Science.gov

Sample records for sulfonic acid groups

  1. Highly proton conductive nanoporous coordination polymers with sulfonic acid groups on the pore surface.

    PubMed

    Ramaswamy, Padmini; Matsuda, Ryotaro; Kosaka, Wataru; Akiyama, George; Jeon, Hyung Joon; Kitagawa, Susumu

    2014-02-04

    Three new sulfonated porous coordination polymers (PCPs)/metal-organic frameworks (MOFs) have been synthesized using solvothermal methods. These PCPs possess porous structures with non-coordinating sulfonic acid groups or sulfonate with dimethyl ammonium cations and exhibit high proton conductivity at a low humidity of 60% RH (relative humidity) at ambient temperature.

  2. Rh(III)-catalyzed synthesis of sultones through C-H activation directed by a sulfonic acid group.

    PubMed

    Qi, Zisong; Wang, Mei; Li, Xingwei

    2014-09-04

    A new rhodium-catalyzed synthesis of sultones via the oxidative coupling of sulfonic acids with internal alkynes is described. The reaction proceeds via aryl C-H activation assisted by a sulfonic acid group.

  3. A new sesquiterpene lactone with sulfonic acid group from Saussurea lappa.

    PubMed

    Yin, Hong-Quan; Hua, Hui-Ming; Fu, Hong-Wei; Qi, Xiu-Lan; Li, Wen; Sha, Yi; Pei, Yue-Hu

    2007-01-01

    A new sesquiterpene lactone with an unusual sulfonic acid group, 13-sulfo-dihydrodehydrocostus lactone (1), was isolated from the roots of Saussurea lappa C. (Compositae), together with a known lignan (2). The structure of 1 was characterized on the basis of spectral evidence including 2DNMR studies. Compound 2 was obtained from this plant for the first time.

  4. Two new sesquiterpene lactones with the sulfonic acid group from Saussurea lappa.

    PubMed

    Yin, Hong-quan; Fu, Hong-wei; Hua, Hui-ming; Qi, Xiu-lan; Li, Wen; Sha, Yi; Pei, Yue-hu

    2005-07-01

    Two new sesquiterpene lactones with the unusual sulfonic acid group, 13-sulfo-dihydrosantamarine (1) and 13-sulfo-dihydroreynosin (2), have been isolated from the roots of Saussurea lappa C. Their structures, including the absolute configurations, were elucidated by spectroscopic methods.

  5. Copoly(arlene ether)s containing pendant sulfonic acid groups as proton exchange membrane

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik; Robertson, Gilles; Guiver, Michael

    2008-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The P AE and PAEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2-phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. The sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sP AE and sP AEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (DS) of 1.0 had high ion exchange capacities (IEC{sub v}(wet) (volume-based, wet state)) of 1.77 and 2.55 meq./cm{sup 3}, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5-51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the area of outstanding properties in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based). Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  6. Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes

    SciTech Connect

    Dae Sik, Kim; Yu Seung, Kim; Gilles, Robertson; Guiver, Michael D

    2009-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The PAE and P AEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sPAE and sPAEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (OS) of 1.0 had high ion exchange capacities (IEC{sub v})(wet) (volume-based, wet state) of 1.77 and 2.55 meq./cm3, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5 -51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the upper left-hand corner in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based), i.e., high proton conductivity and low water uptake. Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  7. Electroactive self-doped poly(amic acid) with oligoaniline and sulfonic acid groups: synthesis and electrochemical properties.

    PubMed

    Chi, Maoqiang; Wang, Shutao; Liang, Yuan; Chao, Danming; Wang, Ce

    2014-06-01

    A novel poly(amic acid) with pendant aniline tetramer and sulfonic acid groups (ESPAA) was synthesized by ternary polymerization and characterized by Fourier-transform infrared spectra, ((1))H NMR and gel permeation chromatography. The polymer showed good thermal stability and excellent solubility in the common organic solvents. The electrochemical properties were investigated carefully on a CHI 660A Electrochemical Workstation. The polymer displayed good electroactivity in acid, neutral and even in alkaline solutions (pH=1-10) due to the self-doping effect between aniline tetramer and sulfonic/carboxylic acid groups. It also exhibited satisfactory electrochromic performance with high contrast value, acceptable coloration efficiency and fast switching time in the range of pH=1-9.

  8. Safety assessment of xylene sulfonic acid, toluene sulfonic acid, and alkyl aryl sulfonate hydrotropes as used in cosmetics.

    PubMed

    Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Hill, Ronald; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2011-12-01

    Xylene sulfonic acid, toluene sulfonic acid, and alkyl aryl sulfonate hydrotropes used in cosmetics as surfactants, hydrotropes, were reviewed in this safety assessment. The similar structure, properties, functions, and uses of these ingredients enabled grouping them and using the available toxicological data to assess the safety of the entire group. The Cosmetic Ingredient Review Expert Panel reviewed relevant animal and human data related to these ingredients. The panel concluded that xylene sulfonic acid and alkyl aryl sulfonate hydrotropes are safe as cosmetic ingredients in the present practices of use and concentrations as described in this safety assessment, when formulated to be nonirritating.

  9. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    PubMed

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange.

  10. Synthesis and solid-state NMR characterization of cubic mesoporous silica SBA-1 functionalized with sulfonic acid groups.

    PubMed

    Tsai, Hui-Hsu Gavin; Chiu, Po-Jui; Jheng, Guang-Liang; Ting, Chun-Chiang; Pan, Yu-Chi; Kao, Hsien-Ming

    2011-07-01

    Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. By using (13)C CPMAS NMR technique, the status of the incorporated thiol groups and their transformation to sulfonic acid groups can be monitored and, as an extension, to define the optimum conditions to be used for the oxidation reaction to be quantitative. In particular, (29)Si{(1)H} 2D HETCOR NMR revealed that the protons in sulfonic acid groups are in close proximity to the silanol Q(3) species, but not close enough to form a hydrogen bond.

  11. Preparation of water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups and their micelles behavior, anticoagulant effect and cytotoxicity.

    PubMed

    Han, Qiaorong; Chen, Xiaohan; Niu, Yanlian; Zhao, Bo; Wang, Bingxiang; Mao, Chun; Chen, Libin; Shen, Jian

    2013-07-02

    Biocompatibility of nanoparticles has been attracting great interest in the development of nanoscience and nanotechnology. Herein, the aliphatic water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups (HBPE-SO3 NPs) were synthesized and characterized. They are amphiphilic polymeric nanoparticles with hydrophobic hyperbranched polyester (HBPE) core and hydrophilic sulfonic acid terminal groups. Based on our observations, we believe there are two forms of HBPE-SO3 NPs in water under different conditions: unimolecular micelles and large multimolecular micelles. The biocompatibility and anticoagulant effect of the HBPE-SO3 NPs were investigated using coagulation tests, hemolysis assay, morphological changes of red blood cells (RBCs), complement and platelet activation detection, and cytotoxicity (MTT). The results confirmed that the sulfonic acid terminal groups can substantially enhance the anticoagulant property of HBPE, and the HBPE-SO3 NPs have the potential to be used in nanomedicine due to their good bioproperties.

  12. Using a Macroporous Silver Shell to Coat Sulfonic Acid Group-Functionalized Silica Spheres and Their Applications in Catalysis and Surface-Enhanced Raman Scattering.

    PubMed

    Ren, Guohong; Wang, Wenqin; Shang, Mengying; Zou, Hanzhi; Cheng, Shengwei

    2015-09-29

    In this paper, novel organic sulfonic acid group-functionalized silica spheres (SiO2-SO3H) were chosen as a template for fabricating core-shell SiO2-SO3H@Ag composite spheres by the seed-mediated growth method. The SiO2-SO3H spheres could be obtained easily by oxidation of the thiol group-terminated silica spheres (SiO2-SH) with H2O2. Due to the presence of sulfonic acid groups, the [Ag(NH3)2](+) ions were captured on the surface of the silica spheres, followed by in-site reduction to silver nanoseeds for further growth of the silver shell. By this strategy, the complete silver shell could be obtained, and the surface morphologies and structures of the silver shell could be controlled by adjusting the number of sulfonic acid groups on the silica spheres. A large number of sulfonic acid groups on the SiO2-SO3H spheres favored the formation of the macroporous silver shell, which was unique and exhibited good catalytic performance and a high surface-enhanced Raman scattering (SERS) enhancement ability.

  13. Hydrogen Bonding Cluster-Enabled Addition of Sulfonic Acids to Haloalkynes: Access to Both (E)- and (Z)-Alkenyl Sulfonates.

    PubMed

    Zeng, Xiaojun; Liu, Shiwen; Shi, Zhenyu; Xu, Bo

    2016-10-07

    We developed an efficient synthesis of alkenyl sulfonates via hydrogen bonding cluster-enabled addition of sulfonic acids to haloalkynes. The reactivity of sulfonic acids could be significantly enhanced in the presence of strong hydrogen bonding donors. This metal-free method results in good chemical yields for a wide range of haloalkyne substrates and demonstrates good functional group tolerance. What is more, we can control the stereoselectivity of addition (cis vs trans) by varying the steric bulk of the sulfonic acid.

  14. Preparation of organic-inorganic hybrid silica monolith with octyl and sulfonic acid groups for capillary electrochromatograhpy and application in determination of theophylline and caffeine in beverage.

    PubMed

    Chen, Ming-Luan; Zheng, Ming-Ming; Feng, Yu-Qi

    2010-05-21

    An organic-inorganic hybrid silica monolithic column with octyl and sulfonic acid groups has been prepared by sol-gel technique for capillary electrochromatograhpy. The structure of hybrid monolith was optimized by changing the composition of tetraethoxysilane (TEOS), octyltriethoxysilane (C(8)-TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) in the mixture of precursors. Then, the obtained hybrid monolith was oxidized using hydrogen peroxide (30%, w/w) to yield sulfonic acid groups. The sulfonic acid group, which served as strong cation-exchanger, dominated the charge on the surface of the capillary column and generated stable electroosmotic flow (EOF) in a wide range of pH. The monolithic column was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis (EA), and the performance of column was evaluated in detail by separating different kinds of compounds with column efficiency up to 155,000 plates/m for thiourea. In addition, this monolithic column was also applied in the analysis of theophylline (TP) and caffeine (CA) in beverages. The detection limits were 0.39 and 0.48 microg/mL for theophylline and caffeine, respectively. The method reproducibility was tested by evaluating the intra- and inter-day precisions, and relative standard deviations of less than 3.9 and 8.4%, respectively, were obtained. Recoveries of compounds from spiked beverage samples ranged from 87.2 to 105.2%. 2010 Elsevier B.V. All rights reserved.

  15. Perfluoroalkyl acids including perfluorooctane sulfonate and perfluorohexane sulfonate in firefighters.

    PubMed

    Jin, ChuanFang; Sun, YingHua; Islam, Ahmed; Qian, Yong; Ducatman, Alan

    2011-03-01

    Firefighters were likely exposed to perfluorooctane sulfonate since it was a component of extinguishing foams and perfluorohexane sulfonate (PFHxS), a surfactant coating carpet and other building materials, during firefighting. The objective of the study is to evaluate serum concentrations of perfluoroalkyl acids (PFAAs) in firefighters. A total of 8826 male adults, including 37 firefighters, were analyzed. Multivariate analysis was conducted by using a general linear model. The least square mean of serum PFAAs was obtained after adjustment for demographic and socioeconomic variables. Serum concentration of PFHxS was statistically higher in firefighters both before and after adjustment. Perfluorooctane sulfonate and perfluorononanoic acid were also found higher in firefighters, though not statistically significant. The study suggests that fighting fire can be a risk of exposure to PFAAs, specifically PFHxS.

  16. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Trifluoromethane sulfonic acid. 173.395 Section... § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid has the empirical formula CF3SO3H (CAS Reg. No. 1493-13-6). The catalyst (Trifluoromethane sulfonic acid) may safely be used in the...

  17. Nafion-assisted cross-linking of sulfonated poly(arylene ether ketone) bearing carboxylic acid groups and their composite membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Lin, Haidan; Zhao, Chengji; Na, Hui

    In this study, a new type of cross-linked composite membrane is prepared and considered for its potential applications in direct methanol fuel cell. Nafion and sulfonated poly(arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) are blended and subsequently cross-linked by a Friedel-Craft reaction using the carboxylic acid groups in the SPAEK-C to achieve lower methanol permeability. The perfluoroalkyl sulfonic acid groups of Nafion act as a benign solid catalyst, which assist the cross-linking of SPAEK-C. The physical and chemical characterizations of the cross-linked composite membranes are performed by varying the contents of SPAEK-C. The c-Nafion-15% membrane exhibits appropriate water uptake (10.49-25.22%), low methanol permeability (2.57 × 10 -7 cm 2 s -1), and high proton conductivity (0.179 S cm -1 at 80 °C). DSC and FTIR analyze suggest the cross-linking reaction. These results show that the self-cross-linking of SPAEK-C in the Nafion membrane can effectively reduce methanol permeability while maintaining high proton conductivity.

  18. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  19. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Trifluoromethane sulfonic acid. 173.395 Section 173... CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid... acid) may safely be used in the production of cocoa butter substitute from palm oil (1-palmitoyl-2...

  20. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Trifluoromethane sulfonic acid. 173.395 Section... HUMAN CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid has the empirical formula CF3SO3H (CAS Reg. No. 1493-13-6). The catalyst (Trifluoromethane...

  1. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Trifluoromethane sulfonic acid. 173.395 Section... HUMAN CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid has the empirical formula CF3SO3H (CAS Reg. No. 1493-13-6). The catalyst (Trifluoromethane...

  2. Acid-mediated formation of trifluoromethyl sulfonates from sulfonic acids and a hypervalent iodine trifluoromethylating agent.

    PubMed

    Koller, Raffael; Huchet, Quentin; Battaglia, Philip; Welch, Jan M; Togni, Antonio

    2009-10-28

    A variety of sulfonic acids have been trifluoromethylated using 1-trifluoromethyl-1,2-benziodoxol-3(1H)-one under mild conditions in good to excellent yields. Initial mechanistic investigations of this reaction show a clean second-order kinetics and only very weak substrate electronic effects.

  3. Affinity labelling enzymes with esters of aromatic sulfonic acids

    DOEpatents

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  4. [New synthesis of the anticoagulant pentasaccharide idraparinux and preparation of its analogues containing sulfonic acid moieties].

    PubMed

    Herczeg, Mihály

    2012-01-01

    Two novel synthetic pathways were elaborated for the preparation of idraparinux, a heparin-related fully O-sulfated, O-methylated anticoagulant pentasaccharide. Both methods based upon a [2+3] block synthesis utilizing the same trisaccharide acceptor which was coupled to either a uronic acid disaccharide donor or its nonoxidized precursor. Two bioisosteric sulfonic acid analogues of idraparinux were also prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic acid esters were found to be excellent donors and acceptors in the glycosylation reactions. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of the reference compound idraparinux and the new sulfonic acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic acid moiety resulted in a notable decrease in the anti-Xa activity.

  5. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    PubMed Central

    Santacroce, Veronica; Maestri, Giovanni; Bigi, Franca; Rothenberg, Gadi

    2016-01-01

    Summary Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water. PMID:27829924

  6. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols.

    PubMed

    Maggi, Raimondo; Shiju, N Raveendran; Santacroce, Veronica; Maestri, Giovanni; Bigi, Franca; Rothenberg, Gadi

    2016-01-01

    Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  7. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  8. Camphorquinone-10-sulfonic acid and derivatives: convenient reagents for reversible modification of arginine residues

    SciTech Connect

    Pande, C.S.; Pelzig, M.; Glass, J.D.

    1980-02-01

    Camphorquinone-10-sulfonic acid hydrate was prepared by the action of selenous acid on camphor-10-sulfonic acid. Camphorquinone-10-sulfonylnorleucine was prepared either from the sulfonic acid via the sulfonyl chloride or by selenous acid oxidation of camphor-10-sulfonylnorleucine. These reagents are useful for specific, reversible modification of the guanidino groups of arginine residues. Camphorquinonsulfonic acid is a crystalline water-soluble reagent that is especially suitable for use with small arginine-containing molecules, because the sulfonic acid group of the reagent is a convenient handle for analytical and preparative separation of products. Camphorquinonesulfonylnorleucine is more useful for work with large polypeptides and proteins, because hydrolysates of modified proteins may be analyzed for norleucine to determine the extent of arginine modification. The adducts of the camphorquinone derivatives with the guanidino group are stable to 0.5 M hydroxylamine solutions at pH 7, the recommended conditions for cleavage of the corresponding cyclohexanedione adducts. At pH 8-9 the adducts of the camphorquinone derivatives with the guanidino group are cleaved by o-phenylenediamine. The modification and regeneration of arginine, of the dipeptide arginylaspartic acid, of ribonuclease S-peptide, and of soybean trypsin inhibitor are presented as demonstrations of the use of the reagents.The use of camphorquinonesulfonyl chloride to prepare polymers containing arginine-specific ligands is discussed.

  9. Synthesis of new sulfonylamido-penicillanic acid sulfones inhibitors of beta-lactamases.

    PubMed

    Vanwetswinkel, S; Fastrez, J; Marchand-Brynaert, J

    1994-09-01

    Three new sulfonylamido-penicillanic acid sulfones have been prepared by reaction of 6-aminopenicillanic esters with the monoester or monoamide derivatives obtained in nucleophilic substitution reactions by alcohol or aniline on the carboxyl chloride function of sulfoacetic dichloride followed by oxidation. These penicillin sulfones are converted to beta-lactamases suicide inhibitors by removal of the C3 ester protecting group. This synthetic strategy can give access to sulfonamidopenam sulfones bearing a variety of 6-amino side chain. These inhibitors inactivate the RTEM beta-lactamase rapidly. The kinetics of inactivation are consistent with the partitioning of an acylenzyme intermediate between two main pathways: regeneration of free enzyme and irreversible inactivation, little transient inactivation is observed. A slow inhibition by the product of enzymatic hydrolysis of the sulfones is also observed.

  10. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

  11. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

  12. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

  13. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

  14. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

  15. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  16. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  17. Effective and selective bisphenol A synthesis on a layered silicate with spatially arranged sulfonic acid.

    PubMed

    Ide, Yusuke; Kagawa, Noriko; Itakura, Masaya; Imae, Ichiro; Sadakane, Masahiro; Sano, Tsuneji

    2012-04-01

    The silylated derivatives of a layered alkali silicate, magadiite, modified with propylsulfonic or arylsulfonic acid were synthesized and used as catalysts for an acid-catalyzed condensation of phenol with acetone. The propylsulfonated magadiites with a different amount of the attached silyl group were synthesized by the silylation of the dodecylammonium-exchanged magadiite with the tuned amount of 3-(mercaptopropyl)trimethoxysilane and the subsequent oxidation of the attached thiol to sulfonic acid. The arylsulfonated magadiite was synthesized by the silylation of the dodecylammonium-exchanged magadiite with 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane and the subsequent hydrolysis of the attached sulfonyl chloride to sulfonic acid. The X-ray diffraction (XRD) patterns and elemental mappings of the products, and the photoluminescent spectra of the Eu(3+)-exchanged products suggested that propylsulfonic or arylsulfonic acid was homogeneously distributed in the interlayer space. When all the sulfonated materials were used as an acid catalyst for condensation between phenol and acetone, p,p' bisphenol A selectively formed over the o,p' isomer, and higher yield and selectivity were attained on the catalysts with larger amount of the attached sulfonic acid. When the interlayer space of the propylsulfonated magadiite was expanded by the co-attachment of octadecylsilyl group, lower selectivity was obtained. The arylsulfonated magadiite showed considerably higher p,p' bisphenol A yield than the propylsulfonated magadiites.

  18. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sulfonic acid has the empirical formula CF3SO3H (CAS Reg. No. 1493-13-6). The catalyst (Trifluoromethane... catalyst meets the following specifications: Appearance, Clear liquid. Color, Colorless to amber... esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase...

  19. Identification of sulfonic acids as efficient ecto-5'-nucleotidase inhibitors.

    PubMed

    Iqbal, Jamshed; Saeed, Aamer; Raza, Rabia; Matin, Abdul; Hameed, Abdul; Furtmann, Norbert; Lecka, Joanna; Sévigny, Jean; Bajorath, Jürgen

    2013-01-01

    Ecto-5'-nucleotidase (CD73) is well known for its implication in cancer. Inhibition of ecto-5'-nucleotidases is thought to provide an attractive approach to cancer therapy. This study identifies sulfonic acid compounds as efficient inhibitors of ecto-5'-nucleotidases. The compounds were tested against recombinant human and rat ecto-5'-nucleotidases. The most potent new sulfonic acid inhibitor 6-amino-4-hydroxynaphthalene-2-sulfonic acid (1) of ecto-5'-nucleotidase had an IC₅₀ of 1.32 ± 0.09 μM for the human and 10.4 ± 3.3 μM for the rat enzyme. Generally, all compounds were more active against the human enzyme. Plausible binding mode models were developed for this new class of inhibitors. Furthermore, several sulfonic acid inhibitors were efficient cytotoxic agents when tested on H157 cancer cell lines. Hence, new ecto-5'-nucleotidases inhibitors displayed significant potential for further development as compounds for anti-cancer therapy.

  20. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  1. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  2. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  3. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  4. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...

  5. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...

  6. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  7. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section for...

  8. 40 CFR 721.10487 - Alkylbenzenes sulfonic acids, metal salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylbenzenes sulfonic acids, metal... Specific Chemical Substances § 721.10487 Alkylbenzenes sulfonic acids, metal salts (generic). (a) Chemical... as alkylbenzenes sulfonic acids, metal salts (PMNs P-04-599, P-04-600, P-04-605, and P-04-606) are...

  9. 40 CFR 721.10633 - Aromatic sulfonic acid amino azo dye salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic sulfonic acid amino azo dye... Specific Chemical Substances § 721.10633 Aromatic sulfonic acid amino azo dye salts (generic). (a) Chemical... as aromatic sulfonic acid amino azo dye salts (PMN P-12-276) is subject to reporting under this...

  10. 40 CFR 721.10633 - Aromatic sulfonic acid amino azo dye salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic sulfonic acid amino azo dye... Specific Chemical Substances § 721.10633 Aromatic sulfonic acid amino azo dye salts (generic). (a) Chemical... as aromatic sulfonic acid amino azo dye salts (PMN P-12-276) is subject to reporting under this...

  11. 40 CFR 721.10474 - Substituted amino ethane sulfonic acid salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted amino ethane sulfonic acid... Specific Chemical Substances § 721.10474 Substituted amino ethane sulfonic acid salt (generic). (a... generically as substituted amino ethane sulfonic acid salt (PMN P-04-107) is subject to reporting under this...

  12. 40 CFR 721.10474 - Substituted amino ethane sulfonic acid salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted amino ethane sulfonic acid... Specific Chemical Substances § 721.10474 Substituted amino ethane sulfonic acid salt (generic). (a... generically as substituted amino ethane sulfonic acid salt (PMN P-04-107) is subject to reporting under this...

  13. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  14. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  15. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  16. 40 CFR 721.10437 - Sulfonic acid, linear xylene alkylate, mono, sodium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfonic acid, linear xylene alkylate... Significant New Uses for Specific Chemical Substances § 721.10437 Sulfonic acid, linear xylene alkylate, mono... chemical substances identified generically as sulfonic acid, linear xylene alkylate, mono, sodium...

  17. 40 CFR 721.10437 - Sulfonic acid, linear xylene alkylate, mono, sodium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfonic acid, linear xylene alkylate... Significant New Uses for Specific Chemical Substances § 721.10437 Sulfonic acid, linear xylene alkylate, mono... chemical substances identified generically as sulfonic acid, linear xylene alkylate, mono, sodium...

  18. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  19. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  20. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  1. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  2. 40 CFR 721.10487 - Alkylbenzenes sulfonic acids, metal salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylbenzenes sulfonic acids, metal... Specific Chemical Substances § 721.10487 Alkylbenzenes sulfonic acids, metal salts (generic). (a) Chemical... as alkylbenzenes sulfonic acids, metal salts (PMNs P-04-599, P-04-600, P-04-605, and P-04-606)...

  3. Printing properties of the red reactive dyes with different number sulfonate groups on cotton fabric.

    PubMed

    Xie, Kongliang; Gao, Aiqin; Li, Min; Wang, Xiao

    2014-01-30

    Cellulose fabric is an important printing substrate. Four red azo reactive dyes based on 1-naphthol-8-amino-3,6-disulfonic acid for cotton fabric printing were designed. Their UV-Vis spectra and printing properties for cotton were investigated. The relationship between the chemical structures of the dyes and their printing properties on cotton fabric was discussed. The results show that the color yield (K/S) values of the printed fabrics decreased with the increase of sulfonate groups, but the fixation and penetration of the reactive dyes on cotton fabric increased. The reactive dyes with fewer number sulfonate groups were sensitive to alkaline and urea. Whereas, the reactive dyes with numerous sulfonate groups were not sensitive to urea and had good leveling properties, penetration uniformity, and good wet fastness for cotton fabric. Surface wettability of all cotton fabrics printed with four dyes was excellent. It is possible to print cotton fabric urea-free using the reactive dyes with numerous sulfonate groups. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Sulfone/Ester Polymers Containing Pendent Ethynyl Groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.

    1986-01-01

    Two processes make high-performance polymers resistant to solvents, without compromising mechanical characteristics. Polymers show improved solvent resistance while retaining high toughness, thermoformability, and mechanical performance. Multistep process involves conversion of pendent bromo group to ethynyl group, while direct process involves reacting hydroxy-terminated sulfone oligomers or polymers with stoichiometric amount of 5-(4-ethynylphenoxy) isophthaloyl chloride. Applications for new polymers include adhesives, composite resin matrices, moldings, ultrafiltration membranes, protective coatings, and such electrical insulators as thin films for microelectronic circuitry.

  5. Sulfone/Ester Polymers Containing Pendent Ethynyl Groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.

    1986-01-01

    Two processes make high-performance polymers resistant to solvents, without compromising mechanical characteristics. Polymers show improved solvent resistance while retaining high toughness, thermoformability, and mechanical performance. Multistep process involves conversion of pendent bromo group to ethynyl group, while direct process involves reacting hydroxy-terminated sulfone oligomers or polymers with stoichiometric amount of 5-(4-ethynylphenoxy) isophthaloyl chloride. Applications for new polymers include adhesives, composite resin matrices, moldings, ultrafiltration membranes, protective coatings, and such electrical insulators as thin films for microelectronic circuitry.

  6. Synthesis and anticoagulant activity of bioisosteric sulfonic-Acid analogues of the antithrombin-binding pentasaccharide domain of heparin.

    PubMed

    Herczeg, Mihály; Lázár, László; Bereczky, Zsuzsanna; Kövér, Katalin E; Timári, István; Kappelmayer, János; Lipták, András; Antus, Sándor; Borbás, Anikó

    2012-08-20

    Two pentasaccharide sulfonic acids that were related to the antithrombin-binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic-acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic-acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic-acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic-acid moiety resulted in a notable decrease in the anti-Xa activity. The difference in the biological activity of the disulfonic- and trisulfonic-acid counterparts could be explained by the different conformation of their L-iduronic-acid residues.

  7. Characteristic constants of 2,2',4'-trihydroxyazobenzene-5-sulfonic acid, a reagent for spectrophotometric analysis

    USGS Publications Warehouse

    Fletcher, Mary H.

    1960-01-01

    The dye 2,2',4'-trihydroxyazobenzene-5-sulfonic acid, has shown promise as a reagent for the determination of zirconium. As the literature contains very little information about this dye, basic data pertinent to its use as a reagent were determined. The sulfonic acid group and all three of the hydroxy groups show acidic characteristics. Apparent dissociation constants were determined for the three more labile protons and the approximate order of magnitude for the fourth constant was estimated. Absorption spectra for the different ionization species are given. A curve is also included which shows the fraction of dye in the different ionization forms at acidities from 10.35M hydrochloric acid to pH 11.9. A sixth dye species was found in 1.0 to 8.4M potassium hydroxide solutions, but its nature is unknown.

  8. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.

    PubMed

    Lu, Yang; Gu, Sui; Guo, Jing; Rui, Kun; Chen, Chunhua; Zhang, Sanpei; Jin, Jun; Yang, Jianhua; Wen, Zhaoyin

    2017-05-03

    The lithium-sulfur battery is one of the most prospective chemistries in secondary energy storage field due to its high energy density and high theoretical capacity. However, the dissolution of polysulfides in liquid electrolytes causes the shuttle effect, and the rapid decay of lithium sulfur battery has greatly hindered its practical application. Herein, combination of sulfonated reduced graphene oxide (SRGO) interlayer on the separator is adopted to suppress the shuttle effect. We speculate that this SRGO layer plays two roles: physically blocking the migration of polysulfide as ion selective layer and anchoring lithium polysulfide by the electronegative sulfonic group. Lewis acid-base theory and density functional theory (DFT) calculations indicate that sulfonic groups have a strong tendency to interact with lithium ions in the lithium polysulfide. Hence, the synergic effect involved by the sulfonic group contributes to the enhancement of the battery performance. Furthermore, the uniformly distributed sulfonic groups working as active sites which could induce the uniform distribution of sulfur, alleviating the excessive growth of sulfur and enhancing the utilization of active sulfur. With this interlayer, the prototype battery exhibits a high reversible discharge capacity of more than 1300 mAh g(-1) and good capacity retention of 802 mAh g(-1) after 250 cycles at 0.5 C rate. After 60 cycles at different rates from 0.2 to 4 C, the cell with this functional separator still recovered a high specific capacity of 1100 mAh g(-1) at 0.2 C. The results demonstrate a promising interlayer design toward high performance lithium-sulfur battery with longer cycling life, high specific capacity, and rate capability.

  9. Differential toxicity between perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA).

    PubMed

    Tsuda, Shuji

    2016-01-01

    Perfluoroalkyl substances (PFASs) are persistent environmental contaminants. Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) are representatives of PFASs. Recently, the U.S. Environmental Protection Agency (US EPA) set the health advisory level as 70 parts per trillion for lifetime exposure to PFOS and PFOA from drinking water, based on the EPA's 2016 Health Effects Support Documents. Then, a monograph on PFOA was made available online by the International Agency for Research on Cancer, where the agency classified PFOA as "possibly carcinogenic to humans" (Group 2B). The distinction between PFOS and PFOA, however, may not be easily understood from the above documents. This paper discussed differential toxicity between PFOS and PFOA focusing on neurotoxicity, developmental toxicity and carcinogenicity, mainly based on these documents. The conclusions are as follows: Further mechanistic studies may be necessary for ultrasonic-induced PFOS-specific neurotoxicity. To support the hypothesis for PFOS-specific neonatal death that PFOS interacts directly with components of natural lung surfactant, in vivo studies to relate the physicochemical effects to lung collapse may be required. PFOA-induced DNA damage secondary to oxidative stress may develop to mutagenicity under the condition where PFOA-induced apoptosis is not sufficient to remove the damaged cells. A study to find whether PFOA induces apoptosis in normal human cells may contribute to assessment of human carcinogenicity. Studies for new targets such as hepatocyte nuclear factor 4α (HNF4α) may help clarify the underlying mechanism for PFOA-induced carcinogenicity.

  10. Synthesis of a sulfonic acid mimetic of the sulfated Lewis A pentasaccharide.

    PubMed

    Jakab, Zsolt; Fekete, Anikó; Csávás, Magdolna; Borbás, Anikó; Lipták, András; Antus, Sándor

    2012-03-01

    The first sulfonic acid mimetic of the sulfated Lewis A pentasaccharide in which the natural L-fucose unit is replaced by a D-arabinose ring was synthesized. Formation of the sulfonic acid moiety at a pentasaccharide level could be successfully achieved by means of introduction of an acetylthio moiety into the terminal D-galactose residue and subsequent oxidation. The equatorial arrangement of the acetylthio group linked to C-3 of the galactose ring could be obtained by double nucleophilic substitutions; efficient formation of the gulo-triflate derivatives required low-power microwave (MW) activation. Oxidation of the acetylthio group was carried out using Oxone in the presence of acetic acid.

  11. Congener-specific numbering systems for the environmentally relevant C4 through C8 perfluorinated homologue groups of alkyl sulfonates, carboxylates, telomer alcohols, olefins, and acids, and their derivatives.

    PubMed

    Rayne, Sierra; Forest, Kaya; Friesen, Ken J

    2008-10-01

    We introduce a congener-specific numbering system for the C4 through C8 perfluorinated homologue groups of alkyl sulfonates, carboxylates, telomer alcohols, olefins, and acids, and their derivatives. Increasing length of the carbon chain beyond C3 leads to a corresponding rapid increase in the number of potential isomers (C4 = 4, C5 = 8, C6 = 17, C7 = 39, and C8 = 89 congeners). There is a need for clear and unambiguous chemical shorthand to ensure accuracy and consistency in the future perfluorinated alkyl substance (PFA) literature, and to correct previous misconceptions that may have restricted research efforts into developing full-congener PFA analysis. If adopted by the research community, introduction of a numbering system at this relatively early stage of investigations into the congener-specific analysis, environmental behavior, and toxicology of PFAs would not require an arduous and difficult reassignment of historical structures and naming conventions presented in the prior art. Many PFA congeners are chiral, necessitating a consideration of their enantiospecific environmental behavior and toxicology.

  12. Phosphoric Acid-Mediated Synthesis of Vinyl Sulfones through Decarboxylative Coupling Reactions of Sodium Sulfinates with Phenylpropiolic Acids.

    PubMed

    Rong, Guangwei; Mao, Jincheng; Yan, Hong; Zheng, Yang; Zhang, Guoqi

    2015-08-07

    A novel phosphoric acid -mediated synthesis of vinyl sulfones through decarboxylative coupling reactions of sodium sulfinates with phenylpropiolic acids is described. This transformation is efficient and environmentally friendly.

  13. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    PubMed

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups.

    PubMed

    Shahroosvand, Hashem; Abbasi, Parisa; Mohajerani, Ezeddin; Janghouri, Mohammad

    2014-06-28

    We have synthesized five novel Ru(ii) phenanthroline complexes with an additional aryl sulfonate ligating substituent at the 5-position [Ru(L)(bpy)2](BF4)2 (1), [Ru(L)(bpy)(SCN)2] (2), [Ru(L)3](BF4)2 (3), [Ru(L)2(bpy)](BF4)2 (4) and [Ru(L)(BPhen)(SCN)2] (5) (where L = 6-one-[1,10]phenanthroline-5-ylamino)-3-hydroxynaphthalene 1-sulfonic, bpy = 2,2'-bipyridine, BPhen = 4,7-diphenyl-1,10-phenanthroline), as both photosensitizers for oxide semiconductor solar cells (DSSCs) and light emitting diodes (LEDs). The absorption and emission maxima of these complexes red shifted upon extending the conjugation of the phenanthroline ligand. Ru phenanthroline complexes exhibit broad metal to ligand charge transfer-centered electroluminescence (EL) with a maximum near 580 nm. Our results indicated that a particular structure (2) can be considered as both DSSC and OLED devices. The efficiency of the LED performance can be tuned by using a range of ligands. Device (2) has a luminance of 550 cd m(-2) and maximum efficiency of 0.9 cd A(-1) at 18 V, which are the highest values among the five devices. The turn-on voltage of this device is approximately 5 V. The role of auxiliary ligands in the photophysical properties of Ru complexes was investigated by DFT calculation. We have also studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phenanthroline complexes and an iodine redox electrolyte. A solar energy to electricity conversion efficiency (η) of 0.67% was obtained for Ru complex (2) under standard AM 1.5 irradiation with a short-circuit photocurrent density (Jsc) of 2.46 mA cm(-2), an open-circuit photovoltage (Voc) of 0.6 V, and a fill factor (ff) of 40%, which are all among the highest values for ruthenium sulfonated anchoring groups reported so far. Monochromatic incident photon to current conversion efficiency was 23% at 475 nm. Photovoltaic studies clearly indicated dyes with two SCN substituents yielded a higher Jsc for the

  15. Penicillanic acid sulfone: nature of irreversible inactivation of RTEM beta-lactamase from Escherichia coli.

    PubMed

    Brenner, D G; Knowles, J R

    1984-11-20

    When penicillanic acid sulfone in large molar excess is incubated with the RTEM beta-lactamase, the enzyme becomes inactivated irreversibly. From studies of the consequential spectroscopic changes, from the use of specifically tritiated penicillanic acid sulfone, and from comparison by isoelectric focusing of the enzyme after inactivation by the sulfone and by clavulanic acid, the inactivated enzyme appears to be cross-linked by a beta-aminoacrylate fragment deriving from C-5, C-6, and C-7 of the original beta-lactam. Model studies on the behavior of alcoholic solutions of penicillanic acid sulfone in the presence of amines are entirely consistent with this interpretation.

  16. Highly Efficient Sulfonic/Carboxylic Dual-Acid Synergistic Catalysis for Esterification Enabled by Sulfur-Rich Graphene Oxide.

    PubMed

    Zhang, Honglei; Luo, Xiang; Shi, Kaiqi; Wu, Tao; He, Feng; Zhou, Shoubin; Chen, George Z; Peng, Chuang

    2017-09-11

    A new sulfonic/carboxylic dual-acid catalyst based on sulfur-rich graphene oxide (GO-S) was readily prepared and used as a highly efficient and reusable solid acid catalyst toward the esterification of oleic acid with methanol for biodiesel production. Higher yields of methyl oleate (98 %) and over 3 times higher turnover frequencies (TOFs) were observed for the GO-S dual-acid catalyst, compared to liquid sulfuric acid or other carbon-based solid acid catalysts. The "acidity" of sulfonic acid groups was enhanced by the addition of carboxylic acid groups as the combination of the two acids enhances their inherent activity by associative interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bis-sulfonic acid ionic liquids for the conversion of fructose to 5-hydroxymethyl-2-furfural.

    PubMed

    Sim, Sang Eun; Kwon, Sunjeong; Koo, Sangho

    2012-10-31

    Homogenous bis-sulfonic acid ionic liquids (1 mol equiv.) in DMSO (10 mol equiv.) at 100 °C efficiently mediated the conversion of D-fructose into 5-hydroxymethyl-2-furfural in 75% isolated yield, which was roughly a 10% increment compared to the case of the mono-sulfonic acid ionic liquids.

  18. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  19. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  20. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  1. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  2. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  3. Influence of water-soluble flavonoids, quercetin-5'-sulfonic acid sodium salt and morin-5'-sulfonic acid sodium salt, on antioxidant parameters in the subacute cadmium intoxication mouse model.

    PubMed

    Chlebda, Ewa; Magdalan, Jan; Merwid-Lad, Anna; Trocha, Małgorzata; Kopacz, Maria; Kuźniar, Anna; Nowak, Dorota; Szelag, Adam

    2010-03-01

    Water-soluble quercetin-5'-sulfonic acid sodium salt (NaQSA) and morin-5'-sulfonic acid sodium salt (NaMSA) could exert an antagonistic effect on cadmium intoxication. The aim of the study was to examine the influence of these substances on superoxide dismutase (SOD) and glutathione (GSH) levels in the mouse liver in the subacute cadmium intoxication model. NaQSA and NaMSA significantly counteracted cadmium-induced decreases in SOD and GSH levels. No significant differences in SOD and GSH levels between groups exposed to cadmium receiving NaQSA or/and NaMSA were observed.

  4. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tripathi, Bijay P.; Schieda, M.; Shahi, Vinod K.; Nunes, Suzana P.

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm -1 at 30 °C and 16.8 × 10 -2 S cm -1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level.

  5. Determination of perfluorooctanoic acid and perfluorooctane sulfonate in Lake Victoria Gulf water.

    PubMed

    Orata, Francis; Quinete, Natalia; Werres, Friedrich; Wilken, Rolf-Dieter

    2009-02-01

    In this study we present a report of investigation from the screening of perfluorooctanoic acid and perfluorooctane sulfonate in Lake Victoria Gulf and in its source rivers. The first determined levels of perfluorinated alkylated substances in Lake Victoria ecosystem are presented. Variability in the concentrations of perfluorooctanoic acid or perfluorooctane sulfonate in river waters (range perfluorooctanoic acid 400-96,400 and perfluorooctane sulfonate <400-13,230 pg/L) was higher than for Lake waters (range perfluorooctanoic acid 400-11,650 and perfluorooctane sulfonate <400-2,530 pg/L respectively) suggesting generalized point sources such as domestic and industrial waste. The lowest limit of quantification was 400 pg/L for both analytes and limit of detection were 75 and 40 pg/L for perfluorooctanoic acid and perfluorooctane sulfonate respectively. Typical values for precision obtained were 0.14-3.7%, with concentrations range from 400 pg/mL to 1 microg/mL).

  6. Sulfonic Acid- and Lithium Sulfonate-Grafted Poly(Vinylidene Fluoride) Electrospun Mats As Ionic Liquid Host for Electrochromic Device and Lithium-Ion Battery.

    PubMed

    Zhou, Rui; Liu, Wanshuang; Leong, Yew Wei; Xu, Jianwei; Lu, Xuehong

    2015-08-05

    Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) are promising nonvolatile electrolytes with high ionic conductivity. The large cations of ILs are, however, difficult to diffuse into solid electrodes, making them unappealing for application in some electrochemical devices. To address this issue, a new strategy is used to introduce proton conduction into an IL-based electrolyte. Poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) copolymer is functionalized with sulfonic acid through covalent attachment of taurine. The sulfonic acid-grafted P(VDF-HFP) electrospun mats consist of interconnected nanofibers, leading to remarkable improvement in dimensional stability of the mats. IL-based polymer electrolytes are prepared by immersing the modified mats in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)). It is found that the SO3(-) groups can have Lewis acid-base interactions with the cations (BMIM(+)) of IL to promote the dissociation of ILs, and provide additional proton conduction, resulting in significantly improved ionic conductivity. Using this novel electrolyte, polyaniline-based electrochromic devices show higher transmittance contrast and faster switching behavior. Furthermore, the sulfonic acid-grafted P(VDF-HFP) electrospun mats can also be lithiated, giving additional lithium ion conduction for the IL-based electrolyte, with which Li/LiCoO2 batteries display enhanced C-rate performance.

  7. In situ S-K XANES study of polymer electrolyte fuel cells: changes in the chemical states of sulfonic groups depending on humidity.

    PubMed

    Isegawa, Kazuhisa; Nagami, Tetsuo; Jomori, Shinji; Yoshida, Masaaki; Kondoh, Hiroshi

    2016-09-14

    Changes in the chemical states of sulfonic groups of Nafion in polymer electrolyte fuel cells (PEFCs) under gas-flowing conditions were studied using in situ S-K XANES spectroscopy. The applied potential to the electrodes and the humidity of the cell were changed under flowing H2 gas in the anode and He gas in the cathode. While the potential shows no significant effect on the S-K XANES spectra, the humidity is found to induce reversible changes in the spectra. Comparison of the spectral changes with simulations based on the density functional theory calculations indicates that the humidity influences the chemical state of the sulfonic group; under wet conditions the sulfonic group is in the form of a sulfonate ion. By drying treatment the sulfonate ion binds to hydrogen and becomes sulfonic acid. Furthermore, a small fraction of the sulfonic acid irreversibly decomposes to atomic sulfur. The peak energy of the atomic sulfur suggests that the generated atomic sulfur is adsorbed on the Pt catalyst surfaces.

  8. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst

    SciTech Connect

    Yu Hao Jin Yuguang; Li Zhili; Peng Feng Wang Hongjuan

    2008-03-15

    Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 deg. C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree ({approx}20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH{sub 3} temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications. - Graphical abstract: Sulfonated SWCNTs with 20 wt% -SO{sub 2}OH groups were prepared by a high-temperature H{sub 2}SO{sub 4} process, which transformed the hydrophobic surface of pristine SWCNTs to a hydrophilic surface and provided an excellent performance as solid acid catalyst.

  9. Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-10-14

    In order to estimate isomer-specific acidity constants (pKa) for the perfluorinated sulfonic acid (PFSA) environmental contaminants, the parameterization method 6 (PM6) pKa prediction method was extensively validated against a wide range of carbon oxyacids and related sulfonic/sulfinic acids. Excellent pKa prediction performance was observed for the carbon oxyacids using the PM6 method, but this approach was found to have a severe positive bias for sulfonic/sulfinic acids. To overcome this obstacle, a correlation was developed between non-adjusted PM6 pKa values and the corresponding experimentally obtained/estimated acidity constants for a range of representative alkyl, aryl and halogen-substituted sulfonic acids. Application of this correction to the PM6 values allows for extension of this computational method to a new acid functional group. When used to estimate isomer-specific pKa values for the C1 through C8 PFSAs, the modified PM6 approach suggests an adjusted pKa range from -5.3 to -9.0, indicating that all members of this class of well-known environmental contaminants will be effectively completely dissociated in aquatic systems.

  10. Cationic and radical intermediates in the acid photorelease from aryl sulfonates and phosphates.

    PubMed

    Terpolilli, Marco; Merli, Daniele; Protti, Stefano; Dichiarante, Valentina; Fagnoni, Maurizio; Albini, Angelo

    2011-01-01

    The irradiation of a series of phenyl sulfonates and phosphates leads to the quantitative release of acidity with a reasonable quantum yield (≈0.2). Products characterization, ion chromatography analysis and potentiometric titration are consistent with the intervening of two different paths in this reaction, viz. cationic with phosphates and (mainly) radical with sulfonates.

  11. Determination of perfluoroalkyl carboxylic, sulfonic, and phosphonic acids in food.

    PubMed

    Ullah, Shahid; Alsberg, Tomas; Vestergren, Robin; Berger, Urs

    2012-11-01

    A sensitive and accurate method was developed and validated for simultaneous analysis of perfluoroalkyl carboxylic acids, sulfonic acids, and phosphonic acids (PFPAs) at low picograms per gram concentrations in a variety of food matrices. The method employed extraction with acetonitrile/water and cleanup on a mixed-mode co-polymeric sorbent (C8 + quaternary amine) using solid-phase extraction. High-performance liquid chromatographic separation was achieved on a C18 column using a mobile phase gradient containing 5 mM 1-methyl piperidine for optimal chromatographic resolution of PFPAs. A quadrupole time-of-flight high-resolution mass spectrometer operating in negative ion mode was used as detector. Method detection limits were in the range of 0.002 to 0.02 ng g(-1) for all analytes. Sample preparation (extraction and cleanup) recoveries at a spiking level of 0.1 ng g(-1) to a baby food composite were in the range of 59 to 98 %. A strong matrix effect was observed in the analysis of PFPAs in food extracts, which was tentatively assigned to sorption of PFPAs to the injection vial in the solvent-based calibration standard. The method was successfully applied to a range of different food matrices including duplicate diet samples, vegetables, meat, and fish samples.

  12. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    NASA Astrophysics Data System (ADS)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  13. Synthesis of 1H-indole-3-sulfonates via palladium-catalyzed tandem reactions of 2-alkynyl arylazides with sulfonic acids.

    PubMed

    Zhang, Xiaoxiang; Li, Ping; Lyu, Chang; Yong, Wanxiong; Li, Jing; Zhu, Xinbao; Rao, Weidong

    2017-07-26

    An efficient method for the synthesis of 1H-indole-3-sulfonates via palladium-catalyzed tandem reactions of 2-alkynyl arylazides with sulfonic acids has been developed. The desired products were obtained in good to excellent yields under mild reaction conditions. The reactions were shown to proceed very fast, in most cases, within 10 min.

  14. Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids.

    PubMed

    Chen, Shih-Yuan; Lao-Ubol, Supranee; Mochizuki, Takehisa; Abe, Yohko; Toba, Makoto; Yoshimura, Yuji

    2014-04-01

    Sulfonic acid-functionalized platelet SBA-15 mesoporous silica with an acid capacity of 2.44mmol H(+) g-cat(-1) (shortly termed 15SA-SBA-15-p) was one-pot synthesized by co-condensation method. When applied as solid acid catalyst in synthesis of Jatropha biodiesel fuel (BDF), the 15SA-SBA-15-p catalyst showed higher activity and resistances to water and free fatty acid (FFA) than commercial sulfonic resins of Amberlyst-15 and SAC-13. For the continuous Jatropha BDF production, a steady 75-78wt% of fatty acid methyl ester (FAME) content was obtained over 15SA-SBA-15-p catalyst at 150°C for 75h, whereas the Amberlyst-15 and SAC-13 catalysts were quickly deactivated due to the decomposition of thermally unstable framework and serious leaching of sulfonic acids. More importantly, the quality, stability and cold flow characteristic of Jatropha BDF synthesized by 15SA-SBA-15-p catalyst were better than those synthesized by Amberlyst-15 and SAC-13 catalysts, making the blending with petro-diesel an easy task.

  15. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    EPA Science Inventory

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  16. Titania-based molecularly imprinted polymer for sulfonic acid dyes prepared by sol-gel method.

    PubMed

    Li, Man; Li, Rong; Tan, Jin; Jiang, Zi-Tao

    2013-03-30

    A novel titania-based molecularly imprinted polymer (MIP) was synthesized through sol-gel process with sunset yellow (Sun) as template, without use of functional monomer. MIP was used as a solid-phase extraction material for the isolation and enrichment of sulfonic acid dyes in beverages. The results showed that MIP exhibited better selectivity, higher recovery and adsorption capacity for the sulfonic acid dyes compared to the non-imprinted polymer (NIP). MIP presented highest extraction selectivity to Sun when pH less than or equal to 3. The adsorption capacity was 485.9 mg g(-1), which was larger than that of NIP (384.7 mg g(-1)). The better clean-up ability demonstrated the capability of MIP for the isolation and enrichment of sulfonic acid dyes in complicated food samples. The mean recoveries for the sulfonic acid dyes on MIP were from 81.9% to 97.2% in spiked soft drink.

  17. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    EPA Science Inventory

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  18. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles.

    PubMed

    Supreeyasunthorn, Phenpimuk; Boontanon, Suwanna K; Boontanon, Narin

    2016-01-01

    The goals of this study were to determine the concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in textiles and to determine PFOS and PFOA contamination in textile washing water. Quantification analysis was performed by high performance liquid chromatography coupled with tandem mass spectrometry. Analysis of 32 textile samples by methanol extraction revealed that the average concentrations of PFOS and PFOA were 0.18 µg m(-2) (0.02 to 0.61 µg m(-2)) and 2.74 µg m(-2) (0.31 to 14.14 µg m(-2)), respectively. Although the average concentration of PFOS found in textile samples was below European Union (EU) Commission regulations (<1 µg m(-2)), the average concentration of PFOA was 2.74 µg m(-2), and 68.75% of textile samples had PFOA concentrations exceeding 1 µg m(-2). Thus, based on these results, the concentration of PFOA in products should also be regulated. Experiments on PFOS and PFOA leaching into washing water were conducted. The maximum concentrations of PFOS and PFOA were measured after the first washing; the concentrations gradually decreased with each subsequent washing. PFOS and PFOA migrated from textiles and were released into the environment, with disappearance percentages of 29.8% for PFOS and 99% for PFOA. The data presented in this study showed that textiles could be a significant direct and indirect source of PFOS and PFOA exposure for both humans and the environment.

  19. New Insights into Perfluorinated Sulfonic-Acid Ionomers

    DOE PAGES

    Kusoglu, Ahmet; Weber, Adam Z.

    2017-01-23

    In this comprehensive review, recent progress and developments on perfluorinated sulfonic-acid (PFSA) membranes have been summarized on many key topics. Although quite well investigated for decades, PFSA ionomers’ complex behavior, along with their key role in many emerging technologies, have presented significant scientific challenges but also helped create a unique cross-disciplinary research field to overcome such challenges. Research and progress on PFSAs, especially when considered with their applications, are at the forefront of bridging electrochemistry and polymer (physics), which have also opened up development of state-of-the-art in situ characterization techniques as well as multiphysics computation models. Topics reviewed stem frommore » correlating the various physical (e.g., mechanical) and transport properties with morphology and structure across time and length scales. In addition, topics of recent interest such as structure/transport correlations and modeling, composite PFSA membranes, degradation phenomena, and PFSA thin films are presented. Throughout, the impact of PFSA chemistry and side-chain is also discussed to present a broader perspective.« less

  20. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    SciTech Connect

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang . E-mail: wanmx@iccas.ac.cn

    2005-03-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with {alpha}-naphthalene sulfonic acid ({alpha}-NSA), {beta}-naphthalene sulfonic acid ({beta}-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO{sub 3}H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including {pi}-{pi} interactions, hydrogen and ionic bonds.

  1. A Modular Synthetic Approach to Isosteric Sulfonic Acid Analogues of the Anticoagulant Pentasaccharide Idraparinux.

    PubMed

    Mező, Erika; Eszenyi, Dániel; Varga, Eszter; Herczeg, Mihály; Borbás, Anikó

    2016-11-11

    Heparin-based anticoagulants are drugs of choice in the therapy and prophylaxis of thromboembolic diseases. Idraparinux is a synthetic anticoagulant pentasaccharide based on the heparin antithrombin-binding domain. In the frame of our ongoing research aimed at the synthesis of sulfonic acid-containing heparinoid anticoagulants, we elaborated a modular pathway to obtain a series of idraparinux-analogue pentasaccharides bearing one or two primary sulfonic acid moieties. Five protected pentasaccharides with different C-sulfonation patterns were prepared by two subsequent glycosylation reactions, respectively, using two monosaccharide and four disaccharide building blocks. Transformation of the protected derivatives into the fully O-sulfated, O-methylated sulfonic acid end-products was also studied.

  2. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    USGS Publications Warehouse

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  3. The Phase Transition Behavior of Side Chain Liquid Crystalline Polymers Containing Sulfone Group

    NASA Astrophysics Data System (ADS)

    Lee, Daewon

    2005-03-01

    The phase transition behavior in side chain liquid crystalline polymers (SCLCPs) based on a hydrophilic poly(ethylene oxide) (PEO) main chain and a hydrophobic alkyl side chain containing sulfone groups was investigated by using DSC, POM, synchrotron X- ray scattering, FT-IR and rheological measurements. In the case of poly[oxy(octylsulfonylhexylthiomethyl) ethylene] (8S6EO) containing sulfone groups located at the intermediate position in the side chain, the presence of sulfone groups made it possible to obtain a highly ordered layer structure mainly due to the strong dipole-dipole interactions among sulfone groups. It is also noted that the scattering patterns completely disappeared in the isotropic state. On the other hand, a series of three SCLCPs containing sulfone groups near the hydrophilic backbone, poly[oxy(n-decylsulfonylmethyl) ethylene] (nSEO, n = 14, 16, 18), showed the evident mesophase stability due to its amphiphilic character. Interestingly, it was clearly observed for SEO-series that a broad scattering, related to the correlation hole peak due to the presence of dynamic density inhomogeneity in the disordered state, persisted even above the Ti. We also investigated the effect of length of alkyl side chains on the phase transition behavior of SEO-series, showing the layered structures with a periodic undulation of backbone chains for both 16SEO and 18SEO.

  4. Diffusion Coefficient of Tin(II) Methanesulfonate in Ionic Liquid and Methane Sulfonic Acid (MSA) Solvent

    NASA Astrophysics Data System (ADS)

    Yang, Kok Kee; Mahmoudian, M. R.; Ebadi, Mehdi; Koay, Hun Lee; Basirun, Wan Jeffrey

    2011-12-01

    Voltammetry and chronoamperometry for the electrodeposition of tin from Tin(II) methane sulfonate mixed with ionic liquid and methane sulfonate acid at room temperature was studied. Cyclic voltammetry shows redox waves of Tin(II), which proves that the electrodeposition of tin from Tin(II) methane sulfonate is a diffusion-controlled process. The diffusion coefficient of Tin(II) ions in the solvent mixture showed good agreement from both voltammetry and chronoamperometry results. The diffusion coefficient of Tin(II) in the mixture was much smaller than in aqueous solution, and it depends on the anion of the ionic liquid.

  5. Response of the zooplankton community and environmental fate of perfluorooctane sulfonic acid in aquatic microcosms.

    PubMed

    Boudreau, Timothy M; Wilson, Christian J; Cheong, Woo Jay; Sibley, Paul K; Mabury, Scott A; Muir, Derek C G; Solomon, Keith R

    2003-11-01

    Little is known regarding perfluorooctane sulfonic acid (PFOS) toxicity to freshwater organisms. This field evaluation aims to assess the toxicological risk associated with exposure to PFOS across levels of biological organization. The analysis of variance study was conducted in replicate (n = 3) 12,000 L outdoor microcosms. Multivariate techniques were used to assess the response of zooplankton community structure and dynamics, as well as a floating macrophyte, Lemna gibba. The zooplankton community was significantly affected (p < 0.05) by the treatment regime given by the Monte Carlo permutations for all sampling times. A community-level no-observable-effect concentration ([NOEC]community) of 3.0 mg/L was determined for the 35-day study, however, longer term studies are recommended. The most sensitive taxonomic groups, Cladocera and Copepoda, were virtually eliminated in 30 mg/L treatments after 7 d. The 42-d 50% inhibition concentration (IC50) for L. gibba frond number was 19.1 mg/L and the NOEC was 0.2 mg/L. Furthermore, we investigated the persistence of PFOS over 285 d in microcosms under natural conditions. Perfluorooctane sulfonic acid concentration showed no drastic reduction in any treatment microcosm over the entire study period, confirming that this compound undergoes little degradation in aquatic systems. Presently, there appears to be little hazard to these freshwater organisms at reported environmental concentrations.

  6. Modification of the cellulosic component of hemp fibers using sulfonic acid derivatives: Surface and thermal characterization.

    PubMed

    George, Michael; Mussone, Paolo G; Bressler, David C

    2015-12-10

    The aim of this study was to characterize the surface, morphological, and thermal properties of hemp fibers treated with two commercially available, inexpensive, and water soluble sulfonic acid derivatives. Specifically, the cellulosic component of the fibers were targeted, because cellulose is not easily removed during chemical treatment. These acids have the potential to selectively transform the surfaces of natural fibers for composite applications. The proposed method proceeds in the absence of conventional organic solvents and high reaction temperatures. Surface chemical composition and signature were measured using gravimetric analysis, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR). XPS data from the treated hemp fibers were characterized by measuring the reduction in O/C ratio and an increase in abundance of the C-C-O signature. FTIR confirmed the reaction with the emergence of peaks characteristic of disubstituted benzene and amino groups. Grafting of the sulfonic derivatives resulted in lower surface polarity. Thermogravimetric analysis revealed that treated fibers were characterized by lower percent degradation between 200 and 300 °C, and a higher initial degradation temperature.

  7. Effect of cationic groups in poly(arylene ether sulfone) membranes on reverse electrodialysis performance.

    PubMed

    Cho, Doo Hee; Lee, Kang Hyuck; Kim, Young Mi; Park, Sang Hyun; Lee, Won Hyo; Lee, Sang Min; Lee, Young Moo

    2017-02-16

    In this work, three functional groups were introduced in poly(arylene ether sulfone) membranes to investigate the effects of cationic functional groups in the membranes on reverse electrodialysis performance. Our results showed that controlling the swelling behaviour of the membranes was an important factor for increasing the permselectivity while maintaining their high conductivity.

  8. [Investigation on formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica].

    PubMed

    Guo, Ai-Li; Gao, Hui-Min; Chen, Liang-Mian; Zhang, Qi-Wei; Wang, Zhi-Min

    2014-05-01

    To investigate formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica, secologanic acid was enriched and purified from the sun-dried buds of L. japonica by various column chromatography on macroporus resin HPD-100, silica gel and ODS. The stimulation experiments of sulfur-fumigation process were carried out using secologanic acid reacted with SO2 in the aqueous solution. The reaction mechanism could be involved in the esterification or addition reaction. The present investigation provides substantial evidences for interpreting formation pathway of secologanic acid sulfonates in sulfur-fumigated buds of L. japonica.

  9. Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a powerful hybrid catalyst for synthesis of indazolophthalazinetriones.

