yang, Yongliang; Tang, Yibo
2015-12-11
This paper selects two typical compounds containing organic sulfur as model compounds. Then, by analyzing the chromatograms of gaseous low-temp oxidation products and GC/MS of the extractable matter of the oxidation residue, we summarizing the mechanism of low-temp sulfur model compound oxidation. The results show that between 30°C to 80°C, the interaction between diphenyl sulfide and oxygen is mainly one of physical adsorption. After 80°C, chemical adsorption and chemical reactions begin. The main reaction mechanism in the low-temp oxidation of the model compound diphenyl sulfide is diphenyl sulfide generates diphenyl sulfoxide, and then this sulfoxide is further oxidized to diphenyl sulphone. A small amount of free radicals is generated in the process. The model compound cysteine behaves differently from diphenyl sulfide. The main reaction low-temp oxidation mechanism involves the thiol being oxidized into a disulphide and finally evolving to sulfonic acid, along with SO₂ being released at 130°C and also a small amount of free radicals. We also conducted an experiment on coal from Xingcheng using X-ray photoelectron spectroscopy (XPS). The results show that the major forms of organic sulfur in the original coal sample are thiophene and sulfone. Therefore, it can be inferred that there is none or little mercaptan and thiophenol in the original coal. After low-temp oxidation, the form of organic sulfur changes. The sulfide sulfur is oxidized to the sulfoxide, and then the sulfoxide is further oxidized to a sulfone, and these steps can be easily carried out under experimental conditions. What's more, the results illustrate that oxidation promotes sulfur element enrichment on the surface of coal.
Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite
Das, Gautam; Yoon, Hyon Hee
2015-01-01
An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240
Dibenzyl sulfide metabolism by white rot fungi.
Van Hamme, Jonathan D; Wong, Eddie T; Dettman, Heather; Gray, Murray R; Pickard, Michael A
2003-02-01
Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated.
New separators for nickel-zinc batteries
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1976-01-01
Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.
Polymeric membrane systems of potential use for battery separators
NASA Technical Reports Server (NTRS)
Philipp, W. H.
1977-01-01
Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.
NASA Technical Reports Server (NTRS)
Snider, W. E.; Nagle, W. J.
1972-01-01
Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45 percent KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide (PPO) plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a potassium hydroxide (KOH) electrolyte in a plastic case are discussed.
NASA Technical Reports Server (NTRS)
Snider, W. E.; Nagle, W. J.
1972-01-01
Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45% KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a KOH electrolyte in a plastic case are considered.
NASA Astrophysics Data System (ADS)
Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui
2014-06-01
A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.
NASA Astrophysics Data System (ADS)
Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping
2015-01-01
A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.
NASA Astrophysics Data System (ADS)
Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan
2018-02-01
The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.
Karakuş, Hamza; Dürüst, Yaşar
2017-02-01
The reaction of C-(4-substituted-phenyl)-N-(benzoyl)-N-methylglycines with benzo[b]thiophene 1,1-dioxide unexpectedly gave benzothiophene-fused pyrrole derivatives in toluene under microwave irradiation via a cycloaddition and metal-free Pummerer-type sulfone deoxygenation path. In order to obtain the desired sulfone derivatives, the sulfide group underwent oxidation with m-CPBA to afford sulfones. The structures of all the new products were elucidated by spectroscopic/physical methods and, in two cases, by X-ray diffraction.
Dibenzyl Sulfide Metabolism by White Rot Fungi
Van Hamme, Jonathan D.; Wong, Eddie T.; Dettman, Heather; Gray, Murray R.; Pickard, Michael A.
2003-01-01
Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated. PMID:12571066
Li, Xianwei; Xu, Yanli; Wu, Wanqing; Jiang, Chang; Qi, Chaorong; Jiang, Huanfeng
2014-06-23
A regio- and stereoselective synthesis of sulfones and thioethers by means of Cu(I)-catalyzed aerobic oxidative N-S bond cleavage of sulfonyl hydrazides, followed by cross-coupling reactions with alkenes and aromatic compounds to form the C sp 2-S bond, is described herein. N2 and H2O are the byproducts of this transformation, thus offering an environmentally benign process with a wide range of potential applications in organic synthesis and medicinal chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design, fabrication and evaluation of intelligent sulfone-selective polybenzimidazole nanofibers.
Ogunlaja, Adeniyi S; du Sautoy, Carol; Torto, Nelson; Tshentu, Zenixole R
2014-08-01
Molecularly imprinted polybenzimidazole nanofibers fabricated for the adsorption of oxidized organosulfur compounds are presented. The imprinted polymers exhibited better selectivity for their target model sulfone-containing compounds with adsorption capacities of 28.5±0.4mg g(-1), 29.8±2.2mg g(-1) and 20.1±1.4mg g(-1) observed for benzothiophene sulfone (BTO2), dibenzothiophene sulfone (DBTO2) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) respectively. Molecular modeling based upon the density functional theory (DFT) indicated that hydrogen bond interactions may take place between sulfone oxygen groups with NH groups of the PBI. Further DFT also confirmed the feasibility of π-π interactions between the benzimidazole rings and the aromatic sulfone compounds. The adsorption mode followed the Freundlich (multi-layered) adsorption isotherm which indicated possible sulfone-sulfone interactions. A home-made pressurized hot water extraction (PHWE) system was employed for the extraction/desorption of sulfone compounds within imprinted nanofibers at 1mL min(-1), 150°C and 30 bar. PHWE used a green solvent (water) and achieved better extraction yields compared to the Soxhlet extraction process. The application of molecularly imprinted polybenzimidazole (PBI) nanofibers displayed excellent sulfur removal, with sulfur in fuel after adsorption falling below the determined limit of detection (LOD), which is 2.4mg L(-1)S, and with a sulfur adsorption capacity of 5.3±0.4mg g(-1) observed for application in the fuel matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
Zou, Xian-Guo; Hu, Jiang-Ning; Zhu, Xue-Mei; Wang, Yu-Fu; Deng, Ze-Yuan
2018-06-01
This study aimed to explore the possibility of using methionine sulfone (Msn)-containing orbitides as indicators to evaluate the oxidation process of flaxseed oils. Results showed that after 4 days' heating, oxidation values slightly increased (p > .05) with significant decrease in methionine (Met)-containing peptides (p < .05) instead of γ-tocopherol (p > .05). However, as oxidation time continues increasing, oxidation values significantly increased (p < .05) with significant reduction of γ-tocopherol (p < .05). It demonstrated that Met-containing peptides were more readily oxidized compared with γ-tocopherol and showed certain antioxidant activity. Besides, high logarithmic correlations were found between oxidation values and Msn-containing orbitides (0.94-1.00), such as between total carbonyl compounds and orbitide [1-8-NαC],[1-MetO 2 ]-CLE (64.95 lnx - 52.14, R 2 = 0.99, Dingya23 oil). Therefore, in comparison with common oxidation indices, Msn-containing orbitides may be better indicators for evaluating the oxidation process of flaxseed oil with superior separation efficiency, specific information and high stability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.
Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy
2009-08-10
Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS.
Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S
2016-06-15
Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Production and Application of Lignosulfonates and Sulfonated Lignin.
Aro, Thomas; Fatehi, Pedram
2017-05-09
Lignin is the largest reservoir of aromatic compounds on earth and has great potential to be used in many industrial applications. Alternative methods to produce lignosulfonates from spent sulfite pulping liquors and kraft lignin from black liquor of kraft pulping process are critically reviewed herein. Furthermore, options to increase the sulfonate contents of lignin-based products are outlined and the industrial attractiveness of them is evaluated. This evaluation includes sulfonation and sulfomethylation of lignin. To increase the sulfomethylation efficiency of lignin, various scenarios, including hydrolysis, oxidation, and hydroxymethylation, were compared. The application of sulfonated lignin-based products is assessed and the impact of the properties of these products on the characteristics of their end-use application is critically evaluated. Sulfonated lignin-based products have been used as dispersants in cement admixtures and dye solutions more than other applications, and their molecular weight and degree of sulfonation were crucial in determining their efficiency. The use of lignin-based sulfonated products in composites may result in an increase in the hydrophilicity of some composites, but the sulfonated products may need to be desulfonated with an alkali and/or oxygen prior to their use in composites. To be used as a flocculant, sulfonated lignin-based products may need to be cross-linked to increase their molecular weight. The challenges associated with the use of lignin-based products in these applications are comprehensively discussed herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efelina, Vita; Widianto, Eri; Rusdiana, Dadi
2016-04-19
Graphene oxide (GO)/Poly (3,4-Ethylenedioxytriophene):Poly (styrene Sulfonate) (PEDOT:PSS) nanofibers have been successfully fabricated by a simple electrospinning technique to develop conductive nanofibers with polyvinyl alcohol (PVA) act as a carrier solution. Graphene oxide has been synthesized by Hummer’s method and has been confirmed by Raman Spectroscopy, FTIR and UV-Vis Spectroscopy. GO/PEDOT:PSS composite nanofibers. The structural and morphological properties were characterized by Scanning Electron Microscopy (SEM). The result of SEM show that GO/PEDOT:PSS nanofibers has a relatively uniform morphology nanofiber with diameter between 180 nm - 340 nm with smooth nanofiber surface. The produced nanofibers from this study can be utilized for various applicationsmore » such as flexible, conductive and transparent electrode.« less
NASA Astrophysics Data System (ADS)
Zhou, Jiang; D'Amore, Alberto; Yang, Yuming; He, Tianbai; Li, Binyao; Nicolais, Luigi
1994-05-01
Flexural fatigue tests were conducted on injection molded glass fiber reinforced a blend of polyphenylene ether ketone and polyphenylene sulfide composite using four-point bending with different stress ratios and different frequencies. The fatigue behavior of this material was described. The constructed S-N curves shift their trends obviously at the maximum cyclic stress being about 80% of the ultimate flexural strength. Examinations of failure surfaces for various loading conditions show that the fatigue failure mechanisms appear to be matrix yielding at high stresses and crack growth at low stresses. Analyses of the fatigue data at various stress ratios reveal that the data at low stress superimpose to form a single curve which is nearly linear when they are plotted as stress range versus number of cycles to failure in bilogarithmic axes, while the data at high stresses also converge to yield a single curve when they are plotted as ( S max S range)1/2 against specimen lifetimes ( S max is the maximum stress and S range is the stress range). These results show that for the studied material the main factor influencing the lifetime is the stress range at low stresses and the parameter ( S max S range)1/2 at high stresses. Comparison of fatigue data in the frequency range of 0.89 7.0 Hz was made, no significant effect of frequency on the fatigue behavior is found.
Characterization and electrochemical application of carbon materials based on poly(phenylene oxide)
NASA Astrophysics Data System (ADS)
Gray, Hunter
Carbon materials possess excellent electrical and surface properties for the next generation of energy storage devices. Polymers provide a carbon rich and tailorable precursor for the production of carbon materials. Therefore, activated carbons were prepared from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) via a three step process: thermal oxidation, carbonization, and activation with KOH. The activated carbons are predominately microporous with BET specific surface areas up to 2638 m2/g. Impedance spectroscopy revealed these carbons possess electrical conductivities comparable to commercial carbon blacks and consequently were employed in thin-film composite electrodes in electrochemical double-layer capacitors. Cyclic voltammetry confirmed maximum specific capacitances of 13.23 F/g and 2.848 F/g for aqueous and organic electrolyte systems, respectively. Additionally, carbon nanotubes were synthesized from PPO and other polymers with a nickel catalyst via chemical vapor deposition as revealed by transmission electron microscopy. This is the first report of carbon nanotubes produced from PPO.
NASA Astrophysics Data System (ADS)
Hong, K.; Zhang, X.
2005-03-01
Polyelectrolyte block copolymer was used to form an ordered domain of ionic block as a ``nanoreactor'' due to its ability to bind oppositely charged metal ion, Zn^2+, Fe^2+ etc. The purpose of our research is to investigate the controllability of the size and morphology of domains (inorganic nano particles) by changing backbone stiffness, the charge density and the volume fraction of ionic block. Poly(styrene sulfonate) (PSS), which backbone is flexible, and poly(cyclohexadiene sulfonate) (PCHDS), which backbone is ``semiflexible'', were used as ionic blocks. We synthesized PtBS-PSS and PS-PCHDS with various degree of sulfonation and the volume fraction. Zinc oxide (ZnO) nano particles successfully formed in the ionic domain of microphase separated block copolymers. We used SANS to characterize the morphology of block copolymers and TEM for block copolymer containing ZnO nano particles. Our experimental results show that the chemistry of ``sulfonation'' of block copolymers can be successfully used to synthesize nano composite materials.
The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers
NASA Astrophysics Data System (ADS)
LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.
2016-09-01
Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.
Utilization of common ditch vegetation in the reduction of fipronil and its sulfone metabolite.
Kröger, Robert; Moore, Matt T
2008-12-01
Fipronil, a phenylpyrazole insecticide, and its oxidative sulfone metabolite are two potential pollutants from treated rice and cotton production. A consequence of these pollutants occurring in surface runoff is degradation of downstream aquatic ecosystems. Utilization of primary intercept drainage ditches as management practices to reduce fipronil concentrations and loads has not been examined. This study used ditch mesocosms planted with monospecific stands of common emergent wetland vegetation to determine if certain plant species were more proficient in fipronil mitigation. Three replicates of four plant species were compared against a non-vegetated control to determine differences in water column outflow concentrations (microg L(-1)) and loads (microg). There were no significant differences between vegetated and control treatments in outflow concentrations (F = 0.35, P = 0.836) and loads (F = 0.35, P = 0.836). The range of fipronil reduction was 28-45% for both concentration and load. Unlike fipronil, fipronil sulfone concentrations and load increased by 96-328%. The increase in fipronil sulfone was hypothesized as a direct consequence of oxidation of fipronil within each mesocosm. The type of ditch vegetation had no effect on fipronil reduction. Future research needs to examine initial concentrations and hydraulic retention times to examine potential changes in reduction capacities.
Surface Complexation Modeling of Eu(III) and U(VI) Interactions with Graphene Oxide.
Xie, Yu; Helvenston, Edward M; Shuller-Nickles, Lindsay C; Powell, Brian A
2016-02-16
Graphene oxide (GO) has great potential for actinide removal due to its extremely high sorption capacity, but the mechanism of sorption remains unclear. In this study, the carboxylic functional group and an unexpected sulfonate functional group on GO were characterized as the reactive surface sites and quantified via diffuse layer modeling of the GO acid/base titrations. The presence of sulfonate functional group on GO was confirmed using elemental analysis and X-ray photoelectron spectroscopy. Batch experiments of Eu(III) and U(VI) sorption to GO as the function of pH (1-8) and as the function of analyte concentration (10-100, 000 ppb) at a constant pH ≈ 5 were conducted; the batch sorption results were modeled simultaneously using surface complexation modeling (SCM). The SCM indicated that Eu(III) and U(VI) complexation to carboxylate functional group is the main mechanism for their sorption to GO; their complexation to the sulfonate site occurred at the lower pH range and the complexation of Eu(III) to sulfonate site are more significant than that of U(VI). Eu(III) and U(VI) facilitated GO aggregation was observed with high Eu(III) and U(VI) concentration and may be caused by surface charge neutralization of GO after sorption.
1974-12-01
Polymerization 13 9. Polymers with Bridged Ring Systems 14 10. Spiro Polymers 14 11. Polyphenylene s 16 12. Phenol - Formaldehyde Resins 17 13. Polyphenylene... Formaldehyde Resins A wide variety of phenol- formaldehyde resins , cured with various curing agents, has been evaluated. The Tdec’s (N 2 ), which...415 0 570 415 540C 2- 410 0 -CHI - 0- c-Ci.f-CCH = 1-eC.- 390 540 0 (Phenol- Formaldehyde Resins ) -CVH- (aliph.) 390 / F_ 535 0 - CHL" (epoxy
High performance, durable polymers including poly(phenylene)
Fujimoto, Cy; Pratt, Harry; Anderson, Travis Mark
2017-02-28
The present invention relates to functionalized polymers including a poly(phenylene) structure. In some embodiments, the polymers and copolymers of the invention include a highly localized concentration of acidic moieties, which facilitate proton transport and conduction through networks formed from these polymers. In addition, the polymers can include functional moieties, such as electron-withdrawing moieties, to protect the polymeric backbone, thereby extending its durability. Such enhanced proton transport and durability can be beneficial for any high performance platform that employs proton exchange polymeric membranes, such as in fuel cells or flow batteries.
Zhang, Chan; Zhuang, Xupin; Li, Xiaojie; Wang, Wei; Cheng, Bowen; Kang, Weimin; Cai, Zhanjun; Li, Mengqin
2016-04-20
To balance the relationship among proton conductivity and mechanic strength of sulfonated poly(ether sulfone) (SPES) membrane, chitin nanowhisker-supported nanocomposite membranes were prepared by incorporating whiskers into SPES. The as-prepared chitin whiskers were prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) mediated oxidation of α-chitin from crab shells. The structure and properties of the composite membranes were examined as proton exchange membrane (PEM). Results showed that chitin nanowhiskers were dispersed incompactly in the SPES matrix. Thermal stability, mechanical properties, water uptake and proton conductivity of the nanocomposite films were improved from those of the pure SPES film with increasing whisker content, which ascribed to strong interactions between whiskers and between SPES molecules and chitin whiskers via hydrogen bonding. These indicated that composition of filler and matrix got good properties and whisker-supported membranes are promising materials for PEM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ridoux, Olivier; Drancourt, Michel
1998-01-01
In vitro comparisons demonstrated that the efficacy of albendazole, albendazole-sulfoxide, and albendazole-sulfone against pathogenic Encephalitozoon species was proportional to the degree of oxidation at a concentration of >10−3 μg/ml. Furthermore, at a concentration of <10−2 μg/ml, benzimidazoles were more effective against Encephalitozoon cuniculi and Encephalitozoon hellem than against Encephalitozoon intestinalis. PMID:9835533
Electrochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater.
Trautmann, A M; Schell, H; Schmidt, K R; Mangold, K-M; Tiehm, A
2015-01-01
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) represent hazardous pollutants and are frequently detected in the environment, e.g. in contaminated groundwater. PFASs are persistent to biodegradation and conventional oxidation processes such as ozonation. In this study electrochemical degradation of PFASs on boron-doped diamond (BDD) electrodes is demonstrated. Experiments were performed with model solutions and contaminated groundwater with a dissolved organic carbon (DOC) content of 13 mg/L. The perfluorinated carboxylic acids (PFCAs) perfluorobutanoate, perfluoropentanoate, perfluorohexanoate, perfluoroheptanoate and perfluorooctanoate, and the perfluorinated sulfonic acids (PFSAs) perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctane sulfonate and 6:2 fluorotelomer sulfonate were detected in the groundwater samples. At PFAS concentrations ranging from 0.26 to 34 mg/L (0.7 to 79 μM), the degradation of PFASs was achieved despite of the high DOC background. Pseudo first-order kinetic constants of PFSA degradation increased with the increase of carbon chain length. Fluoride formation as well as the generation of PFCAs with shortened chain lengths was observed. Inorganic byproducts such as perchlorate were also formed and have to be considered in further process optimization.
Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis.
Lü, Hongying; Gao, Jinbo; Jiang, Zongxuan; Yang, Yongxing; Song, Bo; Li, Can
2007-01-14
Dibenzothiophene (DBT) is oxidized to the corresponding sulfoxide and sulfone in an emulsion system (W/O) composed of polyoxometalate anion [C(18)H(37)N(CH(3))3](5)[PV(2)Mo(10)O(40)] as both the surfactant and catalyst, using molecular oxygen as the oxidant and aldehyde as the sacrificial agent under mild conditions.
NASA Astrophysics Data System (ADS)
Huang, Y.; Shi, W.; Zhang, C.; Wen, H.
2017-09-01
For the determination of nitrogen oxides in the air, the structure of diazo and coupling compounds was studied and tested by experiments. The conditions and methods of diazo and coupling reactions were investigated. Furthermore, a spectrophotometric method using sulfanilamide as a diazo compound and 2-N-ethyl-5-naphthol-7-sulfonic acid (N-ethyl J acid) as a coupling compound was proposed. The maximum absorption wavelength of sulfanilamide-Nethyl J acid azo compound was at 478 nm. The molar absorptivity was 4.31 × 104 L/(mol × cm) with a recovery of 98.7-100.9% and RSD of 1.85%. For nitrogen oxides, the determinate limit of this measurement was 0.015 mg/m3 and the determinate range 0.024-2.0 mg/m3. Moreover, a high degree of correlation was observed between the results obtained by the proposed method and the standard methods. The proposed method can be easily applied to determine nitrogen oxides in the air.
On-surface formation of one-dimensional polyphenylene through Bergman cyclization.
Sun, Qiang; Zhang, Chi; Li, Zhiwen; Kong, Huihui; Tan, Qinggang; Hu, Aiguo; Xu, Wei
2013-06-12
On-surface fabrication of covalently interlinked conjugated nanostructures has attracted significant attention, mainly because of the high stability and efficient electron transport ability of these structures. Here, from the interplay of scanning tunneling microscopy imaging and density functional theory calculations, we report for the first time on-surface formation of one-dimensional polyphenylene chains through Bergman cyclization followed by radical polymerization on Cu(110). The formed surface nanostructures were further corroborated by the results for the ex situ-synthesized molecular product after Bergman cyclization. These findings are of particular interest and importance for the construction of molecular electronic nanodevices on surfaces.
Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil.
Houtz, Erika F; Higgins, Christopher P; Field, Jennifer A; Sedlak, David L
2013-08-06
Several classes of polyfluorinated chemicals that are potential precursors to the perfluorinated carboxylates and sulfonates are present in aqueous film-forming foams (AFFF). To assess the persistence of these AFFF-derived precursors, groundwater, soil, and aquifer solids were obtained in 2011 from an unlined firefighter training area at a U.S. Air Force Base where AFFF was regularly used between 1970 and 1990. To measure the total concentration of perfluorinated carboxylate and sulfonate precursors in archived AFFF formulations and AFFF-impacted environmental samples, a previously developed assay that uses hydroxyl radical to oxidize precursors to perfluorinated carboxylates was adapted for these media. This assay was employed along with direct measurement of 22 precursors found in AFFF and a suite of other poly- and perfluoroalkyl substances (PFASs). On a molar basis, precursors accounted for 41-100% of the total concentration of PFASs in archived AFFF formulations. In the training area, precursors measured by the oxidation assay accounted for an average of 23% and 28% of total PFASs (i.e., precursors and perfluorinated carboxylates and sulfonates) in groundwater and solids samples, respectively. One precursor in AFFF, perfluorohexane sulfonamide amine, was observed on several highly contaminated soil and aquifer solids samples, but no other precursors present in AFFF formulations were detected in any samples at this field site. Suspected intermediate transformation products of precursors in AFFF that were directly measured accounted for approximately half of the total precursor concentration in samples from the training site. The fraction of PFASs consisting of perfluorinated carboxylates and sulfonates was greater in groundwater and solid samples than in any archived AFFF formulations, suggesting that much of the mass of precursors released at the site was converted to perfluorinated carboxylates and sulfonates. The precursors that have persisted at this site may generate significant amounts of additional perfluorinated carboxylates and sulfonates upon remediation of contaminated groundwater or aquifer solids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuntulani, T.; Musie, G.; Reibenspies, J.H.
1995-12-06
Successive sulfur-site oxygenation of the dithiolate complex [1,5-bis(mercaptoethyl)-1,5 diazacyclooctanato]-palladium(II), Pd-1, using H{sub 2}O{sub 2} as an O atom source produced all but one member of the series of palladium(II) complexes containing sulfinate (metallosulfone) and sulfinate (metallosulfoxide) S-donor ligands: the monosulfoxide, PdS(=O)R or Pd-4; bis(sulfoxide), Pd(S(=O)R){sub 2} or Pd-5; sulfone/sulfoxide, Pd((SO{sub 2}R)S(=))R or Pd-6; and the bis(sulfone) Pd(SO{sub 2}R){sub 2} or Pd-3 complex. A unique site selectivity for the addition of a second O atom from H{sub 2}O{sub 2} to thiolate sulfur of Pd-4 producing the bis(sulfoxide), Pd-5, exclusively, precluded the preparation of the monosulfone complex, Pd(SO{sub 2}R)SR or Pd-2, viamore » that route. However, the dithiolate Pd-1 reacts with O{sub 2} photochemically in aprotic solvents, giving access to this last member of the series, Pd-2. Further reaction of Pd-2 with O{sub 2} under UV photolysis gives the bis(sulfone) complex, Pd-3. The oxygenates were characterized by various spectroscopies, electrochemistry, and X-ray crystallography. Mass spectrometry delineated a single O atom loss pathway for the sulfoxide species, while SO{sub 2} and O{sub 2} loss is found in sulfone cases. Electrochemical studies show that the addition of an O atom to a thiolate sulfur to create a sulfoxide S-donor results in a stabilization of the Pd{sup I} oxidation state in the range 50-70 mV, while the addition of an O atom to a sulfoxide sulfur to create a sulfone S-donor results in greater stabilization of the Pd{sup I} oxidation state in the range 190-220 mV.« less
Liu, Linna; Liu, Zhenxiong; Zhang, Tian; Shi, Lei; Zhang, Wenjuan; Zhang, Yan
2015-06-01
The most common conventional therapy for inflammatory bowel disease in clinical practice involves the use of nonsteroidal anti-inflammatory drugs, such as 5-amino salicylic acid. However, a high dose of 5-amino salicylic acid may bring about severe side effects. Chinese people have used Rheum tanguticum as a folk remedy for gastrointestinal disease for two thousand years. Our group has isolated R. tanguticum polysaccharide 1 from R. tanguticum and verified that it can attenuate 2,4,6-trinitrobenzene sulfonic acid-induced colitis in murines/rats. The present study aims to evaluate whether the addition of R. tanguticum polysaccharide 1 can improve efficacy and limit subsequent side effects of conventional treatment (5-amino salicylic acid) in rats with 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Sixty Sprague-Dawley male rats were randomized into five groups and treated with (1) saline (saline, 0.2 mL/day × 5, p. o.), (2) 2,4,6-trinitrobenzene sulfonic acid alone (saline, 0.2 mL/day × 5, p. o.), (3) 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid (5-amino salicylic acid, 75 mg/kg/day × 5, p.o), (4) 2,4,6-trinitrobenzene sulfonic acid + R. tanguticum polysaccharide 1 (R. tanguticum polysaccharide 1, 200 mg/kg/day × 5, p. o.), and (5) 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid + R. tanguticum polysaccharide 1 (5-amino salicylic acid, 25 mg/kg/day × 5, p.o; R. tanguticum polysaccharide 1, 200 mg/kg/day × 5, p. o.). All the rats were sacrificed on the 6th day after treatment using an overdose of anesthesia. A histological assessment was performed using semiquantitative scores; nuclear factor-kappa B and tumor necrosis factor-α were measured with Western blot, cyclooxygenase 1 and cyclooxygenase 2 protein expressions were investigated by RT-polymerase chain reaction, and prostoglandin E2 and inducible nitric oxide synthase productions were investigated by ELISA. The extent and severity of histological signs were attenuated significantly in the 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid + R. tanguticum polysaccharide 1 group. Treatment with R. tanguticum polysaccharide 1 plus 5-amino salicylic acid markedly decreased nuclear factor-kappa Bp65 and tumor necrosis factor-α protein expressions. R. tanguticum polysaccharide 1 and 5-amino salicylic acid had no effect on cyclooxygenase 1 protein expression, but inhibited the overexpression of the cyclooxygenase 2 protein. After treatment with 5-amino salicylic acid and R. tanguticum polysaccharide 1, the prostoglandin E2 level increased significantly and the inducible nitric oxide synthase level decreased considerably in the 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid + R. tanguticum polysaccharide 1 group compared with the 2,4,6-trinitrobenzene sulfonic acid alone group. These results demonstrate that combined therapy with R. tanguticum polysaccharide 1 and low-dose 5-amino salicylic acid had more favorable effects on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats, and its effects may be associated with inhibiting nuclear factor-kappa Bp65 protein expression and tumor necrosis factor-α production, resulting in a decrease of cyclooxygenase 2 and inducible nitric oxide synthase protein expressions. Georg Thieme Verlag KG Stuttgart · New York.
Ding, Yong-Xue; Streitmatter, Seth; Wright, Bryon E.; Hlady, Vladimir
2010-01-01
A gradient of negative surface charge based on 1-D spatial variation from surface sulfhydryl to mixed sulfhydryl-sulfonate moities was prepared by controlled UV oxidation of 3-mercaptopropylsilane monolayer on fused silica. Adsorption of three human plasma proteins, albumin (HSA), immunoglobulin G (IgG), and fibrinogen (Fgn) onto such surface gradient was studied using spatially-resolved total internal reflection fluorescence (TIRF) and autoradiography. Adsorption was measured from dilute solutions equivalent to 1/100 (TIRF, autoradiography), and 1/500 and 1/1000 (autoradiography) of protein’s physiological concentrations in plasma. All three proteins adsorbed more to the non-oxidized sulfhydryl region than to the oxidized, mixed sulfhydryl-sulfonate region of the gradient. In the case of HSA the adsorption contrast along the gradient was largest when the adsorption took place from more dilute protein solutions. Increasing the concentration to 1/100 of protein plasma concentration eliminated the effect of the gradient on HSA adsorption and to the lesser extent on IgG adsorption. In the case of Fgn the greatest adsorption contrast was observed at the highest concentration used. Based on adsorption kinetics, the estimated binding affinity of HSA for the sulfhydryl region what twice the affinity for the mixed sulfhydryl-sulfonate region of the gradient. For IgG and Fgn the initial adsorption was transport-limited and the initial adsorption rates approached the computed flux of the protein to the surface. PMID:20568822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornburg, Nicholas E.; Notestein, Justin M.
Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions.more » Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.« less
NASA Technical Reports Server (NTRS)
Meador, Mary B.; Sutter, James K.; Pizem, Hillel; Gershevitz, Olga; Goffer, Yossi; Frimer, Aryeh A.; Sukenik, Chaim N.; Sampathkumaran, Uma; Milhet, Xavier; McIlwain, Alan
2005-01-01
The formation, degree of crystallinity and adherence of dense titania (TiO2) thin film coatings on a high-temperature polyimide resin (PMR-15) can be influenced by the chemical composition of the polymer surface. Furthermore, solution deposition conditions can be adjusted to provide additional control over the morphology and crystallinity of the titania films. Recipes for solution-based titania deposition that used a slowly-hydrolyzing titanium fluoride salt in the presence of boric acid as a fluoride scavenger allowed growth of films up to 750 nm thick in 22 h. By adjusting solution pH and temperature, either amorphous titania or oriented crystalline anatase films could be formed. Surface sulfonate groups enhance the adhesion of solution-deposited oxide thin film coatings. While most sulfonation procedures severely damaged the PMR-15 surface, the use of chlorosulfonic acid followed by hydrolysis of the installed chlorosulfonyl groups provided effective surface sulfonation without significant surface damage. In some cases, the oxide deposition solution caused partial hydrolysis of the polymer surface, which itself was sufficient to allow adhesion of the titania film through chelation of titanium ions by exposed benzoic acid groups on the polymer surface.
Hu, Yiwen; He, Qihui; Zhang, Zheng; Ding, Naidong; Hu, Baixing
2011-11-28
With stoichiometric H(2)O(2) as oxidant, dibenzothiophene (DBT) is oxidized to its corresponding sulfone with high efficiency, catalyzed by a sub-valence heteronuclear peroxotungstate, [C(18)H(37)N(CH(3))(3)](4)[H(2)Se(IV)(3)W(6)O(34)], under mild biphase conditions and the catalyst shows remarkable selectivity of catalytic oxidation towards DBT, cinnamyl alcohol and quinoline.
New cation-exchange material based on a sulfonated 3,4-ethylenedioxythiophene monomer
NASA Astrophysics Data System (ADS)
Stéphan, O.; Schottland, P.; Le Gall, P.-Y.; Chevrot, C.
1998-06-01
The electrochemical oxidation, in aqueous medium, of a 3,4-ethylenedioxythiophene monomer functionalized by a sulfonate group exhibiting cation-exchange properties, allows the synthesis of a new type of water-soluble material. In order to synthesize in water, by oxidative electropolymerization, polymer films of controlled thickness containing attached sulfonate groups, we have investigated the polymerization of the functionalized monomer in the presence of the unsubstituted one without supporting electrolyte. Using an equimolar mixture (0.01 mol/l) of both monomers, copolymers exhibiting cation exchange abilities have been synthesized. As an example, th easy incorporation of hexaamine-ruthenium(III) into one of these copolymers is briefly reported. L'oxydation électrochimique en milieu aqueux d'un monomère de type 3,4- éthylènedioxythiophène fonctionnalisé par un groupement sulfonate permet d'envisager la synthèse d'un nouveau type de polymère hydrosoluble. Afin d'obtenir électrochimiquement en milieu aqueux, un film de polymère d'épaisseur contrôlée contenant des groupements sulfonates, nous avons evisagé de polymériser ce monomère en présence de son homologue non substitué. En partant d'un mélange équimolaire (0.01 mol/l) des deux monomères et en l'absence d'électrolyte support, nous avons synthétisé un matériau possédant des propriétés d'échange de cations. A titre d'exemple, nous présentons brièvement l'incorporation d'un complexe hexaaminé du ruthénium(III) dans un de ces copolymères.
Maduell, Francisco; Arias, Marta; Vera, Manel; Fontseré, Néstor; Blasco, Miquel; Barros, Xoana; Garro, Julia; Elena, Montserrat; Bergadá, Eduardo; Cases, Aleix; Bedini, Jose Luis; Campistol, Josep M
2009-01-01
As a change from Diapes to polyphenylene membrane in the mid-dilution filter has recently been developed, the aim of this study was to compare mid-dilution using this new dialyzer versus pre- and postdilution. The prospective study included 20 patients who underwent 4 hemodiafiltration (HDF) sessions: 1.7 m(2) polyphenylene and predilution infusion flow (Qi) 200 ml/min, 1.7 m(2) and postdilution Qi 100 ml/min, 1.9 and 2.2 m(2) mid-dilution both with Qi 200 ml/ min. The urea and creatinine reduction ratios were slightly higher in postdilution. The beta(2)-microglobulin (85.8%), myoglobin (73.6%), prolactin (67.8%) and retinol-binding protein (29.2%) reduction ratios with 1.9 m(2) mid-dilution, which was similar to 2.2 m(2) mid-dilution, were significantly higher than with the post- and predilution modes. Mid-dilution appears to be a good HDF alternative that allows a better removal of larger molecules than postdilution and, mainly, predilution. Mid-dilution using 1.9 or 2.2 m(2) dialyzers, at the same convective volume, showed a similar removal. Copyright 2009 S. Karger AG, Basel.
Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.
Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji
2017-10-01
Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems.
Electric current-producing device having sulfone-based electrolyte
Angell, Charles Austen; Sun, Xiao-Guang
2010-11-16
Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.
Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1.
Omori, T; Monna, L; Saiki, Y; Kodama, T
1992-01-01
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS2, FeS2, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed. PMID:1575493
Oxidation of selected organophosphate pesticides during chlorination of simulated drinking water.
Kamel, Alaa; Byrne, Christian; Vigo, Craig; Ferrario, Joseph; Stafford, Charles; Verdin, Gregory; Siegelman, Frederic; Knizner, Steven; Hetrick, James
2009-02-01
Ten organophosphate (OP) pesticides: phorate, disulfoton, terbufos, methidathion, bensulide, chlorethoxyfos, phosmet, methyl parathion, phostebupirim, and temephos were evaluated for their potential to undergo oxidation to their respective oxons and/or other oxidation analogues in laboratory water. Samples were collected at time intervals up to 72h of chlorination and analyzed by both gas chromatography-mass selective detection (GC-MSD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that methidathion and methyl parathion were stable in unchlorinated water, while all other OP pesticides were not stable over the 72h exposure period. In chlorinated water, phorate and disulfoton formed stable sulfone oxons. Temephos formed stable dioxon sulfoxide and dioxon sulfone. Methidathion, bensulide, chlorethyoxyfos, methyl parathion, and phostebupirim formed stable oxons over the 72h exposure period. Terbufos, phorate, disulfoton and temephos oxon sulfoxides; temephos sulfoxide; and phosmet oxon were initially formed but were not detected after 24h. The data illustrate that organothiophosphate pesticides may form oxons and/or other oxidation analogues during chlorination in water treatment plants, which are persistent for at least 72h.