    PubMed

    Doustkhah, Esmail; Rostamnia, Sadegh

    2016-09-15

    Multistep synthesis of covalently sulfonated magnetic graphene oxide was achieved by starting from Hummer's method to produce graphene oxide (GO) from chemical oxidation of graphite. Then, GO nanosheets were applied to support Fe3O4 nanoparticles (Fe3O4@GO) using co-precipitation method in the presence of GO sheets. This strategy led to formation of uniform particles of Fe3O4 on the surface of GO sheets. Then, it was sulfonated (Fe3O4@GO-Pr-SO3H) through modification with 3-mercaptopropyltrimethoxysilane (MPTMS) and subsequent oxidation with hydrogen peroxide (H2O2). In comparison, the covalently bonded propyl sulfonic acid groups were more prevailing rather to sulfonic acids of GO itself. The proposed catalyst was more active and recyclable at least for 11 runs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Re-evaluation of turbidimetry of proteins by use of aromatic sulfonic acids and chloroacetic acids.

    PubMed

    Ebina, S; Nagai, Y

    1979-02-01

    From studies on 11 different proteins (including native albumin and albumin with reduced disulfide-bridges) treated with sulfosalicylic, 2-naphthalenesulfonic, toluenesulfonic, dichloroacetic, or trichloroacetic acids, we elucidate the interactions determining the resulting turbidities and other factors affecting turbidities, and we discuss the clinical utility of such turbidimetry. At least three interactions are important in determining turbidity: reduction of positive charges on the protein, hydrogen bonding of the non-ionized chloroacetic acids with the protein, and hydrophobic interaction of the aromatic sulfonic acids with albumin. Turbidity varies appreciably with the species of acid and protein, concentrations of acid, temperature, and standing time after acid is added. We conclude that this technique should be restricted to confirming proteinuria.

  11. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    NASA Astrophysics Data System (ADS)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  12. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  13. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    SciTech Connect

    Ames, Richard L.

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate counterparts of similar thickness

  14. N-(4-Methyl-phenyl-sulfon-yl)succinamic acid.

    PubMed

    Purandara, H; Foro, Sabine; Gowda, B Thimme

    2012-06-01

    In the crystal structure of the title compound, C(11)H(13)NO(5)S, the amide C=O and the carboxyl C=O groups of the acid segment orient themselves away from each other. The dihedral angle between the benzene ring and the amide group is 69.0 (2)°. In the crystal, N-H⋯O and O-H⋯O hydrogen bonds link the mol-ecules into layers parallel to the bc plane.

  15. Sulfonated guaianolides from Saussurea lappa.

    PubMed

    Wang, Fei; Xie, Zheng-Hong; Gao, Yuan; Xu, Yao; Cheng, Xue-Lian; Liu, Ji-Kai

    2008-06-01

    Two new guaiane-type sesquiterpene lactones with an unusual sulfonic acid group, sulfocostunolide A (1) and sulfocostunolide B (2), were isolated from the roots of Saussurea lappa. Their structures were elucidated on the basis of extensive spectroscopic analysis.

  16. Chiral separation of metolachlor ethane sulfonic acid as a groundwater dating tool

    USDA-ARS?s Scientific Manuscript database

    We have studied the hydrologic fate of metolachlor and its two predominant metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid, in groundwater and base flows of streams for several years. These two metabolites are excellent markers for groundwater processes related to...

  17. Using chiral identification of metolachlor ethane sulfonic acid as a groundwater dating tool

    USDA-ARS?s Scientific Manuscript database

    We have studied the hydrologic fate of metolachlor and its two predominant metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid, in groundwater and base flows of streams for several years. These two metabolites are excellent markers for groundwater processes related to...

  18. Nuclear Magnetic Resonance Identification of New Sulfonic Acid Metabolites of Chloroacetanilide Herbicides

    USGS Publications Warehouse

    Morton, M.D.; Walters, F.H.; Aga, D.S.; Thurman, E.M.; Larive, C.K.

    1997-01-01

    The detection of the sulfonic acid metabolites of the chloroacetanilide herbicides acetochlor, alachlor, butachlor, propachlor, and, more recently, metolachlor in surface and ground water suggests that a common mechanism for dechlorination exists via the glutathione conjugation pathway. The identification of these herbicides and their metabolites is important due to growing public awareness and concern about pesticide levels in drinking water. Although these herbicides are regulated, little is known about the fate of their metabolites in soil. The sulfonic acid metabolites were synthesized by reaction of the parent compounds with an excess of sodium sulfite. Acetochlor, alachlor, butachlor, metolachlor, and propachlor and their sulfonic acid metabolites were studied by nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. This paper provides a direct method for the preparation and characterization of these compounds that will be useful in the analysis and study of chloracetanilide herbicides and their metabolites.

  19. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays).

    PubMed

    Krippner, Johanna; Falk, Sandy; Brunn, Hubertus; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten

    2015-04-15

    Uptake of perfluoroalkyl acids (PFAAs) by maize represents a potential source of exposure for humans, either directly or indirectly via feed for animals raised for human consumption. The aim of the following study was, therefore, to determine the accumulation potential of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Two different concentrations of PFAAs were applied as aqueous solution to the soil to attain target concentrations of 0.25 mg or 1.00 mg of PFAA per kg of soil. Maize was grown in pots, and after harvesting, PFAA concentrations were measured in the straw and kernels of maize. PFCA and PFSA concentrations of straw decreased significantly with increasing chain length. In maize kernels, only PFCAs with a chain length ≤ C8 as well as perfluorobutanesulfonic acid (PFBS) were detected. The highest soil-to-plant transfer for both straw and kernels was determined for short-chained PFCAs and PFSAs.

  20. Efficient enrichment of glycopeptides with sulfonic acid-functionalized mesoporous silica.

    PubMed

    Bibi, Aisha; Ju, Huangxian

    2016-12-01

    This work presents an efficient and selective enrichment method for glycoprotein/glycopeptides with sulfonic acid-functionalized mesoporous silica (SBA-15-SO3H), which is synthesized via simple oxidation of -SH groups with H2O2. The functionalized SBA-15 shows large surface area and accessible pores, and can selectively adsorb glycopeptides via hydrogen bond and hydrophilic interaction. Upon the selective enrichment prior to the mass spectrometric (MS) analysis, the signals of glycopeptides are significantly enhanced, which leads to the identifiable signals of 21 glycopeptides from the digest of HRP, 16 glycopeptides from the digest of human IgG, and 16 glycopeptides from the digest of chicken avidin. The SBA-15-SO3H gives significant selectivity for glycopeptides even at a low molar ratio of glycopeptides to nonglycopeptides with an enrichment time of 15min. Therefore, this work provides a powerful material for selective enrichment and identification of low abundant glycopeptides in glycoproteomic analysis.

  1. Thermochemical comparisons of homogeneous and heterogeneous acids and bases. 1. Sulfonic acid solutions and resins as prototype Broensted acids

    SciTech Connect

    Arnett, E.M.; Haaksma, R.A.; Chawla, B.; Healy, M.H.

    1986-08-06

    Heats of ionization by thermometric titration for a series of bases (or acids) can be used to compare solid acids (or bases) with liquid analogues bearing the same functionalities in homogeneous solutions. The method is demonstrated for Broensted acids by reacting a series of substituted nitrogen bases with solutions of p-toluenesulfonic acid (PTSA) in acetonitrile and with suspensions of the microporous polymeric arylsulfonic acid resin-Dowex 50W-X8 in the same solvent. Under well-controlled anhydrous conditions there is a good correlation (r = 0.992) between the heats of reaction of the bases with the homogeneous and heterogeneous acid systems, but the homogeneous system gives a more exothermic interaction by 3-4 kcal mol/sup -1/ for a series of 29 substituted pyrimidines, anilines, and some other amines. This difference may be attributed to homohydrogen bonding interactions between excess acid and sulfonate anion sites which are more restricted geometrically in the resin than in solution. Other factors which affect the enthalpy change for the acid-base interaction are the acid/base ratio, the water content of the sulfonic acid, the solvent, and the resin structure (e.g., microporous vs. macroporous). Steric hindrance in the base does not differentiate solid from homogeneous acid. In addition to the use of titration calorimetry, heats of immersion are reported for the Dowex-arylsulfonic acid resins and the Nafion-perfluorinated sulfonic acid resin in a series of basic liquids. The results are compared with each other and with those from a previous study of several varieties of coal.

  2. Sulfonic acid-functionalized α-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications.

    PubMed

    Zhou, Yingjie; Huang, Rongcai; Ding, Fuchuan; Brittain, Alex D; Liu, Jingjing; Zhang, Meng; Xiao, Min; Meng, Yuezhong; Sun, Luyi

    2014-05-28

    Solid acids have received considerable attention as alternatives to traditional corrosive and hazardous homogeneous acids because of their advantages in practical applications, including their low corrosion of equipment and high catalytic activity and recyclability. In this work, a strong solid acid was prepared by anchoring thiol group terminated chains on layered α-zirconium phosphate (ZrP) single-layer nanosheets, followed by oxidation of thiol groups to form sulfonic acid groups. The obtained solid acids were thoroughly characterized and the results proved that sulfonic acid group terminated chains were successfully grafted onto the ZrP nanosheets with a high loading density. Such a strong solid acid based on inorganic nanosheets can be well-dispersed in polar solvents, leading to high accessibility to the acid functional groups. Meanwhile, it can be easily separated from the dispersion system by centrifugation or filtration. The strong solid acid can serve as an effective heterogeneous catalyst for various reactions, including the Bayer-Villiger oxidation of cyclohexanone to ε-caprolactone in the absence of organic solvents.

  3. Design of a highly efficient and water-tolerant sulfonic acid nanoreactor based on tunable ordered porous silica for the von Pechmann reaction.

    PubMed

    Karimi, Babak; Zareyee, Daryoush

    2008-09-18

    Among a number of different sulfonic acid nanoreactors prepared, 5 having both acidic sites and phenyl groups located inside the mesochannels of SBA-15 was shown to be the most active and reusable catalyst in the von Pechmann reaction. The mesochannels, and covalently anchored organic groups, provide a synergistic means of an efficient approach of the reactants to acidic sites, enough space for the subsequent cyclization, and suitable hydrophobicity to drive out the water byproduct.

  4. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    PubMed Central

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  5. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification.

    PubMed

    Muriithi, Beatrice; Loy, Douglas A

    2016-01-28

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%-30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%-42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes.

  6. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  7. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  8. Characterization of Highly Sulfonated SIBS Polymer Partially Neutralized With Mg(+2) Cations

    DTIC Science & Technology

    2008-08-01

    97% of all styrene groups in the polymer were modified with sulfonic acid group as was verified by titration and elemental analysis. The...the acidic hydrogens are exchanged out with Mg+2 ions creating an ionic crosslink between the neighboring sulfonic groups. Initially, attempts were...not appear in the unsulfonated polymer. In particular, three distinct bands associated with sulfonic acid were identified in the sulfonated polymers

  9. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  10. POLYSTYRENE SULFONIC ACID CATALYZED GREENER SYNTHESIS OF HYDRAZONES IN AQUEOUS MEDIUM USING MICROWAVES

    EPA Science Inventory

    An environmentally benign aqueous protocol for the synthesis of cyclic, bi-cyclic, and heterocyclic hydrazones using polystyrene sulfonic acid (PSSA) as a catalyst has been developed; the simple reaction proceeds efficiently in water in the absence of any organic solvent under mi...

  11. POLYSTYRENE SULFONIC ACID CATALYZED GREENER SYNTHESIS OF HYDRAZONES IN AQUEOUS MEDIUM USING MICROWAVES

    EPA Science Inventory

    An environmentally benign aqueous protocol for the synthesis of cyclic, bi-cyclic, and heterocyclic hydrazones using polystyrene sulfonic acid (PSSA) as a catalyst has been developed; the simple reaction proceeds efficiently in water in the absence of any organic solvent under mi...

  12. Azadirachta indica Attenuates Colonic Mucosal Damage in Experimental Colitis Induced by Trinitrobenzene Sulfonic Acid

    PubMed Central

    Gautam, M. K.; Goel, Shalini; Ghatule, R. R.; Singh, A.; Joshi, V. K.; Goel, R. K.

    2013-01-01

    Azadirachta indica leaves indicated the presence of active principles with proven antioxidants, antiinflammatory, immunomodulatory, free radical scavenging and healing properties. In the present study we evaluated the healing effects of 50% ethanol extract of dried leaves of Azadirachta indica on trinitrobenzene sulfonic acid-induced colitis in rats. Azadirachta indica extract (500 mg/kg) was administered orally, once daily for 14 days and studied for its effects on diarrhoea, food and water intake, body weight changes, colonic damage and inflammation, histology, antibacterial activity and free radicals (nitric oxide and lipid peroxidation), antioxidants (superoxide dismutase, catalase and reduced glutathione) and myeloperoxidase activities in colonic tissue. Intracolonic trinitrobenzene sulfonic acid increased colonic mucosal damage and inflammation, diarrhea, but decreased body weight which were reversed by Azadirachta indica extract and sulfasalazine (positive control) treatments. Azadirachta indica extract showed antibacterial activity. Azadirachta indica extract and sulfasalazine enhanced the antioxidants but decreased free radicals and myeloperoxidase activities affected in trinitrobenzene sulfonic acid-induced colitis. Azadirachta indica extract, thus seemed to be effective in healing trinitrobenzene sulfonic acid-induced colitis in rats. PMID:24403663

  13. Ruthenium(II)-catalyzed oxidative C-H alkenylations of sulfonic acids, sulfonyl chlorides and sulfonamides.

    PubMed

    Ma, Wenbo; Mei, Ruhuai; Tenti, Giammarco; Ackermann, Lutz

    2014-11-10

    Twofold C-H functionalization of aromatic sulfonic acids was achieved with an in situ generated ruthenium(II) catalyst. The optimized cross-dehydrogenative alkenylation protocol proved applicable to differently substituted arenes and a variety of alkenes, including vinyl arenes, sulfones, nitriles and ketones. The robustness of the ruthenium(II) catalyst was demonstrated by the chemoselective oxidative olefination of sulfonamides as well as sulfonyl chlorides. Mechanistic studies provided support for a reversible, acetate-assisted C-H ruthenation, along with a subsequent olefin insertion.

  14. Hierarchical Porous Interlocked Polymeric Microcapsules: Sulfonic Acid Functionalization as Acid Catalysts

    PubMed Central

    Wang, Xiaomei; Gu, Jinyan; Tian, Lei; Zhang, Xu

    2017-01-01

    Owing to their unique structural and surface properties, mesoporous microspheres are widely applied in the catalytic field. Generally, increasing the surface area of the specific active phase of the catalyst is a good method, which can achieve a higher catalytic activity through the fabrication of the corresponding catalytic microspheres with the smaller size and hollow structure. However, one of the major challenges in the use of hollow microspheres (microcapsules) as catalysts is their chemical and structural stability. Herein, the grape-like hypercrosslinked polystyrene hierarchical porous interlocked microcapsule (HPIM-HCL-PS) is fabricated by SiO2 colloidal crystals templates, whose structure is the combination of open mouthed structure, mesoporous nanostructure and interlocked architecture. Numerous microcapsules assembling together and forming the roughly grape-like microcapsule aggregates can enhance the structural stability and recyclability of these microcapsules. After undergoing the sulfonation, the sulfonated HPIM-HCL-PS is served as recyclable acid catalyst for condensation reaction between benzaldehyde and ethylene glycol (TOF = 793 h−1), moreover, exhibits superior activity, selectivity and recyclability. PMID:28300062

  15. Hierarchical Porous Interlocked Polymeric Microcapsules: Sulfonic Acid Functionalization as Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei; Gu, Jinyan; Tian, Lei; Zhang, Xu

    2017-03-01

    Owing to their unique structural and surface properties, mesoporous microspheres are widely applied in the catalytic field. Generally, increasing the surface area of the specific active phase of the catalyst is a good method, which can achieve a higher catalytic activity through the fabrication of the corresponding catalytic microspheres with the smaller size and hollow structure. However, one of the major challenges in the use of hollow microspheres (microcapsules) as catalysts is their chemical and structural stability. Herein, the grape-like hypercrosslinked polystyrene hierarchical porous interlocked microcapsule (HPIM-HCL-PS) is fabricated by SiO2 colloidal crystals templates, whose structure is the combination of open mouthed structure, mesoporous nanostructure and interlocked architecture. Numerous microcapsules assembling together and forming the roughly grape-like microcapsule aggregates can enhance the structural stability and recyclability of these microcapsules. After undergoing the sulfonation, the sulfonated HPIM-HCL-PS is served as recyclable acid catalyst for condensation reaction between benzaldehyde and ethylene glycol (TOF = 793 h-1), moreover, exhibits superior activity, selectivity and recyclability.

  16. Synthesis and Properties of Poly(ether sulfone)s with Clustered Sulfonic Groups for PEMFC Applications under Various Relative Humidity.

    PubMed

    Lee, Shih-Wei; Chen, Jyh-Chien; Wu, Jin-An; Chen, Kuei-Hsien

    2017-03-22

    Novel sulfonated poly(ether sulfone) copolymers (S4PH-x-PSs) based on a new aromatic diol containing four phenyl substituents at the 2, 2', 6, and 6' positions of 4,4'-diphenyl ether were synthesized. Sulfonation was found to occur exclusively on the 4 position of phenyl substituents by NMR spectroscopy. The ion exchange capacity (IEC) values can be controlled by adjusting the mole percent (x in S4PH-x-PS) of the new diol. The fully hydrated sulfonated poly(ether sulfone) copolymers had good proton conductivity in the range 0.004-0.110 S/cm at room temperature. The surface morphology of S4PH-x-PSs and Nafion 212 was investigated by atomic force microscopy (tapping-mode) and related to the percolation limit and proton conductivity. Single H2/O2 fuel cell based on S4PH-40-PS loaded with 0.25 mg/cm(2) catalyst (Pt/C) exhibited a peak power density of 462.6 mW/cm(2), which was close to that of Nafion 212 (533.5 mW/cm(2)) at 80 °C with 80% RH. Furthermore, fuel cell performance of S4PH-35-PS with various relative humidity was investigated. It was confirmed from polarization curves that the fuel cell performance of S4PH-35-PS was not as high as that of Nafion 212 under fully hydrated state due to higher interfacial resistance between S4PH-35-PS and electrodes. While under low relative humidity (53% RH) at 80 °C, fuel cells based on S4PH-35-PS showed higher peak power density (234.9 mW/cm(2)) than that (214.0 mW/cm(2)) of Nafion 212.

  17. The Liebermann-Burchard reaction: sulfonation, desaturation, and rearrangment of cholesterol in acid.

    PubMed

    Xiong, Quanbo; Wilson, William K; Pang, Jihai

    2007-02-01

    In the Liebermann-Burchard (LB) colorimetric assay, treatment of cholesterol with sulfuric acid, acetic anhydride, and acetic acid elicits a blue color. We studied the reactivity of cholesterol under LB conditions and provide definitive NMR characterization for approximately 20 products, whose structure and distribution suggest the following mechanistic picture. The major reaction pathways do not involve cholestadienes, i-steroids, or cholesterol dimers, as proposed previously. Instead, cholesterol and its acetate and sulfate derivatives undergo sulfonation at a variety of positions, often with skeletal rearrangements. Elimination of an SO(3)H group as H(2)SO(3) generates a new double bond. Repetition of this desaturation process leads to polyenes and ultimately to aromatic steroids. Linearly conjugated polyene cations can appear blue but form too slowly to account for the LB color response, whose chemical origin remains unidentified. Nevertheless, the classical polyene cation model is not excluded for Salkowski conditions (sulfuric acid), which immediately generate considerable amounts of cholesta-3,5-diene. Some rearrangements of cholesterol in H(2)SO(4) resemble the diagenesis pathways of sterols and may furnish useful lipid biomarkers for characterizing geological systems.

  18. Organic/inorganic hybrid amine and sulfonic acid tethered silica materials: Synthesis, characterization and application

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Christopher

    The major goals of this thesis were to: (1) create a site-isolated aminosilica material with higher amine loadings than previously reported isolation methods, (2) use spectroscopic, reactivity, and catalytic (olefin polymerization precatalysts) probes to determine isolation of amine groups on these organic/inorganic hybrid materials, (3) synthesize an organic/inorganic hybrid material capable of activating Group 4 olefin polymerization precatalysts, and (4) synthesize a high amine loaded organic/inorganic hybrid material capable of reversibly capturing CO2 in a simulated flue gas stream. The underlying motivation of this research involved the synthesis and design of novel amine and sulfonic acid materials. Traditional routes to synthesize aminosilicas have led to the formation of a high loading of multiple types of amine sites on the silica surface. Part of this research involved the creation of a new aminosilica material via a protection/deprotection method designed to prevent multiple sites, while maintaining a relatively high loading. As a characterization technique, fluorescence spectroscopy of pyrene-based fluorophores loaded on traditional aminosilicas and site-isolated aminosilicas was used to probe the degree of site-isolation obtained with these methods. Also, this protection/deprotection method was compared to other reported isolation techniques with heterogeneous Group 4 constrained-geometry inspired catalysts (CGCs). It was determined that the degree of separation of the amine sites could be controlled with protection/deprotection methods. Furthermore, an increase in the reactivity of the amines and the catalytic activity of CGCs built off of the amines was determined for aminosilicas synthesized by a protection/deprotection method. The second part of this work involved developing organic/inorganic hybrid materials as heterogeneous Bronsted acidic cocatalysts for activation of olefin polymerization precatalysts. This was the first reported organic

  19. Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process.

    PubMed

    Liu, Xiao-Yan; Huang, Miao; Ma, Hai-Long; Zhang, Zeng-Qiang; Gao, Jin-Ming; Zhu, Yu-Lei; Han, Xiao-Jin; Guo, Xiang-Yun

    2010-10-18

    Sulfonated (SO(3)H-bearing) activated carbon (AC-SO(3)H) was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO(3)H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO(3)H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO(3)H (78%) was lower than that of Amberlyst-15 (86%), which could be attributed to the fact that the SO(3)H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1). However, AC-SO(3)H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO(3)H is the leaching of SO(3)H group during the reactions.

  20. Sulfonic-hydroxyl-type heterogemini surfactants synthesized from unsaturated fatty acids.

    PubMed

    Sakai, Kenichi; Sangawa, Yuta; Takamatsu, Yuichiro; Kawai, Takeshi; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2010-01-01

    Novel anionic heterogemini surfactants have been synthesized from two kinds of unsaturated fatty acids (oleic acid and petroselinic acid). The hydrocarbon chain is covalently bound to the terminal carbonyl group of the unsaturated fatty acids and hydrophilic headgroups (i.e., sulfonic and hydroxyl groups) are introduced to the cis double bond. The aqueous solution properties of the surfactants synthesized here have been studied on the basis of static/dynamic surface tension, conductivity, fluorescence, and dynamic light scattering (DLS) data. We have mainly focused on the following two factors that may significantly impact the aqueous solution properties of the surfactants: one is hydrocarbon chain length and the other is molecular symmetry. The first key result from our current study is that increased hydrocarbon chain length results in a closely packed monolayer film at the air/aqueous solution interface, even at low concentrations as a result of the increased hydrophobicity of the longer chain analogue. We have previously observed a similar trend when aqueous solution properties of oleic acid-based phosphate-type heterogemini surfactants were studied. The second key finding of our current research is that increased molecular symmetry results in greater surface activities (which include lower aqueous surface tension and greater molecular packing at the air/aqueous solution interface). In addition, it seems likely that the size of molecular assemblies spontaneously formed in bulk solution decreases when the molecular symmetry increases. These results suggest that the symmetric analogue provides greater hydrophobic environments, although the exact reason for this is not yet known.

  1. Radiation synthesis of eco-friendly water reducing sulfonated starch/acrylic acid hydrogel designed for cement industry

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, El-Sayed A.; Diaa, D. A.

    2013-04-01

    Starch was treated with chlorosulfonic acid to obtain sulfonated starch. Acrylic acid/sulfonated starch semi-interpenetrated network IPN of different compositions was prepared using ionizing radiation. Swelling of prepared IPNs at different environmental conditions was studied. The possible use of sulfonated starch/acrylic acid IPN as a water-retarding agent in the cement industry was investigated. ζ-potential measurements were used to determine the stability of the colloidal cement—SS/AA and cement -poly-naphthalene sulfonic acid (SNF) water retarding mixtures. Sulfonated starch/acrylic acid water-retarding property was influenced by hydrogel concentration and composition. Sulfonated starch/acrylic acid IPN admixture has a great effect on the cement initial setting time. Using 2% of SS/AA or SNF resulted in an increase in initial setting time by 2 and 1 h respectively, if compared with native cement initial setting time. The results showed that the synthetic commercial super-plasticizers could be replaced by an eco-friendly water-retarding sulfonated starch/acrylic acid IPN in the cement industry.

  2. From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide.

    PubMed

    van Bergen, Laura A H; Roos, Goedele; De Proft, Frank

    2014-08-07

    Hydrogen peroxide is a natural oxidant that can oxidize protein thiols (RSH) via sulfenic acid (RSOH) and sulfinic acid (RSO2H) to sulfonic acid (RSO3H). In this paper, we study the complete anionic and neutral oxidation pathway from thiol to sulfonic acid. Reaction barriers and reaction free energies for all three oxidation steps are computed, both for the isolated substrates and for the substrates in the presence of different model ligands (CH4, H2O, NH3) mimicking the enzymatic environment. We found for all three barriers that the anionic thiolate is more reactive than the neutral thiol. However, the assistance of the environment in the neutral pathway in a solvent-assisted proton-exchange (SAPE) mechanism can lower the reaction barrier noticeably. Polar ligands can decrease the reaction barriers, whereas apolar ligands do not influence the barrier heights. The same holds for the reaction energies: they decrease (become more negative) in the presence of polar ligands whereas apolar ligands do not have an influence. The consistently negative consecutive reaction energies for the oxidation in the anionic pathway when going from thiolate over sulfenic and sulfinic acid to sulfonic acid are in agreement with biological reversibility.

  3. Poly(p-Phenylene Sulfonic Acids). PEMs with frozen-in free volume

    SciTech Connect

    Litt, Morton

    2016-01-21

    Early work with rigid rod aromatic polyelectrolytes implied that steric hindrance in packing of the rigid rods left unoccupied volumes that could absorb and hold water molecules strongly. We called this “frozen in free volume). It is illustrated and contrasted with the packing of flexible backbone polyelectrolytes (Reference 5 of this report). This was quantified for poly(biphenylene disulfonic acid) (PBDSA) and poly(phenylene disulfonic acid) (PPDSA). We found that PPDSA held three water molecules per acid group down to 11% relative humidity (RH) and had very high conductivity even at these low RHs. (Reference 1 of report.) The frozen-in free volume was calculated to be equivalent to a λ of 3.5. The work reported below concentrated on studying these polymers and their copolymers with biphenylene disulfonic acid. As expected, the polyelectrolytes are water soluble. Several approaches towards making water stable films were studied. Grafting alkyl benzene substituents on sulfonic acid groups had worked for PBPDSA (1) so it was tried with PPDSA and a 20%/80% copolymer of BPDSA and PDSA (B20P80). T-butyl, n-octyl and n-dodecyl benzene were grafted. Good films could be made. Water absorption and conductivity were studied as a function of RH and temperature (Reference 2). When less than 20% of the sulfonic acid groups were grafted, conductivity was much higher than that of Nafion NR212 at all RHs. At low graft levels, conductivity was ten times higher. Mechanical properties and swelling were acceptable below 90% RH. However, all the films were unstable in water and slowly disintegrated. The proposed explanation was that the molecules formed nano-aggregates in solution held together by hydrophobic bonding. Their cast films disintegrated when placed in water since hydrophobic bonding between the nano-aggregates was poor. We then shifted to crosslinking as a method to produce water stable films (References 3 and 4). Biphenyl could easily be reacted with the polymer

  4. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  5. A novel sulfonated prosthetic group for [18F]-radiolabelling and imparting water solubility of biomolecules and cyanine fluorophores.

    PubMed

    Priem, Thomas; Bouteiller, Cédric; Camporese, Davide; Brune, Xavier; Hardouin, Julie; Romieu, Anthony; Renard, Pierre-Yves

    2013-01-21

    Synthesis and some applications of a novel [(18)F]-fluorinated prosthetic group based on the promising sultone radiochemistry and suitable for the labelling of amine-containing (bio)chemical compounds are described. The combined sequential use of two easy and efficient conjugation reactions namely the fluoride ring-opening of a 1,3-propanesultone moiety and the aminolysis of an N-hydroxysuccinimidyl ester is the key component of this original radiolabelling strategy. The mild reaction conditions and the release of a free sulfonic acid moiety as a result of the [(18)F]-induced sultone ring-opening reaction, both make this [(18)F]-conjugation method suitable for the radiofluorination of fragile and hydrophobic biomolecules and fluorophores, particularly by making the separation of the targeted [(18)F]-tagged sulfonated compound from its starting precursor easier and thus faster. The ability of this unusual prosthetic group to readily introduce the radioisotope within complex (bio)molecular architectures has been demonstrated by (1) the preparation of the first [(18)F]-labelled cyanine 5.5 (Cy 5.5) dye, a suitable precursor for the construction of hybrid positron emission tomography/near-infrared fluorescence (PET/NIRF) imaging probes and (2) the radiolabelling of a biologically relevant peptide bearing a single lysine residue.

  6. Perfluorobutane sulfonic acid hydration and interactions with O2 adsorbed on Pt3.

    PubMed

    Yan, Liuming; Balbuena, Perla B; Seminario, Jorge M

    2006-04-06

    The side chain of NAFION, a proton conductive membrane used as electrolyte in low-temperature fuel cells, is modeled with perfluorobutane sulfonic acid. Density functional theory is used to characterize structures and energetics of hydration of the model system interacting with a proton solvated with up to 24 water molecules and analyze interactions of some of these hydrated complexes with O(2) adsorbed on Pt(3). It is found that at least three water molecules are needed to ionize the sulfonic acid, and higher degrees of hydration induce the formation of cages where the water molecules are held together via complex hydrogen-bond networks. The interaction between the complex formed by the ionized acid and the hydrated proton, in contact with a bridge-adsorbed O(2)-Pt(3), promotes the protonation of the adsorbed O(2). Upon protonation, the O(2)-Pt(3) system evolves from hydrophobic to hydrophilic behavior, which may facilitate further interfacial contact.

  7. Synthesis, structural, solubility and anticancer activity studies of salts using nucleobases and sulfonic acids coformer

    NASA Astrophysics Data System (ADS)

    Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji

    2017-10-01

    The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.

  8. Enhanced cytotoxicity of pentachlorophenol by perfluorooctane sulfonate or perfluorooctanoic acid in HepG2 cells.

    PubMed

    Shan, Guoqiang; Ye, Minqiang; Zhu, Benzhan; Zhu, Lingyan

    2013-11-01

    Chlorinated phenols and perfluoroalkyl acids (PFAAs) are two kinds of pollutants which are widely present in the environment. Considering liver is the primary toxic target organ for these two groups of chemicals, it is interesting to evaluate the possible joint effects of them on liver. In this work, the combined toxicity of pentachlorophenol (PCP) and perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) were investigated using HepG2 cells. The results indicated that PFOS and PFOA could strengthen PCP's hepatotoxicity. Further studies showed that rather than intensify the oxidative stress or promote the biotransformation of PCP, PFOS (or PFOA) might lead to strengthening of the oxidative phosphorylation uncoupling of PCP. By measuring the intracellular PCP concentration and the cell membrane properties, it was suggested that PFOS and PFOA could disrupt the plasma membrane and increase the membrane permeability. Thus, more cellular accessibility of PCP was induced when they were co-exposed to PCP and PFOS (or PFOA), leading to increased cytotoxicity. Further research is warranted to better understand the combined toxicity of PFAAs and other environmental pollutants. Copyright © 2013. Published by Elsevier Ltd.

  9. Three 2D Ag(I)-framework isomers with helical structures controlled by the chirality of camphor-10-sulfonic acid.

    PubMed

    Guo, Peng

    2011-02-28

    Three 2D Ag(I)-framework isomers were constructed from enantiopure camphor-10-sulfonic acids or racemic camphor-10-sulfonic acids, together with achiral 4-aminobenzoic acids. In complex 1, (+)-camphor-10-sulfonic acids bridge the single left-handed helices that are made up of Ag ions and 4-aminobenzoic acids, generating a homochiral 2D layer. In such a structure, the interweaving of triple left-handed homohelices was also found. It is worth noting that the helicity of complex 2 could be controlled by the handedness of the camphor-10-sulfonic acid. In complex 2, there are right-handed helical structures, including single right-handed and triple right-handed helical structures connected by (-)-camphor-10-sulfonic acids. For a comparative study, (±)-camphor-10-sulfonic acids were utilized to synthesize complex 3, in which equal numbers of right-handed or left-handed double-helical chains are created. All the complexes were characterized by single-crystal X-ray structure determination, powder X-ray diffraction, IR, TGA and element analysis. Circular dichroism spectra of complexes 1 and 2 were been studied to confirm the fact that enantiopure bridging ligands do not racemize.

  10. Assessment of Perfluorooctane Sulfonate and Perfluorooctanoic Acid Exposure Through Fish Consumption in Italy.

    PubMed

    Barbarossa, Andrea; Gazzotti, Teresa; Farabegoli, Federica; Mancini, Francesca R; Zironi, Elisa; Busani, Luca; Pagliuca, Giampiero

    2016-09-20

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are pollutants of anthropic origin with possible side effects on human health. Diet, and in particular fish and seafood, is considered the major intake pathway for humans. The present study investigated the levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination in twenty-five samples of fresh fillet of five widely consumed fish species purchased from large retailers in Italy, to be used for an estimation of the Italian population exposure to these contaminants. PFOS and PFOA were found in all samples, at concentrations up to 1896 (mean=627 ng/kg) and 487 ng/kg (mean = 75 ng/kg), respectively, confirming the role of fish as high contributor to human exposure. However, a remarkable inter-species variability was observed, and multiple factors were suggested as potentially responsible for such differences, suggesting that the preferential consumption of certain species could likely increase the intake, and thus the exposure. The exposure estimates for both average and high fish consumers resulted far below the tolerable daily intakes for PFOS and PFOA in all age groups, confirming the outcomes of EFSA's scientific report. In particular, the calculated total dietary exposure for the 95(th) percentile consumers belonging to the toddler age class, the most exposed group, resulted equal to 9.72 ng/kg body weight (BW)/day for PFOS and 8.39 ng/kg BW/day for PFOA.

  11. Assessment of Perfluorooctane Sulfonate and Perfluorooctanoic Acid Exposure Through Fish Consumption in Italy

    PubMed Central

    Barbarossa, Andrea; Gazzotti, Teresa; Farabegoli, Federica; Mancini, Francesca R.; Zironi, Elisa; Busani, Luca; Pagliuca, Giampiero

    2016-01-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are pollutants of anthropic origin with possible side effects on human health. Diet, and in particular fish and seafood, is considered the major intake pathway for humans. The present study investigated the levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination in twenty-five samples of fresh fillet of five widely consumed fish species purchased from large retailers in Italy, to be used for an estimation of the Italian population exposure to these contaminants. PFOS and PFOA were found in all samples, at concentrations up to 1896 (mean=627 ng/kg) and 487 ng/kg (mean = 75 ng/kg), respectively, confirming the role of fish as high contributor to human exposure. However, a remarkable inter-species variability was observed, and multiple factors were suggested as potentially responsible for such differences, suggesting that the preferential consumption of certain species could likely increase the intake, and thus the exposure. The exposure estimates for both average and high fish consumers resulted far below the tolerable daily intakes for PFOS and PFOA in all age groups, confirming the outcomes of EFSA’s scientific report. In particular, the calculated total dietary exposure for the 95th percentile consumers belonging to the toddler age class, the most exposed group, resulted equal to 9.72 ng/kg body weight (BW)/day for PFOS and 8.39 ng/kg BW/day for PFOA. PMID:28058243

  12. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    PubMed

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants.

  13. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  14. Absorption and excretion of 14C-perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in beef cattle

    USDA-ARS?s Scientific Manuscript database

    Perfluoroalkyl compounds such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are industrial chemicals that are environmentally persistent. Both PFOS and PFOA are found in biosolids, and the application of these contaminated biosolids to pastures has raised concerns about possi...

  15. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  16. Syn-Selective Synthesis of β-Branched α-Amino Acids by Alkylation of Glycine-Derived Imines with Secondary Sulfonates.

    PubMed

    Lou, Sha; McKenna, Grace M; Tymonko, Steven A; Ramirez, Antonio; Benkovics, Tamas; Conlon, David A; González-Bobes, Francisco

    2015-10-16

    A syn-selective synthesis of β-branched α-amino acids has been developed based on the alkylation of glycine imine esters with secondary sulfonates. The potassium counterion for the enolate, the solvent, and the leaving group on the electrophile were key levers to maximize the diasteroselectivity of the alkylation. The optimized conditions enabled a straightforward preparation of a number of β-branched α-amino acids that can be challenging to obtain.

  17. Morphological Behavior of Sulfonated Styrene-Ethylene/Propylene-Styrene Triblock Copolymers

    DTIC Science & Technology

    2006-02-01

    as the rubber block molecular weights increased, but decreased upon neutralization of the sulfonic acid groups with sodium hydroxide. The intensity...6 Figure 3. Two-dimensional SAXS image (left) and 1-D SAXS profile (right) for the sulfonated SEPS (sample 65A) in sulfonic acid ...The catalyst was removed by washing with citric acid solution (10 weight-percent) for 24–48 hr. 2.4 Sulfonation of Styrene-Ethylene/Propylene

  18. Acid-Base Interactions of Polystyrene Sulfonic Acid in Amorphous Solid Dispersions Using a Combined UV/FTIR/XPS/ssNMR Study.

    PubMed

    Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Nie, Haichen; Su, Ziyang; Fang, Ke; Yang, Xinghao; Smith, Daniel; Byrn, Stephen; Lubach, Joseph W

    2016-02-01

    This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers.

  19. Human Exposure and Elimination Kinetics of Chlorinated Polyfluoroalkyl Ether Sulfonic Acids (Cl-PFESAs).

    PubMed

    Shi, Yali; Vestergren, Robin; Xu, Lin; Zhou, Zhen; Li, Chuangxiu; Liang, Yong; Cai, Yaqi

    2016-03-01

    The incomplete mass-balance of organic fluorine in human serum indicates the existence of unknown per- and polyfluoroalkyl substances (PFASs) with persistent and bioaccumulative properties. Here we characterized human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in metal plating workers (n = 19), high fish consumers (n = 45), and background controls (n = 8). Cl-PFESAs were detected in >98% of the sampled individuals with serum concentrations ranging <0.019-5040 ng/mL. Statistically higher median serum levels were observed in high fish consumers (93.7 ng/mL) and metal plating workers (51.5 ng/mL) compared to the background control group (4.78 ng/mL) (Kruskal-Wallis rank sum test, p < 0.01). Cl-PFESAs could account for 0.269 to 93.3% of ∑PFASs in human serum indicating that this compound class may explain a substantial fraction of previously unidentified organic fluorine in the Chinese population. Estimated half-lives for renal clearance (median 280 years; range 7.1-4230 years) and total elimination (median 15.3 years; range 10.1-56.4 years) for the eight carbon Cl-PFESA suggest that this is the most biopersistent PFAS in humans reported to date. The apparent ubiquitous distribution and slow elimination kinetics in humans underscore the need for more research and regulatory actions on Cl-PFESAs and PFAS alternatives with similar chemical structures.

  20. Topical and Systemic Cannabidiol Improves Trinitrobenzene Sulfonic Acid Colitis in Mice

    PubMed Central

    Schicho, Rudolf; Storr, Martin

    2012-01-01

    Background/Aims Compounds of Cannabis sativa are known to exert anti-inflammatory properties, some of them without inducing psychotropic side effects. Cannabidiol (CBD) is such a side effect-free phytocannabinoid that improves chemically induced colitis in rodents when given intraperitoneally. Here, we tested the possibility whether rectal and oral application of CBD would also ameliorate colonic inflammation, as these routes of application may represent a more appropriate way for delivering drugs in human colitis. Methods Colitis was induced in CD1 mice by trinitrobenzene sulfonic acid. Individual groups were either treated with CBD intraperitoneally (10 mg/kg), orally (20 mg/kg) or intrarectally (20 mg/kg). Colitis was evaluated by macroscopic scoring, histopathology and the myeloperoxidase (MPO) assay. Results Intraperitoneal treatment of mice with CBD led to improvement of colonic inflammation. Intrarectal treatment with CBD also led to a significant improvement of disease parameters and to a decrease in MPO activity while oral treatment, using the same dose as per rectum, had no ameliorating effect on colitis. Conclusion The data of this study indicate that in addition to intraperitoneal application, intrarectal delivery of cannabinoids may represent a useful therapeutic administration route for the treatment of colonic inflammation. PMID:22414698

  1. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.

    PubMed

    Gadim, Tiago D O; Figueiredo, Andrea G P R; Rosero-Navarro, Nataly C; Vilela, Carla; Gamelas, José A F; Barros-Timmons, Ana; Neto, Carlos Pascoal; Silvestre, Armando J D; Freire, Carmen S R; Figueiredo, Filipe M L

    2014-05-28

    The present study reports the development of a new generation of bio-based nanocomposite proton exchange membranes based on bacterial cellulose (BC) and poly(4-styrene sulfonic acid) (PSSA), produced by in situ free radical polymerization of sodium 4-styrenesulfonate using poly(ethylene glycol) diacrylate (PEGDA) as cross-linker, followed by conversion of the ensuing polymer into the acidic form. The BC nanofibrilar network endows the composite membranes with excellent mechanical properties at least up to 140 °C, a temperature where either pure PSSA or Nafion are soft, as shown by dynamic mechanical analysis. The large concentration of sulfonic acid groups in PSSA is responsible for the high ionic exchange capacity of the composite membranes, reaching 2.25 mmol g(-1) for a composite with 83 wt % PSSA/PEGDA. The through-plane protonic conductivity of the best membrane is in excess of 0.1 S cm(-1) at 94 °C and 98% relative humidity (RH), decreasing to 0.042 S cm(-1) at 60% RH. These values are comparable or even higher than those of ionomers such as Nafion or polyelectrolytes such as PSSA. This combination of electric and viscoelastic properties with low cost underlines the potential of these nanocomposites as a bio-based alternative to other polymer membranes for application in fuel cells, redox flow batteries, or other devices requiring functional proton conducting elements, such as sensors and actuators.

  2. Iron oxide nanoparticles immobilized to mesoporous NH2-SiO2 spheres by sulfonic acid functionalization as highly efficient catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Guoliang; Qin, Lei; Wu, Yujiao; Xu, Zehai; Guo, Xinwen

    2014-12-01

    A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of α-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (FeII and FeIII) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the field of green chemistry and environmental remediation.A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of α-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (FeII and FeIII) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the

  3. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    SciTech Connect

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  4. Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules.

    PubMed

    Balakrishnan, Madhesan; Sacia, Eric R; Bell, Alexis T

    2014-04-01

    Synthesis of transportation fuel from lignocellulosic biomass is an attractive solution to the green alternative-energy problem. The production of biodiesel, in particular, involves the process of upgrading biomass-derived small molecules to diesel precursors containing a specific carbon range (C11 -C23). Herein, a carbon-upgrading process utilizing an acid-catalyzed condensation of furanic platform molecules from biomass is described. Various types of sulfonic acid catalysts have been evaluated for this process, including biphasic and solid supported catalysts. A silica-bound alkyl sulfonic acid catalyst has been developed for promoting carbon-carbon bond formation of biomass-derived carbonyl compounds with 2-methylfuran. This hydrophobic solid acid catalyst exhibits activity and selectivity that are comparable to those of a soluble acid catalyst. The catalyst can be readily recovered and recycled, possesses appreciable hydrolytic stability in the presence of water, and retains its acidity over multiple reaction cycles. Application of this catalyst to biomass-derived platform molecules led to the synthesis of a variety of furanic compounds, which are potential biodiesel precursors.

  5. N-(4-Methyl-phenyl-sulfon-yl)maleamic acid.

    PubMed

    Purandara, H; Foro, Sabine; Gowda, B Thimme

    2012-08-01

    In the title compound, C(11)H(11)NO(5)S, the dihedral angle between the benzene ring and the amide group is 76.88 (6)°. In the crystal, N-H⋯O(S) and O-H⋯O hydrogen bonds connect the mol-ecules into hydrogen-bonded layers perpendicular to the a axis.

  6. Nanocasting Design and Spatially Selective Sulfonation of Polystyrene-Based Polymer Networks as Solid Acid Catalysts.

    PubMed

    Richter, Felix H; Sahraoui, Laila; Schüth, Ferdi

    2016-09-12

    Nanocasting is a general and widely applied method in the generation of porous materials during which a sacrificial solid template is used as a mold on the nanoscale. Ideally, the resulting structure is the inverse of the template. However, replication is not always as direct as anticipated, so the influences of the degree of pore filling and of potential restructuring processes after removal of the template need to be considered. These apparent limitations give rise to opportunities in the synthesis of poly(styrene-co-divinylbenzene) (PSD) polymer networks of widely varying porosities (BET surface area=63-562 m(2)  g(-1) ; Vtot =0.18-1.05 cm(3)  g(-1) ) by applying a single synthesis methodology. In addition, spatially selective sulfonation on the nanoscale seems possible. Together, nanocasting and sulfonation enable rational catalyst design. The highly porous nanocast and predominantly surface-sulfonated PSD networks approach the activity of the corresponding molecular catalyst, para-toluenesulfonic acid, and exceed those of commercial ion-exchange polymers in the depolymerization of macromolecular inulin.

  7. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Gioxari, Aristea; Kaliora, Andriana C; Papalois, Apostolos; Agrogiannis, George; Triantafillidis, John K; Andrikopoulos, Nikolaos K

    2011-11-01

    Mastic (Pistacia lentiscus) of the Anacardiaceae family has exhibited anti-inflammatory and antioxidant properties in patients with Crohn's disease. This study was based on the hypothesis that mastic inhibits intestinal damage in inflammatory bowel disease, regulating inflammation and oxidative stress in intestinal epithelium. Four different dosages of P. lentiscus powder in the form of powder were administered orally to trinitrobenzene sulfonic acid-induced colitic rats. Eighty-four male Wistar rats were randomly assigned to seven groups: A, control; B, colitic; C-F, colitic rats daily supplemented with P. lentiscus powder at (C) 50 mg/kg, (D) 100 mg/kg, (E) 200 mg/kg, and (F) 300 mg/kg of body weight; and G, colitic rats treated daily with cortisone (25 μg/kg of body weight). Colonic damage was assessed microscopically. The cytokines tumor necrosis factor-α, intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, IL-8, and IL-10 and malonaldehyde were measured in colonic specimens. Results were expressed as mean ± SE values. Histological amelioration of colitis (P≤.001) and significant differences in colonic indices occurred after 3 days of treatment. Daily administration of 100 mg of P. lentiscus powder/kg of body weight decreased all inflammatory cytokines (P≤.05), whereas 50 mg of P. lentiscus powder/kg of body weight and cortisone treatment reduced only ICAM-1 (P≤.05 and P≤.01, respectively). Malonaldehyde was significantly suppressed in all treated groups (P≤.01). IL-10 remained unchanged. Cytokines and malonaldehyde remained unaltered after 6 days of treatment. Thus P. lentiscus powder could possibly have a therapeutic role in Crohn's disease, regulating oxidant/antioxidant balance and modulating inflammation.

  8. Sulfonated polyimide/acid-functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties.

    PubMed

    Pandey, Ravi P; Thakur, Amit K; Shahi, Vinod K

    2014-10-08

    Sulfonated polyimide (SPI)/sulfonated propylsilane graphene oxide (SPSGO) was assessed to be a promising candidate for polymer electrolyte membranes (PEMs). Incorporation of multifunctionalized (-SO3H and -COOH) SPSGO in SPI matrix improved proton conductivity and thermal, mechanical, and chemical stabilities along with bound water content responsible for slow dehydration of the membrane matrix. The reported SPSGO/SPI composite PEM was designed to promote internal self-humidification, responsible for water-retention properties, and to promote proton conduction, due to the presence of different acidic functional groups. Strong hydrogen bonding between multifunctional groups thus led to the presence of interconnected hydrophobic graphene sheets and organic polymer chains, which provides hydrophobic-hydrophilic phase separation and suitable architecture of proton-conducting channels. In single-cell direct methanol fuel cell tests, SPI/SPSGO-8 exhibited 75.06 mW·cm(-2) maximum power density (in comparison with commercial Nafion 117 membrane, 62.40 mW·cm(-2)) under 2 M methanol fuel at 70 °C.

  9. Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps.

    PubMed

    Clausen, S K; Sobhani, S; Poulsen, O M; Poulsen, L K; Nielsen, G D

    2000-11-01

    The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice. The surfactants were injected subcutaneously (sc) in concentrations of 1000, 100, 10 or 1 mg/l, respectively, together with 1 microg of ovalbumin (OVA). In addition, groups of mice received OVA in saline (control group) or in Al(OH)(3) (positive adjuvant control group). After the primary immunization the mice were boosted up to three times with OVA (0.1 microg sc) in saline. OVA-specific IgE antibodies were determined by the heterologous mouse rat passive cutaneous anaphylaxis test. The results were confirmed by a specific ELISA method. After the first booster, the Al(OH)(3) group and the 10 mg/l SDS group showed a statistically significant increase in OVA specific IgE levels. After two boosters, a statistically significant suppression in OVA-specific IgE production occurred with SDS (1000 mg/l), SDBS (1000 and 100 mg/l), coconut soap (1000 mg/l) and the alcohol ethoxylate (10 mg/l). This study suggests that a limited number of surfactants possess an adjuvant effect whereas all surfactants at certain levels can suppress specific IgE production.

  10. Regioselective inversion of the hydroxyl group in D-ribo-phytosphingosine via a cyclic sulfate and bis-sulfonate intermediate.

    PubMed

    Lee, Yun Mi; Baek, Dong Jae; Lee, Seokwoo; Kim, Deukjoon; Kim, Sanghee

    2011-01-21

    The selective synthesis of D-xylo- and D-lyxo-phytosphingosines from commercially available D-ribo-phytosphingosine is described. Thermolysis of the N-carbonyl protected cyclic sulfate led to an inversion of configuration of the proximal hydroxyl group to give the xylo-isomer, whereas the corresponding bis-sulfonate resulted in an inversion of configuration of the distal hydroxyl group to give the lyxo-isomer. This study allowed the comparison between a cyclic sulfate and a bis-sulfonate in an intramolecular substitution reaction involving a carbonyl oxygen nucleophile.

  11. Ring-opening polymerization of ε-caprolactone catalyzed by sulfonic acids: computational evidence for bifunctional activation.

    PubMed

    Susperregui, Nicolas; Delcroix, Damien; Martin-Vaca, Blanca; Bourissou, Didier; Maron, Laurent

    2010-10-01

    The mechanism of ring-opening of ε-caprolactone by methanol catalyzed by trifluoromethane and methane sulfonic acids has been studied computationally at the DFT level of theory. For both elementary steps, the sulfonic acid was predicted to behave as a bifunctional catalyst. The nucleophilic addition proceeds via activation of both the monomer and the alcohol. The ring-opening involves the cleavage of the endo C-O bond of the tetrahedral intermediate with concomitant proton transfer. In both cases, the sulfonic acid acts as a proton shuttle via its acidic hydrogen atom and basic oxygen atoms. The computed activation barriers are consistent with the relatively fast polymerizations observed experimentally at room temperature with both catalysts.

  12. Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidation.

    PubMed

    Chang, Yuan-Chang; Huang, Chien-Ning; Lin, Chia-Hung; Chang, Huan-Cheng; Wu, Chih-Che

    2010-08-01

    Oxidation of thiol proteins, which results in conversion of cysteine residues to cysteine sulfenic, sulfinic or sulfonic acids, is an important posttranslational control of protein function in cells. To facilitate the analysis of this process with MALDI-MS, we have developed a method for selective enrichment and identification of peptides containing cysteine sulfonic acid (sulfopeptides) in tryptic digests of proteins based on ionic affinity capture using polyarginine-coated nanodiamonds as high-affinity probes. The method was applied to selectively concentrate sulfopeptides from either a highly dilute solution or a complex peptide mixture in which the abundance of the sulfonated analyte is as low as 0.02%. The polyarginine-coated probes exhibit a higher affinity for peptides containing multiple sulfonic acids than peptides containing single sulfonic acid. The limit of the detection is in the femtomole range, with the MALDI-TOF mass spectrometer operating in the negative ion mode. The results show that the new approach has good specificity even in the presence of phosphopeptides. An application of this method for selective enrichment and structural identification of sulfopeptides is demonstrated with the tryptic digests of performic-acid-oxidized BSA.

  13. Photophysical and photosensitizing characters of 2-phenylbenzimidazole-5-sulfonic acid. A theoretical study.

    PubMed

    Shen, Liang

    2015-01-01

    The sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid (PBSA) has been reported to exhibit photosensitizing activity. In the present study, the photophysical and photosensitizing properties of PBSA were investigated by means of quantum chemical calculations with the aim to gain deeper insights into the underlying photosensitizing mechanisms. The results indicate that singlet oxygen may be generated spontaneously through direct energy transfer from triplet excited state PBSA to (3)O2, and superoxide anion radical is formed through electron transfer between the anion of PBSA and (3)O2. This offers some deeper insights into the photosensitizing mechanisms of PBSA.

  14. Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase.

    PubMed

    Xu, Dongmei; Jin, Jianchang; Shen, Tong; Wang, Yanhua

    2013-11-01

    Fluorescence spectroscopy was used to study the quenching mechanism, the type of force and the binding sites of perfluorooctane sulfonate (PFOS) on wheat germ acid phosphatase (ACPase). The results showed that the quenching effect of PFOS on ACPase was mainly due to a static quenching mechanism that occurred via the formation of hydrogen bonds and van der Waals forces. The results from synchronous fluorescence spectroscopy demonstrated that PFOS interacts with ACPase close to the tryptophan residues. In addition, synchronous fluorescence spectroscopy also showed that PFOS increases the hydrophobicity of the microenvironment of the tyrosine residues, hence decreasing the local polarity.

  15. Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment.

    PubMed

    Xing, Zhenni; Lu, Jianjiang; Liu, Zilong; Li, Shanman; Wang, Gehui; Wang, Xiaolong

    2016-10-21

    Although perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been identified in milk and dairy products in many regions, knowledge on their occurrence in Xinjiang (China) is rare. This study was conducted to measure the levels of PFOA and PFOS in milk and yogurt from Xinjiang and to investigate the average daily intake (ADI) of these two compounds. PFOA and PFOS levels were analyzed using ultrasonic extraction with methanol and solid-phase extraction followed by liquid chromatography-mass spectrometry. Retail milk and yogurt samples present higher detection rates (39.6% and 48.1%) and mean concentrations (24.5 and 31.8 ng/L) of PFOS than those of PFOA (33.0% and 37.0%; 16.2 and 22.6 ng/L, respectively). For raw milk samples, only PFOS was detected. The differences in the levels of the two compounds between samples from the north and south regions were observed, and northern regions showed higher pollution levels than southern regions. On the basis of the retail milk measurements and consumption data, the ADIs of PFOA and PFOS for Xinjiang adults were calculated to be 0.0211 and 0.0318 ng/kg/day, respectively. Furthermore, the estimated intakes of PFOA and PFOS varied among different groupings (age, area, gender, and race) and increased with increasing age. Relevant hazard ratios were found to be far less than 1.0, and this finding suggested that no imminent health damages were produced by PFOA and PFOS intake via milk and yogurt consumption in the Xinjiang population.

  16. Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment

    PubMed Central

    Xing, Zhenni; Lu, Jianjiang; Liu, Zilong; Li, Shanman; Wang, Gehui; Wang, Xiaolong

    2016-01-01

    Although perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been identified in milk and dairy products in many regions, knowledge on their occurrence in Xinjiang (China) is rare. This study was conducted to measure the levels of PFOA and PFOS in milk and yogurt from Xinjiang and to investigate the average daily intake (ADI) of these two compounds. PFOA and PFOS levels were analyzed using ultrasonic extraction with methanol and solid-phase extraction followed by liquid chromatography–mass spectrometry. Retail milk and yogurt samples present higher detection rates (39.6% and 48.1%) and mean concentrations (24.5 and 31.8 ng/L) of PFOS than those of PFOA (33.0% and 37.0%; 16.2 and 22.6 ng/L, respectively). For raw milk samples, only PFOS was detected. The differences in the levels of the two compounds between samples from the north and south regions were observed, and northern regions showed higher pollution levels than southern regions. On the basis of the retail milk measurements and consumption data, the ADIs of PFOA and PFOS for Xinjiang adults were calculated to be 0.0211 and 0.0318 ng/kg/day, respectively. Furthermore, the estimated intakes of PFOA and PFOS varied among different groupings (age, area, gender, and race) and increased with increasing age. Relevant hazard ratios were found to be far less than 1.0, and this finding suggested that no imminent health damages were produced by PFOA and PFOS intake via milk and yogurt consumption in the Xinjiang population. PMID:27775680

  17. Validation and optimization of experimental colitis induction in rats using 2, 4, 6-trinitrobenzene sulfonic acid

    PubMed Central

    Motavallian-Naeini, A.; Andalib, S.; Rabbani, M.; Mahzouni, P.; Afsharipour, M.; Minaiyan, M.

    2012-01-01

    Trinitrobenzene sulfonic acid (TNBS)-induced colitis is one of the most common methods for studying inflammatory bowel disease in animal models. Several factors may, however, affect its reproducibility, rate of animal mortality, and macroscopic and histopathological outcomes. Our aim was to validate the main contributing factors to this method and compare the effects of different reference drugs upon remission of resultant colon injuries. TNBS was dissolved in 0.25 ml of ethanol (50% v/v) and instilled (25, 50, 100 and 150 mg/kg) intracolonically to the male Wistar rats. After determination of optimum dose of TNBS in male rats and assessment of this dose in female rats, they were treated with reference drugs including dexamethasone [1 mg/kg, intraperitoneally (i.p.) and 2 mg/kg, orally (p.o.)], Asacol (mesalazine, 100 mg/kg, p.o.; 150 mg/kg, enema) and hydrocortisone acetate (20 mg/kg, i.p.; 20 mg/kg, enema) which started 2 h after colitis induction and continued daily for 6 consecutive days. Thereafter, macroscopic and microscopic parameters and clinical features were assessed and compared in different groups. We found that the optimum dose of TNBS for the reproducibility of colonic damage with the least mortality rate was 50 mg/kg. Amongst studied reference drugs, hydrocortisone acetate (i.p.), dexamethasone (i.p. and p.o.) and Asacol (p.o.) significantly diminished the severity of macroscopic and microscopic injuries and could be considered effective for experimental colitis studies in rats . Our findings suggest that optimization of TNBS dose is essential for induction of colitis under the laboratory conditions; and gender exerts no impact upon macroscopic and histological characteristics of TNBS-induced colitis in rats. Furthermore, the enema forms of hydrocortisone and Asacol are not appropriate reference drugs. PMID:23181094

  18. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    PubMed

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Virucidal effects of bleach activators, sodium alkyl acyloxybenzene sulfonate and acyloxybenzoic acid, against Feline calicivirus.

    PubMed

    Tobe, Seiichi; Hoshi, Marika; Iizuka, Kinue; Tadenuma, Hirohiko; Takaoka, Hiromitsu; Komoriya, Tomoe; Kohno, Hideki

    2012-01-01

    Noroviruses (NVs) are major causative pathogens of gastroenteritis. The disinfection of contaminated clothing during common household washing is desirable. The virucidal effects of 2 bleach activators, sodium alkyl acyloxybenzene sulfonate (OBS) and alkyl acyloxybenzoic acid (OBC), were studied using Feline calicivirus (FCV) as a surrogate for NVs. FCV was added to solutions containing either OBS or OBC and sodium percarbonate at various temperatures and for varying lengths of time. OBS and OBC, which generate long carbon chain peroxy acids, enhanced the virucidal effect of sodium percarbonate (PC). In particular, sodium lauroyloxybenzene sulfonate (OBS-12) and decanoyloxybenzoic acid (OBC-10) showed superior virucidal effects. Although the virucidal effect of 38-200 mg/L OBS-12 was maintained with 2-5% (v/v) horse serum, there was less of an effect with the same concentration of available chlorine. OBS and OBC have been used as ingredients in some laundry products to increase bleaching activity. It is expected that the use of OBS and OBC is also effective for the inactivation of NVs under common household washing conditions.

  20. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming

    2017-01-01

    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  1. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well.

  2. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion.

  3. Synthesis, cytotoxic evaluation and in silico pharmacokinetic prediction of some benzo[a]phenazine-5-sulfonic acid derivatives.

    PubMed

    Hari Narayana Moorthy, N S; Karthikeyan, C; Trivedi, Piyush

    2009-11-01

    Cancer is one of the life threatening diseases and the development of novel anticancer molecules is limited by many reasons. In the present investigation, some novel benzo[a]phenazine-5-sulfonic acid derivatives as DNA intercalator was designed with optimized pharmacokinetic features for cancer treatment. The compounds with desired pharmacokinetic profile were synthesized and structurally characterized. Cytotoxic activity study against HL-60 tumor cell lines shows that 10-dimethyl carboxamido derivative of benzo[a]phenazine-5-sulfonic acid is found to be the most active in the series with cytotoxic activity (IC(50) = 19 microM) comparable to cisplatin (IC(50) = 7 microM). The study concluded that the novel benzo[a]phenazine-5-sulfonic acid derivatives were found to have enhanced DNA binding affinity and exhibited significant activity in vitro against HL-60 cell lines. This work will also guide for further development of effective DNA intercalators for cancer treatment.

  4. Efficacy of two acidified chlorite postmilking teat disinfectants with sodium dodecylbenzene sulfonic acid on prevention of contagious mastitis using an experimental challenge protocol.

    PubMed

    Oura, L Y; Fox, L K; Warf, C C; Kempt, G K

    2002-01-01

    Two acidified sodium chlorite postmilking teat disinfectants were evaluated for efficacy against Staphylococcus aureus and Streptococcus agalactiae by using National Mastitis Council experimental challenge procedures. The effect of these teat dips on teat skin and teat end condition was also determined. Both dips contained 0.32% sodium chlorite, 1.32% lactic, and 2.5% glycerin. Dips differed in the amount of sodium dodecylbenzene sulfonic acid (0.53 or 0.27%) added as a surfactant. Both dips significantly reduced new intramammary infection (IMI) rates compared with undipped controls. The dip containing 0.53% dodecylbenzene sulfonic acid reduced new IMI by Staph. aureus by 72% and Strep. agalactiae by 75%. The dip containing 0.27% dodecylbenzene sulfonic acid reduced new IMI by Staph. aureus by 100% and by Strep. agalactiae by 88%. Changes in teat skin and teat end condition for treatment and control groups varied in parallel over time. Teats treated with either teat dip had higher mean teat skin and teat end scores than control teats at some weeks. However, teat skin and teat end condition did not tend to change from the start to the completion of the trial. Application of the two new postmilking teat dips was effective in reducing new IMI from contagious mastitis pathogens. (Key words: teat dip, contagious mastitis, chlorous acid)

  5. Cross-linked polystyrene sulfonic acid and polyethylene glycol as a low-fouling material.

    PubMed

    Alghunaim, Abdullah; Zhang Newby, Bi-min

    2016-04-01

    A negatively charged hydrophilic low fouling film was prepared by thermally cross-linking a blend consisting of polystyrene sulfonic acid (PSS) and polyethylene glycol (PEG). The film was found to be stable by dip-washing. The fouling resistance of this material toward bacterial (Escherichia coli) and colloidal (polystyrene particles) attachment, non-specific protein (fibronectin) adsorption and cell (3T3 NIH) adhesion was evaluated and was compared with glass slides modified with polyethylene glycol (PEG) brushes, oxidized 3-mercaptopropyltrimethoxysilane (sulfonic acid, SA), and n-octadecyltrichlorosilane (OTS). The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and thermodynamic models based on surface energy were used to explain the interaction behaviors of E. coli/polystyrene particles-substrate and protein-substrate interactions, respectively. The cross-linked PSS-PEG film was found to be slightly better than SA and PEG toward resisting non-specific protein adsorption, and showed comparable low attachment results as those of PEG toward particle, bacterial and NIH-3T3 cells adhesion. The low-fouling performance of PSS-PEG, a cross-linked film by a simple thermal curing process, could allow this material to be used for applications in aqueous environments, where most low fouling hydrophilic polymers, such as PSS or PEG, could not be easily retained.

  6. Cross-linked Polystyrene Sulfonic Acid and Polyethylene Glycol as a Low-fouling Material

    PubMed Central

    Alghunaim, Abdullah; Newby, Bi-min Zhang

    2016-01-01

    A negatively charged hydrophilic low fouling film was prepared by thermally cross-linking a blend consisting of polystyrene sulfonic acid (PSS) and polyethylene glycol (PEG). The film was found to be stable by dip-washing. The fouling resistance of this material towards bacterial (Escherichia coli) and colloidal (polystyrene particles) attachment, non-specific protein (fibronectin) adsorption and cell (3T3 NIH) adhesion was evaluated and was compared with glass slides modified with polyethylene glycol (PEG) brushes, oxidized 3-mercaptopropyltrimethoxysilane (sulfonic acid, SA), and n-octadecyltrichlorosilane (OTS). The extended Derjaguin-Landau- Verwey-Overbeek (XDLVO) theory and thermodynamic models based on surface energy were used to explain the interaction behaviors of E. coli/polystyrene particles–substrate and protein–substrate interactions, respectively. The cross-linked PSS-PEG film was found to be slightly better than SA and PEG towards resisting non-specific protein adsorption, and showed comparable low attachment results as those of PEG towards particle, bacterial and NIH-3T3 cells adhesion. The low-fouling performance of PSS-PEG, a cross-linked film by a simple thermal curing process, could allow this material to be used for applications in aqueous environments, where most low fouling hydrophilic polymers, such as PSS or PEG, could not be easily retained. PMID:26812639

  7. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    NASA Astrophysics Data System (ADS)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  8. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    SciTech Connect

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-15

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)

  9. A study on the distribution of polystyrene sulfonic acid grafts over the cross-section of a PFA film

    NASA Astrophysics Data System (ADS)

    Shin, Junhwa; Ko, Beom-Seok; Kang, Sung-A.; Fei, Geng; Nho, Young-Chang; Kang, Phil-Hyun

    2009-03-01

    In this study, the distribution behaviors of polystyrene sulfonic acid (PSSA) grafts over the cross-section of grafted PFA membranes (PFA- g-PSSA) were investigated by using SEM-EDX analysis. Membranes with various degrees of grafting (DOG) and thicknesses were prepared by a simultaneous radiation grafting of styrene and a subsequent sulfonation with chlorosulfonic acid. A SEM-EDX instrument was utilized to directly observe that the distribution behaviors of the PSSA grafts over the cross-section of grafted PFA membranes and the results showed that the distribution behaviors were largely affected by the grafting conditions such as the degree of grafting, monomer concentration, and film thickness.

  10. Atmospheric chlorinated polyfluorinated ether sulfonate and ionic perfluoroalkyl acids in 2006 to 2014 in Dalian, China.

    PubMed

    Liu, Wei; Qin, Hui; Li, Jingwen; Zhang, Qian; Zhang, Huanhuan; Wang, Zaoshi; He, Xin

    2017-04-18

    Chlorinated polyfluorinated ether sulfonate (Cl-PFESA; trade name F-53B) is an alternative product for perfluorooctane sulfonate (PFOS) used in metal plating; little is known about its levels in the environment and its risks. To our knowledge, the present study constitutes the first report of Cl-PFESA in the atmosphere. In 2006 to 2014, C8 Cl-PFESA, along with ionic perfluoroalkyl acids (PFAAs), was detected in atmospheric particulate matter in Dalian, China. Concentrations of C8 Cl-PFESA increased from 140 pg/m(3) in 2007 to 722 pg/m(3) in 2014. Levels of 11 (total) ionic PFAAs increased in 2006 to 2008 and decreased afterward, with a range of 35.7 to 860 pg/m(3) . The PFAAs in the particulate matter were dominated by perfluorocarboxylates, with perfluorooctanoate detected at the highest concentration at a mean level of 71.7 pg/m(3) , followed by perfluoroheptanoate and perfluorohexanoate. Perfluorosulfonates were detected at lower levels, with mean concentrations of PFOS, perfluorobutanesulfonate, and perfluorohexane sulfonate of 5.73, 1.64, and 1.24 pg/m(3) , respectively. Back-trajectory analysis suggested that the air mass approaching Dalian during the sampling originated from the northwest, where fluorochemical industry parks and metal plating industries are densely located. No significant correlation was observed between Cl-PFESA and the ionic PFAAs. The relatively high Cl-PFESA concentrations suggested that it possibly contributed largely to the previously reported exposure to undefined organic fluorine compounds, for which further research on emission and environmental risks is needed. Environ Toxicol Chem 2016;9999:1-6. © 2017 SETAC. © 2017 SETAC.

  11. Oxidation of chromium(II) by hydroxylamine-O-sulfonic acid

    SciTech Connect

    Simunic, J.L.; Espenson, J.H.; Bakac, A.

    1988-01-01

    When hexaaquochromium(II) reacts with hydroxylamine-O-sulfonic acid (HSA) in acidic media, the major product of the reaction is CrNH{sub 3}{sup 3+} rather than the expected CrSO{sub 4}{sup +} or Cr{sup 3+}. Stoichiometric studies indicate that two moles of Cr{sup 2+} are consumed per mole of HSA. The rate law for the reaction is {minus}d(Cr{sup 2+})/2dt = {minus}d(HSA)/dt = k{sub 0} + k{sub 1} (Cr{sup 2+})(HSA) with k{sub 0} = 0.2 s{sup {minus}1} and k{sub 1} = 9.7 M{sup {minus}1}s{sup {minus}1}. 7 refs.

  12. Inactivation of a class A and a class C β-lactamase by 6β-(hydroxymethyl)penicillanic acid sulfone

    PubMed Central

    Papp-Wallace, Krisztina M.; Bethel, Christopher R.; Gootz, Thomas D.; Shang, Wenchi; Stroh, Justin; Lau, William; McLeod, Dale; Price, Loren; Marfat, Anthony; Distler, Anne; Drawz, Sarah M.; Chen, Hansong; Harry, Emily; Nottingham, Micheal; Carey, Paul R.; Buynak, John D.; Bonomo, Robert A.

    2012-01-01

    β-Lactamase inhibitors (clavulanic acid, sulbactam, and tazobactam) contribute significantly to the longevity of the β-lactam antibiotics used to treat serious infections. In the quest to design more potent compounds and to understand the mechanism of action of known inhibitors, 6β-(hydroxymethyl)penicillanic acid sulfone (6β-HM-sulfone) was tested against isolates expressing the class A TEM-1 β-lactamase and a clinically important variant of the AmpC cephalosporinase of Pseudomonas aeruginosa, PDC-3. The addition of the 6β-HM-sulfone inhibitor to ampicillin was highly effective. 6β-HM-sulfone inhibited TEM-1 with an IC50 of 12 ± 2 nM and PDC-3 with an IC50 of 180 ± 36 nM, and displayed lower partition ratios than commercial inhibitors, with partition ratios (kcat/kinact) equal to 174 for TEM-1 and 4 for PDC-3. Measured for 20 h, 6β-HM-sulfone demonstrated rapid, first-order inactivation kinetics with the extent of inactivation being related to the concentration of inhibitor for both TEM-1 and PDC-3. Using mass spectrometry to gain insight into the intermediates of inactivation of this inhibitor, 6β-HM-sulfone was found to form a major adduct of +247 ± 5 Da with TEM-1 and +245 ± 5 Da with PDC-3, suggesting that the covalently bound, hydrolytically stabilized acyl-enzyme has lost a molecule of water (H–O–H). Minor adducts of +88 ± 5 Da with TEM-1 and +85 ± 5 Da with PDC-3 revealed that fragmentation of the covalent adduct can result but appeared to occur slowly with both enzymes. 6β-HM-sulfone is an effective and versatile β-lactamase inhibitor of representative class A and C enzymes. PMID:22155308

  13. Synthesis of sulfonic acid-functionalized Fe3O4@C nanoparticles as magnetically recyclable solid acid catalysts for acetalization reaction.

    PubMed

    Zheng, Fang-Cai; Chen, Qian-Wang; Hu, Lin; Yan, Nan; Kong, Xiang-Kai

    2014-01-21

    The Fe3O4@C core-shell magnetic nanoparticles with an average size of about 190 nm were synthesized via a one-pot solvothermal process using ferrocene as a single reactant. The sulfonic acid-functionalized Fe3O4@C magnetic nanoparticles were obtained by grafting the sulfonic groups on the surface of Fe3O4@C nanoparticles to produce magnetically recyclable solid acid catalysts. The as-prepared products were characterized by X-ray diffraction and transmission electron microscopy. The catalytic performance of the as-prepared catalysts was examined through the condensation reaction of benzaldehyde and ethylene glycol. The results showed that the catalysts exhibited high catalytic activity with a conversion rate of 88.3% under mild conditions. Furthermore, catalysts with a magnetization saturation of 53.5 emu g(-1) at room temperature were easily separated from the reaction mixture by using a 0.2 T permanent magnet and were reused 8 times without any significant decrease in catalytic activity.

  14. Detection of a cyclic perfluorinated acid, perfluoroethylcyclohexane sulfonate, in the Great Lakes of North America.

    PubMed

    De Silva, Amila O; Spencer, Christine; Scott, Brian F; Backus, Sean; Muir, Derek C G

    2011-10-01

    Perfluoroethylcyclohexanesulfonate (PFECHS) is a cyclic perfluorinated acid (PFA) mainly used as an erosion inhibitor in aircraft hydraulic fluids. It is expected to be as recalcitrant to environmental degradation as aliphatic PFAs including perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). For the first time, PFECHS is reported in top predator fish (sulfonate (PFMeCHS), was also detected in the dissolved phase but not above detection limits in fish tissue. Bioaccumulation factors (BAFs) were estimated by taking the ratio of fish to water concentrations. The mean log BAF values corresponded to 2.8 for PFECHS, 2.1 for PFOA, and 4.5 for PFOS. It is not certain whether the fish-water BAF for PFECHS is an overestimate due to the influence of precursor biotransformation. Further studies are recommended to understand the extent of PFECHS contamination.

  15. Identification, Tissue Distribution, and Bioaccumulation Potential of Cyclic Perfluorinated Sulfonic Acids Isomers in an Airport Impacted Ecosystem.

    PubMed

    Wang, Yuan; Vestergren, Robin; Shi, Yali; Cao, Dong; Xu, Lin; Cai, Yaqi; Zhao, Xiaoli; Wu, Fengchang

    2016-10-18

    The use of cyclic perfluoroalkyl acids as anticorrosive agents in hydraulic fluids remains a poorly characterized source of organofluorine compounds to the environment. Here, we investigated the presence of perfluoroethylenecyclohexanesulfonate (PFECHS) isomers in environmental samples for the first time using a combination of high resolution and tandem mass spectrometry. Five distinct peaks attributed to different isomers of PFECHS and perfluoropropylcyclopentanesulfonate (PFPCPeS) were identified in environmental samples. The sum of PFECHS and PFPCPeS isomers displayed logarithmically decreasing spatial trends in water (1.04-324 ng/L) and sediment samples (sulfonic acid group affect the bioaccumulation potential of cyclic perfluoroalkyl acids. Based on the high mobility and moderate bioaccumulation potential of cyclic perfluorinated acids it is suggested that contamination of aquifers used for drinking water around airports may be a hitherto overlooked problem for this novel class of contaminants.

  16. Induction of chronic pancreatic disease by trinitrobenzene sulfonic acid infusion into rat pancreatic ducts.

    PubMed

    Puig-Diví, V; Molero, X; Salas, A; Guarner, F; Guarner, L; Malagelada, J R

    1996-11-01

    Despite being a common disease in humans, little is known about the etiopathogenesis of and effective therapeutic approaches to chronic pancreatitis, due mainly to the fact that few simple animal models suitable to study inflammatory and fibrogenetic processes have been described in the pancreas. Trinitrobenzene sulfonic acid (TNBS) induces chronic colitis and cholangitis in the rat. We hypothesized that TNBS instillation into the pancreatic ducts could also result in the development of a chronic pancreatic disease. The biliopancreatic duct of rats was cannulated and tied close to the liver. TNBS [0.4 ml of 2% TNBS in phosphate-buffered saline (PBS)-10% ethanol, pH 8] was infused into the pancreas under a continuous controlled-pressure system. Control rats underwent the same procedure using vehicle only. Pathology assessment of TNBS-treated rats examined at 48 h was consistent with severe acute necrotizing pancreatitis, having a morality rate of 31% and serum amylase activity of 37.4 +/- 8.8 U/ml at 24 h and 13.3 +/- 1.7 U/ml at 48 h (p < 0.01 for both time points compared to PBS/ethanol-treated rats). Groups of 10 rats each were killed at 3, 4, and 6 week after the surgical procedure. Morphological examination revealed changes mimicking features of chronic pancreatitis in humans in 80% (32 of 40) of TNBS-treated rats, consisting in various degrees of periductal and lobular fibrosis, duct stenosis, patchy acute and chronic inflammatory cell infiltrates, and signs of gland atrophy. Animals developing chronic disease had a weight gain rate significantly lower than that of control rats. Serum amylase, fasting glucose, and a glucose tolerance test were not different in diseased or control rats. In conclusion, we were able to induce chronic fibrogenetic inflammatory disease in the pancreas after a single pulse instillation of TNBS into the pancreatic ducts. This might be a useful animal model to study the pathophysiology of inflammatory, fibrogenetic, and reparative

  17. Poly(phenyl sulfone) anion exchange membranes with pyridinium groups for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Zhang, Bengui; Zhang, Enlei; Wang, Guosheng; Yu, Ping; Zhao, Qiuxia; Yao, Fangbo

    2015-05-01

    To develop high performance and cost-effective membranes with low permeability of vanadium ions for vanadium redox flow battery (VRFB) application, poly(phenyl sulfone) anion exchange membranes with pyridinium groups (PyPPSU) are prepared and first investigated for VRFB application. PyPPSU membranes show much lower vanadium ions permeability (0.07 × 10-7-0.15 × 10-7 cm2 min-1) than that of Nafion 117 membrane (31.3 × 10-7 cm2 min-1). As a result, the self-discharge duration of the VRFB cell with PyPPSU membrane (418 h) is about four times longer than that of VRFB cell with Nafion 117 membrane (110 h). Furthermore, the VRFB cell with PyPPSU membrane exhibits higher battery efficiency (coulombic efficiency of 97.8% and energy efficiency of 80.2%) compare with that of VRFB cell with Nafion 117 membrane (coulombic efficiency of 96.1% and energy efficiency of 77.2%) at a high current density of 100 mA cm-2. In addition, PyPPSU membrane exhibits stable performance in 100-cycle test. The results indicate that PyPPSU membrane is high performance and low-cost alternative membrane for VRFB application.

  18. Use of simple pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and perfluorooctane sulfonic acid.

    PubMed

    Thompson, Jack; Lorber, Matthew; Toms, Leisa-Maree L; Kato, Kayoko; Calafat, Antonia M; Mueller, Jochen F

    2010-05-01

    Perflurooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been used for a variety of applications including fluoropolymer processing, fire-fighting foams and surface treatments since the 1950s. Both PFOS and PFOA are polyfluoroalkyl chemicals (PFCs), man-made compounds that are persistent in the environment and humans; some PFCs have shown adverse effects in laboratory animals. Here we describe the application of a simple one compartment pharmacokinetic model to estimate total intakes of PFOA and PFOS for the general population of urban areas on the east coast of Australia. Key parameters for this model include the elimination rate constants and the volume of distribution within the body. A volume of distribution was calibrated for PFOA to a value of 170ml/kgbw using data from two communities in the United States where the residents' serum concentrations could be assumed to result primarily from a known and characterized source, drinking water contaminated with PFOA by a single fluoropolymer manufacturing facility. For PFOS, a value of 230ml/kgbw was used, based on adjustment of the PFOA value. Applying measured Australian serum data to the model gave mean+/-standard deviation intake estimates of PFOA of 1.6+/-0.3ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003 and 1.3+/-0.2ng/kg bw/day based on samples collected in 2006-2007. Mean intakes of PFOS were 2.7+/-0.5ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003, and 2.4+/-0.5ng/kgbw/day for the 2006-2007 samples. ANOVA analysis was run for PFOA intake and demonstrated significant differences by age group (p=0.03), sex (p=0.001) and date of collection (p<0.001). Estimated intake rates were highest in those aged >60years, higher in males compared to females, and higher in 2002-2003 compared to 2006-2007. The same results were seen for PFOS intake with significant differences by age group (p<0.001), sex

  19. Sulfonic acid functionalized nano γ-Al2O3 catalyzed per-O-acetylated of carbohydrates.

    PubMed

    Wu, Liqiang; Yin, Zhikui

    2013-01-10

    A simple and clean synthesis of per-O-acetylation carbohydrate derivatives has been accomplished by treatment of sugars with a stoichiometric quantity of acetic anhydride under solvent-free conditions in the presence of sulfonic acid functionalized nano γ-Al(2)O(3) as an efficient and environmentally benign catalyst.

  20. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    USDA-ARS?s Scientific Manuscript database

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  1. A Direct Metal-Free Decarboxylative Sulfono Functionalization (DSF) of Cinnamic Acids to α,β-Unsaturated Phenyl Sulfones.

    PubMed

    Singh, Rahul; Allam, Bharat Kumar; Singh, Neetu; Kumari, Kumkum; Singh, Satish Kumar; Singh, Krishna Nand

    2015-06-05

    A metal-free room temperature decarboxylative cross-coupling between cinnamic acids and arylsulfonyl hydrazides has been realized for the first time for the synthesis of (E)-vinyl sulfones. The scope and versatility of the reaction has been demonstrated by the regio- and stereoselective synthesis of 22 derivatives with diverse structural features.

  2. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid

    PubMed Central

    Andleeb, Shaista; Kumar Singh, Arun; Eom, Jonghwa

    2015-01-01

    We report the tailoring of the electrical properties of mechanically exfoliated multilayer (ML) molybdenum disulfide (MoS2) by chemical doping. Electrical charge transport and Raman spectroscopy measurements revealed that the p-toluene sulfonic acid (PTSA) imposes n-doping in ML MoS2. The shift of threshold voltage for ML MoS2 transistor was analyzed as a function of reaction time. The threshold voltage shifted toward more negative gate voltages with increasing reaction time, which indicates an n-type doping effect. The shift of the Raman peak positions was also analyzed as a function of reaction time. PTSA treatment improved the field-effect mobility by a factor of ~4 without degrading the electrical characteristics of MoS2 devices. PMID:27877810

  3. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid.

    PubMed

    Andleeb, Shaista; Kumar Singh, Arun; Eom, Jonghwa

    2015-06-01

    We report the tailoring of the electrical properties of mechanically exfoliated multilayer (ML) molybdenum disulfide (MoS2) by chemical doping. Electrical charge transport and Raman spectroscopy measurements revealed that the p-toluene sulfonic acid (PTSA) imposes n-doping in ML MoS2. The shift of threshold voltage for ML MoS2 transistor was analyzed as a function of reaction time. The threshold voltage shifted toward more negative gate voltages with increasing reaction time, which indicates an n-type doping effect. The shift of the Raman peak positions was also analyzed as a function of reaction time. PTSA treatment improved the field-effect mobility by a factor of ~4 without degrading the electrical characteristics of MoS2 devices.

  4. Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water - Tamil Nadu, India.

    PubMed

    Sunantha, Ganesan; Vasudevan, Namasivayam

    2016-08-15

    As an emerging class of environmentally persistent organic pollutants, perfluorinated compounds (PFCs), particularly perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS); have been universally found in the environment. Wastewater and untreated effluents are likely the major causes for the accumulation of PFCs in surface water. There are very few reports on the contamination of PFCs in the developing countries, particularly in India. This study reports the quantitative analysis of PFOA and PFOS in Noyyal, Cauvery, and also lakes in and around Chennai, using Ultra-Fast liquid chromatograph. The concentration of PFOA and PFOS ranged from 4 to 93ng/L and 3 to 29ng/L, respectively. The concentration of PFOS was below detectable limit in Cauvery River. A reliable concentration of PFOA was recorded at all sites of River Cauvery (5ng/L). The present study could be useful for the assessment of future monitoring programs of PFOA and PFOS in the surface water.

  5. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid

    NASA Astrophysics Data System (ADS)

    Andleeb, Shaista; Singh, Arun Kumar; Eom, Jonghwa

    2015-06-01

    We report the tailoring of the electrical properties of mechanically exfoliated multilayer (ML) molybdenum disulfide (MoS2) by chemical doping. Electrical charge transport and Raman spectroscopy measurements revealed that the p-toluene sulfonic acid (PTSA) imposes n-doping in ML MoS2. The shift of threshold voltage for ML MoS2 transistor was analyzed as a function of reaction time. The threshold voltage shifted toward more negative gate voltages with increasing reaction time, which indicates an n-type doping effect. The shift of the Raman peak positions was also analyzed as a function of reaction time. PTSA treatment improved the field-effect mobility by a factor of ~4 without degrading the electrical characteristics of MoS2 devices.

  6. Identification of a new sulfonic acid metabolite of metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.; Yockel, M.E.; Zimmerman, L.R.; Williams, T.D.

    1996-01-01

    An ethanesulfonic acid metabolite of metolachlor (metolachlor ESA) was identified in soil-sample extracts by negative-ion, fast-atom bombardment mass spectrometry (FAB-MS) and FAB tandem mass spectrometry (FAB-MS/MS). Production fragments from MS/MS analysis of the deprotonated molecular ion of metolachlor ESA in the soil extract can be reconciled with the structure of the synthesized standard. The elemental compositions of the (M - H)- ions of the metolachlor ESA standard and the soil-sample extracts were confirmed by high-resolution mass spectrometry. A dissipation study revealed that metolachlor ESA is formed in soil under field conditions corresponding to a decrease in the concentration of the parent herbicide, metolachlor. The identification of the sulfonated metabolite of metolachlor suggests that the glutathione conjugation pathway is a common detoxification pathway shared by chloroacetanilide herbicides.

  7. Identification of small molecule sulfonic acids as ecto-5'-Nucleotidase inhibitors.

    PubMed

    Raza, Rabia; Saeed, Aamer; Lecka, Joanna; Sévigny, Jean; Iqbal, Jamshed

    2012-11-01

    Ecto-5'-Nucleotidase inhibitors have great potential as anti-tumor agents. We have investigated biochemical properties of human and rat ecto-5'-Nucleotidases and characterized 19 small molecule sulfonic acid derivatives as potential inhibitors of ecto-5'-Nucleotidases. We identified 11 potent inhibitors of human and rat ecto-5'-Nucleotidases and checked their selectivity. Compound 10 (Sodium 2,4-dinitrobenzenesulfonate) with K(i) value of 0.66 μM and 19 (N-(4-sulfamoylphenylcarbamothioyl) pivalamide) with K(i) value of 0.78 μM were identified as the most potent inhibitors for human and rat ecto-5'-Nucleotidase, respectively. The present compounds have low molecular weights, water solubility and equal potency as compared to the reported inhibitors.

  8. Transfer of perfluorooctane sulfonic acid (PFOS) from contaminated feed to dairy milk.

    PubMed

    van Asselt, E D; Kowalczyk, J; van Eijkeren, J C H; Zeilmaker, M J; Ehlers, S; Fürst, P; Lahrssen-Wiederholt, M; van der Fels-Klerx, H J

    2013-11-15

    Dietary intake is the predominant route for human exposure to perfluorooctane sulfonic acid (PFOS). Single pollution events may thus affect human exposure if polluted ground and water is used to produce animal feed or food. In this study, a physiologically based pharmacokinetic (PBPK-) model is derived that describes the uptake of PFOS from contaminated feed by cows and its subsequent elimination through the cows' milk. Parameter values of the model were estimated by fitting to experimental data of a cow feeding trial. Model calculations showed that almost all PFOS ingested is excreted through the cows' milk. The elimination rate, however, was low as the estimated half-life in the cow was 56days and it may, thus, take a long time after an initial pollution event to produce PFOS-free milk. The derived model can be used to estimate the transfer of PFOS through the dairy food chain and can be used for comparison of various contamination routes.

  9. Separation and fragmentation study of isocoproporphyrin derivatives by UHPLC-ESI-exact mass MS/MS and identification of a new isocoproporphyrin sulfonic acid metabolite.

    PubMed

    Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Baxter, Sinéad L; Jones, Donald J L

    2014-01-01

    Isocoproporphyrin and its derivatives are commonly used as biomarkers of porphyria cutanea tarda, heavy metal toxicity and hexachlorobenzene (HCB) intoxication in humans and animals. However, most are isobaric with other porphyrins and reference materials are unavailable commercially. The structural characterisation of these porphyrins is important but very little data is available. We report here the separation and characterisation of isocoproporphyrin, deethylisocoproporphyrin, hydroxyisocoproporphyrin and ketoisocoproporphyrin, isolated in the faeces of rats fed with a diet containing HCB, by ultra high performance liquid chromatography-exact mass tandem mass spectrometry (UHPLC-MS/MS). Furthermore, we report the identification and characterisation of a previously unreported porphyrin metabolite, isocoproporphyrin sulfonic acid isolated in the rat faeces. The measured mass-to-charge ratio (m/z) of the precursor ion was m/z 735.2338, corresponding to a molecular formula of C36H39N4O11S with an error of 0.3 ppm from the calculated m/z 735.2336. The MS/MS data was consistent with an isocoproporphyrin sulfonic acid structure, derived from dehydroisocoproporphyrinogen by sulfonation of the vinyl group. The metabolite was present in a greater abundance than other isocoproporphyrin derivatives and may be a more useful biomarker for HCB intoxication.

  10. Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet.

    PubMed

    Numata, Jorge; Kowalczyk, Janine; Adolphs, Julian; Ehlers, Susan; Schafft, Helmut; Fuerst, Peter; Müller-Graf, Christine; Lahrssen-Wiederholt, Monika; Greiner, Matthias

    2014-07-16

    The transfer of a mixture of perfluoroalkyl acids (PFAAs) from contaminated feed into the edible tissues of 24 fattening pigs was investigated. Four perfluoroalkyl sulfonic (PFSAs) and three perfluoroalkyl carboxylic acids (PFCAs) were quantifiable in feed, plasma, edible tissues, and urine. As percentages of unexcreted PFAA, the substances accumulated in plasma (up to 51%), fat, and muscle tissues (collectively, meat 40-49%), liver (under 7%), and kidney (under 2%) for most substances. An exception was perfluorooctanesulfonic acid (PFOS), with lower affinity for plasma (23%) and higher for liver (35%). A toxicokinetic model is developed to quantify the absorption, distribution, and excretion of PFAAs and to calculate elimination half-lives. Perfluorohexanoic acid (PFHxA), a PFCA, had the shortest half-life at 4.1 days. PFSAs are eliminated more slowly (e.g., half-life of 634 days for PFOS). PFAAs in pigs exhibit longer elimination half-lives than in most organisms reported in the literature, but still shorter than in humans.

  11. Influence of volatile fatty acid concentration stability on anaerobic degradation of linear alkylbenzene sulfonate.

    PubMed

    Okada, Dagoberto Y; Delforno, Tiago P; Esteves, Andressa S; Polizel, Juliana; Hirasawa, Julia S; Duarte, Iolanda C S; Varesche, Maria B A

    2013-10-15

    Linear alkylbenzene sulfonate (LAS) is an anionic surfactant used in cleaning products, which is usually found in wastewaters. Despite the greater LAS removal rate related to a lower concentrations of volatile fatty acids (VFA), the influence of different ranges of VFA on LAS degradation is not known. LAS degradation was evaluated in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors at different ranges of VFA concentrations. The reactors were fed with a synthetic wastewater containing LAS (14 mg/L). A greater LAS removal rate (40-80%) was related to the lower and narrower range of acetic acid concentration (1-22 mg/L) in the EGSB reactor. In the UASB reactor, the acetic acid concentrations presented a wider range (2-45 mg/L), and some low LAS removal rates (around 20-25%) were observed even at low acetic acid concentrations (<10 mg/L). The high recirculation rate in the EGSB reactor improved substrate-biomass contact, which resulted in a narrower range of VFA and greater LAS removal rate.

  12. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    PubMed

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times.

  13. An Introduction to Multivariate Curve Resolution-Alternating Least Squares: Spectrophotometric Study of the Acid-Base Equilibria of 8-Hydroxyquinoline-5-Sulfonic Acid

    ERIC Educational Resources Information Center

    Rodriguez-Rodriguez, Cristina; Amigo, Jose Manuel; Coello, Jordi; Maspoch, Santiago

    2007-01-01

    A spectrophotometric study of the acid-base equilibria of 8-hydroxyquinoline-5-sulfonic acid to describe the multivariate curve resolution-alternating least squares algorithm (MCR-ALS) is described. The algorithm provides a lot of information and hence is of great importance for the chemometrics research.

  14. An Introduction to Multivariate Curve Resolution-Alternating Least Squares: Spectrophotometric Study of the Acid-Base Equilibria of 8-Hydroxyquinoline-5-Sulfonic Acid

    ERIC Educational Resources Information Center

    Rodriguez-Rodriguez, Cristina; Amigo, Jose Manuel; Coello, Jordi; Maspoch, Santiago

    2007-01-01

    A spectrophotometric study of the acid-base equilibria of 8-hydroxyquinoline-5-sulfonic acid to describe the multivariate curve resolution-alternating least squares algorithm (MCR-ALS) is described. The algorithm provides a lot of information and hence is of great importance for the chemometrics research.

  15. Synthesis and characterization of sulfonated poly(ether sulfone)s containing mesonaphthobifluorene for polymer electrolyte membrane fuel cell.

    PubMed

    Lim, Youngdon; Seo, Dongwan; Lee, Soonho; Hossain, Md Awlad; Lim, Jinseong; Lee, Sangyoung; Hong, Taehoon; Kim, Whangi

    2014-10-01

    The novel sulfonated poly(ether sulfone)s containing mesonaphthobifluorene (MNF) moiety were synthesized and characterized their properties. The prepared polymers have highly conjugated aromatic structure due to the MNF group which is an allotrope of carbon and one atom thick planar sheets of sp2-bonded carbon atoms. Poly(ether sulfone)s bearing tetraphenylethylene on polymer backbone were synthesized by polycondensation and followed intra-cyclization from tetraphenylethylene to form MNF by Friedel-craft reaction with Lewis acid (FeCl3). The sulfonation was performed selectively on MNF units with conc. sulfuric acid. The structural properties of the sulfonated polymers were investigated by 1H-NMR spectroscopy. The membranes were studied by ion exchange capacity (IEC), water uptake, and proton conductivity. The synthesized polymer electrolyte membranes showed better thermal and dimensional stabilities owing to the inducted highly conjugated aromatic structure in the polymer backbone. The water uptake of the synthesized membranes ranged from 23-52%, compared with 32.13% for Nafion 211 at 80 degrees C. The synthesized membranes exhibited proton conductivities (80 degrees C, RH 90%) of 74.6-100.4 mS/cm, compared with 102.7 mS/cm for Nafion 211.

  16. Sorption of REE and TPE from HNO{sub 3} solutions on strong-acid sulfonated cation exchanger KU-2

    SciTech Connect

    Chuveleva, E.A.; Kharitonov, O.V.; Firsova, L.A.

    1995-05-01

    Sorption of rare earths (REE) on the strong-acid sulfonated cation exchanger KU-2 is studied as a function of the solution acidity (0.1-2.0 M HNO{sub 3}) and REE concentration. In concentrated nitrate solutions where M(NO{sub 3}){sub 2}{sup +} and M(NO{sub 3}){sub 2}{sup +} can form and be sorbed by the cation exchanger, the capacity of the exchanger seems to increase by 20%.

  17. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Fluorescence quenching method for the determination of carbazochrome sodium sulfonate with aromatic amino acids.

    PubMed

    Gan, Xiao-Juan; Liu, Shao-Pu; Liu, Zhong-Fang; Hu, Xiao-Li; Tian, Jing; Xue, Jia-Xing

    2013-01-01

    In Britton-Robinson (BR) buffer medium (pH 3.3), carbazochrome sodium sulfonate (CSS) can react with some aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe) to form a 1:1 complex by electrostatic attraction, aromatic stacking interaction and Van der Waals' force, resulting in fluorescence quenching of these amino acids. Maximum quenching wavelengths were located at 352 nm (CSS-Trp system), 303 nm (CSS-Tyr system) and 284 nm (CSS-Phe system), respectively. The fluorescence quenching value (ΔF) was proportional to the concentration of CSS in a certain range. The fluorescence quenching method for the determination of CSS showed high sensitivity, with detection limits of 31.3 ng/mL (CSS-Trp system), 44.6 ng/mL (CSS-Tyr system) and 315.0 ng/mL (CSS-Phe system), respectively. The optimum conditions of the reaction conditions and the effect of coexisting substances were investigated and results showed that the method had good selectivity. The method was successfully applied for the rapid determination of CSS in blood and urine samples. Based on the bimolecular quenching constant Kq , the effect of temperature and Stern-Volmer plots, this study showed that quenching of fluorescence of amino acids by CSS was a static quenching process.

  19. Effect of fluorene groups on the properties of multiblock poly(arylene ether sulfone)s-based anion-exchange membranes.

    PubMed

    Xu, Pei Yu; Zhou, Ke; Han, Guang Lu; Zhang, Qiu Gen; Zhu, Ai Mei; Liu, Qing Lin

    2014-05-14

    Two kinds of novel multiblock poly(arylene ether sulfone)s were synthesized via block copolycondensation of telechelic oligomers as a starting material for the preparation of anion-exchange membranes (AEMs). The as-synthesized copolymers have extremely similar main chains. The difference is that the benzylmethyl groups for one are located on the fluorene-sulfone segments and they are located on the isopropylidene-sulfone segments for the other. The benzylmethyl moieties served as precursors to cationic sites and were brominated using N-bromosuccinimide (NBS) and then quaternized with N,N,N',N'-tetramethyl-1,6-diaminohexane (TMHDA). Controlled bromination and quaternization at specific positions of the benzylmethy-containing fluorene-sulfone segments and isopropylidene-sulfone segments can be achieved. 1H NMR spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography were used to characterize the as-synthesized copolymers. Distinct microphase separation in the as-prepared AEMs was observed using small-angle X-ray scattering and transmission electron microscopy. The AEM containing fluorene-sulfone segments (IEC=1.89 meq·g(-1)) showed higher ionic conductivity and methanol permeability than that containing isopropylidene-sulfone segments (IEC=2.03 meq·g(-1)). Moreover, the former showed better alkaline stability than the latter.

  20. The Use of Heterogeneous Catalysts of Chitosan Sulfonate Bead on the Esterification Reaction of Oleic Acid and Methanol

    NASA Astrophysics Data System (ADS)

    Chamidy, H. N.; Riniati

    2017-05-01

    Biodiesel is one of the ester compounds with physical properties closer to a biodiesel which can be produced by the esterification reaction between methanol and oleic acid (one of major components present in Palm Fatty Acid Distillate, PFAD). The purpose of this study was to obtain an optimum condition of esterification reaction by using chitosan sulfonate bead as heterogeneous catalysts. Chitosan sulfonate bead was made from chitosan undergo sulfonation process using acidic reagents cross-linked with sulfosalicylic and glutaraldehyde with a high enough value of ion exchange capacity. The stage of esterification reactions was carried by varying the amount of catalyst being added (4, 6, 8, 10, 12% by oleic acid), the operating temperature was varied of 40, 50 and 60 °C, and the reaction time of 1, 2, 3, 4 and 5 hours. Conversion determination of the products was done by analysing the free fatty acids content in each sample. Having obtained from the optimum amount of catalyst being added, temperature, and time, it was found that the catalyst was at 8%, 50 °C, during 5 hours in operation. The maximum conversion of oleic acid into biodiesel was 73.12%.

  1. Development and validation of an automated static headspace gas chromatography-mass spectrometry (SHS-GC-MS) method for monitoring the formation of ethyl methane sulfonate from ethanol and methane sulfonic acid.

    PubMed

    Jacq, Karine; Delaney, Ed; Teasdale, Andrew; Eyley, Steve; Taylor-Worth, Karen; Lipczynski, Andrew; Reif, Van D; Elder, David P; Facchine, Kevin L; Golec, Simon; Oestrich, Rolf Schulte; Sandra, Pat; David, Frank

    2008-12-15

    An automated sample preparation and analysis procedure was developed to monitor the formation of ethyl methane sulfonate from reaction mixtures containing ethanol and methane sulfonic acid. The system is based on a liquid handling robot combined with a static headspace module. The formed ethyl methane sulfonate is analysed after derivatisation with pentafluorothiophenol using static headspace-gas chromatography-mass spectrometry (SHS-GC-MS). Using the automated reaction-derivatisation-headspace GC-MS system, the formation of ethyl methane sulfonate can be monitored in different reaction mixtures under different reaction conditions, including temperature, water content and pH. Excellent linearity, repeatability and robustness were obtained, allowing the system to be used in kinetic studies.

  2. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  3. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  4. Biochemical effect evaluation of perfluorooctane sulfonic acid-contaminated wood mice (Apodemus sylvaticus).

    PubMed Central

    Hoff, Philippe Tony; Scheirs, Jan; Van de Vijver, Kristin; Van Dongen, Walter; Esmans, Eddy Louis; Blust, Ronny; De Coen, Wim

    2004-01-01

    Wood mice (Apodemus sylvaticus) were captured at Blokkersdijk, a nature reserve in the immediate vicinity of a fluorochemical plant in Antwerp, Belgium, and at Galgenweel, 3 kilometers farther away. The liver perfluorooctane sulfonic acid (PFOS) concentrations in the Blokkersdijk mice were extremely high (0.47-178.55 micro g/g wet weight). Perfluorononanoic, perfluorodecanoic, perfluoroundecanoic, and perfluorododecanoic acids were found sporadically in the liver tissue of the Blokkersdijk mice. The liver PFOS concentrations at Galgenweel were significantly lower than those at Blokkersdijk (0.14-1.11 micro g/g wet weight). Further results suggest sex independence of the liver PFOS levels, increased levels of PFOS bioaccumulation in older mice, and maternal PFOS transfer to the young. Several liver end points were significantly elevated in the Blokkersdijk mice: liver weight, relative liver weight, peroxisomal beta-oxidation activity, microsomal lipid peroxidation level, and mitochondrial fraction protein content. For the mitochondrial fraction catalase activity, no significant difference between locations was found. The liver weight, relative liver weight, and liver microsomal lipid peroxidation level increased significantly with the liver PFOS concentration. No indications for PFOS-mediated effects on the serum triglyceride, cholesterol, or potassium levels were obtained. The liver PFOS concentration was negatively related to the serum alanine aminotransferase activity. PMID:15121511

  5. Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases.

    PubMed

    Hoffmann, Anja; Richter, Martina; von Grafenstein, Susanne; Walther, Elisabeth; Xu, Zhongli; Schumann, Lilia; Grienke, Ulrike; Mair, Christina E; Kramer, Christian; Rollinger, Judith M; Liedl, Klaus R; Schmidtke, Michaela; Kirchmair, Johannes

    2017-01-01

    Viral neuraminidases are an established drug target to combat influenza. Severe complications observed in influenza patients are primarily caused by secondary infections with e.g., Streptococcus pneumoniae. These bacteria engage in a lethal synergism with influenza A viruses (IAVs) and also express neuraminidases. Therefore, inhibitors with dual activity on viral and bacterial neuraminidases are expected to be advantageous for the treatment of influenza infections. Here we report on the discovery and characterization of diazenylaryl sulfonic acids as dual inhibitors of viral and Streptococcus pneumoniae neuraminidase. The initial hit came from a virtual screening campaign for inhibitors of viral neuraminidases. For the most active compound, 7-[2-[4-[2-[4-[2-(2-hydroxy-3,6-disulfo-1-naphthalenyl)diazenyl]-2-methylphenyl]diazenyl]-2-methylphenyl]diazenyl]-1,3-naphthalenedisulfonic acid (NSC65847; 1), the Ki-values measured in a fluorescence-based assay were lower than 1.5 μM for both viral and pneumococcal neuraminidases. The compound also inhibited N1 virus variants containing neuraminidase inhibitor resistance-conferring substitutions. Via enzyme kinetics and nonlinear regression modeling, 1 was suggested to impair the viral neuraminidases and pneumococcal neuraminidase with a mixed-type inhibition mode. Given its antiviral and antipneumococcal activity, 1 was identified as a starting point for the development of novel, dual-acting anti-infectives.

  6. Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases

    PubMed Central

    Hoffmann, Anja; Richter, Martina; von Grafenstein, Susanne; Walther, Elisabeth; Xu, Zhongli; Schumann, Lilia; Grienke, Ulrike; Mair, Christina E.; Kramer, Christian; Rollinger, Judith M.; Liedl, Klaus R.; Schmidtke, Michaela; Kirchmair, Johannes

    2017-01-01

    Viral neuraminidases are an established drug target to combat influenza. Severe complications observed in influenza patients are primarily caused by secondary infections with e.g., Streptococcus pneumoniae. These bacteria engage in a lethal synergism with influenza A viruses (IAVs) and also express neuraminidases. Therefore, inhibitors with dual activity on viral and bacterial neuraminidases are expected to be advantageous for the treatment of influenza infections. Here we report on the discovery and characterization of diazenylaryl sulfonic acids as dual inhibitors of viral and Streptococcus pneumoniae neuraminidase. The initial hit came from a virtual screening campaign for inhibitors of viral neuraminidases. For the most active compound, 7-[2-[4-[2-[4-[2-(2-hydroxy-3,6-disulfo-1-naphthalenyl)diazenyl]-2-methylphenyl]diazenyl]-2-methylphenyl]diazenyl]-1,3-naphthalenedisulfonic acid (NSC65847; 1), the Ki-values measured in a fluorescence-based assay were lower than 1.5 μM for both viral and pneumococcal neuraminidases. The compound also inhibited N1 virus variants containing neuraminidase inhibitor resistance-conferring substitutions. Via enzyme kinetics and nonlinear regression modeling, 1 was suggested to impair the viral neuraminidases and pneumococcal neuraminidase with a mixed-type inhibition mode. Given its antiviral and antipneumococcal activity, 1 was identified as a starting point for the development of novel, dual-acting anti-infectives. PMID:28261167

  7. Biochemical Studies of Bacterial Sporulation and Germination XII. A Sulfonic Acid as a Major Sulfur Compound of Bacillus subtilis Spores

    PubMed Central

    Bonsen, Pieter P. M.; Spudich, James A.; Nelson, David L.; Kornberg, Arthur

    1969-01-01

    A sulfonic acid found to be a major constituent of spores of Bacillus subtilis was provisionally identified as 3-l-sulfolactic acid. This compound was completely absent from vegetative cells during growth, but large amounts accumulated in sporulating cells just before the development of refractile spores. Essentially all of the accumulated sulfolactic acid was eventually incorporated into the nature spore, where it may represent more than 5% of the dry weight of the spore. Germination resulted in the rapid and complete release into the medium of unaltered sulfolactic acid. This compound was not found in spores of Bacillus megaterium, B. cereus, or B. thuringiensis. Images PMID:4977690

  8. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  9. The effect of trinitrobenzene sulfonic acid on gut-derived smooth muscle cell arachidonic acid metabolism: role of endogenous prostanoids.

    PubMed

    Longo, W E; Smith, G S; Deshpande, Y; Reickenberg, C; Kaminski, D L

    1997-01-01

    The contribution of smooth muscle cells as a potential source of eicosanoid production during inflammatory states remains to be elucidated. We investigated the effect of trinitrobenzene sulfonic acid (TNB), a known pro-inflammatory agent, on jejunal smooth muscle cell eicosanoid production. Human gut-derived smooth muscle cells (HISM) were incubated with TNB for 1 hour. Additionally, some cells were preincubated with either dimethylthiourea, or indomethacin for 1 hour before exposure to identical concentrations of TNB. Incubation with TNB led to significant increases in PGE(2) and 6-keto PGF-1(alpha) release, but not leukotriene B(4) release; responses which were both inhibited by dimethylthiourea and indomethacin treatment. Our results suggest that gutderived smooth muscle cells may represent an important source of proinflammatory prostanoids but not leukotrienes during inflammatory states of the intestine. The inhibition of prostanoid activity by thiourea may be mediated by suppression of cyclooxygenase activity in this cell line.

  10. Transport Properties of Sulfonated Poly (Styrene-b-isobutylene-b-styrene) Triblock Copolymers at High Ion-Exchange Capacities

    DTIC Science & Technology

    2005-10-20

    strong acidic groups (e.g., sulfonic acid ) are of interest for a variety of applications, such as sensors, actuators, ion-exchange membranes, and fuel...Increasing ion or sulfonic acid content in the polymer transforms the polymer from an insulator to an ion conductor (percolation threshold), whereby...33.50 © 2006 American Chemical Society Published on Web 12/01/2005 copolymer of polystyrene and poly(styrenesulfonic acid ) (i.e., sulfonated polystyrene

  11. Ameliorating effects of short-chain inulin-like fructans on the healing stage of trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Hino, Shingo; Ito, Hiroyuki; Bito, Hiroyuki; Kawagishi, Hirokazu; Morita, Tatsuya

    2011-01-01

    We evaluated the ameliorating effects of short-chain inulin-like fructans (SIF) with different degrees of polymerization (DP) on the healing stage of trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. The rats were assigned to 3 groups 10 d after the colitis induction, and fed for 24 d on a control diet or diet including 60 g of DP4 or DP8/kg. The fecal myeloperoxidase (MPO) activity and IgA concentration were monitored every 7 d. The colonic MPO activities and cecal concentrations of organic acids, lactobacilli, bifidobacteria, mucin and IgA were measured at the end of the study. DP4, but not DP8, significantly reduced the colonic inflammation accompanied by higher cecal concentrations of short-chain fatty acids, propionate in particular, and lactic acid-producing bacteria. DP4 therefore accelerated the healing process of TNBS-induced colitis, even when the treatment was initiated after inducing colitis.

  12. A Comparative Ab Initio Study of the Primary Hydration and Proton Dissociation of Various Imide and Sulfonic Acid Ionomers

    SciTech Connect

    Clark II, Jeffrey K.; Paddison, Stephen J.; Eikerling, Michael; Dupuis, Michel; Zawodzinski, Jr., Thomas A.

    2012-03-29

    We compare the role of neighboring group substitutions on proton dissociation of hydrated acidic moieties suitable for proton exchange membranes through electronic structure calculations. Three pairs of ionomers containing similar electron withdrawing groups within the pair were chosen for the study: two fully fluorinated sulfonyl imides (CF3SO2NHSO2CF3 and CF3CF2SO2NHSO2CF3), two partially fluorinated sulfonyl imides (CH3SO2NHSO2CF3 and C6H5SO2NHSO2CF2CF3), and two aromatic sulfonic acid based material s (CH3C6H4SO3H and CH3 OC6 - H3OCH3C6H4SO3H). Fully optimized counterpoise (CP) corrected geometries were obtained for each ionomer fragment with the inclusion of water molecules at the B3LYP/6-311G** level of density functional theory. Spontaneous proton dissociation was observed upon addition of three water molecules in each system, and the transition to a solvent-separated ion pair occurred when four water molecules were introduced. No considerable quantitative or qualitative differences in proton dissociation, hydrogen bond networks formed, or water binding energies were found between systems containing similar electron withdrawing groups. Each of the sulfonyl imide ionomers exhibited qualitatively similar results regarding proton dissociation and separation. The fully fluorinated sulfonyl imides, however, showed a greater propensity to exist in dissociated and ion-pair separated states at low degrees of hydration than the partially fluorinated sulfonyl imides. This effect is due to the additional electron withdrawing groups providing charge stabilization as the dissociated proton migrates away from the imide anion.

  13. Formation of pi, tau-dimethylhistidine on alkylation of trypsin with active-site-directed sulfonic acid methyl esters.

    PubMed

    Schubert, C; Fiedler, F

    1994-01-01

    The possibility of synthesizing stable alkyl analogues of acyl trypsins by introducing the alkyl residue by means of active-site-directed sulfonic acid esters was studied. Nine amidino- or guanidino-substituted sulfonic acids of different geometries and their methyl esters were prepared. The time-dependent inhibition of bovine trypsin by these esters, indicating modification at the active site of the enzyme, was followed. With the exception of p-guanidinobenzenesulfonic acid methyl ester, all the esters acted as irreversible inhibitors. The site of methylation, Ser-195 or His-57 (chymotrypsinogen numbering), was determine by analyzing for O-methylserine and methylhistidines. With four of the esters indications of a possible formation of, at most, 0.1 residue of O-methylserine per inactivated trypsin molecule were obtained. tau-Methylhistidine (but no pi-methylhistidine) was, however, always observed as the main product of the modification reaction. A further product, hitherto not yet described in active site methylations of serine proteinases, was pi, tau-dimethylhistidine (1,3-dimethylhistidine). The failure of an attempted synthesis of the N-acetyl-ethanolamine ester of p-toluene-sulfonic acid reported in the literature is shown to be due to the high instability of this ester.

  14. Syntheses, crystal structures and antioxidant study of Zn(II) complexes with morin-5'-sulfonic acid (MSA).

    PubMed

    Pieniążek, Elżbieta; Kalembkiewicz, Jan; Dranka, Maciej; Woźnicka, Elżbieta

    2014-12-01

    The study of modified synthetic procedure of water soluble morin-5'-sulfonic acid sodium salt (NaMSA) involving less aggressive chemicals and carried out at mild conditions was described. The NaMSA salt is a convenient source of anionic morin-5'-sulfonic ligand (MSA) in ion exchange reactions. The coordination ability of MSA ligand towards the zinc cations was investigated in aqueous solution and in solid state. Novel zinc complexes of morin-5'-sulfonate were obtained by a reaction of Zn(NO3)2 with morin-5'-sulfonate in water. Resulting compounds were characterized by single-crystal X-ray diffraction analysis, as well as spectral and thermal methods. The coordination interaction, hydrogen bond and π-π stacking lead to the formation of a 1D chain or 3D coordination polymers. The antioxidant activity of the Zn(II)-MSA complexes was evaluated by means of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. In this work, we have shown that the studied compounds are more effective free radical scavengers than the natural flavonoids like plain morin.

  15. Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite

    SciTech Connect

    Preda, N.; Rusen, E.; Musuc, A.; Enculescu, M.; Matei, E.; Marculescu, B.; Fruth, V.; Enculescu, I.

    2010-08-15

    The synthesis of a new hybrid composite based on PbS nanoparticles and poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid) [P(MMA-AMPSA)] copolymer is reported. The chemical synthesis consists in two steps: (i) a surfactant-free emulsion copolymerization between methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid and (ii) the generation of PbS particles in the presence of the P(MMA-AMPSA) latex, from the reaction between lead nitrate and thiourea. The composite was studied by scanning electron microscopy (SEM), X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The microstructure observed using SEM proves that the PbS nanoparticles are well dispersed in the copolymer matrix. The X-ray diffraction measurements demonstrate that the PbS nanoparticles have a cubic rock salt structure. It was also found that the inorganic semiconductor nanoparticles improve the thermal stability of the copolymer matrix.

  16. Gene Expression Profiling in the Liver and Lung of Perfluorooctane Sulfonate-Exposed Mouse Fetuses: Comparison to Changes Induced by Exposure to Perfluorooctanoic Acid

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmental contaminants found in the tissues of humans and wildlife. They are activators of peroxisome proliferator-activated receptor-alpha (PPARα) and exhibit hepatocarcinogenic potential in rats. PFOS...

  17. Sulfonic acid functionalized silica: an efficient heterogeneous catalyst for a three-component synthesis of 1,4-dihydropyridines under solvent-free conditions.

    PubMed

    Das, Biswanath; Suneel, Kanaparthy; Venkateswarlu, Katta; Ravikanth, Bommena

    2008-03-01

    Sulfonic acid functionalized silica catalyzed the three-component reaction of aromatic amines, alpha,beta-unsaturated aldehydes and beta-keto esters forming the corresponding 1,4-dihydropyridines in short reaction times and in high yields.

  18. Thermo Stability of Highly Sulfonated Poly(Styrene-Isobutylene-Styrene) Block Copolymers: Effects of Sulfonation and Counter-Ion Substitution

    DTIC Science & Technology

    2008-01-01

    breathable chemical protective barrier. To accomplish this, we chemically modify the PS units with sulfonic acid groups to form ionic domains creating ion...the effect of using inorganic counter ions to neutralize the sulfonic acid groups. Our reasoning for this was to minimize the amount of swelling...Baker, Assay 99%), toluene (VWR,* HPLC grade), and methylene chloride (Electromagnetic Science, HPLC grade). 2.2 Processing Conditions The

  19. Sulfotanone, a new alkyl sulfonic acid derivative from Streptomyces sp. IFM 11694 with TRAIL resistance-overcoming activity.

    PubMed

    Abdelfattah, Mohamed S; Ishikawa, Naoki; Karmakar, Utpal K; Ishibashi, Masami

    2016-04-01

    One new alkyl sulfonic acid derivative, sulfotanone (1), and the known panosialin wA (2) were isolated from the methanolic extract of mycelium of Streptomyces sp. 11694. The structure of the new compound (1) was established by a combination of spectroscopic techniques, including HRESIMS, IR, 1D and 2D NMR measurements. Compound 1 (40 µM) in combination with TRAIL showed synergistic activity in sensitizing TRAIL-resistance in human gastric adenocarcinoma cell lines.

  20. Sulfonic acid-functionalized hybrid organic-inorganic proton exchange membranes synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane (MPTMS)

    NASA Astrophysics Data System (ADS)

    Mosa, J.; Durán, A.; Aparicio, M.

    2015-11-01

    Organic/inorganic hybrid membranes based on (3-glycidoxypropyl) trimethoxysilane (GPTMS) and 3-mercaptopropyl trimethoxysilane (MPTMS) have been prepared by sol-gel method and organic polymerisation, as candidate materials for proton exchange membranes in direct alcohol fuel cell (DMFC) applications. The -SH groups of MPTMS are oxidized to sulfonic acid groups, which are attributed to enhance the proton conductivity of hybrid membranes. FTIR, XPS and contact angle were used to characterize and confirm the hybrid structure and oxidation reaction progress. Membranes characterization also includes ion exchange capacity, water uptake, methanol permeability and proton conductivity to confirm their applicability in fuel cells. All the membranes were homogeneous and thermally and chemically resistant. In particular, the hybrid membranes demonstrated proton conductivities as high as 0.16 S cm-1 at high temperature, while exhibiting a low methanol permeability as compared to Nafion®. These results are associated with proton conducting paths through the silica pseudo-PEO network in which sulfonic acid groups work as proton donor.

  1. Phase segregation of sulfonate groups in Nafion interface lamellae, quantified via neutron reflectometry fitting techniques for multi-layered structures.

    PubMed

    DeCaluwe, Steven C; Kienzle, Paul A; Bhargava, Pavan; Baker, Andrew M; Dura, Joseph A

    2014-08-21

    Neutron reflectometry analysis methods for under-determined, multi-layered structures are developed and used to determine the composition depth profile in cases where the structure is not known a priori. These methods, including statistical methods, sophisticated fitting routines, and coupling multiple data sets, are applied to hydrated and dehydrated Nafion nano-scaled films with thicknesses comparable to those found coating electrode particles in fuel cell catalyst layers. These results confirm the lamellar structure previously observed on hydrophilic substrates, and demonstrate that for hydrated films they can accurately be described as layers rich in both water and sulfonate groups alternating with water-poor layers containing an excess of fluorocarbon groups. The thickness of these layers increases slightly and the amplitude of the water volume fraction oscillation exponentially decreases away from the hydrophilic interface. For dehydrated films, the composition oscillations die out more rapidly. The Nafion-SiO2 substrate interface contains a partial monolayer of sulfonate groups bonded to the substrate and a large excess of water compared to that expected by the water-to-sulfonate ratio, λ, observed throughout the rest of the film. Films that were made thin enough to truncate this lamellar region showed a depth profile nearly identical to thicker films, indicating that there are no confinement or surface effects altering the structure. Comparing the SLD profile measured for films dried at 60 °C to modeled composition profiles derived by removing water from the hydrated lamellae suggests incomplete re-mixing of the polymer groups upon dehydration, indicated limited polymer mobility in these Nafion thin films.