NASA Astrophysics Data System (ADS)
Liu, Dong; Peng, Jinhua; Li, Zhuoyao; Liu, Bin; Wang, Lei
2018-02-01
Sulfonated polymer/graphene oxide (GO) nanocomposites exhibit excellent properties as proton exchange membranes. However, few investigations on highly branched sulfonated poly(arylene ether)s (HBSPE)/GO nanocomposites as proton exchange membranes are reported. In order to obtain HBSPE-based nanocomposite membranes with better dispersibility and properties, a novel GO containing flexible alkylsulfonated side chains (SGO) is designed and prepared for the first time in this work. The HBSPE/SGO nanocomposite membranes with excellent dispersibility are successfully prepared. The properties of these membranes, including the mechanical properties, ion-exchange capacity, water uptake, proton conductivity, and methanol resistance, are characterized. The nanocomposite membranes exhibit higher tensile strength (32.67 MPa), higher proton conductivity (0.39 S cm-1 at 80 °C) and lower methanol permeability (4.89 × 10-7 cm2 s-1) than the pristine membrane. The nanocomposite membranes also achieve a higher maximum power density (82.36 mW cm-2) than the pristine membrane (67.85 mW cm-2) in single-cell direct methanol fuel cell (DMFC) tests, demonstrating their considerable potential for applications in DMFCs.
Park, Saerom; Lee, Linda S; Medina, Victor F; Zull, Aaron; Waisner, Scott
2016-02-01
PFOA (perfluorooctanoic acid) oxidation (0.121-6.04 μM) by heat-activated persulfate was evaluated at 20-60 °C with 4.2-84 mM [Formula: see text] and in the presence of soluble fuel components to assess feasibility for in-situ remediation of groundwater. 6:2 fluorotelomer sulfonic acid/sulfonate (6:2 FTSA) and PFOS (perfluorooctanesulfonic acid) persulfate oxidation was also evaluated in a subset of conditions given their co-occurrence at many sites. High performance liquid chromatography electron spray tandem mass spectrometry was used for organic analysis and fluoride was measured using a fluoride-specific electrode. PFOA pseudo-1st order transformation rates (k1,PFOA) increased with increasing temperature (half-lives from 0.1 to 7 d for 60 to 30 °C) sequentially removing CF2 groups ('unzipping') to shorter chain perfluoroalkyl carboxylic acids (PFCAs) and F(-). At 50 °C, a 5-fold increase in [Formula: see text] led to a 5-fold increase in k1,PFOA after which self-scavenging by sulfate radicals decreased the relative rate of increase with more [Formula: see text] . Benzene, toluene, ethylbenzene and xylene did not affect k1,PFOA even at 40 times higher molar concentrations than PFOA. A modeling approach to explore pathways strongly supported that for 6:2 FTSA, both the ethyl linkage and CF2-CH2 bond of 6:2 FTSA oxidize simultaneously, resulting in a ratio of ∼25/75 PFHpA/PFHxA. The effectiveness of heat-activated [Formula: see text] on PFOA oxidation was reduced in a soil slurry; therefore, repeated persulfate injections are required to efficiently achieve complete oxidation in the field. However, PFOS remained unaltered even at higher activation temperatures, thus limiting the sole use of heat-activated persulfate for perfluoroalkyl substances removal in the field. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery.
Kim, Byung Guk; Han, Tae Hee; Cho, Chang Gi
2014-12-01
Nafion is the most frequently used as the membrane material due to its good proton conductivity, and excellent chemical and mechanical stabilities. But it is known to have poor barrier property due to its well-developed water channels. In order to overcome this drawback, graphene oxide (GO) derivatives were introduced for Nafion composite membranes. Sulfonated graphene oxide (sGO) was prepared from GO. Both sGO and GO were treated each with phenyl isocyanate and transformed into corresponding isGO and iGO in order to promote miscibility with Nafion. Then composite membranes were obtained, and the adaptability as a membrane for vanadium redox flow battery (VRFB) was investigated in terms of proton conductivity and vanadium permeability. Compared to a pristine Nafion, proton conductivities of both isGO/Nafion and iGO/Nafion membranes showed less temperature sensitivity. Both membranes also showed quite lower vanadium permeability at room temperature. Selectivity of the membrane was the highest for isGO/Nafion and the lowest for the pristine Nafion.
Inamuddin; Haque, Sufia Ul; Naushad, Mu
2016-06-01
In this study, a bioanode was developed by using layer-by-layer (LBL) assembly of sulfonated graphene (SG)/ferritin (Frt)/glucose oxidase (GOx). The SG/Frt biocomposite was used as an electron transfer elevator and mediator, respectively. Glucose oxidase (GOx) from Aspergillus niger was applied as a glucose oxidation biocatalyst. The electrocatalytic oxidation of glucose using GOx modified electrode increases with an increase in the concentration of glucose in the range of 10-50mM. The electrochemical measurements of the electrode was carried out by using cyclic voltammetry (CV) at different scan rates (20-100mVs(-1)) in 30mM of glucose solution prepared in 0.3M potassium ferrocyanide (K4Fe(CN)6) and linear sweep voltammetry (LSV). A saturation current density of 50±2mAcm(-2) at a scan rate of 100mVs(-1) for the oxidation of 30Mm glucose is achieved. Copyright © 2016 Elsevier Inc. All rights reserved.
Hosler, Erik R; Herbst, Robert W; Maroney, Michael J; Chohan, Balwant S
2012-01-21
A study of the step-wise oxidation of a Ni(II) diaminodithiolate complex through the formation of sulfate, the ultimate sulfur oxygenate, is reported. Controlled oxygenations or peroxidations of a neutral, planar, tetracoordinate, low-spin Ni(II) complex of a N(2)S(2)-donor ligand, (N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-propanediaminato) nickel(ii) (1), led to a series of sulfur oxygenates that have been isolated and characterized by ESI-MS and single-crystal X-ray diffraction. A monosulfenate complex (2) was detected by ESI-MS as a product of oxidation with one equivalent of H(2)O(2). However, this complex proved too unstable to isolate. Reaction of the dithiolate (1) with two equivalents of H(2)O(2) or one O(2) molecule leads to the formation of a monosulfinate complex (3), which was isolated and fully characterized by crystallography. The oxidation product of the monosulfinate (3) produced with either O(2) or H(2)O(2) is an interesting dimeric complex containing both sulfonate and thiolate ligands (4), this complex was fully characterized by crystallography, details of which were reported earlier by us. A disulfonate complex (7) is produced by reaction of 1 in the presence of O(2) or by reaction with exactly six equivalents of H(2)O(2). This complex was isolated and also fully characterized by crystallography. Possible intermediates in the conversion of the monosulfinate complex (3) to the disulfonate complex (7) include complexes with mixed sulfonate/sulfenate (5) or sulfonate/sulfinate (6) ligands. Complex 5, a four-oxygen adduct of 1, was not detected, but the sulfonate/sulfinate complex (6) was isolated and characterized. The oxidation chemistry of 1 is very different from that reported for other planar cis-N(2)S(2) Ni(ii) complexes including N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-ethylenediaminato) nickel(II), (8), and N,N'-bis(mercaptoethyl)-1,5-diazacyclooctane nickel(II). To address the structural aspects of the reactivity differences, the crystal structure of 8 was also determined. A comparison of the structures of planar Ni(II) complexes containing cis-dithiolate ligands, strongly suggests that the differences in reactivity are determined in part by the degree of flexibility that is allowed by the NN' chelate ring.
NASA Astrophysics Data System (ADS)
Praveena, P.; Dhanavel, S.; Sangamithirai, D.; Narayanan, V.; Stephen, A.
2018-04-01
A novel polycabazole(PCz)/graphitic carbon nitride(g-C3N4) nanocomposite was synthesized via chemical oxidative polymerization method. In the present work, camphor sulfonic acid (CSA) was used as a dopantand ammonium peroxydisulphate (APS) was used as an oxidizing agent. The PCz/g-C3N4 nanocompositewas characterizedusing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and UV-Visible spectroscopy (UV-Vis). The obtained results confirm the successful formation of PCz/g-C3N4 nanocomposite. Visible light induced photocatalytic activity of the novel catalyst was demonstrated using methylene blue as a target pollutant. The results suggestthat PCz/g-C3N4 nanocomposite can be used as an effective catalyst for the degradation of organic pollutants from waste water.
NASA Astrophysics Data System (ADS)
Platt, Andrew W. G.; Singh, Kuldip
2016-05-01
The reactions between lanthanide nitrates, Ln(NO3)3 and scandium and lanthanide trifluoromethane sulfonates, Ln(Tf)3 with trimesitylphosphine oxide, Mes3PO show that coordination to the metal ions does not lead to crystalline complexes. Investigation of the reactions by 31-P NMR spectroscopy shows that weak complexes are formed in solution. The crystal structures of Mes3PO·0.5CH3CN (1) and [Mes3PO]3H3O·2CH3CN·Tf (2), formed in the reaction between ScTf3 and Mes3PO, are reported. Trimesitylphosphine, Mes3P, is protonated by scandium and lanthanide trifluoromethane sulfonates and lanthanide nitrates in CD3CN and the structure of [Mes3PH]Cl·HCl·2H2O (3) is reported.
Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells
Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji
2017-01-01
Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems. PMID:29075671
Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omori, Toshio; Monna, L.; Saiki, Yuko
1992-03-01
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS{sub 2}, FeS{sub 2}, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Restingmore » cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed.« less
NASA Astrophysics Data System (ADS)
Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng
2015-06-01
A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.
NASA Astrophysics Data System (ADS)
Sirsam, Rajkumar; Usmani, Ghayas
2016-04-01
The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.
Synthesis and (spectro)electrochemistry of mixed-valent diferrocenyl-dihydrothiopyran derivatives.
Kowalski, Konrad; Karpowicz, Rafał; Mlostoń, Grzegorz; Miesel, Dominique; Hildebrandt, Alexander; Lang, Heinrich; Czerwieniec, Rafał; Therrien, Bruno
2015-04-07
Three novel diferrocenyl complexes were prepared and characterised. 2,2-Diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran (1, sulphide) was accessible by the hetero-Diels-Alder reaction of diferrocenyl thioketone with 2,3-dimethyl-1,3-butadiene. Stepwise oxidation of 1 gave the respective oxides 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1-oxide (2, sulfoxide) and 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1,1-dioxide (3, sulfone), respectively. The molecular structures of 1 and 3 in the solid state were determined by single crystal X-ray crystallography. The oxidation of sulphide 1 to sulfone 3, plays only a minor role on the overall structure of the two compounds. Electrochemical (cyclic voltammetry (= CV), square wave voltammetry (= SWV)) and spectroelectrochemical (in situ UV-Vis/NIR spectroscopy) studies were carried out. The CV and SWV measurements showed that an increase of the sulphur atom oxidation from -2 in 1 to +2 in 3 causes an anodic shift of the ferrocenyl-based oxidation potentials of about 100 mV. The electrochemical oxidation of 1-3 generates mixed-valent cations 1(+)-3(+). These monooxidised species display low-energy electronic absorption bands between 1000 and 3000 nm assigned to IVCT (= Inter-Valence Charge Transfer) electronic transitions. Accordingly, the mixed-valent cations 1(+)-3(+) are classified as weakly coupled class II systems according to Robin and Day.
Environmental stress cracking of polymers
NASA Technical Reports Server (NTRS)
Mahan, K. I.
1980-01-01
A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.
Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian
2017-05-01
Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.
Roach, David J.; Dou, Shichen; Colby, Ralph H.; ...
2012-01-06
Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T 1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T 1 values along with the presence of minima in T 1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similarmore » activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less
Alkaline degradation studies of anion exchange polymers to enable new membrane designs
NASA Astrophysics Data System (ADS)
Nunez, Sean Andrew
Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co-ethylene-co-butylene-co-styrene) polymer backbones. The comprehensive methodologies for the assessment of alkaline stability in AEMs as well as the new synthetic methodologies are intended as a guide toward robust AEM synthetic designs that approach current performance standards.
Long-lasting solid-polymer electrolytic hygrometer
NASA Technical Reports Server (NTRS)
Lawson, D. D.
1978-01-01
Device consists of hollow tube node of oxidation-resistant sulfonated fluorocarbon polymer. Tube absorbs moisture from air passing across inner and outer surfaces, causing change in polymer conductance. Change is related to change in water content in gas sample.
ON DEVELOPING CLEANER ORGANIC UNIT PROCESSES
Organic waste products, potentially harmful to the human health and the environment, are primarily produced in the synthesis stage of manufacturing processes. Many such synthetic unit processes, such as halogenation, oxidation, alkylation, nitration, and sulfonation are common to...
PET-modified red mud as catalysts for oxidative desulfurization reactions.
do Prado, Nayara T; Heitmann, Ana P; Mansur, Herman S; Mansur, Alexandra A; Oliveira, Luiz C A; de Castro, Cinthia S
2017-07-01
This work describes the synthesis of catalysts based on red mud/polyethylene terephthalate (PET) composites and their subsequent heat treatment under N 2 atmosphere. The materials were characterized by scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG) analysis and N 2 adsorption/desorption. The catalysts were evaluated in the oxidative desulfurization reaction of dibenzothiophene (DBT) in a biphasic system. The results indicated that the PET impregnation on red mud increased the affinity of the catalyst with the nonpolar phase (fuel), in which the contaminant was dissolved, allowing a higher conversion (up to 80%) and selectivity to the corresponding dibenzothiophene sulfone. The sulfone compound is more polar than DBT and diffused into the polar solvent as indicated by the data obtained via gas chromatography-mass spectrometry (GC-MS). Copyright © 2017. Published by Elsevier B.V.
You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki
2010-05-01
Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.
Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.
Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex
2013-10-01
Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles. Copyright © 2013 Elsevier Inc. All rights reserved.
Molecular water oxidation catalyst
Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.
1993-01-01
A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.
Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids.
Xu, Jian; Li, Huacheng; Wang, Shengtian; Luo, Fang; Liu, Yunyu; Wang, Xiaohong; Jiang, Zijiang
2014-09-01
A catalyst system composed of peroxophosphomolybdates as catalytic center and agarose as matrix material had been designed. The [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]/agarose (C16PMo(O2)2/agarose) hybrid was found to be active for oxidation desulfurization (ODS) of dibenzothiophene (DBT) or real fuel into corresponding sulfone by H2O2 as an oxidant, while the sulfur content could be reduced to 5ppm. The higher activity comes from its components including [PO4{MoO(O2)2}4] catalytic sites, the hydrophobic quaternary ammonium cation affinity to low polarity substrates, and agarose matrix affinity to H2O2 and sulfone. During the oxidative reaction, the mass transfer resistance between H2O2 and organic sulfurs could be decreased and the reaction rate could increase by the assistance of agarose and hydrophobic tails of [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]. Meanwhile, the oxidative products could be adsorbed by agarose matrix to give clean fuel avoiding the post-treatment. In addition, the hybrid was easily regenerated to be reused. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Xiaopeng; Hu, Feng; Wan, Rong; Singh, Vikram; Ma, Pengtao; Wang, Jingping
2017-01-01
Two sandwich-type polyoxomolybdates Na8[MO2{Mo2O5(O3PCH3C(O)PO3)}2] (M = Ni2+ (1); Co2+ (2)) were synthesized by one-pot reaction of Na2HPMo12O40·14H2O, 1-hydroxy ethidene diphosphonic acid (HEDP=HOC(CH3)(PO3H2)2), and (1) NiCl2/CoCl2 (2). Compounds 1 and 2 were characterized by single crystal X-ray analysis, X-ray powder diffraction (XRPD), IR spectroscopy, 31P NMR spectra, UV-vis spectroscopy, and thermogravimetric analyses (TGA). Structural analysis reveals that 1 and 2 exhibit similar centrosymmetric structure, which consists of one transition metal (TM) ion sandwiched by two same subunits {Mo2O5(O3PCH3C(O)PO3)}. The clusters 1 and 2 show efficient catalytic activities for oxidation of thioanisole. Moreover, they are catalytically selective for oxidizing thioanisole. Both resuable polyoxomolybdates 1 and 2 catalysts show good thermo- and hydrolytic stability. It is noted that compound 1 shows outstanding catalytic activity for oxidation of various sulfides to corresponding sulfones with 93–100% selectivity at 97–100% conversion in one hour under mild conditions, which is potentially valuable to the removal of organic sulfides. PMID:29027947
Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.
Lu, Yang; Gu, Sui; Guo, Jing; Rui, Kun; Chen, Chunhua; Zhang, Sanpei; Jin, Jun; Yang, Jianhua; Wen, Zhaoyin
2017-05-03
The lithium-sulfur battery is one of the most prospective chemistries in secondary energy storage field due to its high energy density and high theoretical capacity. However, the dissolution of polysulfides in liquid electrolytes causes the shuttle effect, and the rapid decay of lithium sulfur battery has greatly hindered its practical application. Herein, combination of sulfonated reduced graphene oxide (SRGO) interlayer on the separator is adopted to suppress the shuttle effect. We speculate that this SRGO layer plays two roles: physically blocking the migration of polysulfide as ion selective layer and anchoring lithium polysulfide by the electronegative sulfonic group. Lewis acid-base theory and density functional theory (DFT) calculations indicate that sulfonic groups have a strong tendency to interact with lithium ions in the lithium polysulfide. Hence, the synergic effect involved by the sulfonic group contributes to the enhancement of the battery performance. Furthermore, the uniformly distributed sulfonic groups working as active sites which could induce the uniform distribution of sulfur, alleviating the excessive growth of sulfur and enhancing the utilization of active sulfur. With this interlayer, the prototype battery exhibits a high reversible discharge capacity of more than 1300 mAh g -1 and good capacity retention of 802 mAh g -1 after 250 cycles at 0.5 C rate. After 60 cycles at different rates from 0.2 to 4 C, the cell with this functional separator still recovered a high specific capacity of 1100 mAh g -1 at 0.2 C. The results demonstrate a promising interlayer design toward high performance lithium-sulfur battery with longer cycling life, high specific capacity, and rate capability.
NASA Astrophysics Data System (ADS)
Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui
2017-05-01
A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.
Covalent conjugation of graphene oxide with methotrexate and its antitumor activity
NASA Astrophysics Data System (ADS)
Wojtoniszak, M.; Urbas, K.; Perużyńska, M.; Kurzawski, M.; Droździk, M.; Mijowska, E.
2013-05-01
Here, we have functionalized graphene oxide with anticancer drug methotrexate through amide bonding. A kinetics of the drug release from graphene oxide in physiological solution - phosphate buffered saline (PBS) containing different biocompatible polymers have been investigated. Dispersion of MTX-GO in poly sodium-4-styrene sulfonate and poly ethylene glycol resulted in increase of the release time. The material was characterized with transmission electron microscopy, atomic force microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, antineoplastic action against human breast adenocarcinoma cell line MCF7 of MTX-GO and empty graphene oxide was explored.
Naffakh, Mohammed; Marco, Carlos; Gómez, Marián A; Jiménez, Ignacio
2008-11-27
The isothermal crystallization of polyphenylene sulfide (PPS) nanocomposites with inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS2) has been studied from a thermal and morphological point of view, using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), polarized optical microscopy (POM) and time-resolved synchrotron X-ray diffraction. All the analyses revealed that the incorporation of the IF-WS2 altered significantly the crystallization behavior of PPS, in a way strongly dependent with the nanocomposite composition. The addition of IF-WS2 in 0.1 wt % proportion retarded the crystallization of PPS by increasing its fold surface free energy in a 10%. However, addition of the nanoparticles in excess of 1 wt % results in a promotion of the crystallization rate with reduction of the fold surface free energy to half the value of pure PPS.
The fatigue life study of polyphenylene sulfide composites filled with continuous glass fibers
NASA Astrophysics Data System (ADS)
Ye, Junjie; Hong, Yun; Wang, Yongkun; Zhai, Zhi; Shi, Baoquan; Chen, Xuefeng
2018-04-01
In this study, an effective microscopic model is proposed to investigate the fatigue life of composites containing continuous glass fibers, which is surrounded by polyphenylene sulfide (PPS) matrix materials. The representative volume element is discretized by parametric elements. Moreover, the microscopic model is established by employing the relation between average surface displacements and average surface tractions. Based on the experimental data, the required fatigue failure parameters of the PPS are determined. Two different fiber arrangements are considered for comparisons. Numerical analyses indicated that the square edge packing provides a more accuracy. In addition, microscopic structural parameters (fiber volume fraction, fiber off-axis angle) effect on the fatigue life of Glass/PPS composites is further discussed. It is revealed that fiber strength degradation effects on the fatigue life of continuous fiber-reinforced composites can be ignored.
Thurman, E.M.; Goolsby, D.A.; Aga, D.S.; Pomes, M.L.; Meyer, M.T.
1996-01-01
Alachlor and its metabolite, 2-[(2',6'-diethylphenyl)- (methoxymethyl)amino]-2-oxoethanesulfonate (ESA), were identified in 76 reservoirs in the midwestern United States using immunoassay, liquid chromatography, and gas chromatography/mass spectrometry. The median concentration of ESA (0.48 ??g/L) exceeded the median concentration of alachlor (<0.05 ??g/L), with highest values in the upper Midwest. ESA also was detected in the Mississippi River from the mouth to the headwaters at concentrations of 0.2-1.5 ??g/L, exceeding the concentration of alachlor. In a field runoff study, alachlor rapidly formed ESA. It is hypothesized that a glutathione conjugate forms, which later oxidizes in soil to ESA. The removal of the chlorine atom lessens the toxicity of the parent compound and increases runoff potential. It is hypothesized further that sulfonic acid metabolites of other chloroacetanilides, including acetochlor, butachlor, metolachlor, and propachlor, also occur in surface water.
NASA Astrophysics Data System (ADS)
Cao, Li; Kong, Lei; Kong, Lingqian; Zhang, Xingxiang; Shi, Haifeng
2015-12-01
Hybrid membranes (SPI/ZGO) composed of sulfonated polyimide (SPI) and zwitterionic polymer-functionalized graphene oxide (ZGO) are fabricated via a solution-casting method for vanadium redox flow battery (VRB). Successful preparation of ZGO fillers and SPI/ZGO hybrid membranes are demonstrated by FT-IR, XPS and SEM, indicating that ZGO fillers is homogeneously dispersed into SPI matrix. Through controlling the interfacial interaction between SPI matrix and ZGO fillers, the physicochemical properties, e.g., vanadium ion barrier and proton transport pathway, of hybrid membranes are tuned via the zwitterionic acid-base interaction in the hybrid membrane, showing a high ion selectivity and good stability with the incorporated ZGO fillers. SPI/ZGO-4 hybrid membrane proves a higher cell efficiencies (CE: 92-98%, EE: 65-79%) than commercial Nafion 117 membrane (CE: 89-94%, EE: 59-70%) for VRB application at 30-80 mA cm-2. The assembled VRB with SPI/ZGO-4 membrane presents a stable cycling charge-discharge performance over 280 times, which demonstrates its excellent chemical stability under the strong acidic and oxidizing conditions. SPI/ZGO hybrid membranes show a brilliant perspective for VRB application.
NASA Astrophysics Data System (ADS)
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-01
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-15
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
NASA Astrophysics Data System (ADS)
Wills, Rebecca H.; Habtemariam, Abraha; Lopez-Clavijo, Andrea F.; Barrow, Mark P.; Sadler, Peter J.; O'Connor, Peter B.
2014-04-01
The binding sites of two ruthenium(II) organometallic complexes of the form [(η6-arene)Ru( N, N)Cl]+, where arene/ N, N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/ o-phenylenediamine ( o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively.
NASA Astrophysics Data System (ADS)
Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.
1997-02-01
Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.
NASA Technical Reports Server (NTRS)
Cooper, George; Horz, Fred; Oleary, Alanna; Chang, Sherwood
2013-01-01
Polar, non-volatile organic compounds may be present on the surfaces (or near surfaces) of multiple Solar System bodies. If found, by current or future missions, it would be desirable to determine the origin(s) of such compounds, e.g., asteroidal or in situ. To test the possible survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to relatively high impact-shock pressures and/or to varying oxidizing/corrosive conditions. Tested compounds include sulfonic and phosphonic acids (S&P), polyaromatic hydrocarbons (PAHs) amino acids, keto acids, dicarboxylic acids, deoxy sugar acids, and hydroxy tricarboxylic acids (Table 1). Meteoritic sulfonic acids were found to be relatively abundant in the Murchison meteorite and to possess unusual S-33 isotope anomalies (non mass-dependent isotope fractionations). Combined with distinctive C-S and C-P bonds, the S&P are potential signatures of asteroidal organic material.
Golestanzadeh, Mohsen; Naeimi, Hossein; Zahraie, Zohreh
2017-02-01
Phenolic antioxidants play important role in prevention of oxidation in different industrials. The research objective in the current study was synthesis and evaluate of antioxidant activity of star-shape phenolic antioxidants. The synthetic compounds were prepared in the presence of sulfonated reduced graphene oxide. The antioxidant activity of synthesized compounds was investigated by spectrophotometrically method according to the DPPH assay. Overall, these compounds are potentially important antioxidant and also to limit activity of reactive oxygen species. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Trujillano, Raquel; Holgado, María Jesús; Rives, Vicente
2009-03-01
A series of hydrotalcite-type compounds containing Cu(II) and Al(III) in the layers, and carbonate or different alkylsulfonates in the interlayer, have been prepared and studied. Calcination of these solids gives rise to formation of metallic copper and Cu 2+ and Cu + oxides or sulfates, depending on the calcination temperature and on the precise nature of the interlayer alkylsulfonate.
NASA Astrophysics Data System (ADS)
Mack, Florian; Gogel, Viktor; Jörissen, Ludwig; Kerres, Jochen
2014-06-01
Due to the disadvantages of the Nafion polymer for the application in the direct methanol fuel cell (DMFC) especial at temperatures above 100 °C several polymers of the hydrocarbon type have already been investigated as membranes and ionomers in the DMFC. Among them were nonfluorinated and partially fluorinated arylene main-chain hydrocarbon polymers. In previous work, sulfonated polysulfone (sPSU) has been applied as the proton-conductive binder in the anode of a DMFC, ending up in good and stable performance. In continuation of this work, in the study presented here a polymer was prepared by polycondensation of decafluorobiphenyl and bisphenol AF. The formed polymer was sulfonated after polycondensation by oleum and the obtained partially fluorinated sulfonated polyether (SFS) was used as the binder and proton conductor in a DMFC anode operating at a temperature of 130 °C. The SFS based anode with 5% as ionomer showed comparable performance for the methanol oxidation to Nafion based anodes and significant reduced performance degradation versus Nafion and sPSU based anodes on the Nafion 115 membrane. Membrane electrode assemblies (MEAs) with the SFS based anode showed drastically improved performance compared to MEAs with Nafion based anodes during operation with lower air pressure at the cathode.
NASA Astrophysics Data System (ADS)
Li, Yun; Sniekers, Jeroen; Malaquias, João C.; Van Goethem, Cedric; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F. J.
2018-02-01
A stable and eco-friendly anion-exchange membrane (AEM) was prepared and applied in a non-aqueous all-copper redox flow battery (RFB). The AEM was prepared via a simple procedure, leading to a cross-linked structure containing quaternary ammonium groups without involvement of harmful trimethylamine. A network was thus constructed which ensured both ion transport and solvent resistance. The ion exchange capacity (IEC) of the membrane was tuned from 0.49 to 1.03 meq g-1 by varying the content of the 4, 4‧-bipyridine crosslinking agent. The membrane showed a good anion conductivity and retention of copper ions. As a proof of principle, a RFB single cell with this crosslinked membrane yielded a coulombic efficiency of 89%, a voltage efficiency of 61% and an energy efficiency of 54% at 7.5 mA cm-2.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.
1983-01-01
Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.
Effects of (Oxy-)Fluorination on Various High-Performance Yarns.
Kruppke, Iris; Bartusch, Matthias; Hickmann, Rico; Hund, Rolf-Dieter; Cherif, Chokri
2016-08-26
In this work, typical high-performance yarns are oxy-fluorinated, such as carbon fibers, ultra-high-molecular-weight polyethylene, poly(p-phenylene sulfide) and poly(p-phenylene terephthalamide). The focus is on the property changes of the fiber surface, especially the wetting behavior, structure and chemical composition. Therefore, contact angle, XPS and tensile strength measurements are performed on treated and untreated fibers, while SEM is utilized to evaluate the surface structure. Different results for the fiber materials are observed. While polyethylene exhibits a relevant impact on both surface and bulk properties, polyphenylene terephthalamide and polyphenylene sulfide are only affected slightly by (oxy-)fluorination. The wetting of carbon fiber needs higher treatment intensities, but in contrast to the organic fibers, even its textile-physical properties are enhanced by the treatment. Based on these findings, the capability of (oxy-)fluorination to improve the adhesion of textiles in fiber-reinforced composite materials can be derived.
Naffakh, Mohammed; Marco, Carlos; Gómez, Marián A; Gómez-Herrero, Julio; Jiménez, Ignacio
2009-07-30
The use of tungsten disulfide (WS2) nanoparticles offers the opportunity to produce novel and advanced polymer-based nanocomposite materials via melt blending. The developed materials, based on the high-performance engineering thermoplastic polyphenylene sulfide (PPS), display a unique nanostructure on variation of the nanoparticle concentration, as confirmed by time-resolved synchrotron X-ray diffraction. The cold-crystallization kinetics and morphology of PPS chains under confined conditions in the nanocomposite, as determined by differential scanning calorimetry (DSC) and atomic force microscopy (AFM), also manifest a dependence on the IF-WS2 concentration which are unexpected for polymer nanocomposites. The addition of IF-WS2 with concentrations greater than or equal to 0.5 wt % of IF-WS2 remarkably improves the mechanical performance of PPS with an increase in the storage modulus of 40-75%.
NASA Astrophysics Data System (ADS)
Molchanov, E. S.; Yudin, V. E.; Kydralieva, K. A.; Elokhovskii, V. Yu.
2012-07-01
Prepregs of fiber-reinforced plastics based on a PORCHER-43200 carbon twill-weave fabric and two types of binders — thermoreactive and thermoplastic — were fabricated using electrostatic spraying, followed by rolling the prepregs in temperature-controlled calenders. A solid epoxy olygomer with dicyandiamine as a hardener and Fortron® polyphenylene sulfide were used as the thermoreactive and thermoplastic binders. The thermomechanical properties of carbon-fiber-reinforced plastics processed from these prepregs, as well as commercial Sigranex® PREPREGCE8201-200-45 S prepregs as model ones, and composites manufactured from them were investigated for comparison. The latter ones are being used for the design of orthopaedic products. It is shown that the composites based on polyphenylene sulfide are characterized by higher values of flexural strength, flexural and shear moduli, and interlaminar fracture toughness ( G IC), the latter being the most important parameter.
Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki
2011-02-01
We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.
Zabel, Robert; Weber, Günther
2016-02-01
Small sulfur-containing compounds are involved in several important biochemical processes, including-but not limited to-redox regulation and drug conjugation/detoxification. While methods for stable redox pairs of such compounds (thiols/disulfides) are available, analytical data on more labile and short-lived redox intermediates are scarce, due to highly challenging analytical requirements. In this study, we employ the direct combination of reagentless electrochemical oxidation and mass spectrometric (EC-MS) identification for monitoring oxidation reactions of cysteine, N-acetylcysteine, methionine, and glutathione under simulated physiological conditions (pH 7.4, 37 °C). For the first time, all theoretically expected redox intermediates-with only one exception-are detected simultaneously and in situ, including sulfenic, sulfinic, and sulfonic acids, disulfides, thiosulfinates, thiosulfonates, and sulfoxides. By monitoring the time/potential-dependent interconversion of sulfur species, mechanistic oxidation routes are confirmed and new reactions detected, e.g., sulfenamide formation due to reaction with ammonia from the buffer. Furthermore, our results demonstrate a highly significant impact of cisplatin on the redox reactivity of sulfur species. Namely, the amount of thiol oxidation to sulfonic acid via sulfenic and sulfinic acid intermediates is diminished for glutathione in the presence of cisplatin in favor of the disulfide formation, while for N-acetylcysteine the contrary applies. N-acetylcysteine is the only ligand which displays enhanced oxidation currents upon cisplatin addition, accompanied by increased levels of thiosulfinate and thiosulfonate species. This is traced back to thiol reactivity and highlights the important role of sulfenic acid intermediates, which may function as a switch between different oxidation routes.
Roth, Thomas; Urpi Bertran, Raquel; Latza, Andreas; Andörfer-Lang, Katrin; Hügelschäffer, Claudia; Pöhlein, Manfred; Puchta, Ralph; Placht, Christian; Maid, Harald; Bauer, Walter; van Eldik, Rudi
2015-04-01
Candidate reference materials (RM) for the analysis of phosphorus-based flame retardants in styrene-based polymers were prepared using a self-made mini-extruder. Due to legal requirements of the current restriction for the use of certain hazardous substances in electrical and electronic equipment, focus now is placed on phosphorus-based flame retardants instead of the brominated kind. Newly developed analytical methods for the first-mentioned substances also require RMs similar to industrial samples for validation and verification purposes. Hence, the prepared candidate RMs contained resorcinol-bis-(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), triphenyl phosphate and triphenyl phosphine oxide as phosphorus-based flame retardants. Blends of polycarbonate and acrylonitrile-co-butadiene-co-styrene as well as blends of high-impact polystyrene and polyphenylene oxide were chosen as carrier polymers. Homogeneity and thermal stability of the candidate RMs were investigated. Results showed that the candidate RMs were comparable to the available industrial materials. Measurements by ICP/OES, FTIR and NMR confirmed the expected concentrations of the flame retardants and proved that analyte loss and degradation, respectively, was below the uncertainty of measurement during the extrusion process. Thus, the candidate RMs were found to be suitable for laboratory use.
NASA Astrophysics Data System (ADS)
Chanda, Debabrata; Hnát, Jaromir; Bystron, Tomas; Paidar, Martin; Bouzek, Karel
2017-04-01
In this work, the Ni-Co spinel oxides are synthesized via different methods and using different calcination temperatures. Properties of the prepared materials are compared. The best route is selected and used to prepare a Ni1+xCo2-xO4 (-1 ≤ x ≤ 1) series of materials in order to investigate their catalytic activity towards the oxygen evolution reaction (OER). The results show that hydroxide preparation yields NiCo2O4 oxide with the highest activity. 325 °C is identified as the optimum calcination temperature. Subsequently, the catalysts are tested in an electrolysis cell. To prepare an anode catalyst layer based on NiCo2O4 catalyst on top of a nickel foam substrate for membrane electrode assembly (MEA) construction, following polymer binders are used: anion-selective quaternized polyphenylene oxide (qPPO), inert polytetrafluoroethylene (PTFE®), and cation-selective Nafion®. qPPO ionomer containing MEA exhibited highest OER activity. The current density obtained using a MEA containing qPPO binder attains a value of 135 mA cm-2 at a cell voltage of 1.85 V. After 7 h chronopotentiometric experiment at a constant current density of 225 mA cm-2, the MEA employing PTFE® binder shows higher stability than the other binders in alkaline water electrolysis at 50 °C. Under similar conditions, stability of the PTFE®-binding MEA is examined for 135 h.
NASA Astrophysics Data System (ADS)
Filippova, Anna; Vashurin, Artur; Znoyko, Serafima; Kuzmin, Ilya; Razumov, Mikhail; Chernova, Alena; Shaposhnikov, Gennady; Koifman, Oscar
2017-12-01
Novel complexes of cobalt and copper with substituted phthalocyanines were synthesized and characterized. Their water-soluble derivatives were obtained by sulfonation under mild conditions and structurally proved. Aggregation equilibrium in water mediums was shown and influence of geometrical and electron parameters of macroheterocycle peripheral substituents on these processes was established. Catalytic activity upon liquid-phase oxidation of N,N-diethylcarbamodithiolate to thiuram E was studied. Kinetic parameters of substrate oxidation in presence of cobalt phthalocyanines were considered.
Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system
Wedemeyer, G.A.; Dollar, A.M.
1963-01-01
Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.