  2. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    PubMed

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid.

    PubMed

    Dong, Zhaomin; Bahar, Md Mezbaul; Jit, Joytishna; Kennedy, Bruce; Priestly, Brian; Ng, Jack; Lamb, Dane; Liu, Yanju; Duan, Luchun; Naidu, Ravi

    2017-08-01

    On 25th May 2016, the U.S. EPA released reference doses (RfDs) for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) of 20ng/kg/day, which were much more conservative than previous values. These RfDs rely on the choices of animal point of departure (PoD) and the toxicokinetics (TK) model. At this stage, considering that the human evidence is not strong enough for RfD determination, using animal data may be appropriate but with more uncertainties. In this article, the uncertainties concerning RfDs from the choices of PoD and TK models are addressed. Firstly, the candidate PoDs should include more critical endpoints (such as immunotoxicity), which may lead to lower RfDs. Secondly, the reliability of the adopted three-compartment TK model is compromised: the parameters are not non-biologically plausible; and this TK model was applied to simulate gestation and lactation exposures, while the two exposure scenarios were not actually included in the model structure. Copyright © 2017. Published by Elsevier Ltd.

  4. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.

  5. Background levels of persistent organic pollutants in humans from Taiwan: perfluorooctane sulfonate and perfluorooctanoic acid.

    PubMed

    Hsu, Jen-Yi; Hsu, Jing-Fang; Ho, Hsin-Hui; Chiang, Chow-Feng; Liao, Pao-Chi

    2013-09-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have recently received attention due to their widespread contamination of the environment. PFOS and PFOA are stable in the environment and resistant to metabolism, hydrolysis, photolysis and biodegradation. PFOS and PFOA have been found in human blood and tissue samples from both occupationally exposed workers and the general worldwide population. This study aimed to determine the background levels of PFOS and PFOA in the Taiwanese population, investigate related factors, and compare exposure in Taiwan to that in other countries. The concentration of PFOS in the 59 serum samples collected from the general population in Taiwan ranged from 3.45 to 25.65ngmL(-1) (median: 8.52), and the concentration of PFOA ranged from 1.55 to 7.69ngmL(-1) (median: 3.22). There was a significant positive correlation (r=0.51; p<0.0001) between PFOS and PFOA concentrations. Males had higher concentrations of PFOA and PFOS than females. PFOS levels in serum increased with age. This study is the first investigation to reveal the PFOS and PFOA levels of serum samples in the general population of Taiwan. The levels of PFOS and PFOA in Taiwanese serum samples were comparable with those from other countries (PFOS: 5.0-35ngmL(-1), PFOA: 1.5-10ngmL(-1)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Aquatic predicted no-effect-concentration derivation for perfluorooctane sulfonic acid.

    PubMed

    Qi, Ping; Wang, Ying; Mu, Jingli; Wang, Juying

    2011-04-01

    Perfluorooctane sulfonic acid (PFOS), a representative perfluorinated surfactant, is an anthropogenic pollutant detected in various environmental and biological matrices. Some laboratory and field work has been conducted to assess the aquatic toxicity of PFOS, but little is known regarding its toxicity threshold to the aquatic ecosystem. In the present study, predicted no-effect concentrations (PNECs) were derived by four different approaches. The interspecies correlation estimation (ICE) program and final acute-to-chronic ratio (FACR) were applied to the development of PNEC based on the toxic mode of action (MOA) of PFOS. By comparison of the different PNECs, the recommended aquatic toxicity thresholds for PFOS are in the range of 0.61 to 6.66 µg/L. Based on comparison of PNEC values, microcosm results, and reported environmental concentrations, PFOS appears not to pose a serious threat to aquatic organisms. The present results demonstrate that MOA is an important consideration for the derivation of reliable PNECs; moreover, the ICE-based species sensitivity distribution (SSD) method can be used to derive PNECs when toxicological data are limited. The application of MOA and ICE for deriving PNEC values in the present study may facilitate studies on using a combination of quantitative structure-activity relationship (QSAR) models and ICE to estimate PNECs.

  7. Colorimetric detection of Cd2+ using 1-amino-2-naphthol-4-sulfonic acid functionalized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Pengcheng; Liu, Bowen; Jin, Weiwei; Wu, Fangying; Wan, Yiqun

    2016-11-01

    A colorimetric assay has been developed for facile, rapid, and sensitive detection of Cd2+ using 1-amino-2-naphthol-4-sulfonic acid functionalized silver nanoparticles (ANS-AgNPs). The presence of Cd2+ induces the aggregation of ANS-AgNPs through cooperative metal-ligand interaction. As a result, the characteristic surface plasmon resonance (SPR) peak of ANS-AgNPs at 390 nm was red-shifted to 580 nm, yielding a color change from bright yellow to reddish-brown. The color change is monitored by UV-Vis spectrometer and can be directly read out by the naked eye. Under the optimized conditions, a good linear relationship (correlation coefficient R = 0.997) was obtained between the ratio of the absorbance at 580 nm to that at 390 nm (A580nm/A390nm) and the concentration of Cd2+ over the range of 1.0-10 μM with detection limit of 87 nM. The proposed method is simple and efficient, which has been applied for determining Cd2+ in milk powder, serum, and lake water with satisfactory results.

  8. Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.

    2001-01-01

    Alachlor and metolachlor are dechlorinated and transformed into their corresponding ethane sulfonic acid (ESA) metabolites in soil. In a field-disappearance study, it was shown that alachlor ESA was formed at a faster rate and at concentrations 2-4 times higher than metolachlor ESA, conforming with the observed longer disappearance half-life of metolachlor (15.5 d) in the field as compared to alachlor (8 d). Runoff data also showed higher concentrations of alachlor ESA as compared to metolachlor ESA, even though they were applied at the same levels. Data from soil cores showed transport of the ESA compounds in soil to as far down as 75-90 cm below the surface, at concentrations ranging from less than 0.5 ??g/L to about 50 ??g/L. In contrast, no parent herbicide was detected at these depths. This observation correlates with the higher log KOC values for alachlor (3.33) and metolachlor (3.01) relative to their corresponding ESA metabolites, alachlor ESA (2.26), and metolachlor ESA (2.29).

  9. Laccase-catalyzed bisphenol A oxidation in the presence of 10-propyl sulfonic acid phenoxazine.

    PubMed

    Ivanec-Goranina, Rūta; Kulys, Juozas; Bachmatova, Irina; Marcinkevičienė, Liucija; Meškys, Rolandas

    2015-04-01

    The kinetics of the Coriolopsis byrsina laccase-catalyzed bisphenol A (BisA) oxidation was investigated in the absence and presence of electron-transfer mediator 3-phenoxazin-10-yl-propane-1-sulfonic acid (PPSA) at pH5.5 and 25°C. It was shown that oxidation rate of the hardly degrading compound BisA increased in the presence of the highly reactive substrate PPSA. The increase of reaction rate depends on PPSA and BisA concentrations as well on their ratio, e.g., at 0.2 mmol/L of BisA and 2 μmol/L of PPSA the rate increased 2 times. The kinetic data were analyzed using a scheme of synergistic laccase-catalyzed BisA oxidation. The calculated constant, characterizing reactivity of PPSA with laccase, is almost 1000 times higher than the constant, characterizing reactivity of BisA with laccase. This means that mediator-assisted BisA oxidation rate can be 1000 times higher in comparison to non-mediator reaction if compounds concentration is equal but very low.

  10. Use of anionic clays for photoprotection and sunscreen photostability: Hydrotalcites and phenylbenzimidazole sulfonic acid

    NASA Astrophysics Data System (ADS)

    Perioli, Luana; Ambrogi, Valeria; Rossi, Carlo; Latterini, Loredana; Nocchetti, Morena; Costantino, Umberto

    2006-05-01

    Layered double hydroxides of hydrotalcite (HTlc) type have many applications as matrices in pharmaceutical and cosmetic fields when intercalated with active species in anionic form. The aim of this work was to intercalate 2-phenyl-1H-benzimidazole-5-sulfonic acid (Eusolex 232) (EUS) as sunscreen molecule into hydrotalcites in order to obtain the sunscreen stabilization, the reduction of its photodegradation and the elimination of close contact between skin and filter. Hydrotalcites MgAl and ZnAl were used as hosts and the intercalation products obtained were characterized by TG, RX and DSC. They were also submitted to spectrophotometric assays in order to study the matrix influence on sunlight protection and on sunscreen photostability. These experiments showed that both MgAl and ZnAl HTlc intercalation products maintained the sunscreen properties and eusolex photodegradation was reduced. The in vitro EUS release from both formulations was almost negligible when compared with formulations containing free EUS. The EUS intercalation in HTlc and the respective formulations provided advantages in the maintenance of photoprotection efficacy, filter photostabilization and avoidance of a close contact between skin and filter, with consequent elimination of allergy problems and photocross reactions.

  11. Protective effect of geranylgeranylacetone on trinitrobenzene sulfonic acid-induced colitis in mice.

    PubMed

    Ohkawara, Tatsuya; Nishihira, Jun; Takeda, Hiroshi; Katsurada, Takehiko; Kato, Kanji; Yoshiki, Takashi; Sugiyama, Toshiro; Asaka, Masahiro

    2006-02-01

    Geranylgeranylacetone (GGA) has recently been reported to have a protective effect against ischemic, injurious and apoptotic stress in several tissues. The aim of this study was to determine the effect of GGA on colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. Colitis was induced by intrarectal instillation of TNBS in 50% ethanol in BALB/c mice. Survival, change in body weight and change in wet colon weight were assessed. Histological score in the colon was evaluated 5 days after TNBS treatment. The level of myeloperoxidase (MPO) activity in the colon was also determined. Immunohistochemistry for CD4 in the colon was performed. In addition, the level of heat shock protein (HSP) 70 in the colon was determined by Western blot analysis. Mice were orally treated with GGA (300 mg/kg) 2 h before and every other day after starting TNBS administration. Treatment with GGA markedly improved the survival rate, and reduced the loss of body weight and loss of wet colon weight in mice with TNBS-induced colitis. GGA also suppressed the increase in MPO activity and the number of CD4-positive cells infiltrating the colons of mice with TNBS-induced colitis. Furthermore, treatment with GGA remarkably up-regulated the expression of HSP70 in the colons of mice with TNBS-induced colitis. Our results provide further evidence that GGA has therapeutic potential for intestinal inflammation.

  12. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    NASA Astrophysics Data System (ADS)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  13. Toxicological evaluation of peroxy sulfonated oleic acid (PSOA) in subacute and developmental toxicity studies.

    PubMed

    Pechacek, Nathan; Laidlaw, Karen; Clubb, Stephanie; Aulmann, Walter; Osorio, Magdalena; Caudill, Jeff

    2013-12-01

    Peroxy sulfonated oleic acid (PSOA) is a new coupler used in sanitizing solutions primarily for the food and beverage industry. The toxicity of PSOA was evaluated in a 28-day repeat dose study according to OECD 407 guidelines with a 14-day recovery period and a developmental toxicity study according to OECD 414 guidelines. In both studies, PSOA was administered once daily via gavage at 0, 5, 15 and 50 mg/kg/day to Sprague-Dawley rats. Due to its corrosive properties, the highest test concentration was restricted to 0.5%. No findings related to PSOA administration were observed for the 28-day repeat-dose study and the NOEL is 50 mg/kg/day. Additionally, no impairment of the mucous membranes of the gastrointestinal tract was observed up to 0.5%, which is considered the NOEC in terms of local toxicity. For the developmental study, an embryo-fetal NOEL of 50 mg/kg/day was identified and the maternal NOEL is considered to be 15 mg/kg/day, based on slight reductions in maternal body weight and food consumption, as well as a modest increase in the incidence of clinical observations at the high dose. These findings demonstrate that PSOA appears to have minimal potential to induce toxicity associated with repeat-dose or developmental exposures.

  14. Amino acid-based anti-fouling functionalization of silica nanoparticles using divinyl sulfone.

    PubMed

    Wang, Hanqi; Cheng, Fang; Shen, Wen; Cheng, Gang; Zhao, Jing; Peng, Wei; Qu, Jingping

    2016-08-01

    Natural amino acids are zwitterionic molecules and the good biocompatibility promises them potential candidates as anti-fouling materials. Here, we developed a new method to functionalize silica nanoparticles with a natural amino acid-based anti-fouling layer. Amino acids were covalently immobilized on 3-aminopropyltriethoxysilane modified silica nanoparticles using divinyl sulfone through a two-step reaction in aqueous solution at room temperature. The progress was monitored with NMR, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM) and zeta potential measurements. A library of amino acids was screened and the nonspecific protein adsorption of bovine serum albumin (BSA) and fetal bovine serum (FBS) were investigated using dynamic light scattering method. The results showed that cysteine, lysine and arginine functionalized silica nanoparticles can effectively resist protein adsorption due to the zwitterionic structure. Among them, lysine functionalized silica nanoparticles had the best anti-fouling performance, which showed hydrodynamic diameter increases of only 10% after incubated in BSA solution and 20% after incubated in FBS solution for 24h. The neat aqueous modification process can conveniently create a thin zwitterionic layer on silica particles, and it has a great potential in biomolecule immobilization and biofunctional surface preparation. Zwitterionic polymer is an outstanding class of anti-fouling material; but the difficulty in synthesis is challenging its spread utilization. In this study, we developed a new method to create an amino acid-based zwitterionic layer on APTES functionalized silica nanoparticles through a two-step reaction in aqueous solution at room temperature. The surface chemistry was monitored with NMR, XPS, TEM and zeta potential measurements. With this method, a library of amino acid conjugated-silica nanoparticles was synthesized and their anti-fouling performance was evaluated using dynamic light

  15. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs).

    PubMed

    Schaefer, Charles E; Andaya, Christina; Urtiaga, Ana; McKenzie, Erica R; Higgins, Christopher P

    2015-09-15

    Laboratory experiments were performed to evaluate the use of electrochemical treatment for the decomposition of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), as well as other perfluoroalkyl acids (PFAAs), in aqueous film forming foam (AFFF)-impacted groundwater collected from a former firefighter training area and PFAA-spiked synthetic groundwater. Using a commercially-produced Ti/RuO2 anode in a divided electrochemical cell, PFOA and PFOS decomposition was evaluated as a function of current density (0-20 mA/cm(2)). Decomposition of both PFOA and PFOS increased with increasing current density, although the decomposition of PFOS did not increase as the current density was increased above 2.5 mA/cm(2). At a current density of 10 mA/cm(2), the first-order rate constants, normalized for current density and treatment volume, for electrochemical treatment of both PFOA and PFOS were 46 × 10(-5) and 70 × 10(-5) [(min(-1)) (mA/cm(2))(-1) (L)], respectively. Defluorination was confirmed for both PFOA and PFOS, with 58% and 98% recovery as fluoride, respectively (based upon the mass of PFOA and PFOS degraded). Treatment of other PFAAs present in the groundwater also was observed, with shorter chain PFAAs generally being more recalcitrant. Results highlight the potential for electrochemical treatment of PFAAs, particularly PFOA and PFOS, in AFFF-impacted groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) with Uric Acid among Adults with Elevated Community Exposure to PFOA

    PubMed Central

    Steenland, Kyle; Tinker, Sarah; Shankar, Anoop; Ducatman, Alan

    2010-01-01

    Background Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are compounds that do not occur in nature, have been widely used since World War II, and persist indefinitely in most environments. Median serum levels in the United States are 4 ng/mL for PFOA and 21 ng/mL for PFOS. PFOA has been associated with elevated uric acid in two studies of chemical workers. Uric acid is a risk factor for hypertension and possibly other cardiovascular outcomes. Methods We conducted a cross-sectional study of PFOA and PFOS and uric acid among 54,951 adult community residents in Ohio and West Virginia, who lived or worked in six water districts contaminated with PFOA from a chemical plant. Analyses were conducted by linear and logistic regression, adjusted for confounders. Results Both PFOA and PFOS were significantly associated with uric acid. An increase of 0.2–0.3 mg/dL uric acid was associated with an increase from the lowest to highest decile of either PFOA or PFOS. Hyperuricemia risk increased modestly with increasing PFOA; the odds ratios by quintile of PFOA were 1.00, 1.33 [95% confidence interval (CI), 1.24–1.43], 1.35 (95% CI, 1.26–1.45), 1.47 (95% CI, 1.37–1.58), and 1.47 (95% CI, 1.37–1.58; test for trend, p < 0.0001). We saw a less steep trend for PFOS. Inclusion of both correlated fluorocarbons in the model indicated PFOA was a more important predictor than was PFOS. Conclusion Higher serum levels of PFOA were associated with a higher prevalence of hyperuricemia, but the limitations of cross-sectional data and the possibility of noncausal mechanisms prohibit conclusions regarding causality. PMID:20123605

  17. Analysis of perfluorooctane sulfonate and perfluorooctanoic acid with a mixed-mode coating-based solid-phase microextraction fiber.

    PubMed

    Chen, Chunyan; Wang, Jianping; Yang, Shaolei; Yan, Zhihong; Cai, Qingyun; Yao, Shouzhuo

    2013-09-30

    A novel mixed-mode coating-based solid-phase microextraction (SPME) fiber was prepared by chemical bonding dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride and 3-(trimethoxysilyl)-1-propanamine, the sol-gel precursors, on an anodized Ti wire, aiming to effectively adsorb perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). The anodized Ti wire with uniform TiO2 nanotube arrays provides high mechanical strength and strong adhesion to the mixed-mode coating. The prepared fiber shows excellent organic solvent stability due to the covalent bonding between the coating and the fiber, and significantly higher extraction efficiency than the commercial fibers, 100 μm polydimethylsiloxane and 85 μm polyacrylate fiber, due to the synergistic extraction effects of the coating functional groups. Good linearity (R(2)=0.9994 for PFOS, R(2)=0.9992 for PFOA) was obtained with detection limits of 2.5 and 7.5 pg mL(-1) for PFOS and PFOA, respectively. Recoveries were in the range of 88%-102%. The proposed method was successfully applied in the analysis of PFOS and PFOA in a local river with the results of 0.05 and 0.06 ng mL(-1), respectively. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    NASA Astrophysics Data System (ADS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  19. Photochemical degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid in different water matrices.

    PubMed

    Ji, Yuefei; Zhou, Lei; Zhang, Ya; Ferronato, Corinne; Brigante, Marcello; Mailhot, Gilles; Yang, Xi; Chovelon, Jean-Marc

    2013-10-01

    The occurrence of sunscreen agents in natural environment is of scientific concern recently due to their potential risk to ecology system and human beings as endocrine disrupting chemicals (EDCs). In this work the photodegradation mechanism and pathways of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid (PBSA) were investigated under artificial solar irradiation with the goal of assessing the potential of photolysis as a transformation mechanism in aquatic environments. The quantum yield of PBSA direct photolysis in pH 6.8 buffer solution under filtered mercury lamp irradiation was determined as 2.70 × 10(-4). Laser flash photolysis (LFP) experiments confirmed the involvement of PBSA radical cation (PBSA(·+)) during direct photolysis. Acidic or basic condition facilitated PBSA direct photolysis in aqueous solution. Indirect photolysis out-competes direct photolysis as a major process for PBSA attenuation only at higher level of photosensitizers (e.g., NO3(-) > 2 mM). Thus, direct photolysis is likely to be the major loss pathway responsible for the elimination of PBSA in natural sunlit surface waters, while indirect photolysis (e.g., mediated by HO·) appeared to be less important due to a general low level of steady-state concentration of HO· ([HO·]ss) in natural surface waters. Direct photolysis pathways of PBSA includes desulfonation and benzimidazole ring cleavage, which are probably initiated by the excited triplet state ((3)PBSA*) and radical cation (PBSA(·+)). Conversely, hydroxylation products of PBSA and 2-phenyl-1H-benzimidazole as well as their ring opening intermediates were found in nitrate-induced PBSA photolysis, suggesting the indirect photodegradation was primarily mediated by HO and followed a different mechanism.

  20. Penicillanic acid sulfone: interaction with RTEM beta-lactamase from Escherichia coli at different pH values.

    PubMed

    Kemal, C; Knowles, J R

    1981-06-23

    The interaction of the sulfone of penicillanic acid with the TEM-2 beta-lactamase from Escherichia coli has been investigated as a function of pH between pH 7.0 and 9.6. The first-formed acyl-enzyme suffers one of three fates: deacylation, tautomerization to a bound enamine that transiently inhibited the enzyme, and a process (possibly transimination) that leads to enzyme inactivation. The observed changes in ultraviolet absorbance are consistent with the initially observed product of deacylation being the enamine tautomer (4) of the imine from malonsemialdehyde and penicillamine sulfinate. The same enamine can be generated nonenzymically from the sulfone at high pH. The transiently inhibited enzyme appears to be the same enamine attached to the enzyme by an ester linkage. The rather complex kinetic behavior can be deconvuluted by exploiting the effect of pH on the partitioning of the acyl-enzyme between deacylation and the transiently inhibited form of the enzyme. The pathways followed by penicillanic acid sulfone provide a model for the behavior of a number of other reagents that inactivate the beta-lactamase.

  1. Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS.

    PubMed

    Esparza, X; Moyano, E; de Boer, J; Galceran, M T; van Leeuwen, S P J

    2011-10-30

    Residues of perfluorinated phosphonic acids (PFPAs) and perfluorooctane sulfonic acid (PFOS) were investigated in various Dutch surface waters, sludge and sediments. For this purpose, a liquid chromatographic (LC) method was optimized by testing several columns with different mobile phases. Atmospheric pressure chemical ionization (APCI) was chosen for the LC tandem mass spectrometry (MS/MS) analysis. An ion-pair reagent was added to the injection solvent to improve peak shape. Different solvents were studied for the extraction from solid samples. For clean-up and pre-concentration, weak anion-exchange solid-phase extraction cartridges were used. Water samples were extracted using the same cartridges. The method was used for screening PFPAs in the Dutch aquatic environment. PFPAs were not observed in sediment or sludge samples. PFOPA was found at 1 ng L(-1) in one surface water sample. PFOS was found at levels between 0.07 ng g(-1) and 48 ng g(-1) (dry weight) in sediments and sewage sludge samples. PFOS concentrations in surface water ranged from 3.3 ng L(-1) to 25.4 ng L(-1).

  2. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors.

    PubMed

    Wang, Zhanyun; Cousins, Ian T; Scheringer, Martin; Hungerbühler, Konrad

    2013-10-01

    Since 2000 there has been an on-going industrial transition to replace long-chain perfluoroalkyl carboxylic acids(PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their precursors. To date, information on these replacements including their chemical identities, however, has not been published or made easily accessible to the public, hampering risk assessment and management of these chemicals. Here we review information on fluorinated alternatives in the public domain. We identify over 20 fluorinated substances that are applied in [i] fluoropolymer manufacture, [ii] surface treatment of textile, leather and carpets, [iii] surface treatment of food contact materials,[iv] metal plating, [v] fire-fighting foams, and [vi] other commercial and consumer products.We summarize current knowledge on their environmental releases, persistence, and exposure of biota and humans. Based on the limited information available, it is unclear whether fluorinated alternatives are safe for humans and the environment.We identify three major data gaps that must be filled to perform meaningful risk assessments and recommend generation of the missing data through cooperation among all stakeholders (industry, regulators, academic scientists and the public).

  3. Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis

    PubMed Central

    Rapalli, Alberto; Bertoni, Simona; Arcaro, Valentina; Saccani, Francesca; Grandi, Andrea; Vivo, Valentina; Cantoni, Anna M.; Barocelli, Elisabetta

    2016-01-01

    Background and Aims: Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. Materials and Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. Conclusion: The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders. PMID:27047383

  4. Perfluorooctane sulfonate and perfluorooctanoic acid in surgical thyroid specimens of patients with thyroid diseases.

    PubMed

    Pirali, Barbara; Negri, Sara; Chytiris, Spyridon; Perissi, Andrea; Villani, Laura; La Manna, Luigi; Cottica, Danilo; Ferrari, Massimo; Imbriani, Marcello; Rotondi, Mario; Chiovato, Luca

    2009-12-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are ubiquitous compounds that may act as endocrine disruptors, neurotoxic agents, and fetal development perturbing substances and may also be carcinogenic, as recently demonstrated in experimental animal models. There is little information on the potential for these compounds to affect the thyroid. Therefore, this study was performed to measure the intrathyroidal levels of PFOA and PFOS in surgical specimens of thyroid glands and to determine if there was a relationship between the concentrations of these substances and the clinical, biochemical, and histologic phenotype of the patients from whom the thyroids were obtained. We also sought to determine if there was a relationship between tissue and serum levels of both PFOA and PFOS. PFOA and PFOS were measured in 28 patients undergoing thyroid surgery for benign (15 multinodular goiters and 7 Graves' disease) and malignant (5 papillary and 1 follicular carcinoma) thyroid disorders. PFOA and PFOS were detectable in all surgical specimens of thyroid tissue. Their median concentrations were 2.0 ng/g (range = 0.4-4.6 ng/g) and 5.3 ng/g (range = 2.1-44.7), respectively. Intrathyroidal concentrations of PFOA and PFOS were similar in the thyroids of patients with thyroid diseases as in thyroid glands obtained at autopsy. There was no relationship between the intrathyroidal concentrations of either PFOA or PFOS and the underlying thyroid disease. A significant correlation between the serum and the tissue levels of PFOS was found in all patients. The serum concentrations of PFOA and PFOS were significantly higher than those in the correspondent surgical specimens. These observations do not support the view that PFOA and PFOS are actively concentrated in the thyroid. PFOA and PFOS, however, are both found in surgical and autopsy thyroid specimens. Therefore, further studies to determine if they have disrupting effects in thyroid cells or tissue, and studies

  5. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates.

    PubMed

    Li, Mei-Hui

    2009-02-01

    Acute toxicities of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were tested on four freshwater species and three plant species. PFOS was more toxic than PFOA for all species tested in this study. Similar time-response patterns of PFOS and PFOA toxicity were observed for each tested species. Values of the 48-h LC(50) of PFOS for all test species ranged from 27 to 233 mg/L and values of the 96-h LC(50) for three of the species ranged from 10 to 178 mg/L. Values of the 48-h LC(50) of PFOA for all test species ranged from 181 to 732 mg/L and values of the 96-h LC(50) for three of the species ranged from 337 to 672 mg/L. The most sensitive freshwater species to PFOS was green neon shrimp (Neocaridina denticulate) with a 96-h LC(50) of 10 mg/L. Of the aquatic organisms tested, the aquatic snail (Physa acuta) always has the highest resistance to PFOS or PFOA toxicity over each exposure period. Both PFOS and PFOA had no obvious adverse effect on seed germination for all three plant species. Five-day EC(50) of root elongation was more sensitive to LC(50) of seed germination in this study. Based on EC(10), EC(50), and NOECs, the 5-day root elongation sensitivity of test plants to both PFOS and PFOA was in the order of lettuce (Lactuca sativa) > pakchoi (Brassica rapa chinensis) > cucumber (Cucumis sativus). Based on the results of this study and other published literature, it is suggested that current PFOS and PFOA levels in freshwater may have no acute harmful ecological impact on the aquatic environment. However, more research on the long-term ecological effects of PFOS and PFOA on aquatic fauna are needed to provide important information to adequately assess ecological risk of PFOS and PFOA.

  6. Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.

    PubMed

    Zhao, Nan; Yang, Xixiang; Zhang, Jing; Zhu, Ling; Lv, Yizhong

    2017-09-22

    Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer-Emmett-Teller N₂ surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA). The microscopic adsorption mechanisms were studied by using infrared spectra, (13)C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m²/g and 0.2302 cm³/g) were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N) ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The qmax values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700.

  7. Distributions of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in Japan and their toxicities.

    PubMed

    Nakayama, Shoji; Harada, Kouji; Inoue, Kayoko; Sasaki, Kazuaki; Seery, Benjamin; Saito, Norimitsu; Koizumi, Akio

    2005-01-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are end products of many fluorochemical compounds in the natural environment. The aim of this review is to summarize several studies in Japan and characterize the toxicities of these compounds. We also compared the levels of contamination with those reported from various countries to illustrate the unique situation of the toxicological issues within Japan. PFOA and PFOS concentrations in surface water in Japan are in the ranges of 0.1-67,000 ng/L and 0.1-526 ng/L, respectively. While the origin of PFOS in surface water remains unknown, PFOA present in surface water is very likely to have been released from a few industries. The levels of PFOA and PFOS in the atmosphere are 71.8-919 pg/m3 and 2.3-21.8 pg/m3, respectively. The concentrations of PFOA and PFOS in Japanese serum range from an undetectable level to 52.2 ng/ml and from 0.2 to 57.7 ng/ml, respectively. The levels of PFOA and PFOS present in the serum of the inhabitants of Kyoto are higher than those of other cities. One epidemiological study conducted by 3M revealed an increase in prostate cancer mortality [3.3-fold increase (95% CI, 1.02-10.6)] among workers exposed to PFOA. Another study conducted by 3M revealed an increase in bladder cancer mortality (SMR 12.77, 95% CI 2.63-37.35) among workers exposed to PFOS. PFOA and PFOS had a low order of toxicity in an acute toxicity study in rodents; however, they exhibited versatile toxicities in primates. Both chemicals are carcinogenic in rodents, causing reproductive toxicity, neurotoxicity, and hepatotoxicity. Additionally, peroxisome proliferation and calcium channel modulation are demonstrated effects. There are large interspecies differences in toxicokinetics.

  8. Simultaneous determination of ofloxacin and gatifloxacin on cysteic acid modified electrode in the presence of sodium dodecyl benzene sulfonate.

    PubMed

    Zhang, Fenfen; Gu, Shuqing; Ding, Yaping; Li, Li; Liu, Xiao

    2013-02-01

    A novel cysteic acid modified carbon paste electrode (cysteic acid/CPE) based on electrochemical oxidation of L-cysteine was developed to simultaneously determine ofloxacin and gatifloxacin in the presence of sodium dodecyl benzene sulfonate (SDBS). Fourier transform infrared spectra (FTIR) indicated that L-cysteine was oxidated to cysteic acid. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) indicated that cysteic acid was successfully modified on electrode. The large peak separation (116 mV) between ofloxacin and gatifloxacin was obtained on cysteic acid/CPE while only one oxidation peak was found on bare electrode. And the peak currents increased 5 times compared to bare electrode. Moreover, the current could be further enhanced in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate. The differential pulse voltammograms (DPV) exhibited that the oxidation peak currents were linearly proportional to their concentrations in the range of 0.06-10 μM for ofloxacin and 0.02-200 μM for gatifloxacin, and the detection limits of ofloxacin and gatifloxacin were 0.02 μM and 0.01 μM (S/N=3), respectively. This proposed method was successfully applied to determine ofloxacin and gatifloxacin in pharmaceutical formulations and human serum samples. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Proparacaine complexation with beta-cyclodextrin and p-sulfonic acid calix[6]arene, as evaluated by varied (1)H-NMR approaches.

    PubMed

    Arantes, Lucas Micquéias; Scarelli, Camilla; Marsaioli, Anita Jocelyne; de Paula, Eneida; Fernandes, Sergio Antonio

    2009-09-01

    This study focused on the use of NMR techniques as a tool for the investigation of complex formation between proparacaine and cyclodextrins (CDs) or p-sulfonic acid calix[6]arene. The pH dependence of the complexation of proparacaine with beta-CD and p-sulfonic acid calix[6]arene was studied and binding constants were determined by (1)H NMR spectroscopy [diffusion-ordered spectroscopy (DOSY)] for the charged and uncharged forms of the local anesthetic in beta-CD and p-sulfonic acid calix[6]arene. The stoichiometries of the complexes was determined and rotating frame Overhauser enhancement spectroscopy (ROESY) 1D experiments revealed details of the molecular insertion of proparacaine into the beta-CD and p-sulfonic acid calix[6]arene cavities. The results unambiguously demonstrate that pH is an important factor for the development of supramolecular architectures based on beta-CD and p-sulfonic acid calix[6]arene as the host molecules. Such host-guest complexes were investigated in view of their potential use as new therapeutic formulations, designed to increase the bioavailability and/or to decrease the systemic toxicity of proparacaine in anesthesia procedures.

  10. Theoretical investigation on the molecular inclusion process of prilocaine into p-sulfonic acid calix[6]arene

    NASA Astrophysics Data System (ADS)

    de Sousa, Sara M. R.; Fernandes, Sergio A.; De Almeida, Wagner B.; Guimarães, Luciana; Abranches, Paula A. S.; Varejão, Eduardo V. V.; Nascimento, Clebio S., Jr.

    2016-02-01

    The present letter reports, for the first time, results from a theoretical analysis of the inclusion process involving the prilocaine into the p-sulfonic acid calix[6]arene. Structure and stabilization energies were calculated, in both gas and aqueous phases, using a sequential methodology based on semiempirical and Density Functional Theory (DFT) calculations. From the results, a qualitative structure property relationship could be established with some main structural features being relevant for inclusion complex stabilization: (i) the hydrogen bonds established between guest and host molecules, (ii) the dispersion effect and (iii) the inclusion mode of guest molecule into the host cavity.

  11. A novel PPARα agonist propane-2-sulfonic acid octadec-9-enyl-amide inhibits inflammation in THP-1 cells.

    PubMed

    Zhao, Yun; Yan, Lu; Luo, Xiu-Mei; Peng, Lu; Guo, Han; Jing, Zuo; Yang, Li-Chao; Hu, Rong; Wang, Xuan; Huang, Xue-Feng; Wang, Yi-Qing; Jin, Xin

    2016-10-05

    Our group synthesized propane-2-sulfonic acid octadec-9-enyl-amide (N15), a novel peroxisome proliferator activated receptor alpha (PPARα) agonist. Because PPARα activation is associated with inflammation control, we hypothesize that N15 may have anti-inflammatory effects. We investigated the effect of N15 on the regulation of inflammation in THP-1 cells stimulated with lipopolysaccharide (LPS). In particular, we assessed the production of chemokines, adhesion molecules and proinflammatory cytokines, three important types of cytokines that are released from monocytes and are involved in the development of atherosclerosis. The results showed that N15 remarkably reduced the mRNA expression of chemokines, such as monocyte chemotactic protein 1 (MCP-1 or CCL2), interleukin-8 (IL-8) and interferon-inducible protein-10 (IP-10 or CXCL10), and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). N15 also decreased the protein expression of vascular cell adhesion molecule (VCAM) and matrix metalloproteinase (MMP) 2 and 9. The reduction in the expression of cytokine mRNAs observed following N15 treatment was abrogated in THP-1 cells treated with PPARα siRNA, indicating that the anti-inflammatory effects of N15 are dependent on PPARα activation. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) inhibition, which are dependent on PPARα activation, were also involved in the mechanism underlying the anti-inflammatory effects of N15. In conclusion, the novel PPARα agonist, N15, exerts notable anti-inflammatory effects, which are mediated via PPARα activation and TLR4/NF-κB and STAT3 inhibition, in LPS-stimulated THP-1 cells. In our study, N15 exhibits promise for the treatment of atherosclerosis.

  12. [Comparison of perfluorooctane sulfonate and perfluorooctane acid in serum of non-occupational human from Shenyang and Chongqing areas].

    PubMed

    Jin, Yi-He; Dong, Guang-Hui; Shu, Wei-Qun; Ding, Mei; Zhai, Cheng; Wang, Lie; Liu, Xiao; Saitou, Norimistu; Sasaki, Kazuaki

    2006-09-01

    The purpose of this investigation was to illustrate the perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA) levels in serum of non-occupational exposure human from Shenyang and Chongqing areas and to compare the distributing character and region difference of PFOS and PFOA in those two region human. Sera samples of non-occupational human from Shenyang and Chongqing areas were collected, and the concentration of PFOS and PFOA in serum were measured by High Performance Liquid Chromatography/Mass Selective Detector (HPLC/MS-MIS). The average Shenyang and Chongqing fluorochemical concentrations, respectively, were as follows: PFOS, 22.40 microg/L vs 7.40 microg/L, PFOA, 4.32 microg/L vs 1.00 microg/L. Statistical analysis indicated that serum concentrations of PFOS and PFOA were significantly (P < 0.01) higher in Shenyang human than in Chongqing human. Furthermore, there are sex differences in PFOS and PFOA concentrations in serum at all location. In Shenyang the concentration of PFOS in females were significantly (P < 0.05) higher than in males. The correlations of PFOS (r = 0.298) and PFOA (r = 0.271) with age were significant in females from Chongqing area, and especially the correlations were higher in older females (age t 50) than the groups of age < 13 and 13 - 50 years old. This finding suggests that there are predominant regional differences and distributing character for both PFOS and PFOA concentrations in Shenyang and Chongqing areas, and the concentrations of PFOS and PFOA in serum were correlated with age and sex.

  13. The effect of trinitrobenzene sulfonic acid (TNB) on colonocyte arachidonic acid metabolism.

    PubMed

    Stratton, M D; Sexe, R; Peterson, B; Kaminski, D L; Li, A P; Longo, W E

    1996-02-01

    In previous studies we found that luminal perfusion of the isolated left colon of the rabbit with the hapten, trinitrobenzene, resulted in the production of an acute inflammatory process associated with alterations in eicosanoid metabolism. As the colitis was attenuated by cyclooxygenase inhibitors it is possible that the inflammation was mediated by arachidonic acid metabolites. In the present study it was intended to evaluate the effect of trinitrobenzene on eicosanoid metabolism in transformed human colonic cells by exposing Caco-2++ cells to various doses of trinitrobenzene. Cell injury was evaluated by measuring lactate dehydrogenase levels and cyclooxygenase and lipoxygenase activity was evaluated by measuring prostanoid and leukotriene production. In separate experiments resting and trinitrobenzene stimulated cells were treated with indomethacin and dexamethasone. Trinitrobenzene produced increased prostaglandin E2 and 6-keto prostaglandin F1alpha++ and increased lactate dehydrogenase levels. Leukotriene B4 was significantly increased compared to control values at the highest TNB concentration administered. Indomethacin inhibited the lactate dehydrogenase and prostanoid changes, suggesting that the inflammatory changes produced were mediated by the prostanoids. Dexamethasone administered for 1 hr prior to trinitrobenzene decreased the 6-keto prostaglandin F1alpha but did not alter trinitrobenzene produced changes in lactate dehydrogenase concentrations. Exposure of Caco-2 cells to dexamethasone for 24 hr decreased the trinitrobenzene produced lactate dehydrogenase and eicosanoid changes. The results suggest that trinitrobenzene produces an acute injury to Caco-2 cells that may be mediated by the cyclooxygenase enzymes.

  14. Gas chromatography/mass spectrometric analysis of methyl esters of N,N-dialkylaminoethane-2-sulfonic acids for verification of the Chemical Weapons Convention.

    PubMed

    Pardasani, Deepak; Gupta, Arvinda K; Palit, Meehir; Shakya, Purushottam; Kanaujia, Pankaj K; Sekhar, K; Dubey, Devendra K

    2005-01-01

    This paper describes the synthesis and gas chromatography/electron ionization mass spectrometric (GC/EI-MS) analysis of methyl esters of N,N-dialkylaminoethane-2-sulfonic acids (DAESAs). These sulfonic acids are important environmental signatures of nerve agent VX and its toxic analogues, hence GC/EI-MS analysis of their methyl esters is of paramount importance for verification of the Chemical Weapons Convention. DAESAs were prepared by condensation of 2-bromoethane sulfonic acid with dialkylamines, and by condensation of dialkylaminoethyl chloride with sodium bisulfite. GC/EI-MS analysis of methyl esters of DAESAs yielded mass spectra; based on these spectra, generalized fragmentation routes are proposed that rationalize most of the characteristic ions.

  15. Alternative hybrid electrolytes based on a series of bis(trialkoxysilyl)alkanes and 3-(trihydroxysilyl)-1-propane sulfonic acid applied in gas diffusion electrodes of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lin, C. W.; Chung, L. C.; Veerapur, R. S.; Yang, F. C.

    This study demonstrates a method for improving the electrolyte distribution in catalyst layers and enhancing the utilization of catalyst existing in primary pores. Bis(trialkoxysilyl)alkanes (BTAS-alkanes) and 3-(trihydroxysilyl)-1-propane sulfonic acid (THS)Pro-SO 3H) precursors have been used to prepare a series of hybrid electrolytes with various organic segment lengths of BTAS-alkanes and ratios of organic moiety and sulfonic acid groups. Investigations of BTAS-alkanes series includes bis(triethoxysilyl)octane (BTES-Oct), bis(trimethoxysilyl)hexane (BTMS-Hex), and bis(triethoxysilyl)ethane (BTES-Eth). Small angle X-ray spectroscopy (SAXS) identifies morphological phase separation in BTES-Oct and BTMS-Hex hybrid electrolytes. The results of mercury porosimetry and BET porosimetry show that the hybrid electrolytes have better capability than Nafion ionomer to penetrate into primary pores of the catalyst layers. Electrochemical measurements including electrode polarization, electrochemical active surface (EAS) and electrochemical impedance spectroscopy (EIS) are discussed. The BTES-Oct or BTMS-Hex hybrid electrolytes with higher ratio of organic moiety and sulfonic acid group have achieved better electrode performance. Oxygen benefit current (OBC) results indicate that higher ratios of BTES-Oct/(THS)Pro-SO 3H provides higher hydrophobicity with better gas transport properties. However, the hybrid electrodes exhibit lower cathode performance than Nafion ®-based electrodes due to excessive electrolyte incorporated in the catalyst layer.

  16. bFGF interaction and in vivo angiogenesis inhibition by self-assembling sulfonic acid-based copolymers.

    PubMed

    García-Fernández, L; Aguilar, M R; Ochoa-Callejero, L; Abradelo, C; Martínez, A; San Román, J

    2012-01-01

    The antiangiogenic activity of different families of biocompatible and non-toxic polymer drugs based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or polymethacrylic derivatives of 5-aminonaphthalen sulfonic acid (MANSA) is analyzed using directed in vivo angiogenesis assay and correlated with in vitro results. These active compounds were copolymerized with butylacrylate (BA) and N-vinylpyrrolidone in order to obtain two families of copolymers with different properties in aqueous media. The most hydrophobic copolymers poly(BA-co-MANSA) and poly(BA-co-AMPS) formed amphiphilic copolymers and presented micellar morphology in aqueous media. This supramolecular organization of the copolymers had a clear effect on bioactivity. Poly(BA-co-MANSA) copolymers showed the best antiangiogenic activity and very low toxicity at relatively low dose, with the possibility to be injected directly in the solid tumors alone or in combination with other therapeutic agents such as anti-VEGF drugs. The obtained results demonstrate that not only the chemical structure but also the supramolecular organization of the macromolecules plays a key role in the anti-angiogenic activity of these active polymers.

  17. Electrical and spectroscopic characterization of p-toluene sulfonic acid doped poly( o-toluidine) and poly( o-toluidine) blends

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Ali, Vazid; Kulriya, Pawan; Siddiqui, Azher M.; Husain, M.; Zulfequar, M.

    2007-04-01

    Poly ( o-toluidine) (PoT), a derivative of polyaniline was synthesized by chemical oxidative polymerization method in aqueous media. After polymerization, the polymer prepared is doped with p-toluene sulfonic acid with different concentrations (2, 4, 6, 8 and 10% w/w). These polymers are blended with polyvinyl chloride (PVC) to make self-supported films. The DC conductivity of both powder and blends is measured in the temperature range of 300-450 K and is found to increase with temperature. The Arrhenious plot of DC conductivity of PVC blended PoT shows two phases with different slopes. The samples are characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The XRD pattern of the powder PoT and their blend shows the semi-crystalline nature of the samples. FTIR studies show the information of changes in functional groups with doping and blending of PoT with PVC.

  18. Investigation of the Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) on Apoptosis and Cell Cycle in a Zebrafish (Danio rerio) Liver Cell Line.

    PubMed

    Cui, Yuan; Liu, Wei; Xie, Wenping; Yu, Wenlian; Wang, Cheng; Chen, Huiming

    2015-12-09

    This study aimed to explore the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line (ZFL). Treatment groups included a control group, PFOA-IC(50), PFOA-IC(80), PFOS-IC50 and PFOS-IC(80) groups. IC(50) and IC(80) concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by flow cytometry and the protein levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were determined by western blotting. Both PFOA and PFOS inhibited the growth of zebrafish liver cells, and the inhibition rate of PFOS was higher than that of PFOA. Bcl-2 expression levels in the four groups were significantly higher than the control group and Bcl-2 increased significantly in the PFOA-IC(80) group. However, the expression levels of Bax in the four treatment groups were higher than the control group. The percentage of cell apoptosis increased significantly with the treatment of PFOA and PFOS (p < 0.05). Cell cycle and cell proliferation were blocked in both the PFOA-IC(80) and PFOS-IC(80) groups, indicating that PFOA-IC(80) and PFOS-IC(50) enhanced apoptosis in ZFL cells.

  19. Investigation of the Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) on Apoptosis and Cell Cycle in a Zebrafish (Danio rerio) Liver Cell Line

    PubMed Central

    Cui, Yuan; Liu, Wei; Xie, Wenping; Yu, Wenlian; Wang, Cheng; Chen, Huiming

    2015-01-01

    This study aimed to explore the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line (ZFL). Treatment groups included a control group, PFOA-IC50, PFOA-IC80, PFOS-IC50 and PFOS-IC80 groups. IC50 and IC80 concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by flow cytometry and the protein levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were determined by western blotting. Both PFOA and PFOS inhibited the growth of zebrafish liver cells, and the inhibition rate of PFOS was higher than that of PFOA. Bcl-2 expression levels in the four groups were significantly higher than the control group and Bcl-2 increased significantly in the PFOA-IC80 group. However, the expression levels of Bax in the four treatment groups were higher than the control group. The percentage of cell apoptosis increased significantly with the treatment of PFOA and PFOS (p < 0.05). Cell cycle and cell proliferation were blocked in both the PFOA-IC80 and PFOS-IC80 groups, indicating that PFOA-IC80 and PFOS-IC50 enhanced apoptosis in ZFL cells. PMID:26690195

  20. Facile synthesis of novel two- and three-dimensional coordination polymers containing dialkyltin phosphonate-based tri/tetra-nuclear clusters with appended sulfonate groups.

    PubMed

    Shankar, Ravi; Jain, Archana; Singh, Atul Pratap; Kociok-Köhn, Gabriele; Molloy, Kieran C

    2009-04-20

    The coordination-driven self-assemblies of mixed-ligand dialkyltin derivatives, [(Et(2)Sn)(4) (O(2)P(OH)Me)(2)(O(3)PMe)(2)(OSO(2)Et)(2) x 2 H(2)O](n) 1, [(Et(2)Sn)(3)(O(3)PMe)(2)(OSO(2)Me)(2) x CHCl(3)](n) 2, and [(Me(2)Sn)(3)(O(3)PBu(t))(2)(OSO(2)Me)(2) x 2 CHCl(3)](n) 3 have been achieved by reacting the tin precursors, [R(2)Sn(OR(1))(OSO(2)R(1))](n) (R = Et, R(1) = Et (1a), Me (2a); R = Me, R(1) = Me (3a)) with an equimolar amount of methylphosphonic/t-butylphosphonic acid under mild conditions (rt, 8 h, CH(2)Cl(2)). These have been characterized by IR and multinuclear ((1)H, (13)C, (31)P, and (119)Sn) NMR spectroscopy as well as single crystal X-ray diffraction. The asymmetric unit of 1 is composed of a tetranuclear, Sn(4)(mu(2)-PO(2))(2)(mu(3)-PO(3))(2) core bearing an appended ethanesulfonate group on each terminal tin (Sn2) atom and two P(OH)...O hydrogen bonded water molecules. The ladder-like structural motif thus formed is extended into one-dimensional polymeric chains by virtue of bridging bidentate mode of the sulfonate groups. These chains are linked by O-H...O(S) hydrogen bonds involving H(2)O molecules and oxygen atoms of the sulfonate groups. The asymmetric units of 2 and 3 are composed of trinuclear tin clusters with a Sn(3)(mu(3)-PO(3))(2) core and two dangling methanesulfonate groups which are covalently bonded to the tin centers. The construction of three-dimensional self-assemblies is effected by variable bonding modes (mu(2), mu(3) in 2; mu(2) in 3) of the methanesulfonate groups. Both the structural motifs possess five- and six-coordinated tin atoms and form rectangular channels which are occupied by CHCl(3) molecules.

  1. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): emerging contaminants of increasing concern in fish from Lake Varese, Italy.

    PubMed

    Squadrone, S; Ciccotelli, V; Prearo, M; Favaro, L; Scanzio, T; Foglini, C; Abete, M C

    2015-07-01

    Perfluoroalkylated substances (PFASs) are highly fluorinated aliphatic compounds with high thermal and chemical stability, used in a range of industrial applications. Extensive screening analyses in biota samples from all over the world have shown the bioaccumulation of PFAS into higher trophic levels in the food chain. Perfluorooctane sulfonic acid (PFOS) and perfluoroctanoic acid (PFOA) are potential reproductive and developmental toxicants and are considered to be emerging endocrine disrupters. Ingestion of fish and other seafood is considered the main source of exposure of these contaminants. Here, we quantified PFOS and PFOA by LC-MS/MS in muscle samples of European perch from Lake Varese, Italy. PFOS was detected in all samples with concentrations of up to 17.2 ng g(-1). Although the reported values were lower than the recommended total daily intake (TDI) proposed by the European Food Safety Authority (EFSA), fish from Lake Varese may be a significant source of dietary PFOS exposure.

  2. A new strategy for the synthesis of taurine derivatives using the 'safety-catch' principle for the protection of sulfonic acids.

    PubMed

    Seeberger, Sonja; Griffin, Roger J; Hardcastle, Ian R; Golding, Bernard T

    2007-01-07

    The safety-catch principle has been applied for the development of a new method for protecting sulfonic acids. 2,2-Dimethylsuccinic acid was reduced to 2,2-dimethylbutane-1,4-diol, which was selectively silylated to give 4-(tert-butyldiphenylsilanyloxy)-2,2-dimethylbutan-1-ol. Reaction of the latter compound with 2-chloroethanesulfonyl chloride in the presence of triethylamine afforded 4-(tert-butyldiphenylsilyloxy)-2,2-dimethylbutyl ethenesulfonate directly. The ethenesulfonate underwent Michael-type addition with secondary amines to give protected derivatives of taurine (2-aminoethanesulfonic acid). Deprotection was achieved on treatment with tetrabutylammonium fluoride, whereby cleavage of the silicon-oxygen bond led to an intermediate alkoxide that immediately cyclised to 2,2-dimethyltetrahydrofuran with liberation of a sulfonate. Pure sulfonic acids were obtained from the crude product by ion exchange chromatography on a strongly basic resin, which was eluted with aqueous acetic acid. The method developed should be generally applicable to the protection of sulfonic acids and is amenable to a multiparallel format.

  3. Sulfonation of ordered mesoporous carbon supported Pd catalysts for formic acid electrooxidation.

    PubMed

    Sun, Zhi-Peng; Zhang, Xiao-Gang; Tong, Hao; Liang, Yan-Yu; Li, Hu-Lin

    2009-09-15

    A novel supporting material containing benzenesulfonic acid (BSA) groups and ordered mesoporous carbons (OMCs) was first prepared by in situ radical polymerization of 4-styrenesulfonate and isoamyl nitrite under ambient conditions. Then, Pd nanoparticles were deposited on as-produced OMCs (f-OMCs) by the NaBH(4) reduction method. The structure and nature of the resulting composites were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and nitrogen adsorption-desorption. The results show that BSA groups are created and the texture and surface chemistry are altered, whereas the ordered porous structure is maintained. The electrocatalytic properties of the Pd/f-OMCs catalysts for formic acid oxidation (HCOOH) have been investigated by cyclic voltammetry and chronoamperometry methods, and excellent electrocatalytic activity can be observed.

  4. Multidrug Resistance Proteins and the Renal Elimination of Inorganic Mercury Mediated by 2,3-Dimercaptopropane-1-Sulfonic Acid and Meso-2,3-dimercaptosuccinic Acid

    PubMed Central

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2008-01-01

    Current therapies for inorganic mercury (Hg2+) intoxication include administration of a metal chelator, either 2,3-dimercaptopropane-1-sulfonic acid (DMPS) or meso-2,3-dimercaptosuccinic acid (DMSA). After exposure to either chelator, Hg2+ is rapidly eliminated from the kidneys and excreted in the urine, presumably as an S-conjugate of DMPS or DMSA. The multidrug resistance protein 2 (Mrp2) has been implicated in this process. We hypothesize that Mrp2 mediates the secretion of DMPS- or DMSA-S-conjugates of Hg2+ from proximal tubular cells. To test this hypothesis, the disposition of Hg2+ was examined in control and Mrp2-deficient TR− rats. Rats were injected i.v. with 0.5 μmol/kg HgCl2 containing 203Hg2+. Twenty-four and 28 h later, rats were injected with saline, DMPS, or DMSA. Tissues were harvested 48 h after HgCl2 exposure. The renal and hepatic burden of Hg2+ in the saline-injected TR− rats was greater than that of controls. In contrast, the amount of Hg2+ excreted in urine and feces of TR− rats was less than that of controls. DMPS, but not DMSA, significantly reduced the renal and hepatic content of Hg2+ in both groups of rats, with the greatest reduction in controls. A significant increase in urinary and fecal excretion of Hg2+, which was greater in the controls, was also observed following DMPS treatment. Experiments utilizing inside-out membrane vesicles expressing MRP2 support these observations by demonstrating that DMPS- and DMSA-S-conjugates of Hg2+ are transportable substrates of MRP2. Collectively, these data support a role for Mrp2 in the DMPS- and DMSA-mediated elimination of Hg2+ from the kidney. PMID:17940195

  5. Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio-Oil by Esterification over Silica Sulfonic Acids.

    PubMed

    Manayil, Jinesh C; Osatiashtiani, Amin; Mendoza, Alvaro; Parlett, Christopher M A; Isaacs, Mark A; Durndell, Lee J; Michailof, Chrysoula; Heracleous, Eleni; Lappas, Angelos; Lee, Adam F; Wilson, Karen

    2017-09-11

    Fast pyrolysis bio-oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom- and energy-efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid (PrSO3 H) silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA-15 architectures (post-functionalized by hydrothermal saline-promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C3 ) to 110 % (C12 ). Macroporous-mesoporous PrSO3 H/SBA-15 also provides a two-fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast-pyrolysis bio-oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC-time-of-flight mass spectrometry (GC×GC-ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of sulfonic acid derivatives by oxidative deprotection of thiols using tert-butyl hypochlorite.

    PubMed

    Joyard, Yoann; Papamicaël, Cyril; Bohn, Pierre; Bischoff, Laurent

    2013-05-03

    Starting from alkyl halides or Michael acceptors, thioacetates were prepared in situ and further treated with t-BuOCl, affording the corresponding sulfonyl chlorides which were trapped with nucleophiles such as water, alcohol, or amines. The three steps can be achieved in a one-pot procedure. Oxidative deprotection also proved to be efficient with S-trityl and S-tert-butyl groups, making it a convenient route toward cysteic acid derivatives.

  7. Preparation of a sulfonated carbonaceous material from lignosulfonate and its usefulness as an esterification catalyst.

    PubMed

    Lee, Duckhee

    2013-07-10

    Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%-29% after it was exposed to hot water (95 °C) for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  8. Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.

    PubMed

    Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok

    2014-10-01

    Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.

  9. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater.

    PubMed

    Phetphaisit, Chor Wayakron; Yuanyang, Siriwan; Chaiyasith, Wipharat Chuachuad

    2016-01-15

    Bio-adsorbent modified natural rubber (modified NR) was prepared, by placing the sulfonic acid functional group on the isoprene chain. This modification was carried out with the aim to prepare material capable to remove heavy metals from aqueous solution. The structures of modified NR materials were characterized by FT-IR and NMR spectroscopies. Thermal gravimetric analysis of modified NR showed that the initial degradation temperature of rubber decreases with increasing amount of polyacrylamido-2-methyl-1-propane sulfonic acid (PAMPS) in the structure. In addition, water uptake of the rubber based materials was studied as a function of time and content of PAMPS. The influence of the amount of PAMPS grafted onto NR, time, pH, concentration of metal ions, temperature, and regeneration were studied in terms of their influence on the adsorption of heavy metals (Pb(2+), Cd(2+) and Cu(2+)). The adsorption isotherms of Pb(2+) and Cd(2+) were fitted to the Freundlich isotherm model, while Cu(2+) was fitted to the Langmuir isotherm. However, the results from these two isotherms resulted in a similar behavior. The adsorption capacity of the modified NR for the various heavy metals was in the following order: Pb(2+)∼Cd(2+)>Cu(2+). The maximum adsorption capacities of Pb(2+), Cd(2+), and Cu(2+) were 272.7, 267.2, and 89.7 mg/g of modified rubber, respectively. Moreover, the modified natural rubber was used for the removal of metal ions in real samples of industrial effluents where the efficiency and regeneration were also investigated.

  10. Modified overbased sulfonates and phenates

    SciTech Connect

    Strukl, J.S.; Watson, R.W.

    1982-05-04

    Disclosed are compositions of matter and a method for their manufacture, and lubricating oil compositions containing such compositions. The compositions of matter comprise the reaction product of basic compound comprising overbased metal sulfonate, phenate, or mixtures thereof, with acidic compound comprising organic carboxylic acid, organic carboxylic acid anhydride, phosphoric acid, phosphoric acid ester, thiophosphoric acid ester , or mixtures thereof.

  11. Enhanced bio-decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by Sphingomonas xenophaga with nutrient amendment.

    PubMed

    Lu, Hong; Guan, Xiaofan; Wang, Jing; Zhou, Jiti; Zhang, Haikun

    2015-01-01

    Bacterial decolorization of anthraquinone dye intermediates is a slow process under aerobic conditions. To speed up the process, in the present study, effects of various nutrients on 1-amino-4-bromoanthraquinone-2-sulfonic acid (ABAS) decolorization by Sphingomonas xenophaga QYY were investigated. The results showed that peptone, yeast extract and casamino acid amendments promoted ABAS bio-decolorization. In particular, the addition of peptone and casamino acids could improve the decolorization activity of strain QYY. Further experiments showed that l-proline had a more significant accelerating effect on ABAS decolorization compared with other amino acids. l-Proline not only supported cell growth, but also significantly increased the decolorization activity of strain QYY. Membrane proteins of strain QYY exhibited ABAS decolorization activities in the presence of l-proline or reduced nicotinamide adenine dinucleotide, while this behavior was not observed in the presence of other amino acids. Moreover, the positive correlation between l-proline concentration and the decolorization activity of membrane proteins was observed, indicating that l-proline plays an important role in ABAS decolorization. The above findings provide us not only a novel insight into bacterial ABAS decolorization, but also an l-proline-supplemented bioaugmentation strategy for enhancing ABAS bio-decolorization.

  12. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) risk to beef consumers Part II: Adsorption, distribution, metabolism, and excretion studies for improving risk evaluations

    USDA-ARS?s Scientific Manuscript database

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are industrially produced chemicals used as surfactants and coatings in many industrial, commercial and consumer products. These compounds are ubiquitous in humans and the environment. PFOA and PFOS have been observed in biosolids fr...

  13. Versatile acetylation of carbohydrate substrates with bench-top sulfonic acids and application to one-pot syntheses of peracetylated thioglycosides.

    PubMed

    Chao, Chin-Sheng; Chen, Min-Chun; Lin, Shih-Che; Mong, Kwok-Kong T

    2008-04-07

    Inexpensive and readily available sulfonic acids, p-toluenesulfonic acid, and sulfuric acid are versatile and efficient catalysts for the peracetylation of a broad spectrum of carbohydrate substrates in good yield and in a practical time frame. Three appealing features in sulfonic acid-catalyzed acetylation of free sugars were explored including (1) suppression of furanosyl acetate formation for D-galactose and L-fucose; (2) high yielding chemoselective acetylation of sialic acid under appropriate conditions; and (3) peracetylation of amino sugars with different amino protecting functions. Simple one-pot two step acetylation-thioglycosidation methods for the expeditious synthesis of p-tolyl per-O-acetyl thioglycosides were also delineated.