Koseoglu-Imer, Derya Yuksel; Keskinler, Bulent
2013-01-01
The immobilization efficiencies of Acidithiobacillus ferrooxidans cells on different immobilization matrices were investigated for biooxidation of ferrous iron (Fe(2+)) to ferric iron (Fe(3+)). Six different matrices were used such as the polyurethane foam (PUF), granular activated carbon (GAC), raw poly(styrene-divinylbenzene) copolymer (rawSDVB), raw poly(styrene-divinylbenzene) copolymer with granular activated carbon (rawSDVB-GAC), sulfonated poly(styrene-divinylbenzene) copolymer (sulfSDVB) and sulfonated poly(styrene-divinylbenzene) copolymer with granular activated carbon (sulfSDVB-GAC). The sulfSDVB-GAC polymer showed the best performance for Fe(2+) biooxidation. It was used at packed-bed bioreactor and the kinetic parameters were obtained. The highest Fe(2+) biooxidation rate (R) was found to be 4.02 g/L h at the true dilution rate (Dt) of 2.47 1/h and hydraulic retention time (τ) of 0.4 h. The sulfSDVB-GAC polymer was used for the first time as immobilization material for A. ferrooxidans for Fe(2+) biooxidation. Copyright © 2012 Elsevier B.V. All rights reserved.
Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak
2018-05-07
The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.
Mao, Hui; Liang, Jiachen; Ji, Chunguang; Zhang, Haifeng; Pei, Qi; Zhang, Yuyang; Zhang, Yu; Hisaeda, Yoshio; Song, Xi-Ming
2016-08-01
Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) (PVIPS), a novel kind of poly(zwitterionic liquids) (PZILs) containing both imidazolium cation and sulfonate anion, was successfully modified on the surface of polypyrrole/graphene oxide nanosheets (PPy/GO) by covalent bonding. The obtained novel PZILs functionalized PPy/GO nanosheets (PVIPS/PPy/GO) modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with high stability, sensitivity, selectivity and wide linear range (40-1220nM), especially having a lower detection limit (17.3nM). The excellent analytical performance is attributed to the strongly negative charges on the surface of modified GCE in aqueous solution, which is different from conventional poly(ionic liquids) modified GCE. DA cations could be quickly enriched on the electrode surface by electrostatic interaction in solution due to the existence of SO3(-) groups with negative charge at the end of pendant groups in zwitterionic PVIPS, resulting in a change of the electrons transmission mode in the oxidation of DA, that is, from a typical diffusion-controlled process at conventional poly(1-vinyl-3-ethylimidazole bromide) (PVEIB)/PPy/GO modified GCE to a typical surface-controlled process. Copyright © 2016 Elsevier B.V. All rights reserved.
Hammed, W. A.; Rahman, M. S.; Mahmud, H. N. M. E.; Yahya, R.; Sulaiman, K.
2017-01-01
Abstract A soluble poly (n-vinyl carbazole)–polypyrrole (PNVC–Ppy) copolymer was prepared through oxidative chemical polymerization wherein dodecyl benzene sulfonic acid (DBSA) was used as a dopant to facilitate polymer-organic solvent interaction and ammonium persulfate (APS) was used as an oxidant. Compared with undoped PNVC–Ppy, the DBSA-doped PNVC–Ppy copolymer showed higher solubility in some selected organic solvents. The composition and structural characteristics of the DBSA-doped PNVC–Ppy were determined by Fourier transform infrared, ultraviolet–visible, and X-ray diffraction spectroscopic methods. Field emission scanning electron microscopic method was employed to observe the morphology of the DBSA-doped PNVC–Ppy copolymer. The electrical conductivity of the DBSA-doped PNVC–Ppy copolymer was measured at room temperature. The conductivity increased with increasing concentration of APS oxidant, and the highest conductivity was recorded at 0.004 mol/dm3 APS at a polymerization temperature of −5 °C. The increased conductivity can be explained by the extended half-life of pyrrole free radical at a lower temperature and a gradual increase in chain length over a prolonged time due to the slow addition of APS. Furthermore, the obtained soluble copolymer exhibits unique optical and thermal properties different from those of PNVC and Ppy. PMID:29491808
NASA Astrophysics Data System (ADS)
Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent
1999-11-01
Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.
Efficient synthesis of methylene exo-glycals: another use of glycosylthiomethyl chlorides.
Zhu, Xiangming; Jin, Ying; Wickham, John
2007-03-30
A new approach to the synthesis of methylene exo-glycals is described. Oxidation of glycosylthiolmethyl chloride (GTM-Cl) with mCPBA afforded the corresponding glycosylchloromethyl sulfone in almost quantitative yield, which underwent KOtBu-induced Ramberg-Bäcklund rearrangement to furnish the desired methylene exo-glycal in excellent yield.
Chen, Guiying; Sun, Hong; Hou, Shifeng
2016-06-01
In this study, sulfonated graphene oxide (SGO) was synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was used to make Mb-SGO-Nafion composite films by coating myoglobin (Mb) on the glassy carbon electrodes (GCE). Positions of the Soret absorption bands suggested that Mb retained its native conformation in the films. Mb-SGO-Nafion film modified electrode showed a pair of well-defined and nearly reversible cyclic voltammetry peaks at around -0.39 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters such as electron transfer rate constant (ks) and formal potential (E(o')) were estimated by fitting the data of square-wave voltammetry with nonlinear regression analysis. Experimental data demonstrated that the electron transfer between Mb and electrode was greatly facilitated and showed good electrocatalytic properties toward various substrates, such as H2O2 and NaNO2, with significant lowering of reduction overpotential. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Lin, Chun-Chiao; Huang, Chih-Kuo; Hung, Yu-Chieh; Chang, Mei-Ying
2016-08-01
An acid treatment is used in the enhancement of the conductivity of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin film, which is often used as the anode in organic solar cells. There are three types of acid treatment for PEDOT:PSS thin film: hydrochloric, sulfuric, and phosphoric acid treatments. In this study, we examine and compare these three ways with each other for differences in conductivity. Hydrochloric acid results in the highest conductivity enhancement, from 0.3 to 1109 S/cm. We also discuss the optical transmittance, conductivity, surface roughness, surface morphology, and stability, as well as the factors that can influence device efficiency. The devices are fabricated using an acid-treated PEDOT:PSS thin film as the anode. The highest power conversion efficiency was 1.32%, which is a large improvement over that of the unmodified organic solar cell (0.21%). It is comparable to that obtained when using indium tin oxide (ITO) as an electrode, ca. 1.46%.
NASA Astrophysics Data System (ADS)
Huang, Q.
2016-12-01
Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.
Popiel, Stanisław; Nalepa, Tomasz; Dzierzak, Dorota; Stankiewicz, Romuald; Witkiewicz, Zygfryd
2008-09-15
A scheme of dibutyl sulfide (DBS) oxidation with ozone and generation of transitional products was determined in this study. The main identified intermediate product was dibutyl sulfoxide (DBSO), and the main end product of DBS oxidation was dibutyl sulfone (DBSO2). It was determined that for three temperatures: 0, 10 and 20 degrees C there was certain initial DBS concentration for which half-times observed in experimental conditions were equal and independent from temperature. Generation of phosgene and water as by-products was confirmed for the reaction of DBS with ozone in chloroform. Results of the described study allowed to present generalized mechanism of sulfide oxidation with ozone.
Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep
2007-06-18
Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.
The Workshop on Conductive Polymers: Final Report
DOE R&D Accomplishments Database
1985-10-01
Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)
Polymer electrolyte membrane assembly for fuel cells
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)
2002-01-01
An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.
Polymer electrolyte membrane assembly for fuel cells
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)
2000-01-01
An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.
NASA Technical Reports Server (NTRS)
Chang, Manchium (Inventor); Colvin, Michael S. (Inventor); Rembaum, Alan (Inventor); Richards, Gil F. (Inventor)
1987-01-01
Metal oxide containing polymers and particularly styrene, acrylic or protein polymers containing fine, magnetic iron oxide particles are formed by combining a NO.sub.2 -substituted polymer with an acid such as hydrochloric acid in the presence of metal, particularly iron particles. The iron is oxidized to fine, black Fe.sub.3 O.sub.4 particles which deposit selectively on the polymer particles. Nitrated polymers are formed by reacting functionally substituted, nitrated organic compounds such as trinitrobenzene sulfonate or dinitrofluoro benzene with a functionally coreactive polymer such as an amine modified acrylic polymer or a protein. Other transition metals such as cobalt can also be incorporated into polymers using this method.
Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe; Verboom, Willem
2013-01-01
Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2-3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.
Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties.
Zhang, Guang; Auer-Berger, Manuel; Gehrig, Dominik W; Blom, Paul W M; Baumgarten, Martin; Schollmeyer, Dieter; List-Kratochvil, E J W; Müllen, Klaus
2016-10-20
Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer ( D1 ) manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT) in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one ( D2 ) displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. D1 , in a three-layer organic light emitting diode (OLED) by solution processing gave a pure blue emission with Commission Internationale de l'Éclairage 1931 CIE xy = (0.16, 0.12), a peak current efficiency of 0.21 cd/A and a peak luminance of 2700 cd/m². This represents the first reported pure blue dendrimer emitter with bipolar charge transport and surface-to-core energy transfer in OLEDs.
NASA Technical Reports Server (NTRS)
Fry, B.; Gest, H.; Hayes, J. M.
1985-01-01
The purple photosynthetic bacterium Chromatium vinosum, strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide --> sulfur --> sulfate, sulfite --> sulfate, and thiosulfate --> sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.
Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation.
Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Dieryck, Wilfrid; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien
2017-02-13
We have designed and prepared a recombinant elastin-like polypeptide (ELP) containing precisely positioned methionine residues, and performed the selective and complete oxidation of its methionine thioether groups to both sulfoxide and sulfone derivatives. Since these oxidation reactions substantially increase methionine residue polarity, they were found to be a useful means to precisely adjust the temperature responsive behavior of ELPs in aqueous solutions. In particular, lower critical solution temperatures were found to be elevated in oxidized sample solutions, but were not eliminated. These transition temperatures were found to be further tunable by the use of solvents containing different Hofmeister salts. Overall, the ability to selectively and fully oxidize methionine residues in ELPs proved to be a convenient postmodification strategy for tuning their transition temperatures in aqueous media.
NASA Astrophysics Data System (ADS)
Kaboudin, Babak; Khanmohammadi, Hamid; Kazemi, Foad
2017-12-01
Sulfonated polystyrene microsphere were functionalized using ethylene diamine to introduce amine groups to the polymer chains. The amine functionalized polymers were used as a support for gold nanoparticles. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, EDS, CHN and atomic absorption spectroscopy. The polymer supported gold nanoparticles was found to be an efficient catalyst for the oxidation of alcohols in water.
Shiely, Amy E; Slattery, Catherine N; Ford, Alan; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R
2017-03-22
Enantioselectivities in C-H insertion reactions, employing the copper-bis(oxazoline)-NaBARF catalyst system, leading to cyclopentanones are highest with sulfonyl substituents on the carbene carbon, and furthermore, the impact is enhanced by increased steric demand on the sulfonyl substituent (up to 91%ee). Enantioselective intramolecular C-H insertion reactions of α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones are reported for the first time.
Search for selective ion diffusion through membranes
NASA Technical Reports Server (NTRS)
May, C. E.; Philipp, W. H.
1983-01-01
The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
... titled “Oxygen Flask Combustion-Gravimetric Method for Determination of Sulfur in Organic Compounds... Park, MD 20740, or available for inspection at the National Archives and Records Administration (NARA....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (1) Sulfur content: 28.2-29.1...
NASA Astrophysics Data System (ADS)
Xue, Leigang; Lee, Seung-Yul; Zhao, Zuofeng; Angell, C. Austen
2015-11-01
Safety and high energy density are the two focus issues for current lithium ion batteries. For safety, it has been demonstrated that sulfone electrolytes are much less flammable than the prevailing all-carbonate type, and they are also promising for high voltage batteries due to the high oxidization resistance. However, the high melting points and viscosities greatly restricted their application. Based on our previous work on use of fluidity-enhancing cosolvents to make binary sulfone-carbonate electrolytes, we report here a three-component system that is more conductive and should be even less flammable while additionally having better low temperature stability. The conductivity-viscosity relations have been determined for this electrolyte and are comparable to those of the "standard" carbonate electrolyte. The additional component also produces much improved capacity retention for the LiNi0.5Mn1.5O4 cathode. As with carbonate electrolytes, increase of temperature to 55 °C leads to rapid capacity decrease during cycling, but the capacity loss is due to the salt, not the solvent. The high discharge capacity observed at 25 °C when LiBF4 replaces LiPF6, is fully retained at 55 °C.
Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang
2012-06-07
This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.
Huang, Hui; Gao, Yuan; Shi, Fanping; Wang, Guannan; Shah, Syed Mazhar; Su, Xingguang
2012-03-21
In this paper, a sensitive water-soluble fluorescent conjugated polymer biosensor for catecholamine (dopamine DA, adrenaline AD and norepinephrine NE) was developed. In the presence of horse radish peroxidase (HRP) and H(2)O(2), catecholamine could be oxidized and the oxidation product of catecholamine could quench the photoluminescence (PL) intensity of poly(2,5-bis(3-sulfonatopropoxy)-1,4-phenylethynylenealt-1,4-poly(phenylene ethynylene)) (PPESO(3)). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of DA, AD and NE in the concentration ranges of 5.0 × 10(-7) to 1.4 × 10(-4), 5.0 × 10(-6) to 5.0 × 10(-4), and 5.0 × 10(-6) to 5.0 × 10(-4) mol L(-1), respectively. The detection limit for DA, AD and NE was 1.4 × 10(-7) mol L(-1), 1.0 × 10(-6) and 1.0 × 10(-6) mol L(-1), respectively. The PPESO(3)-enzyme hybrid system based on the fluorescence quenching method was successfully applied for the determination of catecholamine in human serum samples with good accuracy and satisfactory recovery. The results were in good agreement with those provided by the HPLC-MS method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunkerton, L.V.; Nigam, A.; Mitra, S.
1987-05-01
In preparation for using /sup 33/S NMR for characterization of organic sulfur types in coal, previously prepared substituted dibenzothiophene model compounds were converted to their corresponding sulfones and their sulfur-33 nmr recorded. The sulfur-33 NMR spectra of dibenzothiophene-5,5-dioxide (2), 2-(p-methylphenylsulfonyl) dibenzothiophene-5,5-dioxide (4), and 2-(methylsulfonyl) dibenzothiophene-5,5-dioxide (6) are reported. The chemical shifts were in the +2 to -21 ppM range. The line widths ranged 70 to 200 Hz. The changes in /sup 13/C chemical shift experienced by aromatic carbons upon oxidizing the sulfide to its sulfone were also studied and the data used to identify which sulfone was formed in multiplemore » thioether-containing aromatics after partial oxidation. Continuing results on the use of the substituted dibenzothiophenes to monitor mixing of sulfur between pyritic and organic phases are also reported. Non-isothermal hydrodesulfurization of model organic sulfur compounds was carried out in a cola-like environment. The model sulfur compounds represented different types of carbon-sulfur bonds commonly encountered in coal. Similar experiments were carried out in the presence of troilite (iron sulfide) to investigate the possibility of sulfur migration from the organic compound to the iron sulfide. Next, iron pyrite was hydrodesulfurized in the presence of some organic molecules to see if sulfur could be incorporated into the organic molecules during the process. Results show that sulfur from organic compounds can be absorbed by troilite, and, similarly, sulfur from pyrite can form new carbon-sulfur bonds during hydrodesulfurization. Based on these observations, it is suggested that during coal conversion reactions it is possible to have intermigration of sulfur between the organic and the inorganic phases.« less
Materials comprising polydienes and hydrophilic polymers and related methods
Mays, Jimmy W [Knoxville, TN; Deng, Suxiang [Knoxville, TN; Mauritz, Kenneth A [Hattiesburg, MS; Hassan, Mohammad K [Hattiesburg, MS; Gido, Samuel P [Hadley, MA
2011-11-22
Materials prepared from polydienes, such as poly(cyclohexadiene), and hydrophilic polymers, such as poly(alkylene oxide), are described. Methods of making the materials and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization are also provided. The materials can be crosslinked and sulfonated, and can include copolymers and polymer blends.
NASA Astrophysics Data System (ADS)
Shaari, N.; Kamarudin, S. K.; Basri, S.; Shyuan, L. K.; Masdar, M. S.; Nordin, D.
2018-03-01
The high methanol crossover and high cost of Nafion® membrane are the major challenges for direct methanol fuel cell application. With the aim of solving these problems, a non-Nafion polymer electrolyte membrane with low methanol permeability and high proton conductivity based on the sodium alginate (SA) polymer as the matrix and sulfonated graphene oxide (SGO) as an inorganic filler (0.02-0.2 wt%) was prepared by a simple solution casting technique. The strong electrostatic attraction between -SO3H of SGO and the sodium alginate polymer increased the mechanical stability, optimized the water absorption and thus inhibited the methanol crossover in the membrane. The optimum properties and performances were presented by the SA/SGO membrane with a loading of 0.2 wt% SGO, which gave a proton conductivity of 13.2 × 10-3 Scm-1, and the methanol permeability was 1.535 × 10-7 cm2 s-1 at 25 °C, far below that of Nafion (25.1 × 10-7 cm2 s-1) at 25 °C. The mechanical properties of the sodium alginate polymer in terms of tensile strength and elongation at break were improved by the addition of SGO.
NASA Astrophysics Data System (ADS)
Pothipor, Chammari; Lertvachirapaiboon, Chutiparn; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao; Ounnunkad, Kontad; Baba, Akira
2018-02-01
An electrochemically synthesized graphene oxide (GO)/poly(3,4-ethylenedioxythiophene) (PEDOT)/poly(styrene sulfonate) (PSS) thin film-based electrochemical surface plasmon resonance (EC-SPR) sensor chip was developed and employed for the detection of human immunoglobulin G (IgG). GO introduced the carboxylic group on the film surface, which also allowed electrochemical control, for the immobilization of the anti-IgG antibody via covalent bonding through amide coupling reaction. The SPR sensitivity of the detection was improved under the control by applying an electrochemical potential, by which the sensitivity was increased by the increment in applied potential. Among the open-circuit and different applied potentials in the range of -1.0 to 0.50 V, the EC-SPR immunosensor at an applied potential of 0.50 V exhibited the highest sensitivity of 6.08 × 10-3 mL µg-1 cm-2 and linearity in the human IgG concentration range of 1.0 to 10 µg mL-1 with a relatively low detection limit of 0.35 µg mL-1. The proposed sensor chip is promising for immunosensing at the physiological level.
Synthesis Of Labeled Metabolites
Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert
2004-03-23
The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.
Borrelli, Francesca; Aviello, Gabriella; Romano, Barbara; Orlando, Pierangelo; Capasso, Raffaele; Maiello, Francesco; Guadagno, Federico; Petrosino, Stefania; Capasso, Francesco; Di Marzo, Vincenzo; Izzo, Angelo A
2009-11-01
Inflammatory bowel disease affects millions of individuals; nevertheless, pharmacological treatment is disappointingly unsatisfactory. Cannabidiol, a safe and non-psychotropic ingredient of marijuana, exerts pharmacological effects (e.g., antioxidant) and mechanisms (e.g., inhibition of endocannabinoids enzymatic degradation) potentially beneficial for the inflamed gut. Thus, we investigated the effect of cannabidiol in a murine model of colitis. Colitis was induced in mice by intracolonic administration of dinitrobenzene sulfonic acid. Inflammation was assessed both macroscopically and histologically. In the inflamed colon, cyclooxygenase-2 and inducible nitric oxide synthase (iNOS) were evaluated by Western blot, interleukin-1beta and interleukin-10 by ELISA, and endocannabinoids by isotope dilution liquid chromatography-mass spectrometry. Human colon adenocarcinoma (Caco-2) cells were used to evaluate the effect of cannabidiol on oxidative stress. Cannabidiol reduced colon injury, inducible iNOS (but not cyclooxygenase-2) expression, and interleukin-1beta, interleukin-10, and endocannabinoid changes associated with 2,4,6-dinitrobenzene sulfonic acid administration. In Caco-2 cells, cannabidiol reduced reactive oxygen species production and lipid peroxidation. In conclusion, cannabidiol, a likely safe compound, prevents experimental colitis in mice.
Qian, Jin; Shen, Mengmeng; Wang, Peifang; Wang, Chao; Hou, Jun; Ao, Yanhui; Liu, Jingjing; Li, Kun
2017-02-01
Perfluorooctane sulfonate (PFOS) is an emerging contaminant, whose presence has been detected in different compartments of the environment in many countries. In this study, the effects of soil characteristics and phosphate competition on the adsorption of PFOS on soils were investigated. Results from batch sorption experiments showed that all the adsorption isotherms of PFOS on three tested soils were nonlinear. In experiments without the addition of phosphate (P) to the soil solution, the Freundlich sorption affinity (K f ) of PFOS on S (original soil), S1 (soil from which soil organic matter (SOM) had been removed), and S2 (soil from which both SOM and ferric oxides had been removed) were 23.13, 10.37 and 15.95, respectively. The results suggested that a high amount of SOM in soil can increase the sorption affinity of PFOS on soils and that a greater amount of ferric oxides can reduce it. The addition of P in the soil solution reduced the K f of PFOS on S, S1, and S2 by approximately 25%, 50%, and 15%, respectively. For the binary system of PFOS and P, soil with higher ferric oxide content showed greater K f reduction after P addition; whereas soil with higher SOM content showed less K f reduction. Our results suggest that for soils dominated by ferric oxides, P is a more effective competitor than PFOS for the adsorption sites in the binary system; whereas in soils containing more SOM, P is a weak competitor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhu, Nanwen; Gu, Lin; Yuan, Haiping; Lou, Ziyang; Wang, Liang; Zhang, Xin
2012-08-01
Degradation of naphthalene dye intermediate 1-diazo-2- naphthol-4-sulfonic acid (1,2,4-Acid) by Fenton process has been studied in depth for the purpose of learning more about the reactions involved in the oxidation of 1,2,4-Acid. During 1,2,4-Acid oxidation, the solution color initially takes on a dark red, then to dark black associated with the formation of quinodial-type structures, and then goes to dark brown and gradually disappears, indicating a fast degradation of azo group. The observed color changes of the solution are a result of main reaction intermediates, which can be an indicator of the level of oxidization reached. Nevertheless, complete TOC removal is not accomplished, in accordance with the presence of resistant carboxylic acids at the end of the reaction. The intermediates generated along the reaction time have been identified and quantified. UPLC-(ESI)-TOF-HRMS analysis allows the detection of 19 aromatic compounds of different size and complexity. Some of them share the same accurate mass but appear at different retention time, evidencing their different molecular structures. Heteroatom oxidation products like SO(4)(2-) have also been quantified and explanations of their release are proposed. Short-chain carboxylic acids are detected at long reaction time, as a previous step to complete the process of dye mineralization. Finally, considering all the findings of the present study and previous related works, the evolution from the original 1,2,4-Acid to the final products is proposed in a general reaction scheme. Copyright © 2012 Elsevier Ltd. All rights reserved.
Takayanagi, Akari; Kobayashi, Maki; Kawase, Yoshinori
2017-03-01
Mechanisms for removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in wastewaters by zero-valent iron (ZVI) were systematically examined. The contributions of four removal mechanisms, i.e., reductive degradation, oxidative degradation, adsorption, and precipitation, changed significantly with solution pH were quantified and the effective removal of SDBS by ZVI was found to be attributed to the adsorption capability of iron oxides/hydroxides on ZVI surface at nearly neutral pH instead of the degradation at acidic condition. The fastest SDBS removal rate and the maximum TOC (total organic carbon) removal efficiency were obtained at pH 6.0. The maximum TOC removal at pH 6.0 was 77.8%, and the contributions of degradation, precipitation, and adsorption to TOC removal were 4.6, 14.9, and 58.3%, respectively. At pH 3.0, which is an optimal pH for oxidative degradation by the Fenton reaction, the TOC removal was only 9.8% and the contributions of degradation, precipitation, and adsorption to TOC removal were 2.3, 4.6, and 2.9%, respectively. The electrostatic attraction between dodecyl benzene sulfate anion and the iron oxide/hydroxide layer controlled the TOC removal of SDBS. The kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach could successfully describe the experimental results for SDBS removal by ZVI with the averaged correlation coefficient of 0.994. ZVI was found to be an efficient material toward the removal of anionic surfactant at nearly neutral pH under the oxic condition.
Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe
2013-01-01
Summary Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3. PMID:24062830
Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide.
Tang, Qiong; Lin, Song; Cheng, Ying; Liu, Sujun; Xiong, Jun-Ru
2013-09-01
This work investigated the ultrasonic assisted oxidative desulfurization of bunker-C oil with TBHP/MoO3 system. The operational parameters for the desulfurization procedure such as ultrasonic irradiation time, ultrasonic wave amplitude, catalyst initial concentration and oxidation agent initial concentration were studied. The experimental results show that the present oxidation system was very efficient for the desulfurization of bunker-C oil and ~35% sulfur was removed which was dependent on operational parameters. The application of ultrasonic irradiation allowed sulfur removal in a shorter time. The stronger the solvent polarity is, the higher the sulfur removal rate, but the recovery rate of oil is lower. The sulfur compounds in bunker-C oil reacted with TBHP to produce corresponding sulfoxide, and further oxidation produced the corresponding sulfone. Copyright © 2013 Elsevier B.V. All rights reserved.
Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh
2018-05-01
SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.
Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.
Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok
2014-10-01
Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.
Abdelraheem, Wael H M; He, Xuexiang; Duan, Xiaodi; Dionysiou, Dionysios D
2015-01-23
Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0μM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Mahapatro, Anil; Johnson, Dave M; Patel, Devang N; Feldman, Marc D; Ayon, Arturo A; Agrawal, C Mauli
2006-09-01
The use of self-assembled monolayers (SAMs) on medical devices offers a methodology for the incorporation of nanotechnology into medicine. SAMs are highly ordered nanosized molecular coatings, adding 1 to 10 nm thickness to a surface. This work is part of an overall goal to deliver therapeutic drugs from the surface of metal coronary stents using SAMs. In this study the oxidative and in vitro stability of functional alkylthiol SAMs on 316L stainless steel (SS) has been demonstrated. SAMs of 11-mercaptoundecanoic acid (-COOH SAM) and 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and contact angle (CA) measurements collectively confirmed the formation of functional alkylthiol SAMs on 316L SS. Well-formed SAMs (CA: 82 deg +/- 9 deg) were achieved within 48 hours of immersion in ethanolic solutions, after which no significant improvement in CA was observed. The ratio of the thiolate peak (163.5 eV) to the oxidized sulfur (sulfonates) peak (166.5 eV) gives us an indication of the percentage SAMs that would bind to the metal and serve as a drug reservoir in vivo; which in turn represents the stability and viability of these SAMs, keeping in mind the cardiovascular application under consideration. Oxidative and in vitro stability studies showed that alkanethiol SAMs oxidized completely within 14 days. The SAMs tend to desorb and leave the metal surface after longer time periods (21 days) in phosphate-buffered saline (PBS) immersion, whereas for oxidative exposure the SAMs continue to remain on the metal surface in the form of sulfonates. Although the chemistry of bonding of alkylthiol with the 316L SS is not well understood, the nanosized alkylthiol SAMs demonstrate sufficient stability to justify further study on these systems for potential in vivo drug delivery in the chosen coronary artery stent applications.
The protective effect of 2-mercaptoethane sulfonate (MESNA) against traumatic brain injury in rats.
Yilmaz, Erdal Resit; Kertmen, Hayri; Gürer, Bora; Kanat, Mehmet Ali; Arikok, Ata Türker; Ergüder, Berrin Imge; Hasturk, Askin Esen; Ergil, Julide; Sekerci, Zeki
2013-01-01
The agent, 2-mercaptoethane sulfonate (MESNA), is a synthetic small molecule, widely used as a systemic protective agent against chemotherapy toxicity, but is primarily used to reduce hemorrhagic cystitis induced by cyclophosphamide. Because MESNA has potential antioxidant and cytoprotective effects, so we hypothesized that MESNA may protect the brain against traumatic injury. Thirty-two rats were randomized into four groups of eight animals each; Group 1 (sham), Group 2 (trauma), Group 3 (150 mg/kg MESNA), Group 4 (30 mg/kg methylprednisolone). Only skin incision was performed in the sham group. In all the other groups, the traumatic brain injury model was created by an object weighing 450 g falling freely from a height of 70 cm through a copper tube on to the metal disc over the skull. The drugs were administered immediately after the injury. The animals were killed 24 h later. Brain tissues were extracted for analysis, where levels of tissue malondialdehyde, caspase-3, glutathione peroxidase, superoxide dismutase, nitric oxide, nitric oxide synthetase and xanthine oxidase were analyzed. Also, histopathological evaluation of the tissues was performed. After head trauma, tissue malondialdehyde levels increased; these levels were significantly decreased by MESNA administration. Caspase-3 levels were increased after trauma, but no effect of MESNA was determined in caspase-3 activity. Following trauma, both glutathione peroxidase and superoxide dismutase levels were decreased; MESNA increased the activity of both these antioxidant enzymes. Also, after trauma, nitric oxide, nitric oxide synthetase and xanthine oxidase levels were increased; administration of MESNA significantly decreased the levels of nitric oxide, nitric oxide synthetase and xanthine oxidase, promising an antioxidant activity. Histopathological analysis showed that MESNA protected the brain tissues well from injury. Although further studies considering different dose regimens and time intervals are required, MESNA was shown to be at least as effective as methylprednisolone in the traumatic brain injury model.
NASA Astrophysics Data System (ADS)
Largier, Timothy D.; Cornelius, Chris J.
2017-06-01
This study analyzes the effect of quaternary ammonium homopolymer (AmPP) and ionic and non-ionic random unit copolymerization (AmPP-PP) of Diels-Alder poly(phenylene)s on electrochemical and transport properties, vanadium redox flow battery performance, and material stability. AmPP-PP materials were synthesized with IEC's up to 2.2 meq/g, displaying a carbonate form ion conductivity of 17.3 mS/cm and water uptake of 57.3%. Vanadium ion permeability studies revealed that the random copolymers possess superior charge carrier selectivity. For materials of comparable ion content, at 10 mA/cm2 the random copolymer displayed a 14% increase in coulombic efficiency (CE) corresponding to a 7% increase in energy efficiency. All quaternary ammonium materials displayed ex situ degradation in a 0.5 M V5+ + 5 M H2SO4 solution, with the rate of degradation appearing to increase with IEC. Preliminary studies reveal that the neutralizing counter-ion has a significant effect on VRB performance, proportional to changes in vanadium ion molecular diffusion.
Unlocking the energy capabilities of micron-sized LiFePO4.
Guo, Limin; Zhang, Yelong; Wang, Jiawei; Ma, Lipo; Ma, Shunchao; Zhang, Yantao; Wang, Erkang; Bi, Yujing; Wang, Deyu; McKee, William C; Xu, Ye; Chen, Jitao; Zhang, Qinghua; Nan, Cewen; Gu, Lin; Bruce, Peter G; Peng, Zhangquan
2015-08-03
Utilization of LiFePO4 as a cathode material for Li-ion batteries often requires size nanonization coupled with calcination-based carbon coating to improve its electrochemical performance, which, however, is usually at the expense of tap density and may be environmentally problematic. Here we report the utilization of micron-sized LiFePO4, which has a higher tap density than its nano-sized siblings, by forming a conducting polymer coating on its surface with a greener diazonium chemistry. Specifically, micron-sized LiFePO4 particles have been uniformly coated with a thin polyphenylene film via the spontaneous reaction between LiFePO4 and an aromatic diazonium salt of benzenediazonium tetrafluoroborate. The coated micron-sized LiFePO4, compared with its pristine counterpart, has shown improved electrical conductivity, high rate capability and excellent cyclability when used as a 'carbon additive free' cathode material for rechargeable Li-ion batteries. The bonding mechanism of polyphenylene to LiFePO4/FePO4 has been understood with density functional theory calculations.
Unlocking the energy capabilities of micron-sized LiFePO4
Guo, Limin; Zhang, Yelong; Wang, Jiawei; Ma, Lipo; Ma, Shunchao; Zhang, Yantao; Wang, Erkang; Bi, Yujing; Wang, Deyu; McKee, William C.; Xu, Ye; Chen, Jitao; Zhang, Qinghua; Nan, Cewen; Gu, Lin; Bruce, Peter G.; Peng, Zhangquan
2015-01-01
Utilization of LiFePO4 as a cathode material for Li-ion batteries often requires size nanonization coupled with calcination-based carbon coating to improve its electrochemical performance, which, however, is usually at the expense of tap density and may be environmentally problematic. Here we report the utilization of micron-sized LiFePO4, which has a higher tap density than its nano-sized siblings, by forming a conducting polymer coating on its surface with a greener diazonium chemistry. Specifically, micron-sized LiFePO4 particles have been uniformly coated with a thin polyphenylene film via the spontaneous reaction between LiFePO4 and an aromatic diazonium salt of benzenediazonium tetrafluoroborate. The coated micron-sized LiFePO4, compared with its pristine counterpart, has shown improved electrical conductivity, high rate capability and excellent cyclability when used as a ‘carbon additive free' cathode material for rechargeable Li-ion batteries. The bonding mechanism of polyphenylene to LiFePO4/FePO4 has been understood with density functional theory calculations. PMID:26235395
Naffakh, Mohammed; Marco, Carlos; Gómez, Marián A; Jiménez, Ignacio
2009-05-21
The dynamic crystallization kinetics of polyphenylene sulfide (PPS) nanocomposites with inorganic fullerene WS2 nanopartices (IF-WS2) content varying from 0.05 to 8 wt % has been studied using differential scanning calorimetry (DSC). The analysis of the crystallization at different cooling rates demonstrates that the completely isokinetic description of the crystallization process is not possible. However, the isoconversional methods in combination with the JMAEK equation provide a better understanding of the kinetics of the dynamic crystallization process. The addition of IF-WS2 influences the crystallization kinetics of PPS but in ways unexpected for polymer nanocomposites. A drastic change from retardation to promotion of crystallization is observed with increasing nanoparticle content. In the same way, the results of the nucleation activity and the effective energy barrier confirmed the unique dependence of the crystallization behavior of PPS on composition. In addition, the morphological data obtained from the polarized optical microscopy (POM) and time-resolved synchrotron X-ray diffraction is consistent with results of the crystallization kinetics of PPS/IF-WS2 nanocomposites.
Functionalization of poly(phenylene) by the attachment of sidechains
Hibbs, Michael R.
2014-08-19
A composition and an anion exchange membranes including a composition and a method of forming a composition including a compound including a poly(phenylene) backbone represented by the following formula: ##STR00001## wherein each of R.sub.1, R.sub.2 and R.sub.3 may be the same or different and is H or an unsubstituted or inertly-substituted aromatic moiety; wherein each of Ar.sub.1 and Ar.sub.2 may be the same or different and is an unsubstituted or inertly-substituted aromatic moiety; wherein each of R.sub.6, R.sub.7, R.sub.8, R.sub.9, R.sub.10 and R.sub.11 is H or a monovalent hydrocarbon group including two to 18 carbon atoms, with the proviso that each R.sub.6, R.sub.7, R.sub.8, R.sub.9, R.sub.10 and R.sub.11 cannot be H; and wherein each of Y.sub.6, Y.sub.7, Y.sub.8, Y.sub.9, Y.sub.10 and Y.sub.11 may be the same or different and is H or a functional group.
Unlocking the energy capabilities of micron-sized LiFePO4
NASA Astrophysics Data System (ADS)
Guo, Limin; Zhang, Yelong; Wang, Jiawei; Ma, Lipo; Ma, Shunchao; Zhang, Yantao; Wang, Erkang; Bi, Yujing; Wang, Deyu; McKee, William C.; Xu, Ye; Chen, Jitao; Zhang, Qinghua; Nan, Cewen; Gu, Lin; Bruce, Peter G.; Peng, Zhangquan
2015-08-01
Utilization of LiFePO4 as a cathode material for Li-ion batteries often requires size nanonization coupled with calcination-based carbon coating to improve its electrochemical performance, which, however, is usually at the expense of tap density and may be environmentally problematic. Here we report the utilization of micron-sized LiFePO4, which has a higher tap density than its nano-sized siblings, by forming a conducting polymer coating on its surface with a greener diazonium chemistry. Specifically, micron-sized LiFePO4 particles have been uniformly coated with a thin polyphenylene film via the spontaneous reaction between LiFePO4 and an aromatic diazonium salt of benzenediazonium tetrafluoroborate. The coated micron-sized LiFePO4, compared with its pristine counterpart, has shown improved electrical conductivity, high rate capability and excellent cyclability when used as a `carbon additive free' cathode material for rechargeable Li-ion batteries. The bonding mechanism of polyphenylene to LiFePO4/FePO4 has been understood with density functional theory calculations.
Oxovanadium(IV)-catalysed oxidation of dibenzothiophene and 4,6-dimethyldibenzothiophene.
Ogunlaja, Adeniyi S; Chidawanyika, Wadzanai; Antunes, Edith; Fernandes, Manuel A; Nyokong, Tebello; Torto, Nelson; Tshentu, Zenixole R
2012-12-07
The reaction between [V(IV)OSO(4)] and the tetradentate N(2)O(2)-donor Schiff base ligand, N,N-bis(o-hydroxybenzaldehyde)phenylenediamine (sal-HBPD), obtained by the condensation of salicylaldehyde and o-phenylenediamine in a molar ratio of 2 : 1 respectively, resulted in the formation of [V(IV)O(sal-HBPD)]. The molecular structure of [V(IV)O(sal-HBPD)] was determined by single crystal X-ray diffraction, and confirmed the distorted square pyramidal geometry of the complex with the N(2)O(2) binding mode of the tetradentate ligand. The formation of the polymer-supported p[V(IV)O(sal-AHBPD)] proceeded via the nitrosation of sal-HBPD, followed by the reduction with hydrogen to form an amine group that was then linked to Merrifield beads followed by the reaction with [V(IV)OSO(4)]. XPS and EPR were used to confirm the presence of oxovanadium(IV) within the beads. The BET surface area and porosity of the heterogeneous catalyst p[V(IV)O(sal-AHBPD)] were found to be 6.9 m(2) g(-1) and 180.8 Å respectively. Microanalysis, TG, UV-Vis and FT-IR were used for further characterization of both [V(IV)O(sal-HBPD)] and p[V(IV)O(sal-AHBPD)]. Oxidation of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was investigated using [V(IV)O(sal-HBPD)] and p[V(IV)O(sal-AHBPD)] as catalysts. Progress for oxidation of these model compounds was monitored with a gas chromatograph fitted with a flame ionization detector. The oxidation products were characterized using gas chromatography-mass spectrometry, microanalysis and NMR. Dibenzothiophene sulfone (DBTO(2)) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO(2)) were found to be the main products of oxidation. Oxovanadium(IV) Schiff base microspherical beads, p[V(IV)O(sal-AHBPD)], were able to catalyse the oxidation of sulfur in dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) to a tune of 88.0% and 71.8% respectively after 3 h at 40 °C. These oxidation results show promise for potential application of this catalyst in the oxidative desulfurization of crude oils.
Desulfurization of oxidized diesel using ionic liquids
NASA Astrophysics Data System (ADS)
Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul
2014-10-01
The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.
NASA Astrophysics Data System (ADS)
Yu, Hongyan; Shi, Jianheng; Zeng, Xinmiao; Bao, Mao; Zhao, Xinqing
2009-07-01
A polytetrafluoroethylene (PTFE) based organic-inorganic hybrid proton-exchange membrane was prepared from simultaneous radiation grafting of styrene (St) into porous PTFE membrane with the in situ sol-gel reaction of tetraethoxysilane (TEOS) followed by sulfonation in fuming sulfonic acid. The effect of radiation on the sol-gel reaction was studied. The results show that radiation promotes the sol-gel reaction with the help of St at room temperature. Incorporated silica gel helps to produce higher degree of grafting (DOG). SEM analysis was conducted to confirm that the inorganic silicon oxide was introduced to produce hybrid membrane in this work. The proton conductivity of membrane evaluated using electrochemical impedance spectroscopy is much higher (14.3×10 -2 S cm -1) than that of Nafion ® 117 at temperature of 80 °C with acceptable water uptake 51 wt%.
NASA Astrophysics Data System (ADS)
Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon
2016-10-01
Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).
2013-01-01
Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem.10, 2012, 8095) presented a nonlinear Brønsted plot, which was explained in terms of a change from a stepwise mechanism involving a pentavalent intermediate for poorer leaving groups to a fully concerted mechanism for good leaving groups and supported by a theoretical study. In the present work, we have performed a detailed computational study of the hydrolysis of these compounds and find no computational evidence for a thermodynamically stable intermediate for any of these compounds. Additionally, we have extended the experimental data to include pyridine-3-yl benzene sulfonate and its N-oxide and N-methylpyridinium derivatives. Inclusion of these compounds converts the Brønsted plot to a moderately scattered but linear correlation and gives a very good Hammett correlation. These data suggest a concerted pathway for this reaction that proceeds via an early transition state with little bond cleavage to the leaving group, highlighting the care that needs to be taken with the interpretation of experimental and especially theoretical data. PMID:24279349
NASA Astrophysics Data System (ADS)
Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming
2017-01-01
Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.
NASA Astrophysics Data System (ADS)
Cook, Shannon L.; Jackson, Glen P.
2011-06-01
The dissociation behavior of phosphorylated and sulfonated peptide anions was explored using metastable atom-activated dissociation mass spectrometry (MAD-MS) and collision-induced dissociation (CID). A beam of high kinetic energy helium (He) metastable atoms was exposed to isolated phosphorylated and sulfonated peptides in the 3- and 2- charge states. Unlike CID, where phosphate losses are dominant, the major dissociation channels observed using MAD were Cα - C peptide backbone cleavages and neutral losses of CO2, H2O, and [CO2 + H2O] from the charge reduced (oxidized) product ion, consistent with an electron detachment dissociation (EDD) mechanism such as Penning ionization. Regardless of charge state or modification, MAD provides ample backbone cleavages with little modification loss, which allows for unambiguous PTM site determination. The relative abundance of certain fragment ions in MAD is also demonstrated to be somewhat sensitive to the number and location of deprotonation sites, with backbone cleavage somewhat favored adjacent to deprotonated sites like aspartic acid residues. MAD provides a complementary dissociation technique to CID, ECD, ETD, and EDD for peptide sequencing and modification identification. MAD offers the unique ability to analyze highly acidic peptides that contain few to no basic amino acids in either negative or positive ion mode.
van Westrenen, J; Sherry, A D
1992-01-01
The sulfomethylation of piperazine and the polyazamacrocycles, [9]aneN3, [12]aneN3, [12]aneN4, and [18]aneN6 with formaldehyde bisulfite in aqueous medium at various pH values is described. The number of methanesulfonate groups introduced into these structures was found to be largely determined by pH. At neutral pH, disubstituted products of [9]aneN3, [12]aneN3, [12]aneN4 are formed and, in the latter case, the trans-1,7-bis(methanesulfonate) isomer was predominant. Similarly, a single, symmetrical trisubstituted product was formed with [18]aneN6 at neutral pH. Monomethanesulfonated products of these same polyaza compounds were formed at more acidic pH's. These sulfomethylated products were used as an entry into a series of mono- and diacetate, phosphonate, and phosphinate derivatives of [9]aneN3, [12]aneN3, and [12]aneN4. The sulfonate groups may be converted to acetates without isolation of intermediates by using cyanide to displace the sulfonate(s) followed by acidic hydrolysis. The aminomethanesulfonates may also be oxidatively hydrolyzed by using aqueous triiodide as a prelude to the preparation of aminomethanephosphonates or aminomethanephosphinates.
Application of Two Cobalt-Based Metal-Organic Frameworks as Oxidative Desulfurization Catalysts.
Masoomi, Mohammad Yaser; Bagheri, Minoo; Morsali, Ali
2015-12-07
Two new porous cobalt-based metal-organic frameworks, [Co6(oba)5(OH)2(H2O)2(DMF)4]n · 5DMF (TMU-10) and [Co3(oba)3(O) (Py)0.5] n · 4DMF · Py (TMU-12) have been synthesized by solvothermal method using a nonlinear dicarboxylate ligand. Under mild reaction conditions, these compounds exhibited good catalytic activity and reusability in oxidative desulfurization (ODS) reaction of model oil which was prepared by dissolving dibenzothiophene (DBT) in n-hexane. FT-IR and Mass analysis showed that the main product of DBT oxidation is its corresponding sulfone, which was adsorbed on the surfaces of catalysts. The activation energy was obtained as 13.4 kJ/mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosario-Amorin, Daniel; Ouizem, Sabrina; Dickie, D. A.
Syntheses for new ligands based upon dibenzothiophene and dibenzothiophene sulfone platforms, decorated with phosphine oxide and methylphosphine oxide donor groups, are described. Coordination chem. of 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene (8) , 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene- 5, 5- dioxide (9) and 4, 6- bis(diphenylphosphinoyl) dibenzothiophene- 5, 5- dioxide (10) with lanthanide nitrates, Ln(NO3) 3 (H2O) n is outlined, and crystal structure detns. reveal a range of chelation interactions on Ln(III) ions. The HNO3 dependence of the solvent extn. performance of 9 and 10 in 1, 2- dichloroethane for Eu(III) and Am(III) is described and compared against the extn. behavior of relatedmore » dibenzofuran ligands (2, 3; R = Ph) and n- octyl(phenyl) - N, N- diisobutylcarbamoylmethyl phosphine oxide (4) measured under identical conditions.« less
2015-01-01
Introduction In cases of myeloma cast nephropathy in need of haemodialysis (HD), reduction of free light chains using HD with High-Cut-Off filters (HCO-HD), in combination with chemotherapy, may be associated with better renal recovery. The aim of the present study is to evaluate the effectiveness of haemodiafiltration (HDF) in reducing free light chain levels using a less expensive heat sterilized high-flux polyphenylene HF dialyzer (HF-HDF). Methods In a single-centre prospective cohort study, 327 dialysis sessions were performed using a 2.2 m2 heat sterilized high-flux polyphenylene HF dialyzer (Phylther HF22SD), a small (1.1m2) or large (2.1 m2) high-cut-off (HCO) dialyzer (HCOS and HCOL) in a cohort of 16 patients presenting with dialysis-dependent acute cast nephropathy and elevated free light chains (10 kappa, 6 lambda). The outcomes of the study were the mean reduction ratio (RR) of kappa and lambda, the proportion of treatments with an RR of at least 0.65, albumin loss and the description of patient outcomes. Statistical analysis was performed using linear and logistic regression through generalized estimating equation analysis so as to take into account repeated observation within subjects and adjust for session duration. Results There were no significant differences in the estimated marginal mean of kappa RR, which were respectively 0.67, 0.69 and 0.70 with HCOL-HD, HCOS-HDF and HF-HDF (P = 0.950). The estimated marginal mean of the proportions of treatments with a kappa RR ≥0.65 were 68%, 63% and 71% with HCOL-HD, HCOS-HDF and HF-HDF, respectively (P = 0.913). The estimated marginal mean of lambda RR were higher with HCOL-HDF (0.78), compared to HCOL-HD and HF-HDF (0.62, and 0.61 respectively). The estimated marginal mean proportion of treatments with a lambda RR ≥0.65 were higher with HCOL-HDF (81%), compared to 57% in HF-HDF (P = 0.042). The median albumin loss were 7, 21 and 63 g/session with HF-HDF, HCOL-HD and HCOL-HDF respectively (P = 0.044). Among survivors, 9 out of 10 episodes of acute kidney injuries became dialysis-independent following a median time of renal replacement therapy of 40 days (range 7–181). Conclusion Therefore, in patients with acute dialysis-dependent myeloma cast nephropathy, in addition to chemotherapy, HDF with a heat sterilized high-flux polyphenylene HF dialyzer could offer an alternative to HCO dialysis for extracorporeal kappa reduction with lower albumin loss. PMID:26466100
MnO2-Graphene Oxide-PEDOT:PSS Nanocomposite for an Electrochemical Supercapacitor
NASA Astrophysics Data System (ADS)
Patil, Dipali S.; Pawar, Sachin A.; Shin, Jae Cheol; Kim, Hyo Jin
2018-04-01
A ternary nanocomposite with poly (3,4 ethylene dioxythiophene:poly(styrene sulfonate) (PEDOT:PSS)-MnO2 nanowires-graphene oxide (PMn-GO) was synthesized by using simple chemical route. The formation of the nanocomposite was analyzed by using X-ray diffraction and X-ray photoelectron spectroscopy. Field-emission scanning microscopy (FESEM) revealed the formation of MnO2 nanowires and graphene oxide nanosheets. The highest specific capacitance (areal capacitance) of 841 Fg -1 (177 mFcm -2) at 10 mVs -1 and energy density of 0.593 kWhkg -1 at 0.5 mA were observed for PMn-GO, indicating a constructive synergistic effect of PEDOT:PSS, MnO2 nanowires and graphene oxide. The achieved promising electrochemical characteristics showed that this ternary nanocomposite is a good alternative as an electrode material for supercapacitor.
Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems
Johannes, Christian; Majcherczyk, Andrzej
2000-01-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713
Oxidation of cefazolin by potassium permanganate: Transformation products and plausible pathways.
Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo
2016-04-01
Cefazolin was demonstrated to exert high reactivity toward permanganate (Mn(VII)), a common oxidant in water pre-oxidation treatment. In this study, five transformation products were found to be classified into three categories according to the contained characteristic functional groups: three (di-)sulfoxide products, one sulfone product and one di-ketone product. Products analyses showed that two kinds of reactions including oxidation of thioether and the cleavage of unsaturated CC double bond occurred during transformation of cefazolin by Mn(VII). Subsequently, the plausible transformation pathways under different pH conditions were proposed based on the identified products and chemical reaction principles. More importantly, the simulation with real surface water matrix indicated that the proposed transformation pathways of cefazolin could be replayed in real water treatment practices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hofmann, Michael A.
2006-11-14
The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.
Heat Stable Polymers: Polyphenylene and Other Aromatic Polymers
1977-01-01
crystalline transition temperature . Model reactions on 4- and 6-phienyl-2-pyrones show that this monomer type is unsuitable for the syntheses of... temperature to a rod-like molecule with a high glass transition temperature . The polymerization reaction is acid catalyzed, but is carried out most...Polymerization Reactions...................24 Solution Properties......................27 Phase Transition Temperatures , Thermal Stability and Thermomechanical
High-Performance Synthetic Fibers for Composites
1992-04-01
under evaluation today include polyether ether ketone , polyamide, 23 polyamideimide, polyimide, polysulfone, and polyphenylene sulfide. Epoxy resins...shrinkage under intense neutron radiation . This attribute, together with other properties of high-temperature strength, toughness, and low nuclear...and (2) liquid or solid resins cross-linked with other esters in chopped-fiber and mineral-filled molding compounds. Polyether ether ketone (PEEK) A
Lankadurai, Brian P.; Furdui, Vasile I.; Reiner, Eric J.; Simpson, André J.; Simpson, Myrna J.
2013-01-01
1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147
Wang, Xinghao; Liu, Jiaoqin; Qu, Ruijuan; Wang, Zunyao; Huang, Qingguo
2017-08-10
Nanostructured manganese oxides, e.g. MnO 2 , have shown laccase-like catalytic activities, and are thus promising for pollutant oxidation in wastewater treatment. We have systematically compared the laccase-like reactivity of manganese oxide nanomaterials of different crystallinity, including α-, β-, γ-, δ-, and ɛ-MnO 2 , and Mn 3 O 4 , with 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 17β-estradiol (E2) as the probing substrates. The reaction rate behaviors were examined with regard to substrate oxidation and oxygen reduction to evaluate the laccase-like catalysis of the materials, among which γ-MnO 2 exhibits the best performance. Cyclic voltammetry (CV) was employed to assess the six MnO x nanomaterials, and the results correlate well with their laccase-like catalytic activities. The findings help understand the mechanisms of and the factors controlling the laccase-like reactivity of different manganese oxides nanomaterials, and provide a basis for future design and application of MnO x -based catalysts.
MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I.
Tabak, Henry H.; Chambers, Cecil W.; Kabler, Paul W.
1964-01-01
Tabak, Henry H. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Cecil W. Chambers, and Paul W. Kabler. Microbial metabolism of aromatic carbon compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 87:910–919. 1964.—Bacteria from soil and related environments were selected or adapted to metabolize phenol, hydroxy phenols, nitrophenols, chlorophenols, methylphenols, alkylphenols, and arylphenols when cultured in mineral salts media with the specific substrate as the sole source of carbon. A phenol-adapted culture (substrate-induced enzyme synthesis proven) was challenged in respirometric tests with 104 related compounds; probable significant oxidative activity occurred with 65. Dihydric phenols were generally oxidized; trihydric phenols were not. Cresols and dimethylphenols were oxidized; adding a chloro group increased resistance. Benzoic and hydroxybenzoic acids were oxidized; sulfonated, methoxylated, nitro, and chlorobenzoic acids were not; m-toluic acid was utilized but not the o- and p-isomers. Benzaldehyde and p-hydroxybenzaldehyde were oxidized. In general, nitro- and chloro-substituted compounds and the benzenes were difficult to oxidize. PMID:14137630
Simulation study of sulfonate cluster swelling in ionomers
NASA Astrophysics Data System (ADS)
Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut
2009-12-01
We have performed simulations to study how increasing humidity affects the structure of Nafion-like ionomers under conditions of low sulfonate concentration and low humidity. At the onset of membrane hydration, the clusters split into smaller parts. These subsequently swell, but then maintain constant the number of sulfonates per cluster. We find that the distribution of water in low-sulfonate membranes depends strongly on the sulfonate concentration. For a relatively low sulfonate concentration, nearly all the side-chain terminal groups are within cluster formations, and the average water loading per cluster matches the water content of membrane. However, for a relatively higher sulfonate concentration the water-to-sulfonate ratio becomes nonuniform. The clusters become wetter, while the intercluster bridges become drier. We note the formation of unusual shells of water-rich material that surround the sulfonate clusters.
Zhang, Limin; Krishnan, Prasad; Ehresman, David J; Smith, Philip B; Dutta, Mainak; Bagley, Bradford D; Chang, Shu-Ching; Butenhoff, John L; Patterson, Andrew D; Peters, Jeffrey M
2016-09-01
The mechanisms underlying perfluorooctane sulfonate (PFOS)-induced steatosis remain unclear. The hypothesis that PFOS causes steatosis and other hepatic effects by forming an ion pair with choline was examined. C57BL/6 mice were fed either a control diet or a marginal methionine/choline-deficient (mMCD) diet, with and without 0.003, 0.006, or 0.012% potassium PFOS. Dietary PFOS caused a dose-dependent decrease in body weight, and increases in the relative liver weight, hepatic triglyceride concentration and serum markers of liver toxicity and oxidative stress. Some of these effects were exacerbated in mice fed the mMCD diet supplemented with 0.012% PFOS compared with those fed the control diet supplemented with 0.012% PFOS. Surprisingly, serum PFOS concentrations were higher while liver PFOS concentrations were lower in mMCD-fed mice compared with corresponding control-fed mice. To determine if supplemental dietary choline could prevent PFOS-induced hepatic effects, C57BL/6 mice were fed a control diet, or a choline supplemental diet (1.2%) with or without 0.003% PFOS. Lipidomic analysis demonstrated that PFOS caused alterations in hepatic lipid metabolism in the PFOS-fed mice compared with controls, and supplemental dietary choline prevented these PFOS-induced changes. Interestingly, dietary choline supplementation also prevented PFOS-induced oxidative damage. These studies are the first to suggest that PFOS may cause hepatic steatosis and oxidative stress by effectively reducing the choline required for hepatic VLDL production and export by forming an ion pair with choline, and suggest that choline supplementation may prevent and/or treat PFOS-induced hepatic steatosis and oxidative stress. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
In situ characterization of the oxidative degradation of a polymeric light emitting device
NASA Astrophysics Data System (ADS)
Cumpston, B. H.; Parker, I. D.; Jensen, K. F.
1997-04-01
Light-emitting devices with polymeric emissive layers have great promise for the production of large-area, lightweight, flexible color displays, but short lifetimes currently limit applications. We address mechanisms of bulk polymer degradation in these devices and show through in situ Fourier transform infrared characterization of working light-emitting devices with active layers of poly[2-methoxy,5-(2'-ethyl-hexoxy)-1,4-phenylene vinylene] that oxygen is responsible for the degradation of the polymer film. A mechanism is given based on the formation of singlet oxygen from oxygen impurities in the film via energy transfer from a nonradiative exciton. Fourier transform infrared and x-ray photoelectron spectroscopy results are consistent with the mechanism, involving singlet oxygen attack followed by free radical processes. We further show that oxygen readily diffuses into the active polymer layer, changing the electrical characteristics of the film even at low concentrations. Thus, polyphenylene-vinylene-based light-emitting devices will self-destruct during operation if fabricated without special attention to eliminating oxygen contamination during fabrication and device operation.
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Ethylene polymer, chloro-sulfonated is produced by chloro-sulfonation of a carbon tetrachloride solution of... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium mono- and dimethyl naphthalene sulfonates... sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in... statement declaring the presence of sodium mono- and dimethyl naphthalene sulfonates. [42 FR 14491, Mar. 15...
Frébortová, Jitka; Novák, Ondrej; Frébort, Ivo; Jorda, Radek
2010-02-01
Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX-catalyzed reaction was also verified with a stable free radical of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones.
Effects of taurine and housing density on renal function in laying hens*
Ma, Zi-li; Gao, Yang; Ma, Hai-tian; Zheng, Liu-hai; Dai, Bin; Miao, Jin-feng; Zhang, Yuan-shu
2016-01-01
This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens. PMID:27921400
Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannes, C.; Majcherczyk, A.
2000-02-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less
Kenzom, T.; Srivastava, P.
2014-01-01
Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507
Kenzom, T; Srivastava, P; Mishra, S
2014-12-01
Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution.
Edwards, J V; Yager, D R; Cohen, I K; Diegelmann, R F; Montante, S; Bertoniere, N; Bopp, A F
2001-01-01
Dressings for chronic human wounds have been aimed at protection, removal of exudate, and improved appearance. However since the time of ancient Greece wound care and dressing strategies have primarily relied on empiricism. Recent studies have shown that chronic wounds contain high levels of tissue and cytokine destroying proteases including collagenase and neutrophil elastase. Therefore we sought to develop an effective wound dressing that could absorb elastase through affinity sequestration. Cotton gauze was modified by oxidation, phosphorylation, and sulfonation to enhance elastase affinity by ionic or active site uptake. Type VII absorbent cotton gauze was oxidized to dialdehyde cotton which was subsequently converted in part to the bisulfite addition product. Gauze preparations were also phosphorylated and carboxymethylated. Modified cotton gauzes were compared with untreated gauze for reduction of elastase activity in buffered saline. Solutions of elastase that were soaked in oxidized, sulfonated, and phosphorylated cotton gauze showed reduced elastase activity. The initial velocities (v(o)) and turnover rates of elastase showed significant decreases compared with solutions taken from untreated gauze. The reduction in enzyme activity with dialdehyde cotton gauze was confirmed in solution by determining elastase inhibition with dialdehyde starch. The dialdehyde cotton gauze also decreased elastase activity in human wound fluid in a dose response relation based on weight of gauze per volume of wound fluid. Absorbency, pH, air permeability and strength properties of the modified gauze were also compared with untreated cotton gauze. This report shows the effect of reducing elastase activity in solution with cotton containing aldehydic or negatively charged cellulose fibers that may be applicable to treatment modalities in chronic wounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Jing; Wang, Xiaoxing; Chen, Yongsheng
2014-02-13
This study investigates ultra-deep adsorptive desulfurization (ADS) from light-irradiated diesel fuel over supported TiO 2–CeO 2 adsorbents. A 30-fold higher desulfurization capacity of 95 mL of fuel per gram of adsorbent (mL-F/g-sorb) or 1.143 mg of sulfur per gram of adsorbent (mg-S/g-sorb) was achieved from light-irradiated fuel over the original low-sulfur fuel containing about 15 ppm by weight (ppmw) of sulfur. The sulfur species on spent TiO 2–CeO 2/MCM-48 adsorbent was identified by sulfur K-edge XANES as sulfones and the adsorption selectivity to different compounds tested in a model fuel decreases in the order of indole > dibenzothiophenesulfone → dibenzothiophenemore » > 4-methyldibenzothiophene > benzothiophene > 4,6-dimethyldibenzothiophene > phenanthrene > 2-methylnaphthalene ~ fluorene > naphthalene. The results suggest that during ADS of light-irradiated fuel, the original sulfur species were chemically transformed to sulfones, resulting in the significant increase in desulfurization capacity. For different supports for TiO2–CeO2 oxides, the ADS capacity increases with a decrease in the point of zero charge (PZC) value; for silica-supported TiO 2–CeO 2 oxides (the lowest PZC value of 2–4) with different surface areas, the ADS capacity increases monotonically with increasing surface area. The supported TiO 2–CeO 2/MCM-48 adsorbent can be regenerated using oxidative air treatment. The present study provides an attractive new path to achieve ultraclean fuel more effectively.« less
Nakayama, Shizuka; Roelofs, Kevin; Lee, Vincent T; Sintim, Herman O
2012-03-01
Herein, we demonstrate that the bacterial signaling molecule, c-di-GMP, can enhance the peroxidation of hemin when proflavine is present. The c-di-GMP-proflavine-hemin nucleotidezyme can oxidize the colorless compound 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS, to the colored radical cation ABTS˙(+) and hence provides simple colorimetric detection of c-di-GMP at low micromolar concentrations.
Liu, Xin-Hua; Wang, Xi-Ling; Xin, Hong; Wu, Dan; Xin, Xiao-Ming; Miao, Lei; Zhang, Qiu-Yan; Zhou, Yang; Liu, Qian; Zhang, Qian; Zhu, Yi-Zhun
2015-01-01
Sodium 9-acetoxyltanshinone IIA sulfonate (ZY-1A4), a novel compound derived from sodium 9-hydroxyltanshinone IIA sulfonate, was synthesized with potential biological activities. This study aimed to explore the effects of ZY-1A4 on lipopolysaccharide (LPS)-triggered inflammatory response and the underlying mechanisms. Activation of RAW264.7 macrophages was induced by LPS. The effects of ZY-1A4 on inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) generation, nuclear factor-κB (NF-κB) activation, heme oxygenase-1 (HO-1) expression, and nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway were evaluated to elucidate its underlying mechanisms on inflammatory responses. ZY-1A4 concentration-dependently reduced iNOS expression and NO production, and inhibited c-Jun-N-terminal kinase 1/2 (JNK1/2) phosphorylation and NF-κB activation in LPS-stimulated macrophages. In addition, ZY-1A4 concentration- and time-dependently induced HO-1 expression associated with degradation of Kelch-like ECH-associated protein 1 (Keap1) and nuclear translocation of Nrf2, while the effect of ZY-1A4 was abolished by a phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Intriguingly, pharmacological inactivation of HO-1 with zinc protoporphyrin IX reversed anti-inflammatory effect of ZY- 1A4, but the anti-inflammatory effect of ZY-1A4 was largely mimicked by HO-1 by-products carbon monoxide and bilirubin. Furthermore, the inhibitory effect of ZY-1A4 on LPS-induced iNOS expression and NO release was abolished by HO-1 siRNA or LY294002. Our results demonstrated that ZY-1A4 suppressed LPS-induced iNOS expression and NO generation via modulation of NF-κB activation and HO-1 expression. This new finding might shed light to the prevention and therapy of cardiovascular diseases. © 2015 S. Karger AG, Basel.
A B-C-N hybrid porous sheet: an efficient metal-free visible-light absorption material.
Lu, Ruifeng; Li, Feng; Salafranca, Juan; Kan, Erjun; Xiao, Chuanyun; Deng, Kaiming
2014-03-07
The polyphenylene network, known as porous graphene, is one of the most important and widely studied two-dimensional materials. As a potential candidate for photocatalysis and photovoltaic energy generation, its application has been limited by the low photocatalytic activity in the visible-light region. State-of-the-art hybrid density functional theory investigations are presented to show that an analogous B-C-N porous sheet outperforms the pristine polyphenylene network with significantly enhanced visible-light absorption. Compared with porous graphene, the calculated energy gap of the B-C-N hybrid crystal shrinks to 2.7 eV and the optical absorption peak remarkably shifts to the visible light region. The redox potentials of water splitting are well positioned in the middle of the band gap. Hybridizations among B_p, N_p and C_p orbitals are responsible for these findings. Valence and conduction band calculations indicate that the electrons and holes can be effectively separated, reducing charge recombination and improving the photoconversion efficiency. Moreover, the band gap and optical properties of the B-C-N hybrid porous sheet can be further finely engineered by external strain.
Poly(phenylene alkylene)-based lonomers
Hibbs, Michael R.
2017-01-03
A composition and method of forming a composition including a compound including a poly(phenylene) backbone represented by the following formula: ##STR00001## wherein each of R.sub.1, R.sub.2 and R.sub.3 may be the same or different and is H or an unsubstituted or inertly-substituted aromatic moiety; wherein Ar.sub.1 is an unsubstituted or inertly-substituted aromatic moiety; wherein R.sub.4 is an alkylene, perfluoroalkyl, polyethylene glycol, or polypropylene glycol moiety; wherein each of R.sub.6, R.sub.7, R.sub.8, R.sub.9, R.sub.10 and R.sub.11 is H or a monovalent hydrocarbon group including two to 18 carbon atoms, with the proviso that each R.sub.6, R.sub.7, R.sub.8, R.sub.9, R.sub.10 and R.sub.11 cannot be H; and wherein each of Y.sub.6, Y.sub.7, Y.sub.8, Y.sub.9, Y.sub.10 and Y.sub.11 may be the same or different and is H or a functional group are disclosed. The composition can be used as anion-exchange membranes and as an electrode binder material in anion exchange membrane fuel cells.
Acid-functionalized nanoparticles for biomass hydrolysis
NASA Astrophysics Data System (ADS)
Pena Duque, Leidy Eugenia
Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during the catalytic reactions. PS nanoparticles were further evaluated for the pretreatment of corn stover in order to increase digestibility of the biomass. The pretreatment was carried out at three different catalyst load and temperature levels. At 180°C, the total glucose yield was linearly correlated to the catalyst load. A maximum glucose yield of 90% and 58% of the hemicellulose sugars were obtained at this temperature.
McGrath, James E [Blacksburg, VA; Park, Ho Bum [Austin, TX; Freeman, Benny D [Austin, TX
2011-10-04
The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.
Wolfand, Jordyn M; LeFevre, Gregory H; Luthy, Richard G
2016-10-12
Fipronil is a recalcitrant phenylpyrazole-based pesticide used for flea/tick treatment and termite control that is distributed in urban aquatic environments via stormwater and contributes to stream toxicity. We discovered that fipronil is rapidly metabolized (t 1/2 = 4.2 d) by the white rot fungus Trametes versicolor to fipronil sulfone and multiple previously unknown fipronil transformation products, lowering fipronil concentration by 96.5%. Using an LC-QTOF-MS untargeted metabolomics approach, we identified four novel fipronil fungal transformation products: hydroxylated fipronil sulfone, glycosylated fipronil sulfone, and two compounds with unresolved structures. These results are consistent with identified enzymatic detoxification pathways wherein conjugation with sugar moieties follows initial ring functionalization (hydroxylation). The proposed pathway is supported by kinetic evidence of transformation product formation. Fipronil loss by sorption, hydrolysis, and photolysis was negligible. When T. versicolor was exposed to the cytochrome P450 enzyme inhibitor 1-aminobenzotriazole, oxidation of fipronil and production of hydroxylated and glycosylated transformation products significantly decreased (p = 0.038, 0.0037, 0.0023, respectively), indicating that fipronil is metabolized intracellularly by cytochrome P450 enzymes. Elucidating fipronil transformation products is critical because pesticide target specificity can be lost via structural alteration, broadening classes of impacted organisms. Integration of fungi in engineered natural treatment systems could be a viable strategy for pesticide removal from stormwater runoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhongchuan; Xie, Tian; Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of
2016-03-24
The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature ofmore » CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.« less
NASA Astrophysics Data System (ADS)
Rafiee, Ezzat; Shahebrahimi, Shabnam
2017-07-01
Organic-inorganic hybrid nano porous materials based on poly(ionic liquid)-polyoxometalate (PIL-POM) were reported. These hybrid materials were synthesized by the reaction of 4-vinyl pyridine with 1,3-propanesultone, followed by the polymerization and also sulfonate-functionalized cross-linked poly(4-vinylpyridine) and combining these polymers with H5PMo10V2O40 (PMo10V2). Activity of prepared PIL-PMo10V2 hybrids were investigated as catalysts for oxidation of sulfides with H2O2 as oxidant. For understanding catalytic activities of the PIL-PMo10V2 hybrids in oxidation of sulfides, effect of catalyst composition, substrate, and reaction conditions were studied. The results show that the PIL-PMo10V2 hybrids are active as selective heterogeneous catalysts for oxidation of sulfides and can be recovered and reused. The catalyst was characterized by FT-IR, TGA-DSC, XRD, SEM/EDX, BET, CV and zeta potential measurement. Also, average molecular weight of prepared catalysts were measured.
Quantum mechanical origin of the conformational preferences of 4-thiaproline and its S-oxides
Choudhary, Amit; Pua, Khian Hong
2010-01-01
The saturated ring and secondary amine of proline spawn equilibria between pyrrolidine ring puckers as well as peptide bond isomers. These conformational equilibria can be modulated by alterations to the chemical architecture of proline. For example, Cγ in the pyrrolidine ring can be replaced with sulfur, which can be oxidized either stereoselectively to yield diastereomeric S-oxides or completely to yield a sulfone. Here, the thiazolidine ring and peptide bond conformations of 4-thiaproline and its S-oxides were analyzed in an Ac-Xaa-OMe system by using NMR spectroscopy, X-ray crystallography, and hybrid density functional theory. The results indicate that the ring pucker of the S-oxides is governed by the gauche effect, and the prolyl peptide bond conformation is determined by the strength of the n→π* interaction between the amide oxygen and the ester carbonyl group. These findings, which are consistent with those for isologous 4-hydroxyprolines and 4-fluoroprolines, substantiate the importance of electron delocalization in amino-acid conformation. PMID:20221839
Study on the generation of perfluorooctane sulfonate from the aqueous film-forming foam.
Kishi, Takahiro; Arai, Mitsuru
2008-11-15
Perfluorooctane sulfonate (C(8)HF(17)SO(3)) and perfluorooctane acid (C(8)HF(15)O(2)) are artificial chemicals and have been used all over the world, mainly as water repellent agents, fluorochemical surfactants, coating agents, etc. However, perfluorooctane sulfonate and perfluorooctane acid are environmental contaminants because of their stability, bio-accumulativeness, and long-term persistence in the ecological environment. At the present day, they are diffused all over the world. Lately, this diffusion is viewed with suspicion and there is a movement towards their restriction, even if the environmental fate of them is still under investigation. Fluorochemical surfactants are key compounds in the aqueous film-forming foam (AFFF) formulations. AFFFs are used for massive conflagration such as industrial fire and petroleum fire because of their efficient fire control. On the other hand, a lot of AFFFs are used in case of massive conflagration and most of them enter ocean and groundwater. Actually, perfluorooctane sulfonate and perfluorooctane sulfonate related substances were detected from the fire-fighting facility of US forces. Therefore, there is the possibility of generating perfluorooctane sulfonate and perfluorooctane sulfonate related substances from fluorochemical surfactants in the AFFFs. In this study, activated sludge added AFFF were analyzed for perfluorooctane sulfonate and perfluorooctane acid with time. And the perfluorooctane sulfonate was directly detected after 2 days using LC-MS. This shows that AFFF can be decomposed perfluorooctane sulfonate by microorganisms easily. However, perfluorooctane sulfonate would not decompose at all. Additionally, activated sludge added N-polyoxyethylene-N-propyl perfluorooctane sulfonamide which is one of the fluorochemical surfactants used in the AFFF was analyzed for perfluorooctane sulfonate and perfluorooctane acid with time and the perfluorooctane sulfonate was detected too.