  14. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in vacuum cleaner dust collected in Japanese homes.

    PubMed

    Moriwaki, Hiroshi; Takatah, Yumiko; Arakawa, Ryuichi

    2003-10-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are shown to be globally distributed, environmentally persistent and bioaccumulative. Although there is evidence that these compounds exist in the serum of non-occupationally exposed humans, the pathways leading to the presence of PFOS and PFOA are not well characterized. The concentrations of PFOS and PFOA in the vacuum cleaner dust collected in Japanese homes were measured. The compounds were detected in all the dust samples and the ranges were 11-2500 ng g(-1) for PFOS and 69-3700 ng g(-1) for PFOA. It was ascertained that PFOS and PFOA were present in the dust in homes, and that the absorption of the dust could be one of the exposure pathways of the PFOS and PFOA to humans. With regard to risk management, it is important to consider the usage of PFOS and PFOA in the indoor environment in order to avoid further pollution.

  15. Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS).

    PubMed

    Strynar, Mark; Dagnino, Sonia; McMahen, Rebecca; Liang, Shuang; Lindstrom, Andrew; Andersen, Erik; McMillan, Larry; Thurman, Michael; Ferrer, Imma; Ball, Carol

    2015-10-06

    Recent scientific scrutiny and concerns over exposure, toxicity, and risk have led to international regulatory efforts resulting in the reduction or elimination of certain perfluorinated compounds from various products and waste streams. Some manufacturers have started producing shorter chain per- and polyfluorinated compounds to try to reduce the potential for bioaccumulation in humans and wildlife. Some of these new compounds contain central ether oxygens or other minor modifications of traditional perfluorinated structures. At present, there has been very limited information published on these "replacement chemistries" in the peer-reviewed literature. In this study we used a time-of-flight mass spectrometry detector (LC-ESI-TOFMS) to identify fluorinated compounds in natural waters collected from locations with historical perfluorinated compound contamination. Our workflow for discovery of chemicals included sequential sampling of surface water for identification of potential sources, nontargeted TOFMS analysis, molecular feature extraction (MFE) of samples, and evaluation of features unique to the sample with source inputs. Specifically, compounds were tentatively identified by (1) accurate mass determination of parent and/or related adducts and fragments from in-source collision-induced dissociation (CID), (2) in-depth evaluation of in-source adducts formed during analysis, and (3) confirmation with authentic standards when available. We observed groups of compounds in homologous series that differed by multiples of CF2 (m/z 49.9968) or CF2O (m/z 65.9917). Compounds in each series were chromatographically separated and had comparable fragments and adducts produced during analysis. We detected 12 novel perfluoroalkyl ether carboxylic and sulfonic acids in surface water in North Carolina, USA using this approach. A key piece of evidence was the discovery of accurate mass in-source n-mer formation (H(+) and Na(+)) differing by m/z 21.9819, corresponding to the

  16. Morphology Tailoring of Sulfonic Acid Functionalized Organosilica Nanohybrids for the Synthesis of Biomass-Derived Alkyl Levulinates.

    PubMed

    An, Sai; Song, Daiyu; Lu, Bo; Yang, Xia; Guo, Yi-Hang

    2015-07-20

    Morphology evolution of sulfonic acid functionalized organosilica nanohybrids (Si(Et)Si-Pr/ArSO3 H) with a 1D tubular structure (inner diameter of ca. 5 nm), a 2D hexagonal mesostructure (pore diameter of ca. 5 nm), and a 3D hollow spherical structure (shell thickness of 2-3 nm and inner diameter of ca. 15 nm) was successfully realized through P123-templated sol-gel cocondensation strategies and fine-tuning of the acidity followed by aging or a hydrothermal treatment. The Si(Et)Si-Pr/ArSO3 H nanohybrids were applied in synthesis of alkyl levulinates from the esterification of levulinic acid and ethanolysis of furfural alcohol. Hollow spherical Si(Et)Si-Pr/ArSO3 H and hexagonal mesoporous analogues exhibited the highest and lowest catalytic activity, respectively, among three types of nanohybrids; additionally, the activity was influenced by the -SO3 H loading. The activity differences are explained in terms of different Brønsted acid and textural properties, reactant/product diffusion, and mass transfer rate, as well as accessibility of -SO3 H sites to the reactant molecules. The reusability of the nanohybrids was also evaluated.

  17. Novel Ordered Mesoporous Carbon Based Sulfonic Acid as an Efficient Catalyst in the Selective Dehydration of Fructose into 5-HMF: the Role of Solvent and Surface Chemistry.

    PubMed

    Karimi, Babak; Mirzaei, Hamid M; Behzadnia, Hesam; Vali, Hojatollah

    2015-09-02

    Novel ionic liquid derived ordered mesoporous carbons functionalized with sulfonic acid groups IOMC-ArSO3H and GIOMC-ArSO3H were prepared, characterized, and examined in the dehydration reaction of fructose into 5-hydroxymethylfurfural (5-HMF) both in aqueous and nonaqueous systems. To study and correlate the surface properties of these carbocatalysts and some other SBA-15 typed solid acids with 5-HMF yield, hydrophilicity index (H-index) were employed in the fructose dehydration. Our study systematically declared that almost a criterion may be expected for application of solid acids in which by increasing H-index value up to 0.8 the HMF yield enhances accordingly. More increase in H-index up to 1.3 did not change the HMF yield profoundly. Although, it has been shown that the catalyst with larger H-index (∼1.3) resulted in higher activity both in aqueous and 2-propanol systems, during the recycling process deactivation occurs because of more water uptake and the catalysts with optimum amount of H-index (∼0.8) is more robust in the dehydration of fructose.

  18. Molecular glass positive i-line photoresist materials containing 2,1,4-DNQ and acid labile group

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Yu, Jinxing; Xu, Na

    2010-04-01

    Recent years increasing attention has been given to molecular glass resist materials. In this paper, maleopimaric acid, cycloaddition reaction product of rosin with maleic anhydride, was reacted with hydroxylamine and then further esterified with 2-diazo-1-naphthoquinone-4-sulfonyl chloride to give N-hydroxy maleopimarimide sulfonate. The carboxylic acid group of the compound was then protected by the reaction of this compound with vinyl ethyl ether or dihydropyran. Thus obtained compounds were amorphous. When irradiated with i-line light, the 2,1,4-DNQ group undergo photolysis not only to give off nitrogen gas but also generate sulfonic acid which can result in the decomposition of the acid labile group. So, a novel chemically amplified positive i-line molecular glass photoresists can be formed by the compound and other acidolytic molecular glass compounds. The lithographic performance of the resist materials is evaluated.

  19. Synthesization, characterization and adsorption properties of sulfonic cellulose.

    PubMed

    Shi, Wenjian; Zhou, Yan; Zhang, Yuanzhang; Li, Liang; Yang, Qinlin

    2012-01-01

    The synthesization and characterization of a new environmental functional material-sulfonic cellulose - were studied in this paper. The preparation conditions were optimized through an orthogonal experiment. The modified cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorption rules of cationic organic pollutants and heavy metal ions by this new material were discussed. Regeneration and recycling performances of the sulfonic cellulose were also investigated. At the temperature of 323 K, sulfonic cellulose was prepared by grafting 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto alkali-treated cellulose for 4 h with the employing of ceric ammonium nitrate as initiator. The mass ratio of AMPS to cellulose was 3:1 and the concentration of ceric ammonium nitrate was 63.8 mmol/L. The sulfur content of sulfonic cellulose was 7.32 wt%. The peaks of 1,303 and 1,159 cm⁻¹ in IR suggested the existence of the sulfonic group in sulfonic cellulose. The XRD and SEM results showed that the crystallinity decreased while the specific surface area increased after modification. Batch adsorption results showed that sulfonic cellulose had a favorable adsorption capacity for model contaminants at pH 6.0-7.0. The adsorption process was endothermic and reached equilibrium in 180 min. The adsorption rules of cationic organic pollutants and heavy metal ions indicated that sulfonic cellulose had high adsorption capacity for the cationic dyes with a coplanar macromolecule structure and organic compounds carrying the amino group. Under room temperature, 1.0 mol/L HCl can be used as a desorption solution and the equilibrium adsorption capacity had little decrease (less than 7%) after six adsorption-desorption cycles.

  20. Exposure and effective dose biomarkers for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in infertile subjects: preliminary results of the PREVIENI project.

    PubMed

    La Rocca, Cinzia; Alessi, Eva; Bergamasco, Bruno; Caserta, Donatella; Ciardo, Francesca; Fanello, Emiliano; Focardi, Silvano; Guerranti, Cristiana; Stecca, Laura; Moscarini, Massimo; Perra, Guido; Tait, Sabrina; Zaghi, Carlo; Mantovani, Alberto

    2012-02-01

    Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been used as surfactants in various industry and consumer products. PFOS/PFOA are very persistent in the environment and bioaccumulate in humans. They are potential reproductive and developmental toxicants and are considered to be emerging endocrine disrupters (EDs). The Italian project PREVIENI, funded by the Italian Environment Ministry, aims to link environment and human health through the investigation of selected endocrine disrupters (EDs) exposure and associated biomarkers related to human infertility conditions. In the early PREVIENI phase, PFOS and PFOA were determined in 53 couples affected by an infertility status, enrolled in a metropolitan area, according to established inclusion criteria and informed consensus. Nuclear receptors related to chemical compounds interactions were selected as biomarkers of effect and their gene expression modulations were analyzed in human peripheral blood mononuclear cell (PBMC). Among couples, subjects not presenting infertility factors (IF--) were separated from affected subjects (IF++). Most IF-- serum samples showed PFOS and PFOA concentrations overlapping the limit of detection (LOD) of 0.5 ng/g wet weight (ww). A substantial percentage of IF++ serum samples showed PFOS concentrations >20-fold the LOD, i.e. from 3 to 50 ng/g ww. In male (50%, n=26) and from 3 to 144 ng/g ww in female (37%, n=30) samples. PFOA values were below the LOD levels in 90% of the total samples. Peroxisome proliferator-activated receptor-gamma (PPARγ) and aryl hydrocarbon receptor (AhR) showed a low level of expression in PBMC of both IF++ and IF-- groups. Whereas alpha and beta estrogen receptors (ERα and ERβ), androgen receptor (AR), and pregnane X receptor (PXR) were all upregulated in IF++ of both sexes with respect to IF-- group. Our preliminary results related to the metropolitan area indicate that subjects affected by infertility factors tend to have both

  1. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-phenylbenzimidazole-5-sulfonic acid.

    PubMed

    Zhang, Siyu; Chen, Jingwen; Qiao, Xianliang; Ge, Linke; Cai, Xiyun; Na, Guangshui

    2010-10-01

    For ecological risk assessment of the large and ever-increasing number of chemical pollutants, it is of importance to develop computational methods to screen or predict their environmental photodegradation behavior. This study developed a computational method based on the density functional theory (DFT) to predict and evaluate the photodegradation behavior and effects of water constituents, taking a sunscreen and personal care product 2-phenylbenzimidazole-5-sulfonic acid (PBSA) as a model compound. Energy and electron transfer reactions of excited state PBSA (PBSA*) with (3)O(2) and water constituents were evaluated. The computational results indicated that PBSA* could photogenerate (1)O(2) and O(2)(-)·, triplet excited state humic/fulvic acid analogs could not photosensitize the degradation, and the anions (Cl(-), Br(-), and HCO(3)(-)) could not quench PBSA* or its radical cation chemically. Experiments employing simulated sunlight confirmed that PBSA photodegraded via the direct and self-sensitization mechanism involving O(2)(-)·. The photodegradation was pH-dependent. The direct and self-sensitized photodegradation was inhibited by fulvic acid. The main photodegradation products were identified, and the pathways were clarified. These results indicate that the DFT-based computational method can be employed to assess the environmental photochemical fate of organic pollutants.

  2. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    SciTech Connect

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  3. A mixed formulation of lactic acid bacteria inhibits trinitrobenzene-sulfonic-acid-induced inflammatory changes of the colon tissue in mice.

    PubMed

    Cha, Yun Suk; Seo, Jae-Gu; Chung, Myung-Jun; Cho, Chung Won; Youn, Hyun Joo

    2014-10-01

    Lactic acid bacteria (LAB) are probiotics that provide numerous beneficial effects on the host body, especially on the intestine. Combining several strains of LAB, we prepared a formulation containing four different LAB and studied its anti-inflammatory activity both in vitro and in vivo. The formulation significantly reduced NO production from RAW 264.7 cells treated with bacterial lipopolysaccharide, indicating that the formulation might include antiinflammatory activity. The formulation also suppressed inflammatory change induced by trinitrobenzene sulfonic acid (TNBS) in mice, where oral or rectal administration of the formulation protected the colon tissue from the damage by TNBS. Expressions of the IL-6 and FasL genes appeared to be down-regulated by the formulation in TNBS-treated colon tissues, suggesting that the suppression of those genes may be involved in the anti-inflammatory activity of the formulation.

  4. Presence of UV filters in surface water and the effects of phenylbenzimidazole sulfonic acid on rainbow trout (Oncorhynchus mykiss) following a chronic toxicity test.

    PubMed

    Grabicova, Katerina; Fedorova, Ganna; Burkina, Viktoriia; Steinbach, Christoph; Schmidt-Posthaus, Heike; Zlabek, Vladimir; Kocour Kroupova, Hana; Grabic, Roman; Randak, Tomas

    2013-10-01

    UV filters belong to a group of compounds that are used by humans and are present in municipal waste-waters, effluents from sewage treatment plants and surface waters. Current information regarding UV filters and their effects on fish is limited. In this study, the occurrence of three commonly used UV filters - 2-phenylbenzimidazole-5-sulfonic acid (PBSA), 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) and 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (benzophenone-4, BP-4) - in South Bohemia (Czech Republic) surface waters is presented. PBSA concentrations (up to 13μgL(-1)) were significantly greater than BP-3 or BP-4 concentrations (up to 620 and 390ngL(-1), respectively). On the basis of these results, PBSA was selected for use in a toxicity test utilizing the common model organism rainbow trout (Oncorhynchus mykiss). Fish were exposed to three concentrations of PBSA (1, 10 and 1000µgL(-1)) for 21 and 42 days. The PBSA concentrations in the fish plasma, liver and kidneys were elevated after 21 and 42 days of exposure. PBSA increased activity of certain P450 cytochromes. Exposure to PBSA also changed various biochemical parameters and enzyme activities in the fish plasma. However, no pathological changes were obvious in the liver or gonads.

  5. The coordination structure of the extracted nickel(ii) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and 2-ethylhexyl 4-pyridinecarboxylate ester.

    PubMed

    Li, Jiyuan; Hu, Huiping; Zhu, Shan; Hu, Fang; Wang, Yongxi

    2017-01-24

    In this paper, a synergist complex of Ni(ii) with naphthalene-2-sulfonic acid (HNS) and n-hexyl 4-pyridinecarboxylate ester (L(I)), which are corresponding short chain analogues of active synergistic extractants dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC, L(II)), was prepared and characterized by Nuclear Magnetic Resonance ((1)H-NMR), elemental analyses, Fourier Transform Infrared Spectroscopy (FT-IR) and Electrospray Ionization Mass Spectrometry (ESI-MS) spectroscopic studies. Single crystals of the nickel synergist complex have been grown from a methanol/water (10/1) solution and analyzed by single crystal X-ray diffraction. The crystal structure of the nickel synergist complex shows that Ni(ii) is coordinated by four water molecules and two monodentate L(I) ligands and there is no direct interaction of the Ni(ii) with sulfonic oxygen atoms of naphthalene-2-sulfonic acid anions, while hydrogen-bonded interactions of the coordinated water molecules with sulfonic oxygen atoms of naphthalene-2-sulphate anions were observed. In addition, in order to provide parallels to solvent extraction, the extracted Ni(ii) complex with HDNNS and 4PC is also prepared and studied using FT-IR and ESI-MS technology. Compared with their corresponding free ligand, similar shifts assigned to the stretching vibration of the pyridine ring and S[double bond, length as m-dash]O in both the nickel synergist complex and the extracted Ni(ii) complex suggest that in the non-polar organic phase, Ni(ii) is also coordinated by L(II) ligands, while the sulfonic oxygen atoms of dinonylnaphthalene sulfonate anions not directly bonded to Ni(ii) form hydrogen bonds with water molecules (coordinated with Ni(ii) or/and solubilized in the non-polar organic phase). For the ESI-MS spectrum of the extracted Ni(ii) complex in non-polar organic phase, there exists a peak at m/z values of 1058.76, which indicates that the extracted Ni(ii) complex in the non

  6. An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles

    NASA Astrophysics Data System (ADS)

    Yasuoka, K.; Sasaki, K.; Hayashi, R.

    2011-06-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are environmentally harmful and persistent substances. Their decomposition was investigated using dc plasmas generated within small gas bubbles in a solution. The plasma characteristics including discharge voltage, voltage drop in the liquid, plasma shape and the emission spectrum were examined with different gases. The decomposition rate and energy efficiency were evaluated by measuring the concentration of fluoride and sulfate ions released from PFOA/PFOS molecules. The concentration of fluoride ions and energy efficiency in the treatment of a PFOS solution were 17.7 mg l-1 (54.8% of the initial amount of fluorine atoms) and 26 mg kWh-1, respectively, after 240 min of operation. The addition of scavengers of hydroxyl radicals and hydrated electrons showed little effect on the decomposition. The decomposition processes were analyzed with an assumption that positive species reacted with PFOA/PFOS molecules at the boundary of the plasma-solution surface. This type of plasma showed a much higher decomposition energy efficiency compared with energy efficiencies reported in other studies.

  7. Synthesis and chelation properties of a new polymeric ligand derived from 1-amino-2-naphthol-4-sulfonic Acid.

    PubMed

    Manivannan, Dhanasekaran; Biju, Valsala Madhavan Nair

    2015-01-01

    A novel chelating resin for preconcentration of heavy metals from various seawater samples has been developed by condensing 1-amino-2-hydroxy-7-[(4-hydroxyphenyl)diazenyl] naphthalene-4-sulfonic acid (AHDNS) with formaldehyde (1:2 mole ratio) in the presence of oxalic acid as the catalyst. The resin thus obtained was used as a solid sorbent for the separation of divalent metal ions present at trace levels in seawater. The functionalized phenol (AHDNS) was characterized by spectral studies. The polymeric resin AHDNS-formaldehyde (AHDNS-F) obtained by condensing the functionalized phenol and formaldehyde was characterized by IR and NMR spectral studies. The chelating property of the AHDNS-F resin towards divalent metal ions was studied as a function of pH and in the presence of electrolyte. The metal uptake properties of the resin were determined by using an atomic absorption spectrophotometer. This procedure was validated for recovery of divalent metal ions from seawater samples. The recoveries of cadmium, cobalt, copper, manganese, lead, and zinc were above 92% under the optimum preconcentration conditions. The LOD was <0.73 μg/L and the RSDs were <2%. Thus, the AHDNS-F resin can be widely used as a solid sorbent for the preconcentration of trace metals at ppm levels in seawater samples.

  8. Perfluorooctanoic acid and perfluorooctane sulfonate released from a waste water treatment plant in Bavaria, Germany.

    PubMed

    Becker, Anna M; Suchan, Magdalena; Gerstmann, Silke; Frank, Hartmut

    2010-11-01

    Perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and precursors and derivatives thereof have been employed as surfactants and anti-adhesives. PFOA and PFOS are environmentally persistent and the discharge of municipal waste waters is one of the principal routes of these compounds into the aquatic environment. In a previous study, the concentrations of PFOA and PFOS in grab samples collected from the waste water treatment plant (WWTP) of Bayreuth, a city of 72,000 inhabitants in Bavaria, Germany, during two periods showed considerable variability. For a better estimate of average mass flows, the surfactants were monitored (five samplings) from 16 March to 18 May 2007. In a second campaign, river water receiving the WWTP effluent was sampled twice a day for five consecutive days. Quantitative analysis was done by stable-isotope dilution, pre-cleaning, and pre-concentration by solid-phase extraction, and liquid chromatography followed by electrospray ionization/tandem mass spectrometry. The mass flows of PFOA and PFOS through the WWTP were determined. PFOA is fully discharged into the river, while about half of PFOS is retained in the sewage sludge. The average daily mass load of the river Roter Main by the WWTP of Bayreuth is about 1.2 ± 0.5 g PFOA and 5 ± 2 g PFOS, with variations of up to 140% within one day. Overall, the total annual release to the rivers of Germany may be in the range of several hundred kilograms of PFOA and several tons of PFOS.

  9. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications.

    PubMed

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper; White, Melanie Y; Cordwell, Stuart J

    2015-03-01

    Cysteine (Cys) oxidation is a crucial post-translational modification (PTM) associated with redox signaling and oxidative stress. As Cys is highly reactive to oxidants it forms a range of post-translational modifications, some that are biologically reversible (e.g. disulfides, Cys sulfenic acid) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post-translational modification (pKa Cys-SO3H < 0) creates a unique charge distribution when localized on tryptic peptides at acidic pH that can be utilized for their purification. The method is based on electrostatic repulsion of Cys-SO2H/SO3H-containing peptides from cationic resins (i.e. "negative" selection) followed by "positive" selection using hydrophilic interaction liquid chromatography. Modification of strong cation exchange protocols decreased the complexity of initial flowthrough fractions by allowing for hydrophobic retention of neutral peptides. Coupling of strong cation exchange and hydrophilic interaction liquid chromatography allowed for increased enrichment of Cys-SO2H/SO3H (up to 80%) from other modified peptides. We identified 181 Cys-SO2H/SO3H sites from rat myocardial tissue subjected to physiologically relevant concentrations of H2O2 (<100 μm) or to ischemia/reperfusion (I/R) injury via Langendorff perfusion. I/R significantly increased Cys-SO2H/SO3H-modified peptides from proteins involved in energy utilization and contractility, as well as those involved in oxidative damage and repair.

  10. Process for sulfonation of gas oils

    SciTech Connect

    Berg, R. C.

    1980-12-23

    A process for the production of oil-soluble sulfonates from a gas oil such as a vacuum gas oil. Water-soluble sulfonic acids are separated from the effluent of the sulfonation zone, and the remainder of the effluent is then passed through a saponification zone to produce oil-soluble sulfonates which are then recovered. The remaining hydrocarbons are fractionated, with the resultant heavy fraction being passed through a reforming zone to produce additional aromatics which are then recycled to the sulfonation zone.

  11. Aldicarb sulfone

    Integrated Risk Information System (IRIS)

    Aldicarb sulfone ; CASRN 1646 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  12. Synthesis of Met-enkephalin by solution-phase peptide synthesis methodology utilizing para-toluene sulfonic acid as N-terminal masking of l-methionine amino acid.

    PubMed

    Khan, Riaz A

    2016-12-01

    The Met-enkephalin, Tyr-Gly-Gly-Phe-Met, was synthesized by the solution-phase synthesis (SPS) methodology employing -OBzl group as carboxyls' protection, while the t-Boc groups were employed for the N-terminal α-amines' protection for the majority of the amino acids of the pentapeptide sequence. The l-methionine (l-Met) amino acid was used as PTSA.Met-OBzl obtained from the simultaneous protection of the α-amino, and carboxyl group with para-toluene sulfonic acid (PTSA) and as-OBzl ester, respectively in a C-terminal start of the 2 + 2 + 1 fragments condensation convergent synthetic approach. The protection strategy provided a short, single-step, simultaneous, orthogonal, nearly quantitative, robust, and stable process to carry through the protected l-methionine and l-phenylalanine coupling without any structural deformities during coupling and workups. The structurally confirmed final pentapeptide product was feasibly obtained in good yields through the current approach.

  13. An Evaluation of a Teat Dip with Dodecyl Benzene Sulfonic Acid in Preventing Bovine Mammary Gland Infection from Experimental Exposure to Streptococcus agalactiae and Staphylococcus aureus

    PubMed Central

    Barnum, D. A.; Johnson, R. E.; Brooks, B. W.

    1982-01-01

    The effectiveness of a teat dip with dodecyl benzene sulfonic acid (1.94%) for the prevention of intramammary infections was determined in cows experimentally challenged with Streptococcus agalactiae and Staphylococcus aureus. The infection rates with Streptococcus agalactiae and Staphylococcus aureus were 62.5% and 75% in undipped quarters, 12.5% and 21.5% in dipped quarters with a reduction rate of 80% and 71% respectively. The significance of some findings in relation to mastitis control are discussed. PMID:17422110

  14. Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfones from (Hetero)Aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulfite.

    PubMed

    Shavnya, Andre; Hesp, Kevin D; Mascitti, Vincent; Smith, Aaron C

    2015-11-09

    A palladium-catalyzed one-step synthesis of (hetero)aryl alkyl sulfones from (hetero)arylboronic acids, potassium metabisulfite, and unactivated or activated alkylhalides is described. This transformation is of broad scope, occurs under mild conditions, and employs readily available reactants. A stoichiometric experiment has led to the isolation of a catalytically active dimeric palladium sulfinate complex, which was characterized by X-ray diffraction analysis.

  15. A new sulfonic acid derivative, (Z)-4-methylundeca-1,9-diene-6-sulfonic acid, isolated from the cold water sea urchin inhibits inflammatory responses through JNK/p38 MAPK and NF-κB inactivation in RAW 264.7.

    PubMed

    Lee, Dong-Sung; Cui, Xiang; Ko, Wonmin; Kim, Kyoung-Su; Kim, Il Chan; Yim, Joung Han; An, Ren-Bo; Kim, Youn-Chul; Oh, Hyuncheol

    2014-08-01

    In this study, we isolated a new sulfonic acid derivative, (Z)-4-methylundeca-1,9-diene-6-sulfonic acid (1), from the sea urchin collected from the Sea of Okhotsk. We established the structure of this new compound by analysis of NMR and HRMS data, along with comparison of the data with those of the related compounds reported in the literature. In addition, we investigated its anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages. Compound 1 inhibited the production of NO, iNOS, PGE2, and COX-2, and it also suppressed the production of pro-inflammatory cytokines, such as TNF-α and IL-1β. It inhibited the translocation of the NF-κB subunit p65 into the nucleus by interrupting the phosphorylation and degradation of IκB-α. In addition, compound 1 significantly decreased the phosphorylation of JNK and p38 in LPS-stimulated RAW264.7 macrophages, suggesting that suppression of the inflammation process by compound 1 was mediated through the MAPK pathway. Taken together, this study showed that the anti-inflammatory effects of a new sulfonic acid derivative, (Z)-4-methylundeca-1,9-diene-6-sulfonic acid were mediated through the inhibition of NF-κB and JNK/p38 MAPK signaling pathways.

  16. Temporal trends of perfluoroalkane sulfonic acids and their sulfonamide-based precursors in herring from the Swedish west coast 1991-2011 including isomer-specific considerations.

    PubMed

    Ullah, Shahid; Huber, Sandra; Bignert, Anders; Berger, Urs

    2014-04-01

    A method was developed for simultaneous analysis of perfluoroalkane sulfonic acids (PFSAs) and their sulfonamide-based precursors (perfluoroalkane sulfonamidoacetic acids (FASAAs), sulfonamides (FASAs), and sulfonamidoethanols (FASEs)) in fish muscle. Extraction was performed with acetonitrile followed by a clean-up and fractionation step and instrumental analysis by UPLC/MS/MS and GC/MS. Time trends of PFSAs and their precursors in herring muscle samples originating from the Kattegat at the west coast of Sweden were investigated covering the years 1991-2011. The following analytes were detected, all with decreasing or unchanged trends between 1991 and 2011: Perfluorobutane sulfonic acid (PFBS, below the method detection limit (sulfonic acid (PFHxS, 9-38pg/g), perfluorooctane sulfonic acid (PFOS, 240-930pg/g), perfluorodecane sulfonic acid (PFDS, acid (MeFOSAA and EtFOSAA, 2-39 and 2-31pg/g, respectively) and perfluorooctane sulfonamide (FOSA, 78-920pg/g). The highest concentrations were found for PFOS and FOSA around the turn of the century. Shorter disappearance half-lives were observed for precursors compared to PFSAs. Assuming that these trend differences are representative for fish consumed by the general Swedish population, this observation suggests that the relative contribution of precursors to total human exposure to PFOS via fish intake has decreased in Sweden over the study period. PFOS precursors in fish may have constituted a significant indirect exposure pathway for PFOS in the 1990s. Isomer-specific analysis of PFOS and FOSA revealed <10% relative contributions of branched isomers to total PFOS and total FOSA. Furthermore, the percentage branched isomers decreased over time for both compounds. These findings are contrary to patterns and temporal trends of PFOS isomers commonly found in human serum. In combination with literature data on isomer patterns

  17. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  18. Effects of perfluorooctanoic acid and perfluorooctane sulfonate on acute toxicity, superoxide dismutase, and cellulase activity in the earthworm Eisenia fetida.

    PubMed

    Yuan, Zuoqing; Zhang, Jianyong; Zhao, Lili; Li, Jing; Liu, Hongbin

    2017-06-20

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the two best-known perfluorinated chemicals and have received much attention due to their ubiquity in the environment. In the present study, we evaluated the effects of PFOS and PFOA on acute toxicity, superoxide dismutase (SOD), and cellulase activities in Eisenia fetida. The results of acute toxicity testing using a filter paper contact test and a natural field soil test showed that PFOA and PFOS exhibited acute toxicity in earthworms, and the toxic effect of PFOS was greater than that of PFOA. The results also showed that avoidance behavior is a more sensitive and easy operation biomarker than acute toxicity and will give us information for early diagnosis of soil pollution, well before the lethal effect becomes apparent. Subchronic exposure to PFOA or PFOS resulted in changes in SOD and cellulase activities in E. fetida, and SOD activity was more sensitive than cellulase activity during early exposure. Based on these findings, we suggest that avoidance behavior and SOD activity in earthworms are suitable biomarkers for evaluating the toxicity of PFOA- and PFOS-contaminated soils. These results indicate that exposure to PFOA and PFOS has a potential impact on soil animals and their environment.

  19. Demographic, Reproductive, and Dietary Determinants of Perfluorooctane Sulfonic (PFOS) and Perfluorooctanoic Acid (PFOA) Concentrations in Human Colostrum.

    PubMed

    Jusko, Todd A; Oktapodas, Marina; Palkovičová Murinová, L'ubica; Babinská, Katarina; Babjaková, Jana; Verner, Marc-André; DeWitt, Jamie C; Thevenet-Morrison, Kelly; Čonka, Kamil; Drobná, Beata; Chovancová, Jana; Thurston, Sally W; Lawrence, B Paige; Dozier, Ann M; Järvinen, Kirsi M; Patayová, Henrieta; Trnovec, Tomáš; Legler, Juliette; Hertz-Picciotto, Irva; Lamoree, Marja H

    2016-07-05

    To determine demographic, reproductive, and maternal dietary factors that predict perfluoroalkyl substance (PFAS) concentrations in breast milk, we measured perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations, using liquid chromatography-mass spectrometry, in 184 colostrum samples collected from women participating in a cohort study in Eastern Slovakia between 2002 and 2004. During their hospital delivery stay, mothers completed a food frequency questionnaire, and demographic and reproductive data were also collected. PFOS and PFOA predictors were identified by optimizing multiple linear regression models using Akaike's information criterion (AIC). The geometric mean concentration in colostrum was 35.3 pg/mL for PFOS and 32.8 pg/mL for PFOA. In multivariable models, parous women had 40% lower PFOS (95% CI: -56 to -17%) and 40% lower PFOA (95% CI: -54 to -23%) concentrations compared with nulliparous women. Moreover, fresh/frozen fish consumption, longer birth intervals, and Slovak ethnicity were associated with higher PFOS and PFOA concentrations in colostrum. These results will help guide the design of future epidemiologic studies examining milk PFAS concentrations in relation to health end points in children.

  20. Demographic, reproductive, and dietary determinants of perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations in human colostrum

    PubMed Central

    Jusko, Todd A.; Oktapodas, Marina; Murinová, L’ubica Palkovičová; Babinská, Katarina; Babjaková, Jana; Verner, Marc-André; DeWitt, Jamie C.; Thevenet-Morrison, Kelly; Čonka, Kamil; Drobná, Beata; Chovancová, Jana; Thurston, Sally W.; Lawrence, B. Paige; Dozier, Ann M.; Järvinen, Kirsi M.; Patayová, Henrieta; Trnovec, Tomáš; Legler, Juliette; Hertz-Picciotto, Irva; Lamoree, Marja H.

    2017-01-01

    To determine demographic, reproductive, and maternal dietary factors that predict perfluoroalkyl substance (PFAS) concentrations in breast milk, we measured perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations, using liquid chromatography-mass spectrometry, in 184 colostrum samples collected from women participating in a cohort study in eastern Slovakia between 2002 and 2004. During their hospital delivery stay, mothers completed a food frequency questionnaire, and demographic and reproductive data were also collected. PFOS and PFOA predictors were identified by optimizing multiple linear regression models using Akaike’s information criterion (AIC). The geometric mean concentration in colostrum was 35.3 pg/ml for PFOS and 32.8 pg/ml for PFOA., In multivariable models, parous women had 40% lower PFOS (95% CI: −56 to −17%) and 40% lower PFOA (95% CI: −54 to −23%) concentrations compared with nulliparous women. Moreover, fresh/frozen fish consumption, longer birth intervals, and Slovak ethnicity were associated with higher PFOS and PFOA concentrations in colostrum. These results will help guide the design of future epidemiologic studies examining milk PFAS concentrations in relation to health endpoints in children. PMID:27244128

  1. Evaluation of single and joint toxicity of perfluorooctane sulfonate, perfluorooctanoic acid, and copper to Carassius auratus using oxidative stress biomarkers.

    PubMed

    Feng, Mingbao; He, Qun; Meng, Lingjun; Zhang, Xiaoling; Sun, Ping; Wang, Zunyao

    2015-04-01

    Perfluorooctane sulfonate, perfluorooctanoic acid, and copper have been recently regarded as ubiquitous environmental contaminants in aquatic ecosystems worldwide. However, data on their possible combined toxic effects on aquatic organisms are still lacking. In this study, a systematic experimental approach was used to assess the impacts of these chemicals and their mixtures on hepatic antioxidant status of Carassius auratus after 4 days. Oxidative stress was apparently observed for joint exposure by determining biochemical parameters (superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and malondialdehyde). The integrated biomarker response index was calculated to rank the toxicity order, from which the synergistic effect was tentatively proposed for joint-toxicity action. In addition, these treatments significantly altered trace element homeostasis in different fish tissues, and the concentration distribution of these test chemicals was also measured. Taken together, these results provided some valuable toxicological data on the joint effects of perfluorinated compounds and heavy metals on aquatic species, which can facilitate further understanding on the potential risks of other coexisting pollutants in the natural aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in biosolids-amended soils to earthworms (Eisenia fetida).

    PubMed

    Wen, Bei; Zhang, Hongna; Li, Longfei; Hu, Xiaoyu; Liu, Yu; Shan, Xiao-quan; Zhang, Shuzhen

    2015-01-01

    The bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in seven biosolids-amended soils without any additionally spiking to earthworms (Eisenia fetida) was studied. The uptake and elimination kinetics of PFOS and PFOA fit a one-compartment first-order kinetic model. PFOS displayed higher uptake and lower elimination rate coefficients, and longer time to reach steady-state (t(ss)) than those of PFOA. The bioaccumulation factors (BAFs) of PFOS and PFOA ranged 1.54–4.12 and 0.52–1.34 g(soil) g(worm)(−1), respectively. The BAFs and tss decreased with increasing concentrations of PFOS and PFOA in soils. Stepwise multiple regression analysis was used to elucidate the bioavailability of PFOS and PFOA. The results showed that the total concentrations of PFOS and PFOA, and organic matter (OM) contents in soils explained 87.2% and 91.3% of the variation in bioavailable PFOS and PFOA, respectively. PFOS and PFOA concentrations exhibited positive influence and OM contents showed the negative influence on the accumulation of PFOS and PFOA in earthworms. Soil pH and clay contents played relatively unimportant role in PFOS and PFOA bioavailability.

  3. Spectrophotometric determination of procaine hydrochloride in pharmaceutical products using 1,2-naphthoquinone-4-sulfonic acid as the chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Xu, Li Xiao; Shen, Yun Xiu; Wang, Huai You; Jiang, Ji Gang; Xiao, Yan

    2003-11-01

    Spectrophotometric determination of procaine hydrochloride is described. The procaine hydrochloride reacts with 1,2-naphthoquinone-4-sulfonic acid in pH 3.60 buffer solution to form a salmon pink compound, and its maximum absorption wavelength is at 484 nm, ɛ 484=5.22×10 3.The absorbance for procaine hydrochloride from 0.30 to 100 μg ml -1 obeys Beer's law. The linear regression equation of the calibration graph is C=19.23A-0.03, with a linear regression correlative coefficient is 0.9996, the detection limit is 0.28 μg ml -1; recovery is from 98.0 to 105.2%. Effects of pH, surfactant, organic solvent, foreign ions, and standing time on the determination of procaine hydrochloride have been examined. This method is rapid and simple, and can be used for the determination of procaine hydrochloride in injection solution of procaine hydrochloride. The results obtained by this method agreed with those by the official method (dead-stop titration).

  4. Effect of diameter of cellulosic nano-fiber on conductivity of poly(aniline sulfonic acid) composites

    NASA Astrophysics Data System (ADS)

    Konagaya, S.; Shimizu, K.; Terada, M.; Yamada, T.; Sanada, K.; Numata, O.; Sugino, G.

    2014-05-01

    The authors have been studying the effect of cellulosic nano-fiber (CeNF) with the diameter of less than 30 nm and the length of a few micrometers on the conductivity of the conductive polymer composites (PAS/PEs/CeNF) prepared from poly(aniline sulfonic acid) (PAS), a water dispersible polyester (PEs) and CeNF and confirmed that CeNF was effective for the enhancement of their conductivity, and that the conductivity enhancement was attributable to the strong adsorbing ability of CeNF to PAS molecules. Thiner CeNF has so larger surface area that it is expected to adsorb more PAS molecules on its surface, which possibly lead to further conductivity enhancement of the composites. The authors prepared thinner CeNF with the size of 16 nm by the use of ultrasonic dispersing machine. It was clarified that the thinner CeNF had a higher adsorbing ability to PAS molecules and a larger effect on the conductivity enhancement of PAS/PEs/CeNF composites.

  5. Effects of Temperature and Humidity History on Brittleness of α-Sulfonated Fatty Acid Methyl Ester Salt Crystals.

    PubMed

    Watanabe, Hideaki; Morigaki, Atsunori; Kaneko, Yukihiro; Tobori, Norio; Aramaki, Kenji

    2016-01-01

    α-Sulfonated fatty acid methyl ester salts (MES), which were made from vegetable sources, are attractive candidates for eco-friendly washing detergents because they have various special features like excellent detergency, favorable biodegradability, and high stability against enzymes. To overcome some disadvantages of powder-type detergents like caking, sorting, and dusting, we studied how temperature and humidity history, as a model for long-term storage conditions, can affect crystalline structures and reduce the brittleness of MES powder. We characterized the crystalline structure of MES grains using small-angle X-ray scattering, wide-angle X-ray scattering, differential scanning calorimetry, and Fourier transform infrared spectroscopy measurements and determined the yield values, which measure the brittleness of MES grains, in shear stress using dynamic viscoelasticity measurements. This study confirmed that MES crystals form three pseudo-polymorphs via thermal or humidity conditioning: metastable crystals (αsubcell), anhydrous crystals (β subcell), and dihydrate crystals (β' subcell). Further, we found that the yield value increases upon phase transition from the β subcell to the β' subcell and from the β' subcell to the αsubcell. Therefore, controlling the thermal and humidity conditioning of MES grains is an effective way to decrease the brittleness of MES powders and can be used to overcome the above mentioned disadvantages of powder-type detergents in the absence of co-surfactants.

  6. Can nail, hair and urine be used for biomonitoring of human exposure to perfluorooctane sulfonate and perfluorooctanoic acid?

    PubMed

    Li, Jingguang; Guo, Feifei; Wang, Yuxin; Zhang, Jialing; Zhong, Yuxin; Zhao, Yunfeng; Wu, Yongning

    2013-03-01

    Because of the disadvantages of invasive sampling, it is desirable to explore non-invasive matrices for human biomonitoring of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). The aim of this study was to evaluate the application of nail, hair and urine for human biomonitoring of PFOS and PFOA. The concentrations of PFOS and PFOA in matched nail, hair, urine and serum samples collected from 64 donors were measured. The chemicals of interest were detected with high detection frequency in these matrices (90%-100%) except for PFOA in urine samples (56%). Generally, the gender influences on the levels of PFOS and PFOA in these non-invasive matrices were in agreement with that in serum. For PFOS, the coefficients of Spearman correlation between serum samples and nail, hair and urine samples were 0.786 (p<0.001), 0.545 (p<0.001) and 0.302 (p<0.05), respectively. For PFOA, the correlation was only observed between nail samples and serum samples with a correlation coefficient of 0.299 (p<0.05). The results suggested that nail has more potential than hair and urine to be applied in human biomonitoring for PFOS and PFOA in general populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) with age of puberty among children living near a chemical plant.

    PubMed

    Lopez-Espinosa, Maria-Jose; Fletcher, Tony; Armstrong, Ben; Genser, Bernd; Dhatariya, Ketan; Mondal, Debapriya; Ducatman, Alan; Leonardi, Giovanni

    2011-10-01

    Animal studies suggest that perfluorocarbons (PFCs) may alter sexual maturation. Relationships of human PFC exposure with puberty are not clear. We conducted a cross-sectional study to investigate whether perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were associated with indicators of sexual maturation in a 2005-2006 survey of residents with PFOA water contamination from the Mid-Ohio Valley. Participants were 3076 boys and 2931 girls aged 8-18 years. They were classified as having reached puberty based on either hormone levels (total >50 ng/dL and free >5 pg/mL testosterone in boys and estradiol >20 pg/mL in girls) or onset of menarche. We estimated the odds of having reached puberty classified by these criteria and the fitted median age of reaching puberty in relation to serum PFOA and PFOS concentrations measured when puberty status was assigned. For boys, there was a relationship of reduced odds of reached puberty (raised testosterone) with increasing PFOS (delay of 190 days between the highest and lowest quartile). For girls, higher concentrations of PFOA or PFOS were associated with reduced odds of postmenarche (130 and 138 days of delay, respectively). In conclusion, our study showed a later age of puberty in this population correlated with PFC concentrations.

  8. Benzocaine complexation with p-sulfonic acid calix[n]arene: experimental ((1) H-NMR) and theoretical approaches.

    PubMed

    Arantes, Lucas M; Varejão, Eduardo V V; Pelizzaro-Rocha, Karin J; Cereda, Cíntia M S; de Paula, Eneida; Lourenço, Maicon P; Duarte, Hélio A; Fernandes, Sergio A

    2014-05-01

    The aim of this work was to study the interaction between the local anesthetic benzocaine and p-sulfonic acid calix[n]arenes using NMR and theoretical calculations and to assess the effects of complexation on cytotoxicity of benzocaine. The architectures of the complexes were proposed according to (1) H NMR data (Job plot, binding constants, and ROESY) indicating details on the insertion of benzocaine in the cavity of the calix[n]arenes. The proposed inclusion compounds were optimized using the PM3 semiempirical method, and the electronic plus nuclear repulsion energy contributions were performed at the DFT level using the PBE exchange/correlation functional and the 6-311G(d) basis set. The remarkable agreement between experimental and theoretical approaches adds support to their use in the structural characterization of the inclusion complexes. In vitro cytotoxic tests showed that complexation intensifies the intrinsic toxicity of benzocaine, possibly by increasing the water solubility of the anesthetic and favoring its partitioning inside of biomembranes.

  9. The effect of Saccharomyces boulardii on human colon cells and inflammation in rats with trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Lee, Sang Kil; Kim, Youn Wha; Chi, Sung-Gil; Joo, Yeong-Shil; Kim, Hyo Jong

    2009-02-01

    Saccharomyces boulardii (S. boulardii) has beneficial effects in the treatment of intestinal inflammation; however, little is known about the mechanisms by which these effects occur. We investigated the effects of S. boulardii on the expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and interleukin-8 (IL-8), using human HT-29 colonocytes and a rat model of trinitrobenzene sulfonic acid (TNBS)-induced colitis. The effect of S. boulardii on gene expression was assessed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), and Northern blot and Western blot assays. Pharmacological inhibitors for various signaling pathways were used to determine the signaling pathways implicated in the S. boulardii regulation of PPAR-gamma and IL-8. We found that S. boulardii up-regulated and down-regulated PPAR-gamma and IL-8 expression at the transcription level, both in vitro and in vivo (P < 0.05, respectively). Saccharomyces boulardii blocked tumor necrosis factor-alpha (TNF-alpha) regulation of PPAR-gamma and IL-8 through disruption of TNF-alpha-mediated nuclear factor kappa B (NF-kappaB) activation. Furthermore, S. boulardii suppressed colitis and expression of pro-inflammatory cytokine genes in vivo (P < 0.05, respectively). Our study demonstrated that S. boulardii reduces colonic inflammation and regulates inflammatory gene expression.

  10. Spectrofluorimetric determination of zinc using 8-hydroxy-7-(4-sulfo-1-naphthylazo)-5-quinoline sulfonic acid.

    PubMed

    Al-Kindy, Salma M Z; Al-Bulushi, Sheikha T; Suliman, Fakhr Eldin O

    2008-11-15

    A sensitive and a selective spectrofluorimetric method have been developed for the rapid determination of zinc. The method is based on the complex formation between zinc and 8-hydroxy-7-(4-sulfo-1-naphthylazo)-5-quinoline sulfonic acid (HSNQ). The optimum conditions for the complex formation were metal to ligand stoichiometric ratio of 1:1 at pH 8.0 with 0.2M acetate buffer. The fluorescence of the complex is monitored at an emission wavelength of 545 nm with excitation at 360 nm. Under these conditions linear calibration curves were obtained from 50 ppb to 400 ppb. The detection limit was 7 ppb. The maximum relative standard deviation of the method was 2% for water samples, 4% for milk samples and 7% for hair samples (n = 5). The method was successfully applied for the determination of zinc in drinking water, hair and milk samples. The results were found to be in good agreement with those obtained by flame atomic absorption spectrophotometric methods. The t-test and F-test indicated no significant difference at 95% confidence level.

  11. Bioaccumulation of perfluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm.

    PubMed

    Fang, Shuhong; Zhang, Yifeng; Zhao, Shuyan; Qiang, Liwen; Chen, Meng; Zhu, Lingyan

    2016-12-01

    Carp (Cyprinus carpio) were exposed to perfluoroalkyl acids (PFAAs) including perfluorooctane sulfonate (PFOS) isomers in an artificially contaminated sediment/water microcosm. The uptake constant of PFAAs increased with increasing carbon chain length, whereas the elimination coefficient displayed the opposite trend, suggesting that carbon chain length plays an important role in the bioaccumulation of PFAAs. When the contribution of suspended particulate matter was taken into account, the bioaccumulation factors (BAFs) became lower (3.61-600 L/kg) compared with BAFs derived from only considering the absorption from free PFAAs in water (3.85-97000 L/kg). The results indicate that suspended particulate matter in water constitutes an important source of exposure for aquatic organisms to long-chain PFAAs. Linear (n-)PFOS was preferentially accumulated compared with branched isomers in carp. Among the branched isomers, 1m-PFOS displayed the greatest bioaccumulation, whereas m2 -PFOS had the lowest. Linear PFOS displayed greater partitioning ability from blood to other tissues over branched PFOS (br-PFOS) isomers, leading to a relatively lower n-PFOS proportion in blood. In summary, suspended particulate matter made a contribution to the accumulation of long-chain PFAAs in aquatic organisms, and n-PFOS was preferentially accumulated compared with br-PFOS isomers. Environ Toxicol Chem 2016;35:3005-3013. © 2016 SETAC.

  12. Inventory development for perfluorooctane sulfonic acid (PFOS) in Turkey: challenges to control chemicals in articles and products.

    PubMed

    Korucu, M Kemal; Gedik, Kadir; Weber, Roland; Karademir, Aykan; Kurt-Karakus, Perihan Binnur

    2015-10-01

    Perfluorooctane sulfonic acid (PFOS) and related substances have been listed as persistent organic pollutants (POPs) in the Stockholm Convention. Countries which have ratified the Convention need to take appropriate actions to control PFOS use and release. This study compiles and enhances the findings of the first inventory of PFOS and related substances use in Turkey conducted within the frame of the Stockholm Convention National Implementation Plan (NIP) update. The specific Harmonized Commodity Description and Coding System (Harmonized System (HS)) codes of imported and exported goods that possibly contain PFOS and 165 of Chemical Abstracts Service (CAS) numbers of PFOS-related substances were assessed for acquiring information from customs and other authorities. However, with the current approaches available, no useful information could be compiled since HS codes are not specific enough and CAS numbers are not used by customs. Furthermore, the cut-off volume in chemical databases in Turkey and the reporting limit in the HS system (0.1 %) are too high for controlling PFOS. The attempt of modeling imported volumes by a Monte Carlo simulation did not also result in a satisfactory estimate, giving an upper-bound estimate above the global production volumes. The replies to questionnaires were not satisfactory, highlighting that an elaborated approach is needed in the communication with potentially PFOS-using stakeholders. The experience of the challenges of gathering information on PFOS in articles and products revealed the gaps of controlling highly hazardous substances in products and articles and the need of improvements.

  13. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    NASA Astrophysics Data System (ADS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang; He, Shuqing; An, Feng

    2013-08-01

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of -55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  14. Concentrating versus non-concentrating reactors for solar photocatalytic degradation of p-nitrotoluene-o-sulfonic acid.

    PubMed

    Parra, S; Malato, S; Blanco, J; Péringer, P; Pulgari, C

    2001-01-01

    The photocatalytic oxidation of the non-biodegradable p-nitrotoluene-o-sulfonic acid (p-NTS) in homogeneous (photo-Fenton reactions) and heterogeneous (with TiO2) solutions has been studied at a pilot-scale under solar irradiation at the Plataforma Solar de Almeria (PSA). In this study two different reactors were tested: a medium concentrating radiation system (Heliomans, HM) and a non-concentrating radiation system (CPC). Their advantages and disadvantages for p-NTS degradation have been compared and discussed. The degradation rates obtained in the CPC collector are around three times more efficient than in the HM collectors. However, in both systems, 100% of the initial concentration of p-NTS was removed. Kinetic experiments were performed in both systems using TiO2 suspensions. During the photodegradation, the disappearance of p-NTS was followed by HPLC, the mineralization of the solution by the TOC technique, the evolution of NO3-, NO2-, and SO4(2-) concentration by ionic chromatography, the toxicity by the standard Microtox test, and the biodegradability by BOD5 and COD measurements. The obtained results demonstrated the utility of the heterogeneous catalysis (using TiO2 as catalyst) as a pretreatment method that can be followed by a biological process.

  15. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha.

    PubMed

    DeWitt, Jamie C; Shnyra, Alexander; Badr, Mostafa Z; Loveless, Scott E; Hoban, Denise; Frame, Steven R; Cunard, Robyn; Anderson, Stacey E; Meade, B Jean; Peden-Adams, Margie M; Luebke, Robert W; Luster, Michael I

    2009-01-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are environmentally widespread and persistent chemicals with multiple toxicities reported in experimental animals and humans. These compounds can trigger biological activity by activating the alpha isotype of peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors that regulate gene expression; however, some biological effects may occur independently of the receptor. Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) modulates lipid and glucose homeostasis, cell proliferation and differentiation, and inflammation. Reported immunomodulation in experimental animals exposed to PFOA and PFOS has included altered inflammatory responses, production of cytokines and other proteins, reduced lymphoid organ weights, and altered antibody synthesis. Mounting experimental animal evidence suggests PPARalpha independence of some immune effects. This evidence originates primarily from studies with PPARalpha knockout models exposed to PFOA that demonstrate hepatic peroxisome proliferation, reduced lymphoid organ weights, and altered antibody synthesis. As human PPARalpha expression is significantly less than that of rodents, potential PPARalpha independence indicates that future research must explore mechanisms of action of these compounds, including PPARalpha-dependent and -independent pathways. This multiauthored review contains brief descriptions of current and recently published work exploring immunomodulation by PFOA and PFOS, as well as a short overview of other PPARalpha ligands of therapeutic and environmental interest.

  16. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism.

    PubMed

    Jiang, Xu-Guang; Sun, Kai; Liu, Yu-Ying; Yan, Li; Wang, Ming-Xia; Fan, Jing-Yu; Mu, Hong-Na; Li, Chong; Chen, Yuan-Yuan; Wang, Chuan-She; Han, Jing-Yan

    2017-02-02

    Dysfunction of energy metabolism is involved in inflammatory bowel disease (IBD). This study was designed to investigate the potential of astragaloside IV (ASIV), an active ingredient of Radix Astragalus, to ameliorate colonic mucosal injury, with focusing on the implication of energy restoration in the underlying mechanism. Experimental colitis model was established in rats by injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) through anus. After 24 hours, ASIV was administrated once daily by gavage for 6 days. On day 1 and day 7, colon tissue was collected for macroscopic and histological examination, ELISA, Western blot and immunohistochemical analysis. TNBS impaired colonic mucosa with an injured epithelial architecture, increased inflammatory cell infiltration, and decreased colonic blood flow. Lgr5 positive cell number in crypt and β-catenin nuclear translocation were down-regulated by TNBS treatment. TNBS induced epithelial F-actin disruption and junctional protein degradation. Furthermore, adenosine triphosphate (ATP) content and ATP synthase subunit β expression in the colon tissue were significantly decreased after TNBS stimulation. All of the aforementioned alterations were relieved by ASIV post-treatment. The present study revealed that ASIV promoted mucosal healing process in TNBS-induced colitis, which was most likely attributed to regulating energy metabolism.

  17. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism

    PubMed Central

    Jiang, Xu-Guang; Sun, Kai; Liu, Yu-Ying; Yan, Li; Wang, Ming-Xia; Fan, Jing-Yu; Mu, Hong-Na; Li, Chong; Chen, Yuan-Yuan; Wang, Chuan-She; Han, Jing-Yan

    2017-01-01

    Dysfunction of energy metabolism is involved in inflammatory bowel disease (IBD). This study was designed to investigate the potential of astragaloside IV (ASIV), an active ingredient of Radix Astragalus, to ameliorate colonic mucosal injury, with focusing on the implication of energy restoration in the underlying mechanism. Experimental colitis model was established in rats by injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) through anus. After 24 hours, ASIV was administrated once daily by gavage for 6 days. On day 1 and day 7, colon tissue was collected for macroscopic and histological examination, ELISA, Western blot and immunohistochemical analysis. TNBS impaired colonic mucosa with an injured epithelial architecture, increased inflammatory cell infiltration, and decreased colonic blood flow. Lgr5 positive cell number in crypt and β-catenin nuclear translocation were down-regulated by TNBS treatment. TNBS induced epithelial F-actin disruption and junctional protein degradation. Furthermore, adenosine triphosphate (ATP) content and ATP synthase subunit β expression in the colon tissue were significantly decreased after TNBS stimulation. All of the aforementioned alterations were relieved by ASIV post-treatment. The present study revealed that ASIV promoted mucosal healing process in TNBS-induced colitis, which was most likely attributed to regulating energy metabolism. PMID:28150820

  18. CD4+ T cell responses in Balb/c mice with food allergy induced by trinitrobenzene sulfonic acid and ovalbumin.

    PubMed

    Sun, Chen-Yi; Bai, Jie; Hu, Tian-Yong; Cheng, Bao-Hui; Ma, Li; Fan, Xiao-Qin; Yang, Ping-Chang; Zheng, Peng-Yuan; Liu, Zhi-Qiang

    2016-06-01

    The rapid increase in atopic diseases is potentially linked to increased hapten exposure, however, the role of haptens in the pathogenesis of food allergy remains unknown. Further studies are required to elucidate the cluster of differentiation 4 positive (CD4+) T cell response to food allergy induced by haptens. Dendritic cells were primed by trinitrobenzene sulfonic acid (TNBS) as a hapten or ovalbumin (OVA) as a model antigen, in a cell culture model. BALB/c mice were sensitized using TNBS and/or OVA. Intestinal Th1/Th2 cell and ovalbumin specific CD4+ T cells proliferation, intestinal cytokines (interleukin‑4 and interferon‑γ) in CD4+ T cells were evaluated. TNBS increased the expression of T cell immunoglobulin and mucin domain‑4 and tumor necrosis factor ligand superfamily member 4 in dendritic cells. Skewed Th2 cell polarization, extensive expression of interleukin‑4, reduced expression of interferon‑γ and forkhead box protein P3 were elicited following concomitant exposure to TNBS and OVA, with reduced regulatory T cells in the mouse intestinal mucosa, whereas a Th1 response was detected when challenged by TNBS or OVA alone. This data suggests that TNBS, as a hapten, combined with food antigens may lead to a Th2 cell response in the intestinal mucosa.

  19. Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal.

    PubMed

    Nemati, M; Hosseini, S M; Shabanian, M

    2017-09-05

    In the present work a novel heterogeneous cation exchange membrane (CEM) composed of poly vinyl chloride (PVC) and 2-acrylamido-2-methylpropane sulfonic acid based hydrogel (AMAH) was prepared. The membranes were fabricated with different fractions of AMAH to optimize the performance in desalination. The hydrogel was characterized by FT-IR to prove the successful synthesis. The membrane properties such as permselectivity, ionic permeability, flux, water content, electrical resistance, morphology, contact angle and dimensional stability were evaluated. Modified membranes showed acceptable dimensional stabilities, more hydrophilic surface, higher water content and porosity. SEM images revealed the formation of a more porous membrane structure. Membrane permselectivity and transport number showed a relatively constant then decreasing trend in Na(+) and Ba(2+) solutions. The experimental results showed that the incorporation of AMAH into the PVC matrix obviously improved ionic permeability and flux of Na (∼9%) and Ba (∼23%). Membrane electrical resistance was declined about 36% by adding AMAH in the membrane structure. Membranes' performance in potassium and heavy metal ions removal showed a remarkable separation capacity of K(+) (99.9%), Pb(2+) (99.9%) and Ni(2+) (96.9%). Membranes showed desirable potential for scaling removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study.

    PubMed

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Leads for development of new naphthalenesulfonate derivatives with enhanced antiangiogenic activity: crystal structure of acidic fibroblast growth factor in complex with 5-amino-2-naphthalene sulfonate.

    PubMed

    Fernández-Tornero, Carlos; Lozano, Rosa M; Redondo-Horcajo, Mariano; Gómez, Ana M; López, José C; Quesada, Ernesto; Uriel, Clara; Valverde, Serafín; Cuevas, Pedro; Romero, Antonio; Giménez-Gallego, Guillermo

    2003-06-13

    Inhibition of angiogenesis-promoting factors such as fibroblast growth factors is considered to be a potential procedure for inhibiting solid tumor growth. Although several peptide-based inhibitors are currently under study, the development of antiangiogenic compounds of small molecular size is a pharmacological goal of considerable interest. We have already shown that certain naphthalene sulfonates constitute minimal functional substitutes of the antiangiogenic compounds of the suramin and suradista family. Using those data as a lead, we have carried out a rational search for new angiogenesis inhibitors that could provide new pharmacological insights for the development of antiangiogenic treatments. The results of the study strongly underline the relevance of the stereochemistry for an efficient inhibition of acidic fibroblast growth factor mitogenic activity by the naphthalene sulfonate family and allow us to formulate rules to aid in searching for new inhibitors and pharmaceutical developments. To provide further leads for such developments and acquire a detailed insight into the basis of the inhibitory activity of the naphthalene sulfonate derivatives, we solved the three-dimensional structure of acidic fibroblast growth factor complexed to 5-amino-2-naphthalenesulfonate, the most pharmacologically promising of the identified inhibitors. The structure shows that binding of this compound would hamper the interaction of acidic fibroblast growth factor with the different components of the cell membrane mitogenesis-triggering complex.

  2. Base-Mediated Cyclocondensation of Salicylaldehydes and 2-Bromoallyl Sulfones for the Synthesis of 3-Sulfonylchromene Derivatives and Their Regioselective Friedel-Crafts Heteroarylation Reactions.