NASA Astrophysics Data System (ADS)
Guha Thakurta, Soma
Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed significantly to the anhydrous state proton conductivity. Third, a new category of single lithium ion conducting SPEs was developed by crosslinking a polyether epoxy, poly(ethylene glycol)diglicidyl ether (PEGDGE) (lithium ion solvent), in sulfonated polysulfone (SPSU) matrix. The effects of degree of sulfonation and electrolyte composition on ionic conductivity, thermal, and tensile properties of SPEs were investigated. It was found that ion-dipole interactions between lithium sulfonate (SO3Li) and PEGDGE were responsible for the reduction in size of the dispersed epoxy phase and increased thermal stability. Lithium sulfonate promoted compatibilization and also caused improvement in elongation at break. A low molecular weight electrolyte salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was further dissolved in PEGDGE phase prior to its crosslinking in SPSU matrix, and the ionic conductivity and thermal properties were evaluated as a function of doping level. The ionic conductivity showed remarkable improvement compared to the undoped system.
Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.
A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.
Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution
Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K. S.; Yu, Han-Qing
2015-01-01
Photodegradation in the absence of externally added chemicals could be an attractive solution for the removal of perfluorooctane sulfonate (PFOS) in aqueous environment, but the low decomposition rate presents a severe challenge and the underlying mechanisms are unclear. In this study, we demonstrated that PFOS could be effectively degraded in a catalyst-free aqueous solution via a reduction route. Under appropriate pH and temperature conditions, a rapid PFOS photodegradation, with a pseudo-first-order decomposition rate constant of 0.91 h−1, was achieved. In addition, hydrated electrons were considered to be the major photo-generated reductive species responsible for PFOS photodegradation in this system. Its production and reduction ability could be significantly affected by the environmental conditions such as pH, temperature and presence of oxidative species. This study gives insights into the PFOS photodegradation process and may provide useful information for developing catalyst-free photodegradation systems for decomposing PFOS and other persistent water contaminants. PMID:25879866
Hodosi, G; Galambos, G; Podányi, B; Kuszmann, J
1992-03-02
6-(2,4-Dichlorophenyl)-D-erythro-1,2,4-hexanetriol, synthesised from D-glucose, was partially silylated, then reacted with 2-methoxypropene to afford 1-O-tert-butyldimethylsilyl-6-(2,4- dichlorophenyl)-2,4-O-isopropylidene-D-erythro-1,2,4-hexanetriol (17). Desilylation of 17 gave 6-(2,4-dichlorophenyl)-2,4-O-isopropylidene-D- erythro-1,2,4-hexanetriol, which was converted into the 1-tosylate 18 and the 1-bromo derivative 19. Reaction of 18 with potassium thiolbenzoate gave, after debenzoylation, oxidation, and deprotection, 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexane-1-sulfonic acid (4). Reaction of 18 or 19 with triethyl phosphite gave, after deprotection, 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexyl-phosphonic acid (5), and reaction of 19 with potassium cyanide gave, after subsequent hydrolysis and deprotection, 7-(2,4-dichlorophenyl)-D-erythro-3-hydroxy-5-heptanolide (3).
Materials for use as proton conducting membranes for fuel cells
Einsla, Brian R [Blacksburg, VA; McGrath, James E [Blacksburg, VA
2009-01-06
A family of polymers having pendent sulfonate moieties connected to polymeric main chain phenyl groups are described. These polymers are prepared by the steps of polymerization (using a monomer with a phenyl with an alkoxy substitution), deportation by converting the alkoxy to a hydroxyl, and functionalization of the polymer with a pendant sulfonate group. As an example, sulfonated poly(arylene ether sulfone) copolymers with pendent sulfonic acid groups are synthesized by the direct copolymerization of methoxy-containing poly(arylene ether sulfone)s, then converting the methoxy groups to the reactive hydroxyl form, and finally functionalizing the hydroxyl form with proton-conducting sites through nucleophilic substitution. The family of polymers may have application in proton exchange membranes and in other applications.
Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo
2018-06-01
Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yao, Tinghui; Li, Yali; Liu, Dequan; Gu, Yipeng; Qin, Shengchun; Guo, Xin; Guo, Hui; Ding, Yongqiang; Liu, Qiming; Chen, Qiang; Li, Junshuai; He, Deyan
2018-03-01
In this paper, a free-standing electrode structure composed of multilayered Co9S8 plates wrapped by carbonized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/reduced graphene oxide (PEDOT:PSS/rGO) layers is introduced. Excellent supercapacitive behaviors, especially long cycling stability at high current densities are delivered owing to the synergetic effects of stable electrical contact between the active material and carbonized PEDOT:PSS/rGO due to the wrapped configuration, efficient charge exchange between the multilayered Co9S8 plates and electrolyte, improved electrical conductance by rGO, and plenty of voids for accommodating volume changes. For the optimized electrode (starting materials: 0.5 mL PEDOT:PSS, 1.0 mL GO (6.0 mg mL-1) and 10.0 mg Co(OH)2), a specific capacitance of about 788.9 F g-1 at 1.0 A g-1 and good cycling stability of over 100% of the initial capacitance (∼488.6 F g-1) after 10000 cycles at a current density of 15.0 A g-1 can be achieved. The assembled asymmetric supercapacitor based on the optimized electrode//active carbon exhibits an energy density of ∼19.6 Wh kg-1 at a power density of 400.9 W kg-1.
Hentchel, Kristy L.
2014-01-01
Protein and small-molecule acylation reactions are widespread in nature. Many of the enzymes catalyzing acylation reactions belong to the Gcn5-related N-acetyltransferase (GNAT; PF00583) family, named after the yeast Gcn5 protein. The genome of Salmonella enterica serovar Typhimurium LT2 encodes 26 GNATs, 11 of which have no known physiological role. Here, we provide in vivo and in vitro evidence for the role of the MddA (methionine derivative detoxifier; formerly YncA) GNAT in the detoxification of oxidized forms of methionine, including methionine sulfoximine (MSX) and methionine sulfone (MSO). MSX and MSO inhibited the growth of an S. enterica ΔmddA strain unless glutamine or methionine was present in the medium. We used an in vitro spectrophotometric assay and mass spectrometry to show that MddA acetylated MSX and MSO. An mddA+ strain displayed biphasic growth kinetics in the presence of MSX and glutamine. Deletion of two amino acid transporters (GlnHPQ and MetNIQ) in a ΔmddA strain restored growth in the presence of MSX. Notably, MSO was transported by GlnHPQ but not by MetNIQ. In summary, MddA is the mechanism used by S. enterica to respond to oxidized forms of methionine, which MddA detoxifies by acetyl coenzyme A-dependent acetylation. PMID:25368301
Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid bin; Jang, Jin
2016-01-01
Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL. PMID:27277388
40 CFR 721.10035 - Alkylbenzene sulfonate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylbenzene sulfonate (generic). 721... Substances § 721.10035 Alkylbenzene sulfonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate (PMN-02...
40 CFR 721.10035 - Alkylbenzene sulfonate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylbenzene sulfonate (generic). 721... Substances § 721.10035 Alkylbenzene sulfonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate (PMN-02...
Phoon, Pui Yeu; Paul, Lake N; Burgner, John W; San Martin-Gonzalez, M Fernanda; Narsimhan, Ganesan
2014-04-02
This study investigated how enzymatic cross-linking of interfacial sodium caseinate and emulsification, via high-pressure homogenization, influenced the intrinsic oxidative stability of 4% (w/v) menhaden oil-in-water emulsions stabilized by 1% (w/v) caseinate at pH 7. Oil oxidation was monitored by the ferric thiocyanate perioxide value assay. Higher homogenization pressure resulted in improved intrinsic emulsion oxidative stability, which is attributed to increased interfacial cross-linking as indicated by higher weighted average sedimentation coefficients of interfacial protein species (from 11.2 S for 0 kpsi/0.1 MPa to 18 S for 20 kpsi/137.9 MPa). Moderate dosage of transglutaminase at 0.5-1.0 U/mL emulsion enhanced intrinsic emulsion oxidative stability further, despite a contradictory reduction in the antioxidant property of cross-linked caseinate as tested by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. This implied the prominent role of cross-linked interfacial caseinate as a physical barrier for oxygen transfer, hence its efficacy in retarding oil oxidation.
Poly(p-Phenylene Sulfonic Acids). PEMs with frozen-in free volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litt, Morton
2016-01-21
Early work with rigid rod aromatic polyelectrolytes implied that steric hindrance in packing of the rigid rods left unoccupied volumes that could absorb and hold water molecules strongly. We called this “frozen in free volume). It is illustrated and contrasted with the packing of flexible backbone polyelectrolytes (Reference 5 of this report). This was quantified for poly(biphenylene disulfonic acid) (PBDSA) and poly(phenylene disulfonic acid) (PPDSA). We found that PPDSA held three water molecules per acid group down to 11% relative humidity (RH) and had very high conductivity even at these low RHs. (Reference 1 of report.) The frozen-in free volumemore » was calculated to be equivalent to a λ of 3.5. The work reported below concentrated on studying these polymers and their copolymers with biphenylene disulfonic acid. As expected, the polyelectrolytes are water soluble. Several approaches towards making water stable films were studied. Grafting alkyl benzene substituents on sulfonic acid groups had worked for PBPDSA (1) so it was tried with PPDSA and a 20%/80% copolymer of BPDSA and PDSA (B20P80). T-butyl, n-octyl and n-dodecyl benzene were grafted. Good films could be made. Water absorption and conductivity were studied as a function of RH and temperature (Reference 2). When less than 20% of the sulfonic acid groups were grafted, conductivity was much higher than that of Nafion NR212 at all RHs. At low graft levels, conductivity was ten times higher. Mechanical properties and swelling were acceptable below 90% RH. However, all the films were unstable in water and slowly disintegrated. The proposed explanation was that the molecules formed nano-aggregates in solution held together by hydrophobic bonding. Their cast films disintegrated when placed in water since hydrophobic bonding between the nano-aggregates was poor. We then shifted to crosslinking as a method to produce water stable films (References 3 and 4). Biphenyl could easily be reacted with the polymer, generating biphenyl sulfone grafts. Films were cast and then crosslinked by heating to 210°C for at least one hour. There was no loss of acid groups even after heating at 225°C for two hours. PPDSA and B20P80 polymers were grafted and crosslinked. Conductivity and water absorption were measured on polymers with grafting degrees from 3 to 16%. As before they all had much higher conductivity than Nafion NR212. One sample was tested as a fuel cell membrane. Unfortunately it tore; the tear was mended with a 3M ionomer. There was some hydrogen leakage. However, the current at a given voltage was about 95% that of a Nafion NR212 membrane over the whole useful range. Considering that this was the first test for such a system, this is remarkable performance. A mechanically better membrane was tested at the end of the grant period. This did not have tears or micro cracks (Reference 5). Testing confirmed earlier data (Sergio Granados-Focil, Ph. D. Thesis, CWRU. 2006) that such very polar membranes were excellent barriers to hydrogen diffusion. Standard measurements showed no hydrogen leakage. This was confirmed by open circuit voltage measurements. They were higher than those of the Nafion NR212 cells. Again the single cell performance was about 95% that of the Nafion SR212 cell over the whole range. These films show great promise. They are very stable and perform very well at very low humidity. They should be able to outperform the present cells with relatively little further development. A second project is reported fully in the final report since it was not published. Its goal was to make membranes with high conductivity and good mechanical strength that would have a constant volume at all RHs. We made large planar 2-D polymers containing 1.5 nm holes lined with sulfonic acid groups. These should hold water very strongly. The largest made was calculated to have a number average diameter of 29 nm. It was expected that when they were cast, they would aggregate and create channels for proton conduction. However, they were so large that they aggregated in solution during preparation. Measurements showed that the aggregates developed long channels. This was demonstrated and is reported. Unfortunately, the aggregates could not be cast with the channels perpendicular to the film plane. If methods are developed to keep the molecules in solution until they are cast, their planes should be parallel and the channels perpendicular to the film direction. They could be very interesting and perhaps important materials.« less
40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate, amine...
40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate, amine...
Yang, Fang; Xiao, Dan; Han, Huaxin; Chen, Yuhuan; Li, Gang
2018-07-15
A novel amphiphilic polymeric drug carrier was synthesized through grafting polymerization of water-soluble 1,4-β-D-glucan from cotton cellulose tailored and polypropylene oxide (PPO), and then use thereof to synthesize graft copolymer 1,4-β-D-glucan-PPO-docetaxel (DTX). The products were characterized by FTIR, 1 H NMR, and 13 C NMR. The physicochemical characteristics of 1,4-β-D-glucan-PPO and 1,4-β-D-glucan-PPO-DTX such as molecular weight distribution (MWD), micro-morphology, size, critical micelle concentration (CMC), aggregation number of micelle (N), in vitro stability and drug pharmacokinetic study in vivo were investigated. The results reveal that the degree of polymerization (DP) of the water-soluble 1,4-β-D-glucan from cotton cellulose tailored is equal to 7; the 1,4-β-D-glucan-PPO surfactant possesses good surface activity while the adduct number of propylene oxide reaches appropriately to 20; the DTX is completely dispersed in water medium with 1,4-β-D-glucan-PPO-DTX micelle and the drug conjugated percent is up to 40.3%; In vitro study confirms that 1,4-β-D-glucan-PPO-DTX has the capacity for sustained drug release; In plasma, 1,4-β-D-glucan-PPO-DTX exhibits a significantly enhanced C max , AUC (0-t) and T 1/2 compared with DTX. These results demonstrate that 1,4-β-D-glucan-PPO has the potential to be used as a novel biocompatible biomaterial for drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Giel, V.; Perchacz, M.; Kredatusová, J.; Pientka, Z.
2017-01-01
Functionalised titanate nanotubes (TiNTs) were incorporated to poly(5,5-bisbenzimidazole-2,2-diyl-1,3-phenylene) (PBI) or poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for improving the interfacial compatibility between the polymer matrix and inorganic material and for altering the gas separation performance of the neat polymer membranes. Functionalisation consisted in oxidative polymerisation of dopamine-hydrochloride on the surface of non-functionalised TiNTs. Transmission electron microscopy (TEM) confirmed that a thin polydopamine (PDA) layer was created on the surface of TiNTs. 1.5, 3, 6, and 9 wt.% of PDA-functionalised TiNTs (PDA-TiNTs) were dispersed to each type of polymer matrix to create so-called mixed matrix membranes (MMMs). Infrared spectroscopy confirmed that -OH and -NH groups exist on the surface of PDA-TiNTs and that the nanotubes interact via H-bonding with PBI but not with PPO. The distribution of PDA-TiNTs in the MMMs was to some extent uniform as scanning electron microscope (SEM) studies showed. Beyond, PDA-TiNTs exhibit positive effect on gas transport properties, resulting in increased selectivities of MMMs. The addition of nanotubes caused a decrease in permeabilities but an increase in selectivities. It is shown that 9 wt.% of PDA-TiNTs in PBI gave a rise to CO2/N2 and CO2/CH4 selectivities of 112 and 63 %, respectively. In case of PPO-PDA-TiNT MMMs, CO2/N2 and CO2/CH4 selectivity increased about 25 and 17 %, respectively. Sorption measurement showed that the presence of PDA-TiNTs in PBI caused an increase in CO2 sorption, whereas the influence on other gases is less noticeable.
[Synthesis, solubility, lipids-lowering and liver-protection activities of sulfonated formononetin].
Wang, Qiu-ya; Meng, Qing-hua; Zhang, Zun-ting; Tian, Zhen-jun; Liu, Hui
2009-04-01
A water-soluble compound, sodium formononetin-3'-sulfonate with good lipid-lowering and liver-protection activities was synthesized. It was synthesized by sulfonation reaction, and its structure was characterized by IR, NMR and elemental analyses. The solubility of sodium formononetin-3'-sulfonate in water and n-octanol/water partition coefficient were determined by UV spectrophotometry. The lipid-lowering and liver-protection activities of sodium formononetin-3'-sulfonate were tested by using rat's high fat model induce by feeding with high fat food. The results showed that sodium formononetin-3'-sulfonate not only had favorable water, solubility but also had good lipid-lowering and liver-protection activities.
Ionic Liquids in Selective Oxidation: Catalysts and Solvents.
Dai, Chengna; Zhang, Jie; Huang, Chongpin; Lei, Zhigang
2017-05-24
Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.
Ye, Feng; Tokumura, Masahiro; Islam, Md Saiful; Zushi, Yasuyuki; Oh, Jungkeun; Masunaga, Shigeki
2014-12-15
Production and use of perfluorooctane sulfonate (PFOS) is regulated worldwide. However, numerous potential precursors that eventually decompose into PFOS and other perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) are still being used and have not been studied in detail. Therefore, knowledge about the levels and sources of the precursors is essential. We investigated the total concentration of potential PFAA precursors in the Tama River, which is one of the major rivers flowing into the Tokyo Bay, by converting all the perfluorinated carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA) precursors into PFCAs by chemical oxidation. The importance of controlling PFAA precursors was determined by calculating the ratios of PFCAs formed by oxidation to the PFAAs originally present (ΣΔ[PFCAC4-C12]/Σ[PFAAs]before oxidation) (average = 0.28 and 0.69 for main and tributary branch rivers, respectively). Higher total concentrations of Δ[PFCAs] were found in sewage treatment plant (STP) effluents. However, the ratios found in the effluents were lower (average = 0.21) than those found in the river water samples, which implies the decomposition of some precursors into PFAAs during the treatment process. On the other hand, higher ratios were observed in the upstream water samples and the existence of emission sources other than the STP effluents was indicated. This study showed that although the treatment process converting a part of the PFAA precursors into PFAAs, STPs were important sources of precursors to the Tama River. To reduce the levels of PFAAs in the aquatic environment, it is necessary to reduce the emission of the PFAA precursors as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maurya, Mannar R; Arya, Aarti; Kumar, Amit; Pessoa, João Costa
2009-03-28
Ligand Hsal-his (I) derived from salicylaldehyde and histamine has been covalently bound to chloromethylated polystyrene cross-linked with 5% divinylbenzene. Upon treatment with [VO(acac)(2)] in DMF, the polystyrene-bound ligand (abbreviated as PS-Hsal-his, II) gave the stable polystyrene-bound oxidovanadium(iv) complex PS-[V(IV)O(sal-his)(acac)] , which upon oxidation yielded the dioxidovanadium(v) PS-[V(V)O(2)(sal-his)] complex. The corresponding non polymer-bound complexes [V(IV)O(sal-his)(acac)] and [V(V)O(2)(sal-his)] have also been obtained. These complexes have been characterised by IR, electronic, (51)V NMR and EPR spectral studies, and thermal as well as scanning electron micrograph studies. Complexes and have been used as a catalyst for the oxidation of methyl phenyl sulfide, diphenyl sulfide and benzoin with 30% H(2)O(2) as oxidant. Under the optimised reaction conditions, a maximum of 93.8% conversion of methyl phenyl sulfide with 63.7% selectivity towards methyl phenyl sulfoxide and 36.3% towards methyl phenyl sulfone has been achieved in 2 h with 2 . Under similar conditions, diphenyl sulfide gave 83.4% conversion where selectivity of reaction products varied in the order: diphenyl sulfoxide (71.8%) > diphenyl sulfone (28.2%). A maximum of 91.2% conversion of benzoin has been achieved within 6 h, and the selectivities of reaction products are: methylbenzoate (37.0%) > benzil (30.5%) > benzaldehyde-dimethylacetal (22.5%) > benzoic acid (8.1%). The PS-bound complex, 1 exhibits very comparable catalytic potential. These polymer-anchored heterogeneous catalysts do not leach during catalytic action, are recyclable and show higher catalytic activity and turnover frequency than the corresponding non polymer-bound complexes. EPR and (51)V NMR spectroscopy was used to characterise methanolic solutions of 3 and 4 and to identify species formed upon addition of H(2)O(2) and/or acid and/or methyl phenyl sulfide.
NASA Astrophysics Data System (ADS)
Ali, Mawlood Maajal; Rizvi, S. J. A.; Azam, Ameer
2018-05-01
Poly ether ether ketone (PEEK) was sulfonated with 1.0 M sulphuric acid for varying durations to have various degrees of sulfonation (DS) from 43 to 55%. The FT-IR spectra confirmed the successful sulfonation of PEEK. The sulfonated PEEK (sPEEK) membranes were prepared by a solvent casting method using dimethylacetamide (DMAc) as solvent and upon drying the membranes were characterized. The DS% and ion exchange capacity (IEC) were determined by a back titration method. The IEC and DS of sPEEK was found to increase with the increment of sulfonation reaction time. Water uptake also increased with increase in the DS. The Thermogravimetric (TGA) curves revealed poor thermal stability of sPEEK. The proton conductivity of sPEEK membrane was found to considerably better with degree of sulfonation for fuel cell application.
Bisphenol A sulfonation is impaired in metabolic and liver disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu
Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results:more » In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.« less
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section for...
40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section for...
40 CFR 721.950 - Sodium salt of an alkylated, sulfonated aromatic (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., sulfonated aromatic (generic name). 721.950 Section 721.950 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.950 Sodium salt of an alkylated, sulfonated... chemical substance identified generically as a sodium salt of an alkylated, sulfonated aromatic (PMN P-84...
40 CFR 721.950 - Sodium salt of an alkylated, sulfonated aromatic (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., sulfonated aromatic (generic name). 721.950 Section 721.950 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.950 Sodium salt of an alkylated, sulfonated... chemical substance identified generically as a sodium salt of an alkylated, sulfonated aromatic (PMN P-84...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium salt...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
Walker, Richard J.
1989-01-01
A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.
Crystal structure of (2R*,3aR*)-2-phenyl-sulfonyl-2,3,3a,4,5,6-hexa-hydro-pyrrolo-[1,2-b]isoxazole.
Hernández, Yaiza; Marcos, Isidro; Garrido, Narciso M; Sanz, Francisca; Diez, David
2017-01-01
The title compound, C 12 H 15 NO 3 S, was prepared by 1,3-dipolar cyclo-addition of 3,4-di-hydro-2 H -pyrrole 1-oxide and phenyl vinyl sulfone. In the mol-ecule, both fused five-membered rings display a twisted conformation. In the crystal, C-H⋯O hydrogen bonds link neighbouring mol-ecules, forming chains running parallel to the b axis.
Expeditious Synthesis of Dianionic-Headed 4-Sulfoalkanoic Acid Surfactants.
Jiang, Jianghui; Xu, Jiaxi
2017-04-16
4-Sulfoalkanoic acids are a class of important dianionic-headed surfactants. Various 4-sulfoalkanoic acids with straight C8, C10, C12, C14, C16, and C18 chains were synthesized expeditiously through the radical addition of methyl 2-((ethoxycarbonothioyl)thio)acetate to linear terminal olefins and subsequent oxidation with peroxyformic acid. This is a useful and convenient strategy for the synthesis of dianionic-headed surfactants with a carboxylic acid and sulfonic acid functionalities in the head group region.
Gao, Detian; Back, Thomas G
2012-11-12
A versatile new synthesis of indoles was achieved by the conjugate addition of N-formyl-2-haloanilines to acetylenic sulfones, ketones, and esters followed by a copper-catalyzed intramolecular C-arylation. The conjugate addition step was conducted under exceptionally mild conditions at room temperature in basic, aqueous DMF. Surprisingly, the C-arylation was performed most effectively by employing copper(II) acetate as the catalyst in the absence of external ligands, without the need for protection from air or water. An unusual feature of this process, for the case of acetylenic ketones, is the ability of the initial conjugate-addition product to serve as a ligand for the catalyst, which enables it to participate in the catalysis of its further transformation to the final indole product. Mechanistic studies, including EPR experiments, indicated that copper(II) is reduced to the active copper(I) species by the formate ion that is produced by the base-catalyzed hydrolysis of DMF. This process also served to recycle any copper(II) that was produced by the adventitious oxidation of copper(I), thereby preventing deactivation of the catalyst. Several examples of reactions involving acetylenic sulfones attached to a modified Merrifield resin demonstrated the feasibility of solid-phase synthesis of indoles by using this protocol, and tricyclic products were obtained in one pot by employing acetylenic sulfones that contain chloroalkyl substituents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vernon, Leo P.; Cardon, Stephan
1982-01-01
Vesicles prepared with the French press from membranes of cyanelles of Cyanophora paradoxa retain O2 evolution activity with rates up to 500 micromoles 2,6-dichlorophenolindophenol reduced per hour per milligram chlorophyll. This activity is immediately lost when the vesicles are transferred from the sucrose-phosphate-citrate preparation buffer into dilute phosphate buffer. Similar preparations from Phormidium laminosum, a thermophilic cyanobacterium retain activity under such conditions. Photosystem I activities of both cyanobacterial vesicle preparations were determined by direct spectrophotometric measurement of N,N,N′,N′-tetramethyl-p-phenylenediamine photooxidation in the presence of anthraquinone-2-sulfonate. The rates so determined were compared with rates of O2 taken up in the presence of methyl viologen or anthraquinone-2-sulfonate as electron acceptors. The predicted stoichiometry of two was observed for moles of N,N,N′,N′-tetramethyl-p-phenylenediamine oxidized per mole of oxygen taken up. Anthraquinone-2-sulfonate was the better electron acceptor, and maximal rates of 943 micromoles per hour per milligram chlorophyll for O2 uptake were observed for Phormidium laminosum preparations in the presence of superoxide dismutase. For purposes of comparison, spinach chloroplasts were assayed for similar activities. All preparations were readily assayed for photosystem I activity by the direct spectrophotometric method, which has advantages of simplicity and freedom from errors introduced by photoxidation of other substrates by photosystem I when O2 uptake is measured. PMID:16662512
Zhao, Shuyan; Liang, Tiankun; Zhou, Tao; Li, Dongqi; Wang, Bohui; Zhan, Jingjing; Liu, Lifen
2018-06-20
Perfluorooctane sulfonamide (FOSA) is an important perfluorooctane sulfonate (PFOS) precursor used for commercial applications. In order to investigate the transformation and responses of selected antioxidant and degradation enzymes of FOSA in the plants, in vivo exposure of soybean (Glycine max L. Merrill) and pumpkin (Cucurbita maxima L.) were conducted in the solution-plant microcosms. FOSA was readily taken up by soybean and pumpkin roots and translocated to shoots, and metabolized to PFOS, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS). Although morphological and biomass effects were not visible, significant changes in oxidative stress response were observed except for thiobarbituric acid reactive substances (TBARS). Superoxide dismutase (SOD) and peroxidase (POD) activities were significantly increased by 19.2-30.8% and 19.2-20.7% in soybean (8-12 d) respectively, and increased by 39.2-92.8% and 21.1-37.6% in pumpkin (3-12 d) respectively, suggesting an activation of the antioxidant defense system in the plants exposed to FOSA. Glutathione-S-transferase (GST) activities were decreased in soybean (2-12 d) with 9.0-36.1% inhibition and increased in pumpkin (3-12 d) with 22.5-47.3% activation respectively; cytochrome P450 (CYP450) activities were increased markedly in soybean and pumpkin with 13.2-53.6% and 26.7-50.2% activation respectively, giving indirect evidences on the involvement of CYP450 and GST in degradation of FOSA in plants. Copyright © 2018 Elsevier Inc. All rights reserved.
Thompson, Jack; Eaglesham, Geoff; Reungoat, Julien; Poussade, Yvan; Bartkow, Michael; Lawrence, Michael; Mueller, Jochen F
2011-01-01
This paper examines the fate of perfluorinated sulfonates (PFSAs) and carboxylic acids (PFCAs) in two water reclamation plants in Australia. Both facilities take treated water directly from WWTPs and treat it further to produce high quality recycled water. The first plant utilizes adsorption and filtration methods alongside ozonation, whilst the second uses membrane processes and advanced oxidation to produce purified recycled water. At both facilities perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) were the most frequently detected PFCs. Concentrations of PFOS and PFOA in influent (WWTP effluent) ranged up to 3.7 and 16 ng L⁻¹ respectively, and were reduced to 0.7 and 12 ng L⁻¹ in the finished water of the ozonation plant. Throughout this facility, concentrations of most of the detected perfluoroalkyl compounds (PFCs) remained relatively unchanged with each successive treatment step. PFOS was an exception to this, with some removal following coagulation and dissolved air flotation/sand filtration (DAFF). At the second plant, influent concentrations of PFOS and PFOA ranged up to 39 and 29 ng L⁻¹. All PFCs present were removed from the finished water by reverse osmosis (RO) to concentrations below detection and reporting limits (0.4-1.5 ng L⁻¹). At both plants the observed concentrations were in the low parts per trillion range, well below provisional health based drinking water guidelines suggested for PFOS and PFOA. Copyright © 2010 Elsevier Ltd. All rights reserved.
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
Isegawa, Kazuhisa; Nagami, Tetsuo; Jomori, Shinji; Yoshida, Masaaki; Kondoh, Hiroshi
2016-09-14
Changes in the chemical states of sulfonic groups of Nafion in polymer electrolyte fuel cells (PEFCs) under gas-flowing conditions were studied using in situ S-K XANES spectroscopy. The applied potential to the electrodes and the humidity of the cell were changed under flowing H 2 gas in the anode and He gas in the cathode. While the potential shows no significant effect on the S-K XANES spectra, the humidity is found to induce reversible changes in the spectra. Comparison of the spectral changes with simulations based on the density functional theory calculations indicates that the humidity influences the chemical state of the sulfonic group; under wet conditions the sulfonic group is in the form of a sulfonate ion. By drying treatment the sulfonate ion binds to hydrogen and becomes sulfonic acid. Furthermore, a small fraction of the sulfonic acid irreversibly decomposes to atomic sulfur. The peak energy of the atomic sulfur suggests that the generated atomic sulfur is adsorbed on the Pt catalyst surfaces.
Ultrasound-assisted oxidative desulfurization of liquid fuels and its industrial application.
Wu, Zhilin; Ondruschka, Bernd
2010-08-01
Latest environmental regulations require a very deep desulfurization to meet the ultra-low sulfur diesel (ULSD, 15 ppm sulfur) specifications. Due to the disadvantages of hydrotreating technology on the slashing production conditions, costs and safety as well as environmental protection, the ultrasound-assisted oxidative desulfurization (UAOD) as an alternative technology has been developed. UAOD process selectively oxidizes sulfur in common thiophenes in diesel to sulfoxides and sulfones which can be removed via selective adsorption or extractant. SulphCo has successfully used a 5000 barrel/day mobile "Sonocracking" unit to duplicate on a commercial scale its proprietary process that applies ultrasonics at relatively low temperatures and pressures. The UAOD technology estimate capital costs less than half the cost of a new high-pressure hydrotreater. The physical and chemical mechanisms of UAOD process are illustrated, and the effective factors, such as ultrasonic frequency and power, oxidants, catalysts, phase-transfer agent, extractant and adsorbent, on reaction kinetics and product recovery are discussed in this review. Copyright 2009 Elsevier B.V. All rights reserved.
Preparation of dibenzo[e,g]isoindol-1-ones via Scholl-type oxidative cyclization reactions.
van Loon, Amy A; Holton, Maeve K; Downey, Catherine R; White, Taryn M; Rolph, Carly E; Bruening, Stephen R; Li, Guanqun; Delaney, Katherine M; Pelkey, Sarah J; Pelkey, Erin T
2014-09-05
A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki-Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization.
Preparation of Dibenzo[e,g]isoindol-1-ones via Scholl-Type Oxidative Cyclization Reactions
2015-01-01
A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki–Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization. PMID:25138638
NASA Astrophysics Data System (ADS)
Blagojević, S. M.; Pejić, N. D.; Blagojević, S. N.
2017-12-01
The physicochemical properties of initial formulation, that is anionic/amphoteric surfactants mixture SLES/AOS/CAB (sodium lauryl ether sulfate (SLES), α-olefin sulfonates (AOS) and cocamidopropyl betaine (CAB) at ratio 80 : 15 : 5) with nonionic surfactant of amine oxide type (lauramine oxide (AO)) in various concentration (1-5%) were studied. To characterize the surfactants mixture, the critical micelle concentration (CMC), surface tension (γ), foam volume, biodegradability and irritability were determined. This study showed that adding of AO in those mixtures lowered both γ and CMC as well as enhanced SLES/AOS/CAB foaming properties, but did not significantly affect biodegradability and irritability of initial formulation. Moreover, an increase in AO concentration has a meaningful synergistic effect on the initial formulation properties. All those results indicates that a nonionic surfactant of amine oxide type significantly improves the performance of anionic/amphoteric mixed micelle systems, and because of that anionic/amphoteric/nonionic mixture can be used in considerably lower concentrations as a cleaning formulation.
Bicarbonate-induced activation of H₂O₂ for metal-free oxidative desulfurization.
Bokare, Alok D; Choi, Wonyong
2016-03-05
Efficient oxidative desulfurization (ODS) of model oil containing dibenzothiophene (DBT) and aromatic thiophenic derivatives has been achieved at room temperature using hydrogen peroxide activation by inorganic bicarbonate (HCO3(-)). Using in-situ formation of peroxymonocarbonate as oxidant, the transformation of main model substrate DBT to corresponding DBT-sulfone was easily accomplished in biphasic reaction conditions. In the presence of water-acetonitrile polar phase, increasing the water content upto 50% decreased the extraction capacity more than 3 times, but ∼ 90% DBT oxidation was still achieved. The oxidizing capacity of bicarbonate catalyst was maintained during repeated ODS cycles, but DBT removal efficiency was critically dependent on the extraction capacity of the polar phase. Under heterogeneous reaction conditions, bicarbonate-modified ion-exchange resin achieved similar ODS activity compared to the homogeneous catalytic system. Additionally, the efficient formation of peroxymonocarbonate using gaseous CO2 precursor in alkaline conditions was also utilized for DBT oxidation. The present study proposes the NaHCO3/H2O2 catalytic system as an efficient and cheap metal-free alternative for the oxidative removal of aromatic sulfur compounds from fuel oil. Copyright © 2015 Elsevier B.V. All rights reserved.
Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes
NASA Astrophysics Data System (ADS)
Zhu, Liang; Yu, Xuedi; Hickner, Michael A.
2018-01-01
In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.
NASA Astrophysics Data System (ADS)
Wink, David A.; Desrosiers, Marc F.
The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant ( .Br -2). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive intermediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide radical. Unexpectedly, addition of DBNBS to a solution containing dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented.
40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...
40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... derivatives, sulfonated, po-tas-sium salts. 721.1225 Section 721.1225 Protection of Environment ENVIRONMENTAL... derivatives, sulfonated, po-tas-sium salts. (a) Chemical substances and significant new uses subject to..., sulfonated, potassium salts (PMN P-89-711) is subject to reporting under this section for the significant new...
40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of a substituted sulfonated aryl... New Uses for Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo... substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094) is...
40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... derivatives, sulfonated, po-tas-sium salts. 721.1225 Section 721.1225 Protection of Environment ENVIRONMENTAL... derivatives, sulfonated, po-tas-sium salts. (a) Chemical substances and significant new uses subject to..., sulfonated, potassium salts (PMN P-89-711) is subject to reporting under this section for the significant new...
40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of a substituted sulfonated aryl... New Uses for Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo... substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094) is...
40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...
40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...
40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...
Mendes, Simone Ferreira; dos Santos, Osvaldo; Barbosa, Aneli M; Vasconcelos, Ana Flora D; Aranda-Selverio, Gabriel; Monteiro, Nilson K; Dekker, Robert F H; Sá Pereira, Mariana; Tovar, Ana Maria F; Mourão, Paulo A de Souza; da Silva, Maria de Lourdes Corradi
2009-10-01
Botryosphaeran (EPS(FRU)), an exopolysaccharide of the beta-(1-->3,1-->6)-d-glucan type with 31% branching at C-6, is produced by the fungus Botryosphaeria rhodina MAMB-05 when grown on fructose as carbon source. Botryosphaeran was derivatized by sulfonation to induce anticoagulant activity. The effectiveness of the sulfonation reaction by chlorosulfonic acid in pyridine was monitored by the degree of substitution and FT-IR analysis of the sulfonated EPS(FRU) (once sulfonated, EPS(FRUSULF); and re-sulfonated, EPS(FRURESULF)). Activated partial thromboplastin time (APTT) and thrombin time (TT) tests of EPS(FRURESULF) indicated significant in vitro anticoagulant activity that was dose-dependent. EPS(FRU) did not inhibit any of the coagulation tests.
Francàs, Laia; Richmond, Craig; Garrido-Barros, Pablo; Planas, Nora; Roeser, Stephan; Benet-Buchholz, Jordi; Escriche, Lluís; Sala, Xavier; Llobet, Antoni
2016-04-04
Three distinct functionalisation strategies have been applied to the in,in-[{Ru(II)(trpy)}2(μ-bpp)(H2O)2](3+) (trpy=2,2':6',2''-terpyridine, bpp=bis(pyridine)pyrazolate) water-oxidation catalyst framework to form new derivatives that can adsorb onto titania substrates. Modifications included the addition of sulfonate, carboxylate, and phosphonate anchoring groups to the terpyridine and bis(pyridyl)pyrazolate ligands. The complexes were characterised in solution by using 1D NMR, 2D NMR, and UV/Vis spectroscopic analysis and electrochemical techniques. The complexes were then anchored on TiO2-coated fluorinated tin oxide (FTO) films, and the reactivity of these new materials as water-oxidation catalysts was tested electrochemically through controlled-potential electrolysis (CPE) with oxygen evolution detected by headspace analysis with a Clark electrode. The results obtained highlight the importance of the catalyst orientation with respect to the titania surface in regard to its capacity to catalytically oxidize water to dioxygen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sodium polystyrene sulfonate is used to treat hyperkalemia (increased amounts of potassium in the body). Sodium polystyrene sulfonate is in a class of medications called potassium-removing agents. It works by ...
NASA Astrophysics Data System (ADS)
Kahraman, R.; Kahn, K. A.; Ali, S. A.; Hamid, S. H.; Sahin, A. Z.
1998-12-01
Thermal, morphological, and mechanical properties of composites of a liquid crystalline copolymer (LCP) poly(terephthaloyl chloride)-co-(p,p’-dihydroxydiphenyl sulfone) with polystyrene (PS) and sulfonated polystyrene (SPS) are presented and discussed. Sulfonation of polystyrene was expected to improve the interfacial adhesion by introducing hydrogen bonding in the LCP/PS system. The degree of sulfonation was 11 %. The incompatibility (lack of proper interfacial adhesion) of the LCP/PS system resulted in sharp decrease in the composite tensile strength with LCP addition. The performance of the system did not change when processed at a higher temperature (270 °C instead of 225 °C). While a composite plate of 25% LCP/PS could not be fabricated, it was possible for LCP/SPS (processed at 215 °C), indicating some improvement in interfacial bonding by sulfonation. Sulfonation of PS resulted in fracture with some degree of plastic deformation for pure SPS matrix and also the LCP/SPS system with the lowest LCP content (1 wt%), whereas plastic deformation was not observed for PS used as received. The strength of the LCP/SPS system also decreased with increase in LCP content, indicating that 11% sulfonation is not sufficient to introduce significant compatibility, but it was not as dramatic as that for LCP/PS. The performance of the LCP/SPS system was not affected significantly by heat treatment at the process temperature.
Plasma polymer-functionalized silica particles for heavy metals removal.
Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter
2015-02-25
Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.
Krueger, Martin C.; Hofmann, Ulrike; Moeder, Monika; Schlosser, Dietmar
2015-01-01
Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS). Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn) within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ), which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants. PMID:26147966
Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s
NASA Astrophysics Data System (ADS)
Zhang, Hanyu; Stanis, Ronald J.; Song, Yang; Hu, Wei; Cornelius, Chris J.; Shi, Qiang; Liu, Baijun; Guiver, Michael D.
2017-11-01
Meta- and para-linked homopolymers bearing 3-methylphenyl (Me) pendent groups were postsulfonated to create sulfonated poly(ether ether ketone ketone) (SPEEKK) backbone isomers, which are referred to as Me-p-SPEEKK and Me-m-SPEEKK. Their thermal and oxidative stability, mechanical properties, dimensional stability, methanol permeability, and proton conductivity are characterized. Me-p-SPEEKK and Me-m-SPEEKK proton conductivities at 100 °C are 116 and 173 mS cm-1, respectively. Their methanol permeabilities are 3.3-3.9 × 10-7 cm2 s-1, and dimensional swelling at 100 °C is 16.4-17.5%. Me-p-SPEEKK and Me-m-SPEEKK were fabricated into membrane electrode assemblies (MEAs), and electrochemical properties were evaluated within a direct methanol fuel cell (DMFC) and proton-exchange membrane fuel cell (PEMFC). When O2 is used as the oxidant at 80 °C and 100% RH, the maximum power density of Me-m-SPEEKK reaches 657 mW cm-2, which is higher than those of Nafion 115 (552 mW cm-2). DMFC performance is 85 mW cm-2 at 80 °C with 2.0 M methanol using Me-p-SPEEKK due to its low MeOH crossover. In general, these electrochemical results are comparable to Nafion. These ionomer properties, combined with a potentially less expensive and scalable polymer manufacturing process, may broaden their potential for many practical applications.
Feng, Yiyu; Qin, Mengmeng; Guo, Haiqiang; Yoshino, Katsumi; Feng, Wei
2013-11-13
Optically actuated shape recovery materials receive much interest because of their great ability to control the creation of mechanical motion remotely and precisely. An infrared (IR) triggered actuator based on shape recovery was fabricated using polyurethane (TPU) incorporated by sulfonated reduced graphene oxide (SRGO)/sulfonated carbon nanotube (SCNT) hybrid nanofillers. Interconnected SRGO/SCNT hybrid nanofillers at a low weight loading of 1% dispersed in TPU showed good IR absorption and improved the crystallization of soft segments for a large shape deformation. The output force, energy density and recovery time of IR-triggered actuators were dependent on weight ratios of SRGO to SCNT (SRGO:SCNT). TPU nanocomposites filled by a hybrid nanofiller with SRGO:SCNT of 3:1 showed the maximum IR-actuated stress recovery of lifting a 107.6 g weight up 4.7 cm in 18 s. The stress recovery delivered a high energy density of 0.63 J/g and shape recovery force up to 1.2 MPa due to high thermal conductivity (1.473 W/mK) and Young's modulus of 23.4 MPa. Results indicate that a trade-off between the stiffness and efficient heat transfer controlled by synergistic effect between SRGO and SCNT is critical for high mechanical power output of IR-triggered actuators. IR-actuated shape recovery of SRGO/SCNT/TPU nanocomposites combining high energy density and output forces can be further developed for advanced optomechanical systems.
NASA Astrophysics Data System (ADS)
Rudra, Ruchira; Kumar, Vikash; Pramanik, Nilkamal; Kundu, Patit Paban
2017-02-01
Different membranes with varied molar concentrations of graphite oxide (GO), 'in situ' polymerized sulfonated polystyrene (SS) and glutaraldehyde (GA) cross linked polyvinyl alcohol (PVA), have been analyzed as an effective and low cost nanocomposite barrier in single chambered microbial fuel cells (MFCs). The synthesized composite membranes, namely GO0.2, GO0.4 and GO0.6 exhibited comparatively better results with reduced water uptake (WU) and swelling ratios (SR) over the native PVA. The variation in properties is illustrated with membrane analyses, where GO0.4 showed an increased proton conductivity (PC) and ion exchange capacity (IEC) of 0.128 S cm-1 and 0.33 meq g-1 amongst all of the used membranes. In comparison, reduced oxygen diffusivity with lower water uptake showed a two-fold decrease in GO0.4 over pure PVA membrane (∼2.09 × 10-4 cm s-1). A maximum power density of 193.6 mW m-2 (773.33 mW m-3) with a current density of 803.33 mA m-2 were observed with GO0.4 fitted MFC, where ∼81.89% of chemical oxygen demand (COD) was removed using mixed firmicutes, as biocatalyst, in 25 days operation. In effect, the efficacy of GO incorporated crosslinked PVA and SS nanocomposite membrane has been evaluated as a polymer electrolyte membrane for harnessing bio-energy from single chambered MFCs.
Frank, Patrick; George, Serena DeBeer; Anxolabéhère-Mallart, Elodie; Hedman, Britt; Hodgson, Keith O
2006-11-27
Sulfur K-edge X-ray absorption spectroscopy (XAS) was used to characterize the approximately 0.1% sulfur found both in native reticulated vitreous carbon (RVC) foam and in RVC oxidatively modified using 0.2 M KMnO4 in 2 M H2SO4. Sulfur valences and functional groups were assessed using K-edge XAS spectral curve-fitting and employing explicit sulfur compounds as models. For native RVC, these were episulfide (approximately 3%), thianthrene (approximately 9%), disulfide (approximately 10%), sulfenate ester (approximately 12%), benzothiophene (approximately 24%), N,N'-thiobisphthalimide (approximately 30%), alkyl sulfonate (approximately 1.2%), alkyl sulfate monoester (approximately 6%), and sulfate dianion (approximately 6%). Permanganate oxidation of RVC diminished sulfenic sulfur to approximately 9%, thianthrenic sulfur to approximately 7%, and sulfate dianion to approximately 1% but increased sulfate monoester to approximately 12%, and newly produced sulfone (approximately 2%) and sulfate diester (approximately 5%). A simple thermodynamic model was derived that allows proportionate functional group comparisons despite differing (approximately +/-15%) total sulfur contents between RVC batches. The limits of accuracy in the XAS curve-fitting analysis are discussed in terms of microenvironments and extended structures in RVC carbon that cannot be exactly modeled by small molecules. Sulfate esters cover approximately 0.15% of the RVC surface, increasing to approximately 0.51% following permanganate/sulfuric acid treatment. The detection of episulfide directly corroborates a proposed mechanism for the migration of elemental sulfur through carbon.
Sulfonated polystyrene and its characterization as a material of electrolyte polymer
NASA Astrophysics Data System (ADS)
Ngadiwiyana; Ismiyarto; Gunawan; Purbowatiningrum, RS; Prasetya, N. B. A.; Kusworo, T. D.; Susanto, H.
2018-05-01
The research of polystyrene modification from Styrofoam waste and its application as a main material of electrolyte polymer had been done. The sulfonation reaction of polystyrene was conducted using sulfuric acid as sufonation agent and the reactions were done with variation times of 1, 2, 3, 4 and 5 h. The characterization of the sulfonated products covered analysis of functional groups using FT-IR spectrophotometer, sulfonation degree, measurements of ion exchange capacity, conductivity and swelling degree. The sulfonated polystyrene product was white solid as confirmed by the spectra of FT-IR with the presence of wide band absorption of O=S=O at the wavenumber of 1080-1411 cm-1 as indication. The research showed the best sulfonated polystyrene prepared in 4 h as a material of electrolyte polymer, since it had the highest degree of sulfonation, ion exchange capacity, conductivity and swelling degree with the values were 28.52 %, 1.550 meg/g, 15,924.10-6 Ω-1cm-1 and 332.4 %, respectively.
Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Lufrano, F.; Baglio, V.; Staiti, P.; Arico', A. S.; Antonucci, V.
This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30-40 °C) and high temperatures (100-120 °C). DMFC power densities were about 140 mW cm -2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm -2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm -2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.
Magnetic Field Effect in Conjugated Molecules-Based Devices
2017-10-23
triplet annihilation process (TTA) process in charge- balanced polymer light emitting diode (PLED) containing a super yellow poly-(phenylene vinylene...current density. Our results demonstrate a clear correlation between TTA process and current density as well as temperature in charge- balanced SY-PPV...dimethyl sulfoxide (DMSO) (7:3, v/v) at 60 °C for 12 h inside the nitrogen -filled glove box. The perovskite films were spin-cast by a consecutive two-step
Synthesis and Modification of Carboxylated Polyphenylenes and Phenylated Polyimides
1976-03-01
corresponding grignard reagent , which was allowed to react with DMF19 to provide the benzalde- hyde 50. This aldehyde, however, failed to undergo a benzoin...bromophenylethynyl )-trimethyl- silane in 100 ml THF was refluxed 2 hr with 1.6 g (0.066 g atm) of magnesium to form the Grignard reagent . To the...toluene (Table 2). The crown other reagent , however, could not be completely removed from the resulting ionomer. Treatment of the carboxylated
Resin catalysts and method of preparation
Smith, Jr., Lawrence A.
1986-01-01
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Synthesis and Characterization of Polymers for Fuel Cells Application
NASA Technical Reports Server (NTRS)
Tytko, Stephen F.
2003-01-01
The goal of this summer research is to prepare Polymer Exchange Membranes (PEM s) for fuel cell application. Several high temperature polymers such as polybenzimidazoles and polyether ketones were known to possess good high temperature stability and had been investigated by post-sulfonation to yield sulfonated polymers. The research project will involve two approaches: 1. Synthesis of polybenzimidazoles and then react with alkyl sultonse to attach an aliphatic sulfonic groups. 2. Synthesis of monomers containing sulfonic acid units either on a aromatic ring or on an aliphatic chain and then polymerize the monomers to form high molecular weight sulfonate polymers.
Resin catalysts and method of preparation
Smith, L.A. Jr.
1986-12-16
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
NASA Astrophysics Data System (ADS)
Yu, Hong-Yu; Dong, Rong-Chun; Chen, Ji-Yao; Cai, Huai-Xin
1993-03-01
The mechanism of photodynamic therapy (PDT) with sulfonated aluminum phthalocyanine (AlSPC) studied with the human hepatocellular carcinoma cell line in culture is reported herein. Photofrin II (PII) was chosen as the control photosensitizer of AlSPC. Deuterium oxide (D2O), an enhancer of singlet oxygen (1O2); 1,3-diphenylisobenzofuran (DPBF), a quencher of 1O2: glycerol, a quencher of OH radical (OH(DOT)); superoxide dismutase (SOD), a quencher of O2- radical (O2-(DOT)); diethyldithiocarbamate (DDC), an inhibitor of SOD and glutathione peroxidase; were introduced into both the processes of photodynamic inactivation of human liver cancer cells in culture with AlSPC (AlSPC-PDT) and with PII (PII-PDT). The results suggest that: 1O2 is dominantly involved in both PII-PDT and AlSPC-PDT; O2-(DOT) is involved in AlSPC-PDT in a lower degree than 1O2, while almost not involved in PII-PDT; OH(DOT) is involved in PII-PDT in a lower degree than 1O2, while almost not involved in AlSPC-PDT.
Eskandari, Habibollah; Shariati, Mohammad Reza
2011-10-17
A new method was proposed for the determination of ammonium based on the preconcentration with dodecylbenzene sulfonate modified magnetite nanoparticles. Ammonium was oxidized to nitrite by hypobromite and then the nitrite produced was determined spectrophotometrically, using sulfabenzamide and N-(1-naphthyl) ethylenediamine after solid phase extraction. The azo dye produced was desorbed by an appropriate small volume of sodium hydroxide prior to the absorbance measurement. The linear calibration graphs were obtained in the concentration range of 0.03-6.00 ng mL(-1) ammonium. The relative standard deviation and recovery percents were 1.0 and 99.0, respectively, for 1.0 ng mL(-1) ammonium, and the limit of detection was 3.2 ng L(-1) ammonium. The interfering effects of a large number of diverse ions on the determination of ammonium were studied. The method was applied to the determination of ammonium in various types of water resources. The results revealed a high efficiency for the recommended ammonium determination method. Copyright © 2011 Elsevier B.V. All rights reserved.
Gu, Di; Gao, Simeng; Jiang, TingTing; Wang, Baohui
2017-03-15
To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO 2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process.
Gu, Di; Gao, Simeng; Jiang, TingTing; Wang, Baohui
2017-01-01
To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process. PMID:28294180
NASA Astrophysics Data System (ADS)
Gu, Di; Gao, Simeng; Jiang, Tingting; Wang, Baohui
2017-03-01
To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process.
Choi, Seeyoung; Love, Paul E
2018-01-05
Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S - ) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H 2 O 2 is detected with antibodies specific for the sulfonic acid (SO 3 H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S - ; active) or irreversibly oxidized (SO 3 H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.
Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system.
Vidyadhar, A; Hanumantha Rao, K
2007-02-15
The adsorption mechanism of mixed cationic alkyl diamine and anionic sulfonate/oleate collectors at acidic pH values was investigated on microcline and quartz minerals through Hallimond flotation, electrokinetic and diffuse reflectance FTIR studies. In the presence of anionic collectors, neither of the minerals responded to flotation but the diamine flotation of the minerals was observed to be pH and concentration dependent. The presence of sulfonate enhanced the diamine flotation of the minerals by its co-adsorption. The difference in surface charge between the minerals at pH 2 was found to be the basis for preferential feldspar flotation from quartz in mixed diamine/sulfonate collectors. The infrared spectra revealed no adsorption of sulfonate collector when used alone but displayed its co-adsorption as diamine-sulfonate complex when used with diamine. The presence of sulfonate increased the diamine adsorption due to a decrease in the electrostatic head-head repulsion between the adjacent surface ammonium ions and thereby increasing the lateral tail-tail hydrophobic bonds. The mole ratio of diamine/sulfonate was found to be an important factor in the orientation of alkyl chains and thus the flotation response of minerals. The increase in sulfonate concentration beyond diamine concentration leads to the formation of soluble 1:2 diamine-sulfonate complex or precipitate and the adsorption of these species decreased the flotation since the alkyl chains are in chaotical orientation with a conceivable number of head groups directing towards the solution phase.
Processes for preparing carbon fibers using gaseous sulfur trioxide
Barton, Bryan E.; Lysenko, Zenon; Bernius, Mark T.; Hukkanen, Eric J.
2016-01-05
Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C.
Smith, Jr., Lawrence A.
1985-01-01
Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Smith, L.A. Jr.
1985-11-05
Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isoolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Evidence for abiotic sulfurization of marine dissolved organic matter in sulfidic environments
NASA Astrophysics Data System (ADS)
Pohlabeln, A. M.; Niggemann, J.; Dittmar, T.
2016-02-01
Sedimentary organic matter abiotically sulfurizes in sulfidic marine environments. Here we hypothesize that sulfurization also affects dissolved organic matter (DOM), and that sulfidic marine environments are sources of dissolved organic sulfur (DOS) to the ocean. To test these hypotheses we studied solid-phase extractable (SPE) DOS in the Black Sea at various water column depths (oxic and anoxic) and in sediment porewaters from the German Wadden Sea. The concentration and molecular composition of SPE-DOS from these sites and from the oxic water columns of the North Sea (Germany) and of the North Pacific were compared. In support of our hypotheses, SPE-DOS concentrations were elevated in sulfidic waters compared to oxic waters. For a detailed molecular characterization of SPE-DOS, selective wet-chemical alteration experiments targeting different sulfur-containing functional groups were applied prior to Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). These experiments included harsh hydrolysis, selective derivatization of thiols, oxidation, and deoxygenation to test for thioesters, sulfonic acid esters, alkylsulfates, thiols, non-aromatic thioethers, and sulfoxides. Additionally, collision-induced fragmentation experiments were applied to test for sulfonic acids. The tests revealed that the sulfonic acid group was the main structural feature in SPE-DOS, independent of the environmental conditions of the sampling site. Only in Wadden Sea anoxic porewater also non-aromatic thioethers were found which are presumably not stable in oxic waters. The findings from our field studies were confirmed in laboratory experiments, where we abiotically sulfurized marine and algal-derived DOM under conditions similar to that in anoxic marine sediments.
Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.
Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V
2014-03-15
The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.
Walker, R.J.
1988-06-16
A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.
Kissane, Marie; Lynch, Denis; Chopra, Jay; Lawrence, Simon E; Maguire, Anita R
2010-12-21
The Diels-Alder cycloadditions of cyclopentadiene and 2,3-dimethyl-1,3-butadiene to a range of 2-thio-3-chloroacrylamides under thermal, catalytic and microwave conditions is described. The influence of reaction conditions on the outcome of the cycloadditions, in particular the stereoselectivity and reaction efficiency, is discussed. While the cycloadditions have been attempted at the sulfide, sulfoxide and sulfone levels of oxidation, use of the sulfoxide derivatives is clearly beneficial for stereoselective construction of Diels-Alder cycloadducts.
Polythiophene nanocomposites as high performance electrode material for supercapacitor application
NASA Astrophysics Data System (ADS)
Vijeth, H.; Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Devendrappa, H.
2018-04-01
A polythiophene-aluminium oxide nanocomposite is prepared by in situ chemical polymerisation in presence of anionic surfactant camphor sulfonic acid (CSA). The characterisation of nano composite was done by X-ray Diffraction (XRD), surface morphology was studied using Atomic Force Microscopy (AFM). The electrochemical performance is evaluated using cyclic voltammetry in 1M H2SO4. As an electroactive material, it exhibits high specific capacitance of 654.5 and 757 F/g for PTH and PTHA nanocomposites at scan rate of 30mV s-1 respectively.
Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata
2014-09-30
A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.
NASA Astrophysics Data System (ADS)
Liu, Yangqing; Wang, Kai; Hou, Wei; Shan, Wanjian; Li, Jing; Zhou, Yu; Wang, Jun
2018-01-01
Multi-functional mesoporous poly(ionic liquid) (MPIL) containing pyridine-based ionic liquid (IL) moieties and adjacent double sbnd COOH groups was synthesized through the free radical copolymerization of IL monomer N-propane sulfonate-4-vinylpyridine, maleic anhydride and divinylbenzene. Palladium(II) species were anchored on this MPIL support, affording the first efficient heterogeneous catalyst for the oxidative coupling of benzene to biphenyl under atmospheric oxygen at low temperature. The biphenyl yield of 15.0% (selectivity: 98.5%, turnover number: 62) was even higher than the one over the homogeneous counterpart palladium acetate. The catalyst can be facilely separated and reused. The IL moiety in the polymeric framework endowed the formation of immobilized palladium(II) species with high electrophilicity, which responds to the high performance.
Graphene interfaced perovskite solar cells: Role of graphene flake size
NASA Astrophysics Data System (ADS)
Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu
2018-04-01
Graphene interfaced inverted planar heterojunction perovskite solar cells are fabricated by facile solution method and studied its potential as hole conducting layer. Reduced graphene oxide (rGO) with small and large flake size and Polyethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) are utilized as hole conducting layers in different devices. For the solar cell employing PEDOT:PSS as hole conducting layer, 3.8 % photoconversion efficiency is achieved. In case of solar cells fabricated with rGO as hole conducting layer, the efficiency of the device is strongly dependent on flake size. With all other fabrication conditions kept constant, the efficiency of graphene-interfaced solar cell improves by a factor of 6, by changing the flake size of graphene oxide. We attribute this effect to uniform coverage of graphene layer and improved electrical percolation network.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2005-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated pi-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of sulfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
Díez-Pascual, Ana M; Naffakh, Mohammed
2013-07-26
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS₂) lubricant nanoparticles were used to manufacture PPS/IF-WS₂/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS₂ loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS₂ improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (T g ). IF-WS₂ contents higher than 0.5 wt % increased T g and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS₂ are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.
Díez-Pascual, Ana M.; Naffakh, Mohammed
2013-01-01
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites. PMID:28811429
Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries
Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; ...
2015-10-23
Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less
2018-01-01
Transition-metal-catalyzed chlorosulfonylation of 5-ethynylpyrimidine nucleosides provided (E)-5-(β-chlorovinyl)sulfones A, which undergo nucleophilic substitution with amines or thiols affording B. The treatment of vinyl sulfones A with ammonia followed by acid-catalyzed hydrolysis of the intermediary β-sulfonylvinylamines gave 5-(β-keto)sulfones C. The latter reacts with electrophiles, yielding α-carbon-alkylated or -sulfanylated analogues D. The 5′-triphosphates of A and C were incorporated into double-stranded DNA, using open and one-nucleotide gap substrates, by human or Escherichia coli DNA-polymerase-catalyzed reactions. PMID:29732453
Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood.
Campelo, Clayton S; Chevallier, Pascale; Vaz, Juliana M; Vieira, Rodrigo S; Mantovani, Diego
2017-03-01
Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material. Copyright © 2016. Published by Elsevier B.V.
Balakrishnan, Gurusamy; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K
2018-05-17
Methionine oxidation is a major degradation pathway in therapeutic proteins which can impact the structure and function of proteins as well as risk to drug product quality. Detecting Met oxidation in proteins by peptide mapping followed by liquid chromatography with mass spectrometry (LC-MS) is the industry standard but is also labor intensive and susceptible to artifacts. In this work, vibrational difference spectroscopy in combination with 18 O isotopic shift enabled us to demonstrate the application of Raman and FTIR techniques for the detection and quantification of Met oxidation in various therapeutic proteins, including mAbs, fusion proteins, and antibody drug conjugate. Vibrational markers of Met oxidation products, such as sulfoxide and sulfone, corresponding to S═O and C-S═O stretching frequencies were unequivocally identified based 18 O isotoptic shifts. The intensity of the isolated νC-S Raman band at 702 cm -1 was successfully applied to quantify the average Met oxidation level in multiple proteins. These results are further corroborated by oxidation levels measured by tryptic peptide mapping, and thus the confirmed Met oxidation levels derived from Raman and mass spectrometry are indeed consistent with each other. Thus, we demonstrate the broader application of vibrational spectroscopy to detect the subtle spectral changes associated with various chemical or physical degradation of proteins, including Met oxidation as well as higher order structural changes.
MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT
MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT.
C. Lau and J.M. Rogers, Reproductive Toxicology Division, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA
Perfluorooctane sulfonate (PFOS), an environmentally persistent compound used ...
Dong, Jing; Hu, Jufang; Chi, Yingnan; Lin, Zhengguo; Zou, Bo; Yang, Song; Hill, Craig L; Hu, Changwen
2017-04-10
A novel double-anion complex, H 13 [(CH 3 ) 4 N] 12 [PNb 12 O 40 (V V O) 2 ⋅(V IV 4 O 12 ) 2 ]⋅22 H 2 O (1), based on bicapped polyoxoniobate and tetranuclear polyoxovanadate was synthesized, characterized by routine techniques and used in the catalytic decontamination of chemical warfare agents. Under mild conditions, 1 catalyzes both hydrolysis of the nerve agent simulant, diethyl cyanophosphonate (DECP) and selective oxidation of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). In the oxidative decontamination system 100 % CEES was transformed selectively to nontoxic 2-chloroethyl ethyl sulfoxide and vinyl ethyl sulfoxide using nearly stoichiometric 3 % aqueous H 2 O 2 with a turnover frequency (TOF) of 16 000 h -1 . Importantly, the catalytic activity is maintained even after ten recycles and CEES is completely decontaminated in 3 mins without formation of the highly toxic sulfone by-product. A three-step oxidative mechanism is proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-step sulfonation process for the conversion of polymer fibers to carbon fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.
Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.
Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent
Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon
2015-12-29
Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.
Adas, Gokhan; Arikan, Soykan; Kemik, Ozgur; Oner, Ali; Sahip, Nilgun; Karatepe, Oguzhan
2009-01-01
AIM: To establish which scolicidal agents are superior and more suitable for regular use. METHODS: Echinococcus granulosus protoscoleces were obtained from 25 patients with liver hydatid cysts. Various concentrations of albendazole sulfone, albendazole sulfoxide, and albendazole sulfone and albendazole sulfoxide mixed together in concentrations of 50 μg/mL, and H2O2 in a concentration of 4%, NaCl 20%, and 1.5% cetrimide-0.15% chlorhexidine (10% Savlon-Turkey) were used to determine the scolicidal effects. Albendazole (ABZ) derivatives and other scolicidal agents were applied to a minimum of 100 scoleces for 5 and 10 min. The degree of viability was calculated according to the number of living scolices per field from a total of 100 scolices observed under the microscope. RESULTS: After 5 min, ABZ sulfone was 97.3% effective, ABZ sulfoxide was 98.4% effective, and the combined solution was 98.6% effective. When sulfone, sulfoxide and the combined solutions were compared, the combined solution seemed more effective than sulfone. However, there was no difference when the combined solution was compared with sulfoxide. After 10 min, hypertonic salt water, sulfone, sulfoxide, and the combined solution compared to other solutions looked more effective and this was statistically significant on an advanced level. When sulfone, sulfoxide, and the combined solutions were compared with each other, the combined solution appeared more effective than sulfone. When the combined solution was compared with sulfoxide, there was no difference. CONCLUSION: Despite being active, ABZ metabolites did not provide a marked advantage over 20% hypertonic saline. According to these results, we think creating a newly improved and more active preparation is necessary for hydatid cyst treatment. PMID:19115476
Gao, Peng; Ng, Kokseng; Sun, Darren Delai
2013-11-15
Synthesis of efficient visible-light-driven photocatalyst is urgent but challenging for environmental remediation. In this work, for the first time, the hierarchical plasmonic sulfonated graphene oxide-ZnO-Ag (SGO-ZnO-Ag) composites were prepared through nanocrystal-seed-directed hydrothermal method combining with polyol-reduction process. The results indicated that SGO-ZnO-Ag exhibited much faster rate in photodegradation of Rhodamine B (RhB) and disinfection of Escherichia coli (E. coli), than ZnO, SGO-ZnO and ZnO-Ag. SGO-ZnO-Ag totally degraded RhB dye and kill 99% of E. coli within 20 min under visible light irradiation. The outstanding performances of SGO-ZnO-Ag were attributed to the synergetic merits of SGO sheets, ZnO nanorod arrays and Ag nanoparticles. Firstly, the light absorption ability of SGO-ZnO-Ag composite in the visible region was enhanced due to the surface plasmon resonance of Ag. In addition, the hierarchical structure of SGO-ZnO-Ag composite improved the incident light scattering and reflection. Furthermore, SGO sheets facilitated charge transfer and reduce electron-hole recombination rate. Finally, the tentative mechanism was proposed and verified by the photoluminescence (PL) measurement as well as the theoretical finite-difference time-domain (FDTD) simulation. In view of above, this work paves the way for preparation of multi-component plasmonic composites and highlights the potential applications of SGO-ZnO-Ag in photocatalytic wastewater treatment field. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki
2018-03-01
We synthesized graphene oxide-sulfonated polyether ether ketone (GO-SPEEK) composite membrane and compare its proton conductivity with that of Nafion® 117 and SPEEK membranes. From experimental measurements, we found that GO-SPEEK has better proton conductivity (σGO-SPEEK = 3.8 × 10-2 S cm-1) when compared to Nafion® 117 (σNafion = 2.4 × 10-2 S cm-1) and SPEEK (σSPEEK = 2.9 × 10-3 S cm-1). From density functional theory (DFT-) based total energy calculations, we found that GO-SPEEK has the shortest proton diffusion distance among the three membranes, yielding the highest tunneling probability. Hence, GO-SPEEK exhibits the highest conductivity. The short proton diffusion distance in GO-SPEEK, as compared to Nafion® 117 and SPEEK, can be attributed to the presence of oxygenated functional groups of GO in the polymer matrix. This also explains why GO-SPEEK requires the lowest hydration level to reach its maximum conductivity. Moreover, we have successfully shown that the proton conductivity σ is related to the tunneling probability T, i.e., σ = σ‧ exp(-1/T). We conclude that the proton diffusion distance and hydration level are the two most significant factors that determine the membrane’s good conductivity. The distance between ionic sites of the membrane should be small to obtain good conductivity. With this short distance, lower hydration level is required. Thus, a membrane with short separation between the ionic sites can have enhanced conductivity, even at low hydration conditions.
Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro.
Wielsøe, Maria; Long, Manhai; Ghisari, Mandana; Bonefeld-Jørgensen, Eva C
2015-06-01
Perfluoroalkylated substances (PFAS) have been widely used since 1950s and humans are exposed through food, drinking water, consumer products, dust, etc. The long-chained PFAS are persistent in the environment and accumulate in wildlife and humans. They are suspected carcinogens and a potential mode of action is through generation of oxidative stress. Seven long-chained PFAS found in human serum were investigated for the potential to generate reactive oxygen species (ROS), induce DNA damage and disturb the total antioxidant capacity (TAC). The tested PFAS were perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluoroctanoic acid (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA). Using the human hepatoma cell line (HepG2) and an exposure time of 24h we found that all three endpoints were affected by one or more of the compounds. PFHxS, PFOA, PFOS and PFNA showed a dose dependent increase in DNA damage in the concentration range from 2×10(-7) to 2×10(-5)M determined by the comet assay. Except for PFDoA, all the other PFAS increased ROS generation significantly. For PFHxS and PFUnA the observed ROS increases were dose-dependent. Cells exposed to PFOA were found to have a significant lower TAC compared with the solvent control, whereas a non-significant trend in TAC decrease was observed for PFOS and PFDoA and an increase tendency for PFHxS, PFNA and PFUnA. Our results indicate a possible genotoxic and cytotoxic potential of the PFAS in human liver cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Abegg, Maxwel Adriano; Alabarse, Paulo Vinícius Gil; Schüller, Artur Krumberg; Benfato, Mara Silveira
2012-10-01
The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. To better characterize the oxidative stress response (OSR) of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB)-glutathione disulfide (GSSG) reductase reconversion method; the total antioxidant capacity (TAC) was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic) acid radical cation (ABTS*+). Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM). Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.
Formation and Fate of Bacterial Sulfonates
1989-01-05
sulfonates under phototrophic, anaerobic conditions’ Three cyanobacteria--a strain each of Synechococcus, Anabena, and Nostoc --have been examined for...their ability to utilize the sulfonate taurine as sole source of S for their oxygenic phototrophic growth; only Anabena and Nostoc were able to do so, and
21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.824 Sodium mono- and dimethyl naphthalene sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in...
Preparation of Proton Exchange Membranes and Lithium Batteries from Melamine-containing Ormosils
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Kinder, James D.; Meador, Mary Ann; Waldecker, James; Bennett, William R.
2004-01-01
Our laboratory has recently reported a series of rodcoil polymers for lithium batteries that display dimensionally stable films with good ionic conductivity. The rod segments consist of rigid linear and branched polyimides and the coil segments are polyethylene oxides (PEO). It has been proposed that good mechanical and transport properties are due to phase separation between the rod and coil segments. It was also observed that increased branching and molecular weight lead to increased conductivity. The following study was undertaken to assess the effects of phase separation in polyalkylene oxides connected by melamine linkages. Melamine was chosen as the linking unit because it provides a branching site, cation binding sites to help ionic transport between polymer chains, and the opportunity for self assembly through hydrogen bonding. Polymers were made by the reaction of cyanuric chloride with a series of amine-terminated alkylene oxides. A linear polymer was first made, followed by reaction of the third site on cyanuric chloride with varying ratios of monofunctional Jeffamine and (3-aminopropyl)triethoxysilane. The lithium trifluoromethane sulfonamide-doped polymers are then crosslinked through a sol-gel process to form free-standing films. Initial results have shown mechanically strong films with lithium conductivities on the order of 2 x 10(exp -5) S/cm at ambient temperature. In a separate study, organically modified silanes (Ormosils) that contain sulfonic acid derivatized melamines have been incorporated into proton exchange membranes. The membranes are made by reaction of the primary amine groups of various ratios of melamine derivative and difunctional Jeffamine (MW = 2000) with the epoxide group of (3-Glycidyloxypropyl)trimethoxysilane. The films were then cross-linked through a sol-gel process. Resulting sulfuric acid doped films are strong, flexible, and have proton conductivities on the order of 2 x l0(exp -2) S/cm (120 C, 25% relative humidity). Our best results have been observed when films contain 60% PEO and 40% sulfonated melamine.
The crystallization of tough thermoplastic resins in the presence of carbon fibers
NASA Technical Reports Server (NTRS)
Theil, M. H.
1986-01-01
The crystallization kinetics of the thermoplastic resins poly(phenylene sulfide) (PPS) and poly(aryl-ether-ether-ketone) (PEEK) in the presence and in the abscence of carbon fibers was studied. How carbon fiber surfaces in composites affect the crystallization of tough thermoplastic polymers that may serve as matrix resins were determined. The crystallization kinetics of such substances can provide useful information about the crystallization mechanisms and, thus, indicate if the presence of carbon fibers cause any changes in such mechanisms.
1993-07-01
materials comes from older materials such as magnetite and iron , and it seems unlikely that the organometallic magnets-usually pyrophoric charge...simulations of the crystalline structure of A13T for various transition elements T and trace elements (e.g., iron ) suggest which metals T might lead to more...TSMC compared to all other structural materials suggest a real potential for reducing vibrations. The demonstrated use of polyphenylene sulfide (PPS) as
Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang
2016-03-29
The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into "redox mediator-iron oxide" interaction in the presence of DIRB. Two pre-incubation reaction systems of the "strain S12- goethite" and the "strain S12-AQS" were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for "Quinone-Iron" interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among "quinone-DIRB- goethite" under biotic/abiotic driven.