    PubMed

    Kumar, Anand; Thadkapally, Srinivas; Menon, Rajeev S

    2015-11-06

    Cesium carbonate-mediated reaction of 2-hydroxybenzaldehydes and 2-bromoallyl sulfones afforded 2H- and 4H-chromenol derivatives endowed with a 3-arylsulfonyl group. 2-Bromoallyl sulfones functioned as synthetic equivalents of allenyl sulfones under these conditions. The 2H- and 4H-chromenol derivatives underwent regioselective Friedel-Crafts reactions with heteroarenes in the presence of p-toluenesulfonic acid to afford 4-heteroaryl-4H-chromene derivatives in excellent yields.

  3. One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials

    NASA Astrophysics Data System (ADS)

    Kuila, Tapas; Khanra, Partha; Kim, Nam Hoon; Kuk Choi, Sung; Yun, Hyung Joong; Lee, Joong Hee

    2013-09-01

    A green approach for the one-step electrochemical synthesis of water dispersible graphene is reported. An alkaline solution of 6-amino-4-hydroxy-2-naphthalene-sulfonic acid (ANS) serves the role of electrolyte as well as surface modifier. High-purity graphite rods are used as electrodes which can be exfoliated under a constant electrical potential (˜20 V) to form ANS functionalized graphene (ANEG). The aqueous dispersion of ANEG obeyed Beer’s law at moderate concentrations, as evidenced from ultraviolet-visible spectroscopy analysis. X-ray diffraction analysis suggests complete exfoliation of graphite into graphene. Fourier transform infrared and x-ray photoelectron spectroscopy not only confirm the functionalization of graphene with ANS, but also suggest the formation of oxygen containing functional groups on the surface of ANEG. Raman spectra analysis indicates the presence of defects in ANEG as compared to pure graphite. Cyclic voltammetry and charge-discharge measurements of ANEG using three electrode systems show a specific capacitance of 115 F g-1 at a current density of 4 A g-1. The ANEG electrode exhibits 93% retention in specific capacitance after 1000 charge-discharge cycles, confirming its utility as a green energy storage electrode material.

  4. Appropriateness of reference genes for normalizing messenger RNA in mouse 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis using quantitative real time PCR

    PubMed Central

    Eissa, Nour; Kermarrec, Laëtitia; Hussein, Hayam; Bernstein, Charles N.; Ghia, Jean-Eric

    2017-01-01

    2,4-Dinitrobenzene sulfonic acid (DNBS)-induced colitis is an experimental model that mimics Crohn’s disease. Appropriateness of reference genes is crucial for RT-qPCR. This is the first study to determine the stability of reference gene expression (RGE) in mice treated with DNBS. DNBS experimental Colitis was induced in male C57BL/6 mice. RNA was extracted from colon tissue and comprehensive analysis of 13 RGE was performed according to predefined criteria. Relative colonic TNF-α and IL-1β mRNA levels were calculated. Colitis significantly altered the stability of mucosal RGE. Commonly used glyceraldehyde-3-phosphate dehydrogenase (Gapdh), β-actin (Actb), or β2-microglobulin (β2m) showed the highest fluctuation within the inflamed and control groups. Conversely, ribosomal protein large P0 (Rplp0), non-POU domain containing (Nono), TATA-box-binding protein (Tbp) and eukaryotic translation elongation factor 2 (Eef2) were not affected by inflammation and were the most stable genes. TNF-α and IL-1β mRNA levels was dependent on the reference gene used and varied from significant when the most stable genes were used to non-significant when the least stable genes were used. The appropriate choice of RGE is critical to guarantee satisfactory normalization of RT-qPCR data when using DNBS-Model. We recommend using Rplp0, Nono, Tbp, Hprt and Eef2 instead of common reference genes. PMID:28186172

  5. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  6. Formation of the bisulfite anion (HSO(3) (-) , m/z 81) upon collision-induced dissociation of anions derived from organic sulfonic acids.

    PubMed

    Jariwala, Freneil B; Wood, Ryan E; Nishshanka, Upul; Attygalle, Athula B

    2012-04-01

    In the negative-ion collision-induced dissociation mass spectra of most organic sulfonates, the base peak is observed at m/z 80 for the sulfur trioxide radical anion (SO(3) (-·) ). In contrast, the product-ion spectra of a few sulfonates, such as cysteic acid, aminomethanesulfonate, and 2-phenylethanesulfonate, show the base peak at m/z 81 for the bisulfite anion (HSO(3) (-) ). An investigation with an extensive variety of sulfonates revealed that the presence of a hydrogen atom at the β-position relative to the sulfur atom is a prerequisite for the formation of the bisulfite anion. The formation of HSO(3) (-) is highly favored when the atom at the β-position is nitrogen, or the leaving neutral species is a highly conjugated molecule such as styrene or acrylic acid. Deuterium-exchange experiments with aminomethanesulfonate demonstrated that the hydrogen for HSO(3) (-) formation is transferred from the β-position. The presence of a peak at m/z 80 in the spectrum of 2-sulfoacetic acid, in contrast to a peak at m/z 81 in that of 3-sulfopropanoic acid, corroborated the proposed hydrogen transfer mechanism. For diacidic compounds, such as 4-sulfobutanoic acid and cysteic acid, the m/z 81 ion can be formed by an alternative mechanism, in which the negative charge of the carboxylate moiety attacks the α-carbon relative to the sulfur atom. Experiments conducted with deuterium-exchanged and deuterium-labeled analogs of sulfocarboxylic acids demonstrated that the formation of the bisulfite anion resulted either from a hydrogen transfer from the β-carbon, or from a direct attack by the carboxylate moiety on the α-carbon.

  7. Effects of morin-5'-sulfonic acid sodium salt (NaMSA) on cyclophosphamide-induced changes in oxido-redox state in rat liver and kidney.

    PubMed

    Merwid-Ląd, A; Trocha, M; Chlebda, E; Sozański, T; Magdalan, J; Ksiądzyna, D; Kopacz, M; Kuźniar, A; Nowak, D; Pieśniewska, M; Fereniec-Gołębiewska, L; Kwiatkowska, J; Szeląg, A

    2012-08-01

    Cyclophosphamide (CPX) is an anticancer drug with immunosuppressive properties. Its adverse effects are partly connected to the induction of oxidative stress. Some studies indicate that water-soluble derivative of morin-morin-5'-sulfonic acid sodium salt (NaMSA) exhibits strong antioxidant activity. The aim of present study was to evaluate the effect of NaMSA on CPX-induced changes in oxido-redox state in rat. Experiment was carried out on Wistar rats divided in three experimental groups (N = 12) receiving: 0.9% saline, CPX (15 mg/kg) or CPX (15 mg/kg) + NaMSA (100 mg/kg), respectively, and were given intragastrically for 10 days. Malondialdehyde (MDA) and glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were determined in liver and kidneys. Catalase (CAT) activity was assessed only in liver. Treatment with CPX resulted in significant decrease in MDA level in both tissues, which was completely reversed by NaMSA treatment only in liver. In comparison to the control group significant decrease in SOD activity were observed in both tissues of CPX receiving group. In kidneys this parameter was fully restored by NaMSA administration. CPX evoked significant decrease in GSH concentration in kidneys, which was completely reversed by NaMSA treatment. No significant changes were seen in GSH levels and CAT activity between all groups in liver. Results of our study suggest that CPX may exert significant impact on oxido-redox state in both organs. NaMSA fully reversed the CPX-induced changes, especially MDA level in liver, SOD activity and GSH concentration in kidneys and it may be done by enhancement of activity/concentration of endogenous antioxidants.

  8. Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study.

    PubMed

    Aflaki Jalali, Marzieh; Dadvand Koohi, Ahmad; Sheykhan, Mehdi

    2016-05-20

    In this paper, removal of copper ions from aqueous solution using novel xanthan gum (XG) hydrogel, xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid (XG-g-P(AMPS)) hydrogel and xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid/montmorillonite (XG-g-P(AMPS)/MMT) hydrogel composite were studied. The structure and morphologies of the xanthan-based hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Adsorbents comprised a porous crosslink structure with side chains that carried carboxyl, hydroxyl and sulfonate. Maximum adsorption was observed in the pH=5.2, initial concentrations of Cu(2+)=321.8 mg/L, Temperature=45 °C, contact time=5 h with 0.2 g/50 mL of the hydrogels. Adsorption process was found to follow Langmuir isotherm model with maximum adsorption capacity of 24.57, 39.06 and 29.49 mg/g for the XG, XG-g-P(AMPS) and XG-g-P(AMPS)/MMT, respectively. Adsorption kinetics data fitted well with pseudo second order model. The negative ΔG° values and the positive ΔS° confirmed that the adsorption was a spontaneous process. The positive ΔH° values suggested that the adsorption was endothermic in nature.

  9. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2.

    PubMed

    Abdelraheem, Wael H M; He, Xuexiang; Duan, Xiaodi; Dionysiou, Dionysios D

    2015-01-23

    Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0μM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds.

  10. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives.

    PubMed

    Cai, Dong; Zhang, Zhi-Hua; Chen, Yu; Yan, Xin-Jia; Zou, Liang-Jing; Wang, Ya-Xin; Liu, Xue-Qi

    2015-09-10

    A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H₂SO₄. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino)-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, ¹H-NMR, (13)C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  11. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups.

    PubMed

    Zhang, Lei; Cole, Jacqueline M; Dai, Chencheng

    2014-05-28

    The optoelectronic properties of four azo dye-sensitized TiO2 interfaces are systematically studied as a function of a changing dye anchoring group: carboxylate, sulfonate, hydroxyl, and pyridyl. The variation in optoelectronic properties of the free dyes and those in dye/TiO2 nanocomposites are studied both experimentally and computationally, in the context of prospective dye-sensitized solar cell (DSSC) applications. Experimental UV/vis absorption spectroscopy, cyclic voltammetry, and DSSC device performance testing reveal a strong dependence on the nature of the anchor of the optoelectronic properties of these dyes, both in solution and as dye/TiO2 nanocomposites. First-principles calculations on both an isolated dye/TiO2 cluster model (using localized basis sets) and each dye modeled onto the surface of a 2D periodic TiO2 nanostructure (using plane wave basis sets) are presented. Detailed examination of these experimental and computational results, in terms of light harvesting, electron conversion and photovoltaic device performance characteristics, indicates that carboxylate is the best anchoring group, and hydroxyl is the worst, whereas sulfonate and pyridyl groups exhibit competing potential. Different sensitization solvents are found to affect critically the extent of dye adsorption achieved in the dye-sensitization of the TiO2 semiconductor, especially where the anchor is a pyridyl group.

  12. Variation in Optoelectronic Properties of Azo Dye-Sensitized TiO2 Semiconductor Interfaces with Different Adsorption Anchors: Carboxylate, Sulfonate, Hydroxyl and Pyridyl Groups

    SciTech Connect

    Zhang, Lei; Cole, Jacqueline M.; Dai, Chencheng

    2014-05-02

    The optoelectronic properties of four azo dye-sensitized TiO2 interfaces are systematically studied as a function of a changing dye anchoring group: carboxylate, sulfonate, hydroxyl, and pyridyl. The variation in optoelectronic properties of the free dyes and those in dye/TiO 2 nanocomposites are studied both experimentally and computationally, in the context of prospective dye-sensitized solar cell (DSSC) applications. Experimental UV/vis absorption spectroscopy, cyclic voltammetry, and DSSC device performance testing reveal a strong dependence on the nature of the anchor of the optoelectronic properties of these dyes, both in solution and as dye/TiO2 nanocomposites. First-principles calculations on both an isolated dye/TiO2 cluster model (using localized basis sets) and each dye modeled onto the surface of a 2D periodic TiO2 nanostructure (using plane wave basis sets) are presented. Detailed examination of these experimental and computational results, in terms of light harvesting, electron conversion and photovoltaic device performance characteristics, indicates that carboxylate is the best anchoring group, and hydroxyl is the worst, whereas sulfonate and pyridyl groups exhibit competing potential. Different sensitization solvents are found to affect critically the extent of dye adsorption achieved in the dye-sensitization of the TiO2 semiconductor, especially where the anchor is a pyridyl group.

  13. Na+/Taurocholate Cotransporting Polypeptide and Apical Sodium-Dependent Bile Acid Transporter Are Involved in the Disposition of Perfluoroalkyl Sulfonates in Humans and Rats

    PubMed Central

    Zhao, Wen; Zitzow, Jeremiah D.; Ehresman, David J.; Chang, Shu-Ching; Butenhoff, John L.; Forster, Jameson; Hagenbuch, Bruno

    2015-01-01

    Among the perfluoroalkyl sulfonates (PFASs), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) have half-lives of several years in humans, mainly due to slow renal clearance and potential hepatic accumulation. Both compounds undergo enterohepatic circulation. To determine whether transporters involved in the enterohepatic circulation of bile acids are also involved in the disposition of PFASs, uptake of perfluorobutane sulfonate (PFBS), PFHxS, and PFOS was measured using freshly isolated human and rat hepatocytes in the absence or presence of sodium. The results demonstrated sodium-dependent uptake for all 3 PFASs. Given that the Na+/taurocholate cotransporting polypeptide (NTCP) and the apical sodium-dependent bile salt transporter (ASBT) are essential for the enterohepatic circulation of bile acids, transport of PFASs was investigated in stable CHO Flp-In cells for human NTCP or HEK293 cells transiently expressing rat NTCP, human ASBT, and rat ASBT. The results demonstrated that both human and rat NTCP can transport PFBS, PFHxS, and PFOS. Kinetics with human NTCP revealed Km values of 39.6, 112, and 130 µM for PFBS, PFHxS, and PFOS, respectively. For rat NTCP Km values were 76.2 and 294 µM for PFBS and PFHxS, respectively. Only PFOS was transported by human ASBT whereas rat ASBT did not transport any of the tested PFASs. Human OSTα/β was also able to transport all 3 PFASs. In conclusion, these results suggest that the long half-live and the hepatic accumulation of PFOS in humans are at least, in part, due to transport by NTCP and ASBT. PMID:26001962

  14. A matrix effect-free method for reliable quantification of perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids at low parts per trillion levels in dietary samples.

    PubMed

    Vestergren, Robin; Ullah, Shahid; Cousins, Ian T; Berger, Urs

    2012-05-11

    In recent exposure modeling studies diet has been identified as the dominant pathway of human exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). However, the paucity of highly sensitive and accurate analytical data to support these studies means that their conclusions are open to question. Here a novel matrix effect-free method is described for ultra-trace analysis of perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids in dietary samples of varied composition. The method employs ion pair extraction of the analytes into methyl tert-butyl ether and subsequent solid phase extraction clean-up on Florisil and graphitized carbon. The target compounds are separated and detected using ultra performance liquid chromatography coupled to tandem mass spectrometry. Special care was taken to avoid procedural blank contamination and potential contamination sources were elucidated. The performance of the method was validated for five different food test matrices including a duplicate diet sample. Method detection limits in the low to sub pgg(-1) range were obtained for all target analytes, which is 5-100 times more sensitive than previously reported for duplicate diet samples. Total method recoveries were consistently between 50 and 80% for all analytes in all tested food matrices and effects of co-extracted matrix constituents on ionization of the target compounds were found to be negligible. The precision of the method (defined as percentage relative standard deviation) at concentrations close to the respective method limits of quantification was <15% for all analytes. Accurate quantification at ultra-trace levels was demonstrated by laboratory control spike experiments. For the first time the presence of long-chain PFCAs in duplicate diet samples is reported. The method presented here can thus support an improved assessment of human exposure from dietary intake for a range of PFCA and PFSA homologues. Re-analysis of duplicate diet

  15. p-Sulfonic Acid Calix[4]arene as an Efficient Catalyst for One-Pot Synthesis of Pharmaceutically Significant Coumarin Derivatives under Solvent-Free Condition

    PubMed Central

    Tashakkorian, Hamed; Lakouraj, Moslem Mansour; Rouhi, Mona

    2015-01-01

    One-pot and efficient protocol for preparation of some potent pharmaceutically valuable coumarin derivatives under solvent-free condition via direct coupling using biologically nontoxic organocatalyst, calix[4]arene tetrasulfonic acid (CSA), was introduced. Calix[4]arene sulfonic acid has been incorporated lately as a magnificent and recyclable organocatalyst for the synthesis of some organic compounds. Nontoxicity, solvent-free conditions, good-to-excellent yields for pharmaceutically significant structures, and especially ease of catalyst recovery make this procedure valuable and environmentally benign. PMID:26798517

  16. Detecting a Quasi-stable Imine Species on the Reaction Pathway of SHV-1 β-Lactamase and 6β-(Hydroxymethyl)penicillanic Acid Sulfone

    PubMed Central

    2015-01-01

    For the class A β-lactamase SHV-1, the kinetic and mechanistic properties of the clinically used inhibitor sulbactam are compared with the sulbactam analog substituted in its 6β position by a CH2OH group (6β-(hydroxymethyl)penicillanic acid). The 6β substitution improves both in vitro and microbiological inhibitory properties of sulbactam. Base hydrolysis of both compounds was studied by Raman and NMR spectroscopies and showed that lactam ring opening is followed by fragmentation of the dioxothiazolidine ring leading to formation of the iminium ion within 3 min. The iminium ion slowly loses a proton and converts to cis-enamine (which is a β-aminoacrylate) in 1 h for sulbactam and in 4 h for 6β-(hydroxymethyl) sulbactam. Rapid mix–rapid freeze Raman spectroscopy was used to follow the reactions between the two sulfones and SHV-1. Within 23 ms, a 10-fold excess of sulbactam was entirely hydrolyzed to give a cis-enamine product. In contrast, the 6β-(hydroxymethyl) sulbactam formed longer-lived acyl–enzyme intermediates that are a mixture of imine and enamines. Single crystal Raman studies, soaking in and washing out unreacted substrates, revealed stable populations of imine and trans-enamine acyl enzymes. The corresponding X-ray crystallographic data are consonant with the Raman data and also reveal the role played by the 6β-hydroxymethyl group in retarding hydrolysis of the acyl enzymes. The 6β-hydroxymethyl group sterically hinders approach of the water molecule as well as restraining the side chain of E166 that facilitates hydrolysis. PMID:25536850

  17. Simultaneous quantification of acetanilide herbicides and their oxanilic and sulfonic acid metabolites in natural waters.

    PubMed

    Heberle, S A; Aga, D S; Hany, R; Müller, S R

    2000-02-15

    This paper describes a procedure for simultaneous enrichment, separation, and quantification of acetanilide herbicides and their major ionic oxanilic acid (OXA) and ethanesulfonic acid (ESA) metabolites in groundwater and surface water using Carbopack B as a solid-phase extraction (SPE) material. The analytes adsorbed on Carbopack B were eluted selectively from the solid phase in three fractions containing the parent compounds (PCs), their OXA metabolites, and their ESA metabolites, respectively. The complete separation of the three compound classes allowed the analysis of the neutral PCs (acetochlor, alachlor, and metolachlor) and their methylated OXA metabolites by gas chromatography/mass spectrometry. The ESA compounds were analyzed by high-performance liquid chromatography with UV detection. The use of Carbopack B resulted in good recoveries of the polar metabolites even from large sample volumes (1 L). Absolute recoveries from spiked surface and groundwater samples ranged between 76 and 100% for the PCs, between 41 and 91% for the OXAs, and between 47 and 96% for the ESAs. The maximum standard deviation of the absolute recoveries was 12%. The method detection limits are between 1 and 8 ng/L for the PCs, between 1 and 7 ng/L for the OXAs, and between 10 and 90 ng/L for the ESAs.

  18. Uptake of cationic dyes by sulfonated coal: Sorption mechanism

    SciTech Connect

    Mittal, A.K.; Venkobachar, C.

    1996-04-01

    Mechanistic aspects of sorption of Rhodamine B and Methylene Blue by sulfonated coal have been investigated. The coal surface before and after sulfonation has been characterized with the help of cation-exchange capacity measurements and infrared (IR) spectroscopy. These studies indicate that sulfuric acid treatment not only incorporates a SO{sub 3}H group on the coal surface but also oxidizes both aliphatic and aromatic fractions. The IR spectroscopy has been extensively applied to locate the active sites on the surface of the sorbent and the participating functional groups of the dye molecule. Graphical models of the sorbate-sorbent interaction have been proposed. These models are applied to explain the variation in the uptake potential of these dyes by sulfonated coal.

  19. Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China.

    PubMed

    Liu, Zhaoyang; Lu, Yonglong; Wang, Pei; Wang, Tieyu; Liu, Shijie; Johnson, Andrew C; Sweetman, Andrew J; Baninla, Yvette

    2017-02-15

    China has gradually become the most important manufacturing and consumption centre for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in the world, and inadvertently become the world's major contamination hotspots. However, a systematic analysis of pollution pathways for PFOS/PFOA into the different environmental compartments and their quantification in China has yet to be carried out. This study focused on PFOS and PFOA release into the environment in the central and eastern region of China, which accounts for the vast majority of national emission. About 80-90% of PFOS/PFOA contamination in the Chinese environment was estimated to come directly from manufacturing and industrial sites mostly via wastewater discharge from these facilities. The other major contamination sources for PFOS were identified as being linked to aqueous fire-fighting foams (AFFFs), and pesticides including sulfluramid. For PFOA, following some way behind industrial wastewater, were industrial exhaust gas, domestic wastewater and landfill leachate as contamination sources. For surface water contamination, the major pollution contributors after industrial wastewater were AFFF spill runoff for PFOS, and domestic wastewater and precipitation-runoff for PFOA. The majority of PFOS that contaminated soil was considered to be linked with infiltration of AFFF and pesticides, while most PFOA in soil was attributed to atmospheric deposition and landfill leachate. Where groundwater had become contaminated, surface water seepage was estimated to contribute about 50% of PFOS and 40% of PFOA while the remainder was mostly derived from soil leaching. A review of the available monitoring data for PFOS/PFOA in the literature supported the view that industrial wastewater, landfill leachate and AFFF application were the dominant sources. Higher concentrations of PFOA than PFOS found in precipitation also corroborated the prediction of more PFOA release into air. To reduce PFOS

  20. The enhancement of fluorescence quantum yields of anilino naphthalene sulfonic acids by inclusion of various cyclodextrins and cucurbit[7]uril.

    PubMed

    Sueishi, Yoshimi; Fujita, Tomonori; Nakatani, Shinichiro; Inazumi, Naoya; Osawa, Yoshihiro

    2013-10-01

    The association constants (K) for the inclusion complexation of four kinds of cyclodextrins (CDs (β- and γ-), 2,6-di-O-methylated β-CD, and 2,3,6-tri-O-methylated β-CD) and cucurbit[7]uril (CB[7]) with 1,8- and 2,6-anilinonaphthalene sulfonic acids (ANSs) were determined from fluorescence spectra enhanced by inclusion. Various CDs and CB[7] form stable 1:1 inclusion complexes with 1,8- and 2,6-ANSs: K=80-11700 M(-1) for 2,6-ANS and 50-195 M(-1) for 1,8-ANS. The high stability of the inclusion complexes of 2,6-ANS with CB[7] and 2,6-di-O-methylated β-CD is shown. Further, we determined the fluorescence quantum yields (Φ values) for the inclusion complexes of ANSs by using a fluorescence spectrophotometer equipped with a half-moon unit. The Φ values of 1,8- and 2,6-ANSs were largely enhanced by the inclusion of methylated β-CDs and did not correlate with the degree of stability (K) of the inclusion complexes. We characterized the structures of the inclusion complexes by 2D ROESY-NMR measurements. In addition, the microenvironmental polarity inside the hydrophobic CD and CB[7] cavities was evaluated using the fluorescence probe 2,6-ANS. Based on the emission mechanism and the aspect of inclusion in a hydrophobic cavity, we have suggested that the microenvironmental polarity and viscosity for the excited state of ANS plays an important role for the Φ values of inclusion complexes.

  1. Protective effects of Aegle marmelos fruit pulp on 2,4,6-trinitrobenzene sulfonic acid-induced experimental colitis

    PubMed Central

    Ghatule, Rohit R.; Gautam, Manish K.; Goel, Shalini; Singh, Amit; Joshi, Vinod K.; Goel, Raj K.

    2014-01-01

    Background: Aegle marmelos (AM) fruit has been advocated in indigenous system of medicine for the treatment of various gastrointestinal disorders, fever, asthma, inflammations, febrile delirium, acute bronchitis, snakebite, epilepsy, leprosy, myalgia, smallpox, leucoderma, mental illnesses, sores, swelling, thirst, thyroid disorders, tumours and upper respiratory tract infections. Objective: The objective of this study was to study the curative effect of 50% ethanol extract of dried fruit pulp of AM (AME) against 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. Materials and Methods: AME (200 mg/kg) was administered orally, once daily for 14 days after TNBS-induced colitis. Rats were given intracolonic normal saline or TNBS alone or TNBS plus oral AME. AME was studied for its in vitro antibacterial activity against Gram-negative intestinal bacteria and on TNBS-induced changes in colonic damage, weight and adhesions (macroscopic and microscopic), diarrhea, body weight and colonic levels of free radicals (nitric oxide and lipid peroxidation), antioxidants (superoxide dismutase, catalase and reduced glutathione) and pro-inflammatory marker (myeloperoxidase [MPO]) in rats. Results: AME showed antibacterial activity against intestinal pathogens and decreased colonic mucosal damage and inflammation, diarrhea, colonic free radicals and MPO and enhanced body weight and colonic antioxidants level affected by TNBS. The effects of AME on the above parameters were comparable with sulfasalazine, a known colitis protective drug (100 mg/kg, oral). Conclusion: AME shows curative effects against TNBS-induced colitis by its antibacterial activity and promoting colonic antioxidants and reducing free radicals and MPO-induced colonic damage. PMID:24914296

  2. Kinetics and mechanism of the reduction of hydroxylamine-O-sulfonic acid by the hexaaquochromium(II) ion

    SciTech Connect

    Bakac, A.; Simunic, J.L.; Espenson, J.H. )

    1990-03-07

    The title reaction takes place with a 2:1 (Cr{sup 2+}):(HSA) stoichiometry (HSA = hydroxylamine-O-sulfonic acid) and yields CrNH{sub 3}{sup 3+}, Cr{sup 3+}, and CrSO{sub 4}{sup +} as the main products. The kinetics conform to the rate law {minus}d(HSA)/dt = {minus}d(Cr{sup 2+})/2(dt) = k{sub obs}(Cr{sup 2+})(HSA), where k{sub obs} = kK{sub a}/(K{sub a} + (H{sup +)}). At 25{degree}C and 1.0 M ionic strength (CHlO{sub 4} + LiClO{sub 4}) the parameter k has the value of 20.5 {plus minus} 0.3 M{sup {minus}1} s{sup {minus}1} when K{sub a} is set at the value (6.8 {plus minus} 0.8) {times} 10{sup {minus}2} M, as determined by pH titration. In the proposed mechanism, Cr{sup 2+} attacks at the nitrogen end of the anion, NH{sub 2}OSO{sub 3}{sup {minus}}, to form CrNH{sub 3}{sup 3+} and SO{sub 4}{sup {center dot}{minus}}. The sulfate radical anion then oxidizes rapidly the second mole of Cr{sup 2+} to yield Cr{sup 3+} and some CrSO{sub 4}{sup +}. In solutions containing Br{sup {minus}}, SO{sub 4}{sup {center dot}{minus}} oxidizes it to Br{sub 2}{sup {center dot}{minus}}. The latter reacts with Cr{sup 2+} to yield CrBr{sup 2+}. 19 refs., 2 figs.

  3. N-(4-Methyl­phenyl­sulfon­yl)maleamic acid

    PubMed Central

    Purandara, H.; Foro, Sabine; Gowda, B. Thimme

    2012-01-01

    In the title compound, C11H11NO5S, the dihedral angle between the benzene ring and the amide group is 76.88 (6)°. In the crystal, N—H⋯O(S) and O—H⋯O hydrogen bonds connect the mol­ecules into hydrogen-bonded layers perpendicular to the a axis. PMID:22904939

  4. Dynamics of camphor sulfonic acid in polyaniline (PANI-CSA): a quasielastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Bée, M.; Djurado, D.; Combet, J.; Telling, M.; Rannou, P.; Pron, A.; Travers, J. P.

    2001-07-01

    PolyAniline (PANI) doped by camphor sulphonic acid (CSA) exhibits an electronic conductivity of several hundreds of S/cm. All the authors agree to invoke in various extents the role of disorder in the evolution of the transport properties as a function of temperature. The IRIS spectrometer at the Rutherford-Appleton Laboratory was used to remove uncertainties of previous IN6-IN16 experiments at Institut Laue-Langevin. The rigidity of the PANI chains was confirmed, in both a conducting and a partially doped sample. All the observable quasielastic scattering occurs from the CSA dynamics. However, this contribution is too weak in the case of the partially doped specimen to conclude about the coupling of the counter-ion disorder with the electronic transport properties.

  5. Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography.

    PubMed

    Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang

    2014-10-10

    CHIRALPAK ZWIX(+) and ZWIX(-) are cinchona alkaloid-derived zwitterionic chiral stationary phases (CSPs) containing a chiral sulfonic acid motif which serves as negatively charged interaction site. They are versatile for direct enantiomer resolution of amino acids and many other ampholytic compounds by HPLC. The synergistic double ion-pairing between the zwittrionic chiral selector and the ampholyte is the basis for interaction and chiral recognition mechanisms. ZWIX(+) and ZWIX(-) type CSPs or columns behave pseudo-enantiomerically and provide the feature of reversing enantiomer elution order by column switching. In the current study, extensive experimental work was carried out with the aim of developing schemes for an efficient generic screening and proposing straightforward approaches for method optimization on these ZWIX columns. Various chromatographic parameters were investigated using a large series of diverse amino acids and analogues for the purpose. The role of methanol (MeOH) as the protic solvent in the mobile phase is confirmed to be essential. The presence of water in a low percentage is beneficial for peak shape, resolution, analysis speed, sample solubility and MS detection performance. The involvement of acetonitrile (ACN) or tetrahydrofuran (THF) can help for adjusting retention time and selectivity. Incorporation of a suitable pair of acidic-basic additives at a right ratio in the mobile phase is determinant as well for the double ion-pairing mechanism. 50 mM formic acid+25 mM diethylamine (or ammonium hydroxide) in MeOH/ACN/H₂O and in MeOH/THF/H₂O at 49:49:2 (by volume) are recommended as the starting mobile phases for method development. Some other parameters are also considered in the proposed scheme to achieve successful enantioselective or stereoselective separation of the ampholytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Syntheses, characterizations and crystal structures of two new lead(II) amino and carboxylate-sulfonates with a layered and a pillared layered structure

    NASA Astrophysics Data System (ADS)

    Yuan, Yan-Ping; Mao, Jiang-Gao; Song, Jun-Ling

    2004-03-01

    Reactions of lead(II) acetate with m-aminobenzenesulfonic acid (H L1) and 5-sulfoisophthalic acid (H 3L2) afforded two new lead(II) sulfonates, Pb( L1) 21 and Pb 2( L2)( μ3-OH)(H 2O) 2. In compound 1, the lead(II) ion is eight-coordinated by two sulfonate groups bidentately, two sulfonate groups unidentately and two amino groups from six ligands. Each L1 ligand is tetradentate and bridges with three Pb(II) ions. The interconnection of the Pb(II) ions via bridging sulfonate ligands resulted in <100> and <200> layers. In compound 2, one Pb(II) ion is six-coordinated by a carboxylate group bidentately, by two carboxylate groups unidentately, by a sulfonate oxygen atom and by an OH anion, whereas the other one is six-coordinated by a bidentate chelating carboxylate group, two μ3-OH anions, a sulfonate oxygen atom and an aqua ligand. The interconnection of irregular PbO 6 polyhedra via carboxylate-sulfonate ligands resulted in the formation of a pillared layered structure with the 2D layer being formed; the lead(II) ions, hydroxyl groups, carboxylate and sulfonate groups and the benzene ring as the pillar agent.

  7. Anti-inflammatory intestinal activity of Combretum duarteanum Cambess. in trinitrobenzene sulfonic acid colitis model

    PubMed Central

    de Morais Lima, Gedson Rodrigues; Machado, Flavia Danniele Frota; Périco, Larissa Lucena; de Faria, Felipe Meira; Luiz-Ferreira, Anderson; Souza Brito, Alba Regina Monteiro; Pellizzon, Cláudia Helena; Hiruma-Lima, Clélia Akiko; Tavares, Josean Fechine; Barbosa Filho, José Maria; Batista, Leônia Maria

    2017-01-01

    AIM To evaluate the anti-inflammatory intestinal effect of the ethanolic extract (EtOHE) and hexane phase (HexP) obtained from the leaves of Combretum duarteanum (Cd). METHODS Inflammatory bowel disease was induced using trinitrobenzenesulfonic acid in acute and relapsed ulcerative colitis in rat models. Damage scores, and biochemical, histological and immunohistochemical parameters were evaluated. RESULTS Both Cd-EtOHE and Cd-HexP caused significant reductions in macroscopic lesion scores and ulcerative lesion areas. The vegetable samples inhibited myeloperoxidase increase, as well as pro-inflammatory cytokines TNF-α and IL-1β. Anti-inflammatory cytokine IL-10 also increased in animals treated with the tested plant samples. The anti-inflammatory intestinal effect is related to decreased expression of cyclooxygenase-2, proliferating cell nuclear antigen, and an increase in superoxide dismutase. CONCLUSION The data indicate anti-inflammatory intestinal activity. The effects may also involve participation of the antioxidant system and principal cytokines relating to inflammatory bowel disease. PMID:28293082

  8. Determination of sulfonic acids and alkylsulfates by ion chromatography in water.

    PubMed

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Sarzanini, Corrado

    2008-05-15

    A fast ion chromatographic method with suppressed conductivity detection has been developed for the simultaneous determination of methane-, ethane-, 1-propane-, 1-butane-, 1-pentane-, 1-hexane-, 1-heptane-, 1-octane-, 1-nonane-, 1-decane-, 1-dodecane-, dodecylbenzene-, p-toluene-, benzenesulfonic acids, octylsulfate and dodecylsulfate in water samples. Due to the high number of analytes and their heterogeneity, the effect of the mobile phase parameters (NaOH, CH(3)OH and CH(3)CN concentration) on the retention factors has been studied in detail, so achieving, for the first time, the separation among 15 of these analytes by a gradient elution. Detection limits included within 0.06-0.16 microM have been obtained. Interferences from Cl(-), NO(3)(-) and SO(4)(2-), possible anions present in water samples, have been considered and a SPE procedure has been developed for analytes enrichment and matrix removal in a seawater sample. This is the first application of an ion-exchange chromatographic method to a seawater sample for this kind of analytes.

  9. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    PubMed

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  10. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge

    PubMed Central

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  11. Sulfonated nanoporous colloidal films and membranes

    NASA Astrophysics Data System (ADS)

    Smith, Joanna Jane

    The objective of this thesis is to describe the preparation and investigation of a new class of proton-conducting membrane materials, namely, nanoporous colloidal membranes whose proton conductivity results from the nanopore surface modification with organic molecules carrying acid functionalities. Both the proton transport and ion transport were studied in nanoporous silica colloidal crystals that were surface modified with sulfonic groups. First, the transport of ions was studied through sulfonated silica colloidal films that were supported on platinum electrodes using cyclic voltammetry. The surface of self-assembled nanoporous silica colloidal crystalline films was sulfonated using 1,3-propanesultone. We found that the flux of anions through the sulfonated colloidal films is reduced, while the flux of cations is increased, compared to the unmodified colloidal films. Second, the proton transport in free-standing assemblies of surface-sulfonated silica nanospheres, either randomly packed or self-assembled into a close-packed arrangement, were studied. It was demonstrated that colloidal assemblies prepared using surface-sulfonated silica nanospheres posses proton conductivity that depends on the ordering of the material, temperature and relative humidity. Based on the comparison between the close-packed and disordered assemblies made of the same spheres, we conclude that the increase in structural organization of the self-assembled colloidal materials leads to increased proton conductivity and better water retention. Next free-standing colloidal membranes with a relatively large area and no mechanical defects were prepared by sintering silica colloidal films. The sintered membranes were then surface rehydroxylated, which restores the surface silanol groups, and then can be chemically modified. Finally, sintered self-assembled nanoporous silica colloidal crystals were modified with poly(sulfopropyl-methacrylate) (pSPM) and poly(stryrenesulfonic acid) (pSSA) brushes

  12. Enhancement of hydrogen adsorption in metal-organic frameworks by the incorporation of the sulfonate group and Li cations. A multiscale computational study.

    PubMed

    Mavrandonakis, Andreas; Klontzas, Emmanouel; Tylianakis, Emmanuel; Froudakis, George E

    2009-09-23

    By means of ab initio methods, the effect on the H(2) storage ability of a newly proposed organic linker for IRMOF-14 has been studied. The linker comprises a negatively charged sulfonate (-SO(3)(-1)) group in combination with a Li cation. It is found that these two charged groups significantly increase the interaction energy between the hydrogen molecules and the new proposed organic linker of the MOF. The substituted group of the linker may host up to six hydrogen molecules with an average interaction energy of 1.5 kcal/mol per H(2) molecule. This value is three times larger than the binding energy over the bare linker that has been obtained from DFT calculations. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric capture of H(2), especially at ambient conditions. This functionalization strategy can be applied in many different MOF structures to enhance their storage abilities.

  13. Synthesis and characterization of taurine Schiff base derivatives and their Cu(II) complexes: crystal and molecular structure of 5-NO/sub 2/ salicylaldimine ethylene sulfonic acid complex of Cu(II)

    SciTech Connect

    Perez-Cesar, M.C.; Soriano-Garcia, M.; Toscano, R.A.; Gomez-Lara, J.

    1986-04-01

    Spectroscopic analysis of eight copper(II) complexes of Schiff bases derived from taurine and eight different salicylaldehydes and naphthaldehydes are reported. X-ray structural analysis of the copper(II) complex of the 5-NO/sub 2/-salicylaldehyde imine of taurine (5-NO/sub 2/-salicylaldimine ethylene sulfonic acid) as the tetra n-butylammonium salt (Cu(C/sub 9/H/sub 8/N/sub 2/O/sub 6/S)/sub 2/)/sup 2 -/2((C/sub 4/H/sub 9/)/sub 4/N)/sup +/ (CUTAUTBA) has been carried out. The space group is P anti 1, with a = 8.761(4), b = 10.410(3), c = 16.528(4) A, ..cap alpha.. = 77.85(3), ..beta.. = 86.53(4), ..gamma.. = 79.15(3)/sup 0/, and Z = 1. The structure was solved by the heavy-atom method and refined by least-squares techniques to an R factor of 0.068 for 2807 observed reflections. The CUTAU cation is centrosymmetric, with the Cu atom sitting on a crystallographic center of symmetry. The copper atom has a square-planar environment, coordinated by the potentially tridentate Schiff base only through the imino nitrogen and the phenolate oxygen with the deprotonated sulfonic group directed away from the coordination sphere of the Cu(II).

  14. Visceral Hypersensitivity Is Provoked by 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Ileitis in Rats.

    PubMed

    Shah, Manoj K; Wan, Juan; Janyaro, Habibullah; Tahir, Adnan H; Cui, Luying; Ding, Ming-Xing

    2016-01-01

    Crohn's Disease (CD), a chronic Inflammatory Bowel Disease, can occur in any part of the gastrointestinal tract, but most frequently in the ileum. Visceral hypersensitivity contributes for development of chronic abdominal pain in this disease. Currently, the understanding of the mechanism underlying hypersensitivity of Crohn's ileitis has been hindered by a lack of specific animal model. The present study is undertaken to investigate the visceral hypersensitivity provoked by 2,4,6-trinitrobenzene sulfonic (TNBS)-induced ileitis rats. Male Sprague-Dawley rats were anaesthetized and laparotomized for intraileal injection of TNBS (0.6 ml, 80 mg/kg body weight in 30% ethanol, n = 48), an equal volume of 30% Ethanol (n = 24), and Saline (n = 24), respectively. Visceral hypersensitivity was assessed by visceromotor responses (VMR) to 20, 40, 60, 80, and 100 mmHg colorectal distension pressure (CRD) at day 1, 3, 7, 14, 21, and 28. Immediately after CRD test, the rats were euthanized for collecting the terminal ileal segment for histopathological examinations and ELISA of myleoperoxidase and cytokines (TNF-α, IL-1β, IL-6), and dorsal root ganglia (T11) for determination of calcitonin gene-related peptide by immunohistochemistry, respectively. Among all groups, TNBS-treatment showed transmural inflammation initially at 3 days, reached maximum at 7 days and persisted up to 21 days. The rats with ileitis exhibited (P < 0.05) VMR to CRD at day 7 to day 21. The calcitonin gene-related peptide-immunoreactive positive cells increased (P < 0.05) in dorsal root ganglia at day 7 to 21, which was persistently consistent with visceral hypersensitivity in TNBS-treated rats. TNBS injection into the ileum induced transmural ileitis including granuloma and visceral hypersensitivity. As this model mimics clinical manifestations of CD, it may provide a road map to probe the pathogenesis of gut inflammation and visceral hypersensitivity, as well as for establishing the therapeutic protocol

  15. Correlating electronic structure and chemical durability of sulfonated poly(arylene ether sulfone)s

    NASA Astrophysics Data System (ADS)

    Lawrence, Jimmy; Yamashita, Koichi; Yamaguchi, Takeo

    2015-04-01

    Many different proton-conducting polymeric materials have been developed for polymer electrolyte membrane fuel cells (PEMFCs). The development of perfluorosulfonic acid-based, polymer electrolyte membranes (PFSA-PEMs) was followed by aromatic hydrocarbon-based PEMs (HC-PEMs), which allow for tailored design and optimization of their molecular structures. Although many new PFSA-PEMs and HC-PEMs have shown promising proton conductivity and thermal stability, chemical degradation of these materials in an oxidizing environment remains a significant technical barrier in PEMFC development. Here, we used accelerated degradation tests and electronic structure analysis to examine the chemical stability of sulfonated poly(arylene ether sulfone) (SPES) copolymers, a highly thermally stable HC-PEM. HOMO levels, the presence of main chain-protecting steric groups, and HOMO-LUMO location along the main chain have significant effects on the chain scission modes and degradation rate of SPES copolymers. Rational design of HC-PEMs to suppress midpoint scission can open many opportunities in the development of highly robust polymer electrolytes for fuel cell and other energy storage applications.

  16. Evaluation of Oxetan-3-ol, Thietan-3-ol, and Derivatives Thereof as Bioisosteres of the Carboxylic Acid Functional Group.

    PubMed

    Lassalas, Pierrik; Oukoloff, Killian; Makani, Vishruti; James, Michael; Tran, Van; Yao, Yuemang; Huang, Longchuan; Vijayendran, Krishna; Monti, Ludovica; Trojanowski, John Q; Lee, Virginia M-Y; Kozlowski, Marisa C; Smith, Amos B; Brunden, Kurt R; Ballatore, Carlo

    2017-08-10

    The oxetane ring serves as an isostere of the carbonyl moiety, suggesting that oxetan-3-ol may be considered as a potential surrogate of the carboxylic acid functional group. To investigate this structural unit, as well as thietan-3-ol and the corresponding sulfoxide and sulfone derivatives, as potential carboxylic acid bioisosteres, a set of model compounds has been designed, synthesized, and evaluated for physicochemical properties. Similar derivatives of the cyclooxygenase inhibitor, ibuprofen, were also synthesized and evaluated for inhibition of eicosanoid biosynthesis in vitro. Collectively, the data suggest that oxetan-3-ol, thietan-3-ol, and related structures hold promise as isosteric replacements of the carboxylic acid moiety.

  17. Modulation of Silica Nanoparticle Uptake into Human Osteoblast Cells by Variation of the Ratio of Amino and Sulfonate Surface Groups: Effects of Serum

    PubMed Central

    2015-01-01

    To study the importance of the surface charge for cellular uptake of silica nanoparticles (NPs), we synthesized five different single- or multifunctionalized fluorescent silica NPs (FFSNPs) by introducing various ratios of amino and sulfonate groups into their surface. The zeta potential values of these FFSNPs were customized from highly positive to highly negative, while other physicochemical properties remained almost constant. Irrespective of the original surface charge, serum proteins adsorbed onto the surface, neutralized the zeta potential values, and prevented the aggregation of the tailor-made FFSNPs. Depending on the surface charge and on the absence or presence of serum, two opposite trends were found concerning the cellular uptake of FFSNPs. In the absence of serum, positively charged NPs were more strongly accumulated by human osteoblast (HOB) cells than negatively charged NPs. In contrast, in serum-containing medium, anionic FFSNPs were internalized by HOB cells more strongly, despite the similar size and surface charge of all types of protein-covered FFSNPs. Thus, at physiological condition, when the presence of proteins is inevitable, sulfonate-functionalized silica NPs are the favorite choice to achieve a desired high rate of NP internalization. PMID:26030456

  18. Surface Sulfonation of Polyvinyl Chloride by Plasma for Antithrombogenicity

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Chen, Yashao

    2004-06-01

    To enhance the blood compatibility of Polyvinyl Chloride (PVC) film, the film was modified by SO2/O2 gas plasma treatment. The effect of surface sulfonation of PVC treated by various SO2/O2 gas plasma depended on the volume ratio O2/(SO2 + O2). When the volume ratio was 0.5, the effect of sulfonation was the best. Sulfonic acid groups were specifically and efficiently introduced onto the PVC surface, which was proved by x-ray photoelectron spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transfer Infrared (ATR-FTIR) spectroscopy. The surface microstructure of modified PVC film was studied with scanning electron microscopy (SEM). The antithrombogenicity of the samples was determined by the activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and plasma recalcification time (PRT) tests and platelet adhesion experiment. The results indicated that the antithrombogenicity of modified PVC was improved remarkably.

  19. Immobilisation of fully sulfonated polyaniline on nanostructured calcium silicate.

    PubMed

    Borrmann, Thomas; Dominis, Anton; McFarlane, Andrew J; Johnston, James H; Richardson, Michael J; Kane-Maguire, Leon A P; Wallace, Gordon G

    2007-12-01

    Up to 7.4% (w/w) of the sulfonated polyaniline, poly(2-methoxyaniline-5-sulfonic acid) (PMAS) can be absorbed onto nanostructured calcium silicates. Spectroscopic and leaching studies on the novel PMAS-silicate nanocomposites obtained indicate that attachment of the PMAS occurs via electrostatic binding of PMAS sulfonate groups to Ca2+ sites on the silicates. The surface area and pore volume of the nanocomposites are comparable to those of pure silicate and increase the surface area of the PMAS polymer by several orders of magnitude. The PMAS emeraldine salt in the nanocomposites retains its chemical reactivity, being readily oxidised and reduced to its pernigraniline and leucoemeraldine forms, respectively. The conductivity of the composite is comparable to that of the pure PMAS, several orders of magnitude higher than that of dried nanostructured calcium silicate.

  20. Penicillanic acid sulfone: an unexpected isotope effect in the interaction of 6 alpha- and 6 beta-monodeuterio and of 6,6-dideuterio derivatives with RTEM beta-lactamase from Escherichia coli.

    PubMed

    Brenner, D G; Knowles, J R

    1981-06-23

    Penicillanic acid sulfone (1) is both a substrate and an inactivator of the RTEM beta-lactamase. About 7000 hydrolytic events occur before enzyme inactivation. The 6,6-dideuterio sulfone shows a 3-fold acceleration of both the hydrolysis reaction and the enzyme inactivation. The kinetic and spectroscopic results are nicely accommodated by a scheme in which a transiently stable intermediate is formed in an isotopically sensitive step. The deuterated material partitions less readily toward this transiently stable intermediate by virtue of a primary isotope effect, and more enzyme is then available for the hydrolysis and inactivation pathways. Use of the stereospecifically monodeuterated sulfones shows that the 6 beta hydrogen is preferentially abstracted in the formation of the transiently stable intermediate and allows a detailed picture of the interaction of the sulfone and the beta-lactamase to be drawn. The crystal structures of both the labeled and unlabeled compounds are reported.

  1. Trace determination of perfluorooctane sulfonate and perfluorooctanoic acid in environmental samples (surface water, wastewater, biota, sediments, and sewage sludge) using liquid chromatography - Orbitrap mass spectrometry.

    PubMed

    Zacs, D; Bartkevics, V

    2016-11-18

    An analytical method was established and validated for the analysis of the most frequently monitored representatives among the group of perfluorinated compounds (PFAS), namely, perfluorooctanoic acid (PFOA) and prefluorooctane sulfonate (PFOS) in environmental samples (surface water, wastewater, sediments, sewage sludge, and biota). High performance liquid chromatography (HPLC) coupled to Orbitrap mass spectrometry (Orbitrap-MS) employing a heated electrospray ionization (HESI) interface operated in negative mode was used for the quantitative determination of these contaminants. HPLC separation of analytes was achieved using a reversed phase C18 (RP-C18) analytical column. The efficiency of various solid phase extraction (SPE) columns for the pre-concentration and clean-up as well as the performance of different ionization sources and detection modes for the instrumental determination were evaluated. The validation results indicate recoveries of analytes between 88 and 116%, while the intra-day and inter-day precision parameters in terms of relative standard deviations (RSDs) were in the range of 1.0-5.9% and 1.5-7.3%, respectively. The measured values for certified reference material (CRM) agreed with the provided reference values, revealing the accuracy of obtained concentrations in the range of 107-108%. The trueness of the method was verified by a successful participation in a proficiency testing (PT) program. These performance characteristics of the method permit reliable monitoring of PFOS and its derivatives in environmental samples according to the environmental quality standard (EQS) criteria regarding the maximum allowable concentrations and taking into account the annual average concentrations stated in Directive 2013/39/EU. The elaborated method was applied for the routine analysis of selected PFAS in environmental samples from the Baltic region. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Radiation-induced crosslinking of poly(styrene-butadiene-styrene) block copolymers and their sulfonation

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Young; Song, Ju-Myung; Sohn, Joon-Yong; Shul, Yong-Gun; Shin, Junhwa

    2013-12-01

    Several crosslinked poly(styrene-butadiene-styrene) (c-SBS) block copolymer films were prepared using a gamma ray or electron beam with various irradiation doses and the prepared c-SBS film was then subjected to sulfonation using a chlorosulfonic acid (CSA) solution to introduce a sulfonic acid group. To estimate the degree of crosslinking, the gel fractions and FT-IR spectra of the c-SBS films were used and the results indicate that the degree of crosslinking is increased with an increase in the radiation dose. The surface morphology and mechanical property of the c-SBS films were observed using SEM and UTM instruments, respectively. The sulfonated c-SBS films were investigated by measuring the ion exchange capacity (IEC) and by observing the cross-sectional distribution patterns of sulfonic acid group using an SEM-EDX instrument. The IEC and SEM-EDX studies indicate that the sulfonated c-SBS membranes can be successfully prepared through the radiation crosslinking of the SBS film and the subsequent sulfonation with a diluted CSA solution.

  3. Altered vasoactive intestinal peptides expression in irritable bowel syndrome patients and rats with trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Del Valle-Pinero, Arseima Y; Sherwin, LeeAnne B; Anderson, Ethan M; Caudle, Robert M; Henderson, Wendy A

    2015-01-07

    To investigate the vasoactive intestinal peptides (VIP) expression in irritable bowel syndrome (IBS) and trinitrobenzene sulfonic acid (TNBS) induced colitis. The VIP gene expression and protein plasma levels were measured in adult participants (45.8% male) who met Rome III criteria for IBS for longer than 6 mo and in a rat model of colitis as induced by TNBS. Plasma and colons were collected from naïve and inflamed rats. Markers assessing inflammation (i.e., weight changes and myeloperoxidase levels) were assessed on days 2, 7, 14 and 28 and compared to controls. Visceral hypersensitivity of the rats was assessed with colo-rectal distension and mechanical threshold testing on hind paws. IBS patients (n = 12) were age, gender, race, and BMI-matched with healthy controls (n = 12). Peripheral whole blood and plasma from fasting participants was collected and VIP plasma levels were assayed using a VIP peptide-enzyme immunoassay. Human gene expression of VIP was analyzed using a custom PCR array. TNBS induced colitis in the rats was confirmed with weight loss (13.7 ± 3.2 g) and increased myeloperoxidase activity. Visceral hypersensitivity to colo-rectal distension was increased in TNBS treated rats up to 21 d and resolved by day 28. Somatic hypersensitivity was also increased up to 14 d post TNBS induction of colitis. The expression of an inflammatory marker myeloperoxidase was significantly elevated in the intracellular granules of neutrophils in rat models following TNBS treatment compared to naïve rats. This confirmed the induction of inflammation in rats following TNBS treatment. VIP plasma concentration was significantly increased in rats following TNBS treatment as compared to naïve animals (P < 0.05). Likewise, the VIP gene expression from peripheral whole blood was significantly upregulated by 2.91-fold in IBS patients when compared to controls (P < 0.00001; 95%CI). VIP plasma protein was not significantly different when compared with controls (P = 0

  4. Comparison of in vitro cytotoxicity, estrogenicity and anti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoic acid.

    PubMed

    Henry, Natasha D; Fair, Patricia A

    2013-04-01

    Concern with increasing levels of emerging contaminants exists on a global scale. Three commonly observed emerging environmental contaminants: triclosan (2,4,4-trichloro-2'-hydroxydiphenyl ether), a synthetic, broad-spectrum antibacterial agent, and perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), used in stain- and water-resistant treatments, have become distributed ubiquitously across ecosystems and have been detected in wildlife and humans. MCF-7 BOS human breast cancer cells were used to investigate the potential for cytotoxicity, estrogenicity and anti-estrogenicity of these three compounds at environmentally relevant concentrations using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay (MTS) and the E-SCREEN bioassay. The doses used were 0.002-200 µg ml(-1) for triclosan and 0.03-30 µg ml(-1) for PFOS and PFOA. Quantitative results from the MTS assay revealed no significant cytotoxicity at lower concentrations for any of the test compounds; however, both triclosan and PFOA were cytotoxic at the highest concentrations examined (100-200 and 30 µg ml(-1), respectively), while PFOS showed no significant cytotoxicity at any of the concentrations tested. Positive estrogenic responses (P < 0.05) were elicited from the E-SCREEN at all concentrations examined for triclosan and PFOA and at 30 µg ml(-1) for PFOS. Further, significant anti-estrogenic activity (P < 0.05) was detected for all compounds tested at all concentrations when cells were co-exposed with 10(-9) m 17-β estradiol (E(2)). The overall results demonstrated that triclosan, PFOS and PFOA have estrogenic activities and that co-exposure to contaminants and E(2) produced anti-estrogenic effects. Each of these compounds could provide a source of xenoestrogens to humans and wildlife in the environment. Published 2011. This article is a US Government work and is in the public domain in the USA. Published 2011. This article is

  5. Removing perfluorooctane sulfonate and perfluorooctanoic acid from solid matrices, paper, fabrics, and sand by mineral acid suppression and supercritical carbon dioxide extraction.

    PubMed

    Chen, Hsiang-Yu; Liao, Weisheng; Wu, Ben-Zen; Nian, Hungchi; Chiu, KongHwa; Yak, Hwa-Kwang

    2012-09-01

    The removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from solid matrices has received considerable attention because of the environmental persistence, bioaccumulation, and potential toxicity of these compounds. This study presents a simple method using concentrated HNO(3) as a suppression agent, and methanol-modified supercritical carbon dioxide (Sc-CO(2)) extraction for removing PFOS and PFOA from solid matrices. The optimal conditions were 16 M HNO(3) and 20% (v/v) methanol containing Sc-CO(2), under a pressure of 20.3 MPa and a temperature of 50 °C. Extraction time was set at 70 min (40 min for static and 30 min for dynamic extraction). PFOA and PFOS were identified and quantitated by liquid chromatography/mass spectrometry. The extraction efficiencies (with double extractions) were close to 100% for PFOA and 80% for PFOS for both paper and fabric matrices. The extraction efficiencies for sand were approximately 77% for PFOA and 59% for PFOS. The results show that this method is accurate, and effective, and that it provides a promising and convenient approach to remediate the environment of hazardous PFOA and PFOS contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Pilot study on levels of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in selected foodstuffs and human milk from Italy.

    PubMed

    Guerranti, Cristiana; Perra, Guido; Corsolini, Simonetta; Focardi, Silvano E

    2013-09-01

    Despite the health risks associated with perfluorinated compounds (PFC) exposure and the detection of these compounds in many countries around the world, little is known on their occurrence in Italy. The results of a study on levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), analysed by HPLC-ESI-MS, in human milk and food samples from the city of Siena and its province (central Italy) are here reported. PFOS was found in 13 out of 49 breast milk samples (0.76±1.27 ng/g), while PFOA was detected in one sample (8.04 ng/g). Only PFOS was found in food samples. Fish were the most contaminated samples (7.65±34.2 ng/g); mean concentrations in meat and milk and dairy products were similar (1.43±7.21 ng/g and 1.35±3.45 ng/g, respectively). In all cereal-based food, eggs, vegetables, honey and beverages PFOS concentration was

  7. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent.

  8. Synthesis and characterizations of electrospun sulfonated poly (ether ether ketone) SPEEK nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Hasbullah, N.; Sekak, K. A.; Ibrahim, I.

    2016-07-01

    A novel electrospun polymer electrolyte membrane (PEM) based on Sulfonated Poly (ether ether ketone) were prepared and characterized. The poly (ether ether ketone) PEEK was sulfonated using concentrated sulfuric acid at room temperature for 60 hours reaction time. The degree sulfonation (DS) of the SPEEK are 58% was determined by H1 NMR using area under the peak of the hydrogen shielding at aromatic ring of the SPEEK. Then, the functional group of the SPEEK was determined using Fourier transfer infrared (FTIR) showed O-H vibration at 3433 cm-1 of the sulfonated group (SO2-OH). The effect of the solvent and polymer concentration toward the electrospinning process was investigated which, the DMAc has electrospun ability compared to the DMSO. While, at 20 wt.% of the polymer concentration able to form a fine and uniform nanofiber, this was confirmed by FESEM that shown electrospun fiber mat SPEEK surface at nano scale diameter.

  9. Vibrational spectroscopic study of pure and silica-doped sulfonated poly(ether ether ketone) membranes

    NASA Astrophysics Data System (ADS)

    Rangasamy, Vijay Shankar; Thayumanasundaram, Savitha; Seo, Jin Won; Locquet, Jean-Pierre

    2015-03-01

    We report the vibrational properties of sulfonated poly(ether ether ketone) (SPEEK) membranes, used as electrolytes in proton exchange membrane (PEM) fuel cells, studied by Fourier transform infrared (FTIR) spectroscopy. We discuss the changes in the vibrational modes of the functional groups present in the polymer arising due to the sulfonation process and the subsequent incorporation of silica particles functionalized with sulfonic acid group. From the infrared spectra, we confirm the incorporation of sulfonic acid group in the polymer chain as well as in the functionalized silica particles. We have also measured the variations in the peak area ratio of the characteristic out-of-plane vibrations of the aromatic rings in the PEEK polymer at 1280 cm-1 with respect to a reference peak at 1305 cm-1. These values were correlated to the crystallinity (XC) values experimentally determined by DSC technique, providing a non-destructive means to calculate the crystallinity of polymer membranes. The calculated XC values were in good agreement with the experimental values. The crystallinity was observed to decrease with increasing degree of sulfonation (DS), indicating the crystalline-to-amorphous phase modification of the polymer by sulfonation, which along with the enhanced ion-exchange capacity and water uptake, is responsible for the improved ionic conductivity at higher DS values.

  10. Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice.

    PubMed

    Sheng, Nan; Zhou, Xiujuan; Zheng, Fei; Pan, Yitao; Guo, Xuejiang; Guo, Yong; Sun, Yan; Dai, Jiayin

    2016-12-28

    Due to their structural similarities, 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA) are often used as alternatives to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), respectively. With limited health risk data and 6:2 FTSA detection in water and sludge, the toxicity of these chemicals is of growing concern. Here, adult male mice were exposed with 5 mg/kg/day of 6:2 FTCA or 6:2 FTSA for 28 days to investigate their hepatotoxicological effects. In contrast to 6:2 FTCA, 6:2 FTSA was detected at high and very high levels in serum and liver, respectively, demonstrating bioaccumulation potential and slow elimination. Furthermore, 6:2 FTSA induced liver weight increase, inflammation, and necrosis, whereas 6:2 FTCA caused no obvious liver injury, with fewer significantly altered genes detected compared with that of 6:2 FTSA (39 vs. 412). Although PFOA and PFOS commonly activate peroxisome proliferator-activated receptor α (PPARα), 6:2 FTSA induced an increase in PPARγ and related proteins, but not in lipid metabolism-related genes such as PPARα. Our results showed that 6:2 FTCA and 6:2 FTSA exhibited weak and moderate hepatotoxicity, respectively, compared with that reported for legacies PFOA and PFOS.