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as...
Hasnat, Mohammad A; Gross, Andrew J; Dale, Sara E C; Barnes, Edward O; Compton, Richard G; Marken, Frank
2014-02-07
Generator-collector electrode systems are based on two independent working electrodes with overlapping diffusion fields where chemically reversible redox processes (oxidation and reduction) are coupled to give amplified current signals. A generator-collector trench electrode system prepared from two tin-doped indium oxide (ITO) electrodes placed vis-à-vis with a 22 μm inter-electrode gap is employed here as a sensor in aqueous media. The reversible 2-electron anthraquinone-2-sulfonate redox system is demonstrated to give well-defined collector responses even in the presence of oxygen due to the irreversible nature of the oxygen reduction. For the oxidation of dopamine on ITO, novel "Piranha-activation" effects are observed and chemically reversible generator-collector feedback conditions are achieved at pH 7, by selecting a more negative collector potential, again eliminating possible oxygen interference. Finally, dopamine oxidation in the presence of ascorbate is demonstrated with the irreversible oxidation of ascorbate at the "mouth" of the trench electrode and chemically reversible oxidation of dopamine in the trench "interior". This spatial separation of chemically reversible and irreversible processes within and outside the trench is discussed as a potential in situ microscale sensing and separation tool.
Permyakov, Sergei E; Zernii, Evgeni Yu; Knyazeva, Ekaterina L; Denesyuk, Alexander I; Nazipova, Aliya A; Kolpakova, Tatiana V; Zinchenko, Dmitry V; Philippov, Pavel P; Permyakov, Eugene A; Senin, Ivan I
2012-04-01
Recoverin belongs to the family of intracellular Ca(2+)-binding proteins containing EF-hand domains, neuronal calcium sensors (NCS). In photoreceptor outer segments, recoverin is involved into the recovery of visual cycle via Ca(2+)-dependent interaction with disk membranes and inhibition of rhodopsin kinase. The function of a conservative within NCS family Cys residue in the inactive EF-loop 1 remains unclear, but previous study has shown its vulnerability to oxidation under mild oxidizing conditions. To elucidate the influence of oxidation of the conservative Cys39 in recoverin the properties of its C39D mutant, mimicking oxidative conversion of Cys39 into sulfenic, sulfinic or sulfonic acids have been studied using intrinsic fluorescence, circular dichroism, and equilibrium centrifugation methods. The C39D substitution results in essential changes in structural, physico-chemical and physiological properties of the protein: it reduces α-helical content, decreases thermal stability and suppresses protein affinity for photoreceptor membranes. The latter effect precludes proper functioning of the Ca(2+)-myristoyl switch in recoverin. The revealed significance of oxidation state of Cys39 for maintaining the protein functional status shows that it may serve as redox sensor in vision and suggests an explanation of the available data on localization and light-dependent translocation of recoverin in rod photoreceptors.
Captopril and 6-mercaptopurine: whose SH possesses higher antioxidant ability?
Li, Guo-Xiang; Liu, Zai-Qun
2009-12-01
Antioxidant capacities of captopril (CAP), 6-mercaptopurine (6-MP) and 9-(beta-D-ribofuranosyl)-6-mercaptopurine (6-MPR) were investigated by interacting them with 2,2'-diphenyl-1-picrylhydrazyl (DPPH), galvinoxyl radical, and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cation radical (ABTS(+)(*)), and by protecting DNA and erythrocyte against 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) induced oxidation. It was found that CAP possessed the highest ability to donate the hydrogen atom in -SH to DPPH and galvinoxyl, while 6-MPR had the strongest ability to reduce ABTS(+)(*). In the process of protecting DNA and erythrocytes against AAPH-induced oxidation, CAP can trap 0.5 and 1.3 radicals, 6-MP can trap 0.6 and 2.2, and 6-MPR can trap 1.0 and 3.0 radicals, respectively. CAP can also protect erythrocytes against hemin-induced hemolysis.
Sulfur transfer in the distillate fractions of Arabian crude oils under gamma-irradiation
NASA Astrophysics Data System (ADS)
Basfar, Ahmed A.; Soliman, Yasser S.; Alkhuraiji, Turki S.
2017-05-01
Desulfurization of light distillation fractions including gasoline, kerosene and diesel obtained from the four Arabian crude oils (heavy, medium, light and extra light) upon γ-rays irradiation to different doses was investigated. In addition, yields vol%, FTIR analysis, kinematic viscosity and density of all distillation fractions of irradiated crude oils were evaluated. Limited radiation-induced desulfurization of those fractions was observed up to an irradiation dose of 200 kGy. FTIR analysis of those fractions indicates the absence of oxidized sulfur compounds, represented by S=O of sulfone group, indicating that γ-irradiation of the Arabian crude oils at normal conditions does not induce an oxidative desulfurization in those distillation fractions. Radiation-induced sulfur transfer decreases by 28.56% and increases in total sulfur by 16.8% in Arabian extra light oil and Arabian medium crude oil respectively.
Koivumäki, Tuuli P; Gürbüz, Göker; Heinonen, I Marina
2017-09-01
α-Lactalbumin (α-La), a major milk whey protein, is comprised of several amino acids prone to metal-catalyzed oxidation (MCO) typical in processing and during storage of foods. New tools are needed for the detection of characteristic oxidation products especially from tryptophan and cysteine that often remain unrecognized when using the traditional methods of carbonyl formation monitoring. In this study, the oxidative changes in α-La were investigated through tryptic digestion and collection of 3 descriptive peptides fitted into a metal-catalyzed oxidation (Fenton reaction) model. The peptide samples were oxidized at +37 °C for 14 d and explored with liquid chromatography-quadrupole ion trap-mass spectrometer (LC-MS n ). The fractionated α-La peptides were valyl-glycyl-isoleucyl-asparaginyl-tyrosyl-tryptophyl-leucyl-alanyl-histidyl-lysine (VGINYWLAHK), leucyl-aspartyl-glutaminyl-tryptophyl-leucyl-cysteinyl-glutamyl-lysine (LDQWLCEK), and tryptophyl +16 -leucyl-alanyl-histidyl-lysyl-alanyl-leucyl-cysteine (W +16 LAHKALC). Oxidation of several amino acids, such as cysteine, histidine, lysine, and tryptophan was observed. In the peptide LDQWLCEK, cysteine was rapidly trioxidized to sulfonic acid, followed by other amino acid side chains as secondary oxidation sites. Tryptophan oxidation was more pronounced in the peptides W +16 LAHKALC and VGINYWLAHK, and also formation of the harmful N-formylkynurenine was observed. As a conclusion, several stable and promising oxidation markers are proposed for α-La, which could be implemented in the evaluation of quality and safety of dairy protein-containing products. © 2017 Institute of Food Technologists®.
21 CFR 74.1710 - D&C Yellow No. 10.
Code of Federal Regulations, 2010 CFR
2010-04-01
... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color... water and chloroform, not more than 0.2 percent. Total sulfonated quinaldines, sodium salts, not more than 0.2 percent. Total sulfonated phthalic acids, sodium salts, not more than 0.2 percent. 2-(2...
21 CFR 74.1710 - D&C Yellow No. 10.
Code of Federal Regulations, 2011 CFR
2011-04-01
... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color... water and chloroform, not more than 0.2 percent. Total sulfonated quinaldines, sodium salts, not more than 0.2 percent. Total sulfonated phthalic acids, sodium salts, not more than 0.2 percent. 2-(2...
Code of Federal Regulations, 2014 CFR
2014-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Spectral study and protein labeling of inclusion complex between dye and calixarene sulfonate.
Fei, Xuening; Zhang, Yong; Zhu, Sen; Liu, Lijuan; Yu, Lu
2013-05-01
The host-guest inclusion complex of calix[6]arene sulfonate (SCA6) with thiazole orange (TO) formed in aqueous solution was studied. Absorption and fluorescence techniques were used for the analysis of this inclusion complex. The addition of calixarene sulfonate leads to a decrease in both absorption and fluorescence intensity of the dye, indicating that the inclusion complex was formed. Simultaneously, the inclusion phenomenon of another cyanine dye, Cy3, with calixarene sulfonate was investigated. The stability constant of the two complexes was determined, and the results were compared. The water solubility of TO dye was increased in the presence of calixarene sulfonate, and further protein labeling experiments suggested that this TO-SCA6 complex can act as a fluorescent probe for labeling of biomolecules.
Tumor Uptake And Photodynamic Activity Of Sulfonated Metallo Phthalocyanines
NASA Astrophysics Data System (ADS)
van Lier, Johan E.; Rousseau, Jacques; Paquette, Benoit; Brasseur, N.; Langlois, Rejean; Ali, Hasrat
1989-06-01
Sulfonated metallo phthalocyanines (M-SPC) are extensively studied as sensitizers for photodynamic therapy of cancer. They strongly absorb clinically useful red light with absorption maxima between 670-680 nm. Their photodynamic properties depend on the nature of the central metal ion as well as the degree of substitution on the macrocycle. The zinc, aluminum and gallium complexes are efficient photo-generators of singlet oxygen, the species most likely responsible for their phototoxicity and tumoricidal action. Tissue distribution pattern, cell penetration and dye aggregation are strongly affected by the degree of sulfonation of the dyes. Mono- and disulfonated M-SPC have the highest tendency to form photo-inactive aggregates. However, these lower sulfonated dyes more readily cross cell membranes resulting, in vitro, in enhanced phototoxicity. In vivo, the highly sulfonated hydrophilic M-SPC show the best tumor localization properties but the lower sulfonated dyes still exhibit the best photo-activity. Variations in activities between the differently sulfonated M-SPC are far less pronounced in vivo as compared to in vitro conditions. Such discrepancies are explained by the combined action of numerous vectors including interaction of M-SPC with plasma proteins, vascular versus cellular photo-damage, tumor retention, cell penetration as well as the degree of aggregation of the dye.
NASA Astrophysics Data System (ADS)
Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan
2014-06-01
In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.
Mondal, Abhishek N; Dai, Chunhua; Pan, Jiefeng; Zheng, Chunlei; Hossain, Md Masem; Khan, Muhammad Imran; Wu, Liang; Xu, Tongwen
2015-07-29
To reconcile the trade-off between separation performance and availability of desired material for cation exchange membranes (CEMs), we designed and successfully prepared a novel sulfonated aromatic backbone-based cation exchange precursor named sodium 4,4'-(((((3,3'-disulfo-[1,1'-biphenyl]-4,4'-diyl)bis(oxy)) bis(4,1-phenylene))bis(azanediyl))bis(methylene))bis(benzene-1,3-disulfonate) [DSBPB] from 4,4'-bis(4-aminophenoxy)-[1,1'-biphenyl]-3,3'-disulfonic acid [BAPBDS] by a three-step procedure that included sulfonation, Michael condensation followed by reduction. Prepared DSBPB was used to blend with sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) to get CEMs for alkali recovery via diffusion dialysis. Physiochemical properties and electrochemical performance of prepared membranes can be tuned by varying the dosage of DSBPB. All the thermo-mechanical properties like DMA and TGA were investigated along with water uptake (WR), ion exchange capacity (IEC), dimensional stability, etc. The effect of DSBPB was discussed in brief in connection with alkali recovery and ion conducting channels. The SPPO/DSBPB membranes possess both high water uptake as well as ion exchange capacity with high thermo-mechanical stability. At 25 °C the dialysis coefficients (UOH) appeared to be in the range of 0.0048-0.00814 m/h, whereas the separation factor (S) ranged from 12.61 to 36.88 when the membranes were tested for base recovery in Na2WO4/NaOH waste solution. Prepared membranes showed much improved DD performances compared to traditional SPPO membrane and possess the potentiality to be a promising candidate for alkali recovery via diffusion dialysis.
NASA Astrophysics Data System (ADS)
Alamelu, K.; Ali, B. M. Jaffar
2018-04-01
We demonstrate a hydrothermal method combined with polyol reduction process for the synthesis of an Ag-TiO2-SGO and Pt-TiO2-SGO ternary nanocomposites in which the Ag, Pt and TiO2 nanoparticles are dispersed on the Sulfonated graphene oxide nanosheets. The structural and optical properties of obtained nanocomposites were characterized by XRD, UV-DRS, Raman, FTIR and Photoluminescence spectroscopy. The nanocomposites shows increased light absorption ability in the visible region due to surface plasmon resonance effect of noble metal. The rate of electron-hole pair recombination was significating reduced for nanocomposites system compare to pure. Also, their Performance for the photocatalytic degradation of Rhodamine B as a model organic pollutant is explored. The results showed that Ag-TiO2-SGO and Pt-TiO2-SGO nanocomposites could degrade 95% of the dye within 90 min, under natural sunlight irradiation. The reaction kinetics of ternary nanocomposites exhibit more than 2.2 fold increased photocatalytic activity compared to pristine TiO2. Sulfonated graphene based ternary photocatalyst are potential candidates for wastewater treatment in real time application, due to this ability degrade cationic and anionic dyes.
NASA Astrophysics Data System (ADS)
Yu, Jin-sheng; Liu, Run-qing; Wang, Li; Sun, Wei; Peng, Hong; Hu, Yue-hua
2018-05-01
Selective recovery of chalcopyrite-galena ore by flotation remains a challenging issue. The development of highly efficient, low-cost, and environmentally friendly depressants for this flotation is necessary because most of available reagents (e.g., K2Cr2O4) are expensive and adversely affect the environment. In this study, ferric chromium lignin sulfonate (FCLS), which is a waste-product from the paper and pulp industry, was introduced as a selective depressant for galena with butyl xanthate (BX) as a collector. Results show that the residue recovery of Pb in Cu concentrate was substantially reduced to 4.73% using FCLS compared with 10.71% using the common depressant K2Cr2O4. The underlying mechanisms were revealed using zeta-potential measurements and X-ray photoelectron spectroscopy (XPS). Zeta-potential measurements revealed that FCLS was more efficiently absorbed onto galena than onto chalcopyrite. XPS measurements further suggested that FCLS enhanced the surface oxidation of galena but prevented that of chalcopyrite. Thus, FCLS could be a potential candidate as a depressant for chalcopyrite-galena flotation because of its low cost and its lack of detrimental effects on the environment.
Oil recovery method utilizing glyceryl ether sulfonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naylor, C.G.
1984-03-13
Petroleum may be recovered from petroleum containing formations having high salinity and/or high temperature by injecting into the formation an aqueous fluid containing an effective amount of a surface active agent characterized by the formula: R-O-(A-O)N-(CH2-CH(-CH2-O-CH2-CH2-SO3X)-O)M-H wherein R is an alkyl or alkylaryl radical, AO is an alkylene oxide radical, n is an integer of from 1 to 50, m is an integer from 1 to 10 and X is a sodium, potassium or ammonium cation.
Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2002-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2001-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
1990-10-16
washed with concentrated sulfuric acid , then with water, dried over anhydrous magnesium sulfate, refluxed over calcium hydride and freshly distilled...oxide, filtered, and fractionally distilled under reduced pressure. Trifluoromethane sulfonic acid (triflic acid , 98%, Aldrich) w s distilled under...flask. Then the flask was filled with argon, cooled to 0°C and the methylene chloride, dimethyl sulfide and triflic acid were added via a syringe. The
78 FR 18526 - Significant New Use Rules on Certain Chemical Substances; Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... aromatic sulfonic acid amino azo dye salts (PMN P-12-276) a typographical error has been identified. This... significant new uses for aromatic sulfonic acid amino azo dye salts, EPA inadvertently listed the respirator... include this requirement when promulgating the significant new uses for aromatic sulfonic acid amino azo...
NASA Astrophysics Data System (ADS)
Mosa, J.; Durán, A.; Aparicio, M.
An important research area in proton exchange membrane fuel cells (PEMFC) is devoted to the development of low cost membranes able to work at temperatures higher than 100 °C. In this work, homogeneous, transparent and crack-free hybrid membranes have been synthesized using tetraethyl orthosilicate (TEOS), 3-glycidoxipropyl trimethoxysilane (GPTMS) and 2-allylphenol (AP) as precursors. The synthesis of proton conducting membranes was performed by a post-sulfonation method using trimethylsilyl chlorosulfonate as a mild sulfonating agent. The water retention properties provided by sulfonate and hydroxyl groups and the high porosity leads to relatively high proton conductivity (maximum values around 1.3 × 10 -3 S cm -1 at 140 °C and 100% RH) for membranes treated at 180 °C and sulfonated for 2 h.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1,2-Propanediol, 3-(2-propenyloxy)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1,2-Propanediol, 3-(2-propenyloxy)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...
Miyata, Naoyuki; Tani, Yukinori; Maruo, Kanako; Tsuno, Hiroshi; Sakata, Masahiro; Iwahori, Keisuke
2006-01-01
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes. PMID:17021194
Lee, Shih-Wei; Chen, Jyh-Chien; Wu, Jin-An; Chen, Kuei-Hsien
2017-03-22
Novel sulfonated poly(ether sulfone) copolymers (S4PH-x-PSs) based on a new aromatic diol containing four phenyl substituents at the 2, 2', 6, and 6' positions of 4,4'-diphenyl ether were synthesized. Sulfonation was found to occur exclusively on the 4 position of phenyl substituents by NMR spectroscopy. The ion exchange capacity (IEC) values can be controlled by adjusting the mole percent (x in S4PH-x-PS) of the new diol. The fully hydrated sulfonated poly(ether sulfone) copolymers had good proton conductivity in the range 0.004-0.110 S/cm at room temperature. The surface morphology of S4PH-x-PSs and Nafion 212 was investigated by atomic force microscopy (tapping-mode) and related to the percolation limit and proton conductivity. Single H 2 /O 2 fuel cell based on S4PH-40-PS loaded with 0.25 mg/cm 2 catalyst (Pt/C) exhibited a peak power density of 462.6 mW/cm 2 , which was close to that of Nafion 212 (533.5 mW/cm 2 ) at 80 °C with 80% RH. Furthermore, fuel cell performance of S4PH-35-PS with various relative humidity was investigated. It was confirmed from polarization curves that the fuel cell performance of S4PH-35-PS was not as high as that of Nafion 212 under fully hydrated state due to higher interfacial resistance between S4PH-35-PS and electrodes. While under low relative humidity (53% RH) at 80 °C, fuel cells based on S4PH-35-PS showed higher peak power density (234.9 mW/cm 2 ) than that (214.0 mW/cm 2 ) of Nafion 212.
Lepage, Laurence; Dufour, Anne-Claude; Doiron, Jessica; Handfield, Katia; Desforges, Katherine; Bell, Robert; Vallée, Michel; Savoie, Michel; Perreault, Sylvie; Laurin, Louis-Philippe; Pichette, Vincent; Lafrance, Jean-Philippe
2015-12-07
Hyperkalemia affects up to 10% of patients with CKD. Sodium polystyrene sulfonate has long been prescribed for this condition, although evidence is lacking on its efficacy for the treatment of mild hyperkalemia over several days. This study aimed to evaluate the efficacy of sodium polystyrene sulfonate in the treatment of mild hyperkalemia. In total, 33 outpatients with CKD and mild hyperkalemia (5.0-5.9 mEq/L) in a single teaching hospital were included in this double-blind randomized clinical trial. We randomly assigned these patients to receive either placebo or sodium polystyrene sulfonate of 30 g orally one time per day for 7 days. The primary outcome was the comparison between study groups of the mean difference of serum potassium levels between the day after the last dose of treatment and baseline. The mean duration of treatment was 6.9 days. Sodium polystyrene sulfonate was superior to placebo in the reduction of serum potassium levels (mean difference between groups, -1.04 mEq/L; 95% confidence interval, -1.37 to -0.71). A higher proportion of patients in the sodium polystyrene sulfonate group attained normokalemia at the end of their treatment compared with those in the placebo group, but the difference did not reach statistical significance (73% versus 38%; P=0.07). There was a trend toward higher rates of electrolytic disturbances and an increase in gastrointestinal side effects in the group receiving sodium polystyrene sulfonate. Sodium polystyrene sulfonate was superior to placebo in reducing serum potassium over 7 days in patients with mild hyperkalemia and CKD. Copyright © 2015 by the American Society of Nephrology.
Lepage, Laurence; Dufour, Anne-Claude; Doiron, Jessica; Handfield, Katia; Desforges, Katherine; Bell, Robert; Vallée, Michel; Savoie, Michel; Perreault, Sylvie; Laurin, Louis-Philippe; Pichette, Vincent
2015-01-01
Background and objectives Hyperkalemia affects up to 10% of patients with CKD. Sodium polystyrene sulfonate has long been prescribed for this condition, although evidence is lacking on its efficacy for the treatment of mild hyperkalemia over several days. This study aimed to evaluate the efficacy of sodium polystyrene sulfonate in the treatment of mild hyperkalemia. Design, setting, participants, & measurements In total, 33 outpatients with CKD and mild hyperkalemia (5.0–5.9 mEq/L) in a single teaching hospital were included in this double–blind randomized clinical trial. We randomly assigned these patients to receive either placebo or sodium polystyrene sulfonate of 30 g orally one time per day for 7 days. The primary outcome was the comparison between study groups of the mean difference of serum potassium levels between the day after the last dose of treatment and baseline. Results The mean duration of treatment was 6.9 days. Sodium polystyrene sulfonate was superior to placebo in the reduction of serum potassium levels (mean difference between groups, −1.04 mEq/L; 95% confidence interval, −1.37 to −0.71). A higher proportion of patients in the sodium polystyrene sulfonate group attained normokalemia at the end of their treatment compared with those in the placebo group, but the difference did not reach statistical significance (73% versus 38%; P=0.07). There was a trend toward higher rates of electrolytic disturbances and an increase in gastrointestinal side effects in the group receiving sodium polystyrene sulfonate. Conclusions Sodium polystyrene sulfonate was superior to placebo in reducing serum potassium over 7 days in patients with mild hyperkalemia and CKD. PMID:26576619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misichronis, Konstantinos; Wang, Weiyu; Cheng, Shiwang
2018-01-29
Multigraft copolymer superelastomers consisting of a poly(n-butyl acrylate) backbone and polystyrene side chains were synthesized and the viscoelastic properties of the non-sulfonated and sulfonated final materials were investigated using extensional rheology (SER3). The non-linear viscoelastic experiments revealed significantly increased true stresses (up to 10 times higher) after sulfonating only 2–3% of the copolymer while the materials maintained high elongation (<700%). The linear viscoelastic experiments showed that the storage and loss modulus are increased by sulfonation and that the copolymers can be readily tuned and further improved by increasing the number of branching points and the molecular weight of the backbone.more » Here, in this way, we show that by tuning not only the molecular characteristics of the multigraft copolymers but also their architecture and chemical interaction, we can acquire thermoplastic superelastomer materials with desired viscoelastic properties.« less
Cyclic Tetrapyrrole Sulfonation, Metals, and Oligomerization in Antiprion Activity▿
Caughey, Winslow S.; Priola, Suzette A.; Kocisko, David A.; Raymond, Lynne D.; Ward, Anne; Caughey, Byron
2007-01-01
Cyclic tetrapyrroles are among the most potent compounds with activity against transmissible spongiform encephalopathies (TSEs; or prion diseases). Here the effects of differential sulfonation and metal binding to cyclic tetrapyrroles were investigated. Their potencies in inhibiting disease-associated protease-resistant prion protein were compared in several types of TSE-infected cell cultures. In addition, prophylactic antiscrapie activities were determined in scrapie-infected mice. The activity of phthalocyanine was relatively insensitive to the number of peripheral sulfonate groups but varied with the type of metal bound at the center of the molecule. The tendency of the various phthalocyanine sulfonates to oligomerize (i.e., stack) correlated with anti-TSE activity. Notably, aluminum(III) phthalocyanine tetrasulfonate was both the poorest anti-TSE compound and the least prone to oligomerization in aqueous media. Similar comparisons of iron- and manganese-bound porphyrin sulfonates confirmed that stacking ability correlates with anti-TSE activity among cyclic tetrapyrroles. PMID:17709470
Kwon, Taehoon; Cho, Hyeongrae; Lee, Jang-Woo; Henkensmeier, Dirk; Kang, Youngjong; Koo, Chong Min
2017-08-30
Ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA) are assembled into bending ionic polymer actuators. CuPCSA is an organic filler with very high sulfonation degree (IEC = 4.5 mmol H + /g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane, probably due to its good dispersibility in SPAES-containing solutions. SPAES/CuPCSA actuators exhibit larger ion conductivity (102 mS cm -1 ), tensile modulus (208 MPa), strength (101 MPa), and strain (1.21%), exceptionally faster response to electrical stimuli, and larger mechanical power density (3028 W m -3 ) than ever reported for ion-conducting polymer actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next-generation transducers with high power density, which are currently developed, e.g., for underwater propulsion and endoscopic surgery.
Brandi, Jamile; Oliveira, Éder C; Monteiro, Nilson; Vasconcelos, Ana Flora D; Dekker, Robert F H; Barbosa, Aneli M; Silveira, Joana L M; Mourão, Paulo A S; Corradi da Silva, Maria de Lourdes
2011-10-01
The exopolysaccharide botryosphaeran (EPS(GLC); a (1--> 3)(1-->6)-β-D-glucan from Botryosphaeria rhodina MAMB- 05) was sulfonated to produce a water-soluble fraction (EPS(GLC)-S) using pyridine and chlorosulfonic acid in formamid. This procedure was then repeated twice to produce another fraction (EPSGLC-RS) with a higher degree of substitution (DS, 1.64). The purity of each botryosphaeran sample (unsulfonated and sulfonated) was assessed by gel filtration chromatography (Sepharose CL-4B), where each polysaccharide was eluted as a single symmetrical peak. The structures of the sulfonated and re-sulfonated botryosphaerans were investigated using ultraviolet-visible (UV-Vis), Fourier-transform infrared (FT-IR), and (13)C nuclear magnetic resonance ((13)C NMR) spectroscopies. EPS(GLC) and EPS(GLC)-RS were also assayed for anticoagulation activity, and EPS(GLC)-RS was identified as an anticoagulant.
Suzuki, Shugo; Arnold, Lora L; Pennington, Karen L; Kakiuchi-Kiyota, Satoko; Chen, Baowei; Lu, Xiufen; Le, X Chris; Cohen, Samuel M
2012-09-28
Inorganic arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder and lung. It is metabolized to organic methylated arsenicals. 2,3-Dimercaptopropane-1-sulfonic acid (DMPS), a chelating agent, is capable of reducing pentavalent arsenicals to the trivalent state and binding to the trivalent species, and it has been used in the treatment of heavy metal poisoning in humans. Therefore, we investigated the ability of DMPS to inhibit the cytotoxicity and regenerative urothelial cell proliferation induced by arsenate administration in vivo. Female rats were treated for 4 weeks with 100 ppm As(V). DMPS (2800 ppm) co-administered in the diet significantly reduced the As(V)-induced cytotoxicity of superficial cells detected by scanning electron microscopy (SEM), and the incidence of simple hyperplasia observed by light microscopy and the bromodeoxyuridine (BrdU) labeling index. It also reduced the total concentration of arsenicals in the urine and the methylation of arsenic. There were no differences in oxidative stress as assessed by immunohistochemical staining for 8-hydroxy-2'-deoxyguanosine (8OHdG) of the bladder urothelium. No differences were detected in urine sediments between groups. These data suggest that DMPS has the ability to inhibit both arsenate-induced acute toxicity and regenerative proliferation of the rat bladder epithelium, most likely by decreasing exposure of the urothelium to trivalent arsenicals excreted in the urine. These data provide additional evidence that the effects of arsenate exposure in vivo do not appear to be related to oxidative effects on dG in DNA. Copyright © 2012. Published by Elsevier Ireland Ltd.
Spirakis, C.S.
1991-01-01
The precipitation of extremely 34S-rich barite in the late stage of mineralization in the Mississippi Valleytype deposits of the Illinois-Kentucky district (U.S.A.) may be explained by reactions involving thiosulfate (S2O3=). Inorganic processes are known to concentrate 34S in the sulfonate site of thiosulfate and 32S in the sulfate site. In the mineralizing solution, these inorganic processes may have fractionated sulfur between the two sites by about 40 per mil. At the low temperatures of the late barite stage of mineralization, bacteria are known to metabolize thiosulfate by various reactions. In one of these, dissimilatory reduction, hydrogen sulfide and sulfite are produced. Isotopically light sulfite is preferentially reduced to sulfide by bacteria to leave a residual sulfite enriched in 34S. Part of the residual sulfite may be oxidized to form isotopically heavy sulfate; part may recombine with hydrogen sulfide to form thiosulfate. The recombination also enriches the sulfonate site in 34S and the sulfane site in 32S. Recycling the newly formed thiosulfate through the above steps further enriches sulfite and sulfate from oxidation of sulfite in 34S. During genesis of the ores, the aggregate effect of these reactions may have been the precipitation of extremely 34S-rich barite. The sequence of reactions suggested above requires the presence of organic matter. Previously proposed reactions to account for the precipitation of sulfide minerals and fluorite and for the carbonate paragenesis also require the presence of organic matter. Thus, organic matter in the host rocks may cause the various ore-zone reactions and account for the localization of the ores. ?? 1991 Springer-Verlag.
Urtiaga, Ane; Soriano, Alvaro; Carrillo-Abad, Jordi
2018-06-01
The concerns about the undesired impacts on human health and the environment of long chain perfluorinated alkyl substances (PFASs) have driven industrial initiatives to replace PFASs by shorter chain fluorinated homologues. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is applied as alternative to PFOS in metal plating and fluoropolymer manufacture. This study reports the electrochemical treatment of aqueous 6:2 FTSA solutions on microcrystalline BDD anodes. Bench scale batch experiments were performed, focused on assessing the effect of the electrolyte and the applied current density (5-600 A m -2 ) on the removal of 6:2 FTSA, the reduction of total organic carbon (TOC) and the fluoride release. Results showed that at the low range of applied current density (J = 50 A m -2 ), using NaCl, Na 2 SO 4 and NaClO 4 , the electrolyte exerted a minimal effect on removal rates. The formation of toxic inorganic chlorine species such as ClO 4 - was not observed. When using Na 2 SO 4 electrolyte, increasing the applied current density to 350-600 A m -2 promoted a notable enhancement of the 6:2 FTSA removal and defluorination rates, pointing to the positive contribution of electrogenerated secondary oxidants to the overall removal rate. 6:2 FTSA was transformed into shorter-chain PFCAs, and eventually into CO 2 and fluoride, as TOC reduction was >90%. Finally, it was demonstrated that diffusion in the liquid phase was controlling the overall kinetic rate, although with moderate improvements due to secondary oxidants at very high current densities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Molecular Design of Sulfonated Triblock Copolymer Permselective Membranes
2008-07-03
factors governing sorption and permeability ofphosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower olefins by means...membrane morphology at environmental conditions, and the membrane sorption and transport properties with respect to water and nerve gas simulant...and chemical factors governing sorption and permeability of phosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy...,2′-[oxybis(2,1-ethanediyloxy)]bis-, bis(4-methylbenzene-sulfonate) (PMN P-93-1195, CAS no. 19249-03...
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy...,2′-[oxybis(2,1-ethanediyloxy)]bis-, bis(4-methylbenzene-sulfonate) (PMN P-93-1195, CAS no. 19249-03...
Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite
NASA Technical Reports Server (NTRS)
Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.
1992-01-01
Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.
Lin, Huirong; Chen, Guangcun; Zhu, Shenhai; Chen, Yingxu; Chen, Dongliang; Xu, Wei; Yu, Xiaohan; Shi, Jiyan
2013-01-01
In order to investigate the microbe-mineral interaction in the micro scale, spatial distribution and speciation of Cu and S in Halothiobacillus HT1 biofilm formed on a CuS surface was examined using synchrotron-based X-ray techniques. Confocal laser scanning microscope (CLSM) results indicated that Halothiobacillus HT1 biofilm formation gave rise to distinct chemical and redox gradients, leading to diverse niches in the biofilm. Live cells were distributed at the air-biofilm and membrane-biofilm interface. CuS was oxidized by Halothiobacillus HT1 biofilm, and copper penetrated into the biofilm. Sulfide was oxidized to cysteine (77.3%), sulfite (3.8%) and sulfonate (18.9%). Cu-cysteine-like species were involved in the copper homeostasis. These results significantly improve our understanding of the interfacial properties of the biofilm-mineral interface. PMID:23708108
Hernández-Ledesma, Blanca; Hsieh, Chia-Chien; de Lumen, Ben O
2009-12-18
Oxidative stress and inflammation are two of the most critical factors implicated in carcinogenesis and other degenerative disorders. We have investigated how lunasin, a known anti-cancer seed peptide, affect these factors. This peptide inhibits linoleic acid oxidation and acts as 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenger. Furthermore, using LPS-stimulated RAW 264.7 macrophages, we have demonstrated that lunasin reduces, in a significant dose-dependent manner, the production of reactive oxygen species (ROS) by LPS-induced macrophages. Lunasin also inhibits the release of pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-alpha] and interleukine-6 [IL-6]). On the basis of these potent antioxidant and anti-inflammatory properties, we propose lunasin not only as a cancer preventive and therapeutic agent but also as an agent against other inflammatory-related disorders.
Etemadi, Omid; Yen, Teh Fu
2007-09-01
Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).
NASA Astrophysics Data System (ADS)
Lee, J. Y.; Kang, T.-H.; Choi, J. H.; Choi, I.-S.; Yu, W.-R.
2018-03-01
Highly conductive nanofibers with 1570 S/m were obtained from an electrospun solution of polymer containing multiwalled carbon nanotubes (MWCNTs). Homogeneous dispersion of high concentrations of MWCNTs was achieved by attaching poly(styrenesulfonic acid graft aniline) (PSS-g-ANI), an amphiphilic surfactant, to the MWCNT surface. The hydrophilic sulfonic acid group facilitated the dissolution of PSS-g-ANI-grafted MWCNTs in a polyethylene oxide (PEO) solution up to 6.7 wt% MWCNT. To our knowledge, this is the highest level of MWCNT doping attained in a solution designed for electrospinning. With the incorporation of PSS-g-ANI, the concentration of MWCNTs embedded in the electrospun nanofibers increased. More importantly, the alignment of MWCNTs along the nanofiber axis increased significantly, as confirmed by observed birefringence under crossed polarizers. The combination of higher doping levels and better alignment afforded highly conductive nanofibers suitable for electronic nanodevices.
Xu, Junhua; Zhao, Shen; Chen, Wei; Wang, Miao; Song, Yu-Fei
2012-04-10
Highly efficient, deep desulfurization of model oil containing dibenzothiophene (DBT), benzothiophene (BT), or 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been achieved under mild conditions by using an extraction and catalytic oxidative desulfurization system (ECODS) in which a lanthanide-containing polyoxometalate Na(7)H(2)LnW(10)O(36)⋅32 H(2)O (LnW(10); Ln = Eu, La) acts as catalyst, [bmim]BF(4) (bmim = 1-butyl-3-methylimidazolium) as extractant, and H(2)O(2) as oxidant. Sulfur removal follows the order DBT>4,6-DMDBT>BT at 30 °C. DBT can be completely oxidized to the corresponding sulfone in 25 min under mild conditions, and the LaW(10)/[bmim]BF(4) system could be recycled for ten times with only slight decrease in activity. Thus, LaW(10) in [bmim]BF(4) is one of the most efficient systems for desulfurization using ionic liquids as extractant reported so far. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yun, Dong-Jin; Rhee, Shi-Woo
2012-02-01
Composite films of multiwall carbon nanotube (MWNT)/poly(3,4-ethylenedioxythiophene) polymerized with poly(4-styrenesulfonate) (PEDOT:PSS) were prepared by spin-coating a mixture solution. The effect of the MWNT loading and the MWNT oxidation, with acid solution or ultraviolet (UV)-ozone treatment, on the film properties such as surface roughness, work function, surface energy, optical transparency and conductivity were studied. Also pentacene thin film transistors and inverters were made with these composite films as a contact metal and the device characteristics were measured. The oxidation of MWNT reduced the conductivity of MWNT/PEDOT:PSS composite film but increased the work function and transparency. UV-ozone treated MWNT/PEDOT:PSS composite film showed higher conductivity (14000 Ω/□) and work function (4.9 eV) than acid-oxidized MWNT/PEDOT:PSS composite film and showed better performance as a source/drain electrode in organic thin film transistor (OTFT) than other types of MWNT/PEDOT:PSS composite films. Hole injection barrier of the UV-ozone treated MWNT/PEDOT:PSS composite film with pentacene was significantly lower than any other films because of the higher work function.
Yang, Huawei; Jiang, Bin; Sun, Yongli; Zhang, Luhong; Huang, Zhaohe; Sun, Zhaoning; Yang, Na
2017-07-05
In this work, the simple preparation of novel polymer supported polyoxometallates (POMs) catalysts has been reported. Soluble task-specific cross-linked poly (ionic liquid) (PIL) was prepared with N,N-dimethyl-dodecyl-(4-vinylbenzyl) ammonium chloride and divinylbenzene as co-monomers. The as-prepared cationic PILs were assembled with different commercial POMs to form the interlinked mesoporous catalysts, and the formation mechanism was provided. The catalytic oxidation activities of the catalysts were closely related to the formation pathway of their corresponding peroxide active species. The catalyst with H 2 W 12 O 42 10- as counterion, which exhibited the best activity in the oxidation of benzothiophene (BT) and dibenzothiophene (DBT) to sulfones in model oil with hydrogen peroxide (H 2 O 2 , 30wt%) as oxidant, was characterized by different techniques and systematically studied for its sulfur removal performance. As for the oxidative desulfurization of a real diesel, it was observed that almost all of the original sulfur compounds could be completely converted, and the catalyst could be reused for at least eight cycles without noticeable changes in both catalytic activity and chemical structure. In the end, a catalytic mechanism was put forward with the assistant of Raman analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-Functional pi-Conjugated Macromolecules Based on Poly(Phenylene Vinylene)
1994-03-14
methacrylate-co-4-vinylpyridine)" (in press). 43. J . Polym. Sci., (with R. Vukovic , G. Bogdanic, V. Kuresevic, M. Tomaskovic and W.J. MacKnight) "Phase...Sokolik I Dr. Zhou Yang Dr. Iwao Teraoka IV. JUNIOR RESEARCH PERSONNEL: J . Neill B. Ma. S.L I U i I I i 5 VI. ABSTRACT OF ACCOMPLISHMENTS This report is...chains. I I U I * 14 I VIII. PUBLICATIONS IN PERIOD WITH AFOSR SUPPORT 1. J . Chem. Phys. 98, 712-716 (1993) (with G. Mao, J.E. Fischer and M.J. Winokur
Thermally switchable dielectrics
Dirk, Shawn M.; Johnson, Ross S.
2013-04-30
Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.
NASA Astrophysics Data System (ADS)
Hong, Young Taik; Lee, Chang Hyun; Park, Hyung Su; Min, Kyung A.; Kim, Hyung Joong; Nam, Sang Yong; Lee, Young Moo
In the present study, modified acid-base blend membranes were fabricated via incorporation of sulfonated poly(arylene ether benzimidazole) (SPAEBI) into sulfonated poly(arylene ether sulfone) (SPAES). These membranes had excellent methanol-barrier properties in addition to an ability to compensate for the loss of proton conductivity that typically occurs in general acid-base blend system. To fabricate the membranes, SPAEBIs, which served as amphiphilic polymers with different degrees of sulfonation (0-50 mol%), were synthesized by polycondensation and added to SPAES. It resulted in the formation of acid-amphiphilic complexes such as [PAES-SO 3] - +[H-SPAEBI] through the ionic crosslinking, which prevented SO 3H groups in the complex from transporting free protons in an aqueous medium, contributing to a reduction of ion exchange capacity values and water uptake in the blend membranes, and leading to lower methanol permeability in a water-methanol mixture. Unfortunately, the ionic bonding formation was accompanied by a decrease of bound water content and proton conductivity, although the latter problem was solved to some extent by the incorporation of additional SO 3H groups in SPAEBI. In the SPAES-SPAEBI blend membranes, enhancement of proton conductivity and methanol-barrier property was prominent at temperatures over 90 °C. The direct methanol fuel cell (DMFC) performance, which was based on SPAES-SPAEBI-50-5, was 1.2 times higher than that of Nafion ® 117 under the same operating condition.
Chen, Jing; Xu, Xinxin; Zeng, Xiaolan; Feng, Mingbao; Qu, Ruijuan; Wang, Zunyao; Nesnas, Nasri; Sharma, Virender K
2018-06-13
This paper presents oxidation of polychlorinated diphenyl sulfides (PCDPSs), dioxin-like compounds, by ferrate(VI) (Fe VI O 4 2- , Fe(VI)). Kinetics of the reactions of Fe(VI) with seventeen PCDPSs, differ in number and positions of chlorine atoms (from 2 to 7), were investigated at pH 8.0. The second-order rate constants (k, M -1 s -1 ) of the reactions varied with the numbers and positions of chlorine atoms and appeared to be related with standard Gibbs free energy of formation (Δ f G 0 ) of PCDPSs. Degradation experiments in the presence of ions and humic acid demonstrated complete removal of PeCDPS by Fe(VI) in minutes. Pathways of the reaction were investigated by identifying oxidized products (OPs) of the reaction between Fe(VI) and 2,2',3',4,5-pentachlorodiphenyl sulfide (PeCDPS) at pH 8.0. Pathways of oxidation involved major pathway of attack on sulfur(II) by Fe(VI) in steps to yield sulfoxide type products, and subsequent breakage of C-S bond with the formation of sulfonic acid-containing trichloro compound. Minor pathways were hydroxylation of benzene ring and substitution of chlorine atom with hydroxyl group. Estimation of toxicity of OPs of the oxidation of PeCDPS by Fe(VI) suggested the decreased toxicity from the parent contaminant. Copyright © 2018. Published by Elsevier Ltd.
Electrical and Environmental Studies of Conduction Polymers.
1986-01-17
Carbonate), 0.25M Tetrabutylammonium hexafluorophosphate (Bu4 NPF 6 )/THF, and 0.25M Lithium Trifluoromethyl sulfonate (LiCF3 SO 3)frHF. Lithium ...processible polymeric component Other anions commonly used in synthesizing polypyrrole, namely, tetrafluoroborate, hexafluorophosphate rifluoromethyl...are perchlorate (CI0 4 "), tetrafluoroborate (BF 4 "), trifluoromethyl sulfonate (CF3 SO"), hexafluorophosphate (PF6 ") and p-toluene sulfonate (PTS
Molecular evidence for biodegradation of geomacromolecules
NASA Astrophysics Data System (ADS)
Jenisch-Anton, A.; Adam, P.; Michaelis, W.; Connan, J.; Herrmann, D.; Rohmer, M.; Albrecht, P.
2000-10-01
The biodegradability of macromolecular organic structures of geological origin was investigated by performing in vitro studies. Cultures of the common Nocardioides simplex were grown, first, on a high molecular weight, asymmetric thioether (1-(phytanylsulfanyl)-octadecane 1) and then on macromolecular fractions isolated from a sulfur-rich oil. Gross data indicate that bacteria convert macromolecular substances to material of higher polarity by oxidizing the abundant thioethers to sulfones and sulfoxides and by introducing new functionalities, such as carboxylic acid, keto or hydroxyl groups. Furthermore, bacteria remineralize the macromolecular structures. Bacterially induced alterations were also studied on a molecular level after chemical desulfurization of the macromolecular structure. Thus, it could be established that the amounts of linear hydrocarbons in the macromolecular structure are decreased relative to branched and cyclic structures due to a preferential bacterial attack of the linear moieties bound to the macromolecules. This is further supported by the detection of S-bound fatty acids resulting from the bacterial oxidation of S-bound n-alkanes. Moreover, N. simplex also degraded sulfur-bound steranes by oxidation of the steroid side-chain leading to S-bound steroid acids.
NASA Astrophysics Data System (ADS)
Penta, Naresh K.; Amanapu, H. P.; Peethala, B. C.; Babu, S. V.
2013-10-01
Four different anionic surfactants, sodium dodecyl sulfate, dodecyl benzene sulfonic acid (DBSA), dodecyl phosphate and Sodium lauroyl sarcosine, selected from the sulfate, phosphate, and carboxylic family, were investigated as additives in silica dispersions for selective polishing of silicon dioxide over silicon nitride films. We found that all these anionic surfactants suppress the nitride removal rates (RR) for pH ≤4 while more or less maintaining the oxide RRs, resulting in high oxide-to-nitride RR selectivity. The RR data obtained as a function of pH were explained based on pH dependent distributions of surfactant species, change in the zeta potentials of oxide and nitride surfaces, and thermogravimetric data. It appears that the negatively charged surfactant species preferentially adsorb on the positively charged nitride surface below IEP through its electrostatic interactions and form a bilayer adsorption, resulting in the suppression of nitride RRs. In contrast to the surfactants, K2SO4 interacts only weakly with the nitride surface and hence cannot suppress its RR.
Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design*
Kerr, Iain D.; Lee, Ji H.; Farady, Christopher J.; Marion, Rachael; Rickert, Mathias; Sajid, Mohammed; Pandey, Kailash C.; Caffrey, Conor R.; Legac, Jennifer; Hansell, Elizabeth; McKerrow, James H.; Craik, Charles S.; Rosenthal, Philip J.; Brinen, Linda S.
2009-01-01
Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs. PMID:19620707
Hydrophilic modification of polyethersulfone and its membrane characteristics
NASA Astrophysics Data System (ADS)
Liu, Haiju; Huangfu, Feng-yun; Bai, Yundong; Kong, Yuanyuan
2010-07-01
In order to enhance the hydrophilicity of PES, A series of sulfonated polyethersulfone (SPES) were readily prepared via a reaction of sulphonation which used chlorosulfonic as sulfonating agent and concentrated sulfuric acid as solvent. Sulfonation was confirmed by Fourier transform infrared spectroscopy and Thermo gravimetric analyzer. We studied forming film characteristic of SPES by phase diagram. The sulfonated PES materials were then utilized as a hydrophilic modifier for fabrication of SPES membranes. The solvent was NMP and PEG-6000 was pore-forming agent. The characteristics of membranes were studied. It was found that the surface hydrophilicity of the modified PES membranes was remarkably enhanced by contact angle. Water flux was obvious increased and antifouling performance was also improved.
All-solution-processed PbS quantum dot solar modules
NASA Astrophysics Data System (ADS)
Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee
2015-05-01
A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01508a
Modified SBA-15 as the carrier for metoprolol and papaverine: Adsorption and release study
NASA Astrophysics Data System (ADS)
Moritz, MichaŁ; łaniecki, Marek
2011-07-01
A series of modified SBA-15 materials were applied in drug delivery systems. The internal surface of siliceous hexagonal structure of SBA-15 was modified with different amount of (3-mercaptopropyl)trimethoxysilane (MPTMS) and oxidized in the presence of hydrogen peroxide. The sulfonated material was loaded with metoprolol tartrate or papaverine hydrochloride. Both drugs indicated strong chemical interaction with modified mesoporous surface. The characteristic of the obtained materials was performed with XRD and DRUV-vis spectrometry, themogravimetry and nitrogen adsorption (BET) measurements. The obtained results show that modification of the mesoporous materials leads towards significant decrease of the drug delivery rate.
Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation
NASA Astrophysics Data System (ADS)
Zhou, Ruimin; Wu, Xinfeng; Hao, Xufeng; Zhou, Fei; Li, Hongbin; Rao, Weihong
2008-02-01
Electron beam radiation was applied to prepare nano-size copper in water system using polyvinyl alcohol, sodium dodecyl benzene sulfonate, gluten and polyethylene glycol as the surfactants, respectively. The irradiated products were characterized by XRD, TEM and LSPSDA. The XRD and TEM showed that relative pure copper products with an average size of 20 nm, 40 nm and 20 nm can be obtained by using gluten, PEG and SDBS as surfactant, respectively. An admixture of copper and cuprous oxide was obtained in PVA system. The LSPSDA showed that the size of the Cu nanoparticles decreased with increasing the glutin concentration.
Environmental Influences on the Photooxidation of Manganese by a Zinc Porphyrin Sensitizer
NASA Astrophysics Data System (ADS)
Wohlgemuth, Roland; Otvos, John W.; Calvin, Melvin
1982-08-01
The photosensitized oxidation of a membrane-bound Mn(III) tetrapyridylporphyrin derivative by a Zn tetrapyridylporphyrin derivative, which is confined to the membrane, has been achieved in negatively charged membranes consisting of phosphatidylglycerol or phosphatidic acid. At the same time, the zwitterionic electron acceptor, propylviologen sulfonate (PVS0), is reduced in the aqueous phase. The same reaction cannot be obtained with zwitterionic or cationic membranes, nor does this photosensitized reaction take place in a homogeneous solution with Mn(III) tetrapyridylporphyrin and Zn tetrapyridylporphyrin. These results show that the organization of donor, sensitizer, and acceptor at an appropriately selected interface allows reactions that would not occur in homogeneous solutions.
Vázquez-Romero, Ana; Cárdenas, Lydia; Blasi, Emma; Verdaguer, Xavier; Riera, Antoni
2009-07-16
A new approach to the synthesis of prostaglandin and phytoprostanes B(1) is described. The key step is an intermolecular Pauson-Khand reaction between a silyl-protected propargyl acetylene and ethylene. This reaction, promoted by NMO in the presence of 4 A molecular sieves, afforded the 3-tert-butyldimethylsilyloxymethyl-2-substituted-cyclopent-2-en-1-ones (III) in good yield and with complete regioselectivity. Deprotection of the silyl ether, followed by Swern oxidation, gave 3-formyl-2-substituted-cyclopent-2-en-1-ones (II). Julia olefination of the aldehydes II with the suitable chiral sulfone enabled preparation of PPB(1) type I and PGB(1).
(2R,3S,4R)-3,4-Isopropylidenedioxy-2-(phenylsulfonylmethyl)pyrrolidin-1-ol
Flores, Mari Fe; Garcia, Pilar; M. Garrido, Narciso; Sanz, Francisca; Diez, David
2012-01-01
The title compound, C14H19NO5S, was prepared by nucleophilic addition of the lithium derivative of methylphenylsulfone to (3S,4R)-3,4-isopropylidenedioxypyrroline 1-oxide. There are four molecules in the asymmetric unit. The crystal structure determination confirms the configuration of the chiral centres as 2R,3S,4R. In the crystal, pairs of O—H⋯N hydrogen bonds link the molecules into dimers. PMID:22904989
Improvement of neutral oil quality in the production of sulfonate additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhurba, A.S.; Bludilin, V.M.; Antonov, V.N.
This paper is concerned with improvement of neutral oil used as materials for sulfonation to produce additives for lubricating oils. In this article the authors analyze the basic reasons for the unsatisfactory quality of the neutral oil and attempt to define the ways in which the process technology can be improved so as to produce neutral oil with the required composition, at the same time raising the efficiency of utilization of the MSG-8 oil used as a feedstock for this process. Experimental results are presented which demonstrate the feasibility of sulfonating neutral oil in the high-speed mixer under near-optimal conditions.more » The yield of sulfonic acid approaches the theoretical yield. With the lowest contents of aromatic hydrocarbons in the original neutral oil, the aromatic hydrocarbons are almost completely converted to sulfonic acids. The yield of neutral oil is sufficiently high, and the residual content of aromatic hydrocarbons in the oil is no greater than 3%.« less
NASA Astrophysics Data System (ADS)
Rostam, Abbas Babaei; Peyravi, Majid; Ghorbani, Mohsen; Jahanshahi, Mohsen
2018-01-01
In this study, sulfonated-polyethersulfone/polyrhodanine (SPES/PRh) membranes with antibacterial behavior were fabricated. Polyethersulfone (PES) sulfonation was performed to enhance its hydrophilicity and next polyrhodanine nanoparticles (PRhNPs) were synthesized along with the sulfonated PES (SPES) by polyrhodanine (PRh) in situ polymerization. The sulfonation step also helps making composite membrane due to development of probable bondings and polymers engagements. The constructed membranes characterization was performed by FTIR, FESEM, contact angle, 1H NMR, TGA and EDS analyses. SPES/PRh membrane had enhanced hydrophilicity and consequently better fluxes for aqueous solutions. The composite SPES/PRh membrane flux was improved to 139/78 L/m2 h comparing 58.21 L/m2 h for SPES one. Membrane operational performances, antibacterial and antibiofouling tests showed improved flux, better rejection and appropriate antibacterial and antibiofouling properties for SPES/PRh membrane. The 100% bacteria mortality for specified concentrations and appropriate inhibition zones up to 9 mm have been achieved. It is generally a suitable membrane to provide proper performance beside antibacterial and antibiofouling behavior.
Molecular and morphological characterization of midblock-sulfonated styrenic triblock copolymers
Mineart, Kenneth P.; Ryan, Justin J.; Lee, Byeongdu; ...
2017-01-11
Midblock-sulfonated triblock copolymers afford a desirable opportunity to generate network-forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel-cell, water-desalination, ion-exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly( p- tert-butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly( p- tert-butylstyrene- b-styrene- b- p- tert- butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development ofmore » charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross-linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent-vapor annealing to promote nanostructural refinement. Furthermore, the effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored.« less
Color reduction of sulfonated eucalyptus kraft lignin.
Zhang, Hui; Bai, Youcan; Zhou, Wanpeng; Chen, Fangeng
2017-04-01
Several eucalyptus lignins named as HSL, SML and BSL were prepared by high temperature sulfonation, sulfomethylation, butane sultone sulfonation respectively. The color properties of samples were investigated. Under optimized conditions the sulfonic group (SO 3 H) content of HSL, SML and BSL reached 1.52, 1.60 and 1.58mmol/g, respectively. Samples were characterized by UV-vis spectroscopy, FTIR spectroscopy, 1 H NMR spectroscopy, GPC and brightness test, respectively. The results revealed that BSL performed a higher molecular weight and lighter color due to the phenolic hydroxyl blocking by 1,4-butane sultone (1,4-BS). The color reduction of sodium borohydride treated BSL (labeled as SBSL) was further enhanced and the brightness value was improved by 76.1% compared with the darkest HSL. SBSL process was much better than HSL and SML process. Hydroxyl blocking effect of 1,4-BS and reducibility of sodium borohydride played important roles in the color reduction of sulfonated eucalyptus kraft lignin. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Chelsea; Wong, David; Beers, Keith; Balsara, Nitash
2013-03-01
In an effort to understand the fundamentals of proton transport in polymer electrolyte membranes (PEMs), we have developed a series of poly(styrene-b-ethylene-b-styrene) (SES) membranes. The SES membranes were subsequently sulfonated to yield proton conducting S-SES membranes. We examine the effects of sulfonation level, temperature and thermal history on the morphology of S-SES membranes in both dry and hydrated states. The effects of these parameters on water uptake and proton transport characteristics of the membranes are also examined. Furthermore, building upon the strategy we deployed in sulfonating the SES membranes, we fabricated mesoporous S-SES membranes, with pores lined up with the proton conducting channels. These membranes have three distinct phases: structural block, proton-conducting block, and void. We examine the effects of pore size, domain structure and sulfonation level on water uptake and proton conductivity of the mesoporous PEMs at different temperatures. This work is funded by Department of Energy.
... Dimethyl Sulfone MSM, DMSO2, Methyl Sulfone, Methyl Sulfonyl Methane, Methyl Sulphonyl Methane, Méthyle Sulfonyle Méthane, Méthyle Sulphonyle Méthane, Méthylsulfonylméthane, Metilsulfonilmentano, ...
Pyrolytic carbon black composite and method of making the same
Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe
2016-09-13
A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Xu, Ya'nan; Chen, Shouwen; Li, Jiansheng; Han, Weiqing; Sun, Xiuyun; Wu, Dihua; Hu, Zhaoxia; Wang, Lianjun
2018-03-01
A series of novel blend ultrafiltration (UF) membranes have been successfully prepared from commercial poly (ether sulfone), lab-synthesized sulfonated poly (aryl ether sulfone) (SPAES, 1 wt%) and copper nanoparticles (0 ∼ 0.4 wt%) via immersion precipitation phase conversion. The micro-structure and separation performance of the membranes were characterized by field emission scanning electron microscopy (SEM) and cross-flow filtration experiments, respectively. Sodium alginate, bovine serum albumin and humic acid were chosen as model organic foulants to investigate the antifouling properties, while E. coil was used to evaluate the antibacterial property of the fabricated membranes. By the incorporation with SPAES and copper nanoparticles, the hydrophilicity, antifouling and antibacterial properties of the modified UF membranes have been profoundly improved. At a copper nanoparticles content of 0.4 wt%, the PES/SPAES/nCu(0.4) membrane exhibited a high pure water flux of 193.0 kg/m2 h, reaching the smallest contact angle of 52°, highest flux recovery ratio of 79% and largest antibacterial rate of 78.9%. Furthermore, the stability of copper nanoparticles inside the membrane matrix was also considerably enhanced, the copper nanoparticles were less than 0.08 mg/L in the effluent during the whole operation.
NASA Astrophysics Data System (ADS)
Li, Zhen; He, Guangwei; Zhao, Yuning; Cao, Ying; Wu, Hong; Li, Yifan; Jiang, Zhongyi
2014-09-01
In this study, octahedral crystal MIL101(Cr) with a uniform size of ∼400 nm is synthesized via hydrothermal reaction. It is then functionalized with sulfonic acid groups by concentrated sulfuric acid and trifluoromethanesulfonic anhydride in nitromethane. The sulfonated MIL101(Cr) are homogeneously incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare hybrid membranes. The performances of hybrid membranes are evaluated by proton conductivity, methanol permeability, water uptake and swelling property, and thermal stability. The methanol permeability increased slightly from 6.12 × 10-7 to 7.39 × 10-7 cm2 s-1 with the filler contents increasing from 0 to 10 wt. %. However, the proton conductivity of the hybrid membranes increased significantly. The proton conductivity is increased up to 0.306 S cm-1 at 75 °C and 100% RH, which is 96.2% higher than that of pristine membranes (0.156 S cm-1). The increment of proton conductivity is attributed to the following multiple functionalities of the sulfonated MIL101(Cr) in hybrid membranes: i) providing sulfonic acid groups as facile proton hopping sites; ii) forming additional proton-transport pathways at the interfaces of polymer and MOFs; iii) constructing hydrogen-bonded networks for proton conduction via -OH provided by the hydrolysis of coordinatively unsaturated metal sites.
NASA Astrophysics Data System (ADS)
Lufrano, F.; Baglio, V.; Staiti, P.; Stassi, A.; Aricò, A. S.; Antonucci, V.
This paper reports on the development of polymer electrolyte membranes (PEMs) based on sulfonated polysulfone for application in a DMFC mini-stack operating at room temperature in passive mode. The sulfonated polysulfone (SPSf) with two degrees of sulfonation (57 and 66%) was synthesized by a well-known sulfonation process. SPSf membranes with different thicknesses were prepared and investigated. These membranes were characterized in terms of methanol/water uptake, proton conductivity, and fuel cell performance in a DMFC single cell and mini-stack operating at room temperature. The study addressed (a) control of the synthesis of sulfonated polysulfone, (b) optimization of the assembling procedure, (c) a short lifetime investigation and (d) a comparison of DMFC performance in active-mode operation vs. passive-mode operation. The best passive DMFC performance was 220 mW (average cell power density of about 19 mW cm -2), obtained with a thin SPSf membrane (70 μm) at room temperature, whereas the performance of the same membrane-based DMFC in active mode was 38 mW cm -2. The conductivity of this membrane, SPSf (IEC = 1.34 mequiv. g -1) was 2.8 × 10 -2 S cm -1. A preliminary short-term test (200 min) showed good stability during chrono-amperometry measurements.
Kim, Patrick J; Fontecha, Harif D; Kim, Kyungho; Pol, Vilas G
2018-05-02
Lithium-sulfur batteries were intensively explored during the last few decades as next-generation batteries owing to their high energy density (2600 Wh kg -1 ) and effective cost benefit. However, systemic challenges, mainly associated with polysulfide shuttling effect and low Coulombic efficiency, plague the practical utilization of sulfur cathode electrodes in the battery market. To address the aforementioned issues, many approaches have been investigated by tailoring the surface characteristics and porosities of carbon scaffold. In this study, we first present an effective strategy of preparing porous sulfonated carbon (PSC) from low-density polyethylene (LDPE) plastic via microwave-promoted sulfonation. Microwave process not only boosts the sulfonation reaction of LDPE but also induces huge amounts of pores within the sulfonated LDPE plastic. When a PSC layer was utilized as an interlayer in lithium-sulfur batteries, the sulfur cathode delivered an improved capacity of 776 mAh g -1 at 0.5C and an excellent cycle retention of 79% over 200 cycles. These are mainly attributed to two materialistic benefits of PSC: (a) porous structure with high surface area and (b) negatively charged conductive scaffold. These two characteristics not only facilitate the improved electrochemical kinetics but also effectively block the diffusion of polysulfides via Coulomb interaction.
Differential fipronil susceptibility and metabolism in two rice stem borers from China.
Fang, Qi; Huang, Cheng-Hua; Ye, Gong-Yin; Yao, Hong-Wei; Cheng, Jia-An; Akhtar, Zunnu-Raen
2008-08-01
The susceptibilities of larvae of two rice stem borers, namely, Chilo suppressalis (Walker) (Lepidoptera: Crambidae) and Sesamia inferens (Walker) (Lepidoptera: Nocutidae) to fipronil and its metabolites were investigated, and then the activities of microsomal O-demethylase, and glutathione transferase (GST) in two species were measured. The metabolism of fipronil in both stem borers was determined in vivo and in vitro. The LD50 value of fipronil to S. inferens was 118.5-fold higher than that of C. suppressalis. The bioassay results offipronil metabolites showed that the toxicities of sulfone and sulfide were higher than fipronil for both species, and the differential toxicity between sulfone and fipronil was remarkable. Alternatively, the activities of microsomal O-demethylase and GST of C. suppressalis were 1.35- and 2.06-fold higher than S. inferens, respectively. The in vivo and in vitro studies on metabolism of fipronil showed that all of fipronil, sulfone, and sulfide were detected and the content of sulfone was higher than sulfide in both stem borers. The residue of sulfone in C. suppressalis was significantly higher than that in S. inferens. These results suggest that the higher activity of mixed function oxidases may cause the higher capacity of C. suppressalis to produce fipronil-sulfone, which is more toxic than fipronil leading to the higher susceptibility of this species.
Parra, S; Malato, S; Blanco, J; Péringer, P; Pulgari, C
2001-01-01
The photocatalytic oxidation of the non-biodegradable p-nitrotoluene-o-sulfonic acid (p-NTS) in homogeneous (photo-Fenton reactions) and heterogeneous (with TiO2) solutions has been studied at a pilot-scale under solar irradiation at the Plataforma Solar de Almeria (PSA). In this study two different reactors were tested: a medium concentrating radiation system (Heliomans, HM) and a non-concentrating radiation system (CPC). Their advantages and disadvantages for p-NTS degradation have been compared and discussed. The degradation rates obtained in the CPC collector are around three times more efficient than in the HM collectors. However, in both systems, 100% of the initial concentration of p-NTS was removed. Kinetic experiments were performed in both systems using TiO2 suspensions. During the photodegradation, the disappearance of p-NTS was followed by HPLC, the mineralization of the solution by the TOC technique, the evolution of NO3-, NO2-, and SO4(2-) concentration by ionic chromatography, the toxicity by the standard Microtox test, and the biodegradability by BOD5 and COD measurements. The obtained results demonstrated the utility of the heterogeneous catalysis (using TiO2 as catalyst) as a pretreatment method that can be followed by a biological process.
Perfluoroctane sulfonate-induced changes in fetal rat liver ...
In utero exposure of rats to perfluorooctane sulfonate (PFOS, C8F17SO3), a widely disseminated product of the surfactant and coating industries, is associated with residual hepatoxic complications in the surviving offspring. This hepatocellular hypertrophy resembles that observed in adults and is characterized by peroxisome proliferation, lower serum cholesterol and fatty acid concentrations, and hypothyroxemia, most of which are suspected to be manifested through PPARalpha-mediated transcriptional regulation. The purpose of the present investigation was to develop a comprehensive characterization of the transcriptional changes associated with prenatal exposure to PFOS using global gene expression array analyses. Gravid Sprague-Dawley rats were administered 3 mg/kg PFOS by gavage daily from gestational day 2-20 and terminated on day 21. Although there was no treatment-related teratology, there was a substantial effect of PFOS on the perinatal hepatic transcriptome – 225 unique transcripts were identified as statistically increased and 220 decreased by PFOS exposure; few transcripts were changed by more than two-fold. Although the Ppara transcript itself was not affected, there was a significant increase in expression of gene transcripts associated with hepatic peroxisomal proliferation as well as those responsible for fatty acid activation, transport and oxidation (both mitochondrial and peoxisomal) pathways. Additional metabolic pathways altered by in ut
Jacobsen, Annette V; Nordén, Marcus; Engwall, Magnus; Scherbak, Nikolai
2018-06-02
Per- and polyfluoroalkyl substances (PFAS) are synthetic surfactants with a wide variety of applications; however, due to their stability, they are particularly resistant to degradation and, as such, are classed as persistent organic pollutants. Perfluorooctane sulfonate (PFOS) is one such PFAS that is still detectable in a range of different environmental settings, despite its use now being regulated in numerous countries. Elevated levels of PFOS have been detected in various avian species, and the impact of this on avian health is of interest when determining acceptable levels of PFOS in the environment. Due to its similarities to naturally occurring fatty acids, PFOS has potential to disrupt a range of biological pathways, particularly those associated with lipid metabolism, and this has been shown in various species. In this study, we have investigated how in ovo exposure to environmentally relevant levels of PFOS affects expression of genes involved in lipid metabolism of developing chicken embryos. We have found a broad suppression of transcription of genes involved in fatty acid oxidation and PPAR-mediated transcription with more significant effects apparent at lower doses of PFOS. These results highlight the need for more research investigating the biological impacts of low levels of PFAS to properly inform environmental policy governing their regulation.
Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon
2017-06-10
Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.
Assumma, Luca; Nguyen, Huu-Dat; Iojoiu, Cristina; Lyonnard, Sandrine; Mercier, Régis; Espuche, Eliane
2015-07-01
Perfluorosulfonated poly(arylene ether sulfone) multiblock copolymers have been shown to be promising as proton exchange membranes. The commonly used approach for preparation of the membrane is solvent casting; the properties of the resulting membranes are very dependent on the membrane processing conditions. In this paper, we study the effects of block length, selectivity of the solvent, and thermal treatment on the membrane properties such as morphology, water uptake, and ionic conductivity. DiMethylSulfOxide (DMSO), and DiMethylAcetamide (DMAc) were selected as casting solvents based on the Flory-Huggins parameter calculated by inversion gas chromatography (IGC). It was found that the solvent selectivity has a mild impact on the mean size of the ionic domains and the expansion upon swelling, while it dramatically affects the supramolecular ordering of the blocks. The membranes cast from DMSO exhibit more interconnected ionic clusters yielding higher conductivities and water uptake as compared to membranes cast from DMAc. A 10-fold increase in proton conductivity was achieved after thermal annealing of membranes at 150 °C, and the ionomers with longer block lengths show conductivities similar to Nafion at 80 °C and low relative humidity (30%).
Mantione, Daniele; Del Agua, Isabel; Schaafsma, Wandert; Diez-Garcia, Javier; Castro, Begona; Sardon, Haritz; Mecerreyes, David
2016-08-01
There is an actual need of advanced materials for the emerging field of bioelectronics. One commonly used material is the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PSS) due to its general use in organic electronics. However, depending on the application in bioelectronics, PSS is not fully biocompatible due to the high acidity of the residual sulfonate protons of PSS. In this paper, the synthesis and biocompatibility properties of new poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan ( GAG) aqueous dispersions and its resulting films are shown. Thus, negatively charged GAGs as an alternative to PSS are presented. Three different commercially available GAGs, hyaluronic acid, heparin, and chondroitin sulfate are used. Indeed, GAGs dispersions are prepared through an oxidative chemical polymerization in water. Biocompatibility assays of the GAGs coatings are performed using SH-SY5Y and CCF-STTG1 cell lines and with ATP and Ca(2+) . Results show full biocompatibility and a pronounced anti-inflammatory effect. This last characteristic becomes crucial if implanted in the body. These materials can be used for in vivo applications, as transistor or electrode for electrical recording and for all the possible situations when there is contact between electronic circuits and living tissues. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-01-01
Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012
Tu, Pham Thi Be; Tawata, Shinkichi
2015-09-14
Here, we investigated the anti-oxidant and anti-aging effects of essential oils (EOs) from the leaves of Alpinia zerumbet (tairin and shima) in vitro and anti-melanogenic effects in B16F10 melanoma cells. The anti-oxidant activities were performed with 2,2-diphenyl-1-picrylhydrazyl (DPPH); 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS); nitric oxide; singlet oxygen; hydroxyl radical scavenging; and xanthine oxidase. The inhibitory activities against collagenase, elastase, hyaluronidase, and tyrosinase were employed for anti-aging. The anti-melanogenic was assessed in B16F10 melanoma cells by melanin synthesis and intracellular tyrosinase inhibitory activity. The volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The EO was a complex mixture mainly consisting of monoterpenes and sesquiterpenes. The results revealed that tairin and shima EOs showed strong anti-oxidant activities against DPPH and nitric oxide, hydroxyl radical scavenging activity, and xanthine oxidase inhibition. Compared to shima EO; tairin EO exhibited strong anti-aging activity by inhibiting collagenase, tyrosinase, hyaluronidase, and elastase (IC50 = 11 ± 0.1; 25 ± 1.2; 83 ± 1.6; and 213 ± 2 μg/mL, respectively). Both EOs inhibited intracellular tyrosinase activity; thus, reducing melanin synthesis. These results suggest that tairin EO has better anti-oxidant/anti-aging activity than shima EO, but both are equally anti-melanogenic.
Inactivation of a class A and a class C β-lactamase by 6β-(hydroxymethyl)penicillanic acid sulfone
Papp-Wallace, Krisztina M.; Bethel, Christopher R.; Gootz, Thomas D.; Shang, Wenchi; Stroh, Justin; Lau, William; McLeod, Dale; Price, Loren; Marfat, Anthony; Distler, Anne; Drawz, Sarah M.; Chen, Hansong; Harry, Emily; Nottingham, Micheal; Carey, Paul R.; Buynak, John D.; Bonomo, Robert A.
2012-01-01
β-Lactamase inhibitors (clavulanic acid, sulbactam, and tazobactam) contribute significantly to the longevity of the β-lactam antibiotics used to treat serious infections. In the quest to design more potent compounds and to understand the mechanism of action of known inhibitors, 6β-(hydroxymethyl)penicillanic acid sulfone (6β-HM-sulfone) was tested against isolates expressing the class A TEM-1 β-lactamase and a clinically important variant of the AmpC cephalosporinase of Pseudomonas aeruginosa, PDC-3. The addition of the 6β-HM-sulfone inhibitor to ampicillin was highly effective. 6β-HM-sulfone inhibited TEM-1 with an IC50 of 12 ± 2 nM and PDC-3 with an IC50 of 180 ± 36 nM, and displayed lower partition ratios than commercial inhibitors, with partition ratios (kcat/kinact) equal to 174 for TEM-1 and 4 for PDC-3. Measured for 20 h, 6β-HM-sulfone demonstrated rapid, first-order inactivation kinetics with the extent of inactivation being related to the concentration of inhibitor for both TEM-1 and PDC-3. Using mass spectrometry to gain insight into the intermediates of inactivation of this inhibitor, 6β-HM-sulfone was found to form a major adduct of +247 ± 5 Da with TEM-1 and +245 ± 5 Da with PDC-3, suggesting that the covalently bound, hydrolytically stabilized acyl-enzyme has lost a molecule of water (H–O–H). Minor adducts of +88 ± 5 Da with TEM-1 and +85 ± 5 Da with PDC-3 revealed that fragmentation of the covalent adduct can result but appeared to occur slowly with both enzymes. 6β-HM-sulfone is an effective and versatile β-lactamase inhibitor of representative class A and C enzymes. PMID:22155308
NASA Astrophysics Data System (ADS)
Niitsu, G. T.; Lopes, C. M. A.
2013-08-01
The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2007-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated .pi.-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.