  11. Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis.

    PubMed

    Chaparro-Ortega, Andrea; Betancourt, Miguel; Rosas, Patricia; Vázquez-Cuevas, Francisco G; Chavira, Roberto; Bonilla, Edmundo; Casas, Eduardo; Ducolomb, Yvonne

    2017-10-02

    Previous studies with perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) indicate that they act as endocrine disruptors, in addition to inducing alterations and damaging reproductive health; however, the biological mechanisms by which these disorders are produced are not yet understood. The aim of this study was to analyze the effect of PFOS and PFOA on in vitro steroidogenic secretion in porcine theca and granulosa cells, with or without gonadotropic stimulation. Granulosa and theca cells were isolated and cultured. Cell nature was performed by immunocytochemistry. PFOS and PFOA effect on steroid secretion was analyzed by chemiluminescence. In the present study, alterations in steroidogenic secretion were found when administering PFOS (0.12, 1.2, 12, 120 or 240μM) or PFOA (0.012, 0.12, 1.2, 12 or 24μM) to theca and granulosa cells. When theca and granulosa cells were stimulated with 500ng/mL LH or 500ng/mL FHS, respectively and immediately followed with 1.2μM of PFOS or PFOA, the perfluorinated compounds inhibited the secretion of steroid hormones in both stimulated cell types. The results indicate that PFOS and PFOA act on steroidogenic ovarian cells as endocrine disruptors, which could affect the dependent functions of sexual steroids. Copyright © 2017. Published by Elsevier Ltd.

  12. Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with alkynyl sulfones leading to cyclic compounds.

    PubMed

    Li, Jingjing; Tian, Hua; Jiang, Min; Yang, Haijun; Zhao, Yufen; Fu, Hua

    2016-07-07

    Novel and efficient consecutive photoredox decarboxylative couplings of adipic acid active esters (bis(1,3-dioxoisoindolin-2-yl)-substituted hexanedioates) with substituted 1-(2-arylethynylsulfonyl)benzenes have been developed under visible-light photocatalysis. The successive photoredox decarboxylative C-C bond formation at room temperature afforded the corresponding cyclic compounds in good yields with tolerance of some functional groups.

  13. Synthesis and characterization of partially fluorinated hydrophobic-hydrophilic multiblock copolymers containing sulfonate groups for proton exchange membrane

    NASA Astrophysics Data System (ADS)

    Li, Yanxiang; Roy, Abhishek; Badami, Anand S.; Hill, Melinda; Yang, Juan; Dunn, Stuart; McGrath, James E.

    A new hydrophobic-hydrophilic multiblock copolymer has been successfully synthesized based on the careful coupling of a fluorine terminated poly(arylene ether ketone) (6FK) hydrophobic oligomer and a phenoxide terminated disulfonated poly(arylene ether sulfone) (BPSH) hydrophilic oligomer. 19F and 1H NMR spectra were used to characterize the oligomers' molecular weights and multiblock copolymer's structure. The comparison of the multiblock copolymer 13C NMR spectrum with that of the random copolymer showed that the transetherification side reaction was minimized in this synthesis. The morphologies of membranes were investigated by tapping mode atomic force microscopy (AFM), which showed that the multiblock membrane acidified by the high temperature method has sharp phase separation. Membrane properties like protonic conductivity, water uptake, and self-diffusion coefficient of water as a function of temperature and relative humidity (RH) were characterized for the multiblock copolymer and compared with ketone type random copolymers at similar ion exchange capacity value and Nafion ® controls. The multiblock copolymers are promising candidates for proton exchange membranes especially for applications at high temperatures and low relative humidity.

  14. The effect of terminal groups of viologens on their binding behaviors and thermodynamics upon complexation with sulfonated calixarenes.

    PubMed

    Wang, Kui; Xing, Si-Yang; Wang, Xiu-Guang; Dou, Hong-Xi

    2015-05-21

    The binding modes, inclusion abilities, and thermodynamic parameters for the intermolecular complexation of p-sulfonatocalix[4]arene (SC4A), p-sulfonatocalix[5]arene (SC5A), and p-sulfonatothiacalix[4]arene (STC4A), with methyl viologen (MV(2+)), ethyl viologen (EV(2+)), propyl viologen (PV(2+)), butyl viologen (BV(2+)), and benzyl viologen (BnV(2+)), were systematically investigated by NMR spectroscopy, molecular mechanics calculation, and microcalorimetry in neutral aqueous solutions. The obtained results show that all the sulfonated calixarene hosts can form stable inclusion complexes with viologen guests driven by much favorable enthalpy changes. All the viologen guests are encapsulated into the smaller SC4A cavity in their axial orientation. The larger SC5A cavity can accommodate all the viologen guests at its upper-rim midsection in the latitudinal orientation. The binding modes of more flexible STC4A with the smaller MV(2+) and EV(2+) guests are similar to those of SC5A with the two guests, while the binding modes of STC4A with the larger PV(2+) and BV(2+) guests are similar to those of SC4A with the two guests. The host selectivity for all the investigated viologen guests is the same: SC5A > SC4A > STC4A. The magnitude of the host selectivity is associated with the size of the guest. Moreover, the thermodynamic origin of the host selectivity for these viologen guests can be explained well by host-guest binding modes.

  15. Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1H-tetrazoles under solvent-free conditions.

    PubMed

    Naeimi, Hossein; Mohamadabadi, Samaneh

    2014-09-14

    Regarding green chemistry goals, silica-coated magnetite nanoparticles open up a new avenue to introduce a very useful and efficient system for facilitating catalyst recovery in different organic reactions. Therefore, in this paper the preparation of sulfonic acid-functionalized silica-coated magnetic nanoparticles with core-shell structure (Fe3O4@silica sulfonic acid) is presented by using Fe3O4 spheres as the core and silica sulfonic acid nanoparticles as the shell. The catalyst was characterized by infrared spectroscopy, scanning electron microscopy, X-ray diffraction analysis, dynamic light scattering, thermogravimetric analysis and vibrating sample magnetometry. Nanocatalyst can be recovered using an external magnet and reused for subsequent reactions 6 times without noticeable deterioration in catalytic activity.

  16. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid

    NASA Astrophysics Data System (ADS)

    Song, Lingjie; Zhao, Jie; Yang, Huawei; Jin, Jing; Li, Xiaomeng; Stagnaro, Paola; Yin, Jinghua

    2011-10-01

    This work described the graft polymerization of a sulfonic acid terminated monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), onto the surface of polypropylene non-woven (NWF PP) membrane by O 2 plasma pretreatment and UV-induced photografting method. The chemical structure and composition of the modified surfaces were analyzed by FTIR-ATR and XPS, respectively. The wettability was investigated by water contact angle and equilibrium water adsorption. And the biocompatibility of the modified NWF PP membranes was evaluated by protein adsorption and platelet adhesion. It was found that the graft density increased with prolonging UV irradiation time and increasing AMPS concentration; the water contact angles of the membranes decreased from 124° to 26° with the increasing grafting density of poly(AMPS) from 0 to 884.2 μg cm -2, while the equilibrium water adsorption raised from 5 wt% to 75 wt%; the protein absorption was effectively suppressed with the introduction of poly(AMPS) even at the low grafting density (132.4 μg cm -2); the number of platelets adhering to the modified membrane was dramatically reduced when compared with that on its virgin surface. These results indicated that surface modification of NWF PP membrane with AMPS was a facile approach to construct biocompatible surface.

  17. The coordination structure of the extracted copper(II) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and n-hexyl 3-pyridinecarboxylate ester

    NASA Astrophysics Data System (ADS)

    Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi

    2017-09-01

    In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing

  18. Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether-ether ketone)

    NASA Astrophysics Data System (ADS)

    Oh, S. Y.; Yoshida, T.; Kawamura, G.; Muto, H.; Sakai, M.; Matsuda, A.

    Inorganic-organic composite electrolytes were fabricated from partially Cs +-substituted heteropoly acids (Cs-HPAs) and sulfonated poly(ether-ether ketone) (SPEEK) for application in fuel cells. Heteropoly acids, such as phosphotungstic acid (H 3PW 12O 40:WPA), and silicotungstic acid (H 4SiW 12O 40:WSiA), were mechanochemically treated with cesium hydrogen sulfate (CsHSO 4) to obtain the form of Cs-HPAs. SPEEK was prepared from PEEK by sulfonation using concentrated sulfuric acid. Water durability and surface structure of HPAs were modified by introducing Cs + into HPAs. Flexible and hot water stable composite electrolytes were obtained, and their electrochemical properties were markedly improved with the addition of Cs-HPAs into the SPEEK matrix. Maximum power densities of 245 and 247 mW cm -2 were obtained for 50WPA·50CsHSO 4 and 50WSiA·50CsHSO 4 in SPEEK (1/5 by weight) composite electrolytes, respectively, from single cell tests at 80 °C and 80 RH%. These results suggest that a three-dimensional proton-conductive path was formed among homogeneously distributed Cs-HPAs particles in the SPEEK matrix. The Cs-HPAs incorporated into the SPEEK matrix increased the number of protonate sites in the electrolyte. These observations imply that the mechanochemically synthesized Cs-HPAs, which consist of hydrogen bondings between Cs-HPAs and -HSO 4 -, dissociated from CsHSO 4, are promising materials as inorganic fillers in inorganic-organic composite.

  19. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: improved stability, mucin-dependent release and effective intravaginal placement.

    PubMed

    Li, ChunYan; Huang, ZhiGang; Liu, ZheShuo; Ci, LiQian; Liu, ZhePeng; Liu, Yu; Yan, XueYing; Lu, WeiYue

    Effective interaction between mucoadhesive drug delivery systems and mucin is the basis of effective local placement of drugs to play its therapeutic role after mucosal administration including vaginal use, which especially requires prolonged drug presence for the treatment of gynecological infectious diseases. Our previous report on phenylboronic acid-rich nanoparticles (PBNPs) demonstrated their strong interaction with mucin and mucin-sensitive release profiles of the model protein therapeutics interferon (IFN) in vitro, but their poor stability and obvious tendency to aggregate over time severely limited future application. In this study, sulfonate-modified PBNPs (PBNP-S) were designed as a stable mucoadhesive drug delivery system where the negative charges conferred by sulfonate groups prevented aggregation of nanoparticles and the phenylboronic acid groups ensured effective interaction with mucin over a wide pH range. Results suggested that PBNP-S were of spherical morphology with narrow size distribution (123.5 nm, polydispersity index 0.050), good stability over a wide pH range and 3-month storage and considerable in vitro mucoadhesion capability at vaginal pH as shown by mucin adsorption determination. IFN could be loaded to PBNP-S by physical adsorption with high encapsulation efficiency and released in a mucin-dependent manner in vitro. In vivo near-infrared fluorescent whole animal imaging and quantitative vaginal lavage followed by enzyme-linked immunosorbent assay (ELISA) assay of IFN demonstrated that PBNP-S could stay in the vagina and maintain intravaginal IFN level for much longer time than IFN solution (24 hours vs several hours) without obvious histological irritation to vaginal mucosa after vaginal administration to mice. In summary, good stability, easy loading and controllable release of protein therapeutics, in vitro and in vivo mucoadhesive properties and local safety of PBNP-S suggested it as a promising nanoscale mucoadhesive drug delivery

  20. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: improved stability, mucin-dependent release and effective intravaginal placement

    PubMed Central

    Li, ChunYan; Huang, ZhiGang; Liu, ZheShuo; Ci, LiQian; Liu, ZhePeng; Liu, Yu; Yan, XueYing; Lu, WeiYue

    2016-01-01

    Effective interaction between mucoadhesive drug delivery systems and mucin is the basis of effective local placement of drugs to play its therapeutic role after mucosal administration including vaginal use, which especially requires prolonged drug presence for the treatment of gynecological infectious diseases. Our previous report on phenylboronic acid-rich nanoparticles (PBNPs) demonstrated their strong interaction with mucin and mucin-sensitive release profiles of the model protein therapeutics interferon (IFN) in vitro, but their poor stability and obvious tendency to aggregate over time severely limited future application. In this study, sulfonate-modified PBNPs (PBNP-S) were designed as a stable mucoadhesive drug delivery system where the negative charges conferred by sulfonate groups prevented aggregation of nanoparticles and the phenylboronic acid groups ensured effective interaction with mucin over a wide pH range. Results suggested that PBNP-S were of spherical morphology with narrow size distribution (123.5 nm, polydispersity index 0.050), good stability over a wide pH range and 3-month storage and considerable in vitro mucoadhesion capability at vaginal pH as shown by mucin adsorption determination. IFN could be loaded to PBNP-S by physical adsorption with high encapsulation efficiency and released in a mucin-dependent manner in vitro. In vivo near-infrared fluorescent whole animal imaging and quantitative vaginal lavage followed by enzyme-linked immunosorbent assay (ELISA) assay of IFN demonstrated that PBNP-S could stay in the vagina and maintain intravaginal IFN level for much longer time than IFN solution (24 hours vs several hours) without obvious histological irritation to vaginal mucosa after vaginal administration to mice. In summary, good stability, easy loading and controllable release of protein therapeutics, in vitro and in vivo mucoadhesive properties and local safety of PBNP-S suggested it as a promising nanoscale mucoadhesive drug delivery

  1. Aligned electrospun nanofibers as proton conductive channels through thickness of sulfonated poly (phthalazinone ether sulfone ketone) proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Gong, Xue; He, Gaohong; Wu, Yao; Zhang, Shikai; Chen, Bo; Dai, Yan; Wu, Xuemei

    2017-08-01

    A novel approach is proposed to fabricate sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes with ordered through-plane electrospinning nanofibers, which provide nano-scale through-plane proton conductive channels along the thickness direction of the membranes, aiming to satisfy the challenging requirement of high through-plane proton conductivity in fuel cell operations. Induced by electrostatic attraction of strong electric field, the negatively charged sulfonic acid groups tend to aggregate towards surface of the electrospun fibers, which is evidenced by TEM and SAXS and further induces aggregation of the sulfonic acid groups in the SPPESK inferfiber voids filler along the surface of the nanofibers. The aligned electrospun nanofibers carries long-range ionic clusters along the thickness direction of the membrane and results in much higher total through-plane conductivity in the thickness aligned electrospun membranes, nearly twice as much as that of the cast SPPESK membrane. With smooth treatment, the thickness aligned electrospun SPPESK membranes exhibit higher single cell power density and tensile strength as compared with Nafion 115 (around 1.2 and 1.5 folds, respectively). Such a design of thickness aligned nano-size proton conductive channels provide feasibility for high performance non-fluorinated PEMs in fuel cell applications.

  2. Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications.

    PubMed

    Yasuda, Tomohiro; Nakamura, Shin-ichiro; Honda, Yoshiyuki; Kinugawa, Kei; Lee, Seung-Yul; Watanabe, Masayoshi

    2012-03-01

    To investigate the effects of polymer structure on the properties of composite membranes including a protic ionic liquid, [dema][TfO] (diethylmethylammonium trifluoromethanesulfonate), for nonhumidified fuel cell applications, we synthesized sulfonated polyimides (SPIs) with different structures as matrix polymers, which have different magnitudes of ion-exchange capacities (IECs), different sequence distributions of ionic groups, and positions of sulfonate groups in the main chain or side chain. Despite having similar IECs, multiblock copolymer SPI and random copolymer SPI having sulfonate groups in the side chain exhibit higher ionic conductivity than random copolymer SPI having sulfonate groups in the main chain, indicating that the flexibility of sulfonic acid groups and the sequence distribution of ionic groups greatly affect the ion conduction. Atomic force microscopy observation revealed that the multiblock copolymer SPI forms more developed phase separation than the others. These results indicate that the flexibility of sulfonic acid groups and the connectivity of the ion conduction channel, which greatly depends on the sequence distribution, affect the ion conduction.

  3. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Gad, Y. H.

    2008-09-01

    Radiation grafting of chitosan with 2-acrylamido-2-methyl propane sulfonic acid (AMPS) has been successfully performed. The effect of absorbed dose (kGy) and the chitosan:AMPS ratio on graft hydrogelization was studied. The structure of the prepared hydrogel was confirmed using infrared spectroscopy (IR). Thermal properties were simultaneously studied by thermogravimetric analysis (TGA). The effect of the polymerization variables on the swelling % of the prepared hydrogel was investigated. The highest equilibrium degree of swelling (38.6 g/g) and gel % (94.7%) of the prepared chitosan-AMPS hydrogel was at 40% AMPS and absorbed dose of 10 kGy. The removal of methylene blue, acid red dye, Cd (II) and Cr (III) from composed wastewater was also investigated. The effect of pH, the chitosan:AMPS ratio and the concentration of the pollutant on the adsorption process were studied.

  4. Magnetic solid sulfonic acid decorated with hydrophobic regulators: a combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles.

    PubMed

    Mobaraki, Akbar; Movassagh, Barahman; Karimi, Babak

    2014-07-14

    A three-component, Strecker reaction of a series of aldehydes or ketones, amines, and trimethylsilyl cyanide for the synthesis of α-aminonitriles in the presence of a catalytic amount of a magnetic solid sulfonic acid catalyst, Fe3O4@SiO2@Me&Et-PhSO3H under solvent-free conditions have been investigated. This catalyst, with a combination of hydrophobicity and acidity on the Fe3O4@SiO2 core-shell of the magnetic nanobeads, as well as its water-resistant property, enabled easy mass transfer and catalytic activity in the Strecker reaction. The catalyst was easily separated by an external magnet and the recovered catalyst was reused in 6 successive reaction cycles without any significant loss of activity.

  5. A novel branched side-chain-type sulfonated polyimide membrane with flexible sulfoalkyl pendants and trifluoromethyl groups for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi

    2017-04-01

    A novel branched side-chain-type sulfonated polyimide (6F-s-bSPI) membrane with accessible branching agents of melamine, hydrophobic trifluoromethyl groups (sbnd CF3), and flexible sulfoalkyl pendants is prepared by a high-temperature polycondensation and post-sulfonation method for use in vanadium redox flow batteries (VRFBs). The chemical structure of the 6F-s-bSPI membrane is confirmed by ATR-FTIR and 1H NMR spectra. The physico-chemical properties of the as-prepared 6F-s-bSPI membrane are systematically investigated and found to be strongly related to the specially designed structure. The 6F-s-bSPI membrane offers a reduced cost and possesses a significantly lowered vanadium ion permeability (1.18 × 10-7 cm2 min-1) compared to the linear SPI (2.25 × 10-7 cm2 min-1) and commercial Nafion 115 (1.36 × 10-6 cm2 min-1) membranes, prolonging the self-discharge duration of the VRFBs. In addition, the VRFB assembled with a 6F-s-bSPI membrane shows higher coulombic (98.3%-99.7%) and energy efficiencies (88.4%-66.12%) than that with a SPI or Nafion 115 membrane under current densities ranging from 20 to 100 mA cm-2. Moreover, the VRFB with a 6F-s-bSPI membrane delivers a stable cycling performance over 100 cycles with no decline in coulombic and energy efficiencies. These results show that the branched side-chain-type structure is a promising design to prepare excellent proton conductive membranes.

  6. Crystal structure of 2-benzene­sulfon­amido-3-hy­droxy­propanoic acid

    PubMed Central

    Jabeen, Nabila; Mushtaq, Misbah; Danish, Muhammad; Tahir, Muhammad Nawaz; Raza, Muhammad Asam

    2015-01-01

    In the title compound, C9H11NO5S, the O=S=O plane of the sulfonyl group is twisted at a dihedral angle of 52.54 (16)° with respect to the benzene ring. The dihedral angle between the carb­oxy­lic acid group and the benzene ring is 49.91 (16)°. In the crystal, C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into (001) sheets. PMID:26594589

  7. Thermal stability of sulfonated polymers

    SciTech Connect

    Audibert, A.; Argillier, J.F.

    1995-11-01

    Polyacrylamides which are used in oil applications i.e. polymer flooding and water based muds, are hydrolyzed versus time and temperature. This leads to a lack of tolerance towards electrolyte contamination and to a rapid degradation inducing a loss of their properties. Modifications of polyacrylamide structure have been proposed to postpone their thermal stability to higher temperatures. Monomers such as acrylamido methylpropane sulfonate (AMPS) or sulfonated styrene/maleic anhydride can be used to prevent acrylamide comonomer from hydrolysis. The aim of this work is to study under controlled conditions, i.e. anaerobic atmosphere, neutral pH, the stability of sulfonated polymers in order to distinguish between hydrolysis and radical degradation reactions. It has been observed that up to 100 C, the AMPS group is stable and protects the acrylamide function from hydrolysis up to 80%. At higher temperature, even the hydrolysis of the AMPS group occurs, giving acrylate and {beta},{beta} dimethyl taurine, with a kinetics that depends on temperature and time. Degradation in terms of molecular weight then occurs indicating that it follows a radical decarboxylation reaction. It can be limited either by the use of free radical scavenger or when the polymer is in the presence of a mineral phase such as bentonite. These results provide valuable data for the determination of the limits of use of sulfonated copolymers and guidelines for optimizing chemical structure of sulfonated polymers used in water based formulation, in particular to enhance their thermal stability.

  8. Degradation of chloroacetanilide herbicides: The prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters

    USGS Publications Warehouse

    Kalkhoff, S.J.; Kolpin, D.W.; Thurman, E.M.; Ferrer, I.; Barcelo, D.

    1998-01-01

    Water samples were collected from 88 municipal wells throughout Iowa during the summer and were collected monthly at 12 stream sites in eastern Iowa from March to December 1996 to study the occurrence of the sulfonic and oxanilic metabolites of acetochlor, alachlor, and metolachlor. The sulfonic and oxanilic metabolites were present in almost 75% of the groundwater samples and were generally present from 3 to 45 times more frequently than their parent compounds. In groundwater, the median value of the summed concentrations of acetochlor, alachlor, and metolachlor was less than 0.05 μg/L, and the median value of the summed concentrations of the six metabolites was 1.2 μg/L. All surface water samples contained at least one detectable metabolite compound. Individual metabolites were detected from 2 to over 100 times more frequently than the parent compounds. In surface water, the median value of the summed concentrations of the three parent compounds was 0.13 μg/L, and the median value of the summed concentrations of the six metabolites was 6.4 μg/L. These data demonstrate the importance of analyzing both parent compounds and metabolites to more fully understand the environmental fate and transport of herbicides in the hydrologic system.

  9. Synthesis, Characterization, and Catalytic Activity of Sulfonated Carbon-Based Catalysts Derived From Rubber Tree Leaves and Pulp and Paper Mill Waste

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Sinin, E.; Hiew, S. F.; Kong, A. M. T.; Lahin, F. A.

    2016-06-01

    Sulfonated carbon-based catalysts derived from rubber tree leaves, and pulp and paper mill waste were synthesized and characterized. Three types of catalyst synthesized were sulfonated rubber tree leaves (S-RTL), pyrolysed sludge char (P-SC) and sulfonated sludge char (S-SC). Sulfonated rubber tree leaves (S-RTL) and sulfonated sludge char (S-SC) were prepared through pyrolysis followed by functionalization via sulfonation process whereas, P- SC was only pyrolyzed without sulfonation. The characterization results indicated sulfonic acids, hydroxyl, and carboxyl moieties were detected in S-RTL and S-SC, but no sulfonic acid was detected in P-SC. Total acidity test showed S-RTL had the highest value followed by S-SC and P-SC. The thermal stability of S-RTL and S-SC were up to 230oC as the loss was associated with the decomposition of sulfonic acid group, whereas, P-SC showed higher stability than the S-RTL and S-SC. Morphology analysis showed that S-RTL consisted of an amorphous carbon structure, and a crystalline structure for P-SC and S-SC. Furthermore, traces of metal components were also detected on all of the catalysts. The catalyst catalytic activity was tested through esterification of oleic acid with methanol. The results showed that the reaction using S-RTL catalyst produced the highest conversion (99.9%) followed by P-SC (88.4%) and lastly S-SC (82.7%). The synthesized catalysts showed high potential to be used in biodiesel production.

  10. Enhanced conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film by acid treatment for indium tin oxide-free organic solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Chiao; Huang, Chih-Kuo; Hung, Yu-Chieh; Chang, Mei-Ying

    2016-08-01

    An acid treatment is used in the enhancement of the conductivity of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin film, which is often used as the anode in organic solar cells. There are three types of acid treatment for PEDOT:PSS thin film: hydrochloric, sulfuric, and phosphoric acid treatments. In this study, we examine and compare these three ways with each other for differences in conductivity. Hydrochloric acid results in the highest conductivity enhancement, from 0.3 to 1109 S/cm. We also discuss the optical transmittance, conductivity, surface roughness, surface morphology, and stability, as well as the factors that can influence device efficiency. The devices are fabricated using an acid-treated PEDOT:PSS thin film as the anode. The highest power conversion efficiency was 1.32%, which is a large improvement over that of the unmodified organic solar cell (0.21%). It is comparable to that obtained when using indium tin oxide (ITO) as an electrode, ca. 1.46%.

  11. A sequential injection method for the fluorimetric determination of aluminum in drinking water using 8-hydroxy-7-(4-sulfo-1-naphthylazo)-5-quinoline sulfonic acid.

    PubMed

    Al-Kindy, Salma M Z; Al-Ghamari, Salwa S; Suliman, Fakhr Eldin O

    2007-12-31

    A robust and simple sequential injection (SI) method for the assay of aluminum ions in drinking water is described. The method is based on the complex formation between aluminum and 8-hydroxy-7-(4-sulfo-1-naphthylazo)-5-quinoline sulfonic acid (HSNQ). The fluorescence of the complex is monitored at an emission wavelength of 492 nm with excitation at 357 nm. The HSNQ concentration, aspirated reagent and sample volumes were optimized simultaneously using 3(3) full factorial design. The optimum operating conditions are aspirated sample and reagent volumes of 90 and 70 microL, respectively, and HSNQ concentration of 20 microM. With these conditions linear calibration curves were obtained from 100 to 800 ppb. The detection limit was 4 ppb. The maximum relative standard deviation of the method was 1.43% (n=5). The method was successfully applied for the determination of aluminum in drinking water samples.

  12. Self-assembled multilayer films containing 1,8,15,22-tetrakis (8-quinolineoxy-5-sulfonic acid)-phthalocyanine copper: Preparation, and third order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    He, Chunying; Fan, Jingze; Li, Zhongguo; Gao, Yachen; Chen, Zhimin; Song, Yinglin; Wu, Yiqun; wang, Bin

    2014-02-01

    Composite film with alternating layers containing anionic 1,8,15,22-tetrakis (8-quinolineoxy-5-sulfonic acid)-phthalocyanine copper and cationic polydiallydimethylammonium chloride was fabricated by electrostatic self-assembled layer-by-layer (LBL) technique. The microstructure of the film was characterized by a series of techniques. The third-order nonlinear optical properties of the film were measured using 4f coherent imaging system with phase object (NIT-PO) with laser duration of 20 ps at the wavelength of 532 nm. The film exhibited excellent nonlinear absorption and self-focusing effect. The second-order molecular hyperpolarizability γ value of the film reaches as high as 1.54 × 10-29 esu.

  13. β-Cyclodextrin-Propyl Sulfonic Acid Catalysed One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles as Local Anesthetic Agents.

    PubMed

    Ran, Yan; Li, Ming; Zhang, Zong-Ze

    2015-11-12

    Some functionalized 1,2,4,5-tetrasubstituted imidazole derivatives were synthesized using a one-pot, four component reaction involving 1,2-diketones, aryl aldehydes, ammonium acetate and substituted aromatic amines. The synthesis has been efficiently carried out in a solvent free medium using β-cyclodextrin-propyl sulfonic acid as a catalyst to afford the target compounds in excellent yields. The local anesthetic effect of these derivatives was assessed in comparison to lidocaine as a standard using a rabbit corneal and mouse tail anesthesia model. The three most potent promising compounds were subjected to a rat sciatic nerve block assay where they showed considerable local anesthetic activity, along with minimal toxicity. Among the tested analogues, 4-(1-benzyl-4,5-diphenyl-1H-imidazol-2-yl)-N,N-dimethylaniline (5g) was identified as most potent analogue with minimal toxicity. It was further characterized by a more favourable therapeutic index than the standard.

  14. Preparation of Poly[Styrene(ST)-co-Allyloxy-2-Hydroxypropane Sulfonic Acid Sodium Salt(COPS-I)] Colloidal Crystalline Photonic Crystals.

    PubMed

    Choo, Hun Seung; Lee, Ki Chang

    2015-10-01

    Colloidal crystalline photonic crystals using highly monodisperse poly[Styrene(ST)-co-Allyloxy-2-hydroxypropane sulfonic acid sodium salt(COPS-I)] microspheres were prepared to study their optical properties under visible light. For this purpose, a series of surfactant-free emulsion copolymerizations was carried out at various reaction conditions such as the changes of ST/COPS-I ratio, polymerization temperature, KPS initiator and DVB crosslinker concentration. All the latices showed highly uniform spherical particles in the size range of 165-550 nm and the respective opaline structural colors from their colloidal photonic crystals. It is found that the changes in such polymerization factors greatly affect the number of particles and particle diameter, polymerization rate, molecular weight, zeta-potential, and refractive indices.

  15. Simulation study of sulfonate cluster swelling in ionomers

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2009-12-01

    We have performed simulations to study how increasing humidity affects the structure of Nafion-like ionomers under conditions of low sulfonate concentration and low humidity. At the onset of membrane hydration, the clusters split into smaller parts. These subsequently swell, but then maintain constant the number of sulfonates per cluster. We find that the distribution of water in low-sulfonate membranes depends strongly on the sulfonate concentration. For a relatively low sulfonate concentration, nearly all the side-chain terminal groups are within cluster formations, and the average water loading per cluster matches the water content of membrane. However, for a relatively higher sulfonate concentration the water-to-sulfonate ratio becomes nonuniform. The clusters become wetter, while the intercluster bridges become drier. We note the formation of unusual shells of water-rich material that surround the sulfonate clusters.

  16. Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups.

    PubMed

    Wei, Junji; Zhang, Zhongbo; Tseng, Jung-Kai; Treufeld, Imre; Liu, Xiaobo; Litt, Morton H; Zhu, Lei

    2015-03-11

    In this report, a dipolar glass polymer, poly(2-(methylsulfonyl)ethyl methacrylate) (PMSEMA), was synthesized by free radical polymerization of the corresponding methacrylate monomer. Due to the large dipole moment (4.25 D) and small size of the side-chain sulfone groups, PMSEMA exhibited a strong γ transition at a temperature as low as -110 °C at 1 Hz, about 220 °C below its glass transition temperature around 109 °C. Because of this strong γ dipole relaxation, the glassy PMSEMA sample exhibited a high dielectric constant of 11.4 and a low dissipation factor (tan δ) of 0.02 at 25 °C and 1 Hz. From an electric displacement-electric field (D-E) loop study, PMSEMA demonstrated a high discharge energy density of 4.54 J/cm(3) at 283 MV/m, nearly 3 times that of an analogue polymer, poly(methyl methacrylate) (PMMA). However, the hysteresis loss was only 1/3-1/2 of that for PMMA. This study suggests that dipolar glass polymers with large dipole moments and small-sized dipolar side groups are promising candidates for high energy density and low loss dielectric applications.

  17. Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean.

    PubMed

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J; Li, Qing X

    2015-11-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g(-1) wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g(-1) ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Perfluoroalkyl Sulfonates and Carboxylic Acids in Liver, Muscle and Adipose Tissues of Black-Footed Albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean

    PubMed Central

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J.; Li, Qing X.

    2015-01-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g-1 wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g-1 ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and C16 PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. PMID:26037817

  19. 4-[(4-Amino­phen­yl)sulfon­yl]aniline–3,5-dinitro­benzoic acid (1/1)

    PubMed Central

    Smith, Graham; Wermuth, Urs D.

    2012-01-01

    The title compound, C7H4N2O6·C12H12N2O2S, is a 1:1 cocrystal of the drug dapsone with 3,5-dinitro­benzoic acid. The dihedral angle between the two aromatic rings of the dapsone mol­ecule is 75.4 (2)°, and the dihedral angles between these rings and that of the 3,5-dinitro­benzoic acid are 64.5 (2) and 68.4 (2)°. A strong inter­molecular carb­oxy­lic acid O—H⋯Namine hydrogen bond is found, together with inter­molecular amine N—H⋯O hydrogen-bonding associations with carboxyl, nitro and sulfone O-atom acceptors. In addition, weak π–π inter­actions between one of the dapsone benzene rings and the 3,5-dinitro­benzoic acid ring [ring centroid separation = 3.774 (2) Å] results in a two-dimensional network structure. PMID:22412568

  20. Photochromism of sulfonated spiropyran in a silica matrix

    NASA Astrophysics Data System (ADS)

    Hori, T.; Tagaya, H.; Nagaoka, T.; Kadokawa, J.; Chiba, K.

    1997-11-01

    Photochromic properties of sulfonated spiropyran (SP-SO 3-) incorporated within a silica matrix by the sol-gel route were studied. The existence of organic anions such as p-toluene sulfonic acid (PTS), dodecylbenzene sulfonic acid (DBS) was essential for stable and reversible photochromism. In the case of DBS/SP-SO3- ( mole ratio = 50.0) , the most stable and reversible photochromic properties were attained among them.

  1. Ion-exclusion chromatographic separations of C1-C6 aliphatic carboxylic acids on a sulfonated styrene-divinylbenzene co-polymer resin column with 5-methylhexanoic acid as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The application of C7 aliphatic carboxylic acids (heptanoic, 2-methylhexanoic, 5-methylhexanoic and 2,2-dimethyl-n-valeric acids) as eluents in ion-exclusion chromatography with conductimetric detection for C1-C6 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic and caproic acids) was carried out using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as a stationary phase. When using 0.05 mM sulfuric acid at pH 4.0 as the eluent, peak shapes of hydrophobic carboxylic acids (isovaleric, valeric, isocaproic and caproic acids) were tailed strongly. In contrast, when using 1 mM these C7 carboxylic acids at pH ca. 4 as the eluents, although system peaks (vacant peaks) corresponding to these C7 carboxylic acids appeared, peak shapes of these hydrophobic acids were improved drastically. Excellent simultaneous separation and relatively high sensitive conductimetric detection for these C1-C6 aliphatic carboxylic acids were achieved in 25 min on the TSKgel SCX column (150 x 6 mm I.D.) using 1 mM 5-methylhexanoic acid at pH 4.0 as the eluent.

  2. Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins.

    PubMed

    Kawasaki, Hideya; Akira, Tarui; Watanabe, Takehiro; Nozaki, Kazuyoshi; Yonezawa, Tetsu; Arakawa, Ryuichi

    2009-11-01

    Bare FePtCu nanoparticles (NPs) are first prepared for laser desorption/ionization mass spectroscopy (LDI-MS) analysis as affinity probes to selectively trap oppositely charged analytes from a sample solution. Our present results demonstrate bare FePtCu NPs to be a potentially useful matrix for surface-assisted laser desorption/ionization mass spectroscopy (SALDI-MS), for the analysis of small proteins and peptides. The upper detectable mass range of peptides was approximately 5 kDa, and the detection limit for peptides approximately 5 fmol. Sulfonate group-modified FePtCu nanoparticles (FePtCu-SO(3)(-) NPs), with ionization being independent of the solution pH, can interact with a positively charged analyte, and the analyte-bound NPs can be separated from the reaction supernatant by centrifugation or an external magnetic field. An oligopeptide, Gly-Gly-Tyr-Arg (GGYR) from an oligopeptide mixture containing Asp-Asp-Asp-Asp (DDDD), Gly-Gly-Gly-Gly (GGGG) and GGYR, was detected using SALDI-MS with FePtCu-SO(3)(-) NPs employing electrostatic interaction. Furthermore, FePtCu-SO(3)(-) NPs can detect lysozyme (Lyz) in human serum through the electrostatic attraction between positively charged Lyz and FePtCu-SO(3)(-) NPs at pH 8, while detection of negatively charged albumin in human serum is not possible.

  3. Synthesis and characterization of binary and ternary complexes of Co(II), Ni(II), Cu(II) and Zn(II) ions based on 4-aminotoluene-3-sulfonic acid

    NASA Astrophysics Data System (ADS)

    Faheim, Abeer A.; Abdou, Safaa N.; Abd El-Wahab, Zeinab H.

    2013-03-01

    Salicylidene (4-aminotoluene-3-sulfonic acid) Schiff base ligand H2L, and its binary and ternary Co(II), Ni(II), Cu(II) and Zn(II) complexes using 8-hydroxyquinoline (8-HOqu) and 2-aminopyridine (2-Ampy) as secondary ligands have been synthesised and characterized via elemental analysis, spectral data (IR, 1H NMR, mass and solid reflectance), molar conductance, magnetic moment, TG-DSC measurements and XRPD analysis. Correlation of all spectroscopic data suggest that H2L ligand acts as monoanionic terdentate ligand with ONO sites coordinating to the metal ions via deprotonated phenolic-O, azomethine-N and sulfonate-O while 2-Ampy behaves as a neutral monodentate ligand via amino group-N and 8-HOqu behaves as a monoanionic bidentate ligand through the ring-N and deprotonated phenolic-O. The thermal behavior of these complexes shows that the coordinated water molecules were eliminated from the complexes at relatively higher temperatures than the hydrated water and there are two routes in removal of coordinated water molecules. All complexes have mononuclear structure and the tetrahedral, square planar or an octahedral geometry have been proposed. The ligand and its complexes have been screened for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Candida albicans and Aspergillus fumigatus. Among the synthesised compounds, the binary and ternary Ni(II) complexes, (2, 8 and 10) and ternary Zn(II) complex, (12) were found to be very effective against Candida albicans and Bacillus subtilis than all other complexes with MICs of 2 and 8 μg/mL, respectively.

  4. Synthesis and characterization of binary and ternary complexes of Co(II), Ni(II), Cu(II) and Zn(II) ions based on 4-aminotoluene-3-sulfonic acid.

    PubMed

    Faheim, Abeer A; Abdou, Safaa N; Abd El-Wahab, Zeinab H

    2013-03-15

    Salicylidene (4-aminotoluene-3-sulfonic acid) Schiff base ligand H(2)L, and its binary and ternary Co(II), Ni(II), Cu(II) and Zn(II) complexes using 8-hydroxyquinoline (8-HOqu) and 2-aminopyridine (2-Ampy) as secondary ligands have been synthesised and characterized via elemental analysis, spectral data (IR, (1)H NMR, mass and solid reflectance), molar conductance, magnetic moment, TG-DSC measurements and XRPD analysis. Correlation of all spectroscopic data suggest that H(2)L ligand acts as monoanionic terdentate ligand with ONO sites coordinating to the metal ions via deprotonated phenolic-O, azomethine-N and sulfonate-O while 2-Ampy behaves as a neutral monodentate ligand via amino group-N and 8-HOqu behaves as a monoanionic bidentate ligand through the ring-N and deprotonated phenolic-O. The thermal behavior of these complexes shows that the coordinated water molecules were eliminated from the complexes at relatively higher temperatures than the hydrated water and there are two routes in removal of coordinated water molecules. All complexes have mononuclear structure and the tetrahedral, square planar or an octahedral geometry have been proposed. The ligand and its complexes have been screened for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Candida albicans and Aspergillus fumigatus. Among the synthesised compounds, the binary and ternary Ni(II) complexes, (2, 8 and 10) and ternary Zn(II) complex, (12) were found to be very effective against Candida albicans and Bacillus subtilis than all other complexes with MICs of 2 and 8 μg/mL, respectively.

  5. Highly elevated levels of perfluorooctane sulfonate and other perfluorinated acids found in biota and surface water downstream of an international airport, Hamilton, Ontario, Canada.

    PubMed

    de Solla, S R; De Silva, A O; Letcher, R J

    2012-02-01

    Per- and poly-fluorinated compounds (PFCs), which include perfluorinated carboxylates (PFCAs) and sulfonates (PFSAs) and various precursors, are used in a wide variety of industrial, commercial and domestic products. This includes aqueous film forming foam (AFFF), which is used by military and commercial airports as fire suppressants. In a preliminary assessment prior to this study, very high concentrations (>1 ppm wet weight) of the PFSA, perfluorooctane sulfonate (PFOS), were discovered in the plasma of snapping turtles (Chelydra serpentina) collected in 2008 from Lake Niapenco in southern Ontario, Canada. We presently report on a suite of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, several PFC precursors (e.g. perfluorooctane sulfonamide, PFOSA), and a cyclic perfluorinated acid used in aircraft hydraulic fluid, perfluoroethylcyclohexane sulfonate (PFECHS) in surface water from the Welland River and Lake Niapenco, downstream of the John C. Munro International Airport, Hamilton, Ontario, Canada. Amphipods, shrimp, and water were sampled from the Welland River and Lake Niapenco, as well as local references. The same suite of PFCs in turtle plasma from Lake Niapenco was compared to those from other southern Ontario sites. PFOS dominated the sum PFCs in all substrates (e.g., >99% in plasma of turtles downstream the Hamilton Airport, and 72.1 to 94.1% at all other sites). PFOS averaged 2223(±247.1SE) ng/g in turtle plasma from Lake Niapenco, and ranged from 9.0 to 171.4 elsewhere. Mean PFOS in amphipods and in water were 518.1(±83.8)ng/g and 130.3(±43.6) ng/L downstream of the airport, and 19.1(±2.7) ng/g and 6.8(±0.5) ng/L at reference sites, respectively. Concentrations of selected PFCs declined with distance downstream from the airport. Although there was no known spill event or publicly reported use of AFFF associated with a fire event at the Hamilton airport, the airport is a likely major source of PFC contamination in the Welland River. Crown

  6. Morphological studies of sulfonated polystyrene and sulfonated EPDM ionomers

    SciTech Connect

    Jackson, D.A.

    1992-12-31

    Two ionomer systems have been investigated in this research. Sulfonated polystyrene (SPS) is a typical random ionomer and is a good material for studies into the nature of phase separation in ionomers. A series of narrow molecular weight distribution (MWD) zinc neutralized SPS samples of varying sulfonation levels were prepared and analyzed through small angle x-ray scattering (SAXS). Results indicated that the correlation distance varied with both molecular weight and sulfonation level. Increases in the position of the scattering maximum with sulfonation level is the result of a greater number of ionic groups. Increasing molecular weight led to the movement of the scattering maximum to smaller scattering vectors, an indication of larger distances. It was also observed that ionomer peak occurred at smaller scattering vectors for the narrow MWD samples than in corresponding materials of greater dispersity. SAXS was also used to examine the morphology of zinc stearate (ZnSt) filled sulfonated EPDM (S-EPDM) ionomers and the nature of the interaction between the plasticizer and the ionomer. S-EPDM is a material that may find use as a thermoplastic elastomer, although its melt viscosity is too high to allow for convenient processing. The addition of of ZnSt as a plasticizer greatly reduces the melt viscosity of S-EPDM. ZnSt exists in this system as very small crystallites which are associated with ionic groups. As the temperature is increased, the crystallites anneal briefly into larger crystals before melting and diffusing into the S-EPDM matrix. Above the melting temperature of the ZnSt, it solvates the ionic groups of the ionomer, decreasing their self-association and the viscosity of the system. Increasing ZnSt loading is seen in the SAXS as an increase in scattering in the low angle region. However, this increase in intensity is not linear with concentration, showing that ZnSt exists in different environments at higher concentrations.

  7. Reversed-phase high-performance liquid chromatographic separation and quantitation of phenylthiohydantoin derivatives of 25 amino acids, including those of cysteic acid, 4-hydroxyproline, methionine sulfone, S-carboxymethylcysteine and S-methylcysteine.

    PubMed

    Kolbe, H V; Lu, R C; Wohlrab, H

    1985-06-26

    A high-performance liquid chromatography system is presented which allows separation and quantitation (in the range 4-1000 pmol) of all common phenylthiohydantoin amino acids, including derivatives of 4-hydroxyproline, methionine sulfone and three differently modified forms of cysteine. By showing the actual solvent gradient during elution (as opposed to the programmed gradient) and by supplying information on the effects of minor changes in solvent-pH, column temperature, flow-rate, and concentration of 2-propanol in the gradient, we make guidelines available for fine-tuning the separation with new Ultrasphere-ODS (C18) columns.

  8. Design, Synthesis and Crystal Structures of 6-Alkylidene-2’-Substituted Penicillanic Acid Sulfones as Potent Inhibitors of Acinetobacter baumannii OXA-24 Carbapenemase

    PubMed Central

    Bou, German; Santillana, Elena; Sheri, Anjaneyulu; Beceiro, Alejandro; Sampson, Jared; Kalp, Matthew; Bethel, Christopher R.; Distler, Anne M.; Drawz, Sarah M.; Pagadala, Sundar Ram Reddy; van den Akker, Focco; Bonomo, Robert A.; Romero, Antonio; Buynak, John D.

    2010-01-01

    Class D β-lactamases represent a growing and diverse class of penicillin inactivating enzymes that are usually resistant to commercial β-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel β-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2’-substituted penicillanic acid sulfones (1, 2, 3, 4, and 5) were synthesized and tested against OXA-24, a clinically important β-lactamase that inactivates carbapenems and found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 β-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC50 values, against OXA-24, and two OXA-24 β-lactamase variants ranged from 10 ± 1 (4 vs. WT) to 338 ± 20 nM (5 vs. Tyr112Ala, Met223Ala). Compound 4 possessed the lowest Ki (500 ± 80 nM vs. WT) and 1 possessed the highest inactivation efficiency (kinact/Ki = 0.21 ± 0.02 μM-1s-1). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 Å) reveal there is formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2’-substituted penicillin sulfones are effective mechanism-based inactivators of class D β-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D β-lactamases is proposed. PMID:20822105

  9. Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries

    SciTech Connect

    Shao, Nan; Sun, Xiao-Guang; Dai, Sheng; Jiang, Deen

    2011-01-01

    Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

  10. Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries.

    PubMed

    Shao, Nan; Sun, Xiao-Guang; Dai, Sheng; Jiang, De-en

    2011-10-27

    Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

  11. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    PubMed

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  12. An 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-immobilized electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid.

    PubMed

    Chih, Yi-Kai; Yang, Ming-Chang

    2013-06-01

    An 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)-immobilized carbon nanotube (CNT) electrode was used to simultaneously detect dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) with differential pulse voltammetry. When ABTS was immobilized onto the CNT electrode in the presence of DA, UA and 100 μM AA, the sensitivity to DA increased from 0.600 (±0.013) to 1.334 (±0.010) μA/μM in the concentration ranges of 0.90-10 μM and 1.87-20 μM, respectively, and the sensitivity to UA increased from 0.030 (±0.005) to 0.078 (±0.006) μA/μM in the concentration ranges of 2.16-240 μM and 3.07-400 μM, respectively. These findings demonstrate that the ABTS-immobilized CNT electrode attained a higher sensitivity to UA and also a wider linear range of concentrations.

  13. Constitutive ω-3 fatty acid production in fat-1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon

    2017-06-10

    Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.

  14. Determination of the adsorption model of alkenes and alcohols on sulfonic copolymer by inverse gas chromatography.

    PubMed

    Słomkiewicz, P M

    2004-04-23

    The determination of a number of adsorption sites on sulfonated styrene-divinylbenzene copolymer for alkenes (propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, isobutene, 2-methyl-1-butene, 2-methyl-2-butene, 2-methyl-1-pentene, 2-methyl-2-pentene and 2-methyl-2-hexene) and alcohols (methanol, ethanol and n-propanol, n-butanol, 2-butanol and tert-butanol) was performed by the saturation copolymer with vapors of adsorbate, by removing the excess of adsorbate from copolymer by blowing the inert gas through copolymer bed and by the desorption of adsorbed alcohol in the programmed increase of temperature. The adsorption measurements were performed on sulfonated ion-exchange resin (Amberlyst 15) with different concentrations of the acid group, which means with a varying number of adsorption sites. The following adsorption models for alkenes were suggested: the first in which one molecule of alkene is adsorbed by two sulfonic groups, for linear alcohols, the second in which one sulfonic group can adsorb one molecule of alcohol and for non-linear alcohols the third where one molecule of alcohol is adsorbed by two or more sulfonic groups.

  15. Two groups challenge US acid rain efforts

    SciTech Connect

    Not Available

    1987-11-01

    In its report, Acid Rain Invades Our National Parks, the National Parks and Conservation Association (NPCA) says acid rain is being detected at all 27 national park monitoring sites. In 1980, 87 national parks expressed concern in a NPCA survey over acid rain. Repolled in 1986, more than half of the respondents reported that no research on acid rain was under way. The NPCA report concludes that the alarm that was sounded in 1980 fell largely on deaf ears, and calls for the structural and scientific reorganization of the National Park Service. The National Audubon Society shares NPCA's dissatisfaction with federal efforts to tackle the problem of acid rain and has taken testing into its own hands. Through its Citizens Acid Rain Monitoring Network, Audubon volunteers have collected readings of acidity at 64 monitoring stations in 31 states since July.

  16. Effects of mimic of manganese superoxide dismutase on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Wang, Yan-Hong; Dong, Jiao; Zhang, Jian-Xin; Zhai, Jing; Ge, Bin

    2016-09-01

    The mimic of manganese superoxide dismutase (MnSODm) has been synthesized and reported to have anti-inflammatory properties. However, whether MnSODm has anti-inflammatory effects on colitis and any underlying mechanisms are poorly understood. This study was to investigate therapeutic effects and mechanism of MnSODm on 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced colitis model in rats. Rats were intragastrically administered MnSODm (10, 20, and 40 mg/kg) per day for 7 days after colitis was induced by TNBS. After treated with MnSODm, the colonic macroscopic and microscopic damage scores and colonic weight/length ratios were significantly decreased compared with colitis model group. Myeloperoxidase (MPO) activity, malonyldialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 levels in colon tissues were also significantly decreased in MnSODm treatment groups. However, superoxide dismutase (SOD) activity significantly increased and phosphorylated inhibitory kappa B-alpha (IκBα), inhibitor kappa B kinase (IKKα/β), and nuclear factor-kappa Bp65 (NF-κBp65) as well as Toll-like receptor 4 (TLR4) and myeloid differentiation actor 88 (MyD88) in the colonic mucosa were significantly inhibited by MnSODm treatment. Thus, MnSODm was protective against colitis via antioxidant activity and by inhibiting inflammatory mediators by down-regulating TLR4/MyD88/NF-κB signaling pathways. These data suggest a potential therapeutic effect of MnSODm in colitis.

  17. Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells.

    PubMed

    Chen, Cai-Xia; Yang, Li-Chao; Xu, Xu-Dong; Wei, Xiao; Gai, Ya-Ting; Peng, Lu; Guo, Han; Hao-Zhou; Wang, Yi-Qing; Jin, Xin

    2015-06-05

    Oleoylethanolamide (OEA), an endogenous agonist of PPARα, has been reported to have anti-atherosclerotic properties. However, OEA can be enzymatically hydrolyzed to oleic acid and ethanolamine and, thus, is not expected to be orally active. In the present study, we designed and synthesized an OEA analog, propane-2-sulfonic acid octadec-9-enyl-amide (N15), which is resistant to enzymatic hydrolysis. The purpose of this study was to investigate the effects of N15 on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results showed that N15 inhibited TNFα-induced production of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and the adhesion of monocytes to TNFα-induced HUVECs. Furthermore, the protective effect of N15 on inflammation is dependent upon a PPAR-α/γ-mediated mechanism. In conclusion, N15 protects against TNFα-induced vascular endothelial inflammation. This anti-inflammatory effect of N15 is dependent on PPAR-α/γ dual targets.

  18. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine.

    PubMed

    Xing, Xianrong; Liu, Su; Yu, Jinghua; Lian, Wenjing; Huang, Jiadong

    2012-01-15

    An imprinted electrochemical sensor based on polypyrrole-sulfonated graphene (PPy-SG)/hyaluronic acid-multiwalled carbon nanotubes (HA-MWCNTs) for sensitive detection of tryptamine was presented. Molecularly imprinted polymers (MIPs) were synthesized by electropolymerization using tryptamine as the template, and para-aminobenzoic acid (pABA) as the monomer. The surface feature of the modified electrode was characterized by cyclic voltammetry (CV). The proposed sensor was tested by chronoamperometry. Several important parameters controlling the performance of the molecularly imprinted sensor were investigated and optimized. The results showed that the PPy-SG composites films showed improved conductivity and electrochemical performances. HA-MWCNTs bionanocomposites could enhance the current response evidently. The good selectivity of the sensor allowed three discriminations of tryptamine from interferents, which include tyramine, dopamine and tryptophan. Under the optimal conditions, a linear ranging from 9.0×10(-8) mol L(-1) to 7.0×10(-5) mol L(-1) for the detection of tryptamine was observed with the detection limit of 7.4×10(-8) mol L(-1) (S/N=3). This imprinted electrochemical sensor was successfully employed to detect tryptamine in real samples.

  19. Design, Synthesis, Acaricidal/Insecticidal Activity, and Structure-Activity Relationship Studies of Novel Oxazolines Containing Sulfone/Sulfoxide Groups Based on the Sulfonylurea Receptor Protein-Binding Site.

    PubMed

    Yu, Xiuling; Liu, Yuxiu; Li, Yongqiang; Wang, Qingmin

    2016-04-20

    Enormous compounds containing sulfone/sulfoxide groups have been used in a variety of fields, especially in drug and pesticide design. To search for novel environmentally benign and ecologically safe pesticides with unique modes of action, a series of 2,4-diphenyl-1,3-oxazolines containing sulfone/sulfoxide groups as chitin synthesis inhibitors (CSIs) were designed and synthesized on the basis of the sulfonylurea receptor protein-binding site for CSIs. Their structures were characterized by (1)H and (13)C nuclear magnetic resonance and high-resolution mass spectrometry. The acaricidal and insecticidal activities of the new compounds were evaluated. It was found that most of the target compounds displayed wonderful acaricidal activities against spider mite (Tetranychus cinnabarinus) larvae and eggs. Especially compounds I-4, II-3, and II-4 displayed higher activities than commercial etoxazole at a concentration of 2.5 mg L(-1). Some target compounds exhibited insecticidal activities against lepidopteran pests. The present work demonstrated that these compounds containing sulfone/sulfoxide groups could be considered as potential candidates for the development of novel acaricides in the future.

  20. Chemical Agent Performance of Sulfonated Ionomeric Membranes for Chem/Bio Applications

    DTIC Science & Technology

    2008-12-01

    Polyisobutylene ( PIB ) Chemically Modified IB Sulfonic Acid Counter-ion (Ba, Mg, Ca, Zn, Cs)Block Copolymer Morphology Sulfonic acid...Mauritz, K., 2000: Diffusion of Alcohols Through Sulfonated PS/ PIB /PS Block Copolymers Using FTIR-ATR Spectroscopy, Polymer Materials: Engineering

  1. Partial amino acid sequences around sulfhydryl groups of soybean beta-amylase.

    PubMed

    Nomura, K; Mikami, B; Morita, Y

    1987-08-01

    Sulfhydryl (SH) groups of soybean beta-amylase were modified with 5-(iodoaceto-amidoethyl)aminonaphthalene-1-sulfonate (IAEDANS) and the SH-containing peptides exhibiting fluorescence were purified after chymotryptic digestion of the modified enzyme. The sequence analysis of the peptides derived from the modification of all SH groups in the denatured enzyme revealed the existence of six SH groups, in contrast to five reported previously. One of them was found to have extremely low reactivity toward SH-reagents without reduction. In the native state, IAEDANS reacted with 2 mol of SH groups per mol of the enzyme (SH1 and SH2) accompanied with inactivation of the enzyme owing to the modification of SH2 located near the active site of this enzyme. The selective modification of SH2 with IAEDANS was attained after the blocking of SH1 with 5,5'-dithiobis-(2-nitrobenzoic acid). The amino acid sequences of the peptides containing SH1 and SH2 were determined to be Cys-Ala-Asn-Pro-Gln and His-Gln-Cys-Gly-Gly-Asn-Val-Gly-Asp-Ile-Val-Asn-Ile-Pro-Ile-Pro-Gln-Trp, respectively.

  2. Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2009-10-01

    Perfluorinated acids (PFAs) are an emerging class of environmental contaminants present in various environmental and biological matrices. Two major PFA subclasses are the perfluorinated sulfonic acids (PFSAs) and carboxylic acids (PFCAs). The physicochemical properties and partitioning behavior for the linear PFA members are poorly understood and widely debated. Even less is known about the numerous branched congeners with varying perfluoroalkyl chain lengths, leading to confounding issues around attempts to constrain the properties of PFAs. Current computational methods are not adequate for reliable multimedia modeling efforts and risk assessments. These compounds are widely present in surface, ground, marine, and drinking waters at concentrations that vary from pg L(-1) to microg L(-1). Concentration gradients of up to several orders of magnitude are observed in all types of aquatic systems and reflect proximity to known industrial sources concentrated near populated regions. Some wastewaters contain PFAs at mg L(-1) to low g L(-1) levels, or up to 10 orders of magnitude higher than present in more pristine receiving waters. With the exception of trifluoroacetic acid, which is thought to have both significant natural and anthropogenic sources, all PFSAs and PFCAs are believed to arise from human activities. Filtration and sorption technologies offer the most promising existing removal methods for PFAs in aqueous waste streams, although sonochemical approaches hold promise. Additional studies need to be conducted to better define opportunities from evaporative, extractive, thermal, advanced oxidative, direct and catalyzed photochemical, reductive, and biodegradation methods. Most PFA treatment methods exhibit slow kinetic profiles, hindering their direct application in conventional low hydraulic residence time systems.

  3. Serum Perfluorooctanoic Acid and Perfluorooctane Sulfonate Concentrations in Relation to Birth Outcomes in the Mid-Ohio Valley, 2005–2010

    PubMed Central

    Stein, Cheryl R.; Steenland, Kyle

    2013-01-01

    Background: Previous research suggests perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) may be associated with adverse pregnancy outcomes. Objective: We conducted a population-based study of PFOA and PFOS and birth outcomes from 2005 through 2010 in a Mid-Ohio Valley community exposed to high levels of PFOA through drinking-water contamination. Methods: Women provided serum for PFOA and PFOS measurement in 2005–2006 and reported reproductive histories in subsequent follow-up interviews. Reported singleton live births among 1,330 women after 1 January 2005 were linked to birth records (n = 1,630) to identify the outcomes of preterm birth (< 37 weeks gestation), pregnancy-induced hypertension, low birth weight (< 2,500 g), and birth weight (grams) among full-term infants. Results: We observed little or no evidence of association between maternal serum PFOA or PFOS and preterm birth (n = 158) or low birth weight (n = 88). Serum PFOA and PFOS were both positively associated with pregnancy-induced hypertension (n = 106), with adjusted odds ratios (ORs) per log unit increase in PFOA and PFOS of 1.27 (95% CI: 1.05, 1.55) and 1.47 (95% CI: 1.06, 2.04), respectively, but associations did not increase monotonically when categorized by quintiles. Results of subanalyses restricted to pregnancies conceived after blood collection were consistent with the main analyses. There was suggestion of a modest negative association between PFOS and birth weight in full-term infants (–29 g per log unit increase; 95% CI: –66, 7), which became stronger when restricted to births conceived after the blood sample collection (–49 g per log unit increase; 95% CI: –90, –8). Conclusion: Results provide some evidence of positive associations between measured serum perfluorinated compounds and pregnancy-induced hypertension and a negative association between PFOS and birth weight among full-term infants. Citation: Darrow LA, Stein CR, Steenland K. 2013. Serum

  4. Synthesis and SAXS Characterization of Sulfonated Styrene-Ethylene/Propylene-Styrene Triblock Copolymers

    DTIC Science & Technology

    2006-07-05

    greater than 99%. The catalyst was removed by washing with citric acid solution (10 wt%). Sulfonation of Styrene-Ethylene/Propylene-Styrene (SEPS...DMA of the sulfonated block copolymers revealed the glass transition of the ethylene/propylene (E/ P ) rubber phase at approximately -45 oC (Fig. 3...A rubbery plateau exists for the sulfonic acid containing polymers that ranged up to 60 oC, while the rubbery plateau for sodium sulfonate salt

  5. Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to

  6. Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to

  7. Efficient and direct synthesis of poly-substituted indeno[1,2-b]quinolines assisted by p-toluene sulfonic acid using high-temperature water and microwave heating via one-pot, three-component reaction.

    PubMed

    Tu, Shu-Jiang; Jiang, Bo; Zhang, Jun-Yong; Jia, Run-Hong; Zhang, Yan; Yao, Chang-Sheng

    2006-11-07

    Reactions of aldehydes, 1,3-indanedione and enaminones were successfully carried out using p-toluene sulfonic acid (p-TsOH) as a catalyst and high-temperature water as a solvent under microwave irradiation. This method provided several advantages such as rapid reaction times, high yields, and a simple workup procedure. In addition, a possible mechanism to account for the reaction was proposed.

  8. Strong Lewis acid air-stable cationic titanocene perfluoroalkyl(aryl)sulfonate complexes as highly efficient and recyclable catalysts for C-C bond forming reactions.

    PubMed

    Li, Ningbo; Wang, Jinying; Zhang, Xiaohong; Qiu, Renhua; Wang, Xie; Chen, Jinyang; Yin, Shuang-Feng; Xu, Xinhua

    2014-08-14

    A series of strong Lewis acid air-stable titanocene perfluoroalkyl(aryl)sulfonate complexes Cp2Ti(OH2)2(OSO2X)2·THF (X = C8F17, 1·THF; X = C4F9, 2·H2O·THF; X = C6F5, 3) were successfully synthesized by the treatment of Cp2TiCl2 with C8F17SO3Ag, C4F9SO3Ag and C6F5SO3Ag, respectively. In contrast to well-known titanocene bis(triflate), these complexes showed no change in open air over three months. TG-DSC analysis showed that 1·THF, 2·H2O·THF and 3 were thermally stable at 230 °C, 220 °C and 280 °C, respectively. Conductivity measurements showed that these complexes underwent ionic dissociation in CH3CN solution. X-ray analysis results confirmed that 2·H2O·THF and 3 were cationic. ESR spectra showed that the Lewis acidity of 1·THF (1.06 eV) was higher than that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV). UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2·H2O·THF. Fluorescence spectra showed that the Lewis acidity of 2 (λ(em) = 477 nm) was higher than that of Sc(3+) (λ(em) = 474 nm). These complexes showed high catalytic ability in various carbon-carbon bond forming reactions. Moreover, they show good reusability. Compared with 1·THF, 2·H2O·THF and 3 exhibit higher solubility and better catalytic activity, and will find broad applications in organic synthesis.

  9. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha

    EPA Science Inventory

    Peroxisome proliferators, including perfluorooctanoic acid (PFOA), are environmentally widespread and persistent and multiple toxicities have been reported in experimental animals and humans. These compounds trigger biological activity via activation of the alpha isotype of pero...

  10. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha

    EPA Science Inventory

    Peroxisome proliferators, including perfluorooctanoic acid (PFOA), are environmentally widespread and persistent and multiple toxicities have been reported in experimental animals and humans. These compounds trigger biological activity via activation of the alpha isotype of pero...

  11. Nanoscale structure and morphology of sulfonated polyphenylenes via atomistic simulations

    DOE PAGES

    Abbott, Lauren J.; Frischknecht, Amalie L.

    2017-01-23

    We performed atomistic simulations on a series of sulfonated polyphenylenes systematically varying the degree of sulfonation and water content to determine their effect on the nanoscale structure, particularly for the hydrophilic domains formed by the ionic groups and water molecules. We found that the local structure around the ionic groups depended on the sulfonation and hydration levels, with the sulfonate groups and hydronium ions less strongly coupled at higher water contents. In addition, we characterized the morphology of the ionic domains employing two complementary clustering algorithms. At low sulfonation and hydration levels, clusters were more elongated in shape and poorlymore » connected throughout the system. As the degree of sulfonation and water content were increased, the clusters became more spherical, and a fully percolated ionic domain was formed. As a result, these structural details have important implications for ion transport.« less

  12. Sensitive and selective colorimetric detection of glutathione in human plasma with 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and Ag+ ion

    NASA Astrophysics Data System (ADS)

    Li, Yinhuan; Liu, Xiaoying; Zhang, Ruyi

    2017-02-01

    Glutathione is of vital importance to human beings through involving in many cellular functions. Simple and sensitive methods capable of detecting glutathione in biological samples are significant to diagnosis and prevention of disease. Here a simple, label-free, and sensitive colorimetric method was developed for the determination of glutathione. It was observed that Ag+ ion could directly oxidize 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), a commonly used peroxidase substrate, to produce a green solution, which possessed a maximum absorbance at 420 nm. The presence of glutathione hindered the oxidation process and decreased the absorbance at 420 nm owing to its ability to bind with Ag+ ion. The procedure allowed the measurement of 0.1-4.0 μM glutathione with a detection limit of 59 nM. The relative standard deviation was 1.8% in eleven replicated measurements of 1.0 μM glutathione solution. The method was applied to the determination of glutathione in human plasma with satisfactory results.

  13. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    PubMed

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples.

  14. The Environmental Pollutants Perfluorooctane Sulfonate and Perfluorooctanoic Acid Upregulate Uncoupling Protein 1 (UCP1) in Brown-Fat Mitochondria Through a UCP1-Dependent Reduction in Food Intake.

    PubMed

    Shabalina, Irina G; Kramarova, Tatiana V; Mattsson, Charlotte L; Petrovic, Natasa; Rahman Qazi, Mousumi; Csikasz, Robert I; Chang, Shu-Ching; Butenhoff, John; DePierre, Joseph W; Cannon, Barbara; Nedergaard, Jan

    2015-08-01

    The environmental pollutants perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) cause a dramatic reduction in the size of the major adipose tissue depots and a general body weight decrease when they are added to the food of mice. We demonstrate here that this is mainly due to a reduction in food intake; this reduction was not due to food aversion. Remarkably and unexpectedly, a large part of the effect of PFOA/PFOS on food intake was dependent on the presence of the uncoupling protein 1 (UCP1) in the mice. Correspondingly, PFOA/PFOS treatment induced recruitment of brown adipose tissue mitochondria: increased oxidative capacity and increased UCP1-mediated oxygen consumption (thermogenesis). In mice pair-fed to the food intake during PFOA/PFOS treatment in wildtype mice, brown-fat mitochondrial recruitment was also induced. We conclude that we have uncovered the existence of a regulatory component of food intake that is dependent upon brown adipose tissue thermogenic activity. The possible environmental consequences of this novel PFOA/PFOS effect (a possible decreased fitness) are noted, as well as the perspectives of this finding on the general understanding of control of food intake control and its possible extension to combatting obesity. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. A Facile Chemical Reduction of Graphene-Oxide Using p-Toluene Sulfonic Acid and Fabrication of Reduced Graphene-Oxide Film.

    PubMed

    Vengatesan, M R; Shen, Tian-Zi; Alagar, M; Song, Jang-Kun

    2016-01-01

    We report a cost effective and easy chemical reduction method for exfoliated individual graphene oxide (GO) and GO paper using p-toluene sulfonic acid (PTSA) under mild conditions. Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), X-ray photon spectroscopy (XPS), thermo gravimetric analysis (TGA) and transmission electron microscopy (TEM) analysis were performed to investigate the quality of GO reduction. Data resulting from the spectral analysis suggest that the reduction method using PTSA is an efficient method to remove oxygen functionalities in the GO and also as an alternative to commonly used reducing agents. We also fabricated chemically reduced GO (RGO) film from GO film using this method. The RGO film exhibits an electrical conductivity of about 10587 Sm⁻¹. These results suggest that this method is very useful for the reduction of GO and GO film or paper using PTSA in a solution process for flexible electronics due to its facile, efficient and cost-effective features.

  16. Physiological Modifications in the Production and Repair of Methyl Methane Sulfonate-Induced Breaks in the Deoxyribonucleic Acid of Escherichia coli K-12

    PubMed Central

    Scudiero, Dominic A.; Friesen, Benjamin S.; Baptist, Jeremy E.

    1973-01-01

    The medium in which Rec+ strains of Escherichia coli K-12 are grown affected their sensitivity to treatment with methyl methane sulfonate (MMS). Rec+ cells grown to the stationary phase in glucose-enriched nutrient broth (GNB) were more resistant to MMS than cells grown in nutrient broth (NB). The repair of MMS-induced breaks (or alkali-labile bonds) in the deoxyribonucleic acid (DNA) from E. coli K-12 strains AB1157, AB1886 uvrA6, and SR111 recA13 recB21 grown in GNB and NB media was examined by means of alkaline sucrose gradient centrifugation. It appeared that essentially all of the repair of breaks that occurred, as evidenced by an increase in “molecular weight,” took place within 10 min after treatment with MMS under our conditions. Cell survival was highest in cells for which the size of the DNA after the post-treatment incubation was the largest. The largest DNA after post-treatment incubation was found in Rec+ cells grown in GNB medium. The results suggest that these cells may have an enhanced capacity for repairing breaks in DNA. PMID:4349030

  17. Use of dynamic simulation to assess the behaviour of linear alkyl benzene sulfonates and their biodegradation intermediates (sulfophenylcarboxylic acids) in estuaries

    NASA Astrophysics Data System (ADS)

    García-Luque, E.; González-Mazo, E.; Forja, J. M.; Gómez-Parra, A.

    2009-02-01

    Dynamic laboratory simulation of processes affecting chemical species in their transit through estuaries is a very useful tool to characterize these littoral systems. To date, laboratory studies concerning biodegradation and sorption (onto suspended particulate matter) of LAS in an estuary are scarce. For this reason, a dynamic automated estuarine simulator has been employed to carry out different experiments in order to assess the biodegradability of linear alkyl benzene sulfonates (LAS) and their biodegradation intermediates (sulfophenylcarboxylic acids, SPCs) using environmentally representative LAS concentrations in estuaries by a continuous injection of LAS into the system. During the experiments, a great affinity of LAS for the solid phase has been found, as well as an increased adsorption in line with increased chain length. On the other hand, the presence of SPCs with chain length between 6 and 13 carbon atoms was detected. Accumulation and persistence of medium chain length SPCs (C 6-C 8) along the experiments show that their degradation constitutes the limiting step for the process of LAS mineralization. In the final zone of the simulated estuarine system, the levels of SPCs were below the limits of detection. Thus, the disappearance of SPCs indicated that LAS biodegradation had been completed along the estuary. Similar results have been described for different Iberian littoral ecosystems. Therefore, the simulator employed in this research appears to be a useful tool to anticipate the behaviour of a xenobiotic chemical in its transit through littoral systems with different salinity gradients.

  18. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  19. A targeted/non-targeted screening method for perfluoroalkyl carboxylic acids and sulfonates in whole fish using quadrupole time-of-flight mass spectrometry and MS(e).

    PubMed

    Crimmins, Bernard S; Xia, Xiaoyan; Hopke, Philip K; Holsen, Thomas M

    2014-02-01

    A new method for measuring perfluoroalkyl contaminants (PFCs) in biological matrices has been developed. An ultra-high pressure liquid chromatograph equipped with a quadrupole time-of-flight mass spectrometer (UPLC-QToF) was optimized using a continuous precursor/product ion monitoring mode. Unlike traditional targeted studies that isolate precursor/product ion pairs, the current method alternates between two ionization energy channels to continuously capture standard electrospray ionization (low energy) and collision induced dissociation (high energy) spectra. The result is the indiscriminant acquisition of paired low and high energy spectra for all constituents eluting from the chromatographic system. This technique was evaluated for the routine analysis of perfluoroalkyl species. Using this technique, linear perfluoroalkyl carboxylic acids (C4 to C14) and perfluoroalkyl sulfonates (C4, C6, C8 and C10) exhibited a linear range spanning over three orders of magnitude and were detectable at levels less than 1 pg on column with a root mean squared signal to noise ratio of 5 to 20. Lake trout (Salvelinus namaycush) and National Institutes of Standards and Technology Standard Reference Material 1946 were used to evaluate matrix effects and the accuracy of this method when applied to a whole fish extract. The current method was also evaluated as a diagnostic tool to identify unknown PFCs using experimental fragmentation patterns, mass defect filtering and Kendrick plots.

  20. [Saccharomyces boulardii reduced intestinal inflammation in mice model of 2,4,6-trinitrobencene sulfonic acid induced colitis: based on microarray].

    PubMed

    Lee, Sang Kil; Kim, Hyo Jong; Chi, Sung Gil

    2010-01-01

    Saccharomyces boulardii has been reported to be beneficial in the treatment of inflammatory bowel disease. The aim of this work was to evaluate the effect of S. boulardii in a mice model of 2,4,6-trinitrobencene sulfonic acid (TNBS) induced colitis and analyze the expression of genes in S. boulardii treated mice by microarray. BALB/c mice received TNBS or TNBS and S. boulardii treatment for 4 days. Microarray was performed on total mRNA form colon, and histologic evaluation was also performed. In mice treated with S. boulardii, the histological appearance and mortality rate were significantly restored compared with rats receiving only TNBS. Among 330 genes which were altered by both S. boulardii and TNBS (>2 folds), 193 genes were down-regulated by S. boulardii in microarray. Most of genes which were down-regulated by S. bouardii were functionally classified as inflammatory and immune response related genes. S. boulardii may reduce colonic inflammation along with regulation of inflammatory and immune responsive genes in TNBS-induced colitis.

  1. Evaluation of biochemical effects related to perfluorooctane sulfonic acid exposure in organohalogen-contaminated great tit (Parus major) and blue tit (Parus caeruleus) nestlings.

    PubMed

    Hoff, Philippe Tony; Van de Vijver, Kristin; Dauwe, Tom; Covaci, Adrian; Maervoet, Johan; Eens, Marcel; Blust, Ronny; De Coen, Wim

    2005-12-01

    A perfluorooctane sulfonic acid (PFOS) biomonitoring survey was conducted on great tit (Parus major) and blue tit (Parus caeruleus) nestlings from Blokkersdijk, a bird reserve in the proximity of a fluorochemical plant in Antwerp (Belgium) and Fort IV, a control area. PFOS, together with 11 organochlorine pesticides, 20 polychlorinated biphenyl congeners and 7 polybrominated diphenyl ethers were measured in liver tissue. The hepatic PFOS concentrations at Blokkersdijk (86-2788 and 317-3322 ng/g wet weight (ww) for great and blue tit, respectively) were among the highest ever measured and were significantly higher than at the control area (17-206 and 69-514 ng/g ww for great and blue tit, respectively). The hepatic PFOS concentration was species- and sex-independent and correlated significantly and positively with the serum alanine aminotransferase activity and negatively with the serum cholesterol and triglyceride levels in both species but did not correlate with condition or serum protein concentration. In the great tit, a significant positive correlation was observed between the liver PFOS concentration and the relative liver weight. In the blue tit, the hepatic PFOS concentration correlated positively and significantly with hematocrite values. None of the investigated organohalogen pollutants except for PFOS were suggested to be involved in the observed biological alterations.

  2. Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): relationships with biochemical and organismal effects.

    PubMed

    Hoff, Philippe Tony; Van Campenhout, Karen; Van de Vijver, Kristin; Covaci, Adrian; Bervoets, Lieven; Moens, Lotte; Huyskens, Geert; Goemans, Geert; Belpaire, Claude; Blust, Ronny; De Coen, Wim

    2005-09-01

    A perfluorooctane sulfonic acid (PFOS) assessment was conducted on gibel carp (Carassius auratus gibelio), carp (Cyprinus carpio), and eel (Anguilla anguilla) in Flanders (Belgium). The liver PFOS concentrations in fish from the Ieperlee canal (Boezinge, 250-9031 ng/g wet weight, respectively) and the Blokkersdijk pond (Antwerp, 633-1822 ng/g wet weight) were higher than at the Zuun basin (Sint-Pieters-Leeuw, 11.2-162 ng/g wet weight) and among the highest in feral fish worldwide. Eel from the Oude Maas pond (Dilsen-Stokkem) and Watersportbaan basin (Ghent) had PFOS concentrations ranging between 212 and 857 ng/g wet weight. The hepatic PFOS concentration was significantly and positively related with the serum alanine aminotransferase activity, and negatively with the serum protein content in eel and carp. The hepatic PFOS concentration in carp correlated significantly and negatively with the serum electrolyte concentrations whereas a significant positive relation was found with the hematocrit in eel. Although 13 organochlorine pesticides, 22 polychlorinated biphenyl (PCB) congeners and 7 polybrominated diphenyl ethers (PBDEs) were also measured in the liver tissue, only PCB 28, PCB 74, gamma-hexachlorocyclohexane (gamma-HCH) and hexachlorobenzene (HCB) were suggested to contribute to the observed serological alterations in eel.

  3. Therapeutic effects of human amnion-derived mesenchymal stem cell transplantation and conditioned medium enema in rats with trinitrobenzene sulfonic acid-induced colitis

    PubMed Central

    Miyamoto, Shuichi; Ohnishi, Shunsuke; Onishi, Reizo; Tsuchiya, Ikuki; Hosono, Hidetaka; Katsurada, Takehiko; Yamahara, Kenichi; Takeda, Hiroshi; Sakamoto, Naoya

    2017-01-01

    Cell therapy with mesenchymal stem cells (MSCs) is expected to provide a new strategy for the treatment of inflammatory bowel disease (IBD). Large amounts of MSCs can be obtained from human amnion. Therefore, we investigated the effect of transplantation of human amnion-derived MSCs (hAMSCs) or enema of conditioned medium (CM) from hAMSCs into rats with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. In the first experiment, 10-week-old male Sprague-Dawley rats were intravenously injected with hAMSCs (1 × 106 cells) 3 h after rectal administration of TNBS (45 mg/kg). In the second experiment, rats with TNBS-induced colitis received CM by enema into the colon for 3 days. Colitis was investigated by endoscopy, histology, immunohistochemistry, and by measuring mRNA expression of inflammatory mediators. Administration of hAMSCs or CM enema significantly improved the endoscopic score. In addition, these two interventions resulted in significantly decreased infiltration of neutrophils and monocytes/macrophages and decreased expression levels of TNF-α, CXCL1, and CCL2. In conclusion, transplantation of hAMSCs and CM enema provided significant improvement in rats with TNBS-induced colitis. CM from hAMSCs and hAMSCs may be new strategies for the treatment of IBD. PMID:28386323

  4. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    PubMed Central

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-01-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs. PMID:26876468

  5. An alternative standard for Trolox-equivalent antioxidant-capacity estimation based on thiol antioxidants. Comparative 2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] decolorization and rotational viscometry study regarding hyaluronan degradation.

    PubMed

    Hrabárová, Eva; Valachová, Katarína; Rapta, Peter; Soltés, Ladislav

    2010-09-01

    Comparison of the effectiveness of antioxidant activity of three thiol compounds, D-penicillamine, reduced L-glutathione, and 1,4-dithioerythritol, expressed as a radical-scavenging capacity based on the two independent methods, namely a decolorization 2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] assay and a rotational viscometry, is reported. Particular concern was focused on the testing of potential free-radical scavenging effects of thiols against hyaluronan degradation, induced by hydroxyl radicals. A promising, solvent-independent, antioxidative function of 1,4-dithioerythritol, comparable to that of a standard compound, Trolox(®), was confirmed by the 2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] assay. The new potential antioxidant 1,4-dithioerythritol exhibited very good solubility in a variety of solvents (e.g., H(2)O, EtOH, and DMSO) and could be widely accepted and used as an effective antioxidant standard instead of a routinely used Trolox(®) on 2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] assay.

  6. Design, Synthesis, and Crystal Structures of 6-Alkylidene-2 -Substituted Penicillanic Acid Sulfones as Potent Inhibitors of Acinetobacter baumannii OXA-24 Carbapenemase

    SciTech Connect

    Bou, G.; Santillana, E; Sheri, A; Beceiro, A; Sampson, J; Kalp, M; Bethel, C; Distler, A; Drawz, S; et. al.

    2010-01-01

    Class D {beta}-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial {beta}-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel {beta}-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2{prime}-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important {beta}-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 {beta}-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC{sub 50} values against OXA-24 and two OXA-24 {beta}-lactamase variants ranged from 10 {+-} 1 (4 vs WT) to 338 {+-} 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K{sub i} (500 {+-} 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k{sub inact}/K{sub i} = 0.21 {+-} 0.02 {micro}M{sup -1}s{sup -1}). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 {angstrom}) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2{prime}-substituted penicillin sulfones are effective mechanism-based inactivators of class D {beta}-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D {beta}-lactamases is proposed.

  7. Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-κb pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice

    PubMed Central

    Liu, Jiali; Zhou, Fang; Chen, Qianying; Kang, An; Lu, Meng; Liu, Wenyue; Zang, Xiaojie; Wang, Guangji; Zhang, Jingwei

    2015-01-01

    Patients with inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, often suffer drug intolerance. This resistance can be divided into intrinsic resistance and acquired resistance. Although there is agreement on acquired resistance, studies regarding intrinsic resistance have demonstrated inconsistencies, especially for Crohn’s disease. For this reason, an animal model of Crohn’s disease was induced with 2,4,6-trinitrobenzene sulfonic acid solution (TNBS), and intrinsic resistance was analyzed by measuring the function and expression of P-glycoprotein (P-gp) in peripheral mononuclear blood cells (PMBC), followed by mechanistic studies. The results revealed reduced retention of cyclosporine A in PMBC over-expressing P-gp in a TNBS-treated group and enhanced secretion of the cytokines IL-1β, IL-6, IL-17, and TNF-α as well as LPS in plasma. These cytokines and LPS can induce P-gp expression through the STAT3/Nf-κb pathway, contributing to a decrease of cyclosporine A retention, which can be reversed by the application of a P-gp inhibitor. Our results demonstrated that the sustained chronic inflammation could induce the intrinsic resistance presented as P-gp over-expression in PBMC in Crohn’s disease through STAT3/Nf-κb pathway and this resistance might be reversed by combinational usage of P-gp inhibitors. PMID:26324318

  8. Synthesis of porous sulfonated carbon as a potential adsorbent for phenol wastewater.

    PubMed

    Prabhu, Azhagapillai; Al Shoaibi, Ahmed; Srinivasakannan, C

    2015-01-01

    The work reports a facile synthesis procedure for preparation of porous sulfonated carbons and its suitability for adsorption of phenol. The sulfonated carbon was synthesized utilizing a simplified, single-step, shorter duration process by sulfonation, dehydration and carbonization of sucrose in sulfuric acid and tetraethylorthosilicate. The surface and internal structures of the adsorbents were characterized utilizing various characterization techniques to understand the porous nature and surface functional groups of the porous matrix. Adsorption capacity was found to be highest for the sample heat treated at 600 °C, with the maximum adsorption capacity of 440 mg/g at 30 °C. The adsorption isotherms were tested with the Freundlich and Langmuir adsorption isotherms models to identify the appropriate adsorption mechanism.

  9. Simultaneous decolorization and biohydrogen production from xylose by Klebsiella oxytoca GS-4-08 in presence of azo dyes with sulfonate and carboxyl groups.

    PubMed

    Yu, Lei; Cao, Ming-Yue; Wang, Peng-Tao; Wang, Shi; Yue, Ying-Rong; Yuan, Wen-Duo; Qiao, Wei-Chuan; Wang, Fei; Song, Xin

    2017-03-10

    Biohydrogen production from the pulp and paper effluent containing rich lignocellulosic material could be achieved by the fermentation process. Xylose, an important hemicellulose hydrolysis product, is used less efficiently as a substrate for biohydrogen production. Moreover, azo dyes are usually added to fabricate anti-counterfeiting paper, which further increases the complexity of wastewater. This study is the first paper to report that xylose could serve as the sole carbon source for a pure culture-Klebsiella oxytoca GS-4-08 to achieve simultaneous decolorization and biohydrogen production. With 2 g l(-1) of xylose as the substrate, a maximum xylose utilization rate (URXyl) and a hydrogen molar yield (HMY) were obtained as 93.99% and 0.259 mol H2 mol(-1) xylose, respectively. Biohydrogen kinetics and e(-) equiv balance calculations indicated that MR penetrates and intracellularly inhibits on both pentose phosphate pathway and pyruvate fermentation pathway, while MO was independent of the glycolysis and biohydrogen pathway. The data demonstrate that biohydrogen pathways in the presence of azo dyes with sulfonate and carboxyl groups were different, but the azo dyes could be completely reduced during the biohydrogen production period whether with the presence of MO or MR. The feasibility of hydrogen production from industrial pulp and paper effluent by the strain was also proved if the xylose is sufficient, and not affected by toxic substances which usually exists in such wastewater except for chlorophenol. This study offers a promising energy-recycling strategy for treating pulp and paper wastewaters, especially for those containing azo dyes.Importance The pulp and paper industry is a major industry in many developing countries and the global market of pulp and paper wastewater treatment is expected to increase by 60% between 2012 and 2020. Such wastewater contains large amount of refractory contaminants, such as lignin, whose reclamation is considered economic

  10. Molecular Modeling Studies on Aromatic Sulfonation. 1. Intermediates Formed in the Sulfonation of Toluene.

    PubMed

    Morley, John O.; Roberts, D. W.

    1997-10-17

    Molecular modeling studies suggest that the mechanism of the sulfonation of toluene with sulfur trioxide proceeds via the formation of a pi-complex (4b) which rearranges to form a Wheland intermediate (5). This structure is unable to form toluenesulfonic acid (8) directly and prefers to react with a further molecule of sulfur trioxide to form a pyrosulfonate intermediate (6a) which undergoes a facile prototropic rearrangement involving the transfer of the ring hydrogen at the sp(3) carbon of 6a to the sulfonate oxygen atom to form the corresponding acid (7). The formation of toluenesulfonic acid (8) appears to arise from an exothermic reaction of between the pyrosulfonic acid (7) and toluene. The overall calculated thermodynamic change in moving from the reaction of one molecule of sulfur trioxide with toluene to the sulfonic acid (8b) is fully consistent with an estimated experimental value of -33.5 kcal mol(-1) for the same reaction using simple alkylbenzenes.

  11. Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate.

    PubMed

    Takacs, Margy L; Abbott, Barbara D

    2007-01-01

    This study evaluates the potential for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to activate peroxisome proliferator-activated receptors (PPARs), using a transient transfection cell assay. Cos-1 cells were cultured in Dulbecco's Minimal Essential Medium (DMEM) with fetal bovine serum in 96-well plates and transfected with mouse or human PPARalpha, beta/delta, or gamma reporter plasmids. Transfected cells were exposed to PFOA (0.5-100 microM), PFOS (1-250 microM), positive controls (i.e., known agonists and antagonists), and negative controls (i.e., DMEM, 0.1% water, and 0.1% dimethyl sulfoxide). Following treatment for 24 h, activity was measured using the Luciferase reporter assay. In this assay, PFOA had more transactivity than PFOS with both the mouse and human PPAR isoforms. PFOA significantly increased mouse and human PPARalpha and mouse PPARbeta/delta activity relative to vehicle. PFOS significantly increased activation of mouse PPARalpha and PPARbeta/delta isoforms. No significant activation of mouse or human PPARgamma was observed with PFOA or PFOS. The PPARalpha antagonist, MK-886, significantly suppressed PFOA and PFOS activity of mouse and human PPARalpha. The PPARgamma antagonist, GW9662, significantly suppressed PFOA activity on the human isoform. In conclusion, this study characterized the dose response and differential activation of mouse and human PPARalpha, beta/delta, gamma by PFOA and PFOS. While this model allows opportunities to compare potential activation by perfluoroalkyl acids, it only evaluates the interaction and activation of the PPAR reporter constructs and is not necessarily predictive of a toxicological response in vivo.

  12. 21 CFR 177.2500 - Polyphenylene sulfone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consist of basic resin produced by reacting polyphenylene sulfide with peracetic acid such that the... sulfide used to manufacture polyphenylene sulfone is prepared by the reaction of sodium sulfide and p... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfone resins. 177.2500 Section...

  13. Sulfonated Nanoplates in Proton Conducting Membranes for Fuel Cells

    SciTech Connect

    Chen, W.F.; Ni’mah, H.; Yu-Cheng Shen, Y.-C.; Kuo, P.-L.

    2011-09-29

    Surface-functionalized nanoplates are synthesized by anchoring sulfonic acid containing siloxanes on zirconium phosphate, and in turn blended with Nafion to fabricate proton conducting membranes. The effects of these sulfonated nanoplates on proton conduction, hydro-characteristics and fuel cell performance are reported.

  14. Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium.

    PubMed Central

    Haug, W; Schmidt, A; Nörtemann, B; Hempel, D C; Stolz, A; Knackmuss, H J

    1991-01-01

    Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases. PMID:1781678

  15. Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte

    NASA Astrophysics Data System (ADS)

    Fiegenbaum, Fernanda; de Souza, Michèle O.; Becker, Márcia R.; Martini, Emilse M. A.; de Souza, Roberto F.

    2015-04-01

    The hydrogen evolution reaction (HER) performed with platinum (Pt), nickel (Ni), stainless steel 304 (SS) or glassy carbon (GC) cathodes in 0.1 M 3-triethylammonium-propanesulfonic acid tetrafluoroborate (TEA-PS.BF4) solution is studied using quasi-potentiostatic and impedance spectroscopy techniques. The objective is to compare the catalytic effect on the cathode using different materials to obtain hydrogen by water electrolysis. Furthermore, the catalytic effect of the ionic liquid (IL) on the cathode compared with that of a hydrochloric acid (HCl) solution with same pH value (0.8) is reported. A low activation energy (Ea) of 8.7 kJ mol-1 is found for the glassy carbon cathode. Tafel plots obtained with TEA-PS.BF4 IL suggest the formation of an electroactive layer of IL on the cathode, which may be responsible for the catalytically enhanced performance observed.

  16. Zwitterionic chiral stationary phases based on cinchona and chiral sulfonic acids for the direct stereoselective separation of amino acids and other amphoteric compounds.

    PubMed

    Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang

    2014-06-01

    An extensive series of free amino acids and analogs were directly resolved into enantiomers (and stereoisomers where appropriate) by HPLC on zwitterionic chiral stationary phases (Chiralpak ZWIX(+) and Chiralpak ZWIX(-)). The interaction and chiral recognition mechanisms were based on the synergistic double ion-paring process between the analyte and the chiral selectors. The chiral separation and elution order were found to be predictable for primary α-amino acids with apolar aliphatic side chains. A systematic investigation was undertaken to gain an insight into the influence of the structural features on the enantiorecognition. The presence of polar and/or aromatic groups in the analyte structure is believed to tune the double ion-paring equilibrium by the involvement of the secondary interaction forces such as hydrogen bonding, Van der Waals forces and π-π stacking in concert with steric parameters. The ZWIX chiral columns were able to separate enantiomers and stereoisomers of various amphoteric compounds with no need for precolumn derivatization. Column switching between ZWIX(+) and ZWIX(-) is believed to be an instrumental tool to reverse or control the enantiomers elution order, due to the complementarity of the applied chiral selectors.

  17. Sodium Polystyrene Sulfonate

    MedlinePlus

    ... is used to treat hyperkalemia (increased amounts of potassium in the body). Sodium polystyrene sulfonate is in a class of medications called potassium-removing agents. It works by removing excess potassium ...

  18. Sulfonated polyphenylene polymers

    DOEpatents

    Cornelius, Christopher J.; Fujimoto, Cy H.; Hickner, Michael A.

    2007-11-27

    Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.

  19. HEPATIC GENE EXPRESSION PROFILING IN PERFLUOROHEXANE SULFONATE-EXPOSED WILD-TYPE AND PPARα-NULL MICE.

    EPA Science Inventory

    Perfluorohexane sulfonate (PFHxS) is one member of a group ofperfluoroakyl acids (PFAAs) presently recognized as widespread environmental contaminants. Like other PFAAs, PFHxS is also commonly found in human serum. Although PFHxS is presumed to be an activator of peroxisome proli...

  20. HEPATIC GENE EXPRESSION PROFILING IN PERFLUOROHEXANE SULFONATE-EXPOSED WILD-TYPE AND PPARα-NULL MICE.

    EPA Science Inventory

    Perfluorohexane sulfonate (PFHxS) is one member of a group ofperfluoroakyl acids (PFAAs) presently recognized as widespread environmental contaminants. Like other PFAAs, PFHxS is also commonly found in human serum. Although PFHxS is presumed to be an activator of peroxisome proli...

  1. Therapeutic and immunoregulatory effect of GATA-binding protein-3/T-box expressed in T-cells ratio of astragalus polysaccharides on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Gao, Yong-Jian; Zhu, Feng; Qian, Jia-Ming; Dai, Jia-Yuan

    2016-12-01

    To analyze the immunological characteristics of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model and examine the therapeutic effects and mechanisms of Astragalus polysaccharides (APS) treatment. Thirty-two male specific pathogen free Spragne-Dawley rats were randomly equally assigned to four groups: control, TNBS, APS and prednisone groups. Experimental colitis was induced by enema administration of TNBS. Then rats were treated with APS (0.5 g•kg(-1)•day(-1), once daily) or prednisone (1.0 mg•kg(-1)•day(-1), once daily) by gavage for 14 days. Macroscopic lesion and histological damage were determined, and activity of myeloperoxidase (MPO) was measured in the colonic tissues. Expressions of T-box expressed in T-cells (T-bet) and GATA-binding protein-3 (GATA-3) were determined by immunohistochemistry analysis and western blot. Both macroscopic lesion and histological colonic damage induced by TNBS were reduced by APS and prednisone treatment. These were accompanied by significant attenuation of MPO activity (P=0.03). TNBS intervention enhanced the expression of both GATA-3 and T-bet, but the expression of T-bet was significantly enhanced than that of GATA-3, resulting in significant reduction of GATA-3/T-bet ratio (P=0.025). APS administration enhanced the expression of T-bet (P=0.04) and GATA-3 (P=0.019) in comparison to TNBS group, and resulting in an up-regulated GATA-3/T-bet ratio. Prednisone treatment inhibited both expressions; however it also resulted in up-regulation of the GATA-3/T-bet ratio. These results demonstrated that APS exerted a beneficial immune regulatory effect on experimental colitis. It promoted the expression of T helper cell 1 (Th1) and T helper cell 2 (Th2) specific transcription factors but ultimately favor a shift toward Th2 phenotype, suggesting that APS possessed therapeutic potential in experimental colitis.

  2. High temperature fuel cell membranes based on poly(arylene ether)s containing benzimidazole groups

    SciTech Connect

    Kim, Dae Sik; Kim, Yu Seung; Lee, Kwan - Soo; Boncella, James M; Kuiper, David; Guiver, Michael D

    2009-01-01

    Development of new high-performance polymer membranes that retain their proton conductivity under low humidity conditions is one of the most critical requirements to commercialize PEMFC systems. Current sulfonated proton exchange membranes acquire proton conductivity by water that solvates ion and carries proton. Consequently, a loss of water under low RH conditions immediately results in a loss of proton conductivity. One approach to maintain proton conductivity under low RH conditions is to replace water with a less volatile proton solvent. Kreuer has pointed out the possibility to develop fully polymeric proton-conducting membranes based on nitrogen-containing heterocycles such as imidazole, benzimidazole, and pyrazole. We have attempted to blend those less volatile proton solvent with sulfonated copolymers such as polystyrene sulfonic acid, Nafion, poly(arylene ether sulfone, BPSH-xx). [Ref. DOE review meeting 2007 and 2008] However, we observed that imidazole was slowly sublimated out as temperature and humidity increases which could cause poisoning of electro-catalyst, corrosion and losing conductivity. In this presentation, we report the synthesis of novel poly(arylene ether sulfone)s containing benzimidazole groups These benzimidazole containing polymer was blended with sulfonated poly(arylene ether sulfone). In the blend system, benzimidazole group attached to the polysulfone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups. Proton conductivity of the blend membranes was investigated as a function of water content at 80 C and compared the performance with water based proton conduction system.

  3. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    PubMed

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  4. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death.

    PubMed

    Liu, Gesheng; Zhang, Shuai; Yang, Kun; Zhu, Lizhong; Lin, Daohui

    2016-07-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two widely used polyfluorinated compounds (PFCs) and are persistent in the environment. This study for the first time systematically investigated their toxicities and the underlying mechanisms to Escherichia coli. Much higher toxicity was observed for PFOA than PFOS, with the 3 h half growth inhibition concentrations (IC50) determined to be 10.6 ± 1.0 and 374 ± 3 mg L(-1), respectively, while the bacterial accumulation of PFOS was much greater than that of PFOA. The PFC exposures disrupted cell membranes as evidenced by the dose-dependent variations of cell structures (by transmission electron microscopy observations), surface properties (electronegativity, hydrophobicity, and membrane fluidity), and membrane compositions (by gas chromatogram and Fourier transform infrared spectroscopy analyses). The increases in the contents of intracellular reactive oxygen species (ROS) and malondialdehyde and the activity of superoxide dismutase indicated the increment of oxidative stress induced by the PFCs in the bacterial cells. The fact that the cell growth inhibition was mitigated by the addition of ROS scavenger (N-acetyl cysteine) further evidenced the important role of oxidative damage in the toxicities of PFOS and PFOA. Eighteen genes involved in cell division, membrane instability, oxidative stress, and DNA damage of the exposed cells were up or down expressed, indicating the DNA damage by the PFCs. The toxicities of PFOS and PFOA to E. coli were therefore ascribed to the membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. The difference in the bactericidal effect between PFOS and PFOA was supposed to be related to their different dominating toxicity mechanisms, i.e., membrane disruption and oxidative damage, respectively. The outcomes will shed new light on the assessment of ecological effects of PFCs. Copyright © 2016 Elsevier Ltd. All rights

  5. Combined effects of magnetic fields and temperature changes on 1-aminonaphthalene-8-sulfonic acid fluorescence in red blood cell ghost cell membrane

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Yaoita, M.; Iwasawa, T.; Ueno, S.

    2006-04-01

    In the present study, we performed an experiment to clarify the possible effects of magnetic fields of up to 8 T on cell membrane fluidity by using red blood cell ghosts and a fluorescence dye, 1-aminonaphthalene-8-sulfonic acid (ANS). The time course of ANS emission at 480 nm under the influence of a magnetic field at 5 T was observed. The effects of multiple rapid temperature changes and magnetic fields were investigated. The emission intensity at 480 nm increased when the temperature of the cell holder was increased from 20 to 38-46 °C for 15 min. A change in temperature exhibited an increase in the fluidity of the lipid molecules in the cell membrane and increased the population of ANS molecules emitting light at 480 nm in the cell membrane, which is hydrophobic. A discontinuous change in fluorescence at 38-40 °C was exhibited under exposure to a magnetic field at 5 T, while the temperature dependency was continuous without exposure to the magnetic field. In addition, under exposure to the magnetic field, the fluorescence during a decrease in temperature from 38 to 20 °C remained at a level close to the fluorescence during an increase in temperature. The results indicated that the fluidity of the molecules in the cell membrane was decelerated by exposure to magnetic fields at 5 T. We speculated that the magnetic orientation in a part of the lipid membrane disturbed the release of ANS molecules from a hydrophobic region of the membrane.

  6. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005-2010.

    PubMed

    Darrow, Lyndsey A; Stein, Cheryl R; Steenland, Kyle

    2013-10-01

    Previous research suggests perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) may be associated with adverse pregnancy outcomes. We conducted a population-based study of PFOA and PFOS and birth outcomes from 2005 through 2010 in a Mid-Ohio Valley community exposed to high levels of PFOA through drinking-water contamination. Women provided serum for PFOA and PFOS measurement in 2005-2006 and reported reproductive histories in subsequent follow-up interviews. Reported singleton live births among 1,330 women after 1 January 2005 were linked to birth records (n = 1,630) to identify the outcomes of preterm birth (< 37 weeks gestation), pregnancy-induced hypertension, low birth weight (< 2,500 g), and birth weight (grams) among full-term infants. We observed little or no evidence of association between maternal serum PFOA or PFOS and preterm birth (n = 158) or low birth weight (n = 88). Serum PFOA and PFOS were both positively associated with pregnancy-induced hypertension (n = 106), with adjusted odds ratios (ORs) per log unit increase in PFOA and PFOS of 1.27 (95% CI: 1.05, 1.55) and 1.47 (95% CI: 1.06, 2.04), respectively, but associations did not increase monotonically when categorized by quintiles. Results of subanalyses restricted to pregnancies conceived after blood collection were consistent with the main analyses. There was suggestion of a modest negative association between PFOS and birth weight in full-term infants (-29 g per log unit increase; 95% CI: -66, 7), which became stronger when restricted to births conceived after the blood sample collection (-49 g per log unit increase; 95% CI: -90, -8). Results provide some evidence of positive associations between measured serum perfluorinated compounds and pregnancy-induced hypertension and a negative association between PFOS and birth weight among full-term infants.

  7. Levels of perfluorooctane sulfonate and perfluorooctanoic acid in female serum samples from Japan in 2008, Korea in 1994-2008 and Vietnam in 2007-2008.

    PubMed

    Harada, Kouji H; Yang, Hye-Ran; Moon, Chan-Seok; Hung, Nguyen Ngoc; Hitomi, Toshiaki; Inoue, Kayoko; Niisoe, Tamon; Watanabe, Takao; Kamiyama, Shigetoshi; Takenaka, Katsunobu; Kim, Min-Young; Watanabe, Kiyohiko; Takasuga, Takumi; Koizumi, Akio

    2010-04-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have recently received attention owing to their widespread contamination in the environment. One of major manufacturers, 3M Company voluntarily phased out PFOS production in 2002. We measured the PFOS and PFOA concentrations in serum samples from Japan (Sendai, Takayama and Osaka), Korea (Busan and Seoul) and Vietnam (Hanoi) to evaluate the possible effects of the phase-out on the serum levels. There were spatial differences in both the serum PFOS and PFOA concentrations. The serum PFOS concentrations (ngmL(-1)) evaluated as the geometric mean (geometric standard deviation) in 2007-2008 ranged from 4.86 (1.45) in Sendai, Japan, to 9.36 (1.42) in Busan, Korea. The serum PFOA concentrations ranged from 0.575 (2.32) in Hanoi, Vietnam, to 14.2 (1.73) in Osaka, Japan. Historically archived samples collected from Korea in 1994-2008 revealed that the serum PFOA concentrations increased by 1.24-fold in Busan from 2000 to 2008 and 1.41-fold in Seoul from 1994 to 2007. On the other hand, the serum PFOS concentrations did not change from 1994 to 2007/2008. The serum PFOS levels in Japan in 2008 were significantly decreased compared with previously reported values (22.3-66.7% of the values in 2003/2004). However, the serum PFOA levels showed a clear decline from 2003 to 2008 in a high-exposed area, Osaka, but not in low-exposed areas in Japan. The trends toward decreases were not uniformly observed in Asian countries, unlike the case for the United States, suggesting that local factors associated with the production and introduction histories in each country overwhelm the effects of the phase-out. 2010 Elsevier Ltd. All rights reserved.

  8. Selective binding of the fluorescent dye 1-anilinonaphthalene-8-sulfonic acid to peroxisome proliferator-activated receptor gamma allows ligand identification and characterization.

    PubMed

    Zorrilla, Silvia; Garzón, Beatriz; Pérez-Sala, Dolores

    2010-04-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily involved in insulin sensitization, atherosclerosis, inflammation, and carcinogenesis. PPARgamma transcriptional activity is modulated by specific ligands that promote conformational changes allowing interaction with coactivators. Here we show that the fluorophore 1-anilinonaphthalene-8-sulfonic acid (ANS) binds to PPARgamma-LBD (ligand binding domain), displaying negligible interaction with other nuclear receptors such as PPARalpha and retinoid X receptor alpha (RXRalpha). ANS binding is competed by PPARgamma agonists such as rosiglitazone, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), and 9,10-dihydro-15-deoxy-Delta(12,14)-prostaglandin J(2) (CAY10410). Moreover, the affinity of PPARgamma for these ligands, determined through ANS competition titrations, is within the range of that reported previously, thereby suggesting that ANS competition could be useful in the screening and characterization of novel PPARgamma agonists. In contrast, gel-based competition assays showed limited performance with noncovalently bound ligands. We applied the ANS binding assay to characterize a biotinylated analog of 15d-PGJ(2) that does not activate PPAR in cells. We found that although this compound bound to PPARgamma with low affinity, it failed to promote PPARgamma interaction with a fluorescent SRC-1 peptide, indicating a lack of receptor activation. Therefore, combined approaches using ANS and fluorescent coactivator peptides to monitor PPARgamma binding and interactions may provide valuable strategies to fully understand the role of PPARgamma ligands. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Anionic-zwitterionic mixed micelles in micellar electrokinetic chromatography: sodium dodecyl sulfate-N-dodecyl-N,N-dimethylammonium-3-propane-1-sulfonic acid.

    PubMed

    Ahuja, E S; Preston, B P; Foley, J P

    1994-07-15

    A zwitterionic surfactant, N-dodecyl-N,N-dimethylammonium-3-propane-1- sulfonic acid (SB-12), was used in combination with an anionic surfactant, sodium dodecyl sulfate (SDS), to form a novel pseudostationary phase for use in micellar electrokinetic chromatography. This mixed micellar system was characterized in terms of analyte retention, selectivity, efficiency, elution range, and resolution; and compared to results obtained using only SDS. A typically used SDS concentration, 20 mM, was chosen as a reference to which comparisons could be drawn. With 20 mM SDS, the optimum concentration range of 10-20 mM SB-12 provided efficiencies that were 2-4 times greater than with SDS alone, with minimal (< 15%) changes in the elution range and electroosmotic flow. The addition of 40 and 60 mM SB-12 also resulted in efficiencies on average of 600,000-800,000 theoretical plates/m, but at a significant reduction in the elution range and peak capacity. Retention factors (k') for the various neutral analytes increased by 20% with addition of 10 mM SB-12 and by approximately 60% with addition of 40 and 60 mM SB-12, while operating currents remained constant as SB-12 was added. Geometrical isomers p-nitrotoluene and m-nitrotoluene, that co-eluted with 20 mM SDS, were baseline resolved with the addition of 10 mM SB-12; in addition, methylene selectivity was greatest at this composition. No capillary wall interactions or coating effects were observed with the SDS-SB-12 mixed micellar system, in contrast to previously studied anionic-non-ionic mixed micellar system, SDS-Brij 35. Consequently, migration times were very repeatable (< or = 1.2% R.S.D.).

  10. Degradation kinetics of 4-amino naphthalene-1-sulfonic acid by a biofilm-forming bacterial consortium under carbon and nitrogen limitations.

    PubMed

    Juárez-Ramírez, C; Velázquez-García, R; Ruiz-Ordaz, N; Galíndez-Mayer, J; Ramos Monroy, O

    2012-08-01

    By decolorization of azo dyes, caused by reductive cleavage of the azo linkage, toxic or recalcitrant amines are generated. The present study deals with the effect of the inflowing medium composition (C:N ratio) on the kinetic behavior of a bacterial biofilm-forming consortium, able to use as carbon, nitrogen and sulfur source, the molecule of 4-aminonaphthalene-1-sulfonic acid (4ANS), which is one of the most recalcitrant byproducts generated by decolorization of azo dyes. All the experiments were carried out at room temperature in a lab-scale packed-bed biofilm reactor. Because environmental conditions affect the bioreactor performance, two mineral salts media containing 4ANS, with distinct C:N ratios; 0.68 (carbon as the limiting nutrient) and 8.57 (nitrogen as the limiting nutrient) were used to evaluate their effect on 4ANS biodegradation. By HPLC and COD measurements, the 4ANS removal rates and removal efficiencies were determined. The cultivable bacterial strains that compose the consortium were identified by their 16S rDNA gene sequence. With the enrichment technique used, a microbial consortium able to use efficiently 4ANS as the sole carbon source and energy, nitrogen and sulfur, was selected. The bacterial strains that constitute the consortium were isolated and identified. They belong to the following genera: Bacillus, Arthrobacter, Microbacterium, Nocardioides, and Oleomonas. The results obtained with this consortium showed, under nitrogen limitation, a remarkable increase in the 4ANS removal efficiency η(ANS), and in the 4ANS volumetric removal rates R (V,4ANS), as compared to those obtained under carbon limitation. Differences observed in bioreactor performance after changing the nutrient limitation could be caused by changes in biofilm properties and structure.

  11. Magnetic graphene - polystyrene sulfonic acid nano composite: A dispersive cation exchange sorbent for the enrichment of aminoalcohols and ethanolamines from environmental aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Dubey, D K; Pardasani, Deepak

    2015-12-04

    Present study aimed at graphene surface modification to achieve selective analyte binding in dispersive solid phase extraction. Magnetic graphene - polystyrene sulfonic acid (MG-PSS) cation exchange nano-composite was prepared by non-covalent wrapping method. Composite was characterized by FT-IR and zeta potential. Material exhibited good dispersion in water and high exchange capacity of 1.97±0.16mMg(-1). Prepared nano-sorbent was then exploited for the cation exchange extraction and gas chromatography mass spectrometric analysis of Chemical Weapons Convention relevant aminoalcohols and ethanolamines from aqueous samples. Extraction parameters such as sorbent amount, extraction time, desorption conditions and sample pH were optimized and effect of common matrix interferences such as polyethylene glycol and metal salts was also studied. Three milligram of sorbent per mL of sample with 20min of extraction time at room temperature afforded 70-81% recoveries of the selected analytes spiked at concentration level of 1μgmL(-1). Method showed good linearity in the studied range with r(2)≥0.993. The limits of detection and limits of quantification ranged from 23 to 54ngmL(-1) and 72 to 147ngmL(-1), respectively. The relative standard deviation for intra- and inter-day precision ranged from 4.6 to 10.2% and 7.4 to 14.8% respectively. Applicability of the method to different environmental samples as well as the proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW) was also ascertained. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Preparation of Fe3O4 encapsulated-silica sulfonic acid nanoparticles and study of their in vitro antimicrobial activity.

    PubMed

    Naeimi, Hossein; Nazifi, Zahra Sadat; Amininezhad, Seyedeh Matin

    2015-08-01

    A simple and efficient method for the functionalization of silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) using chlorosulfonic acid is described. The prepared compounds were screened for antibacterial activity against Escherichia coli (E. coli ATCC 25922) and Staphylococcus aureus (S. aureus ATCC 25923) under UV-light and dark conditions. It was found that the Fe3O4@SiO2-SO3H was significantly indicated the higher photocatalytic inactivation than both Fe3O4 and Fe3O4@SiO2 against E. coli in compared with S. aureus. Furthermore, the inactivation efficiency against both organisms under light conditions has been higher than this efficiency under dark conditions.

  13. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil.

    PubMed

    Bizkarguenaga, E; Zabaleta, I; Mijangos, L; Iparraguirre, A; Fernández, L A; Prieto, A; Zuloaga, O

    2016-11-15

    Sewage sludge, which acts like a sink for many pollutants, including metals, pathogens and organic pollutants, that are not completely removed in waste water treatment plants (WWTPs), is applied as a nutrient rich organic fertilizer in many agricultural applications. In the present work, carrot and lettuce crops were grown in two different compost amended soils fortified with perfluorooctanoic acid (PFOA), perfluorosulfonate acid (PFOS) and perfluorosulfonamide (FOSA) and cultivated in a greenhouse. The plants were harvested and divided into root core, root peel and leaves in the case of carrots and into heart and leaves for lettuces. Concentrations for all the different compartments were determined to assess the bioconcentration factors (BCFs) and the plant distribution of the target analytes. The highest carrot BCFs for PFOA and PFOS were determined in the leaves (0.6-3.4), while lower values were calculated in the core (0.05-0.6) and the peel (0.05-1.9) compartments. However, PFOA was taken up in the translocation stream and accumulated more than PFOS in the edible part of lettuce. FOSA was totally degraded in the presence of carrot; however, a lower FOSA degradation was observed in presence of the lettuce, which was dependent on the total organic carbon (TOC) content of the soil. The higher the TOC value, the higher the FOSA degradation observed. No degradation was observed in the crop absence. In the case of the carrot experiments, different polymeric materials (polyethersulfone, PES, polyoxymethylene, and silicone rod) were tested to predict the concentration in the cultivation media. A high correlation (r(2)>0.63) was observed for the BCFs in the PES and in the carrot core and peel for PFOA and PFOS. It could be, concluded that the PES can be used as a first approach for the determination of the uptake of compounds such as PFOS and PFOA in carrot. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Analysis and detection of the herbicides dimethenamid and flufenacet and their sulfonic and oxanilic acid degradates in natural water

    USGS Publications Warehouse

    Zimmerman, L.R.; Schneider, R.J.; Thurman, E.M.

    2002-01-01

    Dimethenamid [2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide] and flufenacet [N-(4-fluorophenyl)-N-(1-methylethyl)-2-(5-(trifluoromethyl)-1,3,4- thiadiazol-2-yl)oxy] were isolated by C-18 solid-phase extraction and separated from their ethanesulfonic acid (ESA) and oxanilic acid (OXA) degradates during their elution using ethyl acetate for the parent compound, followed by methanol for the polar degradates. The parent compounds were detected using gas chromatography-mass spectrometry in selected-ion mode. The ESA and OXA degradates were detected using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESPMS) in negative-ion mode. The method detection limits for a 123-mL sample ranged from 0.01 to 0.07 μg/L. These methods are compatible with existing methods and thus allow for analysis of 17 commonly used herbicides and 18 of their degradation compounds with one extraction. In a study of herbicide transport near the mouth of the Mississippi River during 1999 and 2000, dimethenamid and its ESA and OXA degradates were detected in surface water samples during the annual spring flushes. For flufenacet, the only detections at the study site were for the ESA degradates in samples collected at the peak of the herbicide spring flush in 2000. The low frequency of detections in surface water likely is due to dimethenamid and flufenacet being relatively new herbicides. In addition, detectable amounts of the stable degradates have not been detected in ground water.

  15. Crystal Structures of KPC-2[beta]-Lactamase in Complex with 3-Nitrophenyl Boronic Acid and the Penam Sulfone PSR-3-226

    SciTech Connect

    Ke, Wei; Bethel, Christopher R.; Papp-Wallace, Krisztina M.; Pagadala, Sundar Ram Reddy; Nottingham, Micheal; Fernandez, Daniel; Buynak, John D.; Bonomo, Robert A.; van den Akker, Focco

    2012-08-01

    Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by {beta}-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To explore different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two {beta}-lactamase inhibitors that follow different inactivation pathways and kinetics. The first complex is that of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA), bound to KPC-2 with 1.62-{angstrom} resolution. 3-NPBA demonstrated a Km value of 1.0 {+-} 0.1 {micro}M (mean {+-} standard error) for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA provides an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone PSR-3-226 was determined at 1.26-{angstrom} resolution. PSR-3-226 displayed a K{sub m} value of 3.8 {+-} 0.4 {micro}M for KPC-2, and the inactivation rate constant (kinact) was 0.034 {+-} 0.003 s{sup -1}. When covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226, which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first {beta}-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained here could aid in the design of potent KPC-2 inhibitors.

  16. Room temperature synthesis of biodiesel using sulfonated ...

    EPA Pesticide Factsheets

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  17. Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite.

    PubMed

    Kera, Nazia H; Bhaumik, Madhumita; Ballav, Niladri; Pillay, Kriveshini; Ray, Suprakas Sinha; Maity, Arjun

    2016-08-15

    A polypyrrole/2,5-diaminobenzenesulfonic acid (PPy/DABSA) composite, synthesised by the in situ oxidative polymerization of pyrrole in the presence of DABSA, was studied as an adsorbent for the removal of Cr(VI) from aqueous solution. The structure and morphology of the composite were investigated by ATR-FTIR, FE-SEM, EDX, TGA, XRD and XPS studies. The adsorption of Cr(VI) by PPy/DABSA composite was highly pH dependent and optimum removal was achieved at pH 2. Adsorption of Cr(VI) was confirmed by EDX and XPS studies. The isotherm data fitted the linear Langmuir model well, with a maximum adsorption capacity of 303mg/g at 25°C. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) were calculated using isotherm data and confirmed that the adsorption process was spontaneous and endothermic. Adsorption kinetics was best described by the pseudo-second-order model. The activation energy of the adsorption process suggested that Cr(VI) was chemisorbed by PPy/DABSA composite. PPy/DABSA composite could be used for three consecutive adsorption-desorption cycles without loss of its original adsorption capacity. Highly selective removal of Cr(VI) was observed even when co-existing ions such as Cu(2+), Zn(2+), Ni(2+), Cl(-), SO4(2)(-) and NO3(-) were present in the solution. In summary, the potential of PPy/DABSA composite for remediating industrial wastewater contaminated by Cr(VI) has been demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Low and high temperature drilling fluids based on sulfonated terpolymer ionomers

    SciTech Connect

    Peiffer, D. G.; Lundberg, R. D.; Pober, K. W.

    1985-08-27

    The present invention relates to sulfonated thermoplastic terpolymers which are terpolymers of t-butyl styrene, styrene and sodium styrene sulfonate wherein these sulfonated terpolymers function as viscosification agents when added to oil-based drilling muds which are the fluids used to maintain pressure, cool drill bits and lift cuttings from the holes in the drilling operation for oil and gas wells. The sulfonated thermoplastic terpolymer of the latex have about 5 to 100 meg. of sulfonate groups per 100 grams of the sulfonated thermoplastic terpolymer, wherein the sulfonated groups are neutralized with a metallic cation or an amine or ammonium counterion. A polar cosolvent can optionally be added to the mixture of oil drilling mud and sulfonated thermoplastic polymer, wherein the polar cosolvent increases the solubility of the sulfonated thermoplastic terpolymer in the oil drilling mud by decreasing the strong ionic interactions between the sulfonate groups of the sulfonated polymer. The drilling muds formed from these latices of the sulfonated thermpolastic terpolymers exhibits markedly improved low and high temperature rheological properties as compared to drilling muds formed from sulfonated thermoplastic copolymers.

  19. Amino acids from the late Precambrian Thule group, Greenland.

    PubMed

    Akiyama, M; Shimoyama, A; Ponnamperuma, C

    1982-06-01

    Amino acids were recovered at concentration level of 10-9 M/g from the interior of chert and dolomite of the Late Precambrian Thule Group. Examination of the stability of amino acids in chert under dry-heating conditions suggests that these amino acids have been preserved with a predominance of L-enantiomers in the precambrian chert. Enantiomer analysis of amino acids in dolomite showed a thermal effect resulting from a late precambrian igneous intrusion. This evidence indicates that the amino acids isolated from the Thule samples were chemical fossils and not recent contaminants.

  20. Determination of perfluorooctane sulfonate and perfluorooctanoic acid in food packaging using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Poothong, Somrutai; Boontanon, Suwanna Kitpati; Boontanon, Narin

    2012-02-29

    This research aimed to monitor the amounts of PFOS and PFOA in food packaging and study the migration of PFOS and PFOA from food packaging, using a saliva simulant and pressurized liquid extraction (PLE) technique. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was employed to determine residues of PFOS and PFOA by using a gradient reversed-phase method with ammonium acetate/acetonitrile buffer. A good linearity was established for PFOS and PFOA in a range of 0.05-10 μgL(-1), with R2 ≥ 0.9998. Of the samples extracted by methanol, the highest concentration of PFOS was found in fast-food container samples, at a level of 92.48 ng dm(-2). For PFOA, the highest concentration in samples extracted by methanol was found in ice cream cup samples, at a level of 16.91 ng dm(-2). The amounts of PFOS and PFOA that migrated from food packaging samples through contact with saliva simulant were 4.80 and 4.55 ng dm(-2), respectively. Saliva simulant could leach PFOS and PFOA from the group of the thickest paper samples (≤1 dm2 g(-1)) at levels of 7.01 and 6.41 ng dm(-2), respectively, indicating that paper with greater thickness and less area might release larger quantities of coated/added PFOS or PFOA